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ABSTRACT

This effort explores the design requirements for an expert translator

to be used as an interface between present Computer Aided Design (CAD)

and Computer Aided Manufacturing (CAM) systems. The translator's purpose

is to perform certain standards checks on the design data and pass

assembly information as well as material requirements from CAD to CAM.

An example translator was implemented for a simple one room house

construction problem using the artificial intelligence language Prolog.

This research is part of an effort to design a generic Computer Integrated

Manufacturing System in which the design through manufacturing process

is totally automated.
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1. INTRODUCTION

In the not too distant future, most factories will be using an

integrated, computer aided, design and manufacturing system. There has

already been much work performed in Computer Aided Design (CAD) and

Computer Aided Manufacturing (CAM) techniques. Although definitions may

vary slightly, Ness [Ref. I] defines CAD and CAM as follows:

Computer Aided Design is the application of computer technology to the
design of a product. This includes layouts, detail design, analysis,

drafting and formal release of design data.

Computer Aided Manufacturing is the application of computer
technology to the fabrication, assembly and verification of a product
that does not depend on and cannot productively use specific CAD data.

Expanding on the above concepts, the CAD process consists of product

specification and design. CAD may allow for product simulation and

performance analysis using computer models. Some pre-manufacturing

testing may also be performed. Product layouts may be generated.

Increased interest recently has been focused on the use of interactive

graphics with CAD; Beeby [Ref. 2] discusses this issue as applied to the

construction of the Boeing 767 airplane. Interactive graphics systems

allowed the designers of the Boeing 767 to interact with the design

system and data in real time. In addition, some design changes were

automatically propagated through the entire design relieving the designer

of the update responsibility. Beeby [Ref. 2] cites as an example that

changes made to the thickness of the spar chord in the wing of the Boeing

767 produced automatic changes in related items such as ribs and clips

without designer intervention.



To expand on the CAM process, it is only necessary to look at some of

the methods presently used in the manufacture of the Boeing 767.

Computer aided tools locate, drill and fasten wing spars. Robots handle

sanding and painting tasks. A self-propelled drilling unit travels through

the interior of the plane drilling the more than eight thousand holes that

are required for seat installation.

However, it is the lack of integration of the design data produced by

CAD into the manufacturing process handled by CAM that is our primary

concern. The future goal is to build factories in which a network of

computer systems is used to support product design, planning and

manufacture and thus facilitate faster and more economical production

[Ref. 3]. Current CAD and CAM systems are primarily independent and thus

unable to effectively communicate with each other. One solution to this

problem is to define a standard data format which will be accessible to

both CAD and CAM. With a standardized data format, future CAD and CAM

systems, which are built to use the format, will be able to communicate

with each other freely.

For example, Boeing Commercial Airplane Company (BCAC) has

introduced a standard geometric data format as part of its CAD/CAM

Integrated Information Network that has now become the framework for

the Initial Graphics Exchange Specification (IGES) [Ref. 4). More recently,

the International Organization for Standardization (ISO) has been

developing the Programmer's Hierarchical Interactive Graphics System

(Phigs) standard which is based partially on the Graphical Kernal System



(GKS). Both of these systems demonstrate the intense interest in forcing

standardization of data.

Another solution to the communication problem between CAD and CAM

is to design a communications interface that could be used with current

CAD and CAM systems with little change in their structure. The advantage

to this method is there is no massive redesign of CAD and CAM systems

required to meet the requirements of a new standard data format.

The purpose of this research is to define the software and data

requirements that are necessary to integrate CAD and CAM into a fully

compatible system by the use of such an interface. We shall call this a

Computer Integrated Manufacturing System. The interface will consist of

an expert system translator used to link the CAD output data and CAM

input data. An example translator will be presented and discussed. This

translator will be an enhanced version of the translator first presented in

[Ref . 51.
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II. Background

The Expert System Shell Translator design to be proposed in this paper

will be based on the concepts of Computer Integrated Manufacturing (CIM)

as described in [Ref. 51. CIM can be defined as the use of integrated

computer systems to automate the manufacturing of an item starting with

design and continuing through final production [Ref. 6]. Two portions of

any future CIM computer system that are widely used today are Computer

Aided Design (CAD) and Computer Aided Manufacturing (CAM).

With the introduction of the minicomputer and the increasing power of

the microcomputer, significant gains have been made in designer

productivity and accurracy [Ref. 7). In addition, newer CAD systems even

allow simulation and performance analysis. Similar gains are being made in

CAM with the advances in sensor technology, computer controlled robot

devices and numerically controlled machines. Examples of numerically

controlled machines are the tube bending digitizers that automatically

measure and record hydraulic tube shapes and then perform multiple tube

bends during the construction of the Boeing 767 [Ref. 21. What is currently

missing is a link between CAD and CAM to allow data transfer from one to

the other thus allowing a completely automated factory. In an ideal

factory, a product would be designed using CAD and then the design would

automatically be transformed into a final product with very little human

intervention. To even approach such an ideal, a communications path must

be established between CAD and CAM. Figure I shows how an Expert

System Shell Translator would be used to fill this gap.



An example expert translator system was proposed and partially

implemented in [Ref. 5] for the construction of a house. In this paper, we

will enhance the translator to demonstrate its feasability using a more

realistic product design. In addition, proposed data models for CAD output

and CAM input as suggested in [Ref. 5] will be refined as necessary to

facilitate the enhancement.

CAD

CAD
Output Doto

Expert System Shell Translator

CAM
Input Data

CAM

Figure 1. Relationship of Expert System Shell Translator

interface to CAD and CAM.

There are at least two reasons for developing the technology to

integrate current CAD and CAM systems rather than starting over with a

fully integrated C1M system from scratch [Ref. 8]. First, low level

manufacturing equipment will most likely be produced by a varied

10



assortment of manufacturers and will require different hardware and

software for control. Second, factories that are interested in increasing

automation will be more likely to add to existing equipment to reduce

costs. They cannot afford to keep up with the latest in technology and

abandon their previous investments. Each of these component systems can

be expected to have a wide variety of data management systems.

Therefore, an easily adaptive CIM system structure is required to handle

these differences. The translator provides that adaptability by providing

the interface necessary to link the various CAD and CAM systems already

in use.

II



III. Data Output Specification for Computer Aided Design

Figure 2 shows the necessary processing and generation of data

performed by CAD.

f
' N

Conceptual Schema

CAD - Data Model
V J

Scheme Doto Design Data

Figure 2. Processing of data during Computer Aided Design.

Using both the conceptual schema and the data model as input, CAD

generates a design schema and the corresponding design data for the

product to be manufactured. The conceptual schema provides the

hierarchical part_of relationships while the data model acts as a guide

for the CAD process.

A. CONCEPTUAL SCHEMA

Most of our discussion in this section will center on the proposed

format for the design data but first lets examine a sample conceptual

schema. Figure 3 is the conceptual schema for a generic house

12



construction application. The conceptual schema provides CAD with the

hierarchical part_of relationships between primitive types from which

composite objects can be built. Each block in the conceptual schema

represents a different primitive.

1 i i
l

insulation covering sub- covering
I

opening

frame connection vindov door

i

gas plumbing electric || heating sill case pane

Figure 3. Conceptual Schema for a generic house.

Each part, real or abstract, of a final product house would correspond

to an instantiation of some primitive. Instantiation is said to occur when

a primitive is copied and that copy refers to an actual part of a design in

progress. For example, the living room and bedroom of a house are

13



different instantiations of the same primitive room while their walls,

floors and ceilings would correspond to the primitive face. There is

actually a two-way relationship present. That is, if a particular face,

face_A, is part of a room, room_l, then room_1 contains face_A.

This dual relationship will be used later in the development of the design

data. It is also important to note that while a sub_cover must be part of

some given face, it is not true that any instantiation of a face must

contain a sub_cover. For example, consider a face consisting of unpainted

brick attached to a wooden frame. Then the face would consist of a cover

(the brick) and a frame. If painted, the brick becomes a sub_cover with

the paint acting as a cover.

Primitive types may be defined to any level of abstraction and become

the building blocks for the final product design; thus, each conceptual

schema is product dependent [Ref. 5). Those primitive types with dark

borders in Figure 3 have named subtypes associated with them. A house

may be subtype colonial or ranch for example. A room may have subtype

bedroom or bathroom. The use of subtypes allows information about

specific configurations of types to be stored for later use. They become a

framework on which to build. For example, there are certain

characteristics about a bathroom that makes it a bathroom. The subtype

bathroom should capture that information which is true for all bathrooms

for use in future designs.

The CAD process, guided by the data model, records actual

instantiations of the primitive types of the conceptual schema to form the

design schema for the product of interest. A particular house design

14



schema for which our example translator will be based is shown in

Figure 4.

The design schema for a product uses inheritance properties to infer

some information about the primitive types using known information about

related types. Inheritance refers to those cases where there is no need to

specify different values for two different types that are related in a

specific manner. One type simply inherits the information from the other

type. Consider a car being manufactured. If the car has its color specified,

then parts of the car such as fenders, doors and hood would inherit that

color information. In addition, using both part_of and contains

relationships, this information is easily passed both up and down the

hierarchical structure. The conceptual schema provides the CAD/CAM

translator information on how the different building blocks of the final

product will fit together.

B. PROTOTYPE

A prototype can be thought of as a block of memory allocated to store

data for any given type (primitives and subtypes). For each different type,

a new prototype must be defined since the amount of memory storage

required is type dependent. In this way, we can partition our data such

that all the facts known about any particular type instantiation can be

aggregated in much the same way modern programming techniques allow

the partitioning of programs into modules [Ref. 9]. There exists a

one-to-one correspondence between the set of all types and the set of all

classes or prototypes [Ref. 51

15



froofT

|houae1

1

rooml

|face1l| [facel2|

frame 1 frame2

I cover 11

subucoverl

(cover 121

3Ub_cover13

3utucover2 3Ubucover14

exterior 1

| facet
|

|fa«2| |face3| |face4| |face9| |facelO|

cover2 cover3 coverj covers cover 10 coverll

3uLjcover3 sub_jcover4 $uLjcover5 3ub_jDover6 sub-xoverll frames

subucover12

|fac*5| \ix*6\ I face? I I fac»8 I

cover6 cover? cover8 cover9

frame3 frame4

sutucover? 3ubucover8

frames

3ub_jcover9

31 111

vindovl—

r

frame6

sutLxoverlO

doorl

COMl panel

Figure 4. Design Schema for House I
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The set of all prototypes for any given conceptual schema will be

designed to provide the interface between CAD and CAM with the

necessary data to determine all required input for the CAM routines. Now

consider the design of a prototype that will allow us to accomplish this

task. Figure 5 is an example prototype for the primitive type cover listed

in our conceptual schema presented earlier.

* «> «ttrtw* m*y b* W*rtt«J

from fac* prototype

**> ittrtoite is optional

Figure 5. Prototype for primitive Cover.

Each prototype has named slots which can be filled in for a particular

instantiation of that prototype. These slots contain either relation or

attribute data. The slot part of in Figure 5 is for relation data. It relates

the cover to a particular face. The slot material type is for attribute

data and is used to store material information about the cover.

A blank prototype is also known as an intension or abstract specification.

An intension is a meaning of a concept; that is, the prototype for a cover

defines what it means to be a cover [Ref. 9]. With the appropriate slots

filled in, it becomes an extension of the original prototype (Ref. 5]. An

17



extension is a concept which corresponds to an actual item which has

existed in the past, currently exists or will exist in the future [Ref. 9]. In

the above illustrated prototype, the slots material type, height and

depth fall under different rules for being filled in as Figure 5 notes. The

attribute material type is required to be filled in while depth is

optional. Those slots made optional were those that could have a

nonsensical value under some circumstances. Consider the depth of a cover

of paint. While some number could be given, it would not normally be

relevant to the design and construction of a house. Therefore, its value is

optional. Careful thought must be given to the use of optional entries

during the design of the prototypes. The design and efficiency of the

CAD/CAM interface may be dependent on the number of vacant slots

allowed. For those cases where the slots may or may not be filled in, the

interface will have to consider both cases. The number of vacant slots

allowed can have an adverse effect on the number of rules used, the

complexity of rules used, or both for the interface system.

The attribute height shown in Figure 5 may be filled in or left blank

with the value to be determined for input to the CAD/CAM interface using

inheritance rules. Inheritance will be discussed in more depth in the next

section.

The format for storing data in a prototype's slots should be kept

simple to minimize the effect on the interface design. That is, value

information for each slot should consist of only two parts at the most:

actual value and units of measurement when required. The

attribute/relation that specifies the slot may consist of several parts

18



itself such as dimensions(height) but should be standard. Using this

method, each prototype slot is bound to a specific value based on some

standard attribute or relation. For any given product, there will exist a

set of attributes and relations for which each prototype will require a

subset to define its required slots. Some attributes and relations will be

universal to all products while others will be product specific. Consider,

for example, property(material type). This would be required knowledge

for all products. Now consider the attribute dimensions(height) in

relation to spherical product. It has no meaning while the attribute

dimensions(radius) does.

j ilira

name: face 11

properties:

finish color | brovn

dimensions •

« t «

«

neiont 151 5 Inches

vidth 384 nones

depth 6.5 inches

contains [frame 1 ^ub_xover2

subuoovtrl .cover 1

J

MfflMlaJf (0)

normal_Y (054)

normal-Z (0.94)

pari of roofl

* => attribute may be inherited

from cover prototype

Figure 6. Prototype for primitive Face filled in for instantiation facel 1

.

Figure 6 is an example of a filled in prototype showing extension name,

qualifying data and values. This prototype is for a particular face shown

19



in the house design schema of Figure 4. It represents CAD's knowledge

about facel I. Note that one of the slots violates the rules presented

above for simplicity of slot specification. This is the slot for the

relationship contains. This type slot allows for a one-to-many

relationship between a composite object and its components. This was

done for two reasons. First, part_of already provides a simple relation

between any two related parts that meets the requirements listed above.

Second, the use of multi-values allows CAD to move quickly up and down

the hierarchical design schema while conserving storage memory required

for each prototype.

C. SLOT INHERITANCE

Now we consider in more detail how inheritance can be used to

determine a slot's value. Inheritance refers to the property exhibited by

two prototypes, which due to their relationship, possess slots which must

take on the same value as the other's slot.

Facel 1, whose prototype is shown in Figure 6, contains cover 1.

Figure 7 is a filled in prototype for cover 1 based on known CAD design

data. The primitives height and width for cover_l are not filled in and

therefore their values must be determined using inheritance rules when

determining the design data for input to the CAD/CAM interface. For this

reason, the inheritance rules must be part of the prototype definition.

Looking at Figure 7, the '*' indicates that the slot, if left blank, will

inherit its value from the face which the cover is part of. Using this

method, it is possible to specify an entire chain of primitives from which

inheritance can take place. For example, the cover 1 prototype could have

20



specified that inheritance from the sub_cover beneath cover 1 would take

priority over inheritance from facel I. In addition, if inheritance from

sub_covers was allowed, then ordering of the sub_covers becomes a

factor. Using this method for a cover with two sub_covers beneath it, we

should first look for the slot value in the sub_cover directly beneath the

cover, next check the second sub_cover, and lastly get the value from the

appropriate face if not yet successful in finding a value.

namt: covorl

proportfcs

:

m*ttrtol_tju>j_ shino>12

** finish color brown

dfcVWASlOftt

:

• httyt
* vidth

Mop* .25 nOnM

1

p*rt of f«oo1

1

*> olli butt moy bo inhn ilt

d

from f*c* prototype

** => tttrtorto Is optional

Figure 7. Prototype for primitive Cover filled In for cover 1

.

Part of the CAD process is verifying that the correct values for those

slots left blank will be properly inherited for input to the translator.

D. COORDINATE SYSTEM

In order to specify location information in a prototype, it is imperative

that the frame of reference be known by any process using that

information. For most products, three frames of reference should suffice.

21



These are global or world, product and local coordinates . Figure 8 shows

the relationship between each of these systems.

Global or world coordinates relate to the real world. For example, the

lines of the compass could be used with the Z axis perpendicular to the

ground. The product coordinate system expresses location information

relative to the product itself and is useful when locating parts on the

product regardless of the absolute location of the parts relative to the

earth. For large parts that are made up of many smaller parts, the local

coordinate system may be used to express the location of the smaller

parts relative to the large part.

World

or Global

Coordinates

Local

Coordinates
Product

2
Coordinates *xist/txis

z
axis

(0,0,0)

T
/*xis

430S

Th.Q)
Product

Y.

X
axis

-

Figure 8. World, Product and Local coordinate system relationships.

The use of product and local coordinate systems not only eliminates

the need for absolute or global location coordinate information under most

22



circumstances but also provides automatic update of location information

during design changes. For example, consider a face, facel, that contains

a window, window 1. A design change is made that causes facel to be

moved ten feet. If window Is location has been expressed relative to

facel, then updating facet's location will automatically handle

window! since the relative location for window 1 has not changed.

In addition to specifying locations of various parts, other information

about the part's position may be desired. If many flat parts are being used

in a product, then the unit vector perpendicular to their surface can be

used to gather additional information on how the parts will align in the

final product. This vector is called a normal. Figure 9 shows an example

of a normal.

Normal to Surface A

(length = t)

Surface A

Figure 9. Example of e normal vector to a surface.

By definition, a normal is of length 1 unit, regardless of the units used.

In this manner, each flat surface will have one unique normal associated

23



with it and each normal will specify one and only one surface. It is

important to remember that the coordinate system used to express a

normal will affect its value and therefore, for a normal to be useful, the

coordinate system associated with that normal must be specified.

24



IV. Data Requirements for Computer Aided Manufacturing

Figure 9 shows the data flow for a typical CAM process. The Material

Requirements Planning Data consists of two parts, assembly instructions

and a raw material requirements listing (Ref. 51. Each of these will be

discussed in this section.

Material

Requirements

Planning Data

CAM

Scheduling Data

Figure 9. Computer Aided Manufacturing data flow [Ref. 5).

The purpose of the expert system translator will be to provide the

assembly instructions and raw material requirements in such a format

that will allow it to interface to an automated manufacturing system.

A. ASSEMBLY

What information is necessarily contained in the generated assembly

instructions? That is product dependent. For example, when putting solder

on an electrical connection, the type of solder used as well as the

25



temperature of application can be important. When gluing two components

together, the type glue used, the pressure applied and the drying time

become important. These are examples of information that may be

generated by the CAM system normally but may also be overridden during

CAD. The interface must be capable of passing this information through to

the CAM process.

In addition, the assembly instructions will provide sequencing

information, the determination of which may require not only the

conceptual schema for relation data, but also prototype data. This would

be due to information contained in the prototype that affects priority such

as space requirements for installation. Figure 10 is an example where this

type of information is necessary.

~L-H
PART A

PARTB Lrn

1

i

•

i

PART

iI 1
1

C

•

i

•

Port D = A + B + C

Figure 1 0. Assembly consisting of parts A, B , and C.

Part A, part B and part C assemble together to make part D. From the

diagram it can be seen that an assembly sequence that attaches part B to

26



part C and then part A to the pair to form part D will not work since part

B will interfere with part A unless sufficient slack exists in the fit to

allow part A to slide in from the side. This type of information would not

be contained in the conceptual schema.

For some products, component location information during

manufacturing is important. Consider an electrical circuit again. Locating

components on a circuit board is a very complex problem which is not

currently well supported by CAM and ignored during CAD [Ref. 10]. Well

placed components makes efficient routing of interconnections a simple

task and therefore desirable.

B. MATERIALS

The other portion of the Material Requirements Planning Data is the

raw material requirements listing. Figure 1 1 illustrates some example

output for raw materials, again from the house construction example. The

names of each item corresponds to well known building materials. For

example, hardboard32 and hardboard34 are both hardboard material but

have different dimensions and costs. To calculate requirements for

shingle 12 and brick88, effective areas were used. Shingles are

overlapped during construction decreasing their effective area covered

while bricks have concrete placed between them increasing their effective

area.

Based on dimensions of the product, cost per unit of raw materials, and

design information about the raw materials of interest, the translator can

generate the total amount of raw materials required and the total cost.
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Raw Mater ials Report

Un i ts Requ i red

1

1

347.514

434 . 194

6.73333

1.54776

1.54722

0.694444

75

0.850277

1616

3673.2

1.0317

0.551818

0.923095

***********************************
* *

Total material cost is $13996
* *

Ei|B|B|o|gig|PtB|ca|g|[^o|H|H|BWB|H|g|H|i

Item Cost

door 1 $16

windowl $30

$1737concrete 1

wood8 $3582

tar_paper2 $841

harol>oartl32 $211

hut dboQrd34 $147

hardboard78 $200

hardu»ood9 $900

sheath_paper24 $64

shingle12 $2020

brick88 $4224

paint9 $8

paintl? $4

paint21 $12

Figure 1 1 . Rav materials requirements listing.
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In addition, information on allowed substitute materials could be kept

in the database to take advantage of not only fluctuating cost, but also

fluctuating inventory in order to get the most optimal cost product

[Ref. 5]. For such a system to work successfully though, it must allow for

CAD to specify a no-substitute condition when required.

Using the Material Requirements Planning Data as input, CAM will

generate the Scheduling Data necessary for final production. The

Scheduling Data may then be used as input to an automated manufacturing

system.
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V. Expert System Shell Translator

The Expert System Shell Translator will act as the interface between

CAD and CAM. Figure 12 demonstrates how the translator relates CAD data

output to CAM required input.

Schema Data Design Data

Meto-Knowledge
EXPERT SYSTEM

SHELL TRANSLATOR

Standards

Data

Assembly
Data

Material

Requirements

Planning Data

Figure 12. Expert System Shell Translator [Ref. 51.

Using the schema data and design data from CAD as input, the

translator determines the necessary material requirements planning data

to pass to CAM by making use of meta-know ledge and assembly data. A

deduction-oriented rule-based system that starts with known facts and

deduces new facts is said to exhibit forwards chaining [Ref. 1 1]. Forwards

chaining has the ability to reach many conclusions based on the data which

is what we desire for our translator. These new conclusions are then used

to search for more facts. When no more conclusions are possible, forwards
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chaining is complete. This is just the type structure that would be needed.

In addition, the translator performs various standards checks on the CAD

data to ensure its correctness. Correctness is used here to imply the data

meets all known requirements. These requirements may be based on laws

of physics, laws of government, or anything else deemed appropriate.

A. META-KNOWLEDGE

Meta-know ledge can be defined as knowledge about knowledge [Ref. 121.

It is used to guide the program in the selection of rules to apply. This

knowledge may be either implicit or explicit. Explicit meta-know ledge is

sometimes employed using meta-rules. Meta-rules are used to guide in the

application of other rules. An example would be the case where two

possible rules could be applied, rule one and rule two. A meta-rule might

state that rule two should be tried prior to rule one for some specific

conditions. Implicit meta-know ledge is more common but more difficult to

handle when changes are made to the program. Figure 13 shows an example

of implicit meta-know ledge that could be used in house design and

manufacture.

Explicit is the fact that rule number one passes control to rule number

three and rule number three uses recursion to find and handle all faces

except those facing upwards. Implicit is the fact that when rule three

eventually fails, we backtrack to rule number two.

B. ASSEMBLY DATA

The assembly data must provide sequencing information which makes

use of not only the conceptual schema for relational data, but also
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prototype data. The conceptual schema gives information on how the

components fit together, but the prototype data may give new insight to

priorities for those cases where assembly may take several paths.

Consider soldering two electrical components, a transistor and a resistor,

to a circuit board. The transistor is much more heat sensitive than a

resistor normally. Therefore, even though the schema would show no

priority for ordering, data contained in the prototype for the transistor

would show its heat limitations during soldering and would be used to

ensure the resistor was placed on the circuit board first.

le<L,face> :-

l«KL,U,fac*>

l«(L,foce) :-

<Foc*,L>,
norma I _-2<Face, 1>,

assertzCoptrat ion<
contains<Fac*,L1 >,

assert) I«2< ILU , il_ 1 ] , face )

t, 'build floor cm last st«p\ _,_>>,

leKL,L1,face> :-

<Fac«,L>,
not(nonMl_Z<Fac«, 1 >),

d«!ete<Fac«,L,L2>,
conta ins(Face, L3),

l«1<L2,[L3|L1l,factt>,!

Figure 13. Use of Meta-Knowledge.

It is important to remember that the term components is being used

here in an abstract way. Items such as solder, grease, oil and glue may all

be considered components of a product.

Figure 14 is a sample of two assembly rules written in Prolog and used

for the example house construction project. Note that both rules make use
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of schema data as well as design data to provide sequencing. The schema

data allows access to the frame attached to the face currently under

construction while design data, in this case normal information, is used

to prioritize the frames.

f* do foundation fraM */
asseeble<H,house) :-

is_a<Yfoce,foce),
transfertof<Vfoca,H >,

noreal-ZCVface, 1),

contains<Vface,L>,
eeeber<Fro»e,L),
i s_xi<Fraee, f ram* >,

property(Fraee, mater ia I -type, Htypt ),

assertz<operation<Fraee,asseeble, 'eaterial type:
a

,t1type)).

/* do fraee perpendicular to ground */
asseeble(H,house) :-

\ s-jo<Vface, face >,

trans-partofCVface,H >,

noreal-V<Vfoce,0>,
noreal_Z<Vfoce,0>,
conto i ns<Vface, L >,

i s_fl<Fraee , fraee >,

property<Fraee, eater Ia I -type, fltype ),

assertz(operation(Fraee,asseable, 'eater ial type: ', fltype)).

Figure 1 4. Assembly rules for house construction.

In addition to sequencing instructions, assembly data can be used to

determine component location. This is a very difficult problem in VLSI

design and manufacture and is not well supported. The number of possible

placements in many circuits makes an exhaustive search for the ideal

placement impossible. In addition, there are many factors controlling

placement including temperature limitations, position of edge connectors,

position of busses, and speed restrictions which in turn restricts length
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of interconnections [Ref. 10). To find a recommended solution to such a

problem, an expert system translator could make use of advanced search

techniques currently employed in artificial intelligence programming such

as depth-first, best-first or breadth-first. Because this is such a difficult

problem, a system might allow a user to interact with it to aid in the

search.

C. STANDARDS DATA

Standards data is used here in a broad sense and represents not only

governmental standards required by Federal, State, local and Occupational

Safety and Health (OSHA) regulations but also those standards, which if

violated, will result in a product that may not function properly.

Governmental requirements have always been with us and include federal,

state and local regulations. But with the advent of CAD systems, new

product designs have become increasingly complex. For instance, VLSI and

multichip systems may be comprised of more than 250,000 gates [Ref. 13].

Due to this increased complexity, it has become increasingly harder to

detect design errors prior to manufacture and shipment to customers.

Figure 15 shows data put together at IBM which relates circuit errors

remaining to rate of errors detected.

It is important to note that there exists a point in time when there is

a marked decrease in design error detection even though the number of

errors left remains relatively high. Design requirements can be included in

the standards data to reduce the number of errors.

For example, in VLSI design, the translator could check for loading of

components, power supplies to components and all leads properly

34



connected. An example of this would be verifying that the fanout of each

integrated circuit had not been violated. The fanout of an integrated

circuit is the number of gates that may be connected up to one pin of that

integrated circuit without overloading the circuit and causing failure. This

type of error could produce a product that functioned properly but had a

shortened lifespan. It might only be found after numerous customer

complaints and by that time the supply stock of the device could be

extremely costly to replace.

— \ ERRORS REMAINING
NUMBER - \ /

OF - v/
ERRORS -

IN DESIGN
~~

1 '

NUMBER

OF

ERRORS
FOUND

TIME

ERROR DISCOVERY RATE

1

SHIPPING POINT

-> TIME

Figure 1 5. Error detection in VLSI circuit design [Ref. 7].

D. LANGUAGE OF CHOICE

The terminology expert system has been used in our discussion on the

CAD to CAM translator. True expert systems are written using artificial

intelligence languages such as Prolog and belong to the class of artificial
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intelligence applications known as knowledge-based systems [Ref. 5].

Figure 16 is an example of the structure of an expert system.

DESIGN DATA

t EXPERT SYSTEM

KNOWLEDGE RULES

INFERENCE ENGINE

=p
ACTION

Figure 1 6. An Expert System [Ref. 1 3]

Prolog programs are actually rule-based where each rule represents an

expert's knowledge of the problem. "Knowing" is reduced to being able to

represent symbolically facts about the surrounding environment [Ref. 121.

Data supplied to the expert system is then treated as facts and used to

deduce more facts. An interesting feature of some of these rules is their

apparent link to rules of thumb; these rules are known as heuristics

[Ref. 121.

What are the necessary qualities of an expert system? It must of

course properly perform its assigned tasks. The problem is that what is
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proper to one expert may not be proper to another. For example, consider

two builders each constructing a house of similar design. While most of

the assembly priorities for each one would be similar, some differences

could exist. If both builders are experts in their field, who is more

correct? The advantage of using artificial intelligence languages is the

flexibility to allow manufacturers to set their own priorities by modifying

the expert system rule base without any change to the CAD or CAM

systems in use.

Expert systems also have the ability to explain their path of reasoning,

although in today's systems the explanation is usually nothing more than a

trace of rules sucessfully being fired. A rule is said to fire if enough

facts are known so that the rule is now proven to be true.

When actually constructing an expert system, it is also important that

the code be partitioned according to the areas of concern. This is due to

the fact that many experts, who would be expected to supply their

knowledge to build the system, are limited in the breadth of their

knowledge. Therefore, the code should be divided in such a way that each

expert has responsibility for only that part pertaining to his area of

expertise.
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VI. Example Expert Shell Translator

Appendix A is a diagram of a simple one room house which was used as

a basis for this example expert shell translator. The prototypes for the

house are based on the conceptual schema of Figure 3 and are shown in

Appendix B. The actual prolog computer code for the translator is

contained in Appendix C. Appendix D gives the translator output for the

house construction example whose design is depicted in Appendix A.

ptrt—ofQwuM/Dom) •

part—ofCnxxn ,1ac*)

.

p«rt_of(f**,door).

part_0f(ftt»,v1ndov).

p*rt-j0flf,f*c»^opening)

.

partjof(fM»,ooYtr1nQ).

p«rtjof(f«o»,subucovtr1ng).

|urtjDf(f«»,fraiw).

p*rt_of\f*c» fvtsuWtkm)

.

tr*tt_p*rtof(X,Y) :- p*rtjrf(X,Y),!.

trans-ptrtoKX/O .- partjofCX

A

trins_jwHof(Z,Y),«.

Figure 1 7. Implementation of Conceptual Schema

A. CAD DESIGN DATA

Two of the computer code files in Appendix C are used to store data

that would be expected as input to the translator from CAD. The schema

file contains the schema data for the product of interest, in this case a

one room house. Figure 17 shows some of the code from this file.
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The last two rules in Figure 17 are used to specify transitivity in

prolog. Thus, if piece_A is part of piece_B, and piece_B is part of

piece_C, these rules would imply that piece_-A must also be part of

piece_C. The use of such rules precludes the necessity to explicitly

declare these relationships for all possible cases.

The design schema and other design data, which are derived from the

filled in applicable prototype slots, are contained in the house I file.

Figure 18 demonstrates the relationship between one sample prototype and

its corresponding data in the house 1 file.

It can be seen that the use of a language like prolog makes it easy to

convert the prototype data to usable data for the translator.

B. STANDARDS CHECKS

The first series of operations performed on the input data by the

translator are those necessary to verify all applicable standards

requirements are met. Figure 19 contains some of the standards from the

standards file in Appendix C that were used for our one room house.

Note that while the width and height standards for doors apply only to

a door of type doorl, the depth standard for doors and the window pane

quality standard apply to all doors and windows respectively. This

demonstrates the flexibility of the language and our system.

In addition to actual physical checks, two other types of standards data

are also contained in the standards file. These are shown in Figure 20.

The first is the comment—for data. For example, consider the rule

cocnment_fof ( frame,wood, framing); this rule relates any frame made

out of a wood product to the comment framing. This allows data that can

39



HOUSE 1

f* facel */

i s_xi(face 1, face).

d i mens ion< facel, height, 115, inches),

d i mens i on(face 1,wndth, 3)2, inches),
d i mens i on < facel, depth, 1, inches).

contains(facel, (sub_couer3, cover21 ).

norma I _X< face 1,0).

norma I _V( face 1,-1).

norma I _Z< face 1,0).

part^o f < face 1
, room 1 )

.

PROTOTYPE

jtuDefacei | i|| M '.

\

/
name: facel

properties:

* finish color

dimensions:

height 1 15 inches

vidth 362 inches

depth 1 inch

contains

normal_X (0)

normal_Y (-1)

normal-Z (0)

part of rooml

* => attribute may be inherited

from the cover prototype

Figure 1 8. Computer code derived from Prototype dote.
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niniBua<door,door1,vidth,32, inches).
n in iaunK door, door I, height, 6, feet).
max i u*<door , door 1 , • i dth, 4, feat )

.

ax i uaCdoor, door 1 , he i ght, 7, feet ).

•ini»u«<door,_,depth,2, inches).
»axi»i»<door,_»depth,3, inches).

Mini •unCpane . _, qua I i ty , 3 )

.

Figure 1 9. Standards checks.

coMtent<Bosonry
/ 'approved methods Must be used for building

•asonry •alls «hen outside air temperature drops beloe 40
degrees farenhe it').

eo—ant—for(cover , br i ck, asonry )

.

coMwnt_for <cover , concre te_b I ock ,asonry )

.

co—nt_for{sub-cower , br i ck,asonry )

.

cD—cnt-for<subucover,concrete-b I ock, asonry).

coa*ent< framing, 'grade Marks »ust be clearly visible on all

fraaing eabers for inspection').
co—ent-forC frame, •ood , fraa i ng )

.

check_for(sub_jcover , tar_paper

,

I tar_paper 1 , tar_paper2, tar_poper3 ] )

.

Figure 20. Comments on standards requirements.
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only be verified during manufacturing to be output by the translator for

the information of the CAM system. Sample output from Appendix D is

shown in Figure 21.

check for fraee fraae3

grade marks must be clearly visible on all fraeing
for inspection

check for subucover sub_jcover?

check for cover coverO

approved Methods eust be used for building masonry tails
•hen outside air teeperature drops beloe 40 degrees farenheit

Figure 2 1 . Translator output following application of standards comments.

The last data type contained in the standards file is the checlc_for. In

Figure 20, the rule check_for(sub_cover. tar_paper. [tar_paper1.

tar_paper2. tar__paper3l) is used to verify that all sub_covers made

out of tar_paper use tar_paper1, tar_paper2 or tar_paper3. In addition,

those types of tar_paper not used are listed as possible material

substitutions. These lists of possible substitutions will become important

again when determining raw material requirements later in this chapter.

Figure 22 is example output data showing the use of this type standards

check.

Note that the design data currently has sub_coverl4 made from

tar_paper2. Therefore, the other two types are listed as possible

substitutes. For more realistic situations, substitutions of one material

may affect other parts of the product. For example, consider a case where
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several types of plastic have been listed as acceptable for the product

piece in question. However, if a glue is being used on the plastic during

the manufacturing process, different plastics may require different glues.

Therefore, caution must be used in making substitutions.

check for subucouer sub_eover14

subucouer sub-jCovtrH Mtts requi r—mts; allowed substitutes are:

- tarjpaperl

- tar-paper3

Figure 22. Listing of substitutions by translator during standards checks.

C. PRODUCT ASSEMBLY

Once the standards checks have been completed, the translator must

determine the product assembly sequence. To build our one room house, we

would expect the frame to be erected first. Figure 23 is a listing of

prolog rules used to generate the assembly steps for the frame foundation

and walls.

The first frame selected for assembly is the foundation. This frame is

located by finding a face which is part of the house being built and which

also faces away from the ground. The trans__partof(Yface,H) will locate

any face that is part of the house represented by the variable H. Then

normal_Z(Yface, 1) checks if the Z component of the normal to the face

of interest is equal to one. If so, then this face is a floor. Figure 24

shows example orientations of normals for our one room house.
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/* do foundation frame */
assemble(H,house) :-

is^cKYface, face),

trans_partof (Vface, H ),

normal_Z(Yface, 1),

conta i ns (Vface , L)

,

iwmibw(Frame, L ),

is_a(Frame, frame),

proper ty(Frame , Mater i a I -type, H type ),

asser tz( opera t ion < Frame^assemble, "aaterial type: ',Mtype)).

/* do frame perpendicular to ground */

assembled, house) :-

is_xi<Vface, face),
trans_partof(Vface, H ),

normal_Y(Yface,0),
normal_Z(Yface,0),
conta i ns<Vface, L),
•ember ( Frame, L),

i s-ja<Frame, frame ),

property(Frame, mater i a I -type, htype ),

assertz(operation(Frame, assemble/ material type: ",Htype)).

assemble(H,house) :-

i s_xi<Vface , face )

,

trans_partof(Yface, H ),

norma l-XCYface^),
normal_2<Vface,0),
conta i ns<Yface, L),
member(Frame, L),
is_a(Frame, frame),
property(Frame, mater i a I -type, Htype ),

assertz(operat i on(Frame, assemb I e, ' mater i a I type : ' , Mtype ) )

.

Figure 23. House sample assembly rules for translator.
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Any normal parallel to a coordinate axis will have that axis' component

equal to one in value if it points in the positive direction along the axis

and equal to minus one if it points in the negative direction. For the

example house, only the normals to the faces contained in the roof do not

meet these requirements. It is not necessary that any face meet this

requirement; it has been done only to simplify the example.

ZftXIS

y axis

ogjjjjq

norm*l_Z«-1

normaLX* 1

normal_X = -1

4

I
normal_Z» 1

floor

•xamptevall

xaxif

Figure 24. Use of normal vectors for house construction.

Once the floor frame is in place, the second and third rules in Figure

23 locate the wall frames and add them to the assembly list. The second

rule looks for faces with normals parallel to the X axis by specifying that

the Y and Z components of the normal are equal to zero. Similarly, the

third rule locates those faces parallel to the Y axis. In prolog,

backtracking will force these rules to be tried until no more valid

solutions are found. In this way, we locate all faces meeting the
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specifications of each rule. Therefore, we only need be sure that each rule

does indeed fully state all specifications of concern.

In Figure 25, the rules which generate assembly data for the ceiling

and roof are shown.

/* ceiling froee +/
osseeb I e<H, house) :-

s s-ja<Yface, fact),
trans-partoKVfoce.H),
noreal_2<Yface,-1>,
contairw<Yface,L>,
wMbtr<Fram,L),
i s_a<Fro*e , fraee >,

property(Froee, water ia I -type, Htype >,

assertz(operxition<Fraee,asseeb I
e,

' Material type: \Mtype)).

/* roof froee */

asseeble(H,house> :-

is.ja(Roof,roof >,

trar*_partof(Roof ,H >,

isua(Vface, face),
trons_partof <Yfoce , Roof >,

contaira<Vfoce,L),
eeeber(Fraee,L>,
ii^cKFroee, froee >,

property<Fraee,eoterial-type,ntype),

tz(operation(FraBe,asseeble, 'eater ial type: ',Mtype>>.

Figure 25. Assembly rules for roof and ceiling.

The only notable difference from our previous rules in Figure 23 is that

faces associated with the roof are located by using the contains relation

associated with the roof. This is a better method than using normals since

the normal vector for a roof face can vary so much depending on the

design of the house. The only framing now left to be performed is for the

windows and doors. Figure 26 lists the rules that handle these two cases.
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Both rules again check only parts of the house of concern. For the door,

we determine its material and the two faces to which it is attached and

save this information in assembly data. The same is done for the window

except now the sill is treated as its frame. Again, both rules allow

backtracking to get all occurrences of windows and doors as will all the

assembly rules.

le(H,hou*e> :-

is-a(Door, door),
trans-parlof(Door ,H ) #

property(Door , eater i a I -type , Htype >,

asser tz (operati on<Dt»r > osseeb It, eater ial type: ', Htype)),
get_foces <Ooor , Face 1 , Face2 ),

assertz(operatlon("/- attach to: ' ,Facel,Face2>>.

asseeble<H,house) :-

is_a(M/eindoe)J

trans_partof(W,H),
contains(U,L),
eeeber(GMI,L>/
is_a<SI 11,3111),
assertz(operation(Sill / asseeble/eindoe sill for: ',U»,
get-faces(M, Face 1 , Face2 ),

assertz(operation(",'- attach to: \Face1,Face2)).

Figure 26. Assembly rules for windows end doors.

With all the framing in place, the faces must now be constructed.

Figure 27 gives the code to handle this. Note that first the exterior and

roof are performed, and then the interior room itself. For each area, the

contains relation is used to get a list of all parts, including faces, of

each and the information is passed to an assembled, face) routine to

erect only the faces. This is actually a series of routines that use both

backtracking and recursion to determine the assembly data. Figure 28

gives the routines that start the process.
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assert I e(H, house) :-

is_ja<E, exterior),
trans_partof<E,H),
conta ins<E,L),
assert I e <L , foce )

.

assert I e<H, house) :-

isja<R,roof ),

trans_partof<R,H>,
conta ins<R,L),
assert I e<L , foce )

.

assert I e(H, house) :-

isja<R,roo«),
trans_partof<R,H),
conta ins<R,L),
asse*b I e<L, face >

.

Figure 27. Assembly rules for house faces

asseab I e<L, face) :-

assert leKL, I], face)

assembled, face) :-

eerter<Face,L),
nor»al_Z(Face, 1),

asser tz( operalion <cosnen t, 'bui Id floor as last step' ,_,_)),
conta i ns<Face, L 1 ),

assertle2< IL1 1, IL1 1, face).

assert IeKL, LI, face) :-

neaber <Face , L )

,

not(nor«al_Z<Face, D),
delete<Face,L,L2),
conta i ns<Face, L3 ),

assertleKL2, (L3|L1],face), !

.

asseab IeKL, LI, face) .-

assert I e2<Lt, LI, face), !.

Figure 28. Assembly rules to prioritize end obtain face data.
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The first and second rules in the list handle two different cases,

non-floors and floors respectively. Any face pointing directly upward is

considered a floor, of which, for our simple example, there is only one.

The first rule takes precedence over the second rule and calls the third

rule in Figure 28. The third rule simply finds all faces which are part of

the area of concern but are not facing upward. Looking at the left side of

the third rule, assemble 1 (L.LI,face), L is the set of parts determined

using the contains relationship earlier and LI is a set which we will

construct. LI is initialized to empty when the first rule calls the third

rule. When the third rule finds a face meeting its requirements, the

contains relation is again used to determine the parts of the face. This

set of parts is added to LI and assemble 1 recursively calls itself

looking for more faces. When none are found, we fall through to the fourth

rule which calls assemble2. The I symbol at the end of the assemble 1

rules is there to prevent backtracking into them. We may only proceed

forward into these rules. Backtracking is not necessary since we exit

these rules only when all faces meeting our specifications are found.

Looking again at the second rule in Figure 28, we put only one face in

the list at a time and backtracking is necessary in the case where there is

more than one possible floor face. This may or may not be desirable

depending on the house design. For the other faces though, a list of all

faces in the area of concern is created using recursion to allow a search

for common building materials to better organize the assembly data.

Figure 29 shows the rest of the routines necessary to complete the

face assemblies. Note that assemble2 will recursively call itself until
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asseab I e2 (Fu I I _L,L,face) :-

MKffPvrQCCj L ),

delete<Face,L,L1),
aeaber < I tea, Face >,

i s_a< I tea, subucover ),

proper ty< I tea,i»ater i a l_type, tltype >,

operal i on<V, _, _, tltype >,

eeeberCFace 1 , Fu 1 1 _L ),

saber <V , Face 1 )

,

assertz< opera li on ( I tem,asseable, 'material type: ',Mtype)>,
deleted ten. Face ,Face2),
asseable2(Ful l_L, lFoce2|L1 1, face), !

.

asseeble2<Full_L,L,face) :-

aeaber <Face , L )

,

delete<Face,L,L1>,
aeaber ( I tea, Face >,

i s-jq< I tea, sub-cover >,

property< I tea, aater i a I -type, tltype >,

osser tz<opera t i on< I tea, asgcable, 'aatorial type: ', tltype)),

de I ete( I tea, Face, Face 1 >,

asseab I e2<Fu I IJ. . (Face 1 1 L 1) . face > . !

.

asseable2(Fuil-L,L,face> :-

aeaber<Face,L>,
delete<Foce,L,L1),
aeaber ( I tea, Face >,

i s_x» ( I tea, cover >,

property< I tea, aater i a I -type, Mtype >,

not<l iquid<Mtype, paint, _,_,-,_,_)),
opera t i on<V, _, _, tltype ),

aeaber<Face
1
, Fu I IJ. ),

aeaber(V, Face 1),

assertz<operation< I tea, asseab I e, 'aater ial type: ' ,tttype>>,

delete( I tea, Face, Face2>,
asseab le2<Ful I _L,lFace2|L 11, face),!.

asseeble2<FullJ.,L,face> :-

aeeber<Face,L),
delete<Face,L,L1>,
aeaber ( I tea, Face ),

i s_jo( I tea, cover >,

proper ty ( I tea, aater i a I -type, tltype >,

notd iquid<tttype, paint, _,_,_,_,_)),
assertz(operation<ltea,asseable, 'aater ial type: ', tltype)),

de I ete< I tea, Face, Face 1 >,

asseable2(Full_L, [Face 1|L 11, face), !.

asseable2<Ful l_L,L, face).

Figure 29. Assembly rules to get list of covers and sub_jcovers.
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there are no face parts left. It then falls through to the last rule which

succeeds and thus exits. Again, no backtracking is allowed or necessary.

The first two rules in Figure 29 search for all sub_covers letting

those sub_covers made up of material already used in the area of concern

take priority over material not yet used. This is accomplished by

searching through all the current operation predicates looking at all

sub_covers already asserted that used the same material. If a sub_cover

is found, then a search is performed over the list of all sub_covers in the

area of concern to attempt a match. If a match is found, then that

material has already been used and it will take priority. If no match is

found, then the next sub_cover in the next face is listed in the assembly

data.

The third and fourth rules provide a similar function for the covers

except that covers made from paint are not yet allowed to be listed. The

painting will be performed at the end of the house construction to prevent

damage to the finish.

The house is now close to completion. The window panes are inserted

into place, the windows and doors are painted, and the doors are installed

using the appropriate doorknobs and hinges. Now is the time to complete

the painting of the faces that was previously skipped over. Figure 30

shows the rules that handle this.

Note that first the roof is painted, then the exterior and then last we

paint any rooms. The paint_face routines are similar to what we have

already seen. First, the ceiling, if one exists in the area currently being

taken care of, is painted. Then the walls are painted and next the floor is
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painted. Any face left over is painted at the end. This handles slanted

surfaces such as the faces of the roof. The one room house is now fully

constructed.

assort) I e<H, house) :-

is_0<R,roof >
t

trtww_partof<R,H>,
contaJns(R,L),
paint-faca<L).

le<H,hous*> :-

is.ja<E,«xt«rior>,

trans_partof<E,H),
contains<E,L),
paint_face<L).

l«(H,houM> :-

is-a<R,rooa>,
trans_partof<R,H),
contains<R,L),
paint_facc<L).

Figure 30. Assembly rules to generate paint data.

D. RAW MATERIALS LISTING

With the assembly data finished, the translator must now determine

the raw material requirements to build the house. It does this by calling

on the raw_materials—needed rules. All the rules work in much the

same manner. They first determine what extension is being considered,

then the material of concern associated with this extension, and last the

dimensions of this extension or area. All dimensions and areas are

converted to a common unit of measurement prior to calculations.

Those parts of the house associated with a face extension such as

cover and sub—cover call a routine get—area to determine the surface
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area involved. This special routine is necessary since faces may have

areas such as doors, windows and openings which subtract from the total

area of the face to be covered. This is handled by calculating a negative

area for each face to be subtracted out prior to material requirements

calculations. This negative area is then asserted as a fact for each face

prior to actual entry into the raw_materials_needed routines. An

example calculation routine is shown in Figure 31.

teriol
j s_a<Ex tens , subucouer >,

d imiw i on<Extens,depth, Th, Thun i ts ),

proper ty<Extens, eater ial -type, Material ),

eater ial (Material ,«,Ht,Htuni ts,Ud,Udur>i ts,0p,0puni ts,

_,_,_,_,Cost),
eatch(Ht,Htir>its,Ud,l«ir»its,Dp,Dpunits,Th,Thunits,fict-Ht,

Unitsl,ftct_»d,Uhits2),
getjar*o(Extens, f¥ea, Uni ts ),

convert<Rct_M,Uni ts1,Bct_Ht2,Uni ts),
conuert<Act_Md,Uni ts2,flct_Ud2,Uni ts),
rtueJUhits is <flrea / <Bct_Ht2 * RcLJkC)),
TotXost is (NueJUhits * Cost),
add-eateriaKHaier ial ,NueJUhi ts, TotXost ), fai I

.

Figure 3 1 . Example motenol calculations for a sub-cover.

One aspect of how the above example works not yet mentioned is the

call to match. This rule attempts to find a match between the dimensions

of the material to be used and the thickness of the sub_cover within a

tolerance band. This is then used to determine the orientation of the

material within the sub_jCover. For example, if a board, measuring two

inches by four inches by four feet, is used to build a sub_cover which is

four inches thick, then the two inch dimension would be used for area

calculations. This type of check is necessary since the dimensions height,
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width and depth are based on the view of the person determining the

values.

Once the units of material required and cost are determined, these

values are added to the total by calling add—material. This rule first

checks for any previous data on this material. If some is found, then a

new total is calculated and saved. Otherwise, a new fact on the material

of concern is created and saved.

The only other unusual calculation performed during the material

calculations is the one to determine the frame requirements along the

center of the roof, between the roof and the ceiling. We need the height of

the roof above the ceiling to make this calculation. This is easy to do

though since the normal vectors for the roof faces are known. It turns out

that each component of the normal is equal to the cosine of the angle

created by the intersection of a line parallel to that component's axis and

the plane containing the other two axis [Ref. Ml. Figure 32 demonstrates

this concept. In Figure 32, the Z component of the normal vector is equal

to the cosine of the angle created by the intersection of the normal and

the plane containing the X and Y axis. With this fact, we can calculate the

angle of intersection, Beta, of the roof and the house. Using the

dimensions of the roof faces, it is now possible to determine the height of

the roof above the ceiling since sin(Beta) is equal to the height of the

roof above the ceiling divided by the length of the roof face.

Once the amount of materials required and their costs have been

determined, a Raw Materials Report is output. The report lists units
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required for each material item and that item's cost. Following the list of

individual items is a total cost. Figure 1 1 gave a listing of this output.

Zexie

distance along X-Y plana ia equal to

cos p for a normal vector If

Figure 32. Distance of a normal vector along a plane.

After the initial Raw Materials Report, the example translator

examines possible material substitutions reported during the standards

checks and makes each substitution, one at a time, to generate a new

report. Figure 33 is an example of a modified Raw Materials Report output

by the translator. It shows the cost for parts when sub_cover14 is made

out of tar_paper 1 in place of tar_paper2
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* 4i

sub_jcover 14 : substitute tar_paperl for tar_paper2

Raw Materials Report

Item Cost Un ts Required

doorl $16 1

vindoaM $30

$173?

1

347.514concrete 1

tar-paper

2

$420 3.36666

wood8 $3582 434.194

tar_paper1 $504

$211

3.36666

1.54776har dborar <J32

hardboard34 $147 1.54722

hordboard78 $200 0.694444

hord_»ood9 $900 75

sheath_paper24 $64 0.850277

shingl«12 $2020 1616

brick88 $4224 3673.2

paint9 $8 1.0317

paint 1? $4 0.551818

paint21 siz 0.923095

Total material cost is $14079
* *

«««*««*M4

Figure 33. Rev Materials Report vith substitution.
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IV. Conclusions and Recommendations

A. CONCLUSIONS

The goals of this research were to determine the design requirements

for a generic CAD to CAM translator, design and implement a CAD to CAM

translator for a particular product and in the process determine data

requirements for CAD output and CAM input.

A conceptual schema is a useful tool with which to model the product

to be constructed. A simple hierarchical structure for the conceptual

schema results in a design schema in which the translator can easily move

from part to part, whether the part is abstract or real. Prototypes provide

an ideal abstract model of the product design data to be used as input to

the translator.

Artificial intelligence (Al) oriented languages such as Prolog can

readily use prototype structured data, even using slot inheritance to fill in

unspecified values. In addition, many search methods have been designed

and implemented using Al methods and they can provide powerful solutions

to difficult problems such as the positioning of integrated circuits on an

electronic circuit board. Their two drawbacks, when compared to other

languages currently in use today are speed and availability. This is

currently being remedied with the recent releases of affordable compiled

versions of artificial intelligence languages designed for

micro-computers.

The translator is capable of performing certain standards checks on the

design data, passing assembly information through to CAM and also
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material requirements. The translator can also pass information that is

useful to CAM at the time of production but cannot be verified prior to

actual product construction such as temperature specifications. In

addition, material substitutions can be recommended. Using AI's search

techniques, the translator can search for the best material combination

while at the same time checking for the effects of material substitution.

B. RECOMMENDATIONS

The next step in this research is to use an actual operating CAD system

to generate the design data and schema data for input to an expert

translator. The test products designed by that CAD system should be ones

for which there exists a product CAM system for additional research.
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APPENDIX A

HOUSE 1 DESIGN

face5

31 feet 10 inches
face7

y 8X13

X 8X13
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feet 7.5 inches
21 feet 10 inches

roof for house 1

face 1

1

\
tar_paper2 wood8

shingl
face 1

2

2 inches
wood8

(framing)
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31 feet 10 inches

CEILING + 4 inches svood8i

1 1 inches

poi nt 1

7

1 inch
1 1 inches

hard board 7

8

Parallel to X axis

21 feet 10 inches.
framing

CEILING
»L

;wood8?

1 1 inches

? hardboard78
1 1 inches

face9

Parallel to Y axis
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21 feet 10 inches

< 4 feet

.

6 feet

i
3 feet

Ofeet

I

panel (thickness = .5 inches)

coordinate reference point

concrete 1 foundation

Exterior view
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coordinate reference point
door frame

(thickness = 2.5 inchest

1 feet

8 feet 1 1 inches

—

nk3 feetn

7 feet

i±

concrete 1

foundation^ 1 foot

±_

Z axis t
31 feet 10 inches

Exterior view
Xexis
—
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face 1 paint 21

1 1 inches
hard_wood9 5 inches

±
1 1 inches

1 foot floor

31 feet 10 inches'

Parallel to X axis

1 1 inches

M H I

h8rd_vood9

concrete 1

foundation

1 1 inches

floor

21 feet 10 inches-

Parallel to Y axis
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APPENDIX B

PROTOTYPES

name

properties

:

** subtype

::,

contains

** => attribute is optional

** => attribute is optional
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* => attribute may be inherited

from face prototype

* > attribute may be inherited

from cover prototype
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name

properties

:

** subU

coordinates _X
coordinates _Y
coordinates _Z

contains [..]

part of

** => attribute is optional

name:

properties

:

* finish color

^>mimM^M^Mm&^ iw§&%.

dimensions

:

* => attribute may be inherited

from cover prototype

** => items made from the same prototype

tr* listed according to their position

in the face
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name
properties

:

material type

finish type

finish color

knob type

dimensions

height

width

depth

face

face

coordinates_X

coordinates_Y

coordinates_Z

part of

name:

properties

dimensions
** radius
** height

** width

* depth

face

* * face

part of

* => attribute may be inherited

from face prototype

** => attribute is optional
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mmm^mmmm
Mmmmmmimm

name:

properties

:

material type

** finish color

dimensions

height

* width
#* depth

:

part of

* => attribute may be inherited

from face prototype

** => attribute is optional

* = > attribute may be inherited

from face prototype

** => attribute is optional
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nam*
properties

:

material type

** finish color
Vx^V :..;,;,

^>^^^>5S^>:•>^:>;S>:^^ l
:
::::x:>:^>^^^^><^^^^^::^'r^^^^*•^>^>^>^>^^^: :>:>>:>>:::>::•<<>,>>>>>X>x:-Vs

dimensions

* => attribute may be inherited

from face prototype

** => attribute is optional

name:

properties

material type

* finish color

dimensions

height

* width

depth

face

* * face

part of

* => attribute may be inherited

from face prototype

** => attribute is optional
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name

:

dimensions

height

width

depth

contains

face

face

coordinates _X
coordinates _Y
coordinates _Z

part of

§§ ^P^pejpanei S?v

na nrie

part of

}>w<^ mm

?1



name:

properties

dimensions

* * radius
** height

** width

face

**face
part of

* > attribute may be inherited

from face prototype

** => attribute is optional
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mmmmmmmimmmimm
tewmmmmz*.

tupe plumbin

name

part of

flilillryp* nea^n9itlil

name:

part of 1
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APPENDIX C

/* Interface File */

start .—

not(b*qin_std£_eheck),

not(beg i n_joperat i ons ),

not(set-neg_area ),

no t (rcMUMter i a I s_needed )

,

not (mater i a I s_repor t ),

no t <report_subs t )

.

begin_stdsjcheck :- is^a(Extens, Inters ),

eritcC' check for * ),u»rt te( Inters ),nri te( ' ' ),»ri te(Extens),nl ,nl

,

check(Extens, Inters), fai I

.

checkCExtens, Inters) :-

property(Extens, materia I _type,tta ter ial ),

mater I a l<Mater i a I , Spec-Ma t , _, _, _, _, _, _, _, _,„,_,„>,
co*ment_for ( Inters, Spec_hat, CI ass),

co—

n

t<Closs,Co—ent),
•riteC ' ),mrite(Coaaent),nl,nl

.

check(Extens, Inters) :-

proper ty(Ex tens, ma ter ial_type,l1a ter ial ),

mater i a I (Hater i a I , Spec-Mat, _, _, _, _, _, _, _, _, _, _, _),

check_for( Inters, Spec_rtat, Class ),

member <rta ter ial , Class),

•riteC ' ),mri ted ntens ),mri te<* ' ),mrite(Extens),
riteC meets requirements; a I loved substitutes are. ' ),nl ,nl

,

member(Other-Mat, CI ass >,

not(Other_Mat = Material),

mriteC - ' ),mri te(Other_Mat),nl,nl,

assertz(subst i tute(Extens, Other-Mat ) )

.

check(Extens, Inters) :-

property(Ex tens, ma ter ial _type, Mater ial ),

mater ia I (Mater ial, Spec-Mat,-, _, _, _, _, _, _, _, _, _, _),

check_for ( I ntens, Spec_Mat, C I ass ),

not(member(Mater i a
I
, C I ass ) ),

mriteC ' ),mri ted ntens ),mrite<" ' ),mrite<Extens),

mriteC does not meet requirements; allowed substitutes are: ' ),nl,nl

,

•ember(Other-Mat, C I ass ),

•riteC - '),mrite(Other_Mat),nl,nl,

assertz(subst i tute(Extens, Other-Mat ))

.
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check <Extens , door) :-

d i »ens i on<Extens, D i mens i on, Z, Un i ts ),

i i n i •laKdoor , Extens, D i »ens i on, X, Un i tx ),

max i eua(door, Extens, i eens i on, V, Un i ty ),

converUX, Un i tx, M i n, Un i ts ),

conuerUV, Un i ty , flax, Un i ts ),

check-standards(door, Ex tens, D i »ens i on, Z, M i n, Max )

.

check <Extens, pane) :-

proper ty< Ex tens, qua I i ty,Ualue),

*ininu»(pane,Extens,qual i ty,Min),

check_standards Cpane , Extans , Ua I us , M i n )

.

c^edc_staxkjrds<lntens,Extens,Di»ension,Ualue,Min,f1ax) :

notcriin > Ualue), noUUalue > Max),

riteC ' ),«ri te<lntens),arite(' ' ),«ri te(Extens),

rite<* passed- ' ),«ri te<Dinension),nl,nl, !

.

check_standards(lntens,Extens, Dimension, Ualue, din, Max) :

Mm > Ualue,

riteC ' ),»rite<lntens), <" ' ),wri te(Extens),
«rite(" failed ninimua - ' ),

•rite(Dieension),nl,nl, !

.

check-standards ( I ntens, Extens, Dieensi on, ^a I ue,f1in,ttax) :

Ualue > Max,

riteC ' ),«rite<lntens),«rite<' ' ),*ri te<Extens),

•ritet' failed eaxieuB - "

),

•rite<Diaension),nl,nl, !

.

check_standards<pane,Extens, Ualue, ttin) :-

noUMin > Ualue),

riter '),riter pane ' ),write<Extens),

riteC passed quality check' ),nl,nl, !

.

<^eck_standards<pane,Extens,Ualue,h'in) :-

Hin > Ualue,

part^o f <Extens , H i ndam )

,

i s_jq(U i ndom, • i ndow ),

nrite<* ' ),erite('pane ' ),«ri te(Extens),

•riteC fai led •inteua qua! i ty check' ),nl,

riteC - part of " ),eri te(Uindoa),nl,nl , !

.

beg in-operat ions :-

is^cKH, house),

not<do_asseebly<H)),

noUoperat i ons_report<H ) ),

fail.

do-jasseably<H) :- assembled, house), fai I
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operatlons_report<H> :-

nl,nl,

mrite<* **>>nl!

•riteC Production Sequence Report for '
),

•rite<H),nl,nl,

print_style<H),

riteC* *'>,nl,

operat i on<Extens , Funct i on, flttr i bute 1 , flttr i bute2 ),

pr i nLjoperat i on<Extens, Funct i on, fit tr i bute 1 , fit tr i bute2 ),

fail.

print_joperation<comment,Comment,_,_) :-

nl,

•riteC* *">'nl'

mriteC' comment :
'

),

•ri te<Comment ),

nl,

•riteC* *">,nl,

print_operation<Extens, flttr i bute 1, flttr ibute2, flttr ibute3) :-

»rite<Extens),

name(Extens,L1),

length<L1,N1>,

tab<15 - NO,
»rite<fittribute1),

get-ncNM-l enCflttr i bute 1 , N2 ),

tab<13 - N2),

•rite<flttribute2),

get_name_len<RttriDute2,N3>,

tab<17 - N3),

rite<ftttribute3),nl,».

get_name_len(Name,Len) :-

number ( Name ),

not( integer(Name)),

name(Name, LI),

length<L1,N1),

Len is <N1 - 4),!.

get-name_len(Name,Len) :-

name<Home, LI),

length<L1,Len), !.
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print_style(H) :-

proper ty<H, sub type .Hstyle),

writeC - house style is '

>,

rite(Hstyle),nl,

•riteC and consists of ' ),

contains(H,L),

rite(L),nl,!.

print_style(H).

f* routines to calculate surface area of faces taken up by */

f* doors, windows, openings, and connections */
set_neg_area :-

i s_a(Ex tens , face ),

set_neg_area2(Extens, U,0, feet), fai I

.

set_neg^area2(Face,L, Area, Units) :-

face(Extens, Face ),

not(»e«ber(Extens, L ) ),

is_a< Ex tens, window),

d ieens i on(Extens, he
i
ght, Ht, Htun i ts ),

d i wens ioncExtens ,* idth, Ud, Udun i ts),

c«™ert(Ht,Htunits,rie«_Ht, Units),
corner t ( Ud, Udun. ts,New_Ud, Units),

Ne«L-ftrea is (Area + (Hee_Ht * Ne»_Ud)),

set-neg_J3rea2<Foce, IExtens |L],Ne«_Area, Units), !

.

set_neg_area2(Foce, L,Area, Units) :-

face(Extens, Face ),

no t (member(Extens , L) )

,

i s_a <Extens , door ),

d i wens ion(Extens, he i ght, Ht, Htun i ts),

di wens ion(Extens, w idth, Ud, Udun i ts),

conuert(Ht, Htun i ts,Mm-Ht, Un i ts ),

conver t<Ud, Udun i ts, Ne«-Md, Un i ts ),

Ne«_flrea is <firea + <New_Ht * New_Ud)),

set_neg-orea2<Face, [Extens|L],Mee_flrea, Units), !

.

set_neg_jarea2<Face,L, Area, Units) :-

face<Extens, Face ),

not(weeber(Extens,L)),

i sua(Extens , comae t i on )

,

geoeetry(Extens, rectangle),

d i mans i on(Extens, he
i
ght, Ht, Htun i ts ),

d i were i on(Ex tens, width,Ud, Udun its),

conuert(Ht, Htun i ts,Ne»_Ht,Uni ts),

convert(Ud,Uduni ts,Ne*_Hd,Uni ts),

Ne»_Area is (Area + (Ne»_Ht * Ne»_Ud)),

set_neg^area2(Face, [Extens I L J, Nee_Area, Un i ts), !

.
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set_neg_jarea2(Face,L, Area, Units) :-

face(Extens, Face ),

no t <Beater <Ex tens , L) >,

i s_xa (Extens ,comaet i on ) ,

geoaetry(Extens, square ),

d i mans i on(Extens, he
i
ght, Ht , Htun i ts ),

convert(Ht,Htuni ts,Ne»_Ht,Uni ts),

Ne«_Area is <ftrea + (Ne«_Ht * Ne«_Ht)),

set_neg_area2<Face, (Extens|L),Ne«-Area, Units),

»

set_neg_jarea2(Face,L,Rrea,Units) :-

face (Extens , Face )

,

no t <member <Extens , L) ),

is_ja<Ex tens, connect ion),

geome try <E.x tens , square >,

d i tens i on(Extens, i dth, Ud, Udun i ts ),

convert(Ud,Udunits.Mea_Hd^ Units),

Ne«_flrea is CRrea + <Ne«_l4d * New_J4d>),

set_neg_jarea2(Face, lExtens|L ),Ne*_fr-ea,Uni ts),

!

set_neg-jarea2(Face,L, Area, Units) :-

face (Extens , Face )

,

not(aenber(Extens,L)),
is_xK Ex tens, connect ion),

geometry(Extens, c i re I e ),

diatension(Extens,rodius,Rd,Rduni ts),

convert(Rd,Rduni ts,Ne»_Rd,Uni ts),

Pi is 3.14159,

Nea_Areo is (Area + (Pi * Nea_Rd + Nea_Rd)),

set_nec>xirea2(Face, (Extens | L J , Ne»_Area, Un i ts ),

!

set_neg_area2(Face,L, Area, Units) :-

face(Extens, Face ),

noUeeeber(Extens, L ) ),

is_a<Ex tens, opening),

geoaatry(Extens , rectang I e )

,

d i sens i on(Extens, he
i
ght, Ht, Htun i ts ),

d i »ens i on(Extens, • i dth, Ud, Udun i ts ),

convert(Ht, Htun i ts, Nea_Ht, Un i ts ),

conuertOld, Udun i ts, Ne«_Ud, Un i ts ),

hea_Area is (Area + (Mea_Ht * Mee_Ud>>,

set_neg_xireci2(Face, (Extens|Ll,Ne«-Area,Uni ts),

!
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set_r*g-areo2<Face,L,ftrea,Uhits> :-

facet Ex tens, Face),

not(ne*ber(Extens,L)),

i s_a < Ex tens , opening),

geometry(Extens, square ),

d i mens i ont Ex tens , he i ght, Ht , Htun i ts ),

convert(Ht,Htuni ts,Nem_Ht,Uni ts),

Nem_Area is (Area + (Nem_Ht * Nem_Ht)),

set_neg_jarea2<Face, [Extens I L 1 , Nem_Area, Un i ts ),

!

se t_neg_-area2(Face, L,Area, Units) :-

face(Extens , Face ),

not(memDer(Extens,L)),

i s_ja <Extens , open i ng )
,

geometry(Extens, square ),

d i sens i on(Extens, i dth, Ud, Udun i ts ),

convert(Hd, Wdun i ts, he«_Md, Un i ts ),

Nem_Area is (Area + <Ne«_Ud * NemJJd)),

set_neg_jorea2(Face, (Extens|L),rtem_Area,Units),

!

set_neg_jarea2(Foce,L, Area, Units) :-

face(Extens, Face ),

not(member(Extens,D),
1 s_a( Ex tens, opening),

geometry(Extens, c i re I e ),

d i mens i on(Extens, rod i us, Rd, Rduni ts ),

convert<Rd,Rdunl ts,Me«_Rd,Uni ts),

Pi is 3.14159,

Nem_Area is (Area + <Pi * Nem_Rd * Mem_Rd)),

sat-neg.jarea2(Face, [Extans|L],Nem_Ar«a,Units), i

set_negjarea2(Face,L, Area, Units) :-

assertz(get_neg_jarea(Foce, Area, Un i ts ) )

.

get_area(Ex tens, Area, Units) :-

par t-jo f (Extens , Face )

,

d i mens i on(Extens, he i ght, Ht, Htun i ts ),

d imens i on(Extens, m i dth, Ud, Udun i ts ),

get_neg_area(Face, Meg_Area, Un I ts ),

convert(Ht, Htun i ts, Hem_Ht, Un i ts ),

convert(Hd,Uduni ts,Nem_Wd,Uni ts),

Area is ((Ne*_Ht * Nem_Ud) - Nog-Area), I.

get_area(Extens, Area, Units) :-

part_of (Extens, Face),

d i mens i on(Face, he
i
ght, Ht, Htun i ts ),

d i mens i on(Face, m i dth, Ud, Udun i ts ),

get-neg-jarea(Face,Neg_Area,Uni ts),

convert(Ht,Htuni ts,Nem_JU,Uni ts),

conuer t(Ud, Udun its,Hem_Ud, Units),

Area is ((Mem_Ht * Nem_Ud) - Meg_Area), !.
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get-joreaCExtens, Area, Units) :-

par t_jO f <Extens , Face )

,

diaensiomFace, height ,Ht .Htuni ts >,

d i mens ionCEx tens, « i dth, Ud, Wdun i ts),

get-nag-jorea(Foce, Neg_Rrea, Un i ts )

.

converUHt, Htuni ts,He«_m,Uni ts),

corwert<Ud,Uduni ts,Ne»_Ud,Uni ts),

Rrea is <<Me«_Ht * Ne*_Hd) - Meg_ftrea), »

.

get_area<Extens, Area, Units) :-

pari-ai

<

Extens , Foes )

,

diaens ion<Extens, height, Ht, Htuni ts),

d i mens i on<Face, i dth, Ud, Udun i ts ),

get_neg_area<Face, Neg_ftrea, Un i ts ),

converUHt, Htuni ts,Ne»_Ht,Uni ts),

convert<Md,Mduni ts,Me*_Md,Uni ts),

Area is <<He»_Ht * Ne«_Ud) - Neg^Area), !

.

materia I s_report :-

assertz<»atjcost(0 ) ),

nl,nl,nl,»rite<' Ham Materials Report' ),nl,nl,

riteC I ten Cost Units Required' ),nl,nl.

Material.! isUMateriai ,Nu»_Juni ts, I te«_jCost),

NevjCost is f loor(lteaJCost),

pr i nt_*at_report<hater i a I , NuaJUh i ts, NevJCost ),

update_*at.jeost<he«jCost), fai I

.

Mterials-report :-

*at_cost( Total ),nl,nl,

m-\ te<
' *+*+*+**+**+***+** * * ***++*+*+*++++-* •

) n |

erite<'* *' )^nl'

writeC Total material cost is $'),

•ri te(Total ),nl,

•rite<** *'),nl,

mriteC

'

++***+**+***** ************** * ******' ),nl,nl nl,

fail.

updatejMt^cost(lteaJDost) :-

retract(*at^cost(Total )),

Hev-Total is (Total + Ite^Xost),
assertz<Mt^cost(Ne*-Total )), I

.

80



print_eat_i~eport<Material,Mu»_lJhits,Tot_Cost) :-

mri te(Material ),

na»e<Material,L1>,

length<L1,N1),

tab<1? - Ml),

r i te<
" %

' ), er i te<Tot_Cost ),

na»e<Tot_JCost,L2),

length<L2,N2>,

tab<15 - M2),

•rite<Nu*JUnits),nl,nl, ! .

report-subst :-

nl,nl,nl,

erite<' Start Roe Materials Report <w/ substitute)'),
nl,nl,nl,fai I

.

report_subst :-

subst i tuteCExtens, Subst_Mat ),

replace_jdata<Extens,Subst_nat),

not<ra»_eater i a I s-needed ),

not<»ater i a I s-report ),

restore_data, fai I

.

replace_Jata(Extens,Subst_Mat) :-

retract<»at_cost<_)),

retract(*ater ial_l ist<_,_,_)), fai I

.

replace-data(Extens,Subst_Mat) :-

retract<subst i tute<Extens, Subst_Mat ) ),

retracitproperty (Extens, eater i a I -type, Materia I )),

•riteC* *">
/ r\\'/

rite<' ' ),»ri te(Extens),eri teC : substitute '

),

rite(Subst-i1at),erite<' for * ),eri te<Material ),nl,

•riter* *">,nl,

eri te<
' **** * **** * * * * * ******** *************** * ** * * *** ********** '

) nl nl

assertz (property(Extens, Kiter i a I -type, Subst-Mat ) ),

assertz<teap<Ex tens, Material-type, Material )), !

.

restore^data :-

retroct(teap(Extens,Miterial-type,Material )),

retrac t(property(Extens , mitar i a I -type , _ ) )

,

assertz<property<Extens, eater ial_type, Material )), !

.
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/+ Standards Fl le +/

minimum<door,door1,midth,32, inches).

• iniiHJ«(door,door1,height,6,feet)

max i mum(door, door 1 , m i dth, A, feet )

.

tax i mum(door, door 1 , he i ght, ?, feet )

.

»inimum(door,_,depth,2, inches).

»aximu»(door ,_,depth,3, inches).

mini mum ( pane , _, qua I i ty , 3 )

.

commmnt<mosonry, 'approved methods must be used for building masonry walls

when outside air temperature drops below 40 degrees farenheit').

commont_for<cover , br i ck, masonry )

.

CQ«acnt-for(couer,concrete-block J
>osonrg).

comment_for(sub-jcouer , br i ck , masonry )

.

comj^nt..for<sub.rover, concrete-block, masonry).

comment < framing, 'grade marks must be clearly visible on all framing

members for inspection').

comment_for( frame, wood, framing)

check_for<sub_jcover, tar.paper , I tar_paper 1 , tar_paper2,

1

or-paper3 ) )

.
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/* Assembly Fi le */

/* start mith information on face normals +/

assemble(H,house) :-

assertz(operation(comment, 'normal for each face I isted', _,_)),
assertz(operat i on( ' FRCE ' , ' X

'

,
'

V
'

,
'

Z
' ) ),

assertz(operation(* '

,
' '

,
'

'

,
'

' )),

is-a(Foce, face),

normal_X(Face,X),

norma l_V(Face,V),

normal_2(Foce,Z),

assertzfopmrat i on(Face, X, V, Z ) )

.

/* start mith frame */

assembled, house) :-

assertz(operation(comment, 'erect foundation and frame" ,_,_)).

{* do foundation frame */

assembled, house) :-

is^a(Yface, face),

trans_partof(Yface,H),

normal_Z(Yface, 1),

conta i ns<Vface, L),

member (Frame , L)

,

is_ja(Frame, frame),

proper ty(Frame, mater i a I -type, Mtype ),

assertz<operation(Frame, assemble, 'material type: ', Mtype)).

/* do frame perpendicular to ground */

assemble(H,house) :-

is_a<Vface, face),

trans_partof <Vface,H ),

normal_Y(Yface,0),

normal_Z<Vface,0),

conta ins<Yface, L),
member (Frame, L),
is_jQ<Frame, frame),

property (Frame, mater i a I -type, Mtype ),

assertz<operation<Frame, assemble, 'material type: ', Mtype)).

assemble(H,house) :-

is_a(Vface, face),

trans_partof(Yface,H>,

normal_X(Yface,0),

normal_Z(Yface,0),
conta i nsCVface, L),
member(Frame, L),

i s_a( Frame, frame),

property(Frame, mater i a I -type, Mtype ),

assertz(operation(Frame, assemble, 'material type: ', Mtype)).
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/* cei I ing frame */

asse*ble(H,house) :-

is_ja(Yface, face),

trans_partaf(Yface,H),

noma I _Z(Yface, - 1 ),

conta i ns<Yface, L),

eeeber(Fra»e,L),

isja<Frame, fraee),

property(.Frame, eater i a I -type, Mtype ),

assertz (operat ion(Fraee, asseeb I
e, "Material type: ', Mtype)).

/* roof fraae */

asseeble(H,house) :-

i s_a(Roof , roof ),

trans_partof(Roof , H ),

i s_jq(Yface, face ),

trans_partof <Yface, Roof ),

conta ins(Yface,L),

member(Fraee, L >,

i s_a(FraMe, froee ),

property<Fra»e, eater i a I -type, Mtype ),

assertz(operation(FraMe,asseMble, 'Material type: ', Mtype)).

/* now put doors in place */

asseeble<H,house) :-

assertz(operation<cowMnt, 'put door fraeing in place', _,_)).

asseeble<H,house) :-

I s_a(Door , door ),

trans_partof(Ooor , H ),

property<Door , eater i a I -type, Mtype ),

assertz (operati on(Ooor, assemble, ' Material type: ', Mtype)),

get_faces(Door , Face 1 , Face2 >,

assertz<operation<", '- attach to: ',Face1,Face2)),

pari-oi (Door, Face3 ),

assertz (opera ti on
('

', '- location', 'relative to',Face3)),

coord i nates_X( I oca
I

, Door , X, Un i ts_X ),

coord i nates_Y( I oca
I
, Door , Y, Un i ts_Y ),

coord i nates_2( I oca
I
, Door, Z, Uh i ts_2 ),

assertz (opera ti on
('

',
' X coordinate' ,X,Uni ts_X)),

assertz(operation(", ' Y coord inate',Y,Un its-Y)),
assertz(aperat i on< '",

' Z coordinate' ,Z,Uni ts_Z)).

/* put eindoa sills in place */

asseable(H,house) :-

assertz(operation(coeeent, 'put eindoe freeing in place',-,-)).
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asseable<H,house) :-

is_a(U, window),

trons_partof<W,H),

contains(U,L),

e«ber<Sill,L),
is_ja(Sill,sill),

asser tz < opera tion< Si 1 1 .assemble, 'window si 1 1 for: ',W)),

get_faces<U, Face 1 , Face2 ),

osser tz<opera t i on< *', '- attach to: ,Face1,Foce2)),
part^of<U,Face3),

asser tz<operat i on< ", '- location' /relative to',Face3)),

coord i nates_X( I oca I , U, X, Un i ts_X ),

coord inates_V< local ,W, Y,Uni ts_Y),

coord inates_Z< local ,U,Z,Uni ts_Z),

assertz<operation<",' X coordinate", X,Units_X)),

asser tz<operat i on< ", ' V coord inate',Y,Units_Y)),

assertz<operation<
, *,

' Z coordinate' ,Z,Uni ts_Z)).

/* put up exterior siding */

asseable<H,house) :-

ossertz<operotion<co—en t, 'put up exterior siding', _,_)).

asseable<H,house) :-

i s^a<E , exter i or )

,

trans_partof<E,H),

contains<E,L),

asseable<L, face)

/* put up roof */

nggawto I a<H, house ) :.-

assertz<operotion< co—cn t, 'put up roof ',_,_)).

assert I e<H, house) :-

is_a<R,roof ),

trans_partof<R,H),

contains<R,L),

assembled., face).

/* put up faces for each roo» */

assewble(H,house) :-

osser tz(operation<co—cn t, 'put up faces for each roo*', _,_)).

asseable<H,house) :-

is_a(R,roow),

trans_partof<R,H),

contains<R,L),

assembled., face).

/* put up windows */

asse*ble(H,house) :-

assertz(operation<coMent, 'put windows in place',-,-)).
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assemb I e(H, house) :-

is_a(W, window),

trans_partof<U,H),

contains(U,L),

member(P,L),

is_ja<P,pane),

member <C,L),

is_ja(C,case),

assertz(operation (14, 'complete using ,P,C)>.

/* take cars of finish on windows and doors */

assemb I e(H, house) :-

cresertz(operation(comment/ put finish on windows and doors' ,_,_)).

assembled^, house) :-

finish.

/* take care of door knobs and hinges */

assembled^ house) :-

assertzCoperation(comment/put on door knobs and hinges' ,_,_)).

assemb I e(H, house) :-

is_a(D,door),

trans_partof<D,H),

assemb I e <

D

, door )

.

/* take care of paint on faces */

assemb ie<H, house) :-

asser tz (opera t i on(comment/ put final paint on faces' ,_,_)).

assemb I e<H, house) :-

is.jj<R,roof ),

trans_partof<R,H),

contains(R,L),

paint_face(L).

assemb I e<H, house) :-

is-xKE, exterior),

trans_partof(E,H),

contains<E,L),
paint_face(L).

assemb I e(H, house) :-

is_a<R,roo»),

trans_partof(R,H),

contains<R,L),

paint_face(L).
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/* routines to put up subjcovers and covers for a given */
/* list of faces supplied as first argument; these routines */
/* look for co—on eater ials to help set priority; all */
/* subjcovers are handled prior to cowers; */

/* covers which are paint are left to be perfor»ed at a */
/* later tiee; all sub^couers and covers */

P associated »ith the floor are performed last +/

assembled, face) :-

assembleKL, M,face).

assembled, face; :-

member(Face, L),
norma I _Z(Face, 1 ),

assertz(operatlon(comment, 'bui Id floor as last step' ,_,_)),
contains(Face, LI ),

asseeble2( IL1 J, IL1 J, face).

asseeble1(L,L1,face> :-

member (Face ,L ),

not(noreal_Z(Face, 1)),

delete(Face,L,L2>,

conta i ns (Face , L3 >,

asseebleKL2, [L3|LU, face), !

.

assembleId deface) :-

assemble2d J,L1, face), !

.

asseeble2(Fulld,L,face) :-

member (Faced),
delete(Face,L,L1),

member ( I tea, Face ),

is_a< I tee, sub-cover),

proper ty< I tee, mater ial_type,Mtype),

operat i on<Y, _, _, ntype ),

eeeber(Face 1 , Fu 1 1 _L ),

member(Y, Face 1>,

assertz(operation( I tem,assemble, 'material type: ' .fltype)),

de I ete( I tee, Face, Face2 ),

asseeble2(Ful Id, [Face2|L1 1, face), !

.

assemble2(Fulld,L,face> :-

eeeber(Face, L),
delete(Face,L,L1),

member < I tee, Face),

isjj( I tem,sub-couer),

proper ty< I tee, eater ial_type,Htype),
assertz(operat i on( I tee, asgemb I e, ' eater i a I type :

' , Mtype ) ),

delete( I tee, Face, Face 1 ),

asseeb I e2(Fu 1 1d , [Face 1 1 LU , face ), !

.
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asseeble2<Full_L,L,face) :-

eneber(Fact,L )

,

delete<Face,L,L1),

memberi I tee, Face ),

i s.jo< I tern, cower),

property< I tea , mater i a I -type , Mtype )

,

not( I i qu i d<Htype, pa int, -,_,-, -,-)),
operat i on<V, _, _, Htype ),

»*e«ber (Facel ,Ful l_L >,

Mrixr^Factl),
assertz<operation< I tee, assemble, 'Materia I type: ".Mtype)),

deleted I tee, Face, Face2),

asseeble2<Ful l_L, IFace2|L1 ), face), !

.

asseeble2<Full_L,L,face) :-

eeeber (Face , L)

,

delete<Face,L,L1),

eeeber ( I tee, Face ),

i s-a< I tee, cover ),

property (. I tee , eater i a I _type , Mtype )

,

not<l iquid<tttype, pa int, _,_,_, -,_)),
asser tz <operati on<i tee, asseeble, 'eater ial type: ', Mtype)),

de I ete( I tee, Face, Face 1 ),

asseeble2<Ful l_L, IFacel |L1 1, face), !

.

asseeb I e2<Fu 1 1 _L , L , face )

.

/* take care of finishes */

finish :-

property<F, f i n i sh_type, Ftype ),

property<F, f i n i sh-jco I or , Fco I or ),

assertz<operat i on<F , f i n i sh, F type, Fco I or ) )

.

/* asseeble door knob */

asseeb I e(0, door) :-

property(D, knob-type, Ktype ),

assertz(operation(D, asseeble, knob,Ktype)).

f* assemble door hinges */

asseeb I e<D, door) :-

property<D, h i nge-type, Htype ),

asser tz<operat i on(D, asseeb I e, h i nge, Htype ))

.
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/* routines to apply paint to faces; acts on covers only */
paint_face(L) :-

mcMbor <Face,L >,

noraa I _Z (Face ,
-

1 )

,

conta i ns(Face, L 1 ),

mambariCanMrfL 1 >f

i s-a <Cover , cover >

,

proper ty <Cover

,

mater i a I -type , Mtype )

,

I iquid(Mtype,paint,_,_,_,_,_),
assertz(operation(Cover,paint, 'material type: ' .Mtype)),

delete(Face,L,L2),

paint_face(L2), !

.

paint-face(L) :-

eaber<Face,L>,
norma I _V(Face, ),

nor«a I _Z(Face, ),

conta i ns(Face, L 1 ),

eaber(Cover, L 1 >,

i s^a <Cover , cover )

,

property(Cover , »ater i a I -type, Mtype ),

I iquid(Mtype, paint, _,_,_,_,_),
asser-tz( operation (Cover, paint, material type: ', Mtype)),
delete(Face,L,L2),

point_foce(L2), !.

paint-foce(L) :-

eeeber (Face , L)

,

norma I _X (Face , ) ,

norma I _2 (Face
,

)
,

conta i ns(Face, L 1 >,

•eebeKCover , L 1 ),

i s^a (Cover , cover >

,

property(Cover

,

mater i a I -type, Mtype ),

I iquid(Mtype,paint, _,_,_,_,_),
assertz(operation(Cover, paint, 'material type: ', Mtype)),

delete(Face,L,L2),

paint_face(L2), !.

paint-face(L) :-

eaber(Face, L),
norma I _Z(Face, - 1 ),

conta I ns(Face, L 1 ),

member(Cover , L 1 ),

i s_a (Cover, cover ),

property(Cover

,

mater i a I -type , Mtype )

,

I iquid(f1type,paint,_,_,_,_,_),

assertz(operation(Cover, paint, 'Material type: ', Mtype)),

delete(Foce,L,L2),
paint_face(L2), I.
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paint_foce<L) :-

member<Face, L),

conta i ns<Face, L 1 ),

anaher(Cover,L1 >,

i s-jQ <Cover , cover )

,

property <Cover , aater i a I -type , Mtype

)

,

1 iquid<Mtype, paint, _,_,_,_,_),
assertz<operation<Couer, paint, 'aaterial type: ",Mtype)),

delete<Foce,L,L2>,

paint_face<L2), \ .

paint—faced. ).

/* routine to get the two faces which an i tea is associated with */

get_faces(i tea, Face 1,Face2> :-

face i\ tea , Face 1

)

,

face< I tea,Foce2>,

not(Foce1 = Foce2), !.

90



f* hater lals File */

/* Materials for doors +/

raw-waterials-needed :-

isua (Extens , door ),

water ia KExtens, _,_,_,_,_,_,_,_,_,_,_, Cost),
odd_»aterial(Extens, 1,Cost), fai I

.

raw_jMterials_needed :-

i s_ac Ex tens, door ),

property <Ex tens, f i n i sh_type, Pa i nt ),

I iquid(Paint,_,RreajCou,flreaJLInits,_,_,Cost),

d i mtis i on(Extens, he i ght , Org_Ht, HtJUn i ts ),

d i wens i on<Extens , i dth, Org_Ud, UdJUn i ts ),

d i wens i on(Extens, depth, OrgJDp, DpJUn i ts ),

conwert<Org_Ht,HtJUni ts,New_Ht,fireaJUni ts),

cx>r>wert<Org_Hd,MdJUni ts,New_Wd,flreaJUni ts),

conuort(Orq_Dp,DpJLIni ts , N««_Dp , ft-«aJLIn i ts),

Rrea is ((2 * New_Ht * Mew_Hd) + (2 * Hew_Ht * Mew_Dp)
<2 * New_Ud * New_Dp)),

NuwJUnits is (Area / firecuCov),

TotJCost is (NuwJUnits * Cost),

add_aater ial (Paint, NuwJUni ts,TotJCost), fai I

.

f* waterials for windows */

raw_»aterials_needed :-

i s_a < Ex tens , • i ndow ),

water ia I (Extens, _, _, _, _, _, _, _, _, _, _, _, Cos t ),

oddJwateriaKExtens, 1, Cost), fai I

.

raw_waterials_needed :-

i s_a<U i ndow, w i ndow ),

part-of(Extens, U i ndow ),

is-ja(Extens,si 1 1 ),

property(Extens, f i n i sh-type, Pa i nt ),

I iquid(Paint,_,flrecuCov,flreaJJni ts,_,_,Cost),

conwert(f¥^aJCow,flreaJUhi ts,Newjftrea, feet),

New_Area2 is ((New-Area * New_Rrea) / fireaJCov),

d i wens i on(H indow, height, Org_Ht,HtJUni ts),

d i wens i on(U i ndow, • i dth, Org_Ud, UdJUh i ts ),

par t_of (Window, Face),

di wens ion(Face, depth, OrgJDp, DpJUn i ts),

convert(Org_Ht,HtJUni ts,Mew_Ht,fireaJUni ts),

convert(0rg_Ud, UdJUn i ts, Nww_Ud, flreaJJn i ts ),

convert(Org_Dp, DpJUn i ts. Mew_Dp, fireaJUn i ts ),

Area is ((2 * NwwJU * Nww-Dp) + (2 * New-Ud * Nww_Op)),

NuwJUnits is (Rrea / AreajCov),

TotJCost is (NuwJUnits * Cost),

add_waterial(Paint,MuwJUnits, TotJCost), fai I

.
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f* Materials for fraaes; assuaes 1 square foot of area */

f* requires a 1 foot length of frame wood */

roB-Baterials-needed :-

i s_a (Extens , froae )

,

d i aens i on<Extens, he i ght, He i ght , HtJUn i ts ),

d i mens i on<Extens, • i dth, U i dth, UdJUn i ts ),

convert<Height,HtJUni ts,HeB_Height, feet),

cower t <Ui dth, UdJUnits,Ne«_Wi dth, feet),

property<Extens,aaterial_type, Material ),

mater i aKMater i a I , wood, Ht , Htun i ts, Wd, Wdun i ts, Dp, Dpun i ts, _, _, _, _, Cost),

I ongest-jd iMns i on<Ht, Htun i ts, Wd, Wdun i ts, Dp, Dpun i ts, Len, Lenun i ts ),

conuer t (Len , Lenun i ts , NeaJLen , fas t )

,

firea is <Mea_Height * Mea_Width),

NuaJUnits is <Rrea / NeaJLen),

TotJCost is (NuaJUnits * Cost),

odd-JMter i a I (Mater i a I , NuBJUn i ts, TotJCost ), fa i I

.

rou-Aaterials-needed :-

is_a<Extens, froae),

not<d i Bens i on<Extens, m i dth, _,_) ),

not<d i mens i on<Extens, he i ght, _,_) ),

proper ty<Extens, Material -type,Materia I ),

»ater i a I (Mater i a I , wood, Ht, Htun i ts, Wd, Udun i ts, Dp, Dpun i ts, _, _, _,_, Cost ),

get_area<Extens , Area , Un i ts )

,

convert (Rrea, Uni ts,New_flrea, feet),

Ne«_flrea2 is ((Nea_Rrea * Nee_Rrea) / Rrea),

I ongest-d i Bens i on<Ht, Htun i ts, Wd, Hdun i ts, Dp, Dpun i ts, Len, Lenun i ts ),

conuer t (Len . Lenun i ts, NeaJLen, feet ),

NuBJUhits is (firea / MeaJ-en),

TotJCost is (NuaJUnits * Cost),

add-Bateria I (Material ,NuaJUni ts,TotJCost), fai I

.

92



ram_materials_needed :-

norma I _Z(Facm, -

\

),

part_of(Extens, Face ),

is-ja(Extens, frame ),

property"; Ex tens, mater ial_type,ttater ial ),

fcateriaKMateria! ,»ood,Ht .Htuni ts ,Ud,Uduni ts, Op, Dpuni ts, _,_,_, _,Cost),

lonoest_cli»ension<Ht,Htuni ts.Hd. Wduni ts, Dp, Dpuni ts.Len.Lenuni ts>,

convert(Len, Lenun i ts, Ne«J_en , feet ),

is.ja(Roof,roof ),

part_o f<Face2 , Roo f )

,

is^a(Face2, face),

par

t

-oi(Extens2, Face2 ),

is_a(Extens2, frame),

norma I _Z(Face2, CosZ ),

d i mens i on(Extens2, he
i
ght, Ht_face, Ht_face_un I ts ),

convert(Ht_face,Ht_face-Juni ts,Nem_Ht_face, feet),

d i mens i on ( Ex tens2 , m i d th , Wd_face, Wd_face_uni ts ),

conuert(Ud_face, lid—face_un i ts, Nem_Ud_face, fmet ),

SinZ is <sqrt<1 - <CosZ * CosZ))),

Rrea is (SinZ * Nem_Ht_face * Ne»_Ud_face),

Rrea2 is (SinZ * Nem_Ht_face * CosZ * Hem_Ht_face * 2),

Tot_flrea is Rrea + Rrea2,

MumJUnits is (Tot_Rrea / Mem_Len),

TotJCost is (NumJUnits * Cost),

add_mater ial (Mater ial ,NumJUhi ts, Tot_Cost), fai I

.
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raeuaaterials-needed :-

norma I _Z(Foce, - 1 ),

part_jof(Extens, Face ),

i sua(Extens , frase )

,

property<Extens, eater ial_type,Material ),

eater ia I (Material ,eood,Ht,Htuni ts,Ud,Wduni ts,Op,Dpuni ts, _,_,_,_, Cost),

longest^d i eens ion(Ht, Htuni ts,Ud,Uduni ts. Dp, Dpuni ts,Len,Lenuni ts),

conuert(Len, Lenun i ts, Nee_Len, feet ),

is_a(Roof,roof ),

part_of(Foce2, Roof),

is_ja(Face2, face),

part^of(Extans2, Face2 ),

i s_a(Extens2, froee),

norma I _2(Face2, CosZ ),

noUdieension(Extens2, height, -,-)),
d i mens i on(Foce2, he i ght , Ht_face, Ht_faceuun i ts ),

conwert<Ht_face,Ht_face_juni ts,Mee_Ht_face, feet),

d i eens i on(Face2, i dth, Ud_face, Ud_faee_un i ts ),

convert(Ud_foce,Ud-facejuni ts,Mee_Md_foce, feet),

SinZ is (sqrtd - <Cos2 * Cos2))),

Area is (SinZ * Mee_Ht_face * Nee_Wd_face ),

Area2 is (SinZ * Nee_Ht_face * CosZ * Nee_Ud_face),

Tot_Area is Area + ftrea2,

NumJUmts is (Tot-Area / Ne*J_en),

Tot_Cost is (NueJUnits * Cost),

aott_eaterial(Material,Nu*JJnits,Tot_jCost),fai I

.

/* frame eaterial of type "filler" */

roe-*aterials_needed :-

i s_a (Extens ,

f

rame )

,

property<Extens, eater ial-type, Material ),

f i 1 1 er<ttater i a I , _, Uo I , Uo I un i ts, _, _, Cost ),

oet^areaCExtens, Area, Uni ts),

conwert<Uo I ,Uo I un i ts, Nee_Uo I , Un i ts ),

Mee_Uol2 is ((Nee_Uol * Mee_Uol * Mee_Uol )/(Uol * Vol)),

dieension(Extens,aepth,Dp, Dpuni ts),

converUDp, Dpuni ts,Mev_Dp,Uni ts),

NueJUnits is (Area * MeeJDp / Nee_Uol2),

TotJCost is (NueJUnits * Cost),

add-jwUr ial (Material ,NueJUni ts,TotJCost ), fai I

.
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ro»_eaterials_needed :-

i s_a(Ex tens , sub-jcover ),

d

i

mens i on(Extens, depth, Th, Thun i Is ),

property(Ex tens, material -type, Materia I ),

eater i a I (Hater i a I , _, Ht, Htun i Is, Ud, Mdun i ts. Dp, Dpun i ts, _, _, _, _, Cost ),

»atch(Ht,Htuni ts,Ud,Uduni ts,Dp,Dpuni ts,Th,Thuni ts,Act_Ht,Uni tsl,

Act_Md,Units2),

get^area <Extens , Area , Un i ts )
,

convert(Act_Ht, Un i ts 1 , Act_Ht2, Uh i ts ),

conuerUActJJd, Un i ts2, ActJJd2, Uh i ts ),

HueJUnits is (Area / <flct_Ht2 * Act_Wd2)>,
ToLXost is (HueJUnits * Cost),

odd_»ater ial (Hater iol ,Hue_Uni ts,Tot_Cost ), fai I

.

ra*_eaterials-needed :-

i s-Q(Extens , subucouer )

,

not<d i aens i on(Ex tens, depth, Th, Thun i ts ) ),

proper ty(Extens, materia I -type, hater ial ),

eater i a I (Hater i a I , _, Ht, Htun i ts, Md, Mdun I ts, Dp, Dpun I ts, _, _, _, _, Cost ),

get_jarea(Extens, Area, Un i ts ),

convert(Ht, Htun i ts,Hee_Ht,Uni ts),

conver t(Ud,Udunits,He»_Ud, Units),

HueJUnits is (Area / (HeeJHt * Hee_Md)),

TotJCost is (HueJUnits * Cost),

cidd-JMterial (Hater ial ,Hu*JUni ts, Tot-Cost), fai I

.

roe-eater I als-needed :-

i c—o(Extons, cub—couer ),

proper ty(Ex tens, eater i a I -type, Pa i nt ),

I iquid(Paint,_,AreaJDou, Area-Units, _,-,Cost),

get_jarea(Extens, Area, Uni ts ),

converUAreajCov, AreaJUn i ts, Hee_Area, Un i ts ),

ttemJ*i>a2 is ((Hee_Area * Hee_Area) / ArecuCov),

HueJUnits is (Area / Hee_Area2),

Tot-Cost is (HueJUnits * Cost),

odd_eater i a I (Pa i nt, HueJUn i ts, TotJCost ), fa i I

.

roe-eater ials-needed :-

i sua (Extens , cover ),

d i mens i on(Extens, depth, Th, Thun i ts ),

property(Extens, eater ial -type, Hater ial ),

eater i a I (Hater i a I ,_, Ht, Htun i ts, Ud, Udun i ts, Dp, Dpuni ts, _,_,-,-, Cost ),

eatch(Ht,Htuni ts,Wd,Wduni ts,Dp,Dpuni ts,Th,Thunl ts, Act_Ht,Uni tsl,

Act_Ud,Units2),

get_area(Extens, Area, Un i ts ),

conuert(Act_Ht, inches, Act_Ht2,Uni ts),

convert(Act_Wd, i nches, Act_Wd2, Units),

HueJUnits is (Area / (Act-iU2 * Act_Ud2)),

TotJCost is (HueJUnits * Cost),

addJeoter ial (Hater ial ,HueJUni ts, TotJCost), fai I

.
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ro*_aaterials_needed :-

i sjKExtens, cover ),

not <d i eens i on<Extens, depth, Th, Than i ts ) ),

property(Extens,Nterial_type, Materia I ),

later i a I <Hater i a I , _, Ht, Htun i ts, Wd, Wdun i is, Dp, Dpun i is, _, _, _, _, Cost ),

get-area<Extens , Rrea , Un i ts )

,

convert<Ht,HU™ ts,lte«-Ht,Uhi ts),

convert<Ud, Udun i ts , Nee_Wd, Un i ts ),

NunUJnits is <ftrea / <Nee_Ht * New_Wd>>,

TotJCost is (NueJUnits * Cost),

odd-jwter i a Kflater i a I , MuaJUn i ts, TotJCost ), fa i I

.

raw-iMterials-needed :-

i s_a<Extens, cower ),

property<Extens, eater i a I -type, Pa i nt ),

I iquid(Paint,_,flreciJCov,flreaJLInits,_,_,Cost),

get_area<Extens, Area, Un i ts ),

convert<f¥*ea_jCou,fireaJJni ts,Ne»_flrea,Uni ts),

New_flrea2 is <<New_flrea * Ne*_flrea) / flreaJCov),

NueJUnits is (Rrea / Ne«JRrea2),

TotJCost is <Mu»JUnits * Cost),

add-eater i a l<Paint,Nu»JUnits, TotJCost), fail .

odd .Material (Material ,NuaJUni ts, Tot-Cost) :-

re tracKBaterial-listChaterial^Old-rtaULInits. Old-Cost >>,

Nee_NueJUnits is (Old-NuaJUhits + NueJUnits),

NewjCost is (OldJCost TotJCost),

assertzCeater ial_l isUMater ial ,Ne»_Nu*JUni ts,He»JCost)), !

.

c>ckLjrateriaKh\aterial,Nu^JJnits,TotJCost) :-

assertz<»aterial-l ist<riater ial, MutJUnits, TotJCost)), !

.

^iiiiiHinimii i i» iiiiiii»iiiiiii i >i 1 1^»»»* iti»»i»»»»i» i»»»» <i»»+»»+fr»+jMY

/* Material data */

material (shingle 12, shingle, 12, inches, 6, inches,0.25, inches,0, feet,0, feet, 1 .23).

eater i a I < tar_paper2, tar_paper , 72, i nches, 240, i nches, . 25, i nches, 0, feet, 0,

feet, 125.00).

Material (tar-paper1,tar_paper,?2, inches, 240, inches, 0.25, i nches, 0, feet, 0,
feet, 150.00).

Material (tar_paper3, tar_paper, 72, inches, 240, inches, 0.25, i nches, 0, feet, 0,
feet, 110.00).

•ater i a Ksheath-papor24, sheath-paper, 12, feet, 100, feet, 0. 1, inches,

0, feet, 0, feet, 75. 63).

Mater ial <Mood8, wood, 144, inches, 4, inches, 2, i nches, 0, feet,0, feet, 8. 25).
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•ateriaKi>3n±jBoodQ,hard_»ood,4, inches ,24 , feet ,0 5, inches,

0,feet,0, feet, 12.00).

Mterial(hc^dbocrd32,hardbocird,36, feet, 10, feet, 1, inches,0, feet,0, feet, 136.55).

eater i a Khardboard78, hardboard, 36, feet, 24, feat,

1

, i nches,0, feet, 0, feet, 289. 00).

eater ial <lxrdbocrd34,hcrdboard,24, feet, 10, feet, 1, inches,0, feet,0, feet, 95. 33).

f* use brick 10x4x6 effective size */

eater i a Kbrick88, brick, 10, inches, 4, inches, 6, inches,

0, feet, 0, feet, 1.15).

I iquid<paint9, paint, 900, feet, 1,gal Ion, 8. 00).

I iquid(paint21, paint, 700, feet, 1,gal Ion, 13.55).

Iiquid<paint1?,paint, 1100, feet, 1, gal lon,8. 23).

/* 10 lb per 2 cubic feet */

f i 1 1 erCconcretel, concrete, 2, feet, 10, lb, 5. 00).

eater i a Kdoor 1, _,_, _,_,_,_,_,0,feet, 0, feet, 16.00).

eater i a I ( i ndoa 1 ,_,_,_,_,_,_,_, 0, feet, 0, feet, 30 . 50 )

.
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/* House 1 File */

/* house data */

• sua (house 1 , house )

.

property<house 1 , subtype, s i ng I e_rooa )

.

contains<house1, Iroof 1, exterior 1,rooaU).

/* exterior data */

i sua <ex ter i or 1 , ex ter i or )

.

contains<exterior1, I faceS, faced, face?, face8)>.

part.jof<exter i or 1 , house 1 )

.

/* roof data */

i s.jaCroof 1 , roof )

.

containsCroof 1, [face 11, face 121)

part-jof(roof 1, house 1 ).

» >*•• <f••^ | ^"i

is_a<face11, face).

di»ension< face 11, height, 151.5, inches).

di mens i on(facet 1, width, 384, inches).

di»ension(face11,depth,D.3, inches).

contains( face 1 1, [ frxme 1 , sub_cwer2, sub^cover 1, cover U )

norma I _X< face 11,0).

nor»al_Y(face1 1,0.34).

norma I _Z< face 1 1,0.94).

part^of < face 1
1
, roof 1 )

.
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I sunt frome 1

,

1rome )

.

proper ty ( frxme 1

,

mater i a I -type, vood8 )

.

d i »ens i on<fra»e1, height, 139.5, inches),

d i mens i on< frame 1 , » i dth, 382, i nches )

.

d i »ens ion<frcae1, depth, 4, inches).

foce<fra»e1,face11).

part^o f < fra»e
1
, face 1 1 )

.

i s_a<sub_cover2, sub_cover )

.

property<sub_cover2, Bater i a I -type, »ood8 >

.

di »ens ion<sub^cover2, depth, 2, inches).

part_of<sub_cover2, focell).

/* *;

i s_a <subucovtr 1 , subucovtr )

.

property<subjcover1, Bater ial-type, tar_paper2).

d

i

mens I on<sutucover1, depth, 0.23, inches),

par t_jo f <subjcover 1 , foce 1 1 )

.

isjo<cover1, cover).

proper ty<cover 1,»ateri a l_.type, shingle 12).

property(cover 1 , f i n i sh-co I or , brosn )

.

diaertsionCcouer-l, depth, 0.25, inches).

parLjof(cover 1 , face 11 )

.
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i s_xi< face 12, face )

.

di*ension< face 12, height, 151.5, inches).

d i sens i on( face 12, width, 384, inches).

diBension<face12,depth,6.5, inches).

conta i ns< face 12, 1 fra»e2, sub_cover 13, sub-cover 14, cover 12 1 )

.

norma I _X< face 12,0).

norma I _Y< face 12, -0.34).

norM I _Z< fac* 12, . 04 )

.

part_of< face 12, roof 1 )

.

i s-a< frame2, frame )

.

proper ty < frame2, mater i a I -type, voodS )

.

d i mens ion<frome2, height, 139.5, inches),

d i mens ion(frame2,vidth, 382, inches),

d i Bens ion(frame2, depth, 4, inches).

foce< frame2, face 12 )

.

part_of<frame2, face 12).

i s-ja<subucover 13, sub-cover )

.

property(sub^cover 13, Bater i a I -type, vood8 )

.

dimension<sub-jcover13,depth,2, inches).

partuof<sub_cover13, face 12).

/* v
i sucrisubucouer 14, subucover )

.

property<sub^cover 14, Bater i a I -type, tar_paper2 )

.

di Bens ionCsubucover 14, depth, 0.25, inches),

part_of<sub^cover 14, face 12 )

.
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—*/

is_jcKcover 12, cover).

proper ty(cover 12, moter i a I -type, sh i ng I e 12 )

.

property <cover 12 , f i n i sh-co I or , bromn )

.

d i mens ion<cover 12, depth, 0.25, inches).

par 1_jo f (cover 12 , foce 12 )

.

/* raoml */

i s_a<room 1 , room )

.

coord inates_X(product, room 1,0, inches).

coord inates_Y<product, room 1,0, inches).

coord inates_Z(product,roo«1, 12, inches).

con ta ins<room 1, 1 facel, face2, face3, face4, face9, face 10) ).

par t-jo f (.room 1 , house 1 )

.

******

/

/* facel */

i s_a ( face 1 , face )

.

dimensionC facel, height, 115, inches),

d i mens i on< foce 1,midth, 302, inches),

d i mens ion( facel, depth, 1, inches).

contains(facel, [sub_couer3,cover2]).

normal _X(foce 1,0).

normal_V<face1,-1).

norma I _2< face 1,0).

part_of< face 1 , room 1 )

.

i s_a(sub_couer3, sub-jcouer )

.

property(sutxjcover3, mater i a i -type, hardboard32 )

.

dimension<sufaucoumr3#depth, 1, inches),

part-of(sub-jcover3, face 1 )

.

*/
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i s-ja<cover2, cover )

.

property(cover2, Miter

i

a I -type, pa int9 )

.

property<cover2, f inish-jcolor,yel lorn).

part_jof<cover2, face 1 )

.

/* foce2 */

i s_a< face2, face )

.

d mens i onCface2, height, 1 15, inches),

d i mens i on( face2, m i dth, 240, i nches )

.

di mens ion(face2 .depth, 1, inches).

contains(face2, [sub-jcouer4,couer31).

normal_X<face2,-1).

normal_Y<face2,0).

norma I JL ( face2 , )

.

part_of (. face2 , room 1 )

.

/* +/

i s_ja<sub_jcover4 , subuoover )

.

proper ty<sub_eooer4 , mater i a I -type, hardboard34 )

.

di mens ion<subucoumr4, depth, 1, inches).

part^o f <sub_cower4 , face2 )

.

is_a<cover3, cover).

property <cover3, mater i a I -type, pa i ntQ )

.

property<cover3, finish-color, yel lorn).

part_jof<cover3, face2).
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f* foce3 +/

is_a<foce3, face).

di»ension<face3, height, 115, inches).

di*ension(face3,eidth,362, inches),

di mens ion<face3, depth, 1, inches).

contains<face3, lsi±ucover5,cover4)).

norma I _X< face3 , )

.

nor»al_Y<face3, 1).

norma I _2< foce3, )

.

par t-jo f < face3 , roo« 1 )

.

—*,

i s^a<sub_jcover5, sub_cover )

.

property<sub_cover5, eater i a I -type, hardboard32 )

.

dieens ion(sub-cover5, depth, 1, inches).

part_of<sub_cover5, face3).

i sua <cover4 , cover )

.

property<cover4, eater I a I -type, pa Int9 )

.

property<couer4, f inishucolor,tjel loe)

pari-o f <couer4 , face3 )

.

/* foce4 */

i s_jq ( foce4 , face )

.

di eens ion(face4, height, 115, inches),

d i mens ion<foce4, width, 240, inches),

di eens ion(face4, depth, 1, inches).

contains(face4, [sub^covero, cover51 ).

noreal_X<face4, 1).

noreal_Y<face4,0).

nor»al_Z<foce4,0).

part_jof ( face4 , rooe 1 )

.
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f* v
i s_ja<sub_cover6, sub-cover )

.

property <sub.jcovero, mater i a I -type, hardboard34 )

.

d ieensi on <sub.jcovero, depth , 1, inches),

part^of <sub_cover6, faee4).

is_x><cover5, cover).

property<cover5, mater i a I -type, pa i nt9 )

.

property(cover5, f inish_jcolor,yel lov).

part^of<couer5, foce4 )

.

/* face5 */

/* use brick 10x4x6 effective size */

i sua< foce5, face >

.

d i Bens ion(face5, height, 120, inches),

d i mens ion<face5, width, 382, inches),

d i sens ion<face5, depth, 6, inches).

contains(face5, (fraBe3,sub-cover?,cover6)).

nonw I _X< foce5, )

.

nonwl_V< foce5, 1).

norma I _2< face5, )

.

part^of < foce5, exter i or 1 )

.

i sua< fra*e3, frase )

.

proper ty< frane3, water i a I .type, «ood8 )

.

di Berts ion(fro»e3, depth, 4, inches).

face( fra»e3, foce3 )

.

face< frcaw3J face 1 )

.

part^of < fraee3, face5 )

.

•*/
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I sua<sub_cover? , sub-cover ).

propertyCsub-cover?, water i a I -type, shealh_paper24 )

.

part_of<sub_cover?, faceS).

i s-Q <cover© , cover )

.

property<cover6, water ial -type, brick88).

property <coverG , f i n i sh_co I or , red )

.

di sens ion<cover6, depth, 6, inches).

part_of<cover6, face5 )

.

/* faceo */

i s^a< face6 , face )

.

d i wens ion<face6, height, 120, inches),

d i wens ion< faceo, width, 230, inches),

d i wens ion( faceo, depth, 6, inches).

containsCfacefi, I fnmaA , sub_couer8, cover?, w i ndow II).

norwal_X<foceo, 1).

norwa I _V< face6, )

.

norwa I _Z< face©, )

.

par

t

-o f (. face6 , exter i or 1 )

.

/* */

i s_a< fro—4, fraw* )

.

proper ty < frawe4 , water i a I -type , woodS )

.

diMansion(frawe4,depth,4, inches).

face< frawe4, face6 )

.

foce< frawe4, face2 )

.

part^of<frawe4, face©).
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i s_a<sub_jcover8, sub-cover )

.

property<sub.jcover8, mater i a I -type, sheath_paper24 )

.

part^of <sub-jcover8, faceo).

t* */

i sua <cover7 , cover )

.

proper ty<cover?, «ater i a I -type, br i ck88 )

.

property (cover7 , f i n i stuco I or , red )

.

dieension(cover?,depth,6, inches).

part_of<cover?, foce6 )

.

p */

i s_a( m i ndoa 1 , * i ndoa )

.

d i »ens ion<«indo«t, height, 36, inches),

d i sens ion<«i ndoa 1, width, 48, inches),

d i nens i on<ui ndoa 1, depth, 0.5, inches).

contains(«indo«1, [panel, si 1 1 1, case 11).

face<m i ndoa 1 , face2 )

.

face(» i rtdcm 1 , face6 )

.

coordinates-X(local,«indo«1,96, inches).

coordinates_Y(local,«indoa1,0, inches).

coordinates-Z<local,«indoa1,o6, inches),

part_of<a i ndoa 1 , faceo )

.

/* */

i s_a< pane 1 ,
pane )

.

property(panel, qua I ity,4).

part_of(pane 1 ,» i ndoa 1 )

.

/* *,

is_a<silM,sill).

properly(si 1 1 1, finish-type, paint 17).

property<si 1 1 1, f inish-jcolor,ahite).

par t_of(si 1 1 1,vindoa1).
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1+ */

i suoCoose 1 , cose )

.

part_jof (case 1 , m i ndoe 1 )

.

/* face? */

i s_a < face? , face )

.

d i *ens i on < face?, height, 120, inches).

dieension< face?, width, 382, inches).

d i mens i one face?, depth, 6, inches).

con tains (face?, I fra»e5 , si±)_co<^ersi , co<-»er8 , door 1 1

)

norma I _X < face? , )

.

nor»al_V<face?,-1).

norea I _2 ( face? , )

.

par t_jo f i face? , exter i or 1 )

.

/* */

i sjq( frame5, frame )

.

proper ty <frame5,»a ter ia I -type, «ood8)

d i mens i an(frame5, depth, 4, inches).

foce< fra»e5, face? )

.

face< fraee5, foce3 )

.

part_of ( fra»e5, face?).

i s^a<sub^cover9 / subucouer )

.

property<subucover9, mater i a I -type, sheath_paper24 )

.

parLjof<sub_cover9, face?).
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i sua (cover8 , cover )

.

property<cover8, water i a I -type, br i ck88 )

.

property <cover8 , f i n i sh-jco I or , red )

.

di»ensiomccuer8.depth,6
J
inches).

port.jof<couer8, foce?).

i s_jQ<door 1 , door )

.

proper ty(door 1 , oater i a I -type, aood5 )

.

property<door

1

, f i n i sh_type, pa i nt2 1 )

.

property<door 1 , f i n i sh-co I or , broan )

.

property<door 1 , knob-type, round32 )

.

proper ty<door 1 , h i nge_type , square3 i n )

.

d i mens ion(door1, height, 84, inches).

di»ension<door1,»idth,36, inches).

dimension (door 1 .depth, 2 5, inches).

face < door
t
, face3 )

.

face <door 1 , face? )

.

coord i notes_X< local , door 1, 125, inches).

coord inates_V< local , door 1,0, inches).

coordinates_Z(local,door1,42, inches).

part_of<door1, face?).

/* foce8 */

i sjci< foce8, face )

.

d i mens ion< faeeS, height, 120, inches).

diMnsion(facA8,«idth,250, inches).

d i mens ion<face8, depth, 6, inches).

contains( faced, [fra»e6,sub-jcover10,cover9)).

noma I _X( face8 , - 1 )

.

norma I _Y < face8 , )

.

norea I _Z< face8, )

.

par t-jo f ( face8 , exter i or 1 )

.
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)sua< framed, frame).

proper ty ( froaeo, no ter i a I -type, *ood8 )

.

d

i

mens ion<fra»e6, depth, 4, inches).

face< frameb, faced )

.

face( fro—6, foce4 )

.

part_0fcfra»e6, foc«8).

i s_a Csub_cover 10, sub-jcover )

.

properiy<suh_cauar 10, water i a I -type, sheath_paper24 )

.

par t_jof<sub_cover 10, face8 )

.

/* */

i sja<cover9, cover )

.

property

(

caumrQ , mater i a I _type , br i ck88 )

.

proper ty<cover9, f lnlsh_jCOlor,red).

part_jof<cover9, foce8).

/* face9 */

is_ja<face9, face).

d

i

mens i on< face9, he
i
ght, 20, feet )

.

d i »ens i on< faceQ, i dth, 30, feet )

.

di »ens ion<face9, depth, 1, inches).

contains<face9, Ifra»e?,sub_jcower11,cower10)).

norw3l_X(fac«0,0).

nor»al_Y<foce9,0).

norma I _2 < face9 , - 1 )

.

part-jof<foce9,roo«1).
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i s-ja< frame?, frame )

.

proper ty< frame?, mater i a I -type, vood8 )

.

face< frame?, face9).

part^o f

<

frams? , face9 )

.

/* «7

i s_a<sub-jCover 11 , subueover )

.

property(sub-cover 1

1

, mater i a I -type, hardboard78 )

.

d i mens icrKsifc_eover 11, depth, 1, inches).

port_of (sub-jcover 1 1, foce9).

is_a(cover 10, cover).

property(cover 10, mater i a I -type, pa i nt 1? >

.

property(cover 10, f i n i sh-co I or , eh i te )

.

part_jof(cover 10, fac&Q )

.

/* face 10 */

i s_a< face 10, face )

.

d i Mens ion( face 10, height, 382, inches).

dimension( face 10, width, 252, inches).

dimension( face 10, depth, 12.5, inches).

contains(face10, I frammS, sub-cover 12, cover 111).

norma I _X< face 10,0)

normal _V( face 10,0).

norma I _Z( face 10, 1 )

.

par 1-jo f i face 10, room 1 )

.
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is_cK IrameS. frame >.

proper ty< froee8, water i a I -type, concrete 1 )

.

d

i

mens i on <fraee8, depth, 12, inches).

face< frxme8, face 10 )

.

part_of<fraee8, face 10).

i s-a <sub_cover 12 , sub-jcover )

.

property<sub.jcover 12, Miter i a I -type, hardjeoodS )

.

d i sens i on<subucover 12, he
i
ght , 20, feet )

.

d

i

mens i on(sub.jcover 12, i dth, 30, feet )

.

d i Bens ion(sub_cover 12, depth, 0.5, inches).

part_of<subjcower 12, face 10 )

.

ls_a<cover 11, cover).

property<cover 1 1 , eater i a I -type, pa i nt2 1 )

.

propertyCcouerl 1, f inish-jcolor,bro«n).

d i mens i on(cover 1
1
, he

i
ght, 20, feet )

.

d i mens i on<cover 1
1 , i dth, 30, feet )

.

parLjof (cover 1 1 , face 10 )

.
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/* ScheM File */

part-jof

part_of

pari-oi

part-oi

part_jof

parl_of

parLjof

part_of

part^of

part_of

parl_jof

part-of

pari-oi

part-ol

part_of

part_of
par-t-af

part_jof

part^of

part^of

part_of

part_of

part-jof

part_of

house, f loorplan).

house , exter i or )

.

house, roo«).

house, roof ).

house.space).

roof, face).

rooa, face).

space, face).

exterior, face).

face, door).

face , • i ndo* )

.

face, opening),

face , cover i ng )

.

face, sub-cover i ng )

.

face, frame),

face, insulation).

face j, connect ion).

connect ion, plumbing)

connect i on, e I ectr i c )

.

connect i on, heat i ng )

.

connec t i on
,
gas )

.

•indo*,sill).

indo»,case).
•indov,pane).

trans_partof<X,V) - partjof<X,V),

!

trans_partoftt,V) :- parLjof<X,Z),

trans-partof(Z,V), !

.
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/* Conversion File */

converts<fl,feet,B,feet) :- B = fl.

conver ts< ft, inches, B, inches) :- B = fl.

eonverts<fi, feet, B, inches) :- B = fl * 12

conuartsCfl, tncha*,B, faat) - B = fl / 12

converts<ft, feet, B, yards) :- B = fl / 3.

converts(fl, yards, B, feet) :- B = ft * 3.

coryjart<fl,0i»ansionl,B,Di»ansion2) :-

converts<fl, D ieensi on 1,B,Di mens ion2),

!

convert<fl,Di»ension1,B,Di»ension2) :-

conuerts<A, D

i

mens i on 1 , X, D i mens i onx ),

not<equaKD i Mens i on 1 , D i mens i onx ) ),

conwertCX, i mens i onx, B, D

i

mens i on2 )

.
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/* Routines File */

/* find longest dimension of three passed in */

I ongesLjd i Mens i on<Ht,Htuni ts,Ud,Udun its, Dp, Dpunits,Len,Htun its) :-

convert<Wd,Uduni ts,Ne»_Md,Htuni ts),

conuert<Dp,Dpuni ts,he«-Dp,Htuni ts),

ax i MUM(Ht, Mev-Ud, ttax ),

MaxiMun(Max,Neai-Dp,Len), !

.

maxiiuj»(fl,B,fl) :-

fl > B, !.

MOXiMUM<fl,B,B).

/* hove Match if within .25 inches */

•atchCA, AJUhi ts,B,BJUni ts,C,CJUni ts,D,DJUni ts,fl,fl_JUhi ts,B,BJUni ts) :-

convert<R,RJUni ts,Ne*_fi, inches),

conuerUB, BJUn i ts, New_B, i nches ),

cowert<C,CJJnits,NenJC, inches),

conuert<D,DJUhits,NeM_D, inches),

<<Me»_D - NewJC) < 0.25),

<<NeM_D - Ne»JC) > - 0.25),!.

»atch<fl,RJLinits,B,BJUnits,C,CJUnits,D,OJUnits,fl,fUJnits,C,CJUnits) :-

convert<ft,flJUnits,he»_ft, inches),

convert<B,B_Units,Ne«_B, inches),

convert<C,CJUni ts,He*JC, inches),

conuert(D,DJJnits,Ne«-D, inches),

<<he*_D - Me*_B) < 0.25),

«Ne»_D - Ne«_B) > - 0.25),!.

Mtch(fl,flJUnits,B,B_Units,C,CJUhits,D,DJJnits,B,BJUnits,C,CJUnits) :-

convert<ft,flJUni ts,Me*_fl, inches),

convert<B,BJUhi ts,Ne«_B, inches),

convert<C,CJJni ts,Me»JC, inches),

conuert<D,DJUhi ts.NewJD. inches),

<<Me«LD - Me»_R) < 0.25),

«NeM_D - New_fl) > - 0.25),!.

eatch<fl,AJUhits,B,BJUniU,C,CJLJnits,D,[LJL^^ -

nl,«rite('Error! Ho natch found during raw Material calculations. ' ),fai

I

i* routine to get Member of list */

ee»bera, (X|U).
member <X, IY|U) :- Menber<X,L)
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/* routine to delete meaber of list */

deleted,!], N>.
deleted, IX|U,L> :- \.

deleted, (V|L1, tV|Ml> :- deleted,L,M>.

equaKfl,B> :- B = ft.
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APPENDIX D

I
?- start,

check for house house 1

check for exterior exteriort

check for roof roof 1

check for face face 1

1

check for frame frame 1

grade marks must be clearly visible on all framing

members for inspection

check for sub^cover sub^cover2

check for sub_cover sub_eover1

sub-cover sub_cover1 meets requirements; allowed substitutes are:

- tar_paper

1

- tar_paper3

check for cover cover

1

check for face face 12

check for frame frame2

grade marks must be clearly visible on all framing

members for inspection

check for sub-jcover sub_£over13

check for sub-jcouer sutxjcoverH

sub-cover sub-jcover14 meets requirements; allomed substitutes ara:

- tar-paper 1

- tar -paper

3

check for cover cover 12
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check for room room)

check for face facel

check for sub_cover sutucover3

check for cover cover2

check for face face2

check for sub-cover sub^cover4

check for cover cover3

check for face face3

check for sub.jcover sub^coverS

check for cover cover4

check for face foce4

check for subjcover sub_jCover6

check for cover cover5

check for face faces

check for frane fraae3

grade Barks must be clearly visible on all framing

member* for inspection

check for sub-cover sub-cover?

check for cover coverfi

approved methods Bust be used for building aasonry sails
•hen outside air temperature drops below 40 degrees farenheit

check for face face6

check for 1rame frame*

grade Marks must be clearly visible on all framing

a—berg for inspection

check for sub-cover sub^cover8
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check for cover cover?

approved Methods must be used for building masonry walls

when outside air temperature drops below 40 degrees farenheit

check for window windowl

check for pane panel

pane pane 1 passed qua I i ty check

chock for sill si I II

check for case easel

chock for face face?

check for frame frame5

grade marks must be clearly visible on all framing

•embers for inspection

check for sub_cover sub-jcover9

check for cover cover8

approved methods must be used for building masonry malls
hen outside air temperature drops below 40 degrees farenheit

check for door doorl

door doorl passed - height

door doorl passed - width

door doorl passed ~ depth

check for face faced

chock for frame framo6

grade marks must be clearly visible on all framing

members for inspection

check for sub_cover sub^coverlO

check for cover cover9

approved methods must be used for building masonry walls

when outside air temperature drops below 40 degrees farenheit
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check for face face9

check for fra»e fra»e?

grade marks must be clearly visible on all framing

•eebers for inspection

check for sub-jcover sub_eover 1

1

check for cover cover 10

check for face face 10

check for frame fraee8

check for sub_cover sub-jcover12

check for cover cover 1

1
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*1

* *

Production Sequence Report for housel

- house style is single-room

and consists of (roof 1, exterior 1,room 11

* *

* *

comment : normal for each face listed

FACE

facell

face 12

focel

foce2 -1

face3

face4 1

face5

face6 1

face?

faceS -1

foce9

face 10

0.34 0.94
-0.34 0.94
-1

1

1

-1

-1

1

************************** ****** * ** ******* ***

comment : erect foundation and frame

*++***** * *** * *********** ****** ** ******^4l+++*

frome8 assemble material type concrete

1

frame4 assemble material type wood8
frameb assemblm material type »ood8

frame3 assemble material type voodB
frame5 assemble material type moodS

frame? assemble material type mood8
frame 1 assemble material type moodS

frame2 assemble material type wood8
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* *

co—ant : put door framing In place

doorl

*

assemble

•f- ** ^p ^p ^" ^p ^p ^p J^^tI1 "T"^L^P

Material type: •oodS
- attach to: foce3 face?
- location relative to face?

X coordinate 125 inches

V coordinate inches

Z coordinate 42 inches

* *

co—ent : put window framing in place
* *

siin assemble
- attach to:
- location

X coordinate

V coordinate

Z coordinate

•indoa sill for: windoml

foce2

relative to

96

56

face6

face6

inches

inches

inches

* *

commen t : put up exterior siding

sub-jcoverlO assemble material type sheatn_paper24

sub-jCOverQ assemble material type sheath-paper24

sub-cover

8

assemble material type sheath_paper24

sub^cover? assemble mater i a

1

type sheath-paper24

coverb assemble material type brick88

cover? assemble eater i a

1

type brtckSS

cover8 assemble material type brick88

covert assemble material type brickSS
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*

munmrmntymnnritr^tnt^mmmmmcmmmnutu

*

comment : put
*

up roof
*

T 'r t* T ~" -T- -T ~ '"' '" J~ ' 1 '- J 1 - ^«<> 'T"T ^r ^r-^t ^T"-^ 1 'T

sub_jCOver13 assemble material type «ood8

sub_jcouer2 assemble material type moodS

sub-jcoverl assemble material type tar_paper2

sub_jcoverl4 assemble material type tar_paper2

cover 12 assemble material type shingle12

cover

1

assemble material type shingle12

* *

co—ant : put up faces for each room
* *

subucoumrll assemble material type hardboard78

sub-jcover6 assemble material type hardboard34

subucouar4 assemble material type hardboard34

sub^coverS assemble material type hardboard32

subucoumr3 assemble material type hardboard32

* *

co—ent : build floor as last step
* *

sub_jcouer 12 assemble material type: hard_jBOodQ

**************** * *********************** **** *

comment : put mindoms in place

**** **** * *

*

** ****** ************ * ** ***********

indoml complete using panel easel

********* ****** * *** * * * **** ** *****************
*

comment : put finish on mindoms and doors
* +

siin
doorl

finish

finish

paint 1?

paint21

mhite
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* *

coMMent : put on door Knobs and hinges

doorl

door!

assemble

assemble

knob

hinge

round32

square3in

Hi

oo—nt : put final paint on faces
* *

cower 10 paint material type paint 1?

cover3 paint •aterial type paint9
couer5 paint notarial type paintQ

cover2 paint Material type paint9

cover4 paint material type paint9

coverll paint Material type paint21
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Raw Materials Report

Itea Cost Units Required

doorl $16 1

vindovt $30 1

concrete

1

$173? 347.514

vood8 $3582 434.194

tar_paper2 $841 6.73333

bardboard32 $211 1.54776

hardboard34 $147

$200

1.54722

0.694444hardboard78

hard_»ood9 $900 75

sheath_paper24 $64 0.850277

shingle12 $2020 1616

brick88 $4224 3673.2

paint9 $8 1.0317

paint17 $4 0.551818

paint21 $12 0.923095
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Start Ro» Materials Report <»/ substitute)

sub-cover I: substitute tar.paper 1 for tar_paper2

»»» »»»»]» » »i»i»»» » i»»» »» »j»4u|uM^'M"»

Raw Materials Report

Itea Cost Units Required

doorl $16 1

• indooM 30 1

concrete 1 $173? 347.514

tar_poper

1

$504 3.36666

VOCOo $3582 434.194

tar_paper2 $420 3.36666

hardboard32 $211 1.54776

hardboard34 $14? 1.54722

hordboard78 $200 0.694444

hardj»ood9 $900 75

sheath-paper24 $64 0.850277

shingle12 $2020 1616

bricK88 $4224 3673.2

paint9 $8 1.0317

paintl? $4 0.551818

paint21 $12 0.923095

Total Material cost is $14079
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sub-jcover 1 : substitute tar.paper3 for tar_paper2

!» 't"M")"M°>Pt"<t

Raw Materials Report

lte» Cost units Required

doorl $16 1

vindowl $30 1

concrete

1

$173? 347.514

tar_paper3 $370 3.36666

voodS $3582 434.194

tar_paper2 $420 3.36666

hardboard32 $211 1.54776

hardboard34 $147 1.54722

hardboard78 $200 0.694444

hardJKXxJ9 $900 75

sheath-paper24 $64 0.850277

shingle12 $2020 1616

brick88 $4224 3673.2

paint9 $8 1.0317

paintl? $4 0.551818

paint21 $12 0.923095
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* *

subjcover14: substitute tar-paperl for tar_paper2

Rem nateriats Report

Units Required

1

1

347.514

3.36666

434.194

3.36666

1.54776

1.54722

0.094444

75

0.850277

1616

3673.2

1.0317

0.551818

0.923095

Itea Cost

doorl $16

vindoal $30

concrete

1

$1737

tar_poper2 $420

oodB $3582

tar_paper1 $504

hardboard32 $211

hardboord34 $147

hardboard78 $200

hord-»ood9 $900

sheath_paper24 $64

shingle12 $2020

brick88 $4224

paint9 $8

paint17 $4

paint21 $12

* *

Total Material cost is $14079
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* *

sub-cover 14: substitute tar_paper3 for tar_paper2

Raw Materials Report

Itea Cost Units Required

doorl $16 1

vindovl $30 1

concrete 1 $1737 347.514

tar_paper2 $420 3.36666

«ood8 $3582 434.194

tar_paper3 $370 3.36666

hordboard32 $211 1.54776

hordboord34 $147 1.54722

hardboard78 $200 0.694444

hard_»ood9 $900 75

sheath_paper24 $64 0.850277

shingle 12 $2020 1616

brick88 $4224 3673.2

paint9 $8 1.0317

paint 1? $4 0.551818

paint21 $12 0.923095

* *

Total Material cost is $13945
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