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ABSTRACT 

 Identification of users on the internet has broad-reaching implications in the 

computer science discipline regarding cyber security and privacy. Keystroke biometrics 

leverages the unique dynamics of how a user types to perform identification; however, 

current methods of authentication and identification using keystroke dynamics do not 

scale well beyond a few hundred users. This thesis investigates the feasibility of using 

conventional machine learning and deep learning techniques to identify users at an 

internet scale. By analyzing free-text keystroke information from a collection of over 

100,000 users, several methods to perform user identification and profiling are identified, 

with a focus on determining how the size of the dataset affects identification accuracy. 

This thesis includes a novel method of representing keystroke data in a two-dimensional 

format suitable for a convolutional neural network, and it examines to what extent 

keystroke biometrics has implications for privacy on the internet. 
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I. INTRODUCTION 

Numerous forms of biometrics are used to identify people based on how they look, 

talk, walk and act. Verification and identification of individuals has been imperative 

throughout the history of humans. In the computer age, identifying a user using biometrics 

has gained significant importance, complexity, accuracy and degree of difficulty as 

technology improves. Current forms of biometrics include fingerprints, retina scans, facial 

recognition, voice recognition and keystroke dynamics.  

The focus of this thesis will be keystroke dynamics. This form of biometrics is 

important because it can be passive, meaning it can be obtained without the knowledge of 

the user. It can also be collected continuously and unobtrusively as a user goes about his 

everyday interactions with a computer system.  

Significant developments have been made through combining biometrics with 

machine learning techniques so as to enhance the ability of a computer to perform 

identification of users. This thesis investigated whether machine-learning techniques can 

be successful in determining the identification of users on a large scale based on the 

uniqueness of their keystroke dynamics.  

A. PROBLEM STATEMENT 

Substantial research has been conducted regarding keystroke dynamics and 

identification methods using this form of biometrics. There are also commercial 

applications that use keystroke dynamics to enhance security of systems. However, there 

is an absence of research concerned with keystroke biometric applications on an Internet 

scale. It is unknown whether an Internet user could be identified or even significantly 

narrowed-down based on the way he interacts with a computer keyboard. It would be 

extremely useful to be able to compare keystroke patterns and present results with likely 

matches out of a population of users. In addition, keystroke patterns can be leveraged to 

profile a user into categories such as age, gender, nationality, etc., based on his typing 

patterns.  
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B. RESEARCH QUESTIONS 

There are two questions that this research sought to address. First, we aimed to 

determine to what extent can keystroke biometrics be performed at an Internet scale, using 

a large dataset of keystroke logs collected from over 160,000 users. This thesis investigated 

whether machine-learning techniques and neural networks are able to perform 

identification and profiling on such a large collection of users.  

Our second question aims to determine the privacy implications of using keystroke 

dynamics to perform identification at an Internet scale. For example, what are the privacy 

consequences when keystroke dynamics can accurately de-anonymize users on the Web? 

Such implications could extend to, and adversely affect, users employing the Tor 

network—or other such mechanisms—to help achieve anonymity for protection against 

political targeting.  

C. SCALE 

Keystroke biometrics can be performed at various scales, determined by the 

application setting. Figure 1 demonstrates three scale categories—two extreme and one 

intermediate—that we considered. At one end of the spectrum, a one-to-one comparison is 

made between a user-provided sample and that user’s pre-registered/collected template. 

This scenario encompasses authentication, which is useful for adding security to digitally 

enabled transactions. For example, comparing the way a user enters a password to ensure 

the user is who he says he is. The system can also continuously check that the person behind 

the keyboard remains the same user that originally authenticated at the time of log-on. In 

this way, the system compares the sequence of keystrokes to the "registered" example of 

the user’s typing characteristics.  

For the "intermediate" category, typing behavior could be collected on the users of 

an organization’s intranet, so as to perform identification on a "medium" sized set of 

persons. Though the size of intranets can vary widely, in the context of our research, it 

refers to the nominal size of an average corporate network: a few thousand or less. 

Identification on this scale consists of comparing keystroke dynamics to a fixed number of 

already known users on the intranet of interest.  
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The most difficult scale category we chose is identification on an Internet-scale. At 

this scale, we are comparing the keystroke dynamics of users to a much larger and ever-

increasing collection of potential matches. In this research, this is the scale category of 

most interest, because this thesis introduces new techniques to successfully identify users 

in a dataset of over 160,000 users.  

 

Figure 1. Varying Scales of Biometrics 

D. BENEFITS OF RESEARCH 

One contribution of this study is in the field of cyber security. If keystroke 

biometrics becomes a viable option of authentication, it would add a much-needed security 

feature in digital computing environments. Keystroke biometrics is a relatively low-cost 

measure that uses commodity hardware to monitor keystrokes to identify a user or verify a 

user’s claimed identity. Continuous authentication could even be used to monitor a user 

after entering a password to guarantee that the user’s session has not been hijacked.  

Another benefit this study may bring to the cyber security community is improved 

identification abilities. Identifying a user based on his keystrokes could be extremely 
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valuable to intelligence agencies, and both the defensive and offensive cyber communities. 

Patterns could be defined based on keystroke information in order to allow malicious actors 

to be more easily identified. Offensive cyber applications involve using these techniques 

to identify targets as well as learn ways for offensive actors to mask their keystroke data in 

order to avoid detection.  

The results of this thesis are of interest to both the Department of Defense and the 

U.S. government. DARPA’s Active Authentication program is evidence of this. DARPA 

is seeking “to develop novel ways of validating the identity of the person at the console 

that focus on the unique aspects of the individual through the use of software based 

biometrics” [1]. This thesis seeks to help with that development. Cyber security is an area 

where research is needed and new capabilities are constantly in demand. The prospect of 

identifying users in extremely large-scale datasets has broad-reaching implications to the 

United States' cyber workforce in both the offensive and defensive realms.  

E. ORGANIZATION 

Chapter II of this thesis explores the background of biometrics, keystroke 

dynamics, and Internet privacy to ensure the reader has an appropriate knowledge base 

regarding the concepts contained in this thesis. Chapter III investigates the keystroke 

dataset that was used in this research. The scale, statistics and other factors of the data will 

be laid out. Chapter IV provides a baseline approach to identification of users in this dataset 

and the results obtained from this approach. Chapter V introduces a method of 

identification that relies on a neural network and presents the results of this method. 

Finally, Chapter VI provides a conclusion and future work that may build off of this thesis.  
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II. BACKGROUND  

This section will focus on providing a background of knowledge regarding 

keystroke dynamics and the associated data that can be obtained from this timing 

information. Background information regarding Internet privacy, including browser and 

device fingerprinting, is explored, as well as general information about user identification 

and computer biometrics.  

A. BIOMETRICS 

Biometrics are metrics related to human characteristics, and a biometric system is 

any system that uses these characteristics to perform authentication or identification. 

Biometrics present an added security measure to any system by increasing the factors used 

for identification. Adding a biometric to a password creates a two-factor authentication 

system, thus increasing the amount of security beyond a single-factor system. Biometrics 

have also been used throughout history to aid in identification. One of the earliest forms of 

biometrics performed by humans is simple facial recognition. DNA and fingerprints, some 

of the first widely used biometrics, have been successfully used for decades in law 

enforcement. More recently, new forms of biometrics based on human-computer 

interaction have entered the computer security realm. Biometrics and the various 

processing systems introduce technical complexities that must be understood in order to 

fully appreciate the research findings presented in this thesis. This section presents the 

types of biometric systems, the limitations of biometrics, the concept of the biometric 

menagerie, and the types of error rates and measures of success of biometric systems.  

1. Biometric Types 

A biometric system can be used in two basic ways. The type of biometric used 

depends on a multitude of factors, including the reason for use, number of participants, and 

whether or not enrollment has been performed, among others. The motive for using 

biometrics is broken down into either verification or identification. This thesis is concerned 

with the identification mode of biometrics due to the large-scale dataset that is being used, 
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as well as the reason for conducting keystroke biometrics in order to identify users on the 

Internet.  

Verification mode refers to the use case wherein a system is used to confirm the 

identity of a user based on the user’s template that was collected and saved to the system 

database at the time of that user's enrollment [2]. This mode begins when a user claims to 

be a valid user on a system, which then performs a biometric check in order to compare the 

user with his registered identity. The reason for this is to ensure only one person can use 

each identity and eliminate imposter users. Verification mode represents a one-to-one 

authentication of a user and the corresponding template.  

Identification is the alternate mode of biometrics. A one-to-many search is 

performed in order to determine if there is a match on the system [2]. This mode is used if 

the system has information on a particular user and wants to search the database to see if 

the user corresponds to a previously defined identity. Identification is key to this thesis as 

this research evaluated the viability of identification on the Internet scale.  

2. Limitations 

There are a few glaring limitations to biometric systems. These limitations are 

exaggerated when dealing with a large dataset. The five limitations of unimodal biometric 

systems are presented by Jain et al. in the paper: “An introduction to biometric recognition” 

[2]. Noisy data makes biometric identification difficult and may lead to false positives or 

false negatives in the results. Noise in keystroke dynamics equates to a user who is not 

inputting keystroke data in his normal/usual way, due to a factor such as typing position or 

mood. Intra-class variations refer to differences in data from template creation to when the 

identification is occurring. Variations in keystroke data could occur in many ways, 

including changing keyboard type. Another limitation is the distinctiveness of the 

biometric. Distinctiveness must be taken into consideration because in order for 

verification or identification to occur, the data between users must be sufficiently distinct. 

This is especially a problem with keystroke biometrics because it is possible for multiple 

users’ keystrokes to not be unique enough to make a correct match. Non-universality is a 

consideration because it is possible that not all users have a certain biometric trait. This is 
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not so much a limitation in the keystroke biometrics realm because it is extremely rare to 

use a computer without interacting with a keyboard, but it is possible to not provide enough 

biometric data to make a match. Lastly, spoof attacks could be used to impersonate another 

user in the system, or to deliberately change the data enough so it is not recognizable. It is 

entirely possible to disrupt a keystroke biometric system by typing differently than usual. 

Each of the described limitations presents unique challenges to a biometric system and 

needs to be taken into account.  

3. Biometric Menagerie 

The biometric menagerie refers to the groups into which users are categorized based 

on ease of detection when dealing with a biometric system. Doddington et al. [3] first 

described the animal names that are assigned to different types of users in a system. Sheep 

are the most abundant user type in a system. They are defined as the model user for which 

the system performs well. Goats are users who are not easily recognizable. They may have 

noisy data or may not be very distinct. Goats can disproportionately lead to false negatives 

in a biometric system. Lambs are those users who are easily imitated. This type of user 

negatively affects the performance of a biometric system because lambs result in a majority 

of the false positives that occur. Wolves are the users who are able to imitate others and be 

falsely identified.  

All users in a biometric system may display a continuum of menagerie traits. Just 

because a user is falsely identified as an imposter or missed when he should have been 

identified, does not ensure he is labeled as a goat, lamb or wolf. Biometric system designers 

are interested in finding users who continuously exhibit these characteristics. Yager et al. 

states, “The reasons that a particular animal group exist are complex and varied. They 

depend on a number of factors, including enrollment procedures, feature extraction and 

matching algorithms, data quality, and intrinsic properties of the user population” [4].  

4. Performance Measures 

A biometric system never works 100% of the time. The goal is to get the results as 

close as possible to perfect matching (i.e., no false positives or false negatives), but there 

will always be some errors and mistakes. There must be a way to characterize these systems 
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and determine how well a given biometric system is performing. Authentication and 

Identification are fundamentally different, and thus require different metrics to measure 

how well they are working. The next two sections will describe the methods of quantifying 

errors and accuracy in a biometric system.  

a. Authentication Errors 

There are two types of errors used to describe biometric systems. These errors are 

called false match and false non-match. False match occurs when a system incorrectly 

accepts a biometric sample as a match. False match is also called a false positive. False 

non-match, also called false negative, occurs when valid biometric data is incorrectly 

rejected by the system. The False Match Rate (FMR) can be calculated by taking the 

number of false matches divided by the total number of false match attempts. The False 

Non-Match Rate (FNMR) is calculated by the number of false non-matches over the total 

number of genuine match attempts [5]. Both of these error rates can be displayed together 

in a Receiver Operating Characteristic (ROC) curve. A ROC curve plots the FMR as it 

relates to the FNMR. Every biometric system displays an inverse relationship between the 

FMR and FNMR. As the FMR increases, the FNMR decreases, and vice versa. It is 

imperative to evaluate the ROC curve when deciding how a system needs to operate. High 

security applications require the lowest possible FMR, but may sacrifice usability if the 

FNMR becomes too high. Likewise, in other applications, a low FNMR may be required 

but may come with a high FMR that leads to more false positives [2].  

b. Accuracy 

The accuracy of a biometric system is normally reported as a percentage of queries 

that were classified correctly. However, when operating at a large scale, different metrics 

of merit may need to be considered. This is of particular concern when a biometric system 

is operating in one-to-many identification mode, as the simple accuracy percentage may 

not tell the whole story. Li, Guo and Hopper [6] argue that validating by accuracy alone is 

flawed. In their paper regarding website fingerprinting on the Tor browser, they describe 

how low classification accuracy may not equate to low information leakage. Accuracy is a 

measure of all or nothing classification, but large amounts of information could still be 
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gleaned while reporting a low accuracy score. Another metric that can be used is a gap 

statistic that outputs a similarity score between the user being tested and each class [7]. 

Other statistics; such as percentage of successful classifications within the top N choices, 

may present a better representation of the usefulness of biometric experiments. This metric 

is referred to as top-N accuracy and was used extensively in this research. 

B. KEYSTROKE DYNAMICS 

Many factors influence how a user types on a keyboard. These individual factors 

provide a way of identifying a person based on how he types. Keystroke dynamics depend 

on the type of keyboard he is using, how his hands are positioned, the exact timing of each 

key press and the content (thus key patterns) that he is inputting. These aspects have been 

thoroughly covered in past research, and are used as vital underlying information 

throughout my thesis. 

1. Static versus Dynamic Typing 

An extremely important factor when collecting data on keystroke dynamics is 

whether a user is typing a fixed entry or typing freely while interacting with the computer 

system. Monitoring the keystroke dynamics of a fixed entry is considered static typing. 

This category of typing most often occurs when a user is logging on and the typing 

dynamics of a password or phrase are measured. The system can then compare the typing 

behavior of this common phrase or unique user ID and password in order to authenticate a 

user. Dynamic typing is captured as a user continuously interacts with a computer [5]. For 

example, keystroke information may be collected as a user types an email or searches in a 

browser. Dynamic text entry can be first checked during logon and continuously monitored 

afterward. The research in this thesis is based on dynamic typing. 

2. Mechanics of a Keystroke 

Understanding the dynamics of a key press is essential to this thesis. A computer 

records the time a certain key was pressed as well as when it was released. From these 

times, metrics can be extracted from this raw keystroke data. The time during which a key 

is pressed until it is released is called the duration. Other features can be determined by 
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taking the press and release times of different keys. These features are called latencies. The 

time between a key being pressed until the next key is pressed is called the press-to-press 

latency (PP). PP is also called a digraph or, if extended to the next press, a trigraph. 

Release-to-press (RP) and release-to-release (RR) can also be calculated [5]. As shown in 

Figure 2, RP latencies can be negative. This characteristic of typing is called rollover and 

occurs when a user begins pressing the next key before releasing the previous key [8]. 

These features are the basic timing events for individual keystrokes and are used to 

compute more complex features. 

 

Figure 2. Dynamics of a Key Press. Adapted from [9]. 

3. Computing Features 

Many more features can be computed using the keystroke timing data discussed in 

the previous section. Durations of individual keys and groups of keys can be assessed as 

well as the mean and standard deviation of these durations. Features can be added to 

represent PP, RP and RR latencies between letters and non-letters in addition to the mean 

and standard deviation of these latencies. Latencies and durations dependent on keys struck 
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with the left or right hand can be included [8]. These features can then be repeated on 

specific digraphs and trigraphs. Calculating each of these times can lead to an increased 

feature space and improve accuracy of user identification. The research conducted by 

Tappert et al. [8] on long text input used 239 feature measurements making use of the letter 

and digraph frequencies in the English language.  

Overall performance measures can be added as well. When conducting the research 

on the large dataset that is used in this thesis, Dhakal et al. [10] computed more features 

that helped to sum up the key press data. In addition to the durations and latencies 

previously described, words per minute (WPM) was calculated by counting the number of 

words and dividing by minutes. Features were also computed based on errors made and 

errors corrected. This was displayed as the percentage of uncorrected errors and corrected 

errors. An additional feature was the rollover ratio, which is a percentage of times the RP 

latency is negative. 

Even more features can be extracted from dynamic keystroke data than has been 

previously described. Exponentially more features can be developed when taking into 

account new digraphs and trigraphs and the relationships within, between, and among 

them. Further, considering the context with which a certain letter is used may lead to the 

introduction of even more features [11]. As an example, the letter “a” may have a different 

duration when it is typed in the word “ant,” then when typed in the word “marker.”  

4. Typing Performance Factors 

There are many factors that contribute to the way that a person types. The amount 

of formal training, depth of experience, age, handedness and gender all have an effect on 

typing speed and dynamics. This section will describe a few factors that played a role in 

this research and elaborate on how they affect the typing behavior of a user.  

a. Keyboard Types 

Not all keyboards are created equal. Many English-speaking users type on an 

externally connected QWERTY keyboard with large, deep keys. Laptop keyboards are 

usually much shallower and sometimes smaller compared to desktop keyboards. Most prior 
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research makes a distinction between these two types of keyboards because a user’s typing 

on a desktop keyboard could be very different from how that same user types on a laptop 

keyboard. Villani et al. [9] concludes that keystroke biometrics can only be effectively used 

if the user maintains the same type of keyboard.  

Other keyboard factors may contribute to variations that could affect performance. 

Some keyboards may not have the same keys or may combine keys on the keyboards to 

save space. Some laptops make use of a function key to access lesser-used keys on the 

keyboard. Certain keyboard brands may be more or less sensitive to the touch than others. 

Lastly, laptops are mobile and allow a user to type in different positions like on the lap, on 

a desk, or even laying down on a bed [11]. Typing in different positions will undeniably 

make the task of keystroke biometric recognition even harder.  

Mobile devices and tablets are becoming increasingly popular and make up a larger 

percentage of devices each year. Some of these devices use a soft, flexible keyboard, while 

others use multitouch functionality. Measuring keystroke dynamics on a mobile device will 

be completely different from a conventional keyboard. According to Varcholik et al. [12], 

typing on multitouch devices cuts performance in half, from an average of 60 words per 

minute to an average of 30 words per minute. The research of this thesis deals solely on 

keystroke data taken from non-multitouch devices.  

b. Types of Typists 

Of course, not all typists type in the same manner. The most common method of 

typing is where the typist rests his hands on the keyboard in a position wherein the left 

hand rests on the keys A, S, D, F, and the right hand rests on the keys J, K, L, ;.. This 

provides a referential starting location for the fingers to reach all the keys on the keyboard.  

Another way of typing that is used by less skilled typists is the hunt and peck 

method. This method uses either one or two fingers to press the keys and is usually a much 

slower means of typing. This method requires the typist to look down and find a key before 

pressing it, and since it only uses one finger on each hand, it reduces the chance of rollover.  
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These two types of typists present an important distinction for use in this research 

because they are two extremely different methods that lead to unique results in keystroke 

timing. Some features are based on digraphs of a certain hand or timings between switching 

from the left hand to the right hand. If a user is using the hunt and peck method of typing, 

these features will not be useful, and in some cases, they may adversely affect the accuracy 

of the results. The features chosen that rely on which hand is pressing the key, are justified 

by the “How-we-Type” study by Feit et al. [10], [13]. Although some keys may be struck 

by either hand, this study examined which hand most frequently presses each key.  

c. Other Factors 

Other factors also have the potential to affect how a user types. Whether the user is 

transcribing visually from text, or if the user is thinking about what to write as they type 

introduces significant delay. Also, the mood that a user is in has been shown to affect 

performance. Khanna and Sasikumar [14] determined that a negative emotional state is 

more visible and recognized better using keyboard dynamics. Another factor that could 

have a significant impact on keyboard performance is the language of the typist. Is this 

person a primary English speaker, or is he typing in a different language on a non-English 

keyboard? These factors introduce more layers that could be used to help narrow down the 

identity of a user.  

One study even proved it was possible to use such factors that affect typing in order 

to detect early motor impairment caused by Parkinson’s disease [15]. The subtle changes 

in motor control caused by the disease were enough for properly instrumented 

measurements to detect the onset of Parkinson’s. This study highlights the effect that age 

and disease can have on a person’s typing behavior.  

C. INTERNET PRIVACY 

Identifying a user on the Internet can be an extremely difficult task. The more 

potential candidates that are added to the pool, the harder it becomes. Using certain 

characteristics to identify or narrow down the identity of an Internet user has wide reaching 

implications with respect to privacy. A working keystroke biometric system that could 

correctly identify a user on an Internet scale, in concert with other techniques, is an 
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important development with respect to free speech and remaining anonymous on the 

Internet.  

1. General Authorship 

An Internet user who wishes to remain anonymous may be much more easily 

identifiable than he realizes. Although user identification on such a large scale becomes 

more difficult as the size of the dataset increases, there are many techniques that can be 

used to gain data on a user and attempt to identify who he or she is. Whether aggregating 

public data or using biometrics to evaluate writing style and keystrokes, this represents a 

serious problem for Internet users who value their anonymity.  

Maintaining privacy on the Internet has been explored in many different contexts. 

One framework was examined by Narayanan et al. [7] which explores blog authorship on 

the scale of 100,000 users. This paper noticed that as the number of users increases, the 

classification task becomes increasingly difficult. Their analysis states: “An immediate 

consequence of having more classes is that they become more densely distributed…the 

decision boundary that separates each class now has to accurately distinguish it from a 

much larger number of close alternatives.” Despite the challenges associated with 

identification on such a large number of classes, the study was able to use machine-learning 

techniques to correctly identify an anonymous author in over 20% of cases. In 35% of the 

blogs, the correct author is within the top 20 guesses. 

Public data on the Internet can lead to the de-anonymization of users and disrupt 

Internet privacy. An example is the NETFLIX Prize dataset that was released which 

included over 500,000 users and the ratings that they gave to movies [16]. This seemingly 

harmless dataset was cross-referenced with other publicly available data to de-anonymize 

the users. With the increase in big data and advanced machine learning techniques, Internet 

privacy is rapidly becoming less assured.  

2. Fingerprinting 

Another way a user may be identified on the Internet is through fingerprinting of 

his or her browser or device. There are multiple ways that fingerprinting can occur, and 
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this data just adds to the available information that can be used to perform identification 

on an Internet scale.  

a. Browser Fingerprinting 

The ability to track a web browser is a threat to Internet privacy. Most Internet users 

are aware of HTTP cookies and how they are used to track a user. Internet users wishing 

to maintain privacy on the web can follow certain steps to turn off cookies and not allow 

websites to monitor their actions. A far less recognized way of tracking a user on the 

Internet is through browser fingerprinting. Peter Eckersley’s research [17] was the first 

study that performed fingerprinting on browsers based on the unique collection of versions 

and updates attributed to a user’s browser. He concluded that in a selection of 470,000 

browsers, 83.6% had a completely unique fingerprint. This percentage is even higher when 

the browsers being analyzed are limited to those that are running Adobe Flash or Java 

Virtual Machine. Even rapidly changing fingerprints were able to be tracked and guessed 

correctly most of the time as well. This information is all collected from available data that 

is voluntarily given to websites from a user’s browser, and can reveal operating system and 

hardware data [18]. Browser fingerprinting is an Internet privacy problem that significantly 

increases the difficulty of a user maintaining anonymity.  

b. Device Fingerprinting 

Device fingerprinting is yet another way information can be determined about an 

Internet user without his knowledge. Each physical device has small but detectable clock 

skews that can be observed and used to uniquely identify a physical device. Khono et al. 

[19] used this information, as well as TCP timestamps and different operating system clock 

data, to fingerprint devices and eliminate the anonymity of users in the study. This adds to 

the amount of useful information that is available on the Internet to perform identification 

on such a large scale.  

3. Methods of Anonymity 

The average Internet user does not take much action to hide his identity online, and 

most likely does not even think twice about how his privacy is affected while using a 
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computer. For the user that does understand what information can be collected, and wants 

to mitigate unwanted, anonymity-defeating, data leakage; there are a few security control 

options available.  

One option is to use multiple different browsers and settings. By continuously 

switching the type of browser used, one can make it more difficult to develop a fingerprint 

for him. However, this method can be time consuming and result in unnecessary extra work 

for the user. A browser that has similar settings to many other browsers being used on the 

Internet is another way to lower the entropy of a browser and make it harder to uniquely 

identify. A downside of these methods is they require continued diligence with updating 

and upkeep in order to remain anonymous.  

Lastly, a browser named Tor is popular for browser anonymity. Tor browser relies 

on the Tor network to provide free software and a worldwide network to help facilitate 

anonymous web browsing [20].   

D. KEYSTROKE DYNAMICS AND INTERNET PRIVACY 

Maintaining privacy on the Internet is an extremely sensitive and important topic 

within many areas. Law enforcement, cyber security and freedom of speech concerns are 

among the concentrations that have a stake in the Internet privacy discussion.  

1. Keystroke Dynamics versus Browser Fingerprinting 

Using browser fingerprinting as a method of identification can be a very successful 

technique. However, there are disadvantages to browser fingerprinting as compared to 

keystroke dynamics. Table 1 displays the characteristics of browser fingerprinting and 

keystroke dynamics with respect to five desirable biometric traits [2].  
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Table 1. Keystroke Dynamics versus Browser Fingerprinting 

 Browser Fingerprinting Keystroke Dynamics 

Robust Over Time No Yes 

Across Devices No Yes 

User Dependent No Yes 

Universality No Yes 

Accuracy at Large Scale High Low 

 

Browser fingerprinting has limitations that make it a less than ideal means of 

identification at an Internet scale. Browsers are not robust over time. According to Vastel 

et al [18], browser fingerprints tend to change frequently. They may change every few 

hours or every few days because of software updates or configuration changes. This 

presents a problem when attempting to identify a user based on his browser configuration. 

Keystroke dynamics of a user; on the other hand, rarely change over time. If a user’s typing 

pattern does change, it is usually a result of a long-term factor such as taking a typing class 

or losing speed due to a medical condition, such as arthritis. Abrupt changes are possible 

for various reasons, such as an injury to a typist’s arm, but these reasons are relatively rare. 

Concerning identification across devices, we see the same result. Browser fingerprinting is 

useless on different devices that use their own version of browser. Keystroke dynamics of 

a user; on the other hand, can be traced from device to device with ease. Another factor 

that affects browser fingerprinting, but not keystroke dynamics, is whether the form of 

identification is user dependent. Multiple users can use the same browser on the same 

computer, yet there would be no way to determine that the identity of the user had changed. 

Keystroke dynamics is user dependent, and if the user changes, the keystroke profile will 

change as well. Universality is the last factor that keystroke dynamics possesses, but which 

browser fingerprinting does not. Universality means that every person using the system 

shares a given trait. For example, it is possible and normal for a user to interact with a 
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computer without ever accessing a browser, but it is unlikely that a user will interact with 

a computer without performing any typing. Browser fingerprinting does hold an advantage 

over keystroke dynamics in that it has been proven to be rather effective in determining the 

identity of a user on a large scale, whereas keystroke dynamics has—so far—enjoyed the 

same success.  

2. Role of Keystroke Dynamics 

Methods of Internet identification have already been covered in this research, and 

so have methods of anonymity. Not mentioned so far is how keystroke dynamics fit into 

this narrative. As shown in the last section, keystroke dynamics hold quite a few important 

advantages over fingerprinting within the framework of identification and Internet privacy. 

If the keystrokes of a user can be collected and utilized to reveal the identity of that user, 

that would be a significant advance in the realm of identification, but a regression in the 

world of Internet privacy.  
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III. THE KEYSTROKE DATASET 

The most critical factor in this research is the size of the dataset. Determining 

whether keystroke biometric identification can be performed on a large scale such as the 

Internet requires an extremely large keystroke dataset. The dataset that this research uses 

originates from the paper, “Observations on Typing from 136 Million Keystrokes” by 

Dhakal et al. [10]. This paper reports on the findings from an online study that collected 

millions of keystrokes from 168,000 volunteers.  

A. DATA COLLECTION 

It is important for this research to take a detailed look into the data and methods 

that the original researchers used to compile the keystroke dataset. This section will focus 

on how participants were chosen, who the participants were and how the data was 

collected.  

1. How Participants Were Chosen 

How participants were chosen to participate in the study is extremely relevant. The 

study was hosted on a commercial site that measured typing speed. This means that the 

participants for the study were interested in learning how fast they type. Another pertinent 

fact was that there was a rather high dropout rate. Approximately 406,000 participants 

started the study and only 193,000 finished. After this, 12% were excluded based on too 

high error rates and too slow WPM (Words Per Minute) that indicated the participant was 

distracted at some point during the test [10]. Determining how the set of participants was 

chosen is important for understanding profiling implications and possible bias in the 

results. Even though bias may be present, overall, the study does provide a useful database 

of typing information for a large number of people. 

2. Demographics 

One of the main goals of this thesis is to determine if profiling is possible using 

keystroke dynamics. The demographics of the participants are of extreme importance when it 

comes to potentially profiling a user. It is also very important to know what kind of users 
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participated in the study. Figure 3 displays the demographic data of the participants in the study. 

The chart shows the breakdown of the different demographics.  

 

Figure 3. Dataset Demographics. Source: [10]. 

It is important to note that while a majority of the participants were from the US, 

participants hailed from countries all over the world. Most spoke English as their native 

language, but 15% claimed a language other than English as their native tongue. Other 

important facts about the participants are that they were predominately young and 

experienced at typing with 72% having taken a typing course and typing an average of 3 

hours per day. It is also interesting to note that various keyboards were used with laptop 

being the most common followed by a physical keyboard.  

3. How Data Was Collected 

Each volunteer was instructed to type 15 English sentences and the timing data was 

collected from the keystrokes. The sentences were selected randomly from a set of 1,525 

sentences that were taken from the Enron email corpus as well as a few other sources 

representing simple, common typing tasks [10]. Figure 4 shows a few examples of 

sentences taken from the online test. A sentence was displayed to the user, who was 

instructed to read it fully and then type it as fast as possible. At the end of the test, the 

participants were asked to give demographic information about themselves.  
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Foreign insurance firms can file applications to the ministry. 

He said the operating theatres were barely functioning. 

I am meeting with my direct reports at 1 to work on recommendations. 

She probably won't come next year either. 

Song was vice minister of the geology and mineral resources minister. 

Figure 4. Example Sentences from the Typing Test. Source: [10]. 

4. How Data Was Presented 

The data was collected and put into multiple files representing each distinct 

keystroke’s press and release timing as well as the participant and session it was associated 

with. This led to a total dataset of over 136 million entries of keystroke data. Another file 

contained the metadata relating to the participant, e.g. gender, nationality, age and other 

demographic information previously described. Tables 2 and 3 represent examples of the 

datasets described. Table 2 shows five keystrokes in one user’s session. The key code 

corresponds to the JavaScript Event Keycode of the key that was pressed. In this example, 

the user pressed Shift, W, A, S, Spacebar (“Was ”). Table 3 depicts what the metadata file 

looks like. It contains the user along with the corresponding demographic information. Not 

all columns could be displayed in this form and other statistics were present in this dataset 

such as average WPM, IKI and ROR.  
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Table 2. Keystroke Data Example 

User Session Press Time Release Time Key Code 

100001 1090979 1473275372512 1473275372663 16 

100001 1090979 1473275372583 1473275372703 87 

100001 1090979 1473275372759 1473275372903 65 

100001 1090979 1473275372831 1473275372975 83 

100001 1090979 1473275372943 1473275373079 32 

 

Table 3. Metadata Example 

User Age Gender 
Typing 
Course 

Country Layout 
Native 

Language 
Fingers 

Hours 
Per 
Day 

Keyboard 

3 30 none 0 US qwerty English 1-2 8 full 

5 27 female 0 MY qwerty English 7-8 6 laptop 

7 13 female 0 AU qwerty English 7-8 0 laptop 

23 21 female 0 IN qwerty English 3-4 0 full 

24 21 female 0 PH qwerty Tagaleg 7-8 1 laptop 

 

5. Keystroke Data Visualization 

An abundance of interesting statistics can be uncovered while investigating the large 

amounts of data provided by this study. Inferences regarding typing speed and the way a 
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user’s WPM correlates to the error rate and the roll over rate in his typing are valuable results 

of this study. The study by Dhakal et al. had valuable contributions. It was determined that 

there is a large variance in typing speed with the average speed being 52 WPM. Roll over 

key pressing is very prevalent and has a strong correlation with typing speed. Also, users 

with a faster typing speed make less errors than slow typists. Figure 5 shows a histogram of 

typing speeds and the number of users exhibiting each speed. Most users type in the 30 to 60 

WPM range. Figure 6 clearly shows a positive relationship between ROR and typing speed. 

The fastest typists routinely have RORs well above 50 percent. Figure 7 represents the 

relationship between typing speed and error rate. There is a clear negative trend and as the 

WPM increases, the error rate decreases.  

 

Figure 5. Histogram of Words per Minute of Users in the Keystroke Dataset 
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Figure 6. WPM versus ROR 

 

Figure 7. Error Rate versus Typing Speed 
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B. LIMITATIONS OF THIS DATASET 

Limitations of using this dataset must be considered. The data that was collected 

was wide-ranging and extensive, making it ideal for the large-scale research conducted in 

this thesis. However, it may not accurately represent the population of users on the Internet 

for a few reasons. The participants were not chosen randomly. They visited the commercial 

typing site first and were asked to participate in the study. Since the website was related to 

typing, the visitors to the site were most likely overwhelmingly interested in how they type 

and becoming better typists. Also, the participants in the study presumably do not 

accurately compare to a cross-section of Internet users. With 75% of the participants 

between the ages of 11 and 30, as well as most of them being from the United States with 

the primary language of English, this could introduce some bias into the research. Lastly, 

the participants most likely performed the test by transcribing the sentences and attempting 

to type as fast as possible which may not represent how most computer users perform such 

tasks as email, web browsing, or document creation. While the data may not correctly 

characterize the average Internet user, it is still the largest set of keystroke data that has 

been collected to date, and is extremely useful for research efforts directed at improving 

the performance of identification on large-scale user groups.  
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IV. BASELINE APPROACH 

The first part of the experimentation in this thesis is related to the steps and results 

that were achieved while establishing an identification accuracy baseline from this dataset 

using handcrafted features and conventional machine learning techniques. Establishing a 

baseline is necessary because the second part of the experiment involves improving on that 

accuracy using a different approach: a neural network. Obtaining this baseline 

measurement required addressing several challenges due to the size of the dataset and 

number of classes.  

It was necessary to learn how to work with such a large dataset with so many classes 

to identify. Many classification problems involve binary classification, such as determining 

whether or not a patient has a disease, or in quality control, does the object in question meet 

the criteria or not. Other problems attempt to identify based on a small number of classes 

such as the Iris plant dataset [21], an important machine learning dataset that seeks to 

classify plants into one of three species of Iris flowers based on the features of the flower. 

It is much less common to attempt to identify based on over 160,000 classes using hundreds 

of features, as was the effort in this thesis. Some recent research has been conducted using 

extremely high numbers of classes. In “What Does Classifying More Than 10,000 Image 

Categories Tell Us?” [22], the authors describe that size of the dataset is an extremely 

important factor. They concluded that some classifiers that might work well on small 

amounts of the data might not fare well when using the same methods on high numbers of 

classes. In the paper, “Training Highly Multiclass Classifiers” [23], the authors also discuss 

the difficulty of increasing the number of classes and attempting to perform identification. 

The authors state, “In practice, the more classes considered, the greater the chance that 

some classes will be easy to separate, but that some classes will be highly confusable.” 

These are problems that we encountered as well when attempting to classify using such 

high numbers of classes.  

Another question that needed to be addressed was determining which machine-

learning algorithm would be the best to use in this scenario. Quite a few approaches can be 

taken. In the study by Killourhy and Maxion [24], “Comparing Anomaly Detection 
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Algorithms for Keystroke Dynamics,” the authors evaluated a few different classification 

algorithms that they gathered from keystroke dynamics literature. Because a simple 

Manhattan distance detector performs well, we used that approach in obtaining our baseline 

results.  

Lastly, before getting to the results of the baseline performance, we needed to 

address the computational complexity of the preprocessing, feature extraction, and 

classification algorithms. Even simple tasks, such as reading the dataset from disk and 

manipulating the millions of lines of data, took too much time for a personal computer to 

handle.  

This chapter will describe the steps that were taken to combat these problems and 

answer the questions above. It will address failures that we experienced and successes that 

were encountered. Lastly, results of the baseline experiments will be presented.  

A. METHODOLOGY 

Establishing a baseline for identification accuracy using this dataset turned out to 

be a more difficult task than expected but it provided some very interesting and useful 

results. It was necessary to adjust for a few roadblocks that we encountered while running 

tests. The design of the baseline experiments evolved over time. The following sections 

describe the steps taken to eventually obtain results.  

1. Feature Extraction 

The first steps that needed to be taken in order to experiment with the data involved 

data manipulation. Each user typed 15 unique sentences (sessions), and each session had a 

range of 20 to 700 keystrokes. Figure 8 depicts a histogram of keystrokes per session. Most 

fall into the range of 0 to 120, but a very small number of outlier users performed larger 

numbers of keystrokes. The dataset presented in this paper recorded the press time and 

release time for every keystroke. Very generic descriptive features were calculated to sum 

up the typing of each participant as well, such as typing speed and rollover rate. This 

information describing an overview of the typing within this study was sufficient for the 

paper, but our research required many more features to be calculated. The individual 
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features needed to be calculated from all the keystrokes of a session and then combined 

into a single row that corresponds to each user’s session. Completing this step reduced the 

number of rows in the data frame from over 160 million to around 2.5 million while 

creating 218 feature columns. Figure 9 depicts the process of creating features from the 

keystroke data and converting it to the desired format for the machine learning algorithm. 

The following sections will describe how those features were calculated and what features 

were used to identify users in this study.  

 

Figure 8. Number of Keystrokes per Session 
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Figure 9. Format of Data Before and After Feature Creation 

In order to gain the most information out of this dataset, it was necessary to 

calculate as many features as possible. Considering we were only provided with the press 

and release times for each key, plus a small number of general statistics such as WPM and 

IKI (Inter Key Interval), many features needed to be added to fully capture each user’s 

keystroke dynamics. Keys were divided up into vowels / consonants, right hand keys / left 

hand keys and letters / non-letters. Durations were calculated based on which key or what 

type of key was being pressed. Latencies were also calculated between specific keys and 

between the hands of the typist. Means and standard deviations were then calculated based 

on these key sets.  

This method of creating features led to a total of 218 features which needed to be 

calculated based on the press and release timings as described in the previous section. Table 

4 describes some of the features broken down into the categories of general, duration and 

transition. It is important to note that for the duration features, each type of feature can be 

divided further into the mean and standard deviation of those calculations. For the 

transition features, each type of feature can be divided into mean and standard deviation, 

as well as press-to-press and release-to-press transitions. The list in the figure is not 

exhaustive and does not show every single combination of transition that can be calculated. 

It does, however, represent a majority of the features chosen and helps to explain how 218 
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features can be created from only the press and release times of a key by taking into account 

the category of key that is pressed. This list of features is based on those used in [25]. 

Table 4. List of Features. Adapted from [25]. 

General Features 

 

Duration Features (Mean and 

SD) 

Transition Features (Mean and SD), (PP and RP) 

Average WPM All Keys All Keys - All Keys Individual Keys - 

Individual Keys (a - b, s - 

t, …) 

Average IKI Letters Letters - Letters Double Letters 

Error Correction Per 

Char 

Vowels Consonants - 

Consonants 

Letters - Space 

Keystrokes Per Char Consonants (different levels of 

frequency) 

Vowels - Consonants Shift - Letters 

Roll Over Rate Left Hand Vowels - Vowels Punctuation - Space 

 Right Hand Right Hand - Left Hand digits - digits 

 Non-Letters Right Hand - Right 

Hand 

Individual Keys - 

Individual Keys (a - b, s - 

t, …) 

 Punctuation Non-Letters - Non-

Letters 

 

 Digits Punctuation - 

Punctuation 

 

 Each Key on the Keyboard (a, b, 

c, …, space, shift) 

 

digits - digits  

 

2. Preprocessing 

Next, we needed to split the dataset into training and testing sets that we could feed 

into the classification algorithm of our choice. Splitting into a train and test set comes with 

decisions that need to be made about how to accomplish this task. For each user, we chose 

to use two thirds of the data for training and the remaining one third for testing. It was also 

very important to ensure that the data was stratified so that the same number of sessions 

were taken and used as training / testing data for each user instead of randomly chosen. 

This resulted in 10 samples per user for training and 5 samples for testing. 

The experiment that we designed called for the simple task of choosing different 

classification algorithms and testing them on the dataset to determine the accuracy of 

identifying a user. With the very first try, it was evident that this idea was going to need to 

be revised.  



32 

The failures that we experienced were related to the size of the dataset. With over 

160,000 users that we were attempting to identify, each one represented a class that the 

classification algorithm had to take into account. Upon attempting to run experiments, we 

were immediately running into memory errors, scripts taking too long to run and timed out 

programs. We determined other methods would be needed in order to obtain better results.  

We began attempting different ways to handle the large number of classes and 

memory issues. Some of these methods failed and some were a success. One approach that 

we attempted was to split up the dataset into much smaller subsets in order to run different 

classifiers and compare results on a usable set of classes. This worked well and we were 

able to get accuracy results for K-nearest Neighbor, random forest and support vector 

machine classifiers. Parameter tuning was also performed to understand the change in 

accuracy as the parameters were altered.  

Another method that proved necessary throughout the research was to use the Naval 

Postgraduate School’s High Performance Computing (HPC) infrastructure to enable 

experiments that otherwise would not be possible on a standard desktop or laptop. By 

sending scripts to the available nodes, we were generally able to avoid receiving memory 

errors and significantly speed up processing. Experiments were performed on a Linux 

server using an Intel Xeon E5-2683 processor with 503 GB DRAM in a Python 

environment using scikit-learn, pandas, and numpy. 

Not all of the methods we attempted were successful. We tried utilizing principal 

component analysis (PCA) to significantly reduce the dimensionality. After reducing the 

dimensionality to various levels such as 20, 50 and 100 instead of the 218 features that we 

calculated, it was determined that this method affected the accuracy much too drastically 

to be feasible. Some of the classifiers, such as the random forest classifier, that we initially 

used to calculate accuracies on the small datasets of 100 or 1000 users instead of 160,000 

showed promise and were extremely accurate on such small numbers of classes. However, 

they did not scale well, and these methods were not able to be used due to the time it took 

to fit data and make predictions using larger numbers of users.  
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3. Classification 

For the baseline tests, we decided that one classifier was to be used to maintain 

consistency in the results. This classifier should be simple enough to be able to run on the 

entire dataset and should be a well-known algorithm that could produce a decent baseline 

accuracy. K-nearest neighbor (KNN) using Manhattan distance was chosen because this 

distance metric had been used successfully by Killourhy and Maxion’s [24] work in 

comparing keystroke dynamic classifiers. KNN with Manhattan distance consistently 

performed well and was fast enough to be able to classify the full dataset in a reasonable 

amount of time. KNN is a simple classification algorithm that relies on the assumption that 

similar objects will be close in proximity to each other in a vector space. The algorithm 

calculates distances between points and classifies a data point based on closeness to its 

neighbors. In the case of this study, KNN examined each user on a multi-dimensional plane 

using all the features calculated from the keystrokes. KNN can use any distance metric to 

calculate the distance between points and we chose to use the Manhattan distance. 

Manhattan distance is the “city block” distance between two points, which is the sum of 

the absolute differences in each dimension. Another parameter that needed to be chosen 

was the number of neighbors to take into account. We chose k = 1000 and weighted by 

inverse distance because of the large number of classes in the dataset. After fine-tuning the 

k-nearest neighbor classifier, we were ready to gather results.  

4. Accuracy Metrics 

One of the most important results was determining the accuracy of the classifier on 

different sizes of the dataset. Due to the large number of classes, simply taking the accuracy 

with which the classifier correctly chooses the user would not give us enough information 

about the performance of the classifier. We used a similar strategy as the researchers in [7] 

to display classification results on a large dataset of blog writers. We calculated the rank 

of the correct prediction, which gives a much better understanding of how well the 

identification narrows down the results. For example, instead of only calculating what rate 

the classifier chose the correct user, we determined the rate at which the correct user fell 

into the top N predictions. For the variable N, we used ranks of 10, 100 and 1000.  
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Finding another method for calculating the accuracy on the entire dataset was 

necessary due to the amount of time that the classifier was taking. While attempting to 

identify users based on the full dataset of over 160,000 classes, the classifier ran for 

multiple days and failed to return results. To get around this, we subsampled the number 

of test examples. This way we could still get an accuracy that was very close to what it 

would have been training the classifier on the whole dataset, but would complete within a 

reasonable amount of time.  

5. Profiling 

The last step in the baseline experiment design was to calculate whether a user 

could be profiled based on the way he types. For example, profiling would involve taking 

a user that is not in the dataset and attempting to discern demographic traits based only on 

keystroke data. The categories that we used were gender, country, native language, age, 

typing skill and type of keyboard. For each category, the data needed to be processed and 

normalized into a certain number of classification groups. Gender was already in two 

distinct classes, male or female, but any users who did not report their gender needed to be 

removed. In order to convert country into a workable profiling problem, we needed to 

create a binary classification problem by converting the country of the user into one of two 

categories: US or non-US. Age required separating the users into four groups that were 

roughly the same size. Skill and type of keyboard demanded some pre-processing as well 

to eliminate unusable data. Next, we determined the chance accuracy of the category by 

finding the percentage of the largest group. This was the number that we needed to improve 

upon to see if profiling a user was possible.  

B. RESULTS 

This section describes the results that were achieved by using the baseline method 

described in the previous sections.  

1. Accuracy 

Much of the data collected was to identify at what accuracy the baseline machine 

learning technique could identify a user based on his or her keystroke patterns. Figure 10 
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shows the percentage accuracy for successfully identifying the correct user (top 1 

accuracy), as well as the top 10, top 100 and top 1000 accuracies using different amounts 

of users from the dataset. As you can see from the figure, as the number of users increases 

to include the entire dataset, the accuracies for each of the rank estimations mostly 

converge to a single value. These values are presented in Table 5. Also included in Table 

5 are the random chance accuracies that could be accomplished by randomly selecting a 

user instead of using machine learning techniques to take keystroke features into account. 

While still not providing extremely confident accuracy numbers, the accuracy values 

determined from the techniques presented in this thesis represent a significant increase in 

performance from selecting a random user.  

 

Figure 10. Top 1, 10, 100 and 1000 Identification Accuracies for Varying 

Numbers of Users 
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Table 5. Achieved Accuracy versus Random Chance Accuracy Using 

Entire Dataset 

Rank Achieved 

Accuracy 

Random Chance 

Accuracy 

Accuracy 

Improvement 

1000 28% 0.7% 40 

100 10.8% 0.07% 154.3 

10 3.7% 0.007% 528.6 

1 0.9% 0.0007% 1285.7 

2. Time 

Time is an extremely important factor in the experiments presented in this thesis. 

The running time of the machine learning techniques caused numerous methods and 

workarounds to be devised in order to make results feasible. Figure 11 displays the time in 

hours that the program took to run using an increasing number of classes / users. These 

times were calculated using resources on the Bowditch HPC at the Naval Postgraduate 

School. In addition, it is important to note that these times were observed while running 

one of the simplest classification algorithms, KNN. At 100,000 users, the time it takes to 

evaluate the accuracy approaches 24 hours and is increasing exponentially. As previously 

described, the time it takes to run the program on the entire dataset is not presented in this 

chart because an alternate method was used to calculate the accuracy for the entire dataset 

due to the amount of time it was taking to run for that many users. 



37 

 

Figure 11. Time in Hours to Calculate Accuracy as Number of Users 

Increases 

3. CDFs 

The cumulative distribution function (CDF) of the rank that a user was identified 

using the classifier gives a useful way of presenting the accuracy data. As the rank 

increases, the CDF describes the percentage of users out of the total that were identified at 

that rank or better. As figures 12-16 show, there is a knee in the graph at around the 50% 

mark. An inference that can be made from these charts is that roughly half of the users are 

easy to identify and the other half are difficult to identify. Another interesting observation 

is that the number of users does not significantly affect the shape of the graph 
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Figure 12. Cumulative Distribution Function 100 Users 

 

Figure 13. Cumulative Distribution Function 1000 Users 
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Figure 14. Cumulative Distribution Function 10,000 Users 

 

Figure 15. Cumulative Distribution Function 50,000 Users 
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Figure 16. Cumulative Distribution Function 100,000 Users 

4. Profiling Users 

Using the metadata regarding the users that was provided by the dataset source, this 

thesis also focused on determining whether profiling a user based on certain demographic 

statistics was possible. Profiling based on demographics does not include the same 

problems of extremely large numbers of classes that we faced while identifying users. This 

is because in these cases, we only have a few classes. For example, we are not trying to 

identify the user, we are classifying into either male or female, or one of a small number 

of age groups. For these tests, we used the same KNN classifier we had been using 

previously and also introduced the classifier XGBoost which we knew would perform 

better since we were not facing size and time limitations. Figure 17 shows the results based 

on gender, country, native language, age, typing skill and keyboard type. The results show 

an increase in accuracy of profiling a user in almost all demographics. The most significant 

increases occurred when identifying based on gender and age. Language and skill were 

difficult to improve upon because the accuracies are already very high. Also of interest is 

that KNN did not perform much better than the baseline in this case. XGBoost was much 

more useful than KNN in this context.  
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Figure 17. Classification Accuracy of Users Based on Profile Information 
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V. NEURAL NETWORK APPROACH 

In this phase of the research, we trained a deep neural network to learn as much as 

it can about the individual keystrokes, and then use this information to identify users based 

on his or her unique typing characteristics. We then evaluated the resulting accuracies 

achieved by the Neural Network and compared them with the results of the KNN 

classification algorithm.  

The experimental design was modeled around the ImageNet research paper written 

by Krizhevsky et al [26]. In this paper, the authors created a novel new technique for 

identifying images based on a deep convolutional neural network. The method in this paper 

used a Neural Network with multiple convolutional layers that could identify the objects 

contained in an image based on the individual pixels in the image. It increased the 

identification accuracy of the ImageNet database significantly and was the state of the art 

at the time the paper was released.  

In “A Guide to Convolutional Neural Networks for Computer Vision”, Khan et al 

[27] describe the characteristics of a CNN and its significance. CNNs are “essential for 

cases where we want to learn patterns from high dimensional input media, e.g., images or 

videos. CNN filters incorporate spatial context by having a similar (but smaller) spatial 

shape as the input media, and use parameter sharing to significantly reduce the number of 

learnable variables.” CNNs are highly effective at learning spatial relationships in a 

structure such as an image with a large number of pixels. CNNs achieve this by performing 

a series of convolutions over an image. A convolution refers to a mathematical operation 

in which a filter is convolved with an input image. As the filter slides across the image, 

weighted sums are calculated and then pass through a nonlinear “squashing function.” The 

values are then passed along to the next layer of the network.  

While examining the keystroke data during this research, we determined it would 

be useful to take into account the spatial relationships of the keys on the keyboard while a 

person is typing. We wanted to create a neural network that could examine the durations 

and latencies of key presses while considering their locations on the keyboard that 
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correspond to the finger and hand that type them. For example, keys “P” and “E” on the 

keyboard are located many keys away from each other and will most likely be typed using 

different fingers on different hands of the user. We wanted to make the most of these 

locational differences and use a neural network to respect these kinds of spatial 

relationships. In order to accomplish this, we decided to use a convolutional neural 

network. However, the format of the data lends little support to this neural network 

structure. We needed to convert the data into an array that mimics the layout of a multi-

pixel image or the frames of a video. The bulk of the work for this approach resided in the 

preprocessing and data presentation to conform it into a format of this type. The next 

section describes this process.  

A. METHODOLOGY 

The following sections describe the process taken in order to prepare data for the 

neural network as well as the remaining steps required to obtain experimental results. 

Significant manipulation of the keystroke data was needed to create a data structure with 

the proper format that a convolutional neural network could ingest and take advantage of 

the spatial relationships between keys. After preprocessing was accomplished, many more 

design decisions needed to be made in order to tune the neural network and obtain the 

highest accuracy possible.  

1. Keyboard Grid 

The first step of this process was to create a keyboard grid that would represent the 

locations of the keys in a two-dimensional space. Creating this keyboard array was 

essential for the neural network to be able to take the locations of the keys into account 

during the learning process.  

In order to represent a keyboard in this format, it was necessary to research the most 

common keyboard layouts and determine the best way to arrange the keys in a row and 

column presentation. The standard keyboard layout in the United States is the ANSI 

101/104 keyboard. This keyboard layout is commonly found on laptops and desktops 

throughout the United States. While many different types and layouts of keyboards were 

used to collect keystroke information in the study, most of the participants were from the 
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US and likely use the ANSI 101/104 standard. Besides a few differences in the size and 

shape of the shift and enter keys, most keyboards do not differ drastically with the ANSI 

standard keyboard, so we decided to use it as our template.  

We discovered that a keyboard can be represented by a 5 x 15 two-dimensional 

array and include all of the keys. As shown in Figure 18, in order to represent a keyboard 

in an array of this type, some keys take up multiple array locations. For example, the 

spacebar in this model takes up six columns on one row. Due to the diagonal nature of most 

keyboard keys, they also needed to be shifted in order to fit into an array with straight 

columns and rows. This was performed by sliding certain rows to the left until they match 

with the row above them. 

 

Figure 18. Keyboard Layout 

2. Preprocessing 

We began the neural network method with the same keystroke data as the baseline 

method. It was in the format of a data frame that presented the user, session, press and 

release times and key pressed for every keystroke in the study. This format was not 

adequate for a neural network. Neural networks require multidimensional arrays, also 

called tensors, as inputs.  

To begin, we created a five-dimensional array with shape: (~2.5 Million x 150 x 5 

x 15 x 1). The number 2.5 million represents the number of sessions in the data (~165,000 

users multiplied by 15 sessions per user). The second dimension, of length 150, represents 
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the number of keystrokes per session. Recall from Chapter III that the number of keystrokes 

per session in the dataset ranges from 10 to over 700 keystrokes. However, only a small 

fraction (0.0001%) of the sessions have more than 150 keystrokes. If a session contained 

more than 150 keystrokes, it was cut off at 150. Similarly, when a session had less than 

150 keystrokes, we padded the array with zeros so that every session contained the same 

length of keystrokes. The next two dimensions, 5 x 15, represented the keyboard array and 

the location of the single key on that array. If a key was larger than one column, it was 

represented with multiple array locations. Lastly, the final dimension in our array denotes 

the calculated duration of that key press.  

3. Adding Features 

To begin, the final dimension included only the duration. Once the array was 

created and functioning, it was necessary to include as much information as we could in 

the array. Besides the duration, there are four other latencies that could be calculated. These 

latencies are the PP, PR, RP and RR latencies. Each one was calculated using the press and 

release times of the keystrokes in each session. After inserting this data into the array, we 

were left with an array with dimensions: (2.5 million x 150 x 5 x 15 x 5).  

4. Shaping the Data 

The keystrokes were then contained in a multidimensional array but the 

preprocessing was still not complete. The neural network needed full session data as an 

input instead of individual keystrokes. The array contained 150 individual keystrokes for 

each session. In order to get the average for a session and better represent the typing 

patterns of the users, the next step was to calculate the average durations and latencies over 

the entire session. Figure 19 shows the complete process of transitioning from the 

keystroke dataset to the sequence of keystrokes contained within a 5 x 15 keyboard array, 

and finally, to the average of a single session which contains all the keystrokes represented 

as a single array.  
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Figure 19. Preprocessing Steps 

For each session, a 5 x 15 array was created for the duration as well as the four 

latencies. Each session now had five distinct arrays with the per-session averages laid out 

in a keyboard array as depicted in Figure 20.  

 

Figure 20. Duration and Latencies per Session 
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This method is very similar to the way in which a video is depicted using a 

multidimensional array. A video is in the format: (frames x pixels x pixels x color 

channels). In the video example, the frames would be equivalent to the session. The two 

pixel dimensions would be represented by our 5 x 15 keyboard array. Finally, the color 

channels, namely red, blue and green, each have an intensity value associated with them; 

much like our 5 feature channels that consist of mean duration, PP, PR, RP, and RR latency.  

In order to demonstrate how a neural network would be able to distinguish between 

users, we have included Figure 21 that illustrates the contrast between two typing sessions 

that are from the same user, with that of two typing sessions from two different users. The 

figure depicts the keyboard array with normalized values of the duration feature. In this 

example, the similarities and differences in typing patterns are evident to the human eye 

because the two samples from the same user are very similar. This is not the case in every 

situation, as some users may type in a similar manner to other users and cause the system 

to produce false positives. This became more prevalent as the number of users increased.  

 

Figure 21. Differences in Typing Between Users 
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5. Feature Normalization 

There were a few other tasks that needed to be completed in order to prepare the 

data for the neural network. Normalization is a key step that places the data into an 

appropriate scale for the network. Normalization involves reducing the data to a value 

between zero and one. In the case of an image, the values can be divided by 256 in order 

to reduce to a unit value. In our example, some of our durations could be very large and 

some of the RP latencies could even be negative. We decided to divide by 1000 to move 

from a millisecond scale to a second scale. After performing this calculation, most values 

were between the range of zero and one, and increased the accuracy of the results 

significantly. 

A few steps we took to ensure the data was ready for testing did not prove as fruitful 

as our other attempts. Each user’s session data included all the keystrokes averaged 

together with the values placed in the keyboard array. But what if the user did not press a 

certain key during that session? The location of that key in the array would contain a 0 for 

that session. We believed that the presence of unfilled data was impairing our results. 

Figure 22 describes the two methods we used to get rid of these values. First, we took the 

average of all the values in the array and replaced all the values where there were no 

keystrokes with the average. The second technique we used was to interpolate the data 

based on the nearest values. This method produced an array with no non-zero values. The 

values were filled in according to the closest value in the array. Surprisingly, neither of 

these methods were more effective than filling in the missing values with zeros. After 

testing with all three methods, the tests with zero values were consistently a few percentage 

points higher in accuracy than the others.  

We also needed to split the dataset up into training, validation and testing sets. We 

completed this in a manner that was similar to the way we split up the dataset for the 

baseline method. We split the data in a stratified way so each set would have the same 

number of samples from each user. We used 33% of the data for testing and then used 10% 

of the training data for validation. A validation dataset is needed for a neural network to 

evaluate how the model is working as the neural network goes through the process of 

training.  
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Figure 22. Two Methods of Filling Zero Values 

B. NEURAL NETWORK 

After preprocessing was completed, the data was in a format that could be accepted 

by the neural network. We created a multidimensional array with our data divided by the 

fifteen sessions completed by the users. This data was split into training, testing and 

validation subsets and the data had been normalized. The next step was to devise the 

network model and choose the parameters.  

1. Types of Neural Networks 

To begin, we created a feed forward neural network with only one fully connected 

dense layer. This was to ensure we were able to get the network working and obtain a 

classification accuracy above chance accuracy. The single layer network was created with 32 

neurons that were each fully connected to all inputs and all outputs. The feed forward network 

accepted the normalized input data and attempted to classify each input based on the weights 

at each neuron. Then it output the predictions and updated the weights according to what it has 

learned. Next, it repeated the sequence over the entire input data for as many cycles as the user 
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specifies. As expected, the neural network did not perform very well, but we used this network 

to ensure our data shapes and output were correct.  

The next type of network we created was a convolutional neural network. It built 

upon the feed forward example by adding convolutional layers to the model. The 

convolutional layers convolve filters, also called kernels, with the input data to output a 

feature map. 

A type of neural network that we did not attempt to build is a recurrent neural 

network (RNN). According to Khan et al.[27], “Since RNNs process information in a 

manner that is dependent on the previous computational states, they provide a mechanism 

to remember previous states.” These networks require a different architecture than CNNs. 

We chose not to use an RNN for this task and instead focused on the CNN as the main 

emphasis of our research, because we hypothesized that CNNs would be best able to take 

into account the locations of the keys on a keyboard as a person types. 

2. Network Architecture 

Before testing the network, we needed to determine the network architecture, which 

includes the number of layers and shape of each layer. We found it was best to begin small 

and incrementally grow the neural network by adding layers. We envisioned a CNN would 

fare the best so we first added a single convolutional layer to the network. This layer had 

an input shape of 5 x 15 x 5 with an output shape of the same size. In a typical CNN, for 

example one with an input shape of 256 x 256, the convolutional layers will narrow the 

input array into a smaller dimension array. We elected to include padding in our 

convolutional layers in order to keep the input and output arrays the same size. This is 

because our keyboard array is much smaller than a normal input seen by a CNN and we 

did not want to shrink our data down to the point that it would not be useful. Next, we 

added two more convolutional layers, each with less filters than the one before. We then 

included a dense, fully connected layer and a final dense layer to complete the model. For 

the last layer, we chose a dense layer with a softmax activation and the number of neurons 

in the layer equal to the number of classes in our data. Softmax activation is necessary to 

finish the model because it outputs a probability distribution between 0 and 1. The closer 
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the probability for a class is to 1, the more likely our model believes the data belongs in 

that class. We also decided we should include dropout layers after the convolutional and 

dense layers to enable adjusting the dropout rate throughout the network. Once we refined 

the model, we were ready to perform tests with various combinations of parameters and 

determine the parameters that give us the greatest performance. Figure 23 shows the final 

model used for 100 users. The layers and number of parameters created by the neural 

network are displayed in this figure.  

 

Figure 23. CNN Model for 100 Users 

3. Hyperparameter Tuning 

The number of parameters that can be changed in a neural network is 

overwhelming. There is an extremely large number of combinations that can be chosen to 

tune the network. The choices include bounded factors, such as the type of activation or 
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the name of the optimizer, as well as limitless selections, as in the number of filters for 

each layer or the number of epochs (cycles) to continue training. The method we used was 

to start with a small number of users so we could obtain results quickly and tune parameters 

at a faster pace. We chose initial parameters and then altered them one at a time to see what 

that did to the accuracy of the model. One technique that proved especially useful was to 

create an accuracy and a loss graph that we could examine after each run of the network. 

This model helped us decide if the model was overfitting, underfitting, learning too fast or 

too slow, or needed to be trained for more or less epochs. Figure 24 shows an example of 

the network overfitting, and Figure 25 is an example of the network needing to be trained 

longer.  

 

Figure 24. Accuracy and Loss Graphs Depicting Overfitting 
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Figure 25. Accuracy and Loss Graphs Depicting a Situation to Keep Training 

for More Epochs 

While we adjusted many parameters such as the activation type, kernel initializer, 

convolutional filter size, number of filters in each layer, batch size and dropout rate, a few 

of the parameters proved to be much more effective to tune. The number of neurons in the 

final dense layer was determined to be the parameter that carried the most weight in the 

model. This parameter severely affected the speed of the network as well as the accuracy 

produced. The other most consequential parameter was the number of epochs to train. The 

number of epochs had a substantial impact on how long the network took to train as well 

as the accuracy at completion. We also determined that these two factors needed to be 

tuned as the number of users increased. During testing of the different number of users, we 

would need to tune the number of filters and the number of epochs in order to obtain the 

best results. The final number of filters and epochs in order to get the top results is displayed 

in Table 6.  
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Table 6. Number of Filters and Epochs Used to Train the Neural Network 

Users Neurons in Final Dense Layer Epochs 

100 32 450 

500 128 400 

1,000 128 400 

2,000 128 400 

3,000 128 400 

4,000 128 400 

5,000 128 400 

10,000 600 200 

15,000 1024 100 

20,000 1024 100 

50,000 2048 90 

100,000 4096 40 

 

C. RESULTS 

This section describes the results achieved by using the neural network technique 

of classification. The results will be compared with findings from the baseline section.  

1. Accuracy 

Using our method to train a neural network using keystroke data in this form 

proved very successful. The results represented a consistent increase from the previous 

baseline method. We were able to calculate top 1 accuracy results up to 100,000 users. 

Top 10, 100 and 1000 accuracy results could not be determined higher than 50,000 users. 

The reason we were not able to obtain results above these numbers is due to not having 

enough memory on our HPC systems.  
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The top 1 accuracy for 100,000 users more than doubled with our neural network 

method. The accuracy increased from 1.06% to 2.5%. Across the board, we observed 

doubling of our initial results. Figure 26 shows the improvement of the top 1, 10, 100, 

and 1000 accuracy results from the previous method. The darker lines correspond to the 

neural network method and are significantly higher than the baseline method. 

 

Figure 26. Identification Accuracy for KNN and NN Methods 

Another way to visualize the increase in accuracy with the neural network method 

is to examine the top 1, 10, 100 and 1000 accuracies for one population size at a time. 

Figures 27 and 28 display these accuracies at 2000 and 50000 users. A few interesting 

observations can be made from these two graphs. The increase in accuracy at all levels is 

evident across both of the figures. Also, as the number of users increases, the accuracy 

increase becomes more pronounced at the right side of the graph, which indicates a larger 

N. The top 100 and 1000 accuracies become more separated from the baseline method than 

the top 1 and 10 accuracies. This indicates that while the neural network method increased 

performance across the board, its most significant increase was in the ability to narrow 

down the field of potential users rather than pinpoint the exact user.  
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Figure 27. Top N Accuracies at 2000 Users 

 

Figure 28. Top N Accuracies at 50000 Users 
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2. Profiling 

Promising results were also uncovered while attempting to profile users with the 

neural network method. There were a few noteworthy differences in the neural network 

model from the baseline method of profiling. The number of classes stayed the same for 

each demographic category. For example, gender had two classes (male and female), 

language had two classes (English and non-English) and age had 4 classes (0-19, 19-29, 

29-39 and 39+). The major difference was in the format of the data used to profile the users. 

In the baseline method, each user was represented by a row of data that contained the 

demographic statistic as well as the calculated features. For the neural network method, we 

used the same method of inputting data to the neural network as we did to determine the 

identification accuracy. However, the data needed to be split into training and testing 

datasets in a different manner. All 15 sessions of a user’s typing needed to stay together in 

either the training or testing set. This meant the stratified method of splitting up the users 

would not work in this case. Instead, we split the data while keeping all sessions of a user 

together, called a “group” cross validation. The network was then trained using a smaller 

CNN model. The profiling results represented a substantial increase in the ability to 

determine the demographic information of a user. Figure 29 shows the accuracy 

percentages of the neural network method as compared to the results from the baseline 

method. Of the categories that we were able to obtain results for, the percentages jumped 

considerably to the upper 80s and low 90s. One noteworthy difference is that the baseline 

method included all users in this calculation while the neural network method was only 

able to obtain results using a smaller subset of the total number of users. These accuracies 

are approximations calculated with 10,000 users, which affects the results and the ability 

to accurately compare with previous methods.  
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Figure 29. Profiling Accuracies Using the Neural Network 
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VI. CONCLUSION 

This thesis explored user identification via keystroke dynamics at an Internet scale. 

Two methods were evaluated: first, using conventional techniques to establish an 

identification accuracy baseline, and then using deep learning techniques in an attempt to 

maximize classification accuracy. 

Traditional methods of identifying users based on the way he or she types work 

well with small groups but do not scale well past 100 to 1000 users. This is relevant for a 

small group or corporate network but does not extend to identification on the scale of a 

much larger network or the Internet. The higher the number of classes in a dataset, the 

harder it is to perform identification because more potential matches are available in the 

pool of users. Identification on this scale could be especially useful in the realm of cyber 

security. The ability to identify, profile or narrow down the possible pool of users is 

extremely valuable in defensive applications. Envision a scenario in which an offensive 

threat is detected and his or her keystrokes are collected. Comparing these keystrokes to a 

database of potential adversaries in order to determine who the user is or who the user is 

not would be an incredible accomplishment. Even being able to determine which country 

this person is from or the gender of the attacker would be crucial information.  

A. DISCUSSION 

The accuracy of even the simplest techniques was a significant increase over 

random chance. The KNN increased the accuracy of identifying the correct user by a factor 

of 1285 and the neural network improved upon these results even further. The first research 

question asks to what extent can identification be performed at this scale. Accuracies in 

this research did not reach levels considered acceptable for identification applications, but 

many lessons were learned about the process. Users can be confidently narrowed down 

based on the top N accuracies, and a new approach for spatially representing keystroke 

dynamics features was described. It is promising that even at this scale, results could 

significantly improve based on the methods that were used.  
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The first method used handcrafted features created by calculations made on the 

press and release times of each keystroke. On every level, this technique paled in 

comparison to the method that utilized deep learning through a neural network. The neural 

network learned what it could about the duration and latencies of each key press and then 

adjusted the weights of the network to make predictions. Top one accuracies more than 

doubled no matter the number of users present. Top 10, 100, and 1000 accuracies increased 

significantly as well, making the task of narrowing down the field of users much easier.  

A novel method of converting the keystroke data to a multidimensional array and 

using it as input to a neural network was also introduced. Neural networks are routinely 

used to identify pictures or videos by using the pixels in the form of multidimensional 

arrays. Neural networks have also been used to accurately identify users based on his or 

her keystroke dynamics. A technique that has not been previously used is to combine the 

two by converting the way a user types into a multidimensional array and training with a 

neural network. Much like a sequence of frames in a video, we developed a way to convert 

keystroke press and releases over a typing session into a series of 2D arrays. This technique 

allowed us to make allowances for the locations of the keys in relation to each other and 

better integrate the distances between keys into our results. 

Another result of this research is that much was learned during the various attempts 

to identify users based on demographic characteristics. Profiling that used certain 

characteristics was much more successful than profiling that used other characteristics. 

Gender, country, age and keyboard type were factors that were able to be used to profile a 

user. Language and typing skill were not as effective at this task.  

B. INTERNET PRIVACY IMPLICATIONS 

This thesis raises significant Internet privacy concerns. While none of the methods 

attempted in this thesis can correctly identify a user with high confidence, the results 

demonstrate that identification, to a certain extent, could be possible. With more research, 

it is possible that the identity of users on an Internet scale could be significantly narrowed 

down and even pinpointed with similar methods as presented in this thesis. Identification 

based on typing data has many more positives than other available methods such as browser 
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fingerprinting. If the neural network method presented in this thesis were refined, it could 

present a viable alternative to other methods of identification that are not as universal or 

robust over time, devices and users. 

C. FUTURE WORK 

This thesis was conducted in the timeframe of less than a year. With more time, 

additional efforts would likely improve upon the results presented within this research. 

One approach would be to use a Recurrent Neural Network that takes as input the 

sequence of keystroke “frames” instead of the features averaged over the entire session. 

An RNN could possibly perform better than the CNN we used because the feature averages 

throw away potentially important information in the keystroke sequence. Additional 

hyperparameter tuning could also be made to the CNN model we created. Increasing the 

number of layers, neurons and/or epochs during training, coupled with faster equipment to 

facilitate testing new combinations could significantly alter the results for the better.  

Another technique that could possibly improve results is to use a triplet network 

similar to the structure used by the FaceNet research [28]. The researchers created a 

successful identification method using a deep CNN that trains with triplets of matching and 

non-matching pairs. The triplets include 2 matching examples and a non-matching 

example, and the model attempts to separate the matching from the non-matching pairs. 

This approach has had some success in face recognition and could potentially enable 

scaling keystroke biometrics beyond 100k users. 

Using a different dataset with greater diversity could also be helpful. Sessions of a 

greater length than one sentence would enable the neural network to pick up on patterns 

and characteristics of a user’s typing much easier and potentially lead to higher 

identification accuracy. Greater diversity in the population would also help to eliminate 

some of the inherent bias that is present in the dataset, namely users who are interested in 

typing fast.  

The promising results of using a neural network to attempt to profile a user should 

be further investigated as well. With more time and computing power, these results could 
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be expanded upon. Accuracies of 90 percent and above for certain demographic 

characteristics on a dataset such as this are very hopeful.  

The method of turning keystroke data into a two-dimensional array that resembles 

the frames of a video could potentially be adapted for other uses. Similar applications 

include tracking the mouse movement of users in order to perform identification. Another 

application is collecting the finger movements of a user who is using a touchscreen device. 

Speed, location, pressure and size could all be factors that are represented as channels and 

included in the spatial array.  
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