

 38

$M^{\text {r. Wingatès Aritbmetick, }}$ Containing
 A PLAIN AND FAMILIAR METHOD, For attaining the KNOWLEDGE and PRACTICE Of COM MO N ARITHMETICK.

The Seventh Edition, very much enlarged.
Firt compofed by Edmund Wingate late of Grayes-Inne Efquire.
Afterwards upon Mr. Wingate's requert, enlarged in his life time: Alfo fince his doceafe carefully revifed, and much improved, as will appear by the Preface and Table of Contents.

By $70 H N K E R S E T$, Teacher of

 the Mathematicks, at the Sign of the Globe in Sbandois-ftreet in Covent-Garden.Boetius Arith.lib. I. cap. 2.
Omnia quacusque á primevâ rerrum naturâ conftruita funt, Cumerorum videntur ratione formata: Hoc enim fuit prin1 sipale in animo conditoris $E x$ xemplar.

$$
L O N D O N
$$

Printed by S. R. for R.S. and are to be fold by F. willizins at the Sign of the Crown in St.Paul's Churchyard. 1678.

```
foitgmdtivk istignith Mlv/ sainisfto
\& DVTZAA AAYHMAAI (HWA WKA IG A
```



```
अ)ITGMETIAA A O MA AOD
```

```
अ)ITGMETIAA A O MA AOD
```


wege cismeratr sive nogu abss wis la

 . 25mp1rio, 70 ands
(a)

 TO, THE

RIGHT HONOURABLE

THOMAS

Earl of Arundel and Surrey, Earl Marfhal of

ENGLAND , \&c.

 Right Honourable, He good affection you bear tò all kind of Learning, and in particular to the Mathematicks, makes me adventure to prefent your Lord/bip with tbis Traciate of Arithmetick, becaufe that Art, combared with. other Matbematical

A 2
Sciences

The Epifle Dedicatory,

Sciences is as the Primum Mobile, in TeJpeci of the otber inferiour Orbs: For as the Poets ufed in times paft to fay of Venus, Sine Cerere \& Baccho friget Venus, fo may I alococonfidently averr of them, witbout Arithmetick they are poor, and witbout motion. Prefuming therefore tbat your Lordfhip, loving the Art, cannot difaffect tbe Artift, nor bis intention to do good in that kind, I am bold to fhelter this Treatife under- your Lord/bips proteçion, bumbly intreating Your gracious acceptation, and earnefly defiring for ever to remain

Your Honours, in all

fervice affectionately

devoted, EDMWINGATE.

THE

PREFACE
 OF

qOHN KERSET.

Bout the year 16 629 our learned Countryman Edmund Wingate Efquire, publifhid a Treatife of A ritbmetick divided into two Books, the one intituled Natural Aritbmetick, the other $A r$ tificial Aritsmetick; and in regard his principal defign in that Treatife was, to remove the difficulties which ordinarily arife in the practice of Conamon Aritbmetick, by the help of artificial, or borrowed numbers, called Logarithmes (whofe proper work is to perform Muliplication by Addition; Divifion by Sibftraction, \&c.)

A 3
he

The Preface

lie did then in his faid firft Book omit divers pieces of Common or Practical Arithmetick, which for the perfect and univerfal underttanding thereof, were neceffary to have been inferted But after the firft impreffion of both thofe Books was fpent, our said Author being importuned to take care of the fecond Edition, he promifed his affiftance therein; yet his other necelfary employments not permitting him to purfue his faid purpofe, he was pleafed to impart his thoughts concerning the fame unto me, together with his requef, that I would perufe the faid firf Book, and fupply it with fuch pieces of Practical Arithmetick, which for the reafons aforefaid were wanting in the firf Edition.

In purfuance of which requeft, I have contributed my Talent towards perfecting this Tractate, upon our Authors foundati0,, partly in his life time to his good liking, and partly fince his deceafe, in feveral Editions committed to my care to be prepared for the Prefs: wherein I have ufed my beft endeavours, as well to preferve this Book as a Monument of our faid Authors worth, as alfo to make it a compleat Store-houfe of Common Aritbmetick;

İbe Priface

from whence the ingenious may be furnifh'd with the excellencies of that Art, in reference both to common affairs; as alfo to the practical parts of the Mathematicks. And in order to thofe ends I have made thefe following alterations and Additions, namely,

Firlt, for the eafe and benefit of fuch Learners, who defire only fo much skill in Arithmetick, as is ufeful in Accompts, Trade, and fuch like ordinary employments fiothe, Doctrine of whole Numbers, (which in the firft Edition was intermingled with Defnitions and Rules concerning broken Numbers, commonly called Fractions) is now entixely handled apart. And to the end the full knowledge of Practical Arithmetick in whole Numbers might more clearly appear thave explained divers of the old rules in the firt five Chapters, and framed anew the Rules of Divifion, Reduction, and the Golden Ruite in the fixth, feventh, eighth, and minth Chapters; fo that now Arithmetick in whole Numbers, is plainly and fully handled before any entrance be made into the craggy paths of Fractions, at the fight whereof fome Learners are fo difA 4 couraged,

Thes Preface ${ }^{\text {? }}$

difcouraged, that they make aftand, and cry out , non plas ultnin, there's no progrefs further.
Secondly, to affint fuch young Students as defire to lay a good foundation for the attaining of a general knowledg in the Mathematicks, I have in a familiar method delivered the entire Doctrine of Fractions, both Vilgar and Decimal, which was omited in the finf Edition; and liave alfo newty framed the Extraction of the Square and Cube roots, in a method which by experience is found to be much eafier than that commonly ufed heretofore, and is exactly fuitable to the Confruction or Compofition of Square and Cube numbers.

Lafty, I have added an Appendix, which is furnifhed with variety of choice and delightful knowledge in numbers, both Practical and Theoretical. In afl which performances I have earnefly saimed at truth, perfpicuity, and exact correction bath of the Text and Numbers ; fo that I hope this Book is now fupplied with all things neceffary to the full knowledge and practice of Common Aritbmetick, the ufefulnefs whereof is fo generally known, that

The Preface.

that there will be no need of Arguments to excite any one that defires his own or the publick good, to be acquainted with fo excellent an art.

But if the more curious Artift, after he is well excercis'd in vulgar Arithmetick, defires further infrection into the Myftenies of Numbers, his beft Guide is the admirable Art called Algebra; the Elements whereof I have expounded at darge in a - Treatife lately publifh'd.

The Table of Contents.

Where thofeChapters of Mr.Wingates, that have been alteted and framed anew by Fobr KerSey,are diftinguihed by this mark of and thofe 2. chapters that have been entirely compofed by the faid J. K.may be difcovered by this Afterisk*.

The Doctrine of whole numbers is contained in the firft is chapters, the titles whereof are thefe following.

Chap.|Pzg.

∞ coOncerning the Notation of Numbers.-1 1 Concerning EnglihaMoneys,Weigbts, $\}_{2} \mid 8$ Meafures, $\begin{gathered} \\ \text { c. }\end{gathered}$
Addition.
Subtracion.
Multiplication.--5 31
of Divifion.————————3 3_{8}^{8}
ar Reduction. $\longrightarrow-7 \mid 58$
as The Rula of Three direct. - 8
FT The Rate of Tbree inverfe. ——— 9182
ar Tbe double Rule of Three direct.——10| 87
as The double Rule of Three inverfe. - $11 \mid 94$
Tbe Rule of Tbree compound of fiveNumbers. $12 \mid 98$
The Rale of Fellow(lip. - 13102
The Rule of Alligation. $14 \mid 108$
The Rule of Falfe.
151125
The

The Doctrine of Fractions both vulgar and decimal, is contained in the 16 chap next following,

Conserning vulgar Fractions.

* Notation. - ${ }^{161133}$
* Reducion - - 171137
* Addition. 11 —————18151
- Subtračion. ——_-_191154
* Multiplication. - -- 20160
* Divifion. - 1

Concerning Decimal fractions.

* Addition. _u-_-_-_2421I
* Subtraction. ————251214
* Multiplication. - ——————26|215
* Divifion. _ - - - 27226

In vulgar and decimal Fractions.

* The Rule of Tibre Direct ————281240
*The Rule of Tbree inverfe———292245
* The double Rinle of Three - - Tत $30 \mid 247$
* The そule of Falfe ——————————1250

The Extraction of Roots is contained in the two Chapters next following.
af Tbe extraction of the fquare root - $-32 \mid 257$
of Tbe extraction of the Cube root- $-33 / 270$
The Relation of Numbers in quantity and quality is contained in the two following Chapters.
The Relation of Numbers in Quantity- 341290 The Relation of Numbers in Quality; pobere of Aritbmetical and Gcometrical proportion

The Contents of the Appendix.

Cbap.| Pag. $^{\circ}$
Oncerning Contraảions in the Rule? $1 / 309$

* Rules of Practice by Aliquot parts _ $2 / 315$
* Exchanges of Coins, Weights, and Meafures 31339
*Practical Queftions about Tare, Tret, Lofs, Gain, Barter, Factorfip, and meafu-\} 41360
ring of Tapeftry
* Intereft of money, with Tables to value.) Anrisities, ơc, at any rate per centum from 4l.te 121. and the manner of making tbofe Tables
* A Demonfration of the Rule of Three-- 6144°
${ }^{*} A$ Demonftration of the double Rule of $\} \times 14.3^{*}$
$\left.\begin{array}{l}\text { * A demonftration of the rale of alligation; } \\ \text { with its ufe in the compofition of medicines }\end{array}\right\} 81446$
* A Demonftration of the Rule of Falfe_ 91461
* A Collection of fubtil Queftions: to exer-) cife all the pares of Vulgar Aritbmetick; to whicb alfo are added various practical
2ueftions, about the menfuration of Su-
101475 perficial Figures and Solids, mith tbe Gaging of veffels.
Sports and paftimes.

(1)

 2x en \% dir

A
 TREATISE OF
 Common Aritbmetick.

 The Firft BookCHAP. I.

Concerning Notation of Numbers.
Rithmetick is the art of accompting by Number.As magnitude or greatneffe is the fubject of Geometry, fo multitude or number is that of X ritbmetick.
II Number is that by which every thing is numbered; or that whichan-
fwers this queftion, how many? (unlefs it be an. fwered by nothing:) So if it be asked how many dayes are in a week, the anfwer is feven, which is called Number.

The Charalicies by which number is expreffed
III. The Notes or Characters, by which Number is ordinarily expreffed, are thefe; 1 one, 2 two, 3 three, 4 four, 5 five, 6 fix, 7 feven, 8 eight, 9 nine, o nothing.
IV. Thefe Notes or Characters are either fignificant figures, or a Cypher.
V. The figniticant figures are the firf nine ; viz. $\mathbf{1}, \mathbf{2}, \mathbf{3}, 4,5,6,7,8.9$. The firt whereof is more particularly called an Unit, or Unity, and the reft are faid to be compofed of Unities: $\mathrm{f}_{2} 2$ is compofed of two unities, 3 of three Unities, \&ce
VI. The Cypher is the latt, which though of it felf it fignities nothing, yet being annexed after any of the reft, it increaleth their value: As will appear in the following Rules.
VII. Arithmetick hath two parts, Notation and Numeration.
VIII. Notation teacheth how to exprefs,read, or declare, the fignification or value of any number written, and alfo to write down any number pro* pounded, with proper Characters in their due places.
IX. A Number is faid to have fo ma-

The pleces or degrees of aay mumber. ny places or degrees ${ }_{2}$ as there are CharaCters in the number ; viz. when divers figures, whether they be intermixt with a Cypher or Cyphers or not, are placed together like letters in a word, without any point, cemma, line, or other note of diftinction inter:17\%

Chap.I.
Notation.
pofed, all thofe Characters make but one number, which confifis of fo many places as there are Cha: racters fo placed together: fo this number 205 confilts of 3 places, and this 30600 of five places, 8%.
X. Notation confifts in the knowledge of twa things; viz; the order of places, and the value of every place in any number.
$X I$. The order of the places is fromthe right hand rowards the left: So in this number 465 , the figure 5 ftandeth in the

The Order of placesinany number. firf place, 6 in the fecond, and 4 in the
and according to the aforefaid rules to pronounce it thus, four hindred fixty five; likewife this number 315 is to be pronounced thus, three hundred and tifteen: and this number 205, two hundred and five; alfo this number 500 , five hundred. Whence it is inanifeft, that although a Cypher of it felf fignifies nothing; yee being placed on the right hand of a figure it increafeth the value thereof, by advancing fuct figure to a higher place than that wherein it would be feated, if the Cypher were abfent

The true reading or pronouncing the value of any number written, as alfo the writing down any number propounded, depends principally upon a right underftanding of the three firt places before mentioned, and therefore I thall advife the Learner to be well exercis'd therein, before he proceeds to the following Rules.
$X V$. The fourch place of a number is called the place of Thoufinds ithatels; any number of Thoufands under ten thoufand;) the fifth place tens of thoufands; the fixth place Hundreds of thoulands; the feventh place Millions (a Million being ten hundred thoufand ξ) the eighth place tens of Millions; the ninth place hundreds of Millions; the tenth place thourands of Millions; the eleventh place tens of thoufands of Millions; the twelfth place hundreds of thoufands of Millions: And in that orderyou thay conceive places to be continued infinitely from the right hand towards the left, each following place being ten times the value of the next predeaing place 5 but to give names to them would be beth a troubleforn and en unneceffany taklio:

XVI.

Chap.I.

of Numbers.

XVI. From the rules aforegoing, ane eafie may may be colleaied to oread or exprefs the vilue of a Number propounded, Viz. Let it be re-quired to read or pronounce this

Abreif way of Notation. nnmber 521426341 , Firft, Diftinguith by a Comma, or point, every three places, beginning at the right hand, and proceeding towards the left, fo will the aforefaid number be diftinguithed into parts, which may be called Periods, and ftand thus $521,426,341$. where A Period. you may note the firyt period rowards the right hand to confift of thefe figures 341 , the fecond of thefe 426. and the third of thefe 52 I. Secondly, reid or pronounce the figures in every P eriod as if they food apart from the reft, fo will the firft Period be pronounced three hundred forty one, the fecond four hundred twenty fix: and the third five hunnred twenty one. Thirdly, to every Period except the firft towards the right hand, a peculiar denomination or firname is to be applyed, $V_{1 z}$. the firname of the fecond Period is Tbowf ands; of the third, Millions; of the fourth, STboufands of Millions, ofc. Therefore beginning to pronounce at the higheft Period, which in this Example is the third, and giving every Period its due firname, the faid number will be pronounced thus, Five bundred trpenty one Millions, four bundred tweenty $\sqrt{i x}$ Thoufands, three bundred forty one.

Note, When a number is diftinguifhed into Periods, as before, the higheft Period will not always compleatly confift of three plac. s, but fometimes of one place, and fometimes of two, neverthelefs after fuch Period is pronounced as if it ftood apart, the due firname is to be annexed; fo this number 3204689 , after it is divided into Perinds, will ftand thus, $3,204,689$. and to be prononnced thus, Three Millions, two bundred and four tbouSands; fix bandred eigbty nine.

XV 1I. The aforefaid Rules for the right pronouncing or reading of a Number, which is writtendown, being well underfiood, will fufficiently inform the Reader how to write down any number propounded to be written.

The Table of Notation.

Chap.I. of. Numbers.

Notation of Numbers by Latin Letters.


```
    50000/100)./*
100000 CCC1OJJ. or thus CM.
500000 1วขวว.
1000000 CCCE1. วొวา.
1677%-CIODCLXXVII, or
                                    MDCLXXVII.
```



```
CHAP:
```


CH A P. II.

Concernin' Englihh Moneys, Weights, Meafures, ซુ゙c.

1. He things expreffed by Numbers are principally Money, Weight, Meafue, Time, and things accompted by the dozen: Of the three firft of thefe, there are infinite kinds and varieties according to the diverfity of the feveral Common-wealths in which they are ufed, all which here to produce were both endleffe and needleffe: wherefore we intend here to treat only of fuch. Moneys, Weights, Meafures, \&xcas are ufed in this Nation, being indeed only neceffary for our prefent purpofe. II. The leaft piece of money ufed in England is a Fartbing, from whence this follow.

Of Englifh Mo. neys. ing Table is produced.
$\left.\begin{array}{l}\text { 1. Fartbing } \\ \text { 4. Fartbings } \\ \text { 12. Pence } \\ \text { 20.Sbillings }\end{array}\right\}$ makes $\left\{\begin{array}{l}\text { 1. Fartbing. } \\ \text { I. Peny. } \\ \text { 1. Shilling. } \\ \text { 1. Pound. }\end{array}\right.$

Englifh (or fterling) Money is ordinarily written down with Figures after this manner,

1. s. | d. |
| :--- |
| $34-13-05-2$ |
| $09-05-10-1$ |
| $06-00-06-3$ |
| $00-12-11-0$ |
| $00-00-07-2$ |

The

Chap.II. Weights Meafures, ક̧c.

The firft Rank of the faid Numbers fignifies thirty four pounds, thirteen hhillings, five pence, two farthings: the fecond Rank expreffeth nine pounds, five thillings, ten pence, one farthing: the third Rank, fix pounds, no fhillings, fix pence, three farthings, \&cc.
III. The fmalleft weight ufed in

England is a grain, that is, the weight of a grain of Wheat weil dried and gathered out of the middle of the ear, whereof thirty two make ano-

Vidi Stat.de comp. fitione ponderum. 51 Hen. 3. ther weight called a Peny-weigit, Peny-weight make an Ounce Troy.

Here obferve, That by the Statutes quoted in the Margent, the weight of 31 E\% x.v. two and thirty grains of Wheat make a peny weight, which weight being once difcovered by two and thirty and twenty Reffoweights 7 8. 8.12 Hen. 75. fuch grains, the faid peny weight (being the twentieth fart of an ounce Troy) is ufually fubdivided into four and twenty parts only, called allo Grains, as appears by the enfuing Table. $\left.\begin{array}{l}\text { A Table of Troy Weights. Troy we ight. } \\ 32 \text { Grainsof Wheat } \\ 24 \text { Grains } \\ 20 \text { Peny Weight } \\ \text { I2 Ounces }\end{array}\right\}$ make $\left\{\begin{array}{l}24 \text { Artificial Grains. } \\ \text { I Peny Weight. } \\ \text { I Ounce. } \\ 1 \text { Posnd Troy. }\end{array}\right.$ Troy Weight is ordinarily written down with Fi. gures after this manner.

$$
\begin{array}{lc}
16 . & 02 \\
17-05-13 & \text { p.w. } \\
17 & \text { gr } \\
00-13 & 13 \\
00-07-06-20
\end{array}
$$

The firfl rank of the faid numbers expreffeth feventeen pounds, five ounces, thirteen peny weight, thirteen grains, of Troyweight: the fecond rank, no pounds, cleven ounces, feven peny weight, fix grains: and the third, no pounds, no ounces, five peny weight, and twenty grains.

Nuw this Troy weight ferveth only to weigh Bread, Gold, Silver, and Electuaries.

Ma'yñes lex Mercat.p. 49. Malynies ib. pag. 252. And here obferve alfo by the way, that Troy weight regulateth and prefcribeth a form how to keep the Money of Eugland at a certain Stindard. For about two hundred years before the Conqueft, Osbright a Saxon, being then King of England, cauled an ounce Troy of Silver to be divided into 20 pieces, at the fame time called P ance; and fo an Ounce of Silver at that time was worth no more than twenty pence, or one fhilling eighe pence, which continued at the fame value until the time of Henry the fixth, who (in regard of the enhancing of Moncys in Forcin parts) valued the fame at thirry pence, fo that then there were accordingly thirty pieces made out of the Ounce, and the old pieces went then for three half pence, until the time of Edroard the fourth, who valued the Ounce at forty pence, and then the old pieces went for two pence apiece. After this, Hekry the eight valued the Ounce of fterling Silver at forty five pence, which value continued until Queen Elizabetbs time, who valued the fame Old pence at Three-pence the piece, fo that all Three-pences coined by the fame Queen weighed but a peny weight, and every Six pence two peny weight; and to in like manner the Shilling and orher pieces

Chap.II. Weigbts Meafires, ${ }^{\text {Ëcr. }}$

 accordingly; which made the Qurce Iray of Silver to be valued at fixty pence or five fhillings, as it now remains at this day without alteration.IV. The weights ufed by Apothecaries are derived from a pound Tray, Apothecalice which is fubdivided as in the follow. Weigbts. ing Table :

A Table of Apothecaries Weights.
$\left.\begin{array}{l}\text { ib A pound Tray } \\ 3 \text { An Ounce } \\ 3 \text { A Dram } \\ 7 \text { A Scruple }\end{array}\right\}$ is equal $\begin{array}{ll}12 & \text { Ontaces. } \\ 8 & \text { Drans. } \\ 3 & \text { Scruples. } \\ 20 & \text { Grains. }\end{array}$
So that if you were to exprefs in Figures 12 pounds 10 ounces, five drams, two Scruplis, and 16 gràins: alfo thrce pounds, five ounces, feven drams, one fcruple, and two grains, the ordinary way to write them down is brifly thus,

15	5	5
$12-10-5$	9	$g r$
$03-05$	-16	

V. Befides Troy weight before-mentioned, there is another kind of weight ufed in England, called Averdupois weight, a pound whereot is equal unto 14 Ounces, twelve peny weight Troy. This Averdupois weight ferveth to weigh all kind of Grocery-ware, as alfo Butter, Malynes ib. Cheefe,Flefh, Tallow, Wax, and every pag.49. other thing which beareth the name of Garbel, and whereof iffueth a refufe or wafte.
VI. Averdupois weight is either greater or lefs.
VII. The greater is, when one hundred and twelive pounds Averdupois Averdupois are confidered as one entire weight greater weight. commonly called an hundred weight, and then fu:h hundred weight is fubdivided firtt into four quarters, and each quarter into eight and twenty pounds: again, each pound into four quarters, or (if you will be more exact) into 16 Ounces, and if you pleafe each Ounce into four quarters. But ordinarily a pound is the leaft quantity that is taken notice of in Averdupois grofs weights.
$\left.\begin{array}{l}\text { A Table of Averdupois greater weight. } \\ 28 \text { pounds } \\ 4 \text { quarters }\end{array}\right\}$ make $\left\{\begin{array}{l}\text { a quarter of } 112 l \text { ll. } \\ \text { an bundred weight, or } 112 \\ l \mathrm{lb} \text {. }\end{array}\right.$

So that if you were to exprefs by Figures eight hundred, three quarters, and five pounds; likewife, feven hundred, one quarter, and feventeen pounds: the ordinary way to write them down is briefly thus,

Aucrelizpois Leffer weight.
VIII. The leffer Averdupois weight is, when a pound is the higheft name or Integer, each pound being fubdivided into fixteen ounces, and each ounce again into 16 drams, and if you pleafe, each dram into 4 quarters,as by the fubfequent Table is manifef.

A Table of Averdupois leffer Weight.
$\left.\begin{array}{l}4 \text { Quarters of a Dram } \\ 16 \text { Drams } \\ 16 \text { Ounces }\end{array}\right\}$ make $\begin{cases}1 & \text { Dram. } \\ 1 & \text { Ounce, } \\ 1 & \text { Pound. }\end{cases}$

Chap. II. Weights,Meafures,EG.

So that if you were to exprefs by Figures eighteen pounds, twelve ounces, five drams, and three quarters of a dram; likewife five pounds, no ounces twelvedrams, and one quarter of a dram, the ordinary way to write them down is briefly thus.

IX. The meafures ufed in England are either of Capacity or Length.
X. The meafures af Capacity are thofe which are produced from Weight, and they are either Liquid or Dry.
$X I$. The Liquid meafures are thofe, in which all kind of Liquid fubftances Liquid Merare meafured, and they are expreffed in furc. the Table following,
A Table of Liquid Meafures.

1 Pound of Wheat
Troy weight
2 Pints
2 Quats
2 Pottles
8 Gallons
9 Gallons
Io Gallons and an balf
2 Firkins
2 Kilderkins
42 Gallons
63 Gallons
2 Hogheads
2 Pipes or Buts

| | $\left\{\begin{array}{ll} 1 . & \text { Pint. } \\ \text { I } & \text { Quart. } \\ \text { I Pottle. } \\ 1 & \text { Gallon. } \\ 1 & \text { Firkin of Ale, } \\ \text { Sope, Herring, } \end{array}\right\}$ |
| :---: | :---: | XII. Dry Meafures are thofe, in Dry Meafures. which all kind of dry fubftances are meted, as Grain,Sea-coal, Salt, anid the like; their Table is this that follows:

Long Mea- XIII. Long Meafures are expreft in fures. this Table following.

Note, That a Yard, as alfo an Ell, is ufually fubdivided into four Quarters, and each Quarter into four Nails.

XIV. Superficial or fquare Measures
of Land, are fueh as are expreti in the Lind MenTable following:
$\left.\begin{array}{l}40 \text { Square Poles } \\ \text { or Perches } \\ 4 \text { Roods }\end{array}\right\}$ rake $\left\{\begin{array}{l}1 \text { Rood or quarter of } \\ \text { an Acre. } \\ \text { Acre. }\end{array}\right.$
So that if you would exprefs by Figures there quantitics of Land, viz. Thirty fix Acres, three Roods, twenty Perches: alpo fever Acres, no Roods, thirty two Perches; the ordinary way to write them down is thus,

A_{0}	R.	P.
$36-$	3	20
7	0	32

XV.A Table of Time is this that follows. Tine

1 Minute 60 Minutes 24 Hours 7 Dates 4 Weeks 13. Months $\left\{\begin{array}{l}1 \text { Day, and } \\ 6 \text { Hows }\end{array}\right.$

But in ordinary computations of time, the whole year confuting of three hundred fixity five days, is divided cither into twelve equal parts or months, each month then containing thirty dais and en hours: or elf into twelve unequal Kalendar months, according to the ancient Verde:
Ibirty days bath September, April, June, and No-. venaber:
February bath twenty eight alone, and each of the reft thirty one.

Note.

Note, That every Leap-year (which happeneth once in four years) containeth three hundred fixty fix days, and infuch year February containeth twenty nine dayes.
XVI. Of things. accounted by the Of things ac- dozen, a Grofs is the Integer confittcounted by the dozem.
ing of twelve dozen, each dozen con-
taining again twelve particulars: fo chat ifyou would exprefs in Figures, feven Grofs four dozen, and five particulars; alfo four Dozen and eight particulars, they may be briefly written thus.

CHAP. III.

Addition of whole Numbers.

1. Oncerning notation of Numbers; and how thereby the quantities of things are ufually expref, a full Declaration hath been made in the preceding Chapters; Numeration enfucth, which comprehends all manner of operations by Numbers.
II. In Numeration, the four primary or fundamental operations (commonly called Species) are thefe, Addition, Subtraction, Multiplication, and Divifion.
III. Addition is that by which divers Num: bers are added together, to the end that their fum, aggregate, or total, may be difcovered:
IV. In Addition, place the Numbers given,

> Chap.III. of whole Numbers. one above another in fuch fort, that like places or degrees in each number may ffand in the fame rank: that is Addition of numbersofone denomination Units above Units, Tens above Tens, Hundreds above Hundreds, orc. So thefe numbers 1213 and 462 being given to be added rogether, you are to order them as you fee in the margent.
V. Having thus placed the Numbers, and drawn a line under them, add them together, beginning with the Units firf, and faying thus, 2 and 3 make 5, which write under the Rank of Units, then proceed to the fecond Rank and fay 6 and
I make 7, which write under the fe- 1213
4 cond Rank (being the place of tens) 462 again 4 and 2 make 6 , which write under the third Rank. Lafly, write 1675 down i being all that flands in the fourth Rank, fo the fum of the faid given Numbers is found to bc 1675 , and the operation will ftand as in the Margent

In like manner the Numbers 2315, 2315 7423 , and 141 , being given to be ad- 7423 ded rogether, their fum will be found to be 9879 , and the operation there of will ftand as you fee in the Example. 9879
VI. When the fum of the Figures of any of the Ranks amounts unto ten, or any number of tens without any excefs, write down a Cypher under that Rank; but when the fum of any Rank exceeds ten or any number of tens, write down the excefs under fuch Rank, and for every ten contained in the fum of any Rank, referve an Unite or 1 in your mind, and add fuch Unit or Units to the Fi-

18

gures of the next Rank towards the left hand, fo the Numbers 4937,9878 , and 394 being given to be added together, the operation 4937 will be thus, viz beginning with 9878 the rank of tinits, I fay 4,8 and 7 ${ }^{1} 394$ make 19, wherefore I write down9, 15209 the excefs above 10, and carrying 1 in mind inflead of the ten contained in the faid 19. I fay 1 and 9 (9 being the lowermeft figure of the fecond rank) make 10 , which added to 7 and' 3 , the other figures of the fame rank, the whole furn of them is 20 , wherefore fetting down a Cypher under the line in that rank (becaufe the excefs above the two tens is nothing) I carry 2 to the third rank, and fay 2 and 3 (3 being the lowermof figure of the third rank) make 5 , which being added to 8 and 9 (the other figures of the fame rank) the fum of them is 22 , wherefore writing down 2 (being the excefs above the two tens) under the line, in the third rank, I carry 2 in mind (becaufe there were two tens in 22) to the fourth rank, and fay 2 and 9 make II, which added to 4 makes 15, this I5 becaufe it is the fum of the laft rank I write totally down under the line, on the left kand of the Figures before fubferibed; fo the fum of the three Numbers given is found to be 15209 , as in the Examplé.

Addition bf num bers of div is Tenominations.
VII. Whien numbers given to be added, do exprefs things of divers Denominations; firft write them down orderly (according to the Examples in Chap.2.) then afeer a line is drawn under them all, begin to add the numbers.

Chap.III. of whole Numbers. of the leaft Denomination, and if the fum of them amounts to one Integer, or many Integers of the next greater Denomination, with fome excefs of the lefs Denomination, write down that excefs, or a Cypher when there is no excefs, under the line, fo as it may ftand under the leaft Denomination, and keep the faid Integer or Integers in mind, to be added to thofe of the next greater Denomination on the left hand: But when the fum of the numbers of the leaft Denomination amounts not to one Integer of the next greater Denomination, fet down the fum it felf under the line; then add the Integer or Integers kept in mind (when any happens) to the numbers of the next greater Denomination on the left hand, and proceed to adi them, as alfo thofe of every greater Denomination, in like manner as above is directed, until you come to the numbers of the greateft (or highefi) Denomination, which are to be added according to the foregoing Rules V^{\prime}. and $V I$. of this Chapter. So thefe feveral fums $24 l-13 \mathrm{~s}_{0}-5 d_{0}-3 f_{0}$ Alfo $12 l_{0}-0 s_{0}-8 \mathrm{~d}$. and $5 l_{0}-18 \mathrm{~s}_{0}-2 f_{0}$ being propounded to be added, their total furn is $42 l_{0}-12 \mathrm{~s} \cdot-2 \mathrm{~d}$. If . For having written them down orderly according to the fecond Rule of the Second Chapter, and drawn a line underneath; I begin with the Farthings firt, and fay, two Farthings and three Farthings make five lo s. d. f. Farthings, that is, one Pcny $24-13-05-3$ with a Farthing over and $12-00-08-0$ above; wherefore fetting $05-18-\mathrm{CO}-2$ down I under the denemination of Farthings, $142-12-02-1$
carry one Peny to the denomination of Pence, then I fay 1,8 , and five Pence make 14 Pence, which contain one fhilling and two Pence, wherefore writing two under the denomination of Pence, I likewife carry I thilling to the denomination of fhillings: Then adding the faid Ifhilling unto 18 fhillings and 13 thillings, the fum will be found I pound and 12 thillings, wherefore fetting down 12 under the denomination of fhillings, I carry 1 pound in mind unto the denomination of pounds faying, I pound in mind, together with 5,2 , and 4 pounds which ftand in the tirft Rank of pounds, make 12 pounds, wherefore (according to the fixth Rule of this Chapter) I write 2, the excefs above 10 , underneath the faid firf rank of pounds, and carry 1 in mind for the faid 10 to the fecond Rank of pounds, then faying in like manner, I in mind, together with 1 and 2 which fland in the fecond Rank of pounds make 4, which I write underneath the line, that done, I find the total of the three fums propounded to be $42 l, \cdots 12$ s.o-and $-1 f$.

In like manner $3 \mathrm{lb} .0-05 \mathrm{oz}-19 \mathrm{p} . \mathrm{wo} .15 \mathrm{gr}$. Alfo 2lb. - $0.0 z_{0}-3$ pow. -7 gr . Alfo olb. - 10 oz . $-6 p$. w. And olb. - $90 z_{\text {. }}$-op.w. - 17 gr . being given to be added together, their fum will be found 7 lb . - $10 z$. - $9 \mathrm{p} . w_{3}-15 \mathrm{gr}$. and the work will ftand thus.

Note,

Note, In adding together the Numbers in the laft Example, it mult be remembred that 24 grains make one Peny weight; 20 Peny weight, one ounce; and 12 ounces one pound Troy (as before is declared in the third Rule of the fecond Chapter;) And then you are to proceed according to Rule VII. of this Chap.

More Examples of Rule VII. are thefe following, which prefuppofe the Learner to be well cxercif'd in the Tables of Chap. 2. that he may readily know, what Integers are to be carried from every Icffer Denomination to the next greater.

Addition of Engliß Money.

Addition of Iroy Weight.
16. oz. pwo.gr. oz, pm. gr
$23-07-16-13 \quad 536-13-10$
$17-10-15-07 \quad 208-11 \rightarrow 10$
325-06-19-20 063-10-05
$49-11-07-12099-00-12$
$417-00-19-04$
$907-15-19$

C Addition

Addition of Averdupois Weight.

Addition of Measures of Length. yards. q. nails. Ells.
$26-3-2$
$13-1-3$
$12-1$
$29-1-1$
$81-2-3$

Addition of Superficial Meafures of Land. Acres. Roods. Per. A. R. A ${ }_{\mathbf{P}}$.

Subtraction of robole Numbers.

: Subtraction is that by which one number is taken out of another, to the end that the remainder, or difference, between the two numbers given may be known.
II. The number out of which the Subtraction is to be made, muft be greater, or at leatt, equal with the other. As you may Subtract, 4347 or 9478 out of 9478 , fo can you not fubtract 9478 out of

Subtrafi.
on of num.
bers of one 4347.
denominas:
III. In Subtraction rank the two given numbers one under the other as in Addition, with this caution, that the number placed uppermoft may exceed, or at leaft be cqual unto the other: So if the number 4347 be given to be fubtracted from 9478 , I order them as in the Margent: then procteding to the fubtraction, I fay, 7 taken out of 8 , there remains one, which I place in the fame rank under the line. In like manner 4 being taken out of 7 , the remainder is 3 , which likewife I fer under the line in the next rank, again taking 3 from 4 , the remain det is 1, which I likewife place under the third rank; lafly fubtracting 4 from 9 , there will remain 5 , which I fubfrribe under the fourth rank; fo the whole operation being finithed, I find, that if 4347 be taken quu of 9478 , the remainder is 5131 , or (which is the lame) the difference between the numbers 9478 and 4347 is 5131, as in the Example

$$
C 3 \quad I_{n}
$$

Subtractiou

In like manner if 106 be fubtracted from 2856 the remainder will be found 2750 ; for 2856 after the numbers are orderly ranked, 106. I begin at the place of Units, and fay -. 6 from 6 , there remains nothing, 2750 wherefore 1 fubfcribe o. then proceeding to the fecond rank I fay, if o (or nothing) be taken from 5, there will remain 5 which I alfo fubfrribe under the line; again I from 8 , there rrmains 7 ; laftly of from 2 , there remains 2, See the work in the Margent.
IV. When any of the figures of the number given to be fubtracted is greater than the upper figure out of which it is to be fubtracted, you mult borrow 10 of the next rank towards the left hand, and add the faid to to the faid upper figure, then from the fum of fuch Addition fubtract the lower figure, and fet down the remainder: In this cafe the figure of the next rank which is to be fubtraeted, muft be efteemed an nnite greater than it is; wherefore, keeping one in your mind add it to the next figure of the number given to be fubtracted, and deducting all out of the figure above it, proceed in like fort till you have finifhed the whole operation. Example, let it be required to fubtract 374 out of 8023. Having ranked them às before, 1 fay four out of 3 , that cannot be, wherefore borrowing ten of the next rank, and adding the fame to the faid 3, Ifay 4 out of 13 , there remains 9 ; then writing 9 under the line, and carrying 1 in $m y$ mind, If fy 1 and 7 make 8,8 out of 2 that can8023 notbe, but 8 out of 12 (12 , becaufe 10 be374 . ing borrowed, and added to 2, makes 12) \ldots there remains 4 , which I fubferibe under the

Chap.II. of whole Numbers.
 linc; again I in my mind being added to 3 makes

 4,4 out of nothing, that cannot be, but 4 out of 10 there remains 6 , which I likewife fubfrribe under the line; lafly \boldsymbol{I} in my mind being taken out of 8 there remains 7 . Thus you fee that the remainder after 374 is fubtracted from 8023 is 7649 . Note diligently, that as often as 10 is borrowed, 1 muff be kept in mind to be added to the figure flanding in the next place of the lower number, and the fum of fuch Addition mult be fubtracted from the vpper place; but if it happen that there is no figure in the next place of the lower number, then the 1 in mind muft be fubtracted from the upper place, (as in the laft rank of the laft Example.) Anotber Example. Let it be rcquired to fubtract 92 from 62801. Having placed the greater number uppermoft and the leffer orderly underneath, I begin at the place of units, and fay, 2 from I I cannot take, but borrowing 10 , and adding it to the faid 1 , I fay 2 from 11 , there remains 9 , which I fubfribe under the

62709 line; then I proceed and fay, 1 in mind with g makes IO, 10 out of OI cannot take, but borrowing 10 I fay 10 out of 10 and there remains 0 . wherefore 1 fubfcribe ounder the line; again, 1 in mind out of 8 , there remains 7 ; then becaufe there are no more Figures in the lower number, I fay o out of 2 there remains 2 ; lafly, 0 out of 6 there remains 6 ; therefore 1 conclude that 62801 exceeds 92 by 62709 .
V. If the numbers propounded have divers denominations, pla thern as before, and beginning with

$$
C_{3}
$$

Subiration of rumbers of divers denominatsonjo
the leaft denomination firft, fubtract the lower number from the upper when it may be fubtracted, and place the remainder underneath; but ifit happen that the lower number cannot be taken out of the upper, you mult borrow an integer of the next greater denomination on the left hand; which in teger, after it is converted into the fame denomination with the faid upper number, muft be added to it : then from the fum of fuch Addition, you are to fubtract the lower number, and write down the remainder, keeping I (that is the integer borrowed) in your mind, to be added to the next place of the number given to be fubtracted, as before: fo 901.-14s.--iod.- 3 f. bcing fubtracted from 124l.-11s.— $-\mathrm{d} .-1 \mathrm{f}$. the remainder is 33% $-16 s .-8 d .-2 f$. For beginning with the farthings, I fyy, 3 farthings out of l. s. d. f.rfarthing I cannot take, where-124-11-07-1 fore borrowing 1 peny (that $90-4-10-3$ is an integer of the next grea-33-16-08-2 ter denomination) and having converted this peny into four farthings, I add them to the aforefaid I farthing, fo the fum is five farthings, out of which fubtracting 3 farthings, there remains 2 farthings, which I place underneath the denomination of farthings; then I proceed to the next denomination, and fay, I peny which I borrowed and rod. make 11 d. this 11 d . out of 7 d . I cannot take, wherefore borrowing 1 filling or $12 d$. and adding $12 d$. so the faid 7 d . the fum is 19 d . from which I fubtract the faid nd: fo there remains 8 d . which I fublcribe under the denomination of pence; again I Thilling which ${ }^{71}$ borrowed being added to 145 makes

Chap.IV. of whole Numbers.

makes $\mathbf{5} 5$, which I cannot fubtract out of II s, and therefore I borrow I pound or 20J. which being added to the faid III, makes 31 s . from which fubtracting iss. there remains 16 s . which I fubfrribe under the denomination of fhillings; then carrying I pound which I borrowed to the lower place of pounds, I fay I in mind with 0 makes I , which taken out of 4 , there remains 3 ; again 9 out of 2 , I cannot take, but 9 out of 12 (10 being borsowed and added to the faid 2 , ascording to the fourthRule of this Chapter) and there remains 3. laftly (for the lo that was borrowed) being taken out of I, there remains nothing; and f_{0} at laft I find, that if A. being indebted to B. in 124 l . - 11 s : - 7 d. - 1 f.hath paid in part thereof 901 - 145 . - $10 \mathrm{~d} .-3 f$, there remains yet undicharged' 33%. - $16 s .-8 d .-2 f$.

VI. When many numbers are given

 to be fubtracted from a number propounded, you mult firlt add thofe numbers together, according to theSubtrafion of many numbers from one xnmber. rules of the third Chapter, and then the fum found is to be fubtracted from the number firlt propounded. Example, A being indebted to B. in 3240%. paid thereof at one time 700%. at a fecond payment 1236 l . and at a third 305 \% the queftion is how much of the debt remained undifcharged ? Firft, I add together the feveral fums paid, and find the total to be 224 Il . this I fubtract from 32401 . fo there remains 999 l. undifcharged as you fee by theoperation in the Margent.
l.
32.40 Tibe debt. $\left.\begin{array}{l}700 \\ 1236 \\ 305\end{array}\right\}$ Payments
$\begin{aligned} & 2241 \text { Total payd } \\ & 959 \text { reft unpayd }\end{aligned}$
4. s. d: Anotber Example of Tb: Debt 500-00-00 like nature. A. being indebted to B.in 5001 Payments $\left\{\begin{array}{c}340-12=06 \text { paid in part thereof } \\ 13-18=03 \text { at one payment } 340 \mathrm{l} \\ 17-16=10-12 \mathrm{~s} \text {.--06 d.at }\end{array}\right.$ Paid in all $372-07-07 \ldots 18 \mathrm{~s}$. -0 3d.at a Feft unpaid $127-12-05$ third J 7 l . - 16 s . - Iod. the queftion is, how much was in arrear? Here if the operation be profecuted as before, it will appear that there was $127 \mathrm{l} .-\cdots-12 \mathrm{~s}, \cdots-05 \mathrm{C}$. unpaid: fee the work in the Margent:
VII. Addition is proved by fubtraThe proof
of Addion, and fubtraction by Addition. and futtraction For having added divers numbers to gether, if you fuberact one of them out of the fum, the remainder mut be equal to all the reft, as you may obferve by the Example following, viz. fuppofing thefe 4 numbers are given to be added viz. $236 \quad 236,45^{2}, 29,217$. and that - their fum is found to be 934 452934 (by the Rules of the 3 d . Chap.) 29236 it is required to prove whe217608 ther the faid fum be true or 934 not ; to perform this I draw a 698 line under the uppermoft number 236 , to feperate it from the reft, and feek the fum of all the numbers given, except that uppermof, which fum I find to be 698. Then I fubtract the faid uppermoft number 236 from 934 (the rotal fum of all the numbers firlt found) and becaufe the remainder 698 is the fame wiṭh

Chap. VI. of wholeNumbers.

with the fum of all the numbers excluding the uppermoft, I conclude that the fum of all the numbers firft found was truly computed.
In like manner is Subtraction proved by Addition, for if you add the remainder, and the number given to be fubtracted together, the fum muft beequal to the number out of Example I. Example 2. which the Subtra- l. I. s. d. Ction is made, fo if out of 9478 24-13-07 4347 be fubtracted Subtr. 4347 19-15-08 from 9478 the re- Keft $513104-17$ - 11 mainder is 5131 , Proof $947824-13-07$ for if 5131 be added
to 4347 , the fum is 9478 , which is the fane with the number out of which the Subtraction was made. Again, if a Servant reseive 24 l - 13 s. $\longrightarrow 7 \mathrm{~d}$. and lay cut or disburfe $19 \mathrm{l} .-15 \mathrm{~s}$. - 08 d . there muft remain in his hands - 4% —17 s .——1d . for this being added to 19% - $155 .-08$. which was the Money heexpended, the fum will be equal to 24 . 13 s.- 07 d . (being the Money wherewith he was firtt charged.)

More Examples of Subtraction are thefe that follow.

Snbtraction of Englifb Money.

 Subtraction of Troy weigbt.

Subtraction of Averdupois Weight.
C.
lb. ozo dr.
Bought $256-2-23$
Sold 079-3-26
Reft 176-2-25
Proof $256-2-23$
$25-13-12$
$00-14-13$
$24-14-15$
$25-13-12$

Subtraciien of Superficial Meafures of Land.
Acres,Roods,Perches. A. R. P_{0}
Bougbt $780-2-35 \mid 2040-1-20$ Sold $090-3-36$

Reft $689-2-39$
Proof $780-2-35 \mid 2040-1-20$
Quefions to exercife Addition and Subtraction.
Queft. I. Two perf ns, A. and B. owe feveral debts, the leffer debt biing that of A. is 3045l. the difference of their debts is 104 l , what is the debt of B ? Answer, $3149 l$

Queft. 2. Two perfons A. and B. are of feveral ages, the age of the elder, being that of A. is 70 , the differences of their ages is 19 , what is the age of B ? Answer, 5 r.

2uef. 3. What number is that which being added to 168 maketh the fom to be 2053 Anf. 37 .

Quef. 4. The furn of two numbers is 517 , the leffer is 40 , what is the greater? Anf. 477.

Queft. 5. A certain perfon born in the year of our Lord 1616, defired to know his age in the year 1676, what was his age? Anf. 60 .

2uef. 6. The greater of two numbers is 130 , their difference is 49 , what is the leffer number? Anfor. 81.

CHAP., V.

Multiplication of whole numbers.

1. MUltiplication teacheth how by two numbers given to find a third, which fhall contain either of the numbers given fo many times as the other contains \mathbf{I} or unitie.
II. Of the two numbers given in Multiplication, one(which you will)is called the Multiplicand, and the other the Multiplicator, (or both are called Factors.)
III. The number fought, or arifing by the multiplication of the two numbers given, is called the product, the Face, or the Rectangle: fo if 5 be
given to be multiplied by 3 , or 3 by 5 , the product is 15 , that is 3 times 5 , or 5 times 3 makes 15 : and here 5 may be called the Multiplicand, and 3 the Multiplicator, or 3 may be called the Multiplicand, and 5 the Multiplicator; and as 3 (one of the two numbers given) containeth 1 or unity thrice, fo is the product sontaineth 5 (the other given number) thrice; likewife as 5 (one of the given numbers) contains unity 5 times, fo 15 (the product) contains 3 (the other given number) five times.
IV. Multiplication is either fingle or compound. Single multi- V. Single Multiplication is, when plicationo the Multiplicand and Multiplicator confift each of them of one only figure, as in the laft Example; In like manner if you multiply 9 by 5 , the product is 45 , this is likewife fingle multiplication: now the feveral varieties of fingle multiplication are well expreft in the Table following, ufually called Pythagorus bis Table.

The Table of Multiplication.

1	2	3			6	7	8	9
2	4	6	8	10	12	14	16	8
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
${ }^{6}$	12	18	24	30	36	42	48	54
7	14	21	28	35	4	49	56	63
8	16	24	32	40	48	56	64	72
9		27	36	45		63	2	$\frac{71}{81}$

The ufe of the Table is this, having one figure

Chap.V. of whole Numbers 33 given to be multiplied by another to know the product of them, find the multiplicand in the top of the Table, and the multipicicator in the firft Co^{-} lumn thereof towards the left hand; this done, in the angle of pofition juft againft thofe two figures you fhall find the product. So g being given to be multiplied by 5 , 1 find g in the top of the table, and 5 in the firft column towards she left hand, then carrying my eye from 5 in a right line equidiftant to the upper fide or top line of the Table, until I come to that \{quare which is directly under 9 , 1 find 45 , which is the Product required. The particular varieties of this Table ought to be learned by heart, (that is,a man muff be able to give' the Product of any fingle multiplication, witheut the leaft paufe or ftay) before he can readily work compound multiplication, as will further appear hereafter.
VI. Compound multiplication is, cimpoumad when the multiplicator and multipli- Multiplisacand either one or both confitt of more zion. tigures than one.
VII. In compound Multiplication, when the numbers given do end with fignificant figures, place them as in Addition and fubtraction. So \mathbf{I}_{34} being given to be multiplied by 2 , place them thus: then proceeding to the maltiplication 134 fay thus: two times 4 is 8 , which write un- $\frac{2}{268}$ der the line in the rank of your multiplying $\overline{268}$ figure, again, fay two times 3 is 6 , which likewife write under the line in the next rank; Lafly, two times 1 is 2 , which being likewife written down under the line in the next rank, the Product is difcovered to be 268 , and the work will ftand as in the Margent.

When
VIII. When the Multiplicator confifts of more figures than one, as many figures as it hath, ro many feveral products muft be fubfribed under the line, which at laft being added into one fum, gives you the total product of all. So 1232 being given to be be multiplyed by 23 , the operation 1032 thereof will fland thus, for 1232 being 2.3 multiplied by 3, (according to the 3696 laft rule) the product is 3696. Again, 24641232 being multiplied by 2, the pro-$-\frac{24}{28} \frac{6}{336}$ duct is 2464 , which feveral products, after they are placed in their due or-
1321 der, (that is, the firft figure arifing in - 123 each product under his refpective mul-

3963 tiplying figure) and added together, 2642 produce 28336 , the product required: 1321 In like manner 1321 being given to be 162483 multiplied by 123 , the product is 162483 , and the operation will fland as you fee in the Margent.
$1 X$. When the product of any of the particular figures exceeds ten, place the excefs under the line as before, and for every ten that it fo exceeds, keep one in mind to be added to the next Rank.

Example, 3084 being given to be 3084 multiplyed by 36 , the work will fand 36 thus; for 6 times 4 being 24, I write 185044 under the line, and referve 2 in mind
925^{2} for the two tens; then I fay 6 times 8 $\frac{11024}{}$ is 48 , unto which if \mathbf{I} add 2 kept in mind, the whole is 50 , wherefore fubfcribing o in the next rank under the line (o becaufe ther is no excels of so above 5 tens) I referve 5 in mind for the 5 tens $;$ again, Ifay 6 times nothing is nothing, to which adding 5 that I kept in mind, the whole will be but 5 , which Hlikewife fubfcribe under the line in the next rank; again 6 times 3 is 18 , which (in regard 3 is the laft figure of the multiplicand) I write wholly down; fo that the particular product arifing from the multiplying figure 6 is 18504: in like manner proceeding with the multiplying figure 3 , the particular product arifing will be 9252 . Laftly, thefe feveral products being placed in due order, and added together (after the manner of the 8 th. Rule of this Chapter) will give 111024 , which is the total product arifing from the multiplication of 3084 by 36 , and the operation will ftand as in the Margent. After the ${ }^{-}$ fame manner if 5073 be given to be multiplied by 256 , the product will be found to be 1298688 , and the operation will.ftand as you fee in the example.

5073
$-\frac{256}{30438}$
25365
10146
1298688

in the laft places towards the right hand as well in the multiplicand as the multiplicator, I multiply the fignificant figures 43 I , by the figures 15 (according to former rules,) fo there will arife 6465 , to which annexing on the right hand all the Cy phers before omitted, the true product will be 646500000 : more Examples hereof are thefe following.

XI. When in the multiplicator: Cyphers ate included between fignificant figures, multiply by the faid fignificant figures, neglecting fuch $\mathbf{C y}$ phers or Cypher, but obferve diligently to fet the particular products of the figniticant figures in their due places, according to the 8 th. rule of this Chapter.So if 56324 be given to be 1. $\quad 56324$ multiplied by 20006 , I tirft multi1 20006 ply the whole multiplicand 56324 337944 by 6 , and place the product orderly 112948 1126817944 underneath the line, then paffing over the three Cyphers, I multiply 56324 by 2 and place 8 (which is the firft excefs of this particular produat) directIy under the multiplying figure 2 , and the reft in ther order, fo at laft the true product will be found 1126817944 , and the work will fand as you fee in the Example.

Chap.V. by wobole Numbers.

More Examples hereof are thefe that follow.
$\frac{3094}{104}$
$\frac{10302}{12376}$
$\frac{3094}{321776}$

Note, That one of the principal cautions to be obferved in Multiplication, is the due placing of the particular products arifing by each multiplying figure : and that may be performed either by tzking care to place the firft figure or Cypher which arifeth in each product under the refpective multiplying figure; or at leaft the firf place arifing in the fecond product mult ftand under the fecond place of the firft product, and the firtt place of the third particular Product under the third place of the firft, $ో$ c.
XII. When a number is given to be multiplied by a number that contifts of I (or an unit) in the firft place towards the left hand, and a Cypher or Cyphers on the right hand of fuch unit (fuch are $10,100,1000,10000,8 x c$. the multiplication is performed by annexing the Cypher or Cyphers of the multiplicator at the end (to wit on the right hand) of the multiplicand; fo if 326 be given to be multiplied by IO, the product is 3260 ; if by 100 , the product is 32600 ; if by 1000 , the product is 326000 ; in like manner if 170 be multiplied by 10 , the product is 1700 ; if by $100,17000,8 \mathrm{cc}$.
XIII. When more numbers than two are given to be multiplied one by the other, that kind of Multiplication

Continuzl

 Multiplication. is called Continual, and is thus performed, Viz. firft multiply any two of the numbers given one by the other, then multiply the product by another of the numb rs given, and this product by the fourth number given (if there be fo many.) and in that order till every one of the given 18 numbers hath been made a Mul4 tiplicator, fo the laft product is 72 prod. 1 I the true product requircd: Ex-$\frac{22}{144}-\quad$ ven to be multiplyed continu$144 \quad$ aly, firft 18 mulipiplyed by 4 1584 Prod. 2 produceth 72 , which multiplied by 22 (the third number) produceth 1584 , the laft product or number required, fee the work in the Margent. The proof of Multiplication is by Divition as will appear by the next Chapter.
CHAP. VI.

Divifon by whole numbers.

I. DIvifion is that by which we difcover, how often one number is contained in another, or (which is the fame) it theweth how to divide a number propounded into as many equal parts as you pleafe.
II. In Divilion there are always three remarkable numbers which are commonly called by thefe names, the Dividend, the Divifor, and the Quotient.
III. The Dividend is the number given to be divided into equal parts.
IV. The
IV. The Divifor is the number by which the Dividend is to be divided; that is, it is the number which declareth into how many equal parts the dividend mult be divided.
V. The Quotient is the number arifing from the divifion, and theweth one of the equal parts required: fo if 15 were given to be divided by 5 , or into 5 equal parts, the number arifing, or one of the equal parts will be 3 , for 5 is found three times in 15: And here 15 is the Dividend, 5 the Divifor, and 3 the 2 Hotient.
VI. Divifion being the hardeft leffon in Azithmetick, mult be hieedfully intended by the Learner, for whofe

Divifoon by a fingle figure. eafe I hall ufe my utmott endeavours to make the way fmooth by Rules and Examples, beginning with the eafieft firft, which will be in that cafe when the Divifor confilts of one figure only; for example, Let it be required to divide 192 by 8, or 192 pounds into 8 equal parts or fhares; here 192 is the Dividend, 8 is the Divifor, and the 2uotient or one of the equal parts is fought.
VII. Place a crooked line at each end of thé Dividend, that on the left hand ferving for the place of the Divilor, and that on the right for the Quotient; then if the Divifor be a fingle figure, fubicribe a point under the firft figure of the $D i-$ vidend towards the left hand, if fuch firft figure be either equal unto, or greater than the Divifor, but if fuch firlit figure be lefs than the Divifor, put a point under the next place of the Dividend; which number To diftinguifhed by the point may be

What the Dividualis.

[^0] called the Dividual; fo in the example

D 2 8 the Divifor, I fubfrribe a point under 9 , not under I, becaufe it is lets than the Divifor. This done the Dividual, or number whereof the queftion muft be asked, is 19 .
VIII. Having thus prepared the numbers, ask how often the Divior is contained in the Dividual, and write the number which anfwers the queftion in the Quotient ; then multiply the Divifor by the number placed in the 2 uotient, and fubfribe the product underneath the Dividual. Laftly, having drawn a line under the product, fubtract it from the Dividual, and fubfrribe the remainder orderly underneath the line : So demanding
8) $192(2$
 in the Dividual I9, the anfwer is two times, wherefore I write 2 in the 2 utient; then multiplying the Divifor 8 by 2 (the number placed in the 2 uotient) the product is 16 , which I fubfribe orderly under the Dividual 19; and after a line is drawn underneath the product 16, I fubtract it from the Dividual 19 , and place the remainder 3 underneath the line.
IX. Put another point under the next place of the Dividend towards the right hand, and bring down the Figure or Cypher franding in that place to the remainder ; that is, fet it next after it, fo the whole will be a new Divid:al: Thus a point, being placed under 2 which ftands in 8) $192(2$

16
32 the next place of the Dividend, I wrrite 2 nextafter (to wit, on the righ hand of) the remainder 3 , 50 is 32 a new Dividual, or number whereof the fe- cond queftion muft be asked, and the work will ftand as you fee in the example.

Chap. VI. by whole Numbers.

X. A new Dividual being fet apart, renew the queftion and proceed according to the 8th. Rule of this Chapter. Thus demanding how often the Divifor 8 is found in the Dividusl 32, the anfwes is four times; wherefore I write 4 in the 2 notient, then mulfiplying the Divifor 8 by four (the figure laft placed in the 2 uotient the product 8)192(24 is 32 , which I fubferibe under the D_{i-} vidual 32 , and after a line is drawn 16 underneath, I fubtract the product 32.32 from the Dividual 32, and there being 32 no remainder, I fubfrribe o under the 0 line, fo the whole work being finifht, the 2 notient is found to be 24 , and the operation frands as you fee in the Example; wherefore I conclude, if 192 pounds be equally divided amongft 8 perfons, the thare of each perfon will be 24 pounds.

A fecond Example. Let it be required to divide 936 pounds into 9 equal parts; having diftinguith ed the firft Dividual by a point, (according to the 7 th. Rule of this Chapter) I demand how often the Divifor 9 is found in the Dividual 9, and finding it nnce contained in it, 9) 936 (1 I write I in the Quotient ; then multiplying the Divifor 9 by 1 , the product is 9 , which I fubfrribe under the, Dividual 9 ;after this, a line being drawn under the product 9, I fubtract it from the Dividual 9, and there being no remainder, I place a \circ underneath the line, as you fee in the Example.

Again, placing a point under 3 which ftands in the next place of the Dividend, I tranfribe the faid 3 next after the remainder o for a new Dividual, then asking
how often the Divifor 9 is contained in the Divi. dial 3 , and not fir. H git once contained therein, I write O in tie 2 notient, and now becaufe the produet which onght to arife from the Multiplication of the Divilor byo the Cypher lift placed in the (2) uoicut, jamounts to o, the Diy d_{3}, l_{3}, out of which that product (hould have been luberracted, remains the fame without alteration; wherefore after a point is fubfcribed under 6 the next place of the Dividend, I annex 6 to the Dividual 3 , fo there will be a new Dividual, to wit, 36 ; then deman-

9
036
36

The fubfance of The whole work of Divilion is divifinn by what briefly coutained in this following method foe ver. Verfe.
Dic quot, mutiplica, fubduc transferque fecundum. Or thus,
Firt yous muft ask bowo oft, in 2 uotient anfwer make; Then multiply, fubtraç, a new Dividual take.

- A compend ous reay of dividing by a fingle figure
XI. When in the Divifion the Divifor confifts of a fingle Figure onely, the Quotient may be written
down?

Chap. VI. by woboleNumbers.

 down, and all the operation performed in mind, without writing down any part thereof; fo 82506 being given to be halfed or divided into two cqual parts, the work will be thus, The Divifor 2 is found2) $82506(41253$ in 8 four times; in 2 once; in 5 twice; and there will remain I, which I being fuppofed to ftand before (so wit, on the left hand of) the Cypher makes 1o,then I fay 2 is found in io five times;and laft of all in 6 three times; fo that the true Quotient or one halfof the given number 82506 is found on be 41253

In like manner if 82506 be given to be divided by 3 ,or into 3 equal parts, the work will be thus, the Divifori 3 is found in 8 twice, \& there will remain 2 , which 2 being fuppofed to fland before ($t o$ wit, on the left hand of) the following 2 makes 22 , then I Vay 3. is found in 227 times, in 155 ti nes, in ontatall, and laftly in 6 twice; fo that the true quotient or one of the 3 equal parts required is 27502 . After the fame manner may divition be wrought by any fingle figure, without much charge to the memory.
Note,here theLearner may ask what thall be done with the laft temainder, if any happen, when the Divifion is finifhed? For a full A note, concirning the remainder afier the Divifion is endid, if any happen. anfwer to this, I refer the Reader to the Note in the fifth Rule of the feventh Cbapter; yet I fhall here propound an example where the faid cafe happens, viz.Let it be required to divide. 351 by 8 , or 351 pounds equally amongit 8 perfons; now if the operarion be profecuted according to the former rules, the 2notient will be found to be 43 , and atter the Divifion D. 4
is finifht, there will remain 7 , that is, each perfon muft have 43 pounds, and there will be an overplus of 7 pounds, which muft be alfo divided equally among the 8 perfons, but that cannot be done till the 7 pounds be reduced into thillings, and then thofe fhillings mutt be divided by 8 to give every perfonhis due thare of the frillings contained in the faid 7 pounds; again, if there yet remain any furplufage of fhillings, they muft be reduced to pence, which muft alfo be divided by 8 , to give every p rfon his due thare of pence: fo that when this queftion is fully anfwered each perfons fhare will a ppcar to be 43 l.-17 s.-6 d. But how the before mentioned Keduction is performed will be. made manifett in the fifth rule of the next Chapter. Divifion by two XII. When the divifor confifts of or more figures, two, three, or how many placesfoever the firft and eas the operation is more difficult than freft method. theformer, but depends upon the fame grounds, and therefore the learner being well vers'd in the preceding method of dividing by a fingle figure, will the more readily underftand thefe that follow, which are two, whereof the firlt is the eafier, but the later more expeditious, and that which indeed is principally to be aimed at: For an example of the former, let it be required to divide 4112772 by 708 , or (which is the fame) to divide 4112772 into 708 equal parts.

Firft, a Table is to be made to thew at firft fight any Multiple or product of the Divifor, it being taken twice, thrice, or any number of times under ten, fo having firft written down the Divifor it felf 708 , and drawn a line on the right hand thereof, I place I on the rigut hand of the line directly feribe the double thereof, which is 1416 , and place the figure 2 direfly againft the faid double, to wit, on the otherlide of the line. Again adding 1416 (to wit the double of the Divifor.) to the Divifor it felf 708 , the fum is 2124
for the triple of theDivifor, this triple I fubfrribe under the double and place 3 on the other fide of the line right againft the triple; Again adding 2124 (the triple of the Divifor) to the Divifor 708,I find 2832 for the quadruple of the Divilor, which quadruple I fubferibe under the triple, and proceeding in like manner, at laft the table is finilht, which readily fhews the Divifor, with the duple, triple, quadruple, quintuple, , extuple, Septuple, octuple, and noncuple of the Divifor.

Now for a proof of the faid Table, adding the laft number thereof, to wit, 6372 (which was found to be nine times the Divifor) to the Divifor 708, I find the fum to be 7080 , which (by the 12 th. Rule of the fifth chap.) is evident ten times the Divijor; wherefore I conclude that the Table is true, in regard that the laft number thereof is derived from all the fuperiour numbers.
The Table of Multiples or Products of the Divifor being thus prepared, write down the dividend on the right hand of the Divifor; then diftinguilh bya point fo many of the foremoft places of the Dividend towards the left hand as are either equal in value (being confidered apart) to the Divifor, or which

28324	5727
35.40	5
42486	5664
49567	6372
56648	6372
63729	0

Then demanding how often the Divifor 708 contained in the dividual 5727 , the anfwer wi: .. found by the Table to be 8 times, for lonking : the Table I find that 9 times the Divifor is the nt: greater, but 8 times is the next leffer than the d :vidual, wherefore 1 write 8 in the quotient, an 1

Chap. VI. by whole Numbers. the number in the Table which flands againf 8 , to wit, 5664 I fubfcribe under, and fubtract from rhe dividual 5727 , placing the remainder 63 underneath the line.

Again, I put a point under the next place of the diudend, where I find the figure 7 , and therefore trapicribing 7 next after the remainder 63 , the new dividual will be 637 , then demanding how of ten the Divifor 708 is contain'd in the dividual 637^{\prime}, and not inding it once contain'd therein, I write. - in the quotient, and fince in this cafe (that is, when a (ypher anfwers the queftion) the dividual remains the fame without alteration, the figure or cypher fanding in the next place of the dividend is to be tranferibed after the dividual for a new dividual, fo writing 2 next after 637 , the new dividual is 6372 , wherefore demanding how often the Divifor 708 is contain'd in 6372 , I find by the Table it is contain'd in it 9 times, wherefore writing 9 in the Quotient, and placing the number which fands againf 9 in the Table, to wit, 6372 under the dividual 6372 , and fubtracting it from the dividsal there will remain 0 . Wherefore I conclude if 4112772 be divided by 708 , or into 708 equal parts, the true 2 uotient or one of the equal pirts required is 5809. Divifor. 1881\%)

In like manner if 20304 be divided by 188, that is into 188 equal parts, the quotient arifing or one of thofe equal parts will be 108 , and the operation will fland you fee.

The preceding method of Divifion by the help of a Table of the Multiples or Products of the Divifor, as it is moft eafie, fo in fome Cafes (namely, where the Divifor is great, and a Quotient of many places is required, as in calculating Tables of Intereft, Aftronomical Tables, and fuch like)it excells all other ways of Divifion, both in refpect of certainty and expedition, but for common practice it is ton tedious, and therefore I thall proceed to the choifeft practical method.
XIII. I now come to the laft and principal method nf Divifon, when the Divifar con-

The latter and choireft practical meihod of Divifion, when the Divifor confifis of many places. fifts of many places, wobich to fuch as bave the Table of Multiplication by beart will not be difficult; for example, let 56304 be a number given to be divided by 184 , that is, into 184 equal parts, and the 2 eotient or one of the equal parts is required.

Firtt, diftinguifh by a point (as before)fo many of the formeft places of the dividend towards the left hand, as are either equal in value (when they are confider'd apart) to the Divifor, or elfe which being greater, yet come neareft unto it, thus I fubfribe a point under the figure 3, thereby fetting apart 563 , being the feweft of the foremoft J84) 56304 (places which will contain the DiviSor; $f 0$ is $\$ 63$ the dividual, or number whereof the firit queftion muft be asked. Having thus prepar'd the numbers, I demand how often the Divifor 184 is contained in the dividual 563; and fince to anfwer this queftion and fush like, there is a necelfity of tryal, it will be requilite to fhew how this tryal may fitly be made : firft, there-

Chap.VI. by whole numbers. fore compare the number of places in the dividual with the number of places in the Divifor, and when the number of places is the fame in both, let it be asked how often the firft or extream figure of the Divifor towards the left hand is contained in the firft figure of the dividual towards the fame hand; fo here dernanding how often 1 is contained in 5 , the anfwer is 5 times, whence 1 infer that the Divifor 184 is not contained oftner than 5 times in the dividual 563 (for 6 times 184 is manifeftly greater than 563) but whether it be contained 5 times in it or not, examination muft be made either by multiplying (in fome by-place) the Divifor 184 by the faid 5, and comparing the product with the dividual 563 ; or elfe thus, faying 5 times 1 (to wit the 1 in the Divi $\int_{0} r$) is contained in 5 , to wit, the firft figure of the dividual 563,5 times, but then 8 , the following figure of the Divifor, cannot be found 5 times in 6, the following figure of the dividend, and confequently the Divifar 184 is not contained 5 times in the dividual 563 ; wherefore I make another tryal to fee whether it may be contained 4 times in it or not, faying 4 times 1 is 4 , which is found in 5, and there will remain 1, but then 4 times 8 , which is 32 , cannot be had in 16 , (for the 1 before remaining being fuppofed to ftand on the left hand of 6 maketh 16) hence I conclude again, that the Divifor 184 is not contained 4 times in the dividual 563; wherefore I make another tryal to fee whether it may be contained 3 times in it or nor, faying 3 times I is 3 , which is fourd in 5 , and there will remain 2, again, 3 times 8 is 24 , which is found in 26 (for the 2 before remaining being fuppofed to fand before the 6 in . the
the dividual makes 26 and there will remain 2 :laftly, 3 times 4 is 12 , which is likewife found in 23 , (for the 2 remaining being fuppofet to ftand before the 3 in the dividual makes 23) whereby I fee that the Divifor 184 is contained 3 times in the dividual 563 , wherefore I write 3 in the Quotient, and proceeding according to the 8 th \cdot Rule of this Chap184) $56304(3$ ter, I multiply the Divifor 184 by 3 (the figure placed in the 2 notient) 55^{2} fo the Product is 55^{2}; which I fub-
frribe orderly underneath the dividual $5^{6} 3$, then having drawn a line underneath the faid Product, I fubtract it from the dividual, and fubfcribe the remainder which is II under the line.

Again, according to the 9 th Rule of this Cbapter, I bring downo which ftands in the next place of the dividend, to the remainder 11 , fo there is 110 for a new dividual, then demanding how often the Divifor 184 is found in the dividual 110 , and not finding it once contained in it, I writeo in the Quotient (which is to be done as often as the queItion is anfwered by nothing;) now becaufe the Product ariling from the multiplication of the Divifor by o (the Cypher laft placed in the Quotient) 184) 56304 (306 amounts to o; the dividual 110 out of which that Product
552
1104

1104 fhould be fubtrated, remains the fame without alteration; wherefore after a point is fubfrribed under 4 the following place of the dividend, I annex 4 to the laft dividual 110 , fo there will be a new dividual, to wit, 1104 ; and here the queftion at larg is to know how often 184 is found in 1104: but to leffen
 the tryal, becaufe the dividual confifts of one place more than is in the Divifor, it mut be asked how often the firft figure of the Divifor on the left hand is contained in the two foremoft places of the dividual towards the left hand, viz. I demand how ofton 1 is contained in 11, and althongh it may be had II times, yet I need never begin the tryal above 9 times, therefore I make tryal with 9 , faying 9 times I is 9 , which is found in II, and there will remain 2 ; but then 9 times 8 which is 72 cannot be found in 20 (20 becaufe the 2 remaining being fuppofed to ftand before o in the dividual makes 20) therefore I make tryal with 8 , faying 8 times 1 is 8 , which is found in II, and there will remain 3, but then 8 times 8 cannot be had in 30 (30 becaufe the 3 remaining being fuppofed to ftand before the o or Cypher makes 30) therefore I make tryal with 7 , faying 7 times 1 is 7, which is found in II, and there will romain 4; but then 7 times 8 cannot be had in 40 , therefore I make tryal with 6 , faying 6 times I is 6 , which is found in 11 , and there will remain 5 ; alfo 6 times 8 is 48 , which is found in 50 , and there will remain 2 ; laftly, 6 times 4 is 24 , which is found in 24 , whereby at length I fee that the Divifor 184 is contained 6 times in the Dividual 1104 , wherefore I write 6 in the 2 uotient, and proceeding according to the 8 th. Kule of this Chapter, I multiply the Divifor 184 by 6 (the figure laft placed in the 2 notient) fo the Product is 1104 , which heing fubfcribed under and fubtracted from the dividual 1104 , the Remainder is 0 , foat laft I conclude that the 2 notient fought is 306 .

Note, if the figure affumed for the 2uotient holds
holds good upon tryal, as aforeffaid, by two or three of the foremoft places of the dividual, it will tor the moft part hold throughout the dividual; but this mult be a perpetual Rule, that whenfoever the Prodact of the multiplication of the Divifor by the figure placed in the Quotient happens to be greater than the dividual, from which it ought to be fubtracted, fuch Product muft be ftruck out of the work, and a leffer figure is to be placed in the Quotient.

For a fecond Example, let it be required to divide 15114220 by 2987 , or into 2987 equal parts.

Firft, the Divifor 2987 being greater than 151 I, (to wit, the four foremoft places of the Dividend) II fet a point under 4, thereby fetting apart 15114 for a Dividual;then becaufe the Dividual confifts of 2987) 15114220 (5 one place more than the Di 235 firft figure of the Divifor to$\frac{14935}{179}$ wards the left hand) is con179 tained in 15 (the two fore moft places of the dividual) and tinding the anfwer to be 7 times, I infer thence that the Divifor 2987 cannot be contained more than 7 times in the dividual 15^{114}; but whether it will be contained 7 times in it or not, examination muft be made, either by multiplying 2987 by 7 (in fome by-place) and comparing the Product with the dividual 15114 , or elfe by the manner of tryal before delivered in the latt Example : fo at length it will be difcovered, that the Divifor 2987 will not be found above 5 times in the dividual 15114 ; wherefore (according to the 8th. Rule of this Chapter) writing 5 in the Quotient, and multiplying 2987 by 5 , I fub-

Chap.VI. by whole Numbers. 53 1 fubfcribe the product of that multiplication, which is 14935 , under the dividual 15114, then drawing a line underneath the faid Product, and fubtracting it from the dividual 15 114, I fubfrcribe the remainder 179 under the line.

- Again (according to the 9th. Rule of this Cbap. ter) I bring down 2 , the next place of the Dividend, to the faid Remainder 179, 2987) 151142.20(50 fo the new Dividual will 14935 be 1792 ; that done, asking how often the Divifor -2987 is contained in the dividual 1792, and not finding it once contained in it, I write \circ in the Quotient; and here becaufe the quettion is anfwered by 0 , the next place of the dividend, to wit 2 , is to be brought down to the dividual 1792, fo the new dividual is 17922. Then renewing the queftion, and proceeding as before, at length the Divifion be-

2987) I5 I14220(5060

17922
17922
00 ing finifht, the Quotient will be found 5060 ex actly, without any Remainder; but if any Remainder had hapned after the fubtraction of the laft Product, it muft have been profecuted according to the note before given in the example at the latter end of the IIth. Rule of this Cbapter.

In like manner if 1208939550 be divided by 19999, or into 19999 equal parts, the quotients or one of thofe equal parts, will be found 60450 , and the work will ftand as here you fee.

Thig

This latter method of Divifion is to be prefer'd before any of the common ways of dividing by dafhing out of figures, where the fteps of the Divifion are fo confounded (befides the burden upon the memory by a promifcuous Multiplication and Divifion) that if any errour happen, it can hardly be corrected without beginning the work anew ; But in the way before explained, the particular Multiplications, Subtractions, and Remainders, which belong to every figure of the Quotient, are fo diftinctly and clearly expreft, that if an errour happen, the work may eafily be reformed.
XIV. So often as the queftion is repeated in Divifion, fomany places there muft How the num- be in the quotient (which may be diber of places in the Quotiont may be d:fco. vered. fcovered by the number of Points placed under the dividend) and fo many times is one and the fame kind of operation repeated, the fubflance whereof is contained in the Verfe before mentioned at the end of the 1oth. Rule of this Chapter.
XV. When the Divifor confifts of $£$ or an unit A compendious way of diviaing by I , wards the righe the divifion is per100, 1000 : many places of the Dividend towards the right hand as the Divifor hath Cyphers; fo the figures

Chap.VI. by whole Numbers. 55 which fland on the left hand of the line, give the Quotient, and thofe cut off to the right (if they be lignificant figures) are to be proceeded with as a furplufage or overplus remaining, according to the Note at the end of the eleventh Rule of this Cbapter. So if 4720 l.were given to be divided equally a- 10) $47210(472$ mongft 10 perfons, the fhare 100) 47120 (47 of each would be 472% alfo if 1000) 41720 (4 the faid 4720 l . were to be divided equally amongft 100 perfons, the fhare of each would be $47 l$. and there would be a furplufage or remainder of 20%. to be alfo fubdivided amongfthem, after the faid 20 l . are converted into fhillings, according to the fith Rule of the next Chapter. Lanty, if the faid 4720 l . were to be divided amongft 1000 perfons, the fhare of each would be $4 l$.and there would be a remainder of 720% to be alfo divided as aforefaid. See the form of the Work in the Margent.

XVL. When the Divifor conlifis of any fignificant figure or figures in the firft or foremoft place or places towards the left hand, and nothing but a Cypher

Another Comrendium in Divifion. or Cyphers towards the right, cur off by a line fo many places of the Dividend rowards the right hand as the Divifor hath Cyphers towards the right; then divide the figures of the Dividend, which ftand on the left hand of the line, by the figures in the Divifor which remain, when the faid Cypher or Cyphers are omitted, remembring after the divifion is tinithed, to write down next after the laft remainder the places of the Dividend which were finf cut off: So if 36732 were given to be

$$
\text { E } 2 \text { divided }
$$

divided by 20, the Quotient will be 1836, and there will remain 12 , viz. if you cut off one place from the Dividend towards the right hand(becaufe the Divifor ends, with one Cypher) and then divide the reft, to wit, 3673
I
$210) 3673 / 2$ (1836 Rule of this Cbaptitr) there will arife in the Quotient 1836 , and the laft remainder, after fuch divilion is fininht, will be \mathbf{I}, unto which if 2 (the figure firt sut off from the Dividend) be annexed, the total remainder is 12 .

In like manner if 7456787 were given to be divided by 304000 , the Quotient will be 24, and there will remain 160787 ; viz. If you cut off 3 places from the Dividend towards the right hand (3 places becaufe the $304 \mid 000$) 74561787 (24 Divifor ends with 3

$\frac{608}{1376}$
1216
160787

XVII. Divifion and Multiplication do interchangeably prove one another; for

The proof of Multiplication and Divifi on in Divifion if you multiply the Divifor by the Quotient, the Product will be equal to the Dividend: So in the Example of the 13 th Rule of this Chapter; if 184 the

Chap. VI. by whole numbers. the Divifor be multiplyed by 306 the Quotient, the Product is 56304, which is the fame with the Dividend; but when, after the whole Divifion is finilhed, any tigures remain of the laft Subtraction, add them likewife to the Produet: So in the laft Example of the 16 th . Kule of this Chapter, the Divifor 304000 being multiplyed by the 2 uotient 24, produceth 7296000 , unto which if you add the number remaining, to wit, 160787 , the fum is 7456787 , which is the fame with the Dividend. Again, in Multiplication, if the Produce be divided by the Multiplicator, the Quotient will give you the Multiplicand, or if the Product be divided by the Multiplicand, the Quotient will give you the Multiplicator: So in the firf Example of the gth. Rule of the laft Cbapter. if the Product II 1024 be divided by the Multiplicand 3084, the 2notient gives the Mulciplicator 36 .

There is alfo of Multiplicatiois a Common proof argued from the Multiplicand, the Multiplicator and the Product, by cafting away nines, but by that way of proof (though rightly ufed) a falfe Product will be affirmed to be true: Example, if 3462 be multiplyed by 786 , the true Product is 2721132 ; but if If fay 4953132 or 3153132 is the Produet (or many others which may be given) the proof by nines will confirm them to be true Products, though they arefalfe, as will be evident to fuch as know the Rule, which I mention here only to fet a brand upon it, that it may be avoided by all lovers of Truth.

$$
E_{3}
$$

> СНAP.

CH AP VII.

Reduction.

I_{9} Orafinuch as in Money, there are diverfities of kinds,viz. in England, Pounds, Sbillings, Pence, and Farthings; allo divers kinds of Weights, Meajures, \&c. as hath been fully declared in the fecond Chapter; and becaufe it is often times required to find how many pieces of one kind of Money are equal in value to a given number of another (and fo likewife of W eigbts, Meafures, \&cc.)it will be convenient in this place to thew how that is performed, fince thereby the Rules of Multiplication and Divifion before delivered will be exercis'd; This kind ofoperation is called Feduciion.
II. Reduction is either defcending or afcending. III. Reduciion defcending is, when fome Integers of a number of greater denomination being given, it is required to find how many Integers of a leffer denomination are equal in value to that given number of the greater: As when it is required to find how many /hillings are contained in 301 . Likewife how many pence in 320 s . or how many bours in 365 days, $8 c$.
IV. Reduciion afcending is, when fome Integers of a number of leffer denomination being given, it is required to find how many Integers of a greater denomination are cqual in value to that given num. ber of the leffer: As when itis requird to find how many pense are contained is 500 fartbings : likswife how many fillings in $3 \div 8$ pence : or how ma. ny dzys in 864 bours: 86
V. Reduction decending is performed by Multiplication, for if the given number of In - Reduction derogers of a greater denomination be fending is multiplied by a number, which expref- performid by Seth how many Integers of the lifer are Multi plication equal to one of the Integers given, the Product is the number of Integers of the lifer denomination requires.

So 230 l. of Englifh Money will be reduced into 4600 s. for if $2 j 0$ be multiplied by 20 (the mumber of Shillings which are equal to 1 pound) the product is 4600 ;in like manner

4600 s . will be reduced into 55200 d.for if 4600 be multiplied by 12 (the number of pence contained in I filling) the pro- \qquad $\begin{array}{llll}\text { duct is } 55200 \text {. Alto } 55200 & 92 \\ \text { pence being multiplied by } & 4 & 46\end{array}$ (because 4 farthings make a pen$n y^{*}$) are reduced into 220800 Farthings, as by the operation in the Margent is evident.

The like method is to be obferved in Weights, Measures, \&c. So 345 Ounces Troy are reduce into 6900 Peny weights, and 6900 Perry vveigbts to 165600 Grains, as by the operation in the Margent you may fee.

Note, By this Rule the Learner Compare this with is furnifhed with skill to refolve that cafe in Divition, when the Dividend is lefs than the Divifor:

$$
E_{4}
$$

laft Example: of
The Isth Rule of the ort. Chapter.

Example 。

Example, Let it be required to divide 7 pounds of Englifh Money cqually amongft 8 Perfons; here it is evident that the Dividend 7 is lefs than the Divifor 8 ; that is, the number of pounds' is lefs than the number of Perfons, and confequently each thare mult be lefs than a Pound, fo that in effect it is required to find how many Sbillings and Pence belong to each Perfon for his 贝hare: Firft, therefore reduce the 7 Pounds into Sbiliings, which will be 140 , thefe divided by 8 give 17 Sbillings to each Perfon, and there will yet be a remainder of 4 Sbilings to be alfo eqnally divided into 8 parts, but thefe 4 Shillings muft be firft reduced into Pence, which will be 48 , then dividing 48 by 8 , the Quotient will give 6 Pence more to every Perfon: fo at laft it appears that if 7 Pounds of Englifh Money be equally divided into 8 parts, the entire Quotient (or one of the equal (hares) will be 17 Sbilliugs and 6 Fence.

In like manner, if 354 Pounds of Englifh Money be givento be divided equally amongtt 125 Perfons, the thare of each will be found to be 2 Pounds, 16 Sbillings, 7 Pence, 2 Farthings, and fomewhat more, but the parts of a Farthing being of no moment (and not properly to be handled in this place)are neglected.

Compare thefe two Examples with the laft Example of the eleventh Rule of the fixth Chapter.

In Ruduction defcending, the Learner may reseive help by the fubfequent Tables.

Chap. VII.

Reduction

Pounds
Shillings
Pence

2. Of Troy Weight.

Pounds
Ounces
Peng W.
Also in Apothecaries Weights.
$\left.\begin{array}{l}\text { Ounces Tray } \\ \text { Drams } \\ \text { Scruples }\end{array}\left\{\begin{array}{l}8 \\ \frac{8}{4}\end{array}\right\} \begin{array}{l}0 \\ 3 \\ 20\end{array}\right\} \begin{aligned} & \text { Drams. } \\ & \text { Scruples. } \\ & \text { Grains. }\end{aligned}$
3. Of Averdupois Weights.
 Quarters
Pounds
Оизces
4. Of Liquid MeaSures.

Hog heads Gallons
Pottles
Quarts

Quarters	7 - 8) Buhels.
Bufbels	4 Pecks.
Pecks	
Gallows	
Pottles	
2uarts	$J<(2)$ Pints.

6. Of Long Meafures.

7. Of Superficial Meafures of Land.

Acres

Roods
 8. Of Time.

Weeks	Dajes.
Dayes	Houres.
Hours)

Toreduce Inte- VI. Integers of divers denominasers of divers tions may be reduced into the laft of into the loweft thofe denominations according to the of those deno- fifth Rule aforegoing, by defcending minations.
orderly to the next inferiour denomination,

Chap. VII.

Reduction
nation, and adding to each Product fuch Integers (if there be any?) which are of the fame name.
So 12 Pounds, 13 Jhillings, and 10 Pence may be reduced into 3046 Pence in this manner, viz. 121 . multiplied by 20 (becaufe 20 s. make one l.) produce 240 Sbillings, unto which adding 13 s . the fum is 253 Sbillings : Again, 253 s. multiplied by 12 (becaufe 1 Shilling is equal to 12 Pence) produce 3036 Pence, unto which if 10 Pence be added, 253 the fum is 3046 Pence, as by 3036 the operation in the Margent add 10 is manifeft.

But after that general Method is well underfood the work of the laft Example, and fuch like may becontracted thus; viz. To convert 12 Poxnds, 13 Shillings, 10 Pence, all into

- pence, Firft 12 multiplied by 0 , (which ftands in the units place of 20) produceth 0 , but inliead of 0 , I write down 3 under the line (to wit, the 3 that flands
 in the units place of the 13 hil-516
lings in the fum propounded;) 253
Then I proceed to multiply 12 by 2 , faying twice 2 is 4 , to which adding 1 (for the ten in the faid 13 Sbillings) it makes 5. which I fet on the left hand of 3 before wrinest; Lafly, twice I is 2, which Ifet on the lett hand of 5; And fo 12 Pounds 13 Sbillings are converted into 253 Sbillings.

It remains to multiply the faid 253 by 12 (becaufe 12 Pence makes I Sbilling) and toadd 10 to the Product, which may be done thus; Firf, twice 3 is 6 , to which adding Io (to wit, 10 pence in the Sum firft propounded) it makes 16, wherefore (according to the Rule of Multiplication) I fet 6 under the line, and keep I in mind; Again, twice 5 with I in mind making 1 1 , I write down \mathbf{x}, and keep \mathbf{I} in mind; Likewife twice $\mathbf{2}$ and \mathbf{I} in mind making 5, I write down 5; Then 253 mul tiplied by i makes 253, which I fet orderly under 516; Laftly, thofe two Products added together mak: 3046 , whicti is the number of Pence contained in $12 \%_{0}-13 \mathrm{~s} .-10 \mathrm{~d}_{0}$ as before was found out by the general method.

- So 35 Ounces, 16 Peny Weights, and 12 Grains Tray will be reduced into 17196 Grains.
VII. Reduciion afcending is performed by Di-

Reduction ofcending is performed by Diwifion. vifion, for if the number of Integers given be divided by fuch a number of the fame Integers, as are equal to one of the Integers required, the Quotient is the number of Integers fought.

So 220800 Farthings being divided by 4 (the number of Farthings in a Peny) give 55200 Pence in the 2uotient; In like manner if 55200 Penee be divided by 12 (the number of Pence in a silling) the Quotient is 4600 Sbillings. Laftly 4600 hillings being divided by 20 (becaufe 20 s. make a Poundfterling) the quotient is 230 Pounds (terling) which are equal to 220800 Farthings firft given. The operation is as followeth.
Chap.VII.
Reduction
4) $220800(55200(46010(230 \%$
$\begin{array}{r}\frac{48}{72} \\ 72 \\ \hline 00\end{array}$

In like manner, 34268 Grains Troy will be reduce to 5 l. 11 Ounces, 7 Deny Weight, and 20 Grains. This kind of Reduction may be made the eafier to the Learner by the following Tables.
2. Of Tray Weight.

Alto in Apothecaries Weights.
\(\left.\left.\left.$$
\begin{array}{l}\text { Grains } \\
\text { Scruples } \\
\text { Drams }\end{array}
$$\right\} $$
\begin{array}{l}20 \\
\hdashline\end{array}
$$\right\} \begin{array}{l}20

3

8\end{array}\right\}\)| Scruples. |
| :--- |
| Drams. |
| Ounces Troy. |

3. Of Averdupois Weight.
 4. Of
4. Of Liquid Meafures.

Pints
Quarts
Pottles
Gallons

5. Of Dry Measures.

6. Of Long Meafures:

$$
A l f 0,
$$

 Quarters $\int \stackrel{\perp}{\square}\left\{_{4} \int_{\text {Cards, alSo Ells. }}\right.$ Of Superficial Measures of Land. Perches $7-\int^{40}$. Roods or Quarters or Poles Roods 8. Of Time. $\left.\begin{array}{l}\text { Minutes } \\ \text { Houres } \\ \text { Dyes }\end{array}\right\} \stackrel{\rightharpoonup}{3}\left(\begin{array}{c}60 \\ 24 \\ 7\end{array}\right\} .\left\{\begin{array}{l}\text { Houres. } \\ \text { Bayes. } \\ \text { Weeks. }\end{array}\right.$

Note,

Note, that if after Divifion is finifhe in Reduction afcending there be any remainder, it is of the fame denomination with the Dividend.

Note alfo, that Reduction defcending and afcending do mutually prove one another, by inverting the queftion;for as in 56 Pounds fterling, there will be found 53760 Fartbings, by Reduction defcending; So for Proof thereof, 53760 Fartbings will be reduced to 56 Pounds, by Reduction afcending.

Quettions to exercife Reduction.

1. In 257 l. how many fhillings? Anfever, $\$ 140$.
2. In 3076 l. how many thillings? Anfw. 61520.
3. In 902 fhillings how many pence? An.10824.
4. In 2179 thillings how many farthings? ArSwer, 104592 .
5. In 49 l. -13 s. -7 d. how many pence? Asfuper, 11923.
6. In 2053 l. - 14 s.-9 d.- $2 f$ fow many farthings? Anfow. 1971590.
7. In 354 lb . of Troy weight how many grains (of Gold-fmiths weight?) Answ. 2039040.
8. In 300 Englifh miles how many yards? Anfiver, 528000 .
9. In x Englifh mile, how many barley corns length? Anfw. 190080.
10. In 560 Acres how many Perches? Anfwer 89600.
11. In 225 Acres, 3 Roods, and 30 Perches, how many Perches? An $\sqrt{w} .36150$.

10 In 11923 pence how many pounds? Anfwer 49 l. -13 s. -7 d .
13. In 5764684 farthings, how many pounds? Answ. 6004 l. - 17 s. $\rightarrow 7$ d.
14. In 234678 Perches, how many Acres? AnSwer, 1466 Acres, 2 Roods,and 38 Perches.
15. In 525960 minutes of an houre, how many days? Axfo. 365 days and 6 houres (or I year very near.)
16. In 10080 Pints, how many Hogheads ? Anfew. 20.
17. In 34678 grains of Apothecaries weight, how many ounces Troy? Anfw. 72 Ounces, I Dram, 2 Scruples, and 18 Grains:
18. In 106735 Pints of wheat, how many Quarters ? Anfoc. 208 Quarters, 3 Buthels, 2 Pecks, I Gallon, I Pottle, 1 Quart, I Pinte.
19. In 3969301 Barley cornes length, how many Miles? Anfw. 20 Miles, 7 Furlongs, 12 Yards, 2 Feet, 4 Inches, and I Barley corns length.
20. In 1900800 Barley corns length, how many Miles? Anfw. 10.

CHAP. VIII.

Of the Rule of Three Direct.

1. $T \mathrm{HE}$ Rule of Three is fo called, becaure by three numbers known or given, it teacheth to find a fourth unknown; it is alfo called the Golden Rule for the excellency thereof; Lafty, it is called the Ruie of Proportion for the reafon hereafter declared.
II. The Rule of Three is either fingle or compound.

1II. The fingle Rule is, when three terms or numbers are propounded, and a fourth pro- The Rule portional unto thern is dermanded. of Three
IV. Four numbers are faid to be proportionals, when the firft containeth the fecond, or is contained by the fecond in the fame manner as the third containeth the fourth, or is contained by the fourth : fo thefe 4 numbcrs are faid to be Proporsionals, $8,4,12,6$, for as 8 containeth 4 twice ; fo doth 12 contain 6 twice, and therefore 8 is fiid to have fuch proportion to 4 as 12 hath to 6 ; likewife thefe are Proportionals, $4,8,6$, 12. For as 4 is the half of 8 , fo is 6 the half of 12 ; and therefore 4 is faid to have fuch proportion to 8 as 6 hath to 12 .
ν. The terms or numbers of the Rule of Three (to wit, the three numbers given, and the fourth fought) confift of two different denominations, viz, two of the three given terms have one name, and the other given term with the term

The divers denominations of the terms in the Rule of Threce
required have another: fo this queftion being demanded, if four Students fpend 19 pounds in certain moneths, how much moncy will ferve 8 Students for the fame time, and at the fame rate of expence? Here Students and pounds are the two denominations of the terms in the queftion, viz. 4 and 8 (being two of the terms propnunded) have the denomination of Students, and 19 the other term given, together with the term required, have the denomination of pounds.
VI. In the Rule of Three, two of the three given terms imply a fuppofition, and the third moves a queftion: fo in the aforementioned queftion a fuppofition is made, that 4 Students fpend 19 pounds, and a queftion is moved with the number 8 , to wit, how many pounds will 8 Students fpend.
VII. In the Rule of Three, the numbers given The right ore mult be fo ranked, that the known dering of the number, or term upon which the quezerms given. ftion is moved, mult poffels the third place in the Rule; alfo of the other two that which hath the fame denomination with the third, muft be in the firft place: laftly, the other known term, which is of the fame denomination with the fourth term fought(or anfwer of the queftion) muft poffefs the fecond place: fo in the queftion before mentioned, the terms 4,19 , and 8 , are to be thus placed, viz. 8 is the term upon which the queftion is moved, and therefore to poffefs the third place in the Rule; 4 is of the fame denomination with 8 , viz. of Students, and therefore to be in the firft place; Laftly, 19 being of the fame denomination with the term fought, viz. of moncy, is to be in the

Chap.VIII. of Three Direct

fecond place: and fo they will be placed in the Rule thus,

$$
\begin{array}{llc}
\text { Students. } & \text { Pounds. } & \text { Students. } \\
\text { If } 4 & \text { 19 } & -8
\end{array}
$$

That is to fay, if 4 Students fpend 19 pounds, what will 8 Students fpend ? And here for the better difcerning of the term or number upon which the queftion is moved, you may obferve, that for the moft part it is the known number in the queffion which immediately followeth thefe or fuch like words; viz. How many? Hoow much? What will? How long? How far? coc.
VIII. The Rule of Three is cither Direct or Inverfe.

1X. The Rule of Three Direct is, when the fenfe or tenour of the queftion requireth, The Rule of that the fourth number fought muft Three Direct. have fuch proportion to the fecond, as the third number bath to the firft; fo in the afore-mentioned queftion, if 4 Students fpend 19 pounds, how many pounds will 8 Students fpend at the fame rate of expence? It is evident that the thing required is to find a number which may have fuch proportion to 19 , as 8 hathto 4 ; that is, as 8 is the double of 4 , fo ought the fourth number to be the double of 19 ; for if 19 pounds be required to maintain 4 Students a certain time, as much more muft needs be required for the maintenance of 8 Students the fame time ; and theretore in this cafe we may fay in a direct proportion, as 4 is to 8 , fo is 19 to a number which ought to be as much more as 19:
X. In the direct Rule of Three, if you multiply the fecond term by the third, or How to work (which is all one)the third term by the Rule of Three Direet, the three given terms beingfingle nnmbers. the fecond, and then divide the Product by the firft, the quotient willgive the fourth term or fourth proportional required: fo in the queftion before propounded, if you multiply 19 by 8 , the product is 152 , which if you divide by 4 , the quotient will Stud. l. Stud. I. give you 38 the fourth term If $4-19-8-(38$ demanded, and the work will ftand thus.
A fecond Example may be this, if 8 yards coft 9 pounds, how much will 3 yards coft? Anfwer, $3 l_{2}-7$ s.-
6 d. 32 32

This quefion being flated according to the feventh Rule of this Chapter, y. l. y. l. s. d. 8-9-3-(3:7:6 $\frac{3}{8)^{27(3} \text { pounds }}$
$\frac{24}{3 \text { the remainder. }}$ $\frac{20}{8)} 60$ (7 fhillings. 56
4 the remainder 12
$8) 4^{8(6} 6$ pence will ftand as here you fee; then multiplying (asbefore) the fecond term 9 by the third term 3, the Product is 27 , which being divided by the firf term 8 , the quotient is 3 pounds, and there is a remainder of three pounds, which muft be reduced into 60 fhillings, and after thofe Thillings are divided by 8 , and the reft of the work profecuted according to the

Chap. VIII. of Three Direct

Note at the latter end of the inth Rule of the 6 th. Chapter, at length the entire quotient or anfwer of the queftion is $3 \mathrm{l} .--7 \mathrm{~s}-6 \mathrm{~d}$.

A third Example, if 51 ounces of filver plate be fold for 13 pounds fterling, what is the price of I ounce of that plate? Anf. 5 s.--1 dand fomewhat more:The operation is thus: After the three knownterms of this queftion are rightly ordered, they will fland as here you fee in the E xampie; then multiplying the fecond term 13 by the third term I,
oz. l. oz.
$5 \mathrm{I}-\mathrm{I} 3-\mathrm{I}$
$\frac{1}{13^{\circ}}$
20
$51) 260(5$ billings. 255

5 (for multiplication by I makes no alteration; ; whi.h 13 being divided by 51 , after the manner of operation
51) 60 (1 peny.

51 delivered in the note upon the 5 th Rule of the 7 th Chapter, the entire Quotient or anfwer of the queftion will at length be found to be 5 s .-I d . and fomewhat more, but the furplufage being lefs than a farthing is omitted as ufelefs.

Example 4. What muft be paid to a labourer for his wages for 27 weeks at the rate of 4 s . for r week? Anfwer, 5l.-8 s.
After the three given terms are rightly placed intte Rule, they will ftand as you fee in the Example; then multiplying the third term 27 by the fecond term 4, the product is 108, which I

Weck, Sbil. W゙eek.
 Thould divide by the firt term I, but in regard

$$
F_{\sim} 3
$$

74

$\mathrm{d}_{\text {ivifion by }}$ I makes no alteration, the Quotient is alfo 108 , fo that the fourth term fought is 108 fhillings, which being reduced to pounds, according to the feventh Rule of the feventh Chapter, give 51.8 s . for the anfwer of the queftion.
XI. In the Rule of Three, if after the queftion is flated according to the feventh To propare the Rule of this Chapter, any of the 3 terms of the Rule of Three, given terms be a compound term conwoblen they are fifting of divers denominations, as compourded of pounds, (hillings, and pence; or weeks, divers denomi days, hours, \&ec. fuch compound term nations. muft firft be reduced into the loweft of thofe denominations (by the fixth Rule of the feventh Chapter) to the end that the three given terms may be three fingle numbers; alfo of thefe three fingle numbers the firft and third muft always be of one and the fame denomination: for ifit happen that they exprefs things of different names, fuch of the two which hath the greater name (or denomination) is to be reduced into the fame name with the leffer (by the 5th Rule of the feventh Chapter:) Thefe preparations being obferved, the reft of the work is to be profecuted according to the tenth Rule of this Chapter. Example, what will 48 ounces, 17 peny weight, and 20 grains of filver plate amount unto at the rate of 5 s.- 6 d . the ounce? Anfwer, 13 l .-8s.-10d.-3f.very near.

Chap. VIII. . of Three Direct

This queftion being ftated according to the feventh Rule of this Chapter, will fland in the Rule as you fee in the Example, to wit, if 1 ounce coft

$\begin{array}{cc} \text { s. } & d_{0} \text { oz. p.wo.gr. } \\ -6-17-20-17 \end{array}$	
12	- 20
66	977
	24
480	3928
	1954
	23468 grains.

thofe divided by the firft term 480 the quotient will be 3 farthings, fo that the entire quotient is 3226 pence, 3 farthings, and fomewhat more (but the parts of a farthing being of no moment, may be neglected.) Laftly, the faid 3226 pence being reduced according to the feventh Rule of the feventh Chapter, give 13 l.- $8 \mathrm{~s} .-10 \mathrm{~d} .-3 \mathrm{f}$. fo that 13 l. - 8 s. - 10 d.- 3 fo and fomewhat more, will be the Anfwer of the Queftion:
XII. For the proof of the Direct Rule of Three The proof of the multiply the fourth term by the firft, Rule of Three which done, if that Product be equal dirct. to the Product of the fecond term multiplyed by the third, the work is right, otherwife it is erroneous: fo in the firft Example, 38 the fourth term, being multiplyed by the firft term 4, the Product is 152 , which is alfo the Product of 19 multiplied by 8 . But if it happen that after the fourth term, or anfwer of the queftion is found in the fame denomination with the fecond term, there is yet a remainder, fuch remainder muft be added to the Product of the firft term, multiplyed by fuch fourth term, and then the fum muft be equal to the Product of the fecond and third terms (the fecond term confifting of the fame denomination with the fourch:) fo in the laft Example the fourth term is 3226 , and there happeris to be a remainder of 408 , which being added to the Product of the multiplication of the faid 3226 by the firt term 480 , gives 1548888 , which is the fame with the Product of the third term 23468 multiplyed by the fecond term 66 as will appear by the work.
XIII. When the firft of the three given numbers in the Rule of three Dired, Acompendions operais I or unity, the queftion may of t ion in the Rnle of rentimes be anfwered more fpee- three direft, when the dily than by the Rule of Three, firft term is ior unity even by thofe who have but little skill in Arithmetick, as will partly appear by the following Examples, viz.

1. At $17 \mathrm{~J} . \longrightarrow \mathrm{d}$. the yard, what will 84 yards coft? Anfwer, 74 l. - 11 s. For reafon theweth that 84 yards muft (at the faid rate) coft 84 Angels, 84 Crowns, 84 half Crowns, and 84 Three pences, all which being compuednd added together, will give the full value of 84 yards, Viz.

2. At the rate of 9 so the Bufhel of Wheat, what will 51 Quarters amount unto? Anfwer, $183 \mathrm{~h}-12 \mathrm{~s} . \mathrm{Od}$.

It is evident that the price of I Quarter (which confifts of 8 Burhels) will be 8 Angels wanting 8 Shillings ; therefore
from 8 Angels, to wit,
fubtraCt
remains the price of I Quarter $-3-12-00$

Then the value of 51 Quarters, at the rate of 3 l. 12 s. -od. the Quarter, may be found in manner following. V iz.

3. What is a Cheft of Sugar worth, that weigheth neat weight(the Tare being Tare is tbat wherein fubtracted) $7 \mathrm{C} .3 \mathrm{q} \cdot 7 \mathrm{lb}$. at any thing is put, as a the rate of 6 l .- 3 s.-- 4 d . B.xg for Pepper, a Cheft for Sugar. for 1 C ? Anfwer, 48l.- 3 s. $-6 d_{0}-2 f$.

Chap. VIII. of Three Direct

7 times 6 pounds make - $42-00-0$
7 times 3 Shillings - $-1-01-0$
7 Groats- -02 - 04
The half of $6 l .-3 s .-4 d.\}_{3}-01-08$ for $2 q u$ is
The half of $3 l_{0}-1$ s. -8 d.$\left.\right\} r-10-10$ The fourth part of $1 l_{-}-$)

10 s. 10 d . (be- f. caufe $7 l$. is a fourth $0-07-08-2$ part of 28%. or of 1 qu.)
is -

$$
48-03-06-2
$$

Practical rules of this nature cannot be compleatly underflood without fome skill in fractions, as will hereafter appear in the fecond Chapter of the Appendix: and therefore I fhall conclude this Chapter with the following Queftions, whofe Anfwers are annexed to them, and may be found out by the preceding Rules; but the operations are purpofely omitted, and left as an exercife for the Learner.

Queftions to exercife the Rule of Three direct.

1. If 17 yards of Cloth coft ig 1.2 s. 6 d.what will 35 yards coft at that rate? Anfoer, 39 l. 7 s. 6 d .
2. If 35 yards coff 39 l .7 s .6 d . how many yards may be bought at that rate for 19 l .2 s .6 d . Ansper, 17 yards.
3. If 35 yards coff 391.7 s. 6 d . what are 17 yards worthat that rate? Anfwer, $19 \mathrm{ll}$.2 s .6 d .
4. If 17 yards be fold for 1 gl .2 s. 6 d . how many yards will 39 l. 7 s. 6 d, buy at that rate? $A n f$ wo. 35 yards.
5. What muft I pay for the carriage of 17 hundred weight, 3 quarters, and 11 pounds Averdupoin, at the rate of 7 thillings the hundred weight ? Anfw. 6 1.-4 s.-1I d.-1 fartb.
6. If 6 l. -4 s.-II do-If. be pay'd for the carriage of 17 hundred weight, 3 quarters, and II pounds, what was pay'd for the carriage of I pound weight? Anfo. 3 Farthingso.
7. What muft I pay for 39 ounces, 7 peny weight, and 18 grains of white plate at the rate of 5 s.and 5 d.the ounce? Anfino. $101 .-13$ s.-4 d. and three quarters of a farthing.
8. What muft I l. (or 20 s.) pay towards a Tax, when $326 l_{0}$ - σs_{0}. 8 d . is affeffed at 41 l .- 16 s . $2 d_{0}-3 f$? Anfw. 2 s. $-6 d_{0}-3 f$.

9, What will the Intereft of $876 \mathrm{l} .-17 \mathrm{~s} .-6 \mathrm{~d}_{0}$ amount unto for 1 year at the rate of $6 l$. for 100%. for the fame time ? Anfw. 52 l. - 12 s.- 3 d.
10. If 3 yardsin length of Englifh meafure be equal to 4 ells Flemith; how many Flemith ells are contained in 120 yards Englifh ? Anfwer 160 Flemith ells.
11. If 4 Flemifh ells in length, be equal to 3 Englifh yards; how many Englifh yards in 300 Flemifh ells? Anfow. 225 Englifh yards.
12. If 3 ells in length of Englioh meafure, be equal to 5 Flemith ells; how many Flemifh ells in 120 Englifh ells? Anfor. 200 Flemith ells.
13. If 5 Flemifh ells in length, be equal to 3 Englifh ells; how many Englifn ells in 145 Flemifh clls? Anfw. 87 Englifh ells.
14. If 3 Ounces of Silk weight, be equal to 4 ounces of Venice weight; how many ounces Venice are equal to 60 ounces of Silk weight? Answer 80 คunres Venice.

Chap.VIII. of Three Direct

15. A Merchant delivered at London $120 l$. fterling, to receive 207 l . Flemifh at Amfterdam; what was I l-fterling valued at in Flemilh money ? $A W \int w_{0}$. 1 . - 14 s. $6 d$.
16. If a Bill of Exchange be accepted at London, for payment of 400 . Atrling, for the value diliver'd at $A m f$ ferdam, at 1 l.-13 s.- 6 d . Flemifh for I l. fterling; how much Flemifh money was deliver'd at Amfterdim? Anfw. 6701 . Flemifh.
17. When the Exchange from Antwerp to London is at $1 \mathrm{l} .-46 .-7 \mathrm{~d}$. Flemilh for I l. fterling; how much fterling mult I pay at London to receive 236 . Flemilh at Antwerp ? A Ausw. 192 l.fterling.
18. A Merchant deliver'd at London 370 l . ferling by Exchange for Roan at 74 d . fterling for 50 s. Tournois ; how much Tournois ought he to receive at Roan? Anfw. 60000 s. Tournois.
19. In 370 Ducats, at 4 s. -2 d.the Ducat; how many French Crowns at 6 s.-2 d. Anfwo. 250 Crowns; For if 74 d . give I Crown, 18500 d . (or 370 Ducats) will give 250 Crowns.
20. In 516 Dollers, at 4 s. -5 d. the Doller; how many Guinneys at il l - 1 s.- 6 d. the piece? Anfow. 106 Guinneys; For if 258 d.give I Guinney, 27348 d. (or 516 Dollers) will give 106 Guinneys.

C HAP.

CHAP IX.

Of the Inverfe Rule of Three.

I. THE Rule of Three Inverfe is, when the fourth term required ought to proceed from the fecond rerm, according to the fame rate or proportion that the firft proceeds from the third: fo this queftion being propounded, if 8 Horfes will be maintained 12 dayes with a certain quantity of Provender, how many dayes will the fame quantity maintain 16 Horfes? Here as 8 is half 16 , fo ought the fourth term required to be half 12; for if certain buthels of Provender ferve 8 Horfes 12 dayes, 16 Horfes will eat up as much Provender in half that time: and therefore you cannot fay here in a direct proportion (as betore in the Rule of Three direct) borfes dayes borfes as 8 to 16, fo is 12 to ano-$8-12-16$ ther number which ought to be in that cafe as great again as 12 ; but contrariwife by an inverted Proportion, beginning with the laft termfirt, as 16 is to 8 , fo is $\mathbf{1 2}$ to another number, which ought to be in this cafe half 12. And by the due obfervation of this definition, together with that of the Rule of Three Direct (propounded in the ninth Rule of the eight Chapter) when any queftion belonging to the fingle Rule of Three is propounded, you may readily difcern by which of thofe Rules it ought to be refolved; for if the three terms given look for a fourth

Chap.IX. Rule of Three

fourth in a direct proportion as they ftand ranked in the Rule, you muft refolve the quefion by the direet Rule; contrariwife when the proportion is inverted or turned backwards, it ought to be refolved by the Inverfe Rule of Three, which here followeth.
II. In the Inverfe Rule of Three, after the three given terms are rightly placed in the Rule, and reduced (if there How to work benced) according to the eleventh the Inverfe Rule Rule of the eighth Chapter, multiply of Thrce. the firft term by the fecond, or (which is the fame) the fecond term by the firft, and then di. vide the Product by the third term, fo the quotient will give you the fourth term required, or anfwer of the queftion; thus in the queftion premifed in the laft Rule, if you multiply 12 by 8 , the Product is 96 , which if you divide by 16 , the Quotient gives yous 6 , the fourth term required, as by the fubfequent operation is manifeft.

III. For the more ready difcovering, whether a queftion propounded belongs to the Rule of Three Direct, or to the Rule Inverfe, obferve the directions following, Viz. I. By the fenfé and tenour of the queftion confider, whether more be fought muft be greater or lefs than the fecond term: Secondly, efteeming the firft and third terms as extreams inrefpect of the fecond, this will be a general Rule; namely, When more is required, the leffer extream is the Divifor; but when lefs is required, the greater extream is the Divifor. Laftly, the Divifor being found out, it will be apparent whether the Rule be direct or Inverfe, for when the Divifor is the firft term, it is a Rule Direct; but when the Divifor is the third term, the Rule is Inverfe. Another Example of the Rule Inverfe may be this; If 12 Mowers do mow certain Acres in 4 dayes, in what time will 23 Mowers perform the fame work? Anfover, 2 dayes, 2 hours, and fomewhat more. Here,
 the 3 known terms being rightly placed in the Rule, will ftand as you fee in the Example; and lince it is evident that 23 men will require lefs time than 12 men to finifh the fame work, therefore (by the Rule aforegoing) the greater of the two extream numbers 23 and 12 mult be the Divifor; and becaufe the Divifor 23 flands in the third place, this queftion is to be wrought by the Rule Inverfe; wherefore multiplying the firfl term 12 by the fecond term 4 , the product is 48 , which being divided by the finf term 23 , the 2 uotient gives 2 dayes, and there is a re-
mainder of 2 dayes, which being reduced to hours, and thofe divided by 23 , the 2 notient will be 2 hours, and there is yet a remainder of 2 hours to be fubdivided ipto 23 parts if you pleafe; fo that the fourthterm fought, or anfwer of the queftion is 2 dayes, 2 hours, and fomewhat more.

Again, take this for a third Example, IfI lend my Friend 356 pounds for one year and 35 dayes (the year being fuppofed to confift of 365 dayes) how long time ought he to lend me soo pounds to requite my courtefie? Anfwer, 284 dayes and fomewhat more, there being a remainder, to wit 400 , after the Divifion is finith' d_{2} as by the fublequent aperation is manifeft.

IV. The proof of the Inverfe Rule of Three is this, multiply the third term by the fourch, then if this Product be equal to the Product of the firft term multiplyed by the fecond, the work

The proof of Throe Inverfe. is true, otherwife erroneous; fo in the Example of the fecond Rule, the Product of 16 and 6 is equal to the Product of 8. and 12 Butifit happen
happen that after the fourth term, or anfwer of the queftion, is found in the fame denomination with the fecond term, there is yet a remainder, fuch remainder muft be added to the Product of the third term multiplyed by the fourth, and then the furn muft be equal to the Product of the firft and fecond terms (fuch fecond term being of the fame particular denomination with the fourth:) fj in the laft Example, the fourth term is 284 dayes, and there remains 400 after the divifion is finitht, this 400 being added to the Product of the Multiplication of the third term 500 , by the fourth term 284 gives 142400 , which is equal to the Product of the firft term 356, multiplyed by the fecond tetm 400 dayes.

CH A P

 woil 10 , gnul woh) sind bme , तrizilgze ans ह1

> The double Golden. Rute Direct, perfort med by treoo fingle Rutes.

$$
\text { 4, } 16 y
$$

1. THE Compound Golden Rule is, when more than 3 terms are propounded.
II. Undet the Compound Golden Rule, is comprehended the double Golden Rule, and divers Rules of plural proportion.
III. The double Golden Rule is, when fivo terms being propounded, a fixth proportional unto them is deman- Tbe double Gols ded: as in this queftion, If 4 Studim Rulta. 7, dents fpend Ig pounds in 3 moneths, how much will rerve 8 Students 9 moneths? Or this, if 9 Buftels of Provender ferve 8 Horfes 12 dayes, how matiy dayes will 24 Buthels laft 16 Horfes?
IV. The five terms given in this Rule confft of two parts, Viz. A fuppofition expreffed in the three firft termsiand a demand propounded in the rwo laft: So in the firft Example of the laft

Theparts into which theterms of the fame rible are diffribwted. Rule, this Claufe ! if four Students fpend ty pourds in 3 monerts,) is the fuppofition, and this (how much will ferve 8 Students nine
moneths) is the demand: likewife in the other Example of the fame Rule, this claufe (if nine Burhels of Provender Terfe 8 Horfes 12 dayes) is the fuppofition, and this (How long, or how many dayes will 24 Buthels laft 16 Horfes) is the demand propounded:
V. Here for ranking the terms propunded in their due order, firft obferve amongt

The right ordering of the terms. the terms of fuppofition, which of them hath the fame denomination with the term required, then referving that term for the fecond place, write the 0 ther twoterms of fuppofition one above another in the firft place; and laftly the terms of demand likewife one above another in the third place of the Rule, in fuch fort that the uppermof may have the fame denomination with the uppermoft of thofe in the firft-place: Example, if 4 Students fpend 19 pounds in 3 moneths, how much will ferve 8 Students 9 moneths? Here the three terms of fuppofition are 4,19 , and 3 , and of thefe terms 19 hath the fame denomination with the term required, Viz. of Pounds, for you ave to enquire how much Money is requilite for the maintenance of 8 Students 9 moneths; wherefore referving 19 for the fecond place I
$4-19$
3 write 4 and 3 one above another thus; then drawing a line upon the right hand of 4 , I write 19 in the fecond place; this done, the work will ftand is in the Margent ; Laft of all, the terms of dernand being 8 and 9 , and 8 having the denomination of Students, I place it in the fame line with 4 and 19 , and write 9 under

Chap. X. under it; all this performed, the terms in this queftion rank themfelves as followeth :

In like manner, if the fecond queftion of the third Rule of this Chapter were propounded, the terms thereof ought to be difpofed

Thiu,

Or tbus,
10.3ण1 \& 9 T 12 HTH 24

$$
8 \quad 16
$$

\qquad Y MI Queftions belonging to the double Golden e VI. Queftionsi belonging to the double Golden $^{\text {G }}$ Rule may be refolved by two fingle. Rules of Three, br by the Golden Rule Compound offive Numbersod
VII. When Quetions of this naturelare sefolved by double Golden Rule, two fingle Rules, the propor- when it is performed by tions are as followeth: , tron fingle Rules
I. As the uppermoft term of the firt place, is to the middle term; So is the uppermofterm of the latt place to a fourth Number.

$$
G_{4} \quad \text { II As }
$$

11. As the lower term of the firft place is to that fourth Nnmber; fo is the lowef term of the laft place to the term required.

So in this Exa nple beforefrecited,
 uling tacitly the lower term of the firfi place as a common number in the firft proportion, fay thew,
I. If 4 Students fpend 19 pounds (in three moneths) what will ferve 8_{i} Students (the fame time?)
Ox:thus, If 4 Studehts ifpend is pounds; what will 8 fpend ?
Which Rule of Three will be difcovered to be direct (by the third Rule of the ninth Chapter;') therefore the fourth proportional proceeding from tice faid three givennumbers 4,9 , and 8 is 38 (by the \mathbf{s} oth Rule of the 8 th Chapter aforegoing.) Again, to find the term required, uling tacitly the uppermoft term of the third place as a common Number in this laft proportion, \int ay followeth.
II. If in three moneths 38 pounds are fpent (by ... I 8 Students) how much will ferve them for 9 1o. aumóneths? uas गitow thus, If 3 give 38 , what will 9 weld you?

Which Rule of Three will likewife be difedvered to be direct (by the third Rule of theinintl1 Chapter; ; therefore the fourth proportionalsproceeding from the faid 3 numbers, $3,3^{8}$; and: 9 , you Mall Jikewife find (by the roth Rule of the 8 th Chapter before-recited) to be 114 , for 38 being multiplysed by 9 , the Product is 342 , which divided by 3 -yilds you in the Quatient' \$14: \$a that I con:elude, If four Stpdents fpend ninelleen pounds in thice moneths, 114 pounds will fervie 8 Stu an il

Chap. X. \therefore of Three Direct 29 dents 9 moneths; as you may further obferve by the Work following:

In like manner if two fingle Rules of Three be formed (according to the preceding 7th Rule) out of the five numbers given in the laf mentioned queftion, the fame being ranked according to the latter manner of ordering the faid numbers in the fifth Rule, each of the faid two Rules of Threcemill bea Rule direet, and the fame anfwer of the quefion, to wit, IIt pounds will be difcovered, as you may fee by the fubfequent operation,

92

The double Rule Book I.

vill. The double Golden Rule is cither Direct or Inverfe.
IX. The double Golden Rule Direct is, when both the fingle Rules do each of them look for a fourth term in a direct proportion: As in the ExThe double Gol- ample of the feventh Rule, whereeach den Rule Direcz. of the two fingle Rules of Three is a Rule Direct.

For another Example take this, if the carriage of 8 C. weight 128 miles, coft 4^{8} Thillings, for how much may I have 4 C. weight carried 32 miles after the fame rate? The rerms of this queltion according to the fifth Rule of this Chapter, rank themfelves in this order:

$$
828-48-32
$$

Now taking tacitly the lower term of the firft place as a comthon number, I form the firft Rule of Three according to the feventh Rule, fiying.
I. If the carriage of a certain weight (to wit, 8C.) 128 miles will coft 48 hillings, what will the carriage of the fame weight 32 miles coft ?

Here it is eaffe to difcern, that the fewer miles any weightis catried, the lefs money will pay for the carriage of that weight; therefore the fourth number fought by the faid Rule of Three muft be lefs than the fecond number 48: And forafmuch as by the third Rule of the ninth Chapter, when lefs is required, the greater extream (whether it be the firft or third number) mult be the Divifor; therefore the firft number 128 is the Divifor, and confequently the Rule of Three above propounded is a Rule direct; wherefore finding out the fourth num-

Chap. X. of Three Direet 93

ber by the tenth Rule of the eighth Chapter to be 12 fhillings, I proceed to the fecond proportion, and fay:
II. If the carriage of $8 \quad \mathrm{C}\{32$ miles) coft 12 thillings, how much muft give to have 4 C , carried the fame diflance:

And here likewife finding a fourth number to be looked for in a direct proportion, I difcover that fourth, by the faid tenth Ruile of the eighth Chapter, to be 6 s s which is the reven demanded, and the anfwer to the queftion propounded: fo Tthat at hift conclude, Ifthe carriage of $8 \mathrm{C}: 128$ miles cofl 48 s. the carriaged 4 C. 32 miles will Cooft 6 \% secording to the famie rares fee the whole Work.
audtr slust dill bial ords

The Double Golden Rule Inverse, performed by two Single Rules.

THE Double Golden Rule Inverfe is, when 1 . one of the fingle Rules looks for a fourth term The double Gol in an inverted proportion: As in the den Rull ${ }^{3}$ In laf Example propounded in the fifth prerfeo : Rule of the laft Chapterzs For if you sank the terms of that queftion, according to the faid fifth Rule,thus.

$8-12-1 \sigma_{1}$	
27	-10

And then work by two fingle Rules of Three, formed according to the feventh Rule of the laft Chapter, you fhall find by the third Rule of the ninth Chapter, that the firft of the faid two Rules of Three will be inverfe, and the latter direct; for faying firft, if8 horfes be maintained 12 dayes (by 9 bufhels of Provendet) how many dayes will 16 horfes be kept by fo much Provender? Here the anfwer 6 dayes will befound out by the Rule of Three inverfe : Secondly, faying, if 9 bufhels of Provender be eaten up (by 16 horfes) in 6 dayes, in how many dayes will 24 buthels be fpent? here the anfwer 16 dayes will be found out by the Rule of Three direct.

But if you order the given terms of the fame quefion,thus,

Chap. XI. \quad ch of Three Inverfe

And then work by two fingle Rutes-of Three, formed according to the feventh Rule of the laft Chaptex, you fhall find by the third Rule of the ninth Chapter, that the firft of the faid two Rules of Three will be Direct, and the latter Inverfe for faying firft, If'g buthels of Provender will laft 12 dayes (to maintain 8 horfes) how many dayes will 24 bulhels ferve the fame number of horfes? The anfwer 32 dayes will be found out by the Rule of Three direet. Secondly, faying, If 8 horfes will be maintained 32 dayes (by 24 buthels of Provender) howlong will 16 horfes bekept by the fame quantity of Provender? Here the anfwer 16 dayes will be found out by the Rule of Three direct.

Wherefore, whienfoeter a queftion belonging to the double Ruld of Three is fevered into two fingle Rules of Three (according to the preceding Rules) if one of them happens to be a Rule inverfe, that double Rule its called the double Rule inverfe.

Now the Recolution of the Queftion propounded being ranked after the firf manner, is às followeth.

Chap.XI. of Three Inverfe in :1: 97 ${ }_{8}^{9}-12 \int_{16-16}^{14}$

So that at laft I fay, If 9 Bufhels of Provender ferve 8 Horfes 12 dayes, 24 Bufhels will laft 16 Horfes 16 dayes, which is the refolution of the Queftion propounded.

CHAP.

98 The Rute of Three compoind Book I.

 ${ }^{\text {O}} \mathrm{C}$ HAP. XII.
The Golden Rule compoundedof five Numbers.
 $3 \div$

I. THE Golden Rule compound of five numbers is, when the terms being ranked, as before, inftead of the doüble terms we ufe their products, and then proceed to find the term required by one fingle Rule of Three.
II. Here when the Queftion propounded ought

The Golden Rule compound of five numbeses performed by one fingle Rule direct.
oI cond, and the product of the two laft terms for the third term; this done, having found by the Rule of Three direct, a fourth proportional unto thofe three, that 'fourth term fo found is the number you look for: fo this queftion being again propounded, if 4 Students fpend 19 l. in 3 moneths, how much will ferve 8 Students 9 moneths? and the terms thereof being ranked as before, vizothus,

$$
4-19 \div 8
$$

T The produc of multipiyd by 3 is 12 , and the product of 8 multiplyed by 9 is 72 a wherefore I fay, As 12 to 16 , fo 72 to the term requirted, which Ifind by the fingle Rule of tiree direct to be- $1-4$.

Chap.XII. of five Numbers 99 So that if 4 Students fpend 19% in thrire moneths, 114 1. will be requifite for the maintenance of 8 Students 9 moneths, fee the whole operation, as followetb,

In like manner this being the Quettion as before (in the laft Rule of the tenth Chapter) if the carsiage of 8 C . 128 miles, con 48 so what will the carriage of 4C. 32 miles fland me in? the Anfwes thereunto will be 6 s, as appears by the Work.

100 The Rule of Three compound Book I.

III. When the Queftion propounded ought to be refolved by the double Rule In-

The Golden Rule compound affive Numbers performed by one fingle Rale dircit or imerre. verfe, haviog multiplyed the double terms a crofs, that is, the uppermoft term of the firft place by the lower of the laft, and the uppermoft of the laft place by the lower of the firft, write each product under the lower term by which it is produced: and then if the inverfe proportion be found in the uppermoft line, ufing thofe products as fingle termis, proceed to find the term required by the lingle Rule of Three direet: But in cafe you find the Inverfe proportion in the lower line, perform the Work by the fingle Rule of three Inverfe.

So in the Example above mentioned, if 9 bufthels of Provender ferve 8 hoifes 12 dayes, how long will 24 buthels 1 aft 16 horfes? Here 8-12-16 if you rank the rerms tbus, you fhall 924 find the Inverfe proportion in the firft line, as is obferved in the laft Chapter: And therefore having fubfrribed the products

Chap.XIII.The Rule of Three compound Ior productsaccording to the direction given you in this Rule, I proceed to fatisfie the demand of this queftion by the fingle Rule of Three direct, as appears by the Work tollowing.

But the terms of this Qucftion being ranked thus, the Inverfe proportion is found in the lower line, as you may obferve likewife by the laft
 Chapter:whereupon in this cafe, to refolve the Ouetion, I proceed by the fingle Rute of Three Inverfe, as appears by the Werk hereunto annexed: howfoever therefore you wots the Queftion, you fhall find the eerm required :o be 16 ; fo that at laft I conclud as betore in the Paft Chapter, If 9 buthels do P pureder fesve 8 horfes i2 dayes, 24 bufhels whll latt i6 horfes 16 dayes.

The Rule of Fellow/hip. Book I

12
384
192
144) $2304(16$

144
864
864
\circ

CHAP. XIII.

The Rule of Fellowhip.

1. THE Rules of plural proportion are thofe, by which we refolve Queftions, that are difcoverable by more golden Rules

Rules of pluval proportion.
than one, and yet cannot be performed by the double golden Rule mentioned before in the three laft Chapters. Of thefe Rules there are divers kinds and varieties, accordingto the nature of the queftion propounded; for here the terms given are fometimes four, fometimes five, fometimes more, and the terms required fometimes more than one, efo.

Chap.XIII. TheRuleof Fellowhip. 103

II. Two particular Rules of plural proportion are thefe, the Rule of Fellowbip, and the Rule of Alligation.

1II. The Rule of Fellowfip is that, by which in accompts amongft divers men (their feveral ftocks together with the whole The Ruli if gain or lofs being propounded) the gain or lofs of each particular man may be difcovered: As in this Example, A and B were tharers in a parcel of Merchandize, in the purchafe of which A laid out $7 l$. and $B \perp 1 l$. and they having fold this Commodity, find that their clear gains âmounts to 54 s. Now here the Queftion to be refolved by this Rule is, what part of that 54 s . accrews to A, and what to B, according to the rate of the feveral fums or ftocks which they adventured? Again, A, B, and C, fraight a Ship from the Canaries for England, with 108 Tuns of Wine, of which A had $48, B_{3} 6$, and C_{24}, the Mariners meeting with a frorm at Sea, were conftrained for the fafety of their lives, to caft 45 Tun thereof eiver-board; here the Queftion to be refolved is, How many of the 45 Tun each particuJar Merchant hath loft, according to the rate of his Adventure?
IV. The Rule of Fellowthip is either fingle or double.
V. The fingle Rule is, when the focks propounded do continne in the Adventure (or common Bank) equal times, to wit, one ftock as long time as ariothcr.
VI. In the fingle Rule of Fellowthip, take the total of all the focks for the firft texm, the whole gain or lofs,
104. The Rule of Felloreßhip Book I for the fecond; and the particular flocks for the third terms; this done, repeating the Rule of Three fo often, as there are particular flocks in the Quieftion, the fourth terms produced upon thofe feveral operations, are the refpective gains or loffes of thofe particular ftocks propounded: Sol in the firft Example above-mentioned 7 l and II l. are the fibcks propounded, whofe total is 18%. which Itake for the firt term: Again, 54 f . the commongain, is the fecond term, and. 7 , the. firit. particular fleck; wis the third term of the fiffo proportion; whereupon Ifay, as 18 l.to 54 s . for 7 l . to another number, which by the direct Rule of Three I find to be $2 \mathrm{~s} / 8 \mathrm{siz}$. the part of the gain due:to A; that expended the $7 l$. fock. Then for the fecond proportion, I fay, as $\mathbf{1} 8$ l to 54 s. fo II l to another number, which I likewife find by the Rule of Three direct to be 33 s. viz. the part of the gain due to B, for his in $\%$. frocke ? $\left.\begin{array}{r}7 \\ -11\end{array}\right\}$ $\left\{18 \frac{1}{-} 54 \frac{7}{71-21}\right.$

Again, in the other premifed Example, the particular lofs that happens to A, is 20 Tun , to $B 15$, and to C Io Tiun.

- VII. The double Rule of Fellowthip

2. Donble. is, when the ftocks propounded are double numbers, viz. when each ftock

Chap. XIII. The Rule of Fellow/hip ros

 hath relation to a particular time: Example, B, and C, hold a pafture in common; for which they pay 45%.per annum. In this Pafture A had 24 Oxen went 32 dayes, B had 12 there 48 dayes, and C fed 16 Oxen there 24 dayes; now the Quefion to be refolved by this Rule is, what part each of thefe Tenants ought to pay of the 45 l. rent? and here you may obferve, that the focks propounded are double numbers, viz. each flock of Oxen hath reference to a particular time; for the refpeCive flock of A is 24 Oxen, and its particular time is 32 dayes; again, the fock of B is $12 O$ xen, and the refpective time is 48 dayes; and laftly, the ftock of C is 16 Oxen, and its peculiar time is 24 dayes, which as you fee are double numbers.VIII. In the double Rule of Fellowhip, multiply each particular flock by its refpective time, and take the total of How to work their Products for the firft term, the the d.uble
Rull. whole gain or lofs for the fecond, and the faid particular Products of the double numbers for the third term: This done, xepeating, as before, the Rule of Three, fo often as there are Products of the double numbers; the fourth terms produced upon thofe feveral operations, are the numbers you look for: So in the Example of the laft Rule, the Product of 24 and 32 is 768 , the Product of 12 and 48 is 576 , and the Product of 16 and 24 is 384 , the fum of there Products is 1728, which is the firf term in the Queftion, then 45l. the rent, is the fecond term, and 768 the firft Product, is the third term of the firft proportion. Wherefore I fay, as 1728 to 45% fo 768 to another number, which I find by the di-

$$
\mathrm{H}_{3} \text { rect }
$$

106 The Rule of Felloweysip. Book I.

 reat Rule of Three to be 20%. viz. the part of the rent that A ought to pay: Then for the fecond proportion I jay, as 1728 to 45%. fo 576 to 15%. which is the part that B ought to pay: And lafty, as 1728 to $45 l$. fo 384 to $10 l$. viz, the part that C mult pay.$$
\left.\begin{array}{l}
768 \\
576 \\
384
\end{array}\right\} 1728-45-\left\{\begin{array}{l}
768-20 \\
576-15 \\
384-10
\end{array}\right.
$$

- A fecond Example of the eighth Rule. Three Merchants, A, B; and G enter Partnerhip, and agree to continue ina joynt Adventure 16 moneths; - A puts info the common flock at the beginning of the faid term 100 pounds, at 8 moneths end he takes out 40 pounds, and 4 moneths after fuch taking out he puts in 140 pounds. B puts in at firf 200 pounds, at 6 moneths end he puts in 50 pounds more, and 4 moneths after the putting in of the 50 pounds, he takes out 100 pounds. C puts in at firft 150 pounds, at four moneths end he takes out 50 pounds, and 8 moneths after fuch taking out puts in 100 pounds. Now at the end of the faid 16 moneths they had gained 357 pounds, the Queftion is how much of the faid gain belongs to each Merchant for his fliare:

In Quettions of this nature, two things are principally to be obferved. IThe whole time of partner(hip. 2. The refpective time belonging to each mans particular fock; fo here, it is evident that the whole time is 16 moneths, and the particular Atocks and times belonging to cach Merchant will be as followeth v_{2} viz.

Chap. XIII. The Rule of Fellowhip -10;

A had $100 l$. in the common flock for 8 moneths, therefore 100 multiplied by ${ }^{8}$ 800 produceth-

Alf 60%. for 4 moneths, therefore 60 multiplied by 4 produceth-——— $\}^{2,40}$

Alfo 2001 . for 4 moneths, therefore? 200 multiplied by 4 produceth

The total of the products of money and $\sum \overline{1840}$ time for A, is
B had $200 l$. in the common flock for 6 moneths, therefore 200 multiplied by $6\{1200$ produceth.
Alfo $25^{\circ} l$. for 4 moneths, therefore $\left.25^{\circ}\right\}$ multiplied by 4 produceth
Alfo 150%. for 6 moneths, therefore? 150 multiplied by 6 produceth-
The total of the products of money and 23100 time for B, is
C had $150 l$. in the common fock for 4 ? moneths, therefore 150 multiplied by $4<600$ producetb

Alfo 100%. for 8 moneths, therefore 100 multiplied by 8 produceth $\longrightarrow 800$
Alfo 200 l . for 4 moneths, therefore 200 multiplied by 4 produceth - - $\}$ time for C, is \qquad
Then adding the faid three totals together, ${ }^{\circ}$ wit, $1840,3100 \& 2200$, the fum is 7140 , wherefore proceeding as in the laft Example, I fay by the Rule of three dircct,as 7140 is to the total gain 357

108 The Rule of Alligation Book I. pounds; ro is 1840 to 92 pounds the gain of A : again, As 7140 is to 357 ; fois 3100 to 155 the gain of B : Laftly, as 7140 is to 357 , fo is ${ }^{2} 2200$. to 110 the gain of C :

1X. The Rule offellowthip is proved Theproof. by Addition of the terms required, whofe fum ought to be equal to the fecond term in the Queftion, otherwife the whole Work is erroneous: fo in the firf Example of the fixth Rule afore-going, 21 s. and 33 s. being added together are equal to 54 s . the fecond term in that Quefrion: likewife in the laft Example of the fame Rule, as alfo in the firft Example of the laft: Rule, the fum of 20,15 , and 10 , the terms required, are equal to 45 , the fecond term propounded.

CHAP. XIV.

The Rule of Alligation.

I. $T \mathrm{HE}$ Rule of Alligation is that, by which we refolve Queftions, that concern the mixing of divers fimples together. II. Alligation is either Medial or Alternate. III. Alligation Medial is, when having the feveral quantities and rates of divers fimples propounded, we difcover the mear rate of a mixture compounded

Alligation Medial of thofe fimples. So 10 bumels of wheat at 4 s . or (which is all one) 48 d . the buinel; 40 buthels of ryeat 3 s . or 36 d . the bufhel; and 50 bufhels of barleyat 2 s . or 24 d . the buthel; being mixed

Chap. XIV. The Rule of

with 20 bufhels of Oats at 12 d.the bufhel, the Rule of Alligation medial fheweth you the mean price of that miftling.
IV. In Alligation medial, firft The operations fum the given quantities, then find and proportions the total value of all the fimples:this done, the proportion will be as folfoweth.

As the fum of the quantities is to the total value of the fimples:
So is any part of the mixture propounded to the required mean rate or price of that part.
Repeating again the premifed Example of the third Rule, I demand how much one buthel of that miflling is worth ? Now the fum of $10,40,50,20$ (the given quantities) is 120 bufthels, and the value of the io buthels of wheat at 48 d . the buffiel, amounts to 480 d . for 48 being multiplied by 10_{2} the product is 480 : again, the value of the 40 buthels of rye at 36 d . the buthel, is 1440 d . The value of the 50 buthels of barley at 24 d . the bufhel, is 1200 d . And the value of 20 bufhels of Oats at 12d.the buthel is 2400 . All there values being added togecher, their total is 3360 d . I fay then by the Rule of Three Direct, if 120 buthels give 3360 d 。 what will I bufhel yield? The Rule prefently anfwers me 28 d . whereupon I conclude, that a bufhel of that minling may be afforded for 28 d . that is, 2 s .4 d . which is the refolution of the 2ueftion propounded.

$$
120-3360-1-281
$$

In like manner if it be demanded what 8 Buthels or a Quarter of that Miftling is worth? The Anspeer will be 324 d . which being divided by 12 , and by that means reduced into fpillings; is 18 s .8 d .

$$
120-3360-8-224
$$

V. In Alligation Medial, the trial of the Work is by comparing the total value of the The proof. feveral fimples with the value of the whole mixture: For when thofe fums accord, the operation is perfect; fo in the firt Example of the laft Rule.

All which amount to-_14-0-0 which is likewife the value of 120 Bufhels at 28 d . or $2 \mathrm{s}$.4 d . the Buthel, for that allo amounts to $14 l$.
VI. Alligation Alternate is, when having the $\mathrm{fe}-$ veral rates of divers Simples given, we Alligation Alternate. difcover fuch quantities of them, as are neceffary to make a mixture, which may bear a.certain rate propounded.
Example : A man bing determined to mix 10 Buthels of Wheat at 4 s.or $4^{8} \mathrm{~d}$. the Buflet, with Rye

Rye of 3 s. or 3^{6} d. the Bufhel, with Barley of 2 s. or 24 d. the Bufhel, and with Oats of 1 s. or 12 d. the Buthel, the Rule of Alligation Alternate will difcover unto you how much Rye, how much Barley, and how much Oats he ought to add unto the ro Bulhels of Wheat; in fuch fort that the mixture of them altogether may bear a certain rate or price propounded.
VII. In Queftions of Alligation Alternate, you mult rank the terms in fuch fort, that the given rate of the mixture may reprefent the root, and the feveral rates The right ordering of the Terms. of the Simples may fland as branches iffuing from that root: So the Example of the laft Rule being propounded, I demand how much Rye, Barley, and Oats, ought to be added to the 10 Bufhels of Wheat, that the mixture of all together may bear the rate or price of 28 d . or 2 s ; $4 d$. the Buthel: And therefore drawing a line of connexion, I place 28 d . the given rate of the mixture, upon the left hand thereof by it felf reprefenting the Root, and likewife write the other rates propounded, viz. 48 d . 36 d .24 d . and 12 d . one above another upon the right hand of that line of Connexion, which rates are con-
 ceived to iffue from $28 \mathrm{~d}_{0}$ as branches from the Root, the fabrick hereof appears plainly in the Margent.
VIII. Having ranked the terms in their due order, link the branches together by certain Arks, in fuch fort, that one that is greater than the Root or rate

How to coupts the Term:. of the mixture, may always be coupled with anosher
ther that is lefs than the farme: So in the premifed Example, 48 may be linked with 12, and 36 with 24 , or otherwife 48 may becoupled with 24 s and 36 with 12 , and then the Work will fland

IX. Having alligated the branches, and found the differencs betwixt them and the show to ordir the differences. Root, write the differences of each branch juft againft his refpective yokefellow. So the branches of the example afore-going being linked after the firf manner, and the difference between 28 and 48 (by the third or fourth Rule of the fourth Chapter of this Book) being 20, 1 place 20 juft againft i2, the refpective yoke-fellow of 48. Again, 16 being the difference betwixt 28 and 12 , I write it jult againit 48. In like manner 8 being the difference between 28 and $36, I$ place it right againft 24 . And laftly, 4 the difference betwixt 28 and 24 , I write juft againft 36 : In the end the whole Fabrick of the Work (as the branches are thus linked) will ftand as in the Example.

Chap.XIV. The Rule of,

But the branches being linked after the' others' manner, the Werk will be thus difpofed:

For in this cafe 48 hath 24 for his yoke-fellow; and the refpective Comerado of 36 is 12 ; and here the interchangeable placing of the differences (as In the premifed Examples) is that which is more particularly termed Alternation.
X. When one branch is linked to divers other branches, and not to one alone, the differences ought to be as often tranfcribed, as it is fo divernly linked. So in the premifed Example, you may (if you pleafe) conceive 12 to be coupled both with 48 and 36 ; likewife 24 may be conceived to be linked with the fame 48 and 36; wherefore the difference betwixt 28 and 12 being 16, I write it both juft againt 48 and 36: In like manner the difference between 28 and 24 being 4, I write it likewife over againtt the fame numbers 48 and 36 . Again, 20 being the difference betwixt 28 and 48 , I place it juft againft 24 and 12 ; and 8 being the difference between 28 and 36, I write it Hikewife over againtt the lame numbers 24 and 12: All
 this performed, the whole frame of the Work will ftand as in the Margent.
2. Take this for another Exair ple: It is requi-
red to mix 10 bufhels of Wheat at 48 d . the bufhel with Rye of 36 d . the buthel, with Barley of 24 d . the bufhel, and with Oats of $12 d$ o the bufhel, and the Queftion now is, How much Rye, Barley, and Oats ought to be added to the, 10 bulhels of Wheat, that the entire mixture may be afforded at 16 d . the bufhel ? Here the branches of this Queftion (according to the eighth Rule of this Chapter.) ought to be linked tbus,

And as for the Alsornation of the differences, it is evident (by the prefent Rule) that the difference between 16 and 12 being 4, ought to be thrice rranfribed, viz. firft juft againft 48 , then againft 36, and laft of all againft 24. Again, 32 the difference betwixt 16 and 48 , as alfo 20 the difference between 16 and 36 ; and laftly, 8 the difference betwixt 16 and 24 , ought all to be placed juft againft 12.

1 3. I determining to mix zo buthels of Wheat at 48 d . the buthel, with Rye of 36 d . the bulhel, with Barley of $24 \mathrm{~d}_{0}$ the buftel ${ }_{3}$ and with Oats
of 12 d . the Bufhel, defire to know how much of each I olught to take, that I might afford the whole mixture at 40 d . the buthel : Here the whole Work being ordered according to the Rules aforegoing, it will ftand as followith.

4. A man intending to mix ro bufhels of Wheat at 48 d . the buthel, with Rye of 36 d . the bufhel, with Barley of $24 d$ the buthel, with Peafe of $16 d$. the burhel, and with Oats of 12 d. the buthel, defires to know how much Rye, Barley, Peafe, and Oats he ought to add to the 10 . bufhels of Wheat, that the whole mafs of Corn fo mixed might be afforded at 20 d . the bufhel. This 2 neftion being thus propounded, the terms thereof (by the Rules aforegoing) may be Alligated, and the differences of the terms Alternated, as followetb.

5. Lafly, A Goldfmith hath fome Gold of 24 Carects, other of 21 Carecis, and other fome of 19 Carects fine, which he would fo mix with Alloy, that 192 Ounces of the entire mixture might bear

17 Carects fine, now the Queftion is, how much of each fort, as alfo how much Alloy he mult take to accomplih his defire? Before you

What cared fine, and what Altoy is. can well underfand this 2ueftion, it will be neceffary to explain what a Carect fine, and what Alloy is: the Mint-Mafters and Goldfrniths to diftinguifh the different fineness of Gold, efteem an entire ounce to contain 24 Careits, and one ounce of Gold that being tryed in the fire lofeth nothing of the weight, is faid to be 24 Ciarečs fine : again, the ounce that being tryed lofeth one four and twentieth part of the weight, is faid to be 23 Carects five: Tollike manner that which loferh two four and twentiteth parts of the ounce, is effeemed to be 22 . Carecis fine, and to confequently of the, reft: Ahd as for Alloy, it is filver, coppetr, or fome other bafer metal, with which the Goldfmiths ufe to mix their Gold, to the intent they may moderate, or abate the finemefs thereof: Here you may alfo bblerve, that as the fineness of Gold is meafured by Careits, fo is the finenefs of Silver sfftimated by ounces: In fuch fort, that a pousd of Sitver, which being tryed a certain time in the fire, lofech nothing of the weight, is faid to be 12 oimbes fine. But a pound, that being tryed loferh fomewhat of the weigbt, is faid to be the remainder of the weigbt fine. Example; a pound of Siver, that Idreth in the fire one ounce $8 p$. is eftimated to be ro ources $12 p$. fine, and that which lofeth 2 ounces $8 p$. 10 grains, is faid to be 9 ounces II $p .14$ grains fine, \&rc. Now to rank the terms of the laft mentioned Quefion, as alfo the differences of the terms in their due order, becaufe the three given branches (viz. 24

Carects,

Chap.XIV.

Carects, 21 Cariöls, and 19 Careciss) are all greater than 17 Careds the root or rate of the mixture. I add o as another branch, which I conceive to be lefs than the root, and then proceed as in the former operations; the whole frame of the Work is expreffed here, as followeth:

$$
17\left\{\begin{array}{l}
24 \\
21 \\
19 \\
0
\end{array}\right)\left\{\begin{array}{l}
17 \\
17 \\
17 \\
7 \cdot 4 \cdot 2
\end{array}\right.
$$

XI. When in one and the fame line there are found more differences than one, add them together, and write the fum juft againtt the fame differences before a

How to add thediffrences fraight line drawn towards the right hand of the Work.

So the firtt Example of the laft Rule being propounded, the fum of 16 and 4 (the differences placed jutt againft the fivft branch) being 20, I write it over againft the fame differences, before the new line drawn upon the right hand of the Work, and fo confequently the reft in their due order, as appears by the Example hercunto annexed.

In like manner the laft Example of the laft Rule being offered, the whole Fabrick of the Work will ftand, as followeth :
XII. Alligation Alternate is, either Partial or Total.
XIII. Alternation Partial is, when having the feveral rates of divers Simples, and
Alternation Partial. the quantity of one of them given, we difcover the feveral quantities of the reft, in fuch fort that a mixtue of thofe Simples being made according to the quantity given, and the quantities fo found, that mixture may bear a certain rate propounded: Ofthis kind is the Example of the fixth Rule, as alfo all the Examples of the tenth Rule, except the laft.
The proportions XIV. In Queftions of Alternation ufed in this Rule. Partial, the proportion is as follow-

As the difference annexed to the firtt branch is to the feveral differences of the reft:

So is the quantity propounded to the feveral quantities required.

So the Example of the fixth and feventh Rules of this Chapter being again repeated, and the rerms thereof, as alfo the differences of the terms being ordered, after the firft manner (fhewed you in the ninth Rule aforegoing) it is evident that

Chap.XIV.

for every 16 Buthels of Wheat that I take in the mixture, I ought to take 4 Buhhels of Rye, 8 Bufhels of
Barley, and 20 bufhels of Oats ; and therefore I Say,

1. As 16 the difference annexed to the firft branch (being the rate of the Wheat) is to 4 the difference annexed to the next, being the rate of the Rye; $f 0$ is 10 the given quantity of the. Wheat to another number, which being found by the Rule of Tbree direct, to be two bufhels and an half (or two pecks) is the quantity of Rye neceffary in the mixture. II: As 16 to 8 , fo is 10 to another number, which being likewife found by the Rule of Three to be five buthels, is the quantity of Barley neceffary in the mixture.
1II. As 16 to 20 , fo is 10 to another number, which being in like fort found by the Rule of Three to be 12 bufhels, and half of a buthel, is the quantity of Oats requifite in the mixture.
So that at laft I conclude, a heap of Corn being compofed of 10 buthels of Wheat, 2 buthels and a half of Rye, 5 buthels of Barley, and 12 buthels and an half of Oats (when thofe feveral Grains bear the prices aforefaid) may be afforded at 2 s . $4 d$. the buthel.

The fame Example being ordered after the fecond manner (expreffed likewife in $2 C_{i x} / s$. the 9 th Rule of this prefent Chapter 3 I Jay
I. As 4 the difference annexed to the rate of the wheat, is to 16 the difference annexed to the rate of the Rye; fo is 10 the given quantity of the wheat, to 40 buhhels the required quantity of the Rye.
II. As 4 to 20 , fo is 10 to 50 buhhels, the requifite quantity of the barley.
III. As 4 to 8 , fo is 10 to 20 buthels, the quantity of the oats neceffary in the mixture.

So that I conclude again, a mafs of Corn being compounded of 10 buthels of wheat, 40 buthels of rye, 50 buthels of barley, and 20 buthels of oats, (when thofe Grains bear the prices propounded in this Example) may be afforded at 2 s .4 d.the buthcl as before.
3. That Example being difpofed after
3. Cafoo the third manner (expreffed in the tenth and eleventh Rules of this Chapter) If fay I. A 520 the $\int u m$ of the differences annexed to the rate of the wheat, is to 20 the frum of the differences annexed to the rate of the rye; fo is 10 the given quantity of the wheat, to 10 bulhels the required quantity of the rye.
II. As 20 to 28 , fo is 10 to 14 bufhels the requifite quantity of the barley.
III. As 20 to 28, fo is 10 to 14 buthels, the quantity of oats demanded in the mixture.

Chap. XV.

Whereupon this third time likewife I conclude, that (thofe Grains fill retaining the given rates) 10 buthels of Wheat, 10 buthels of Rye, 14 buthels of Barley, and 14 bufhels of Oats being all mixed together, will conftitute a ma/s of Corn, that may be afforded at 28 d . or 2 s .4 d. the buthel.

By this Example thus diverffifed it plainly appears, that the quantities required may be altered as oftenas the Queftion given will admit divers Alligations, and yet the mixture produced will fill hold the rate propounded; but when, the 2 weftion propounded will admit but one only way of Alligation, the quantities required to make the mixture, cannot be varied; fo the fecond Example of the tenth Rule of this Chapter, being again produced, and ordered according to the direction of the eleventh Rule aforegoing, I fay,
I. As 4 to 4 , fo 10 to 10 bufhels of Rye. 11. As 4 to 4 , fo 10 to 10 buthels of Barley. III. As 4 to 60 , fo 10 to 150 buthels of Oats.

So that for this Queftion I conclude, to ro buthels of wheat you ought to add ro bultels of Rye, 10 buthels of barley, and 150 of oats, to the end that a mixture of Corn might be made, which may be fold at $16 d$. the bufhel: And here the quantities found (viz. 10, 10, and 150) cannot be altered, becaufe the terms of this Queftion will not admit any other varicty of Alligation.

- XV. In Alternation Partial, the proof is likewife by comparing the total value of the The Proof. feveral fimples, with the value of the whole mixture : So in the fecond example of the laft Rule, the total value of the 10 buthels of wheat, 40 bufhels of rye, 50 buthels of barley, and 20 bufhels of oats amounts to 14%. which is alfo the value of the whole mixture at 25.4 d . the bufthel, as appears by the example of the fifth Rule of this prefent Chapter.
XVI. Alternation total is, when having the total quantity of all the fimples, togeAlternation ther with their leveral rates, we total. produce their feveral quantities, in fuch fort, that a mixture of them being made according to the quantities fo found, that mixture may bear a certain rate propounded: Of this fort is the laft example of the tenth Rule aforegoing; as alfo this, a Goldfmith having divers forts of Gold, viz. fome of 24 Carects, other of 22 Carects, fome of 18 Carects, and other fomc of 16 Carects fine, is defirous to melt of all thefe forts fo much together; as may make a mafs containing 60 ounses of 21 Carects fine: Now this Rule of Alternation total (heweth you how muchyou are to take of each fort, to the end the whole mals

Chap. XIV: Alligation

may contain juft 60° ounces of 21 Carects, the finenefs propounded.
XVII. In Queftions of Alternation total the proportion is, as fol- the proportions. loweth.

As the fum of all the differences is to the total quantity of all the fimples: So is the correfpondent difference of each rate to the refpective quantity of the fame rate.
So the laft example of the laft Rule being propounded, I fay,
I. As 12 the fum of the differences is to 60 ounces the total quantity of all the fimples: fo is 5 the correfpondent difference of 24 Carects the firft rate, to 25 ounces, viz. the required quantity of the Gold of the fame rate, which may be taken to make the mixture propounded.
II. As 12 to 60 , fo is 3 the correfpondent difference of 22 Carects the fecond rate, to 15 ounces, viz. the quantity of the Gold of 22 Carects, that ought to be ufed in the mixture. III. As 12 to 60 ; fo is 1 to 5 ounces of the Gold of 18 Carects fine.
IV. As 12 to 60 , fo is 3 to 15 ounces of the Gold of 16 Carects fine, which are requifite to be taken for the mixture propounded.

Whereupon I conclude, that 25 ounces of 24 Careds fine, 15 ounces of 22 Carects, 5 ounces of 18 Carects, and 15 ounces of 16 Carects fine, being all melted together will produce a ma/s of Gold containing 60 ounces of 21 Carects fine, which is the refolution of the 2 थeftion propounded.

Again, the L_{1} E Example of the tenth Rule being here repeated, and ordered according to the direction of the eleventh Rule, \mathbb{I} Say,

1. As 64 to 192 , fo is 17 to 51 ounces of 24 Ca rectsfine.
2. As 64 to 192 , fo is 17 to 51 ounces of 21 Carects fine.
III. As 64 to 192 , fo is 17 to 51 ounces of 19 Carects fine.
IV. As 64 to 192, fo is 13 to 39 ounces of Alloy.

And therefore for conclufion I fay, that 51 ounces of Gold, 24 Carects fine, 51 ounces of 21 Carects fine, 51 ounices of 19 Carccts fine, and 39 ounces of Alloybeing all mixed together, will produce a mafs containing 192 ounces of Gold, 17 Carects fine, which is the fatisfaciion of the queftion premifed

And herenbferve (as before in the Expolition of the fourteenth Rule of this Chapter) that the operations of the firf of thefe Examples may be varied according to the divertity of the Alligations
which it will admit, whereas the laft Example is not fubject to any variety, the Alligations thereof remaining always the fame.

XVIII ${ }_{c}$ Here the operation is perfect, whethe fum of the quantities found agrees with the total quantity propounded So in the firf Example of the laf Rule, $25,15,5$, and 15 (the quantities found)being all added together amount to 60 , which is the total quantity propounded.

CHAP. XV.

The Rule of Falfe.

I. THE Rule of Falfe is always performed by falfe and fuppofititial numbers taken at pleafure after the Propofition is made, and the queftion propounded; for things are faid to be found out by the Rule of Falfe, when by falfe terms $\int u p-$ pofed, we difcover the true terms required.
II. The Rule of Falfe, is either of fingle or double pofition.
III. The Rule of fingle pofition is, when at once, viz. by one falfe polition, The rule of we have means to difcover the true re- fingls Pofition folution of the Queftion propounded.

For Example : A, B, and C, determining to buy together a certain quantity of Timber, that fhould coft them 361 . agree amongf themfelves that B Shall pay of that fum a third part more than A, and that C fhall pay a fourth more than B. Now the Queftion is, What particular fum each of the fe parties parties ought to pay of the 36%. To refolve this Queftion; firt, put the cafe that A ought to pay $6 l$. of the $36 l$. and then B mutt pay $8 l$. becaufe he pays one third part more then A. And laftly, C ought to pay $10 ~ l$. becaufe he is to lay out one fourth part more then B. This done, although by addition of thefe three fums, viz. 6,8 , and $10, I$ find that I have made a wrong P ofition (their total amounting onely to $24 l$. which ought to have been $36 l$.) neverthelefs by thofe fuppofitial Numbers, I have means to difcover the true fums which the feveral parties ought to pay: for I fay by the Rule of Three Direa.
I. As 24 to 36 , fois 6 to 9 l. the part that A mult pay.
II. As 24 to 36 , fo is 8 to $12 l$. the part that B ought to pay.
III. As 24 to 36 , fo is 10 to 15%. the part of the $36 l$. that C muft pay.
$I V$. Here for trial of this Rule the The Proof. total of the fums found ought to accord with the fum given: So in the Example of the laft Rule, 9, 12, and 15 being all added together amount to 36 , the fum propounded.
V. The Rule of double Pofition is, when two The Rule of double pofi. tion. falfe Pofitions are fuppofed for the refolution of the queftion propounded. As in tbis; A Workman having threfht out 40 quarters of Grain (part thereof being Wheat, and the reft Barley) received for his labour 28 s . being paid after the rate of 12 d . for every quarter of Wheat, and 6 d . for each quarter of Barley: Now here the queftion is, how many of thofe to quarters were Wheat, and
how many Barley? Here therefore I firt fuppofe at random, that there was 26 quarters of Wheat, and 14 of Barley, and then to difcover whether I have gueffed right or wrong, I find how much money is due unto the Workman at the rate of 12 d the Quarter of Wheat, and 6 d . the Quarter of Barley, which I find ta be 33 s. (viz. 26 s. for the 26 Quarters of Wheat, and 7 s . for the 14 Quarters of Barley) which he ought to have received, if my fuppofition had been right ; but becaufe it differs from 28 s. the true fum that he received, I perceive I have mift the mark, and therefore difcovering how much I have err'd by finding the difference betwixt 28 s. and 33 s. I keep in mind 5 their difference, which is called the firft errour, or the errour of the firft Pofition: Again, I propound for the fecond Pofition, that there was 30 quarters of Wheat, and 10 quarters of Barley; and then the fecond errour I find to be 7 ; for there is then due to the Workman for the 30 quarters of Wheat 30 s and for the 10 quarters of Barley $5 s_{0}$ in all 35 s. which differs from 28 s. the true fum that he received, by 7 s. and here by thefe two falfe Pofitions, together with their errours, you may difcover how many quarters of Wheat, and how many of Barley the Workman threfht, as fhall be further explained by the Rule following.
VI. In the Rule of double Pofition having dra wn two lines a crofs, and The operation. placed the terms of the falfe Pofition (viz. thofe that haye the fame Denomination) at the uppermoft end of that Crofs, as alfo each errour under his refpective Pofition at the lower end of the Fame Crofs, multiply each errour by the contrary Pofition;

Pofition; that is, the fecond errour by the firft Pofitionx and the firft errour by the fecond Pofition ;this dones when both the errours are of one and the fame kind. (viz. both exceffes or both defects) fubtract the lefs Product out of the greater, and then the remainder is your Dividend; but if the errours be of differing kinds, (viz. one of them an excefs, and the other a defect) add thofe Products together, and then the fum will be your Dividend, which if you divide by the difference of the errours, (when they are of one and the fame kind) or by their fum (when they are of different kinds) the Quotient will give you a number you look for, having the fame Denomination with the falfe Pofitions placed at the upper end of the Crofs.

1. Example. The Queftion of the laft Rule being again propounded, I place thefe terms, viz. 26 (having the Denomination of the Quarters of Wheat in the firft Pofition) and 30 (having the fame Denomination in the fecond Pofition at the upper end of the Crofs: As alfo 5 and 7 the two errours refpectively under them at the lower end of the fame Crofs, as you may fee it exemplified by the Patternfollowing.
Note tbat this
Character -
fignifics that
the lof lir of
the two Num-
bers, betwixt
which is is
found, cugte
to be fiubtra-
Qid from the
greater.

This done, having multiplyed 26 by 7 , the prodact is 182 , and likewife 30 by 5 , the product is 150 , which being deducted out of 182 (becaufe the errours here are both of the fame kind, that is, are each of them an excefs above 28 s. the fum that the workman received) the remainder is 32 , which being divided by 2 (the difference betwixt 5 and 7 the two errours) leaves in the 2 wotient 16 , for the quarters of Wheat that the workman threfht, whofe complement to 40 vite. 24 are the quarters of Barley, that he likewife threfht; fo at laft I conclude; the Workman receiving 28 s . for his wages in threfhing out 40 quarters of Grain (being part Wheat, part Barley) at 12 d . the quarter of Wheat: and $6 d$, the quarter of Barley, threfhed in all 16 quarters of Wheat, and 24 quarters of Barley.
2. Example. The fame Queftion being again propounded, I fuppofe for my firft Pofition that there are 8 quarters of Wheat, and 32 quarters of Barley, and then the firft errour will be 4 s . for 8 s . being accounted for the 8 quarters of Wheat, and 16 s.for the 32 quarters of Barley, make in all 24 so which wants 4 s . of 28 s . the fum received: Again, fuppofing that there are 12 quarters of Wheat, and 28 quarters of Barley, the fecond errour will be 2 s . for 12 s . being allowed for the 12 quarters of Wheat, and 14 s.for the 28 quarters of Barley, the fum is 26 s . which comes 2 s . Thort of 28 s.the right fum: now then 8 being multiplyed by 2 , the Product is 16 ; likewife 12 by 4 produceth 48 , out of which if you deduct 16 (becaufe the errours in this cafe happen to be both defeets under 28 s. the fum received) tire remainder is 32 , which

130

 gives you in the quotient 16, viz the quarters of Wheat, as before.

3 Example. The fame demand being the third time produced, I take for my firft Pofition 10 quarters of Wheat, and 30 quarters of Barley, and then proceeding as before, the firferrour will prove 3 s . which upon that Pofition I want of 28 s. the right fum: Again here for the Second Pofition I take 26 quarters of Wheat, and 14 quarters of Barley, and then the fecond errour will be 5 s . which upon that Pofition I have exceeded 28 s. the true fum: now then multiplying 10 by 5 , the Product is 50 , and 26 by 3 , the Product is 78 : And here (becaufe the errours are of different kinds, one of them being a defect, and the other an exce $/ s$ of 28 s . the true fum) you are to add 50 and 78 the two Produets together, whofe fum is 128, which being divided by 8 , the fum of 3 and 5 the two errours, gives youin the quotient 16 for the quarters of Wheat, as before in the former refolutions. So that what Pofitions foever you rake in this 2ueftion you fhall always find, that the Workman threfhed 16 quar-

Chap.XV.

Falje

131

ters of Wheat, and 24 quarters of Barley, which is the refolation of the Queftion propounded.

VII. Here the trial is the fame with that which is ufed in finding out the errours: So in the Example premifed 16 and 24 being the numbers found, and 16 s . being allowed for the 16 quarters of Wheat, likewife 12 s. for the 24 quarters of Barley, their fum is 28 s . which was the fum received by the Workman:
4. Example. A certain man being demanded what was the age of each of his 4 Sons? Anfwered, that his eldeft Son was 4 years elder than the fecond; his fecond Son was 4 yeares elder than the third; his third Son was 4 years elder than the fourth or youngeft; and his fourth or youngeft, was half the age of the eldeft; the Queftion is, what was the age of each Son? Here I gueffe the age of the eldeft Son to be 16, then it may be inferr'd from the Queftion, that the age of the fecond Son was 12, the age of the third 8, and the age of the fourth or youngeft 4 , this 4 hould be half 16 (for the Queftion faith, that the age of the youngeft was half the age of the eldeft) but it wants 4 of what it ought to be; wherefore I make a fecond Pofition, and take 20 for the age of the eldeft, then the age of the fecond muft neceffarily be 16 , the age of the third 12 , and the age of the fourth 8, which fhould be half 20 , but it wants 2 : now (according to the Rule) multiplying 16 (the firft Pofition)by 2 (the fecond errour) the product is 32 , alfo multiplying 20 (the
 fecond Pofition) by 4 (the firft errour) the Product is 80 , and becaule the errours are both of ane kind, to wit, both defeCtive; Ifubtract the leffer Product from the greater, fo the remainder is 48 for a Dividend, alfo fubtracting the leffer errour from the greater, the remainder is 2 for a Divifor : Laftly, dividing 48 by 2 , the quotient is 24 , and fuch was the age of the eldeft Son, therefore the age of the fecond was 20 ; the age of the third $\$ 6$, and the age of the fourth 12 , which is half the age of the eldeft, as was declared by the Queftion.

Chap.XVI. Notation of Vulgar Eึc. 133

The Doctrine of Vulgar Fractions.

CH A P. XVI.

Notation of Vulgar Frattions.

'THus far of Aritbmesick in wobole numbers, only the doctrine of Fractions enfueth, which depends upon this fuppofition, that Unity, or at leaft one whole thing, whatfoever it be, may in mind be conceived divifible into any number of equal parts : fome will not allow 1 or unity to be a number, when it is confider'd in the abftract, and feparated from matter, but forafmuch as that Prince of Arithmeticians Diophantus of Alexandria, in divers of his fubtil Problemes doth mention unity as a number, and propounds it to be divided into numbers, I fhall take the like liberty to efteem I or unity as a number, and likewife fuppofe it divifible into any number of equal parts.
II. Á broken number, otherwife called a Fraction, is only part of an In- AFraction: reger or whole thing, as if you would exprefs in figutes the length of a piece of cloth, that contains threefourths, or (which is all one) three quarters of a yard, you are to write it thus $\frac{3}{3}^{\frac{3}{4}}$, that is, an entire yard being fuppofed to be divided into fourequal parts, the length of the piece proK pounded

134

Notation of
Book I
pounded is three of thofe four parts: In like manner (a Foot being divided into 12 inches) you muft write fix inches thus $\frac{-6}{12}$, that is, fix twelf th parts of foot; or if the foot be divided into one hundred equal parts, to exprefs five and twenty of thofe parts, fet them down thus, $-\frac{25}{10}$ that is five and twenty hundredth parts of a foot.
III. A Fraction confifts of two parts, the Numerator and the Denominator, which are placed one above the other, and feparated by a little line.
$I V$. The Numerator is the number placed above the line, and the Denominator is

3 Numerator. 4 Denominator. the number placed underneath: fo in the aforementioned FraClion $\frac{3}{4}$ the number 3 placed above the line is the Numerator, and the number 4 placed underneath is the Derominator. Alfo in this Fraction $-\frac{6}{12}$, the Numerator is 6, and the Denominator is 12. The Denominator is fo called, becaufe it denóminates or declares into how many equal parts the Integer or whole thing is fuppofed to be divided, and the Numerator is fo called, becaufe it numbreth or expreffeth how many of thofe equal parts of the Integer are fignified by the Fraction.

V. A Fraction is either proper or improper.

VI. A proper Fraction is that whefe Aproper Numerator is lefs than the DenominaFiationo tor, fuch are the Fractions before-mentioned $\frac{3}{4} \frac{-6}{2}-\frac{2}{2} \frac{2}{0}$ and the like:
VII. A proper Fraction is either fingle or compound.
Afingle: Fruction. confilts of one Numerator, and one Denomi-

Chap.XVI.

Vulgar Fractions. 135 Denominator; fuch are $\frac{3}{4}-\frac{6}{2} \frac{6}{1} \frac{25}{0} \frac{5}{0}$ and the like. 1X. A fingle Fraction doth often arife in Divifion of whole numbers, for when Divifion is finifht, if any number remain, it is to be efteemed as the Numerator of a Fraction, which hath the Divifor for a Denominator, and is to be annexed to the Integer or Integers in the quotient as part of the quotient; which Fraction doth always exprefs certain parts (or at leaft a part) of an Integer or entire unity, which hath the fame Denomination with one of the Integers in the quotient; fo if 17 pounds be given to be divided equally amongtt 5 perfons, there will arife 3 entire pounds in the quotient, and there will be a remainder or furplufage of 2 pounds 5) $17\left(3 \frac{2}{5}\right.$ which 2 is to be placed, as the Numerator of a FraEtion, over the Divifor 5 as a Denominator; fo will the Fraction be $\frac{2}{5}$, and the compleat quotient will be $3 \frac{2}{5}$, that is, 3 pounds and 2 fifth parts of a pound for each perfons thare.

A fingle Fraction doth likewife arife, when a leffer whole number is given to be divided by a greater, for in fuch cafe the Dividend is to be made the Numerator of a Fraction, and the Divifor the Denominator; which Fraction is the true quotient, and doth always exprefs certain parts (or at leaft a part) of an Integer, which hath the fame name with the Dividend: fo if 3 pounds fterling be given to be divided equally amongft 4 Perfons, the thare of each, that is, the quotient will be $\frac{3}{4}$, to wit, three fourth parts of a pound. In like manner, if 5 be given to be divided by 8 , the quotient is $\frac{5}{8}$, fo that the Numerator of a Fraction is always a Dividend, the Denominator is a Divifor, and the Frastion it felf is the quotient.

$$
\mathrm{K} 2 \quad X, \mathrm{~A}
$$

1

A Compound Fraltion. called a Fraction of a Fraction) is that which hath more Numcrators and Denominators than one, and may be difcovered by the word [of] which is interpos'd between the parts of fuch compound Fraction: fo $\frac{2}{3}$ of $\frac{3}{4}$ is a Fraction of Fraction, or compound Fraction, and expreffeth two thirds of three fourths of an Ina reger, viz. a pound fterling being fuppofed the $I n$ zeger, and firtt divided into four parts, three of thofe four parts are equal to 15 s . Again, if the faid 15 s . be divided into three parts, two of thofe three parts are equal to 10 s. therefore the compound Fraciion $\frac{2}{3}$ of $\frac{3}{4}$ of a pound fterling doth exprefs 10 s. In like manner the compound Fraction $\frac{1}{4}$ of $\frac{3}{4}$ of $\frac{4}{5}$ of a pound ferling, that is, one fourth of three fourths of four fitths of a pound fierling doth exprefs 3 s.as will be farther manifeft by the fixteenth and ninth Rules of the feventeenth Chapter.
XI. An improper Fraction is that, An improper $\boldsymbol{F}_{\text {ruflion }}$. whofe Numerator is eithergreater, or at leaft equal unto the Denominator: fo this Fraction $\frac{16}{4}$ that is 16 fourths, is called an Improper Frastion, and fo is this $\frac{4}{4}$; for indeed a Fraction of this kind may well be furnamed Improper, becaufe it will not admit the definition of a true Fraction, fince it is always greater than an entire unity, or at leaft equal unto it; fo fixteen larthings, or $\frac{16}{4}$ of a peny are equal to 4 entire pence; and 4 Farchings, or $\frac{4}{4}$ of a peny are equal tu I peny; therefore when the Numerator is greater than the Denominator, fuch improper Frastion lignifieth more than 1 or an Integer, but when the Numerator is cqual to the Denominator

Cliap.XVII. Reduction of Eたc. 137 (be it what number foever) fuch improper Fraction is alwayes equal to unity, or Integer.
XII. A mixt number confifts of entire unities (or Integers) or at leaft of unity (or I Integer) and a Fraction annexed:

A mixt number. So $\boldsymbol{S}_{\frac{11}{1} \frac{1}{2}}$, $1 \frac{3}{4}$, and fuch like; are called mixt numbers; So that if a piece of Timber be five feet and eleven inches in length, you are to write that length thus, $5^{\frac{1}{2} \frac{1}{2}}$; In like manner, one mile and three quarters or fourths of a mile are to be written thus, $1 \frac{3}{4}$.

C.HAP. XVII.

Reduction of Vulgar Fractions.

I. He fame parts of Numeration, as have been wrought in wobole Numbers in the preceding Chapters, are likewife to be performed in fractions, but firft of all Reduction of Fraitions in divers kinds mult be known, which being the principal skill in the doctrine of Fractions, muft be diligently obferved by the Learier.

1I. A number is faid to be a common Meafure or Divifor unto two or more numbers given, when it will meafure or divide every one of the numbers given, and leave no remainder; fo 4 is a common meafure unto the numbers 12 and 20 ; for if 12 be divided by 4 , the Quotient will be exactly 3, without any remainder or furplufage, allo if 20 be divided by the fame Divifor 4 , the quotient will be

K 3
precifely
precifely 5 without any remainder; in like mannee 5 is a common Divifor unto there three numbers 10,25 and 40 .

1II. Two numbers being given,

To find the greatest common measure. unto any two numbers. their greatef common Divifor, that is, the greateft number which will meafure or divide each of the numbbers given without leaving any remainer, may be found out in this manner, viz. Divide the greater number by the left, then divide the Divifor by the remainder (if there be any) and fo continue dividing the lat Divifors by the remainders, until there be no remainer (neglecting the quotients;) fo is the lat Divifor the greateft common Divifor unto the numbers given.

Thus, if the greaten common Divifor unto the numbers 91 and 117 be fought, divide the greater number 117 by 91 , the re-
91) 117 (1

91
26) 91 (3 78
13) $26(2$

26
26. them by 13 ; for 13 is found

- in 9 r precifely 7 times, and in
- 117 precifely 9 times. In like manner, 29 will be found a common Divifor unto 116 and 145 ; And 51 a common Divifor unto 561 and 612 .

IV A tingle fraction may be reTo reduce a Fragit on into the leafs terms. viz.I By general Rule? duce into the leaft terms, by diveding the Numerator and Denomi-

Chap.XVII. Vulgar Fractions. nator by their greateft common meafure (or Divifor;) for the quotients will be the Numerator and Denominator of a fraction equal to the former, and in the leaf terms.

So if the fraction $\frac{P_{1}^{1} 17}{17}$ be given to be reduced into the leaff terms, fearch out the greateft common Divifor unto 91 and 117 by the laft Rule, which will be found 13 , and then dividing 91 by 13 , the quotient will be 7 for a new Numerator; alfo dividing 117 by 13 , the quotient will be 9 for a new Denominator:fo the fraction $\frac{-11}{117}$ is reduced into the leaft terms, viz.into the fraction $\frac{7}{9}$. In like manner $\frac{11}{1 \frac{1}{4} 5}$ will be reduced unto $\frac{4}{5}$; And $\frac{561}{612}$ unto $\frac{11}{12}$: But here you are to obferve, that if the greateff cemmon DiviSor unto the Numerator and Denominator be I , fuch Fraction is in its leaft terms already:fo the fra. Ction $\frac{-1}{1} \frac{3}{2}$ cannot be reduced into lower terms, becaufe the greateft common Divifor will be found I , (by the third Rule of this Chapter ;) the like may happen of infinite others: and although the latt be a general Rule for the Reduction of Fractions into their leaft terms, yet there are other practical Rules, which in fome cafes will be more ready (efpecially unto beginners) viz.
V. When the Numerator and Denominator are even numbers, they
2. Byparticular Rulss. may be meafured or divided by 2 .
Therefore in fuch cafe you may (as is taught in the Rules of the 6th Chapter) take the half of the Numerator for a new Numerator, alfo the half of the Denominator for a new Denominator. So if $\frac{16}{64}$ be given, draw at length the line which feparates the Numerator from the Denominator, and

$$
\frac{161}{64|3| \frac{81}{2 / 16 \mid 8 / 4}}
$$

$$
54
$$ Fra ction, as you may fee in the Margent ; then take the half of 16 , which is 8 ,for a new Numerator, alfo the half of 64 , which is 32 , for a new Denominator; Again, the half of 8 is 4 , for a new Numerator, alfo the halfof 32 is 16 , for a new Denominator, and proceeding in like manner, there will be found $\frac{x^{\prime}}{4}$, equivalent unto $\frac{16}{64}$

V1. When the Numerator and Denominator do each of themend with 5 , or one of them ending with 5, and the other with a Cypher, 22514519 they may be both meafured or divi475195119 ded by 5. So $\frac{2.25}{4} \frac{5}{5}$ will be reduced into $\frac{-9}{19}$ and $-\frac{50}{4} \frac{2}{5}$ into $-\frac{2}{17}$ as by the opera5011012 tion in the Margent is manifef. $425{ }^{18} 517$
VII. Whenfoever you can efpy any other number, which will exactly divide the Numerator and Denominator (although it be not the greateft common Divifor) you may divide the Numerator and Denominator by fuch $\frac{281}{84 \mid 2} \frac{711}{13}$ number as before: So $\frac{38}{8} \frac{8}{4}$ may be firft reduced into $-\frac{1}{2}$ by 4 , and $-\frac{\pi}{2}$ may be reduced into $\frac{1}{3}$ by 7 , as by the operation is manifeft.
VIII. When the Numerator and Denominator do each of them end with a Cypher or Cyphers, cut off equal Cyphers in both, and the fraction will be reduced into leffer $\begin{array}{r}5100 \\ 7100 \\ \hline 90100\end{array}$ terms: So $\frac{400}{5} 0$ is reduced into $\frac{4}{5}$, and $-\frac{7}{9} 00$ into $-\frac{7}{9}$.

To find the value of afix. ghe fraction in the known parts of the Integer:

Chap. XVII. Vulgar Fractions Iq1

of the Integer, may be found nut in this manner, viz: multiply the Numerator of the fraction propounded by the number of known parts of the next inferiour denomination which are equal to the Inreger, and divide that product by the Denominator, Co_{0} is the quotient the value of the fraction in that inferiour denomination, and if there happen to be any fraction in the quotient, you may find the value thereof in the next inferiour denomination, by the fame Rule, and fo proceed till you come to the leafl known parts.
So the value of $\frac{9}{16}$ of a pound fterling will be found ti. s. 3 d. viz.multiply the Numerator 9,by 20 (the number of fhillings which are equal to I pound fterling) the product is 180 , which being divided by the Denominator 16, the Quotient is $11 \frac{-4}{16}$ thillings. In like manner, the value of $\frac{-4}{6}$ of a fhilling will be found 3 pence, for multiplying the Numerator 4 by 12 (the number of pence in a (hilling) the proâuct is 48 , which being divided by the Denominator
 16, the quotient is 3 pence.
Alfo the value of $\frac{-7}{13}$ of a pound ferling, will be found 10 S. $9-\frac{3}{1} \frac{3}{d}$. And $\frac{3}{9} \frac{1}{6}$ of a pound Troy will be found cquivalent unto 3 ounces 17 peny weight and 12 grains.

142
To roduce e mixt number into an improper fratirn

Reduction of Book I.

 X. A mixt number may be reduced into an improper fraction e quivalent unto the mixt number, in this manner, viz. Multiply the Integer or Integers in the mixt number by the Denominator of the fractionannexed to the Integer or Integers, and unto the Product add the Numerator of the faid fraction; fo is the fum the Numerator of an improper fraction, whofe Denominator is the fame with that of the faid fraction annexed.So $4 \frac{1}{1} \frac{1}{2}$ will be reduced into the improper fraCtion $\frac{512}{2}$;for 4 being multiplyed by 12 , the Product is 48 , unto which adding the Numerator II, the fum is 59 for a new Numerator, which being placed over the Denominator 12, gives the improper fraction $\frac{59}{12}$, which is equivalent unto $4 \frac{11}{12}$ (as will appear by the 13 Rule of this Chapter.) In like manner $7 \frac{1}{2}$ will be reduced into $-\frac{5}{2}$.
To reduce a whole XI. A whole number is reduced number into an into an impropèr fraction, by plaimproper fraftion cing the whole number given as a Numerator, and I as a Denominator.
So 14 Integers will be reduced into the improper fracion $\frac{14}{1}$, and one Integer into the improper fraClion $\frac{1}{1}$.
XII. A whole number is reduced into an im. proper fraction which fhall have any Denominator affigned, in multiplying the whole number given by the Denominator affigned, and placing the Product as a Numerator over the faid Denominator.
As if 13 be given to be reduced into an improper fraction whofe Denominator Chall be 4 , multiply 13

Chap. XVII. Vulgar Fractions
by 4 , the Product is 52 , which being placed over 4 , gives the improper fraction 5_{4}^{2} equivalent unto 13 (as will appear by the next Rule.) In like manner 13 may be reduced into $\frac{21}{7}$.
XIII. An improper fraction may be reduced into its equivalent whole number or mixt number in this manner, viz. divide the Numerator by the Denominator, and the quoti-

Te reduce an improper fragion into its equivalent
phbole or mixt number. ent will give the whole number or mixt number fought; So the improper fraction $\frac{29}{12}$ will be reduced into this mixt number $4 \frac{11}{\frac{1}{2}}$, for if 59 be divided by 12 , the quotient is $4 \frac{1}{1} \frac{1}{2}$ Alfo this improper fraction $\frac{52}{4}$ will be reduced into the whole number 13.
XIV. Fractions having une qual To reduce fradiDenominators may be reduced into fractions of the fame value, which thall have equal Denominators, by this Rule and the next fol-
ons to common denominatos, viz. I. Whem two fractions are propoundid. lowing, viz. when two fractions having unequal Denominators are propounded to be reduced into two other fractions of the fame value, which fhall have a common Denominator, multiply the Numerator of the firft fraction (that is, either of them) by the Denominator of the fecond, and the Product thall be a new Numerator (Correfpondent unto the Numerator of that firff fraCtion;)alfo multiplying theNumerator of the fecond fraction by the Denominator of the firft, the Product is a new Numerator (correfpondent unto the Numerator of the fecond fraction; laftly, multiply the Denominators one by the other, and the

Product is a common Denominator to both the new Numerators.

Tbus, if the fractions $\frac{2}{3}$ and $\frac{4}{3}$ be propounded, multiply 2 by 5 , the product 10 is a new Numerator correfpondent unto 2: alfo multiply 4 by 3 , the product 12 is a new

$3 \quad 5$Numerator correfpondent unto 4: lafly, multiply 3 by 5 , and the product 15 fhall bea common Denominator unto the new Numerators. fo the fractions $\frac{10}{15}$ and 1515 $\frac{12}{13}$ are found out which have equal Denominators, and each of thefe new fraCtions is equal unto its correfpondent fraction firft given, viz. $\frac{10}{1} \frac{0}{5}$ is equal unto $\frac{2}{3}$ and $\frac{12}{13}$ is equal unto $\frac{4}{5}$ (as will be manifeft by the 4 th Rule of this Chapter.)
$X V$. When three or more Fractions having unequal Denominators, are given
2. When three or more Frattions areto be reducad into others thas Baall have a Common Denominatui: to be reduced into other Fractions of the fame value with thofe given, but fuch as thall have one common Denominator; multiply continually (according to the thirteenth Rule of the fifth Chapter) the Numerator of the firft Fraction into all the Denominators, except the Denominator of that firf Fraction; and referve the laft Product for a new Numerator inftead of that firft Numerator: In like manner, multiply continually the Numerator of the fecond Fraction into all the Denominators, exsept the Denorninator of the fecond Fraetion, and referve the laft Product for a new Numerator, inftead of the fecond Numerator; Proceed in like manner to find out new Numerators for the reft of the given Fractions: Laftly, mulciply continually

Chap.XVII. Vulgar Fractions 145

 all the Denominators one into another, and the laft Product fhall be a common Denominator to all the new Numerators.As for Example, if thefe three Fractions, $\frac{3}{8}, \frac{2}{5}$, $\frac{s}{7}$ having unequal (or different) Denominators, be given to be reduced into three other Fractions of the fame value, which thall have equal Denominator (or one common Denominatur) Firft, I multiply continually the firft
$\frac{\frac{3}{8}, \frac{2}{5}, \frac{5}{7}}{\frac{1}{2} \frac{0}{8} \frac{5}{2}, \frac{1}{2} \frac{1}{80}, \frac{22}{2} \frac{2}{80}}$ Numerator 3 into the fecond and third Denominators 5 and 7, faying 3 times 5 makes 15 , which multiplyed by 7 produceth 105, For a new Numerator inflead ot the firft Numerator 3 ; Secondly, I multiply continually the fecond Numerator 2 into the firff and third Denominators 8 and 7 , faying, twice 8 is 16 , which multiplyed by 7 produceth 112, for a new Numerator inflead of the fecond Numerator 2; Thirdly, Imultiply continually the third Numerator 5 into the firft and fecond Denominators 8 and 5, faying 8 times 5 makes 40 , which multiplyed by 5 product 200 , for a new Numerator inftead of the third Numerator 5; Fourthly and laftly, I multiply continualiy all the Denominators 8, 5 and 7 one inte another, faying, 8 times 5 makes 40 , which multiplyed by 7 produceth 280 for a Denuminator to each of the three new Numerators 105,112 and 200 betore found out ; And fo thefe thrce Fractions $\frac{105}{280}, \frac{115}{280}$, and $\frac{20}{2} \circ$, are difcovered, which have one common Denominator 280, and each of them is equal in value unto its correfpendent Frabtion firft given, viz. $\frac{1005}{2} \frac{5}{8}$ is equal unto $\frac{3}{8}$; Alfo $\frac{11}{2} \frac{7}{8}$ 年 is cqual unto $\frac{2}{5}$; and $\frac{20}{2} \frac{0}{8}$ is (qual unto $\frac{5}{7}$; as may eafily be pro-

ved by the Fourth Rule of this Chapter.
After the fame manher, thefe four FraCtions $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, and $\frac{5}{6}$ are reducible into thefe, $\frac{240}{360}, \frac{2 \pi}{36 \%}$, $\frac{288}{3} \frac{8}{6} \frac{8}{8}$ and $\frac{120 \%}{360}$, which have 360 for a common Denominator, and are equal in value refpectively to the four Fractions given to to be reduced.

Note, Although by the foregoing fourteenth and fifteenth Rules, any multitude of Fractions may be reduced to a common Denominator; yet becaufe Fractions in their leaft Terms are fitteff for ufe, I fhall fhew how leffer Denominators, than thofe that will be difcovered by the faid Rules, may often times be found out, viz.

1. When the unequal Denominators of two FraCtions have a common Divifor greater than 1, divide the Denominators feverally by their greateft common Divifor (found out by the fore-going third Rule of this Chapter;) and then multiply crofs-wife in this manner, viz. The Numerator of the firf Fraction by the latter Quotient, and the Numerator of the latter Fraction by the firft Quotient, and referve the Products for new Numerators; Laftly, multiply the Denominator of the firft Fraction by the latter Quotient (or the Denominator of the latter Fraction by the firf Quntient,) fo thall the Product be a common Denominator to the faid new Numerators: As for example, if $\frac{5}{1} \frac{5}{2}$ and $\frac{7}{1} \frac{7}{8}$ be propofed to be reduced to a common Denominator, I divide each of the Denominators 12 and 18 by their greateft common Divifor 6 , and the Quotients are 2 and 3 ; then I multiply 5 the Numerator of the firft FraCtion by 3 the latter Quotient, alfo 7 the Numerator of the latter Fraction by 2 the firt Quotient, and the Products 15 and 141 referve for new Numerators inliead

$\frac{15}{36} \quad \frac{14}{36}$ of 5 and 7; Lafty, I multiply 12 the Denominator of the firf Fraction by 3 the latter Quotient (or 18 the Denominator of the latter Fraction by 2 the firft Quotient,) and the Product 36 is a Denominator to each of the new Numerators 15 and 14: fo $\frac{15}{3}$ and $\frac{14}{36}$ are found out, which have the leaft common Denominator unto which the given Fractions $\frac{-5}{12}$ and $\frac{-\frac{7}{18}}{}$ can be reduced; Alfo $\frac{\pi}{3} \frac{5}{6}$ is equal to $-\frac{5}{2}$, and $\frac{45}{3} \frac{4}{6}$ to $-\frac{2}{3} \frac{1}{8}$.
II. Whenfoever the Denominator of a Fraction can be divided by the Denominator of a fecond Fraction, without any Remainder; then if by the Quotient you multiply feverally the Numerator and Denominator of fuch fecond Fraction, a third will arife, having the fame value with the fecond, and the fame Denominator with the firft Fraction: By this Rule three or more Fractions may often times be reduced to a leffer common Denominator, than that which will be difcovered by the foregoing Rule $X V$. As for Example, Let thefe fix following Fractions be given to be reduced to a common Denominator, viz.

$$
\frac{23}{36}, \frac{1}{1} \frac{1}{8}, \quad-\frac{7}{2}, \quad \frac{4}{9}, \frac{5}{6}, \frac{2}{13}
$$

Becaufe 36 the Denominator of the firf Fraction, being divided by the tive other Denominators ieve-
rally will give thefe Quotients 2, 3 , 4, 6, and 12 without any Remainder, I multiply the Numerator and Denominator of each of the five latter Fractions, by its correfpondent Quotient, vizo 11 and 18 by 2 the firft Quotient; Alfo 7 and 12 by 3 the fecond Quotient, and in like manner the reff; So inflead of thofe five latter Fractions', five others (hereunder placed after the firft of thofe fix) are produced, viz.

$$
\frac{1}{3} \frac{3}{6}, \quad \frac{2}{3} \frac{2}{6}, \quad \frac{2}{36}, \quad \frac{1}{3} \frac{6}{6}, \quad \frac{3}{3} \frac{0}{6}, \quad \frac{24}{3},
$$

All which Fractions laft expreft have a common Denominator 36 , and are equal in value refpectively to thofe given to be reduced.
XVI. A compound fraction (0 Torsduce a com. therwife called a fraction of a fractipound fraction to a single fractiono See continual muliplication in the laft Rule of the sth Chapter. on) may be reduced into a fingle fraction in this manner, viz. Multiply all the Numerators continually, and take the Product for a new Numerator, alfo multiply all the Denominators continually, and the Product fhall be a new Denominator.

Thus, if the compound fraction $\frac{2}{3}$ of $\frac{3}{4}$ be given to be reduced into a lingle fraction, multiply the Numerators 2 and 3, one by the other, fo is the Product 6 a new Numerator. Alfo multiplying the Denominators 3 and 4 one by the $\frac{3}{3}$ of $\frac{3}{4}$ other, the product 12 is a new Deno$\frac{3}{1} \frac{6}{2}$ or $\frac{1}{2}$ minator, fo $\frac{-6}{2}$ (or $\frac{2}{2}$ is the fingla fraction fought, being equivalent unto $\frac{2}{3}$ of $\frac{3}{4}$ the compound fraction given to be reduced.

Chap. XVII. Vulgar Fractions. 149

In like manner, this compound Fraction $\frac{2}{3}$ of $\frac{5}{4}$ of $\frac{4}{4}$ will be reduced unto $\frac{24}{60}$, or $\frac{2}{3}$; For the $\mathrm{Nu}-$ merator 2, 3, 4 being multiplyed continualiy produce the new Numerator 24, And the Denominators $3,4,5$ multiplyed continually produce the new Denominator 60; Laftly, the new Fraction $\frac{24}{60}$ (by the fourth Rule of this Chapter) will be reduced unto $\frac{2}{3}$, which is equal to $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{4}{5}$: But to make the meaning hereof more evident, Suppofe the Integer to be one prind of Englith money; Then
$\frac{4}{5}$ of 17 . (viz. of 20 s .) is 16 s .
$\frac{3}{4}$ of thofe $\frac{4}{5}$. (2 iz . of 16 s .) is- 12 s .
$\frac{2}{3}$ of thofe $\frac{3}{4}($ viz. of $12 \%)$ is 8 s . or $\frac{2}{5} 2$. whereby 'tis manifeft that $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{4}{5} l$. is equal to $\frac{2}{5} l$.

Ey this Rule a fraction or mixt number of a leffer name may be reduced to a fraction of a greaer name. As if $3^{\frac{x}{2}}$ pence be propounded to be reduced into an improper fraction of a pound fterling, the operation will be in this manner, viz. $3 \frac{1}{2}$ or $\frac{7}{2}$ of a peny is $\frac{7}{2}$ of $-\frac{1}{1}$ of $\frac{-1}{20}$ of a pound fterling, which compound fraction will (by the aforefaid Rule) be reduced to $-\frac{1}{40}$. In like manner $42-\frac{2}{6}$ minutes of an hour are equal to $\frac{45}{64}$ of an hour, for $\frac{67}{12} \frac{5}{6}$ (that is $42-\frac{3}{16}$) of $\frac{-1}{60}$ are equal to $\frac{1.75}{9,60}$ (or in its leaft terms) $\frac{45}{64}$.

Here you may alfo obfirve, that when a compound fraction is one of the given terms in any queftion, it is freft of all to be reduced to a lingle fraction by the aforefaid fixceenth Rule.
XVII. Twoor more fractions being given, there may be whole numbers found, which thall have the fame reafon or proportion as the

To find whole numbers, mbisch fhall have the fame reafonas any fraCions or mixt numbirs siver.

150. Reduction of छ̌c. Bōok I

fractions given, viz. When the fractions given have unequal denominators, reduce them into iquivalent fractions which thall have a common denominator (by the I 4 th or 15 th Rule of this Chapter;) then rijelting the common denominator, the Numerators flall have the fame reafon or proportion as the fractions firft given.
So $\frac{3}{5}$ and $\frac{5}{8}$ being given, will firft of all be reduced into their equivalent fractions $\frac{34}{40}$ and $\frac{25}{40}$; then rejecting the common denominator 40 , the Numerators 24 and 25 have the fame reaton with $\frac{3}{3}$ and $\frac{5}{8} \mathrm{viz}$. As $\frac{3}{3}$ is $10 \frac{5}{8} \int_{0}$ is 24 to 25 : alfo if the fractions $\frac{1}{8} \frac{1}{4}$ and $\frac{1}{2}$ were given, there will be found 8,16 , and 32 , which are in the fame proportion one to the other as the fractions given: In like manner, if mixt numbers be given, there may be whole numbers found which thall have the fame reafon or profortion, as the mixt numbers; fo $5 \frac{2}{3}$ and $3 \frac{5}{8}$ being given, will be firlt reduced into the improper fractions $\frac{-7}{3}$ and $\frac{29}{3}$ (by the renth Rule of this Chapter:) alfo the faid $\frac{17}{3}$ and $\frac{22}{8}$ will be reduced into $\frac{\frac{1}{2} 6}{24}$ and $\frac{81}{24}$; then r c Cting the common Denominator 24, the Numerators 136 and 87 will have the fame reafon as $5 \frac{2}{3}$ and $3 \frac{2}{8}$, viz. As 136 is to 87 , fo is $5 \frac{2}{3}$ to $3 \frac{5}{8}$: alfo $16 \frac{1}{2}$ and 18 being given, there will be found 33 and 36 , which being divided by their common Divifor 3 (found out by the third Rule of this Chapter) will give 11 and 12 which have the fame reajon as $16 \frac{1}{2}$ and J,

CHAP.

Chap.XVIII. Addition of E็c. 151

C H A P. XVIII.

Addition of Vulgar Fractions and mixt Numbers.

1. $ل$ Hen the numbers given to be added are fingle fractions, and have equal denominators, add all the Numerators together, fo is the fum the Numerator of a fraction, whofe denominator is the fame with the common denominator; which new fraction is the fum of the

To all fingle fraflions, viz 1., when they bave equal dcnominators fractions given to be added.

So $\frac{3}{9}$ and $\frac{2}{9}$ being given to be added, their fum will be found $\frac{5}{9}$ viz. the fum of the numerators, 3 . and 2 , is 5 , which being placed over the common denominator 9 , gives $\frac{5}{9}$: In like manner the fum of shefe fractions $\frac{2}{8} \frac{5}{8} \frac{3}{8}$ and $\frac{2}{8}$ will be found $\frac{12}{8}$, which (by the 13 Rale of the feventeenth Chapter) will be found equivalent unto $2 \frac{1}{8} \frac{2}{5}$, fo that $2 \frac{1}{8}$ is the fum of the fractions given to be added.
II. Whenthe fractions given to be added have unequaldenominators, they are firlt to be reduced into fra-
2. When thay have unigual denominators: ctions of the fame value, which fhall have a common Denominator (by the fourteenth or fifteenth Rule of the feventeenth Chapter;) and then they may be added by the firf Rule of this Chapter.

So if $\frac{2}{3}$ and $\frac{1}{3}$ were given to be added, their fum will be found $\frac{1}{2 \frac{6}{5}}$; for (by the fourteenth Rule of
the feventeenth Chapter) $\frac{2}{3}$ and $\frac{3}{5}$ will be reduced into their equivalent fractions $\frac{1}{1} \frac{0}{5}$ and $\frac{1}{1} \frac{7}{5}$, which having equal Denominators may be added according to the firft rule of this Chapter, and fo the fum will be found $1 \frac{4}{15}$: In like manner the fum of thefe fractions $\frac{1}{2} \frac{3}{8}$ and $\frac{3}{4}$ will be found $1 \frac{5}{8}$. Alfo the fum of thefe fix Fractions, $\frac{1}{3} \frac{3}{6}$ $\frac{1}{1} \frac{1}{8}, \frac{7}{1}, \frac{4}{9}, \frac{5}{6}, 5 \frac{2}{3}$, alter they are reduced to a common Denominator (according to the latter Example in the note at the end of the fifteenth Rule of the feveniecnth (Chapter) will: be, found $\frac{126}{36}$, that is, $\frac{3}{2}, 2^{2}$.
III. When any of the fractions given to be adt

The Adidition of comfin:d fríEion. ded is a-compound Fraction, fuch compound fraction is firtt of all to be reduced into a tingle fraction (by. the lixteenthRule of the feventeenth Chapter) and thea you may proceed as before. \therefore So $\frac{3}{5}$ and $\frac{2}{3}$ of $\frac{1}{4}$ being given to be added, their fum will be found ${ }_{30}{ }^{3}$ for the compound fraCition $\frac{2}{3}$ of ${ }_{4}^{5}$ will (by the tixteenth Ruie of the 17 th Chapter) be reduced to $\frac{s_{2}^{2}}{2}$ (or in its leaft terms) $\frac{1}{6}$ which added to the fingle fraction $\frac{3}{3}$ (according to the fecond rule of this Chapter) gives $\frac{23}{3}$. Here you may obferve, that the fractions.given te be added in all theformer cafes, are fuppofed ta be fractions Ey. denomina- of Integers, which have one and the tion is meant the name of any integer or thing. fame partiouslar denomination viz. if one of the fractions given to be adr ded, be a fraction of a pound ferling: all the reftought to be fractions of a pound of orher denominations.
IV. When fractions of Integers To add frafficem: of different denominations are gi- of Intugsis: $F t c^{\prime}$ ven to beadded, they are firit of all to be reduced into fractions of Intogers which fhall have one and the fame particular denomination (by the fixteensh Rule of the feventeenth Chapter;) and then they may be wdded by the firft or fecond Rüle of this Chapter.

So if $\frac{2}{9}$ of a pound ferling $\frac{3}{5}$ of a hilling, and $\frac{5}{8}$ of a peny were given to be added, reduce the two latter into fractions of a pcund fferliug (by the fixteenth Riale of the feventeenth Chapter).viz. $\frac{3}{5}$ of a fhilling is $\frac{7}{\frac{7}{3}}$ of $\frac{1}{20}$ of a pound ferling, which compound fraction being reduced into a lingle fraction, gives $\frac{-3}{10} \frac{3}{0} l$. Likewife $\frac{5}{8}$ of a peny, is $\frac{5}{3}$ of $T_{1} \frac{1}{2}$ of $\frac{1}{20}$ of a pound ferling, which sompound
 $T_{10}^{3} \frac{3}{0} l$. and $\frac{1}{3} \frac{1}{2} 4 i$. beingadded according to the fecond Rule of this Chapter, their flurn will pe feymd

V. When mixt numbers are given to be added, - find firf of all the fum of the fra-
Ctions (by the firft and the fociond Rule
rimmorto. of this Chapter;) then add the Integer or Integes (if fhere be any found in the fum of a the fractions, unto the whole inimbers, and colle Cf the fum of them as you were taught by the Rules of the third Chiapter.

So if $3 \frac{1}{2} 4 \frac{4}{3}$ and $16 \frac{5}{3}$ were given to be added, their fum will be found $24 \frac{1}{2}+$ wiz. the furm of the fractions $\frac{-2}{2} \cdot \frac{.3}{3}$ and $\frac{5}{8}$ will be fourd (by the fecond Rule of this Chapter) to be $1 \frac{1}{24}$ and the fum of the

154

 Subtraction of Book I.) whole numbers 3,4 , and 16 , is 23 , unto which adding 1 (the Integer found in the fum of the fractions) the fum is 24 ; fo that $24 \frac{21}{2} \frac{1}{4}$ is the fum of the mixt numbers given to be added.
CHAP. XIX.

Subtraction of Vulgar Fractions and

 mixt Numbers.I. $V \mathbf{V}$Hen the numbers given are both fingle fractions and have equal denominators, fubtract the leffer numerator

The fubtraftion of fingle fritlians, viz. 1. When they bave a common denominator from the greater, and place the remainder over the common denominator, fo is fuch new fraction the difference between the
fractions given.
Thus the difference between the fractions $-\frac{9}{1}$ and $-\frac{7}{\frac{7}{3}}$ is $-\frac{2}{x}$, which is found by fuberacting the leffer numerator 7 from the greater denominator 2 , and placing the remainder 2 over the common denominator II; alfo the difference between the fractions $\frac{13}{2} \frac{3}{3}$ and $\frac{1}{2} \frac{7}{3}$ is $\frac{6}{2}$, that is, the fraction $\frac{13}{2} \frac{7}{3}$ exceeds $\frac{13}{2 \frac{1}{1}}$ by $-\frac{6}{21}$.
II. When the numbers given are both fingle fractions; and have not a common
2. When they bixvo sniequal denqminators denominator, reduce them into fraCtions of the fame value which fhall have a commọn Denominator (by the fourteenth or fifteenth Rule of the feventeenth Chapter;) and then find their difference by the laft Rule:

Chap.XIX. Vulgar Frattions. 155

So the difference between the fractions $\frac{6}{7}$ and $\frac{7}{8}$ will be found $\frac{1}{5}$ vizo. reducing the fractions given into their equivalent fractions $\frac{48}{5} 6$ and $\frac{49}{5}$ which have a common denominator, the difference fought will be found $\frac{-7}{5} \frac{1}{6}$ by the firft Rule of this Chapter. Likewife $\frac{1}{2}$ being fubtracted from $\frac{11}{13}$, there will remain $\frac{-47^{2}}{5} 6^{6}$.

IIT. When ore of the numbers given is a whole number or a mixt number, alfo when borh of them are mixt numbers, reduce fuch

The firberagion of mixt numbers, viz. I. By age. neral kul. whole, or mixt numbers into an improper Fraction or Fractions by the tenth or cleventh Rule of the fcventeenth Chapter, and then the opcration will be according to the firft or fecond Rule of this Chapter.

So $7 \frac{3}{3}$ being given to be fubtracted from 12 , the remainder will be found $4 \frac{2}{5}$; viz. Firft $7 \frac{3}{5}$ will be reduced into the improper Fraction $\frac{18}{5}$, allo 12 will be reduced to $\frac{12}{1}$, then thefe two improper fraCtions $\frac{38}{5}$ and $\frac{12}{1}$ will be reduced into their equivalent fractions $\frac{18}{8}$ and $\frac{50}{5}$ (which have a common Denominator.) Lafly, the difference between $\frac{88}{5}$ and $\frac{60}{3}$ is $\frac{22}{5}$, or $4 \frac{2}{5}$. In like manner $9 \frac{1}{2}$ being given to be fubtracted from $12 \frac{1}{5}$, the remainder will be found $2-\frac{1}{10}$; as by the fubfequent operation is manifent.

Although the three laft Rules be fufficient for all calcs io fubtraciuni of Fractions, mixt numbers, or whole and mixts neverthelefs the following Rules will be more expeditious in the fibtraction of mixt numbers, or whole and mixt, efpecially when the lintegers conlift of many places, as will be minifeff by the operation, viz.
IV. When a whole number is given to $b:$ fubtracted from a mixt number, fubtract
2. By particu. lar Nutes viz. 1. A whole number from a mixt number. ber. the faid whole number from the Integer or Integers of the minxt number (as is taught by the Rules of the fourth Chapter) and unto the rcmainder annex the fractional part of the mixt number given, fo is the mixt number thus found, the remainder or difference fought.

As if 7 be given to be fubtracted $24 \frac{5}{8}$ from $24, \frac{3}{8}$, the semainder will be $\frac{7}{17 \frac{3}{8}}$ as by the operation is mari$17 \frac{1}{8}$ feft.
V. When a fraction is given to be fubtricied from an Integer, fubiract the Nume-
2. A Fraction from al Inte. ger place that which remains over the Denominator, which new fration thus found, is the remainder or difference fought. So $\frac{3}{5}$ being fubtracted from an Integer, or I , the remainder is $\frac{2}{5}$: - Alfo $\frac{13}{1}$, being fubtracted from 1 , the remainder is $\overline{\mathrm{T}} \mathrm{a}^{\circ}$,

- VI. Whena fraction is given to be fubtracted frbm a whole number greater 3. A Fragion from iban 1 , fubtract the fiid fraa white numbergria Ction fromone of the Integcrs
tor than \bar{x}. *. 4 rititu

Chap. XIX. Vulgar Fractions 157

 remaining fraction being annexed to the number of Integers leffened by unity or 1 , gives the remainder or difference fought.Thus $\frac{s}{3}$ being fubtracted from 17 , the remainder if $16 \frac{2}{7}$: alto $-\frac{1}{2}$ being fabtracted form 39 , the $1 t-$ madder is $38 \frac{1}{12}$.
VII. When a mist number is given to be fabtracked from a whole number, rubtract first of all (by the fifth Rule of 4 i mitt this Chapter) the fractional part of number from the mist number from an Integer a whole sumborrowed from the whole number given, and fer down the remaining fraction, then adding the Integer borrowed unto the Integer or Integers of the mist number, fubtiact the raid fum from the whole number given (as is taught in fabtraction of whole numbers;) fo that which remains, together with the remaining fraction before found, is the remainder or difference fought.

Sol f $9-\frac{1}{2}$ be flubtradted from 50 , the remainer is $40-\frac{\bar{I}_{2}}{5}$, as by the operation is manifest.

> VIII. When a fraction is given to be
"fubtracted from a mist number, and the ". Cid fraction is left than the fractional part of the mist number, fubttacte the teffer. Praciton from the greater by the firf 5. A fraction of Second Rule of this Chapter, then the remaining fraction being annex- $\begin{gathered}\text { number } k \text { ty this } \\ \text { and } \\ \text { the } \\ \text { nt }\end{gathered}$ ed to the Integer or Integers of the Muff: , mist number, gives the remainder or difference fought?

So $\frac{5}{9}$ being fubtracted from $12 \frac{7}{8}$ the remainder is $12 \frac{23}{72}$, as by the operation is manifef. 12 종 IX. When a fraction is given to be fubtracted from a mixt number, and the faid Fraction is greater than the fractional part of the mixt number, fubtract the faid greater fraction from an Integer borrowed from the mixt number (by the fifth Rule of this Chapter) and add the remaining fraction unto the fractional part of the mixt number (by the firft or fecond Rule of the eighteenth Chapter;) fo the Fraction found by that addition, being annexed to the Integers of the mixt number leffened by an Integcr, or 1, gives the remainder or difference fought.

Thus $\frac{9}{6}$ being fubtracted from $13 \frac{3}{8}$, the remainder is $13 \frac{52}{72}, v i z$. fubtracting $\frac{5}{9}$ from 1 , the $13 \frac{3}{8}$ remainder is $\frac{4}{9}$, which added to $\frac{3}{8}$ gives $0 \frac{5}{9} \frac{59}{52}$, which being annexed to 12 (the num$12 \frac{59}{72}$ ber of Integers in the mixt number leffened by 1 or unity) gives $\$ 2 \frac{59}{72}$ the remainder fought.
X. When a mixt number is given to be fubtracted from a mixt number, and the
6. A mixt дим bet from a mixt number by th's and the next Ruls. fractional part of the mixt number to be fubtracted, is lefs than the fraCtional part of the mixt number from which you are to fuberact, fubtract the faid leffer fraction from the greater (by the firft or fecond Rule of this Chapter) and fet down the remaining Fraction: alfo fubtract the Integers of the leffer mixt number from the Integers of the greater (as in Subtraction of whole numbers;) fo is the nfixt number thus found, the remainder or difference fought.

Chap. XIX. Vulgar Fractions 159

So if $17 \frac{3}{8}$ be given to be fubtracted from $20 \frac{5}{5}$,the remainder will be found $3 \frac{12}{56}, v i z$, fubtracting $\frac{3}{8}$ from $\frac{5}{7}$, the remainder is $\frac{19}{56}$; alfo fubtracting 17 from
 20 , the remainder is 3 .
XI. When a mixt number is given to be fubtracted from a mixt number, and the fractional part of the mixt number to be fubtracted is great ter than the fractional part of the mixt number from which you are to fuberact, fubtract the faid greater Fraction from an Integer borrowed from The greater mixt number (by the fifth Rule of this Chapter) and add the remaining fraction unto the fractional part of the greater mixt number (by the firft or fecond Rule of the 18th Chapter; fo is the fum to be referved as the fractional part of the remainder fought; then add the Integer borrowed unto the Integer or Integers of the leffer mixt numpber, and fubtract the fum from the Integers of the greater mixt number (as in fubtraction of whole numbers;) fo that which remains, together with the fraction bofore referved, is the remainder or differençe fought.

Thus if $20 \frac{7}{8}$ be given to be fubtracted from $35_{\frac{3}{5} \text {, }}^{3}$, the remainder will be found $14 \frac{20}{40}$, viz. fubtracting $\frac{7}{8}$ from an Integer or 1 , the remainder is $\frac{2}{8}$, which added to $\frac{3}{5}$ gives $20 \frac{3}{\frac{3}{8}}$ $\frac{29}{40}$, then adding the Integer borrowed unto $\frac{14 \frac{29}{40}}{40}$ 20 , it will be 21 , which fubtracted from 35, the remainder is 14 , to the remainder or difference fought is $\$ 4 \frac{29}{40}$.

When you eannot clearly difeern which is the greater of two fractions, having unequal denominators, reduce them into fractions of the fame va-- Jue which fhall have'a common DeTo difcern the greater of two frationio nominator (by the fourteenth Rule of the feventeenth Chapter) and then it will be apparent which of the two fractions is the greater. As, if fit be defired to kirmw which of there two fractions $\frac{0}{7}$ and $\frac{1}{5} \frac{1}{3}$ is the greater, after they are reduced to $\frac{7}{9} \frac{8}{5}$ and $\frac{\frac{3}{9} \frac{7}{3}}{}$, it is evident that the former exceeds the latter by $\frac{1}{91}$.

Multiplication of Vulgar Frattions and

${ }^{4}$ WHen the numbers given to be multiplyed are both fingle fractions, multiply the Nu To multiply fingle. Fraftiors. merators one by the other and take the Product for a new numerator; alfo multiply the denominators one by the other, and the prodact is a new denominator, which new fraction is the product fought. So $\frac{-2}{12}$ and $\frac{5}{8}$ being given to be multiplied, the product will be found $\frac{35}{96}$, for 7 multiplied by s produceth 35 for a new Numerator, and 12 multiplied by 8 produceth 96 for a new Denominator: alfo $\frac{5}{7}$ and $\frac{3}{7}$ being multiplied owe by the other, the product will be found $\frac{15}{49}$: Here you may obferve that in the multiplication of proper Fraction's, the product is always lefs than either of the terms given, For in multiplication fuch proportion

Chap.XX. Vulgar Fractions 160

 as unity or I hath to either of the terms given, the : fame proportion hath the other term to the prot duct.II. When one of the numbers given is a whole, number or a mixt number ; alla when both of them are mixt num, bers,reduce fuch whole number or

Tomultiply nite. numbers. mixt number or numbers into an improper fractio on or fractions by the tenth or eleventh Rule of the feventeenth Chapter, and then the operation will be the fame as in the laft Rule.

So $8 \frac{2}{3}$ being given to be multiplied by 5 , the product will be found $43 \frac{1}{3}$; viz. $8 \frac{2}{3}$, being redua ced into the improper fraction $\frac{20}{3}$: alfo 5 unto $\frac{5}{1}$, multiply 26 by 5, the product is 130 for a new Numerator: alfo multiplying 3 by 1 , the product is 3 for a new Denominator, which new Fraction $\frac{13.0}{3}$ being reduced (according to the thirteenth Rule of the feventeenth Chapter) will be $43 \frac{2}{3}$ the product fought. In like manner $7 \frac{1}{2}$ being multiplied by $5 \frac{3}{5}$, the product will be found 42 . Hexe obferve, that when either of the terms given is ia compound fraction, it is firf of all to be reduced in to a lingle fraction, and then the operation is as before.

Note 1. Sometimes the work of Multiplication in Fractions may be very ufefully contracted by this following Rule, viz.

When two Fractions propos ${ }^{3} d$ to be multiplyed (whether they be proper or improper) arefuch, that the Numerator of the one, and the Denominator of the other, may be feverally-divided by fome common Divifor without a remainder; you may take
take the Quotients inflead of the faid Numerator and Denominator, and then multiply as before in the firft Rule of this Chapter: As for example, if $\frac{5}{7}$ be to be multiplyed by $-\frac{5}{2}$; becaufe 6 the Numerator of the firft, and 12 the Denomitator of the later Fraction, being feverally divided by their common Divifor 6 give the Quotients 1 and 2, I fet thefe(or imagine them to be fet)in the places of 6 and 12 ; by which exchange there arife $\frac{1}{7}$ and $\frac{5}{2}$, thefe multiplyed one by the other (according to the firl Rule of this Chapter) produce $\frac{-5}{4}$ the defired Product of $\frac{6}{7}$ inte $-\frac{5}{2}$, in the finalleft terms.

Again, to multiply $\frac{15}{48}$ by $\frac{-3}{16}$; becaufe the Numerator of the firft Fraction and the Denominator of the latter, being each divided by 16 give the Quotients 1 and I, Ifet 1 and I in the places of 16 and 16; likewife becaufe 48 the Denominator of the firft, and 3 the Numerator of the latter Fraction, being each divided by their common Divifor 3, give 16 and $1, I$ take 16 and 1 inftead of 48 and 3 ; fo by thofe exchanges there arife $-\frac{1}{1} 6$ and $\frac{1}{2}$, which multiplyed one by the other produce $\frac{-i}{6}$, which is the Product in the fmalleft terms made by the mul. tiplication of $\frac{16}{4}$ into (or by) $-\frac{2}{5}$.
2. To take any pirt or parts of a number pro. pounded, is nothing clfe but to multiply the faid number by the Fraction which declareth what part is to be taken: fo if you defire to know what is $\frac{5}{8}$ of 320 , mulciply $\frac{220}{3}$ by $\frac{5}{8}$, or $\frac{40}{3}$ by $\frac{5}{1}$, and the product will be 200. In like manner $\frac{2}{3}$ of $45 \frac{3}{8}$ is $30 \frac{3}{4^{\circ}}$ Alfo $\frac{1}{4}$ of 120 is 30.
3.Sometimes the work of multiplication in mixt

Chap.XX. Vulgar Fractions 163

 numbers may be compendioufly performed after the manner of thefe following examples. viz.ifit be required to multiply $120 \frac{1}{4}$ by $48 \frac{1}{2}$, firf multiply the whole numbers mutually, to wit, 120 by 48 , and place the particular produats orderly one under the other as in Multiplication of whole numbers; then multiply the faid whole numbers firf given by the fraCtions alternately, viz. take $\frac{1}{4}$ of 48 which is 12 , alfo take $\frac{1}{2}$ of 120 which is 60 , and place the faid 12 and 60 orderly to be added to the former particular products:Lafly, addalltogether, and to the fum annex the product of the| $120 \frac{1}{4}$ |
| :---: |
| $98 \frac{4}{2}$ |
| 980 |
| 120 |
| 60 |
| $5832 \frac{1}{8}$ | two fractions, to wit in this example, the product of the Multiplication of $\frac{1}{4}$ by $\frac{2}{2}$, which is $\frac{1}{8}$, fo the toral product required will be $5832 \frac{1}{8}$, as you fee by the example in the Margent. In like manner, if $18 \frac{1}{2}$ be multiplied by $40 \frac{2}{3}$, the product will be $746 \frac{1}{6}$; and if $29 \frac{1}{2}$ be multiplied by 50 , the product will be 1475 ,as you fee by the examples following.

4. When a fraction is to be multiplyed by 2 number which happens to be the fame with the Denominator, take the Numerator for the product; Fo if this fraction $\frac{1}{4}$ be propounded to be multiplied by the Denominator 4 , the product will
be $\frac{12}{4}$, that is 3 , which is the fame with the Numerator 3. In like manner if $\frac{5}{8}$ be multiplied by the denominator 8 , the product is equal to 5 the Numerator of the Gaid s.

Divilion of Vulgar Fractions and mixt numbers.

.WHen the numbers given are both fingle fractions, multiply the Denominator of the Divifor by the numerator of the The Divififon of Dividend, and take the product for a new numerator : alfo multiply the numerator of the Divifor by the denominator of the Dividend, and the product is a new denominator; which new fraction is the quotient.fought. So if $\frac{4}{4}$ be given to be divided by $\frac{3}{2}$, the quotient will be found $\frac{2}{27} ;$ viz. multiplying 5 by 4 the product is 20 for a new numerator, $\left.\frac{3}{5}\right)_{9}^{4}\left(\frac{20}{27}\right.$ alfo multiplying 3 by 9 , the product is 27 for a new denominator, fo is $\frac{20}{27}$ the quotient fought; in like manner if ${ }_{s}$ begiven to be divided by $\frac{2}{7}$, the quotient will be found $\frac{35}{16}$ that is $2 \widetilde{1}_{6}^{3}$, as you fee in the Exam($\frac{22}{7}$) $\frac{5}{8}$ ($\frac{3}{11} \frac{5}{6}$ ple : iere you may obferve, that in Divifion by proper tragtigns, the quotient is alwayes greater than either of the fractions given; for in Divifion, as the divifor is in proportion to I or unity? $f 0$ is the divdend to-the quotient.
II. When

Chap.XXI. Divifion of EGc.

II. When one of the numbers given is a whole number or a mixt number; alfo when both are mixt numbers, reduce fuch whole number or mixt number or numbers into an improper fraction or fractions, by the tenth or eleventh Rule of the feventeenth Chapter, and then the operation will be the fame as in the laft Rule.

So if 42 be divided by $7 \frac{1}{2}$, the quotient will be found $5 \frac{3}{3}$, for $7 \frac{1}{2}$ and 42 will be reduced into thefe improper fractions $\frac{15}{2}$ and 42 , then multiplying 42 by 2 ,the product is 84 for a new
$\left.7 \frac{1}{2}\right) 42($ $\left.\frac{15}{2}\right) \frac{43}{1}\left(\frac{84}{15}\right.$ 15) $84\left(5 \frac{3}{5}\right.$ Numerator, alfo multiplying 15 by \mathbf{I}, the product is 15 for a new denominator, fo is $\frac{84}{15}$ the quotient fought, which is equal to $5_{\frac{3}{5}}^{\frac{3}{5}}$ (as is evident by the thirteenthRule of the feventeenth Chaprer.) In like manner, if $6 \frac{1}{2}$ be divided by $3 \frac{2}{5}$, the quotient will be $1 \frac{31}{34}$. Alfo if $5 \frac{1}{3}$ be divided by $12 \frac{1}{2}$ the quotient will be 掠.

Note, Somerimes the work of Divifion in FraCtions may be very ufefully contracted by this following Rule, viz. When either the two Numerators, or the two Denominators of the Fractions propofed, can be divided feverally by fome common Divifor without a remainder, you may take the Quotients inftead of the faid Numerators or Denominators, and then divde by the firf Rule of this Chapter: as for example, if $\frac{1}{1} \frac{2}{7}$ be to be divided by $\frac{3}{3}$, becaufe the Numerators 12 and 8 being each divided by their common Divifor 4 will give the Quotients, 3 and 2, I take thefe inftead of 12 and 8, by which exchange there arife $-\frac{3}{17}$ and $\frac{2}{5}$, the former of which bsing divided by the latter, (aecord-
166° Divifion of Ěc. . Book I ing to the firft Rule of this Chapter) gives $\frac{\frac{155}{34} \text {, }}{3}$, which is the Quotient in the leaf terms that arifech by dividing $\frac{12}{17}$ by $\frac{9}{9}$.
3. Again, to divide $=\frac{5}{8}$ by $\frac{15}{8}$;becaufe the Numerators 25 and 15 being feverally divided by their common Divifor 5 give the Quotients 5 and 3, likewife becaufe the Denominators 8 and 8 being each divided by 8 give the Quotients 1 and \mathbf{I}, I fet 5 and 3 in the places of the Numerators 25 and 15 , al'fo I and I in the places of the Denominators 8 and 8 ; whence arife $\frac{5}{1}$ and $\frac{3}{3}$, Laftly dividing $\frac{5}{1}$ by $\frac{3}{1}$, that is 5 by 3 , there arifeth $\frac{5}{3}$, that is $\frac{2}{3}$, which is the defired Quotient of $2 \frac{5}{8}$ divided by ${ }^{2 \frac{5}{8}}$.

* \therefore 2uefions to exercife the Rules of Vulgar -Frations before delivered.

Queft. 1. The difference of fwo numbers is $\frac{13}{2} \frac{3}{4}$ the leffer number is $2 \frac{*}{5}$, what is the greater? Anfivo $3 \frac{2}{3}$, (found by Addition.)
2. 2. What number is that, which if added ro $3 \frac{5}{8}$ gives the fum $8 \frac{3}{8}$? A A \int neo. $4 \frac{-7}{1}$ (found by Subtraction.)

2uef. 3. There is in three bags the fum of $121 \frac{1}{4} \% l$. viz. in the firft bag $50 \frac{5}{8} l$. in the fecond $40 \frac{4}{15} l$. what is in the third bag? Anfor. $30 \frac{2}{3} l$. (found by Addition and Subtraciion.)

शuef. 4. Two Merchants A and B, have certain thates in a Ship, the thare of A is $\frac{7}{1} \frac{7}{0}$ of the - Ship, that of $B \frac{\pi}{3}$, what is the difference between their parts? Anfw; the thare of A exceeds the - fliare of B by $\frac{1}{13} \frac{1}{6}$ (found by subtracition.)

Chap.XXII. Notation of E゚c.

2uef. 5. What is $\frac{5}{8}$ of $130 \frac{2}{3}$? Anf00. $81 \frac{2}{3}$ (found by Mulliplication.)

2uef. 6. What number is that, which being multiplied by $\frac{3}{5}$ produceth $25 \cdot \frac{2}{5}$? Anf. $42 \frac{1}{3}$ (found by Divifion.)
Now followeth the doctrine of Decimal Fractions.

The DoCirine of Decimal Fractions.

CHAP. XXII.

Notation of Decimal Fractions.

1. T is hard to determine, who was the firft that brought Decimal Aritbmetick, to light, though it be a late Invention; but without doubt it hath received much improvement within the compars of a few years, by the induftry of Artifts, and now feems to be arrived at perfection. The excellency thereof is beft known to fuch as can apply it to the practical part of the Matbematicks, and to the ConfruAtion of Tables, which depend upon

The proper ufo of Decimal A rithemetick. ftanding or conftant proportions, fuch are TrigonometricalCanons, Tables for computing of compouind Intereft, Esc. in which cafes decimal operations do afford fo great help, that (in my opinion) many ages have not produced a more ufefull invention. But it may be objected, that Decimal Aritbmetick for the moft part gives an imperfect folution to M 2 a que-
a queftion. This I grant, yet the anfwer fo given may beas ufefull as that which is exactly true; for in common affairs, the lofs of $\frac{100}{\text { r }}$ part of a grain, or of an inch, \&\&c. to wit, any quantity which cannot be feen, is inconfiderable : but I could not be miftaken, for inextolling Decimals I do notcry down Vulgar FraCiions, fince experiDecimal Fra- ence Theweth that Decipeal Fractions Itions foime are commonly abufed, by being ap-
times abusca. plyed to all manner of queftions about money, weight, \&c. when indeed many queftions may be refolved with much more facility by Vulgar Aritbmetick, as may partiv appear by this Example, viz. at 9 l. - 6 s.-8d the hundred weight of Tobacco, what will 987 hundred weight coft? Anfor. 9212 l. which by the common Rule of Practice by Aliquot parts is found out in a quarfer of the time, that will neceffarily be required to work it by Decimals, whichat laft will giveanimperfect anfwer; I might inftance the like inconvenience divers wayes, were it not for lofs of time; fo that the right ufe of Decimals depends upon the difcretion of the Artijt.
II. When a fingle Fraction hath for its denominator a number confifting of 1 or
The definition of epocimal Fraftione:unity in the extream place towards the left hand, and nothing but a Cy pher or Cyphers towards the right, it is inore particularly called a Decimal: of this kind are thefe that follow, $-\frac{s_{0}}{\circ}$, that is tive tenths, $\rightarrow-\frac{5^{\circ}}{0}$, five hundredth parts; likewife thefe are deciThal fractions, $\frac{34}{10} \frac{3}{0}, \frac{20 \%}{1000}, \frac{1023}{10.000}$, \&cc.
III. A Decimal traction may be expreft with-

Chap.XXII. Decimal Fractions.

out the denomonator, Gy prefixing a point or comma before (to wit, on the left hand of) the numerator, fo $\frac{-5}{1}$ - may be written thus, .5 or thus, 5 and ${ }_{7}^{2} \frac{25}{2}$ thus, 25 or thus 25 .
IV. In Decimals when the Numerator confifis not of fo many places as the Denominator hath Cyphers, fill upthe void places in the Numerator with Cyphers perfixed on the left hand: $\mathrm{f} 0-\frac{1}{\mathrm{x}} 0 \frac{5}{0}$ is written thus .05; likewife 1.500 thus, 050 ; and $T-205$, thus, .0205 , likewife $\frac{0}{7000} 6$, thus, .006 .
V. In Decimals thus expreft, the Denominator is difcoverable by the places of the Numerator: for if the Numerator confifts of one place, the Denominator confifts of 1 or unity with one Cypher; if of two places, the Denominator confiffs of 1 with two Cyphers annexed ; if of three, the Denominator conlifts of 1 or unity with three Cyphers annexed: fo the Denominator of 25 is 100 , the Denminator of.o5o is 1000 , and the ${ }^{\prime}$ Denominator of.0g6 is 1000 .
VI. Cyphers at the end of a Decimal do neither augment or diminith the value thereof: $\{0.2, .20$, .200, . 2000 are decimals, which have one and the fame value, for IT 20 o being abbreviated by the eighth Rule of the feventeenth Chapter, will be made $-\frac{2}{0}$ and fo will $\frac{30}{1000}$ or $\frac{1200}{1000}$.
VII. Wherefore Decimal fractionfs are eafily reduced to a common Denominator (which is a troublefome work in IT ulgar Fractions;) for if all the Numerators of as many decircal fractions as äre given, be made to confift of the fame number of places, by anpexing a Cypher or Cyphers at the M_{3} end
end (that is on the right hand) of fuch Numerators as are defective, they will all be reduced to a common Denominator, fo thefe Decimals . $2, .03, .027$ (which fignifie $\overline{1} \frac{z}{0},-\frac{3}{10},-\frac{27}{1000}$) may be reduced into thefe, $.200, .030, .027$, which have a 1000 for a common Denominator.

TVIII. Theorder of places in any Decimal proceedeth from the left hand to the right, contrary to the order of places in Integers, which is from the right hand to the left: ©o in this Decimal 247, the figure 2 ftandeth in the firft place (being the outermof towards the left hand, and next to the point,) the figure 4 ftandeth in the fecond place, and 7 in the third. Alfo in this Decimal .0245 , a Cypher ftands in the firft place, 2 in the fecond, 4 in the third, and 5 in the fourth.
IX. Every place in the Numerator of a Decimit Fraction hath a peculiar Denominator or proper value, viz. the Denominator of the firft place is $1 C^{\prime}$; of the feeond, 100 ; of the third, 1000, \&c. fo that the firft place of a Decimal fignifies tenth parts of an unite or Integer; the fecond place, hundredth parts of an Integer; the third place, thoufandth parts of an Integer, foc. Hence it is manifeft, that this Decimal. 2254 (every place thereof being confidered apart by it felf) contifts of $\cdot 3, .02, .005$ $.0004\left\{\right.$ viz. $-\frac{3}{6},-\frac{7}{50},-1000,-\frac{3}{00}-\frac{4}{0}$, which being redaced to a cominon denominator (by the feventh \%ule of this Cbapter) will give thefe, $3000, .0200$, $.0050, .0004$ (f0 wit, $-\frac{3000}{10} 00021020001 \overline{10}-\frac{10}{20}, \overrightarrow{1} \cdots \frac{4}{4}$) all which collectively make 3254 (or $-\frac{102524}{30}$)
X. In whole numbers, the firlt place above (that is on the lett hand of) the place of unities tigni-

Chap.XXII. Decimal Fractions.

fies Tens of unities; But the firft place bencath, (that is on the right hand of) the place of unities fignifiestenth parts of I or unity, and is çalled the firt place of Decimal parts, or place of Primes; likewife' the fecond place above the place of unities, fignifies hundreds of Unities, but the fecond place beneath the place of Unities lignifieth hundredth parts of I or unity, and is called the Second place of Decimals, or place of feconds; fo that as the values of the places in Integers do afcend in a decuple proportion from the place of Units towards the left hand, fo the values of the places of Decimals do defcend in a fubdecuple proportion beneath the place of units towards the right hand :viz. Among the places of Integers, every following place towards the left hand; is ten times the value of the next preceding place; But among the places of Decimal parts, every following place towards the right hand is one tenth part of the value of the nexit preceding place: all which will be evident by the following Table.

A Table for the Notation of Integers and Decimals.

In the foregoing Table you may obferve, that the places of Integers or whole numbersare fepafrated from the places of Decimal parts of: (or unitie) by a point ; fo the number on the left hand of the

Chap. XXII. Decimal Fractions. 173

 the point expreffeth 73285 Integetsor unities, but the number on the right hand of the point expref feth only 8237 parts of I (or an Integer) fuppoes fed ro be divided into 10000 equal parts, In like manner this number 5 . 8 fignities 5 Integers and eight tenth parts of an Integer, and this number. 285.82 fignifies 285 Integers (or Unities) and $\mathrm{r}_{\mathrm{r}}^{2} \frac{8}{8} \frac{2}{d}$ parts of an Integer.

CHAP XXIIF.

Concerning the Reduction of Vilgar Fraetions to Decimalh Fractions.

1. F the greateft Integer of money;as alfo of meighty meafure. \&cc.were fubdivided decimally, to wis; a pound of Englith money into ten equal pieces of coyn, and every one of thefe into ten other equal pieces,\&rc.and weights, meafures, \&xc. after the fame manner; the doetrine of Arithmetick would be taught with much more eafe and expedition than now it is; but it being improbable that fuch a reformation will ever be brought to pafs, I hall proceed in divecting a courfe to the fudious for obtaining the frugal ufe of fuch Decimal fractions as are in his power.
II. Forafmuch as in Arithmetical queftions, forme of the given numbers do for the moft part happen to befractions, a way mult be fhewd how to reduce a Vulgar Fraction to a Decirsal Eraciion ; yet in

174 Reduction of Vulgar Fractions Book I.

 fome cafes there is no need of this Reduction; for example, a foos in length is vulgarly fubdivided in-, to 12 inches; an inch into 4 quarters, and each quarter into 2 half quarters; but a foot may as eafily, and a great deal more commodioufly be divided, firfinto ten equal parts, and then each of thofe into ten other equal parts, and each of there into ten other equal parts ; (or at leaff fuch divifion muft be fuppofed or imagined when it cannot actually be made.) This foot in length fo divided, being applyed to the fides of $f_{\text {uperficial figures, or of }}$ Solids will at firftight give the quantities of lines in feet and decinzal parts of a foot (as readily as a foot vulgarly divided will thew you how many feet, inches, quarters, and balf quarters are contained in any line) from whence the fuperficial or folid content may be found in feet by multiplication only; and how much this excels the vulgar moay, I fhall partly manifeft in the fifth Rule of the 26 th Chapter. The like fubdivifion I would have to be made of a Yard, Peepob; \&ecuralI I I. A fingle fraction, which is no decimal - fraction, reay be reduced into a deHow to reduce ic cimal of the fame value, or infinitely a vulgar fraf er near (for alliwalgaw fractionscacannot alion to a dcci- . mal fraction, 1 u: be exactly reducedito decimalls) by , ...) the Rule of Three direct ; for as the Denominator of any fingle fraction whatfoever, is to the Numerator thereof, fo is any other Deñominator to his correfpondent Numerator: Exampille, let it be reqquired to reduce $\frac{5}{8}$ mito a Decimal, whofe Denominator is affigned to be $\mathbf{1 0 0 0}$, lay by the Rule of t bree, if the Denominator 8 hath 5 for a Numesator, what will the Denominator 1000 require for

Chap. XXIII. to Decimal Fractions. 175 a Numerator? Multiply and divide as the Rule of Three direct doth require, fo will the fourth proportional be found to be 625 , which is the Numerator foughtitherefore 1.625 or .625 , is a decimal fraction equal invalue to $\frac{5}{8}$. Another Example, let it be required to reduce $\frac{1}{240}$ into a decimal fracion, whote Denominator thall be 100000 , sy by the Rule of three, if 240 the Denominator, give 7 for a Numerator, what will the Denominator 100000 require for a Numerator? Anfw. 2916 and fomewhat more, but that which the fiid 2916 wants of being a true Numerator is lefs than therefore the decimal fracion to. 1600 or 02916 is alnoff equal to $\frac{1}{2}+\frac{1}{\rho}$, which $=\frac{1}{2} \frac{7}{0}$ cannot be exactly ré duced into a decimat fracion. The like, will happth in the reduction of moft vulgar frations todecimats: in which cafe, the Denominator of the decimal miff be affigned to be fo great, that what is wanting in the Numerator may be an inconfiderable value. - 0 Cl 1 - A : \%
7. IV. Uponthe aforefaid ground the knownof accultomary parts of Money, Weight, Meafure Time, \&-.may be reduced to decimals: for if you defire to know what decimal faciion of a pound ferling is equal in value to one filling, confider firth that a pound is the Integer, and that 20 (billings arecquat to that Integer, therefore I fhilling is $\frac{-1}{20}$ of a pound; now if we conceive one pound to be divided into 100000 parts, viz. if we affign 100000 for theD Denominator of a decimal fraction, the Nismerator will be
 .05000 or. 05 (for cyphers at the end of a decimal are of no ufe, as hath been fhewn in the 6 th R Ruthe of the 22 Cbaprer) is a decimal fraction of a pound, and is exaCtly

176 Reduction of Vulgar Fractions Book I.

aely equal to is. or $\frac{-1}{2} \frac{-1}{\circ}$ part of a pound ferling.
Inlike manner forafmuch as 240 pence are equal to a pound of Englifh money, 7 pence are $\frac{x^{4} 40}{7}$ parts of a pound, which fraction will be reduced into this decimal.02916l.which is is very near equal to $-\frac{7}{2} \frac{7}{6} l$ forit wants not $-\frac{1}{10000}$ part of a pound. Moreover fince 960 fartbings are equal to a pound Englifh, one farthing is $-\frac{1}{96}$ part of a pound, which will be reduced into this decimal .00104 l. very near; but if you pleafe to proceed near to the truth, you will find this decimal .00104166 \&c. to anfwer a farthing, and foby augmenting the Denominator with Cyphers, you may proceed infinitely near, when you cannot attain unto the truth it felf. After the fame method may the vulgar Sexagenary fractions ufed in Aftronomy be reduced to decimals, for fince a degree is ufually fubdivided into fixty parts called minutes or primes; a prime or minuts into fixty parts called feconds; a fecond into fixty thirds; a third into fixty fourths, \&cc. and confequently a degree is equal unto 60 minutes (or Primes) or unto 3600 feconds, or 216000 thirds or 12960000 fourths, It is evident that 7 minutes (or Primes) are $-\frac{7}{\sigma}$ parts of a degree, which by the third Rule of this Chapter may be reduced into the Decimal 1166 , Sc. Alfo 29 thirds are $\frac{29}{2160}$ parts of a degree which may be reduced into the decimal $.000134,8 \%$. Moreover,
$58: 33: 14: 12$, that is, 58 Primes, 33 feconds, 14 tbirds, and 12 fourths may be reduced to a decimal in this manner, viz. reduce them all into fousths (according to the fixth Rule of the reventh Cbapter) fo will you find 1264,7652 fourtbs, which

Chap.XXIII: to Decimal Fractions. 177 $\operatorname{are} \frac{126545652}{12965000}$ parts of a degree, which vulgar fraction may be reduced into this decimal of a dogree, to wit, .975899,\&c. (by the third Rule of this Chapter.)

This to the ingenious will be a fufficient light for the finding of the Decimals congruent to the Shillings,pence, and fartbings which are under a pound fterling; alfo the decimals of the known parts of Weigbt, Meafure, Time, \&c. as they are expreft in the following Table, wherein you may obferve, that moft of the decimals confift of 7 or 8 figures, yet in ordinary practice, you thall have occafion to ufe only the firff five, and fometimes fewer.

THE

Chap.XXIII. of Reduction.
 179

$152: \left.$.0239583 1.0229166 .021875 .0208333 .0197916 .01875\quad.0177708 .0166666 .015625 .0145833 .0135416 .0125 .0114583 .0104166 \right\rvert\,		
$2 \left\lvert\, \begin{gathered} .009375 \\ 20083333 \end{gathered}\right.$	Grains	Decimals of an ounce
$\begin{aligned} & .0072916 \\ & .00625 \end{aligned}$	23	$\begin{aligned} & .0479166 \\ & .0458333 \end{aligned}$
Penny I. .0052083 .0041666	21	. 04375
	20	. 0416666
2. Farth. $\begin{aligned} & .003125 \\ & .0020833\end{aligned}$	19	.0395833
1. Farth. $\begin{aligned} & .0020833 \\ & .0010416\end{aligned}$	18	. 0375
T A BLET II.	17	.0354166 .033333
Of Iroy weight, the In-	15	. 031253338
teger being an Ornc	14	.0291666
Peny\|Decimals of	13	. 0270833
poeights an Ounce		. 025
19.95	10	. 0208333
		. 01875
17.85		. 0166666
		.0145833
${ }^{1} 51.75$	$\underline{6}$. 0125

510104160	16 11.09821421
. 0083333	\| 0.0892857
\%	9.0803571
2. ${ }^{.0041086}$	7.0625
TABEET III.	6.0535714
Of Averthotois gre	5.0446428
ight, thi İluteer being	4.0357142
an bundred insigbt, to	3.0267857
112 poinits.	2:0178571
arters of decimals of	1.0089285
$\frac{\text { quandred. } \% \text { bundred. }}{\text { 1 }}$	decimal of
3.75	
$2 \cdot 5$	15.0083705
+1.25	14.0078125
Pounds de decinutitof	129.0072544
Pounds, 1 bundred.	11.0061383
27.2410714	10.0055803
20, 2321428	9.0050223
25. 22332142	8.0044642
24.21428.57	7.0039062
23) 2053571	6.0033482
${ }^{22} 26+1964285$	5.0027901
2 2 , 1875	4,002232
20):1785714	310016741
19.1696428	2.0011460
18.1607142	1.0005580
171:1517857	
16.1428571	quarters of decimats of
15.1339285	1 Ounce $\frac{1}{}$ bundred
14.125	3.0004185
	2.0002790
12. 1071428	1.0001395
	TABEET

Chap.XXIII. of Reduction.

201

202
The Table.

Chap.XXIII. of Reduction.
203

8.6666666 7.5833333	parts of adecimals of dozen. a grofs.
6.5	- $11 . \frac{076388}{}$
5.4166666	10.069944
$4 \cdot 3333333$	9.0625
3.25 2.1666665	8.055555
2 1666666 I 0833333	7.048611
qwarters of 1	6.041666
an inch. ${ }^{\text {decimals of }}$	5.034722
33	4,0:9777
3.0625 2.0416666	3.020833 2.013888
1.0208333	1.006944
balf a quarter 0104166	TABLETX.
,	day bein
I ABLETIX.	Integer.
Of dozens, the Integer being a grefs.	Hours. $\quad \left\lvert\, \begin{aligned} & \text { decinzals of } \\ & \text { a day. }\end{aligned}\right.$
decimals of	23.955^{83333}
grofs.	22.9166666
11.9166666	21.875
10.8333333	20.8333333
9.75	19.7916666
8.6666666	18.75
7.5833333	17.7083333
6.5	16.6666666
$5 \cdot 4166666$	15.625
4.3333333	14.5833333
3.25	13.5416666
2. 1666666	12.5
1.0833333	11.4583333
	10.4166666

Chap.XXIII.of Reduction

V. This Table aforegoing confifts of een feveral Tablets, of which the firft intituled Englifh money) contains in the firt - Tablet i. of column thereof the particułarFra- Englisp moncyo Ctions(Viz. the hillings, pence, and farthings) of a pound fterling ; and in the other column the decimals, unto which they may be refpeCtively reduced: So in the fame Tablet .65 is the decimal, anfwerable to 13 s. .0208333 to 5 d. and .003125 to 3 f.Likewife, .0489583 is the decimal of 11 do together with 3 farthings; Alfo. 03125 is the decimal of 7 pence half peny.

VI The next Tablet (intituled Ir (y weight) contains in the firft column thereof the particular Fractions (vizo the Peny 2. Of Troy weights, and Grains) of an ounce Troy, pesighto and in the other their refpective decimals: fo. 6 is the correfpondent decimal of 12 peny weight, and .0020833 of I grain. Likewife .025 is the decimal of $\mathbf{1 2}$ grains.
VII. The third Tablet (intituled Averdupois great weight) contains in the firt column thereof the Fractions (viz. the 3. Of Aver2uarters, Pounds, Ounces, and the dupois great pecight. Quarters of an Ounce) of an Hundred according to Averdupois weigbt, and in the other their proper decimals: $f 0.5$ is the decimal of two quarters or half a hundred, 1517857 of 17 pounds:

206. Reduction of Vul. Fract. Book I.

 .0033482 of 6 Ounces, and .0004185 the decimal of 3 quarters of an Ounce.- VIII. The fourth (intituled Averdupois littlo weight) Theweth you the fractions(viz. 4. Of Aver dupois little pright. the Ounces, drams, and quarters of a dram) of a pound Averdupois, together with their refpective decimals: fo the decimal of 3 Ounces is .1875 , the decimal of 9 Drams is.03515625, and the decimal of one quarter of a Dram is .0009765.
IX. the fifth (intituled Liquid meafures) hath the fractions (viz. the Pinis and quar-
5.0f Liquid ine eafures. ters of a pint) of a Gallon, and likemal of 5 Pints is .625 , and the decimal of two quarts or half a pint is . 0625.
X. The fixth(intituled Dry meafures) gives you the fractions (viz. the Bufbels, Pecks,

6. of Dry quarters of Pecks and pints) of a quarmeafures. ter, together with their peculiar decimals: fo . 375 is the decimal of three Buthels, .03125 , of one Peck, 0234375 of $\frac{3}{4}$ of 1 peck, and. 003906 of two pints.

X 1. The feventh (intituled Yards and Ells) offers.you the fractions (viz. the Quar-
7. Of Long cimals: 10.25 is the decimal of one quarter of a Yard or Ell, .125 of two Nails, and .046875 of three quarters of a Nail.

XI 1. The eighth (intituled Reduction of inches, Sce, to decimals of a foat) prefents unto you the fractions (to wit, the Inches, quarters and halई quarter of an Inch) of a foot, together

Chap.XXIII. to Decimal Fractions 207

with their correfpondếnt decimals: $\left\{_{0} .4166666\right.$ is the decimal of 5 Inches, .0625 of $\frac{3}{4}$ of an Inch, and .0104166 of $\frac{1}{8}$ or half a quarter of an Inch.
XIII. The ninth Tablet (int fuled Dozens) yields you the Fractions (viz, the Dozens and particulars) ofa Grofs, 8. of thimes as alfo their refpective desimals: fo accompered by .25 is the decimal of 3 Dozen, and the Dozen. .048611 of 7 particulars.
XIV. The tenth and laft Tablet (intituled Time) gives you the Fractions (viz. theHours and Minutes) of a Day : 50.625 is the gof Tims. decimal of is hours, 0375 of 54 mi nutes, and . 0006944 of one minute.
$X V$. Whena fingle Fraction of any of the premiled Tablets is propounded to be reduced to a decimal, find it in the firft Column of the Tablet, unto which it belongs ; this done, juft againft that Fraction fo found, you Thall have the decimal required : fo

The ufe of the Same Table for the Rediuction. I. of fingle fractions to disimals. 13 s. being propounded, taking the firft premifed Tablet, I find 13 s.in the firf Column of the Tablet of money, and juft againft the fame thirteen thillings, I obferve 65 , before which having prefixed a point, and by that means figned it for a decimal (according to the third Rule of the 22 Chapter of this Book) I conclude the fame .65 fo ordered, to be the correfpondent decimal of thirteen fhillings the fraction propounded: In like manner.0229166 is the decimal of 11 grains in the Tablet of Troy weight ; and .0357142 the decimal of 4 lb . in the Tablet of Averdupois great weight, \&c.

208 Reduation of Vul. Fract. Book I.

- XV I. When two or more Fractions are propounded, and it is required to find a decimal equivalent unto the fum of them, find the decimal of each of the Frâctions given according to the laft Rule ; then adding together the decimals fo found, that intire fum is the decimal fought: $\begin{cases}13 & \text { 5. } 5 . d_{4}\end{cases}$ being reduced to a decimal, is .670833 ; for the decimal of 13 s . is .65 , and the decimal of 5 d . .020833 , which being added together (by the fecond kule of the 24 th Chapter of this Book) amount $\$.670833$, viz. the decimal which reprefents 13 s .5 d . the Fraction propounded: In like manner the decimal of 9 peny weight, and 13 Grains is $: 4770833$, and the decimal of $\frac{1}{2} \mathrm{C} .19 \mathrm{lb}$. 7 Ounces is $.67354,8 \mathrm{cc}$.

And here as ; ou fee meer Fractions reduced, fo likewife may the Factions of mixt numbers be reduced to decimals. for ϵ xample, thefe numbers 97

Chap. XXHI. to Decimal Fractions. 209

 lb. 7 ounces $13 \frac{2}{4}$ drams. Item of 67 Gallons, $5 \frac{3}{4}$ pints. Item 28 Quarters, 0 , Bufhels and $2 \frac{1}{2}$ Pecks, after reduction are $97 \cdot 4891,67 \cdot 7187$, and 28 .0781.
97.4891 coozg Luin: : igxind
Again $22 \frac{1}{2}$ yards, $3 \frac{1}{4}$ Nails; Item 36 Grofs, 3 Dozen and 5 particulars, beingreduced, are 22 $.7031,36.2847$.

22.5	36.25
.1875	.0347
22.7031	36.2847

XVII. When a decimal is propounded to know what Fraction it reprefents, fearch the fame decimal in the fecond Co lumn of the Tablet, unto which it be-
3. Of Decimils to fingle. FrdElionso ... if longs, where if you find it exprefly, the number juft againft it in the firft Column is the fraction you look for: 00.65 (reprefenting the fraction of a pound fterling) being given, if find it in the fecond Column of the Tablet of Money, and over againft it in the fixft Column I find 33 so which is the fraction reprefented by .65 , the decimal propounded. In like manper 3.025 (reprefenting 3 ounces and .025 of an ounce Tray) being propounded, the number reprefented by it, is 3 Ounces, op.wo 12 grains.
$X V I I I_{0}$ When in the fecond Column of the Tablet,

210 Reduct. of Vulg. Fractions Book I:

Tablet, unto which you are directed, you cannot precifely find the decimal propounded, fearch that which being lefs, comes neareft unto it, and take the number that anfwers unto it in the firf Column for the greateft fraction of the number required: then deducting the decimal fo found out of the decimal given, find likewife the remainder, as another decimal, and take his correfpondent number for the next fraction of the number required : and ρ proceed in that order, till you have difcovered the intire number reprefented by the decimal propounded.

Example: . 6739 being propounded, I demand the fraction of a pound fterling reprefented by it; the decimal in the Tablet of money, which being lefs comes neareft to .6739 is .65 , whofe correfpondent number in that Tablet is 13 , which are the thillings of the number required; then fubtracting (by the 1 Rule of the 25 Chapter of this Book). 65 out of .6739, the remainder is .0239, and the neareft decimal in the fame Tablet to 0239 is .0208 , whofe correfpondent number is 5 , which are the pence of the number required: laft of all deducting . 0208 out of .0239 , the remainder is .003 r , which gives you in the firft Column 3, being the farthings of the number required: So that I conclude the intire fraction reprefented by the decimal. 6739 , is 13 s. 5 d .3 f .

Chap. XXIV. Addit. of Decim. Fract. 21 I

 In like manner 7.359 C . being reduced by the Tablet of Aver dupois great weeight is $7 \frac{1}{4} \mathrm{C} .12 \mathrm{lb} .4$ ounc. And 94.58 lb . reduced by the Tablet of Averdupois little weeight is $94 . \mathrm{lb}, 9$ ounces and 6 drams.

CHAP. XXIV.

Addition of Decimal Fractions.

I. TO fuch as well underftand the Notation of Decimal fractions, all the varieties of their Nume ration, to wit, Addition, Subtraction, \&c. will be as eafie as the operations by whole numbers; therefore he that would be a good Proficient in Decimal Aritbmetick, muft throughly underfand the 22 and 23 Chapters aforegoing.
II. When divers decimal fractions are given to be added together, they muft firf of all be orderly placed one under another according to the doCtrine of their Notation. So if there Decimal fra* Elions, to wit, $.125, .39$ and .7 were given to be added, they muft be written down thus;

$$
: 125
$$

.39
.7
or if you will have the fame number of places to be in all the decimals given, without altering theis, values, they may be written thus,

$$
\begin{gathered}
.125 \\
.390 \\
.700 \\
\text { Not thus, }
\end{gathered}
$$

$$
.125
$$

$$
\text { - } 39
$$

For the Figures or Cyphers, which are of like degrees or places muft be fubfcribed directly one under another, viz. tenth parts or primes muft be written down directly underneath tenths; atfo bundredtb parts or feconds muft be placed under bundredit parts, as youfee in the firf Example, where .3 or three tenth parts in the fecond decimal fands directly under .I or one tenth part in the firft decimal; likewife .7 or feven tenths in the third decimal fands directly under the tenths in the former, and fo of the reff.

In like manner, when mixt numbers, which confift of Integers and decimal parts are given to be added, due refpect muff be had of their fubfription one under another: So if thefe mixt numbers, to wit, $32.056,7.07$, and 1.9 were given to be added, they mult be written down thus,

III. Having placed the decimals and drawn a line underneath in manner aforefaid, add them together,

Chap.XXV. Decimal Fraitious 213

 gether,beginning with the outermoft rank towards the right hand (as hath been taught in Addition of whole numbers of one denomination in the third Chapter:,) fo if the decimals in the firft Example of the fecond Rule of this Clapter weìe given to be added, I firf fubfcribe 5 , which is all that flands in the firft rank towards the right hand, then proceeding to the fecond rank, I fay 9 and 2 make I I, wherefore I write down I, which is the excefs of if above 10 ,and for the 10 I carry I in mind to the next rank, faying I in mind added to .125.125
.39 7 makes 8 , which added to 3 and 1 make I 2 , wherefore I write $\mathbf{2}$ which is the excefs of 12 above 10 under the line, referving I in mind for the 10 , then I prefix a point before 2, which flands in the firft place of decimalsiand on the left hand of the point, to wit in the place of Units or firft place of iategers, I write down I (being the I in mind) which done, I find that the fum of the Decimals given is 1.215 , that is, one Integer (whether it be a Perch, Yard, Foot, $\sigma^{\circ} c$.) and $-\frac{121}{0} \div$ parts of an Integer, as you fee in the Example. In like manner thefe mixt numbers $32.056 ; 7.07$ and 1.9 being given to be added, their fum will be inind to be 32.056 4I.026, that is, 4 I Integers and $-\frac{2065}{\mathrm{I} .00}$ parts 7.07 of an Integer, as you fee in the Margent ; 1:9 more Examples for the learners exercife are thefe.

.65	24.7	$503.75 ;$
.025	0.35	0.321
.03	$5 \cdot 26$	0.12
.705	30.31	504.19

CHAP.

214 Subtract. of Decimal Fract. Book I.

C HAP. XXV.

Subtraction of Decimal Fractions.

'HAving firt written down the greater of the two numbers given (whether it be a whole number, mixt number, or decimal) and the .837 .784 leffer underneath the greater, according .053 to the directions in the fecond Rale of the 24 th Chapter, Proceed as you are taught in Subtraction of whole numbers (by the Rules of the 4 th Chapter:) fo if this decimal fraction .784 were given to be fubtracted from this decimal .837 , the 1 cmainder will be 053 , that is $-\frac{53}{1000}$ parts of an Inte295.094 ger; in like manner if this mixt number 295.09478 .919 were given to be fubtracted
$\frac{78.9!9}{216.175}$ fr 295.094 , the remainder will be $216.175216_{1}^{-\frac{1}{1} \frac{1}{0} 5}$. in each of whichexamplesyou may oblerve that 10 is borrowed as often as need requires, according to the Rules of Subtraction of whole numbers of one denomination: Note alfo, when the decimals in both the numbers given confift not of the fame number of places, that decimal which is defective in places towards the right hand, mult have the void places filled up with cyphers, or at leaft cyphers muft be fuppofed to be annexed : fo if this decimal $.0433^{8}$ be given to be fubtracted from this .65 , the remainder will be
.65000 found to be .60662 , and the Work will .04338 ftand as in the Margent, where you fee . 60662 the thrce void places are fupplied with cyphers, and then the operation is as in whole numbers, by borrowing to as often as the lower ti-

Chap.XXVI. Multip. of Dec. Fract. 215 gure cannot be fubtracted from the upper. More Examples of Subtraction of Decimals are thefe following.

CHAP. XXVI.

Multiplication of Decimal Fractions.

${ }^{4}$ WHen two numbers are given to be multiplied, and are both mixt numbers, or both decimal fractions, or one of them a whole number, and the other a decimal or mixt number (which are all the cafes that can happen) there is no neceffity of writing them down precifely one under the other as in Addition and Subtraction, for the product or number fought in Multiplication depends not upon any regular placing of the two numbers given: fo if this mixt number 56.3 were given to be added to this mixt number 1. 30526 , they ought to be written one under the other, as you fee (ac563 cording to the fecond Rule of the 24 th Chapter;) but if they are to be multiplied one by the other, they may be written thus,

$$
\begin{array}{r}
1.30526 \\
56.3 \\
\hline
\end{array}
$$

II. In any of the Cafes which may happen in Multiplication of Decimals, nultiply the numbers given as if they were whole numbers, then cut off always from theproduct by a point, comma, or line

\section*{216 Multiplication of 17 Book 1.} line, fo many places towards the right hand, $a^{\text {s }}$ there are places of decimal parts in both the numbers given to be multiplied; that done, the figure or figures (if any happen to be) on the left hand of the faid point or line of feparation doth declare the Integer or Integers in the the product, and thofe on the right hand of the point are decimal parts of an Integer : fo if this mixt number 56.3 (that is, 56 Integers and $\frac{-3}{10}$ of an Integer) be given to be multiplied by this mixt number $\mathbf{I} \cdot 30526$, the product will be found 73.486138 , that is, 73 Integers and -488.513 .8 , parts of an Integer ; for having chofen that to be the Multiplicator, which will caufe leaft work, and fubfrribed it under the Multiplicand (to wit, 56.3 underneath 1.30526) I proceed according to the Rules of Multiplication of whole numbers, viz, having drawn a line underneath the numbers given, I multiply all the Multiplicand, to wit, $1 \cdot 30526$, as if it were a whole number, by 3 the firft multiplying figure, and fubI. 30.526 fribe the product thereof, which is | $56.3 \begin{array}{l}39.1578 \text { underneath the line, and } \\ \text { proceeding in like manner with the }\end{array}$ |
| :---: | 39157^{8} 783156 other multiplying figures 6 and 5,at 652630 laft I tind the total of the particular 73148613^{8} caufe there are 6 places of decimal parts in both the numbers given (to wit, 5 places of parts in the mulriplicand, and I place in the multiplicator) I cut off 6 places to the right hand from the total before produced, fo will it fand thus 731486138 : wherefore I conclude that the true product is 73 T T 08.1 .38 .80 or 73.486138 , that is, 73 Integers and almuit $\frac{1}{2}$ ot an Integer In

Chap.XXVI. Decimal Fractions.

In like manner, if this mixt number 246.25 that is $24^{6}-\frac{25}{10}$) were given to be multiplied by 35 In regers, the true product will be found 8618.75 , that is 8618 Integers and $-\boldsymbol{r i}_{0}^{2} \circ$ parts of an Anteger, as you fee by the operation in the Margent, where you may obferve that 246.25 two places are cut off from the total number produced of the multiplication, towards the right hand, becaufe 123125 there are two places of decimals in the 73875 multiplicand (the multiplicator con-
fitting of Integers only ;) but if there
8618175 had been decimal parts alfo in the multiplicator, fo many more places should have been cut off, as was hewed in the firn Example.
Again, if there two decimals 87 and .9 (to wit $\mathrm{T}_{10}^{87} \frac{7}{2}$ and $\frac{9}{10}$) were given to be multiplied one by the other, the true product will be found to be: 783 that is $\overline{-1} \frac{8.3 .3}{}$ parts of an Integer, $\quad .87$
as you fee in the Example, where you may observe that the product is a fraaction only; for after 3 places (being the
 number of places of decImals in both the numbers given to be multiplied) are cut off to the right hand, there remains no Integer on the left hand.
III. When the Muitiplication is finifht, if there arise not fo many places in all as ought to be cue off by the fecond Rule of this Chapter (which may often happen when the product is a fraction ;) in fuck cafe, as many places as are wanting, fo many cyphers muff be prefixed to the product on the left hand thereof, and then a point muff be prefixt thefe decimals .0375 and .05 being given to be multiplied one by
.05
.001875
5.525
4. 0026
. 33150
. 11050
.0143650 the other, I multiply 375 by 5 , and there arifeth 1875 : now according to the fecond Rule of this Chapter, I Thould cut off 6 places to the right hand, and here are but 4 in all; wherefore I prefix two Cyphers, to wit, as many as there are places wanting, and then prefixing a point, the true product will be .001875 or T0. $\frac{18}{18055}$. In like manner if this mixt number 5.525 be multiplied by this decimal 0026 , the true product will be found to be .0143650 (or $\frac{143650}{10000000}$) as you may fee by the operation in the Margent, where one cypher is prefixed to the numbers arifing from the total Multiplication to difcover the true product.
IV. Decimal parts of an Integer may be reduced to the known or accuftomed
Tordince decimals to the known parts of the Integer. parts of fuch Integer by Multiplication only, for if the decimal fraction given be multiplied by that number which declareth how many known parts are equal to the Integer, the Product gives the number of known parts.required: So this decimal fraction of a pound fterling, to wit, .8687 l . being propounded, I multiply it firft by 20(the number of (thillings contained in a pound) and the product gives 17 fhillings and .3740 parts of a fhillings;

Chap.XXVI. 1 Decimal Frastions. 219
fhilling; which decimal .3740 being multiplied by 12 (the number of pence in a (hilling) produceth 4 pence, and 488 parts of a peny s lafly, multiplying .488 by 4 (the number of farthings; which make a peny, the product gives I farthing and . 95^{2} parts of a farthing, which are' very near in value to another farthing, fo it appears that .8687 parts of a pound fterling are 17 s. 4 d. $2 f$. very near. After the fame manner, a decimal fraction of any

$.8687 \%$
20

 12
 7480

Farth. 1,9520 Integer whatfoever may be reduced into the known or accuftomed parts of fuch Integer.

A briefer way to value any decimal part of a pound of Englifh money, without lofs of a farthing may be this, viz. the figure (if any happen) in the firft place of the decimal being doubled gives thillings; alfo if

Abrief way sofind the value of ant dicimal fration of apound of End ${ }^{2} f_{1}$ money. there be s,or a figure greater than 5 in the fecond place, one thilling more is to be added to the former; laftly, when 5 is taken from the figure in the fecond place, if every unit in the remainder be accounted as ten, and the figure in the third place as unities, thefe tens and units taken as one number and leffered by 1 give the number of farthings, which with the thillings before found declare the value of the decimal propounded ; likewife if the figure in the fecond place

$$
\text { Q } 2 \text { (when }
$$

(when any happens) be lefs than 5, every unit in fuch figure is to be acounted ten as before: fo in the decimal before mentioned, to wit, $.8687 l$. the figure 8 in the firft place being doubled gives 16 thillings, alfo becaufes is contained in 6 which ftands in the fecond place, one fhilling more is to be added to the aforcfaid 16 Millings, which will now be made 17 s . that done, the remainder of the faid 6 after 5 is fubtracted, to wit, 1 being efteemed as 10 , and added to 8 (which ftands in the third place, and to be efteemed as units) gives 18 , fiom which abating 1 , the remainder is 17 farthings or 4 pence and a farthing; fo that the value of the fiid decimal .8687 l . is found as before to be 17 thillings 4 pence I farthing. After the fame manner this decimal of a pound of Englifh money, to wit, -319 1. will be reduced to 6 thillings and 18 farthings or 6 fhillings 4 pence 2 farthings, which wants lefs than a farthing of the exact value of the decimal.319l.
V. Having explained all the cafes in Multiplication of Decimals; I Thall here give

See the queftions from 49 to 73 in the 10% Cbypter of the Appindix. the learner a tafte of their excellent ufe, by fome familiar queftions, whereby it will be evident, that what is oftentimes performed by many tedious Multiplications and Divifions in the vulgar way, is effected for the moft pirt by one or two Mulsiplications in Decimals.

The fivit Example may be this: fuppofe there is a certain piece of W ainf cot in form a reciangled parallelugram commonly called a long fquare, whofe breadth is $3 y \mathrm{xrds}, \frac{3}{4}$ of a yard, I nail and $\frac{1}{4}$ of a nail; and the length 6 yards, and $\frac{1}{2}$ of a jard, the quention is to know

Chap.XXVI. Decimal Fractions. 221

know how many fquare yards are contained in that piece of Wainfcot ; here becaufe it is defired that the fuperficial content may be given inyards, the parts of a yard as well in the breadth as in the length of the Wainfoot, which are before expreft by the accuflomed parts of quarters, nails, \&c., muft be reduced into decimal parts of a yird, which are as catie to be found by a yard fubdivided decimally, as the common parts of quarters and nails are found by a yard vulgarly fubdivided: but for want of a yard fubdivided decimally, this Reduction may be performed by the feventh Tablet of the precedent Table of Reduction, viz. looking into the faid Iablet, right againft $\frac{3}{4}$ of a yard, I find? this decimal 75
Alfo the decimal correfpondent to $\} .062,5$ 1 nail is

And the decimal of $\frac{1}{4}$ of a nail? is All

The fum of thofen three decimals $\} .828125$ is wherefore the breadth of the Wainfoot in yards and dccimal parts 3.828125 is

Again, the decimal of half a yard? is .5 , wherefore the length of the 66.5 Wainfor is

The length and breadth being multiplyed one by the other produce the fuperficial content, therefore the $\rangle 24.88: 8: 25$ number of fquare yards required is

Wherefore I conclude that 24 fquare yards and fomewhat more are contained in that piece of O_{3} Wainfcot,

Wainfot ; and it is evident by the firft place of the decimal, that what is above 24 yards is more than $-\bar{x} \frac{\varepsilon}{\circ}$, but lefs than $-\frac{9}{\circ}$ of a fquare yard; or more frictly, it is more than $\frac{88}{8} \frac{8}{0}$, but lefs than $\frac{-8}{1} \frac{8}{0}$ of a fquare yard: but by taking all the places in the decimal you have the exact anfwer to this queftion, becaufe the common parts of quarters, nails, and quarters of nils may be always exactly reduced into decimals, but that feldom happens in other things; neverthelefs, albeit by decimal operations you cannot always hit the mark, yet you may come as near it as is polfibly to be imagined, and that with much more eafe than by vulgar computations in quedioons of this nature, as will appear by comparing the precedent o-
 peration with the comimon way of working here in yourview, vizothe 3 ysurds, 3 quarters of a yard, 1 nsil, ard $\frac{1}{4}$ ot a nail (which exprefs the breadth before mentioned) mult all be reduced into quarters of nails by the fixth Rule of
245 'quarteis of nails. the feventh Chapter; fo there will be found 245 quarters of Nails, as youfee by the operation.

Again the 6 yards and half which exprets the length aforefod, mult likewife be reduced into guasters of N ails by the aforefaid liule; fo there will be lound 416 quarters of nails of a yard, as you fee by the operation.

Chap.XXVI. Decimal Friations. 223

416 quarters of nails.
Then multiplying the breadth and length one by the other, to wit, 245 by 416 , the product will give 101920 for the fuperficial content of the piece of Wainfcot in fquare quarters of nails of a yard; now thefe fquare quarters of nails of a yard muft be reduced to fquare yards, and the readieft way to perform that, is to find firft of all how many quarters of nails of a yard are contained in one yard in length, viz. fince there are 16 nails in a yard, there are confequently 4 times 16 quarters of nails, to wit, 64 quarters of nails in a yard in length; therefore 64 multiplied by 64 produceth 4096 fquare quarters of nails in a yard fquare; laftly, I fay by the Rule of three, if 4026 fquare quarters of nails of a yard give 1 yard fquare, how many yards fquare will IOI 920 fquare quarters of nails give? So will the anfwer be found $24 \frac{3616}{4096}$ yards, which is the fame with 24.8828125 before found by the decimal operation (for $\frac{3616}{4096}$ is. equal to the decimal .8828125 , as will appear by reducing them to a common denominator by the four-

224 Multiplication of Book I. teenth Rule of the feventeenth Chapter.) Now I leave it to the Reader to judge, which of thefe two wayes is the more expeditious, and fo let him take which liketh him beft.

Example 2. There is a fquared piece of Timber terminated at both ends with equal long fquares, viz. the breadth of the piece of Timber is I foot 5 inches 3 quarters of an inch, and is half quarter of an inch; the depth or thicknefs is 1 foot 3 inches 1 quarter of an inch, and $\frac{1}{8}$ or half a quarter of an inch, and the length of the piece is in feet 10 inches, and 3 quarters; the queftion is how many folid or cubical feet are contained in that piece of Timber ? The Anfwer may be found by decimal Multiplication in manner following, vis. Forafmuch as it is defired that the folid content may be given in feet, the parts of a foot as well in the breadth, depth, and length, which are before exprell by the accuftomed paxts of inches, quarters, and half quarters muft be reduced into the decimal parts of a foor, which are as catie to be found by a foot fubdivided decimally, as the other common parts by a foot vulgarly fubdivided ; but for want of a foot fubdivided decimally, this Rcduction may be performed by the eighth Table of the precedent Table of Reductiois, viz.

The decimal correfpondent to 5 in- $\} .416$
The decimal of $\frac{3}{4}$ of an inch is 062
The decimal of halfa quarter of an? inchis__

The fum of thofe 3 dccimals is - .488
Wherefore the breadth of, th pirce $\}$ ri. 488

Chap. XXVI. Decimal FraEtions.- 225

In like manner the common parts of inches, ©er. in the depth or thicknefs of the piece of Timber will be reduced by the faid Iablet, into thefe decimals, viz.

The decimal correfpondent to 3 inches is- .25
The decimal of $\frac{1}{4}$ of an inch is -.02
The decimal of half a quarter of an inch is-.0I
The fum of thefe 3 decimals is
Wherefore the depth or thicknefs is-- $\mathbf{I}, 28$
Again, the accuftomed parts of inches, of c in the length of the piece of Timber will be reduced to thefe decimals, viz.

The decimal of 10 inches is - 833
The decimal of $\frac{3}{4}$ of an inch is $\quad .062$
The fum of thofe 2 decimals is-_ 895
Wherefore the length of the piece is- 11.895
Now if the breadth depth and length be multiplied continually, the laft product is the folid conrent required, viz. I .488 multiplied by i .28 produceth 1.90464 , which multiplied by 11.895 pro* duceth $22.65, * c$. wherefore I conclude that 22 folid Feet, half a foot, and fomewhat more than half a quarter of a foot are contained in that piece of Timber:

Example 3. How many Equinosial degrees are correfpondent unto i 36 dayes, 2 I bours, and 40 mi nutes? The Anfwer is found by multiplying the time given by 360 , for as I day is to 360 degrees. 10 136 dayes, 2 I bours, and 40 minutes, to the Equinoctial degrees required; but firft the 21 bours and 40 minutes muff be reduced to decimal parts of a day, by the tenth Tablet, thus.

The

Wherefore I conclude, that 49284.99 or very near 49285 Equinoctial degrees are correfpondent unto I36 dayes, 2 I bours, and 40 minutes, which was required by the queftion.

CHAP. XXVII.

Divifon by Decimal Fractions.

1. N any of the Cafes which may happen in Divifion, if the Dividend be greater than the Divifor, the quotient will be either a whole number or elfe a mixt number. but when the Dividend is lefs than the Divifor, the quotient muft neceffarily be a fraction; for a leffer number is contained in a greater once at the leaft, but a greater is not contained onse in a leffer.
II. Sometimes the Dividend, whether it be a whole number, mixt number, or decimal fraction, is to be prepared by annexing a competent number of cyphers thereunto, to make room for the Divifor:fo if 32.5 were given to be divided by 17.325 the Dividend 32.5 mult be increafed with cyphers at pleafure after this manner $3^{2} \cdot 50000,8 x$. Likewife if I ware given to be divided by 360 , the Dis vifion

Chap. XXVII. Decimal Frations. 227 vifion cannot be made till the Dividend I be increafed with cyphers, which being annexed, the Dividend will fand thus I. 000000 , \&\%c. Here note, that the cyphers annexed in manner aforefaid do fupply places of decimal parts, and will be ufefull in difcovering the quality of the quotient according to the fourth Rule of this Cbapter.
III. After the Dividend is prepared by annexirg cyphers, when occafion requires (as in the laft Rule,) all the places thereof muft be efteerried as one whole number (10 wit contifting of unities or Integers:) and fo is the Divifor to be efteemed whether it be a decimal fraction or mixt number; for inall cafes the Divifion mult be performed in cvery refpect according to the Rules of Divifion of whole numbers in the fixth Chapter. Soif this mixt number 326.25 were given to be divided by this mixt number 12.3 ,ynu mufl divide in the fame manner, as when you divide 32625 Integers by 123 Integers. Alfo if this decimal. 8356 were given to be divided by this decimal .05 , you are to divide in the fame manner, as when you divide $8356 \mathbf{I n}$ tegers by 9 Integers; and after the quotient is found, the degree or place of the firft figure which arifeth in the quotient muft be inquired after ; viz. you muft know how far fuch firff figure is diflant from the place of units, to the end that the point or line which is ufed to feparate between the place of unities (or firft place of Integers) and the firft piace of decimals may be duly placed: This is the only knot in decimal Divifion, and may be refolved by the following Rule, viz,

Ageneral Rule todifoover the quality of the quatient in all cafes of Diviffon by decimal Fraaions. which arifeth in the Quotient, will be always of the fame place ordegree with that figure or cypher of the Dividend, which at the firft queftion ftandethover, or at leaft belongeth unto the place of units in the Divifor. To illuftrate this Rule I thall give Examples in all the principal cafes; and firftlet a mixt number be given to be divided by a mixt number, viz. Let it be required to divide 172.5 by 3.746 : here (according to the fecond Rule of this Chapter) the Dividend muft be increafed with cyphers at pleafure, fo will it ftand thus $172 \cdot 500000$, \& c. then Divifion being made according to the Rules of Divifion of whole numbers in Chapier 6, the Quotient arifing will be 46049 , \&xc.

$$
3.746) 172 \cdot 500000(46049,8 \mathrm{c}
$$

Now it remaineth to feparate the Integers in this quotient from the decimal parts; to perform which, I fubfcribe the Divifor 3.746 orderly underneath

$$
3.746) 172.500000(46,049,8<c
$$

$$
3 \cdot 746
$$

the firft Dividual 172.50 (being that part of the Dividend whereof the firt queftion muft be asked) or at leaft I imagin the Divifor to be fo fubferibed, and foI find that the figure 3 which frands in the place of Units in the Divifor will be placed under

Chap.XXVII. Decimal Fractions. 229 under 7 , which is the place of tens for fecond place of Integers) in the Dividend; wherefore by the fourth Rule before given, I conclude that the firft figure avifing in the quotient muft likewife ftand in the place of tens (or fecond place of Integers) and confequently the next place on the right hand muff be the place of $V_{\text {nits }}$; fo it is evident that the reparating point or line muft be placed between the figure 6 and 0 in the quotient, that done, the true quotient is found to be $46.049, \& \mathrm{c}$. to wit, 46 Integers and $\frac{1049}{100}$ parts of an Integer, and fomewhat more: for $46 \underset{10000}{49}$ is lefs than the true quotient, but $46-5.50$ is greater than it; and therefore albeit, after the a forefaid Divifion of 172,500000 by 3.746 is ended, there will be a remainder, to wit 446 which feems to be greater, yet here it is lefs ${ }^{\text {分 }}$ value than $\xrightarrow[T o 00]{1}$ part of an Unit or Integer, and if to that remainder you annex another cypher and continue the Divifion, you will proceed nearer the truch and not mifs $\frac{1000}{1000}$ part of an unit of the true quotient, and in that order you may proceed infinitely near, when you cannot obtain the quotient exactly by Divifion of Decimals.

Example 2. Suppofe this mixt number 2.34 be given to be divided by this mixt number 52.125 (where you may obferve that the Dividend is lef's than the Divifor;) firft(as before) annex cyphers at pleafure to the Dividend, to make room for the Divifor, then the divifion being profecuted as in whole numbers, at length thefe figures will arife in

$$
52.125) 2.3400000(.0448,8 \mathrm{c} .
$$

52.125 gree or quality of the firft figure 4 may be difcovered, I fublcribe the Divifor 52 . 125 under the firft dividual 2.34000 (for fo far the firft queftion did extend in the Divifion)and thereby I find that the figure 2 which ftands in the place of units in the divifor will be feated under 4 , which is in the fecond place of decimals ; wherefore I conclude that the firft figure arifing in the quotient muft alfo ftand in the fecond place of decimals, and confequently the firft place of decimals (which is next on the left hand to the fecond) muft be fupplied witha cypher; fothat if acypher be prefixed on the left hand of 4 , and then a point placed before that cypher, the quotient will at length be difcotered to be. $0448, \& c \cdot 0 r \frac{-448}{10} 00$ and fomewhat more that is to fay, $-\frac{44}{1000} \frac{8}{0}$ is lefs than the true quotient, but $10 \frac{449}{} 1$ is greater than it; and if you will proceed nearer the truth, you may continue the divition, as is directed in the firlt Example of this Rule.

Example 3. Where a whole number is divided by a decimal fraction, viz. fuppofe 82 Integers were given to be divided by this decimal .056; After cyphers are annexed to the dividend at pleafure, and

$$
.056) 82.00000(146428,8 c
$$

Chap.XXVII. Decimal Frattions. 231

 the divifion profecuted as in whole numbers (to wit, 8200000 being divided by 56) thefe figures 146428 will arife in the quotient: now to the end the degree or feat of I, the firff figure in the quotient may be known, I fubfrribe the Divifor . 056 under the firft dividual 82 (for fo far did the firft queftion in the divifion extend;) and becaufe the divifor is lefs than unity, I fupply the place of units by a cypher or o prefixed on the left hand of the point of feparation in the divifor; alfo I pre-$$
.056 \text {) } 0082.00000 \text { (} 1464 \text { 28,8c. }
$$

0.056

fix cyphers before (to wit on the left hand of) the Integers in the dividend to reprefent a fucceffion of places of Integers (for the order of places in Integers is from the right hand towards the left;) then I find that the cypher or 0 which reprefents the place of units in the divifor, doth fand under that cypher, which reprefents the fourth place of Integers in the dividend (as you fee by the Example ;) wherefore I conclude that the firft figure arifing in the quotient muft alfo be feated in the fourth place of Integers, and confequently the 4 firft places in the quotient will be Integers, and the efeft a decimal, fo that the true quotient is 1464 Integers, and $-\frac{28}{108}$ parts of an Integer, and fomewhat more, viz. 1464.28 is lefs than the true quotient, but 1464.29 is greater than it.

Example 4.Suppofe this decimal.OI 25 be given to be divided by this decimal .5 ; after divifion is finihhed accor- 5) .0125 (25 ding to the Rules of divition of
whole thefe figures 25 will arife in the quotient; now to difcover the degree or feat of 2 the firft figure in the quotient, Ifublaribe the divifor .5 under the firft dividual .012, and having
.5) . 0125 (. 025 (as in the laft Example)prefixed a cypher on the left hand of 0.5 the point of feparation in the divifor, to denote or reprefent the place of units, I find that fuch cypher or place of units doth fland under the figure 1 , which is feated in the fecond place of decimals in the dividend, wherefore I conclude by the Rule, that the firft figure which arifeth in the quotient muft alfo be in the fecond place of decimals, and therefore prefixing a cypher to fupply the firft place of decimals, and putting a point before that cypher, the quotient is at length difcovered to be .025 or $\frac{10}{10} \frac{25}{0}$.

Example 5 . Suppofe this decimal. 8564 be given to be divided by this .008 , firft I annex cyphers to the dividend at pleafure, then profecuting the divifion as in whole numbers, to wit dividing 856400 by 8 , the quoti.008). 856400 (107.050 ent arifing is 107050 , now to difcover the degree or place of 1 , the firff figure in the quotient, I fubfrribe the divifor 008 under the firfl dividual .8 , then I prefix
$.008) 000.85640$ (107.05 a cypher to fet forth, or fupply the place of 0.008 units in the divifor, alfo 1 pretix cyphers to reprefent places of Integers in the dividend that done, I find that the cypher or o which fupplicth

Chap.XXVII. Decimal Fractions. 233

plieth the place of units in the divifor, doth ftand under the cypher which is fested in the third place of Integers in the dividend; wherefore I conclude by the Rule, that the firft figure arifing in the quotient muft be alfo in the third place of Integers, and confequently the three firft places in the quotient will be Integers, and the eff a decimal, fo that the true quotient is 107.05 or 107 $\rightarrow-\frac{5}{10}$.

Example 6. Let it be required to divide this decimal fraction .73952 by this .32 ; firft dividing 73952 by 32 as it they were whole numbers, the figures arifing in the quotient will be 231 r . Now to difcover the quality or value of the faid figures I fabfribe the Divifor . 32 under the firft dividual -73, then prefixing à cypher as well on the left 32)0.73952 (2.3 II hand of the dividend, as of the divifor fo fubfcribed (or imagined to be fubfribed) as aforefaid, to reprefent the place of units in eachi of them, I find the cypher or 0 , which fupplieth the place of units injthe divijor, to fland under the o which reprefents the place of units in the dividend; wherefore I conclude by the priceding fourth Rule, that the firt figure ariing in the quotient will fand in the place of units, and confequently the following places of the quotient will be a decimal fraction, fo that the true quotient is $2: 311$ or $2-\frac{31.15}{1000}$.

The reason of the foregoing fourth Rule will appean from the following Confiderations.

I If the Product of the Multiplication of two numbers be divided by one of them, the quotient is the fame with the other number: As, if 269.0625 , the productof 14.35 multiplyed by 18.75 , bedivided by 14.35, thequotient will give $\mathbf{1 8 . 7 5}$.
II. If the Divifor be miultiplied by the firff figure in the quotient, the Product is the firft number to be fubtracted lrom the Dividend (being the fame with the lalt particular product in the multiplication of the two numbers that produced the Dividend;) and ev:ry particular place of that product is of the fame degree with that figure or cypher of the Dividend, which ttands over fuch particular place when the fubtraction is made; For a figure of one degree (or place) cannot be fubtracted from a tigure of a different degree: As in the laft mentioned Example, the work whereof is here in view ; the divifor 14.35 being taken as in a whole number and multiplied by I , the firft figure in the quotient produceth 1435 , which mult be conceived to confilt of the fance degrees as are in 269.0 in the Dividend, from which the fiid product is to be fuberacted, and therefore the faid product 1435 is realiy but 143.5 , as you may fee by the lalt particular product, in the multiplication of the mixt number 14.35 by 18.75 .

Chap.XXVII. Decimal Fractions. 235

$$
\begin{aligned}
& 14.35 \\
& 18.75
\end{aligned}
$$

1II. And therefore to difcover the degree of the firftigure in the quotient, is nothing elfe but to find out the degree of that tigure, which multiplying the figure or cypher in any particular place of the Divifor, will produce the fame degree as that figure or cypher in the Dividend is of, which ftands over, or at leaft belongs unto fuch parricular place of the Divifor, at the firft queftion; becaufe the degree produced muft be fubtracted from the like degree above it.

1 V . Now among many Rules that might be given to difcover the degree of the firft figure in the quorient, and confequently the degrees of all the reft, the proceding fourth Rule of this Chapter is fufficient, namely, The firft tigure which arifeth in the quotient, is always of the fame place or degree with that figure or cypher in the Dividend, which at the firft queftion ftands over, or at leaft belongs unto the place of units in the Divifor: The reafon is, becaufe if a figureftanding in the units place of the Divifor be multiplied by (or doth multiply) a figure of the fane degree with that degree in the Dividend, which at tive firft queftion belongs to the faid units place of the Divifor, the firtt place in the product thall be of that degree alfo, whether it be of Integers or decimal parts; and confequently the reft of the places in the faid product thall be of the fame degrees with their correfpondent degrees (or places in the Dividend, as they ought to be, to the end that due Subtraction may be made (according to obferv. 2.)

So in the Example before given, the firft figure 1 in the quotient, thall be of the degree or place of Tens, becaufe if the figure 4 flanding in the units place of the Divifor 14.35 be multiplied by $T \mathrm{en}$, to wit, the degree which the figure 6 in the $\mathrm{Di}-$ vidend is of that belongs to the faid 4 at the firft queftion, it will produce four Tens, to be fubtracted from the faid lix Tens: In like manner if a figure in the place of units be multiplied by units, the firft place in the product thall be units; if by tenth parts of an unit, or Integer, the firft place in the product thall be Tenths, \&x.

Having explained all neceffary Rules in Divifion concerning

Chap.XXVII. Decimal Fractions. 237

 conceening decimal fractions, I fhall give a taff of theiv excellent ufe, by the two following queftions, and then conclude this Chapter.Queft. I. A Merchant bought of gold Plate 356 ounces, 13 peny weight, and is grains for 1160 pourdsferling, the queftion is what he pid for an ounce? Anfwer 3 l. - 5s. - $\frac{1}{2}$ d.very near. The opcration by decimals may be after this mamer, viz.
$\left.\begin{array}{l}\text { By the fecond Tablet of Reducion }\} .65 \\ \text { the decimal of } 13 \text { peny beeight is- }\end{array}\right\}$
The decimal of 15 grgins is - 03125
The fum of thofe 2 decimals is-. 08125
Wherefore the quantity of Plate) in ounces and decimal parts of an ounce 356.68125 is

Then by the Rule of three I fay, if $356.68: 25$ ounces coft II60 pourds, what a ounce? Hire 'tis evident that if I divide 1160 by 356.68125 , the quotient will give the value of an ounce, to writ, 3 .252 pounds, or 3 pousids, 5 frilings and $\frac{1}{2} d$. very near.

356.68125) 1160.0000000 (3.252 .8 cc .

Quef. 2. Suppofe the length of the Trepical year (or the face of time wherein the Sun running through the whole Ecliptick circle, conlifting of 360 degrees, is returned to the fame Equinocitial or Solfititial point from whence he departed) to confift of 365 dayes, 5 bours, and 49 minutes, the queftion is to know the Suns mean or equal motion for I day, to wit, what part of 360 degrees the Sur moveth in a whole day? The operation by decimals, thus,

$$
\mathrm{P}_{3} \ldots \text { By }
$$

By the tenth Tablet of Reducion? the decimal correfpondent to 5 bours $\$ 2083333$ is

The decimal of 49 minutes is - .0340277
The fum of thofe decimals is - $.24236,0$
Wherefore the time given, in days $\} 365.2423610$ and decimal partsof a day is - \qquad
Then by the rule of three, if $365.242 \xi 61$ dayes give 360 degrees (or a total circumference;) what will I day give? Here if I divide 360 by 365 .242361 , the quotient will give the diurnal motion required, which will be found very near $.985^{6} 4$, \&c.or $-\frac{98564}{100000}$ parts of a degree, which decimal being reduced into the common Sexigenary part.s (by the
fourth Rule of the 26 Chapter) will give $59-8$ - 8 , \&c. and fuch is the Suns diurnal motion very near, according to the aforefaid fuppofition of the length of the Tropical year.

I thall here add the vulgar Sexagenary refolution of this queftion, that by comparing both wayes together, the excellency of decimal Aritbmetick in calculations of this nature may be the more perfipcuous.

The aforefaid queftion being ftated according to the Rule of three will Ptand thus,

$$
\begin{aligned}
& \text { dayes bours degrees day } \\
& \text { If } 365: 5: 49-360
\end{aligned}
$$

The firft term in the Rule muft be reduced into minutes (by the fixth Rule of the feventh Cbapter;) to there will be found 525949 minutes:

Chap.XXVII. Decimal Fractions. : 239

D. $365-5-49$ $\frac{24}{1465}$ $\frac{730}{8765}$ 60

525949 minutes.

Likewife the third term 1 day muft be reduced info minutes, which will be found to be 1440,as you fee by the following operation.

> I Day or 24 bours. $\frac{60}{1440 \text { minutes }}$

Then multiplying the third term by the fecond, to wit 1440 by 360 , the product is 518400 , which being divided by the firftecrm 525949 (accordirg to the note in the ninth Rule of the 16 th Chapter) the quotient will give $\frac{51}{5} \frac{18409}{5} 949$ parts of a degree, which fraction being reduced into the accultomed Sexagenary parts (by the ninth Rule of the fevenreenth Chapter.) will give as before $59: \ddot{8}$, \&c. for the Suns mean diurnal motion; now which of thefe two wayes is the more expeditious I leave to him who is verft in both to determine.

$$
\mathrm{P}^{\prime} 4
$$

CHAP,

240 The Rule of Three Direct Book I.

C HAP. XXVIII.

The Rule of three direct in Fractions.

1. O repeat fuch things as have already been declared in reference to the definition of this Rule, as alfo to the due placing of the 3 given numbers, would be fuperfluous; and if reffect be had to the Rules of Multiplication and Divifion in fraitions. delivered in the 20, 21, 26 and 27 Chapters, the working of he Rule of three direct in fraCtions as well vulgar as decimal, is the fame with that in whole numbers, $v \mathrm{iz}$. multiply the fecond number by the third (or the third by the fecond,) and divide the product by the firft number, fo the quotient is the fourth number fought; to wit, the apfwer of the queftion.

Otherwife tbus in Vulgar. Fraciions.

Multiply the Denominator of the firft number by the Numerator of the fecond, alfo multiply that product by the Numerator of the third number, and referve this laft product for a new Numerator, again multiply the Numerator of the firft number by the denominator of the fecond, alfo multiply this product by the Denominator of the third number, fo fhall this laft product be a new Denominator; lafly, the new fraction (whofe Numerator and Denominator is found as aforefaid, is the fourth number fought, which, if it be a proper fraction; may (ifoccafion require) be reduced into the known parts of the Integer (by the ninth Rule of the feventeenth Chapter ;) if an improper fraction, it is to be reduced into its equivalent whole number or mixt number, by the thirteenth Rule of the feventeenth Chapter.

Example, If $\frac{3}{4}$ of a yard of Velvet be fold for $\frac{2}{3}$ of a pound fterling, what hall $\frac{5}{6}$ of a yard coft? Anfiver $\frac{40}{3} l$.or 14 s. $9^{\frac{7}{9}} \boldsymbol{d}$. For according to the Rule I multiply the Denominator 4 by the Numerator 2 , and the product is 8 , this 8 I again multiply by the Nu- y. l. y. l. merator 5, and the product $\frac{3}{4}-\frac{2}{3}-\frac{5}{6}-\left(\frac{40}{3}\right.$ gives 40 for a new Numerator: moreover I multiply the Numerator 3 by the Denominator 3 , and the product which is 9 I again multiply by the Denorninator 6 , fo the laft produce is 54 for a new Denominator; wherefore I conclude that $\frac{40}{5}$ is the fourth number fought, wich if it be reduced (according to the ninth Rule of the feventeenth Chapter) gives $14 \mathrm{~S} .9 \frac{42}{5} \mathrm{~d}$. (or $9 \frac{7}{9} \mathrm{~d}$.) for the $A n f$ wier of the quettion.
II. When any of the three given numbers is a whole number or mixt number, fuch number mult firft of all be reduced into an improper fraction (by the tenth or eleventh Rule of the feventeenth Cbapter) to the end that all the three given numbers may be 3 fractions: moreover if alter fuch Reduction, the firt and third numbers be not fractions of Integers of the fame particular denomination, fuch of the faid numbers which is of the lefferdenomination, muft be reduced eo a fraction of chat greater (by the fixteenth Rule of the fventerts Cbapter;) which preparations being performed, the

242 The Rule of Three Direct Book I. reftof the Work is to be profecuted according to the tirft Rule of this Chapter. An Example of this fecond Rule here followeth. If a quantity of Ambergreece weighing $1 \frac{5}{7} l b$. Troy be fold for $60 l$. fterling, what are $19 \frac{5}{8}$ grains worth to that rate ? An-

This queftion being fiated? aecording to the 7 Rule of the 16 . \quad. gr. 8 Cbapter will ftand thus, $-11 \frac{5}{7}-60-90 \frac{5}{\circ}$ which 3 numbers will be re-) duced (by the tenth and celeventh Rules of the feventeenth Chapter) into thefé improper $\frac{12}{7}-\frac{60}{1}-\frac{15 \frac{7}{8}}{}$
frafions fraitions-

But fince the third number ${ }^{\frac{1}{5} \frac{7}{8}}$ grains Tray is not a fraction of an Integer of the fame name with the firft (which is a fraction of a pound Troy,) it muft be reduced into a fraction of a pound 2 roy, thus, $\frac{1}{8} \frac{7}{8} \mathrm{gr}$. is ${ }^{15 \frac{7}{8}}$ of $\frac{1}{24}$ of $-\frac{1}{20}$ of $\frac{-1}{2}$ of a pound Troy, which compound traction will be reduced (by the 16 Kule of the 17 Chapter) into this fingle fraction, to wit, $-\frac{10}{46} \frac{15}{8} \frac{7}{0} l 6$. Troy and fo the 3 numbers will at length fland thus in the Rale.

$$
1 \frac{2}{7} l b, \ldots \frac{6}{1} l_{0}-\frac{1}{46} \frac{5}{8} l b .
$$

Then working as in the firft Example of this Cbapter, the Anfwer will be found $-\frac{65940}{5} 2960$. which being reduced (according to the 9 and 4 Rules of the 17 Chapter) is found equal unto 2 s. $4 \frac{1}{1} \frac{1}{9} \frac{9}{2} d$.

Another Example. When the $\frac{2}{3}$ of $\frac{3}{4}$ of a Sbip is valued at 147 l.- 11 s.- 3 d. how much is the whole Ship worth? Anfw. $491 l_{0}-17 \mathrm{~s}_{0}-6 \mathrm{~d}$.

Chap. XXVIII. in Fractions. 243

Note, when in any quefion whatfoever a compound fraction, to wit, a fraction of a fraction, is one of the given numbers, fuch compound fraction mult firft of all be reduced to a fingle fraction (by the 16 Kule of the 17 Cbapter;)fo here, the compound fracion $\frac{2}{5}$ of $\frac{3}{4}$ being reduced into a fingle fracion gives $\frac{-6}{2}$ or $\frac{-3}{10}$; then fay if $-\frac{3}{10}$, be worth 147 l.II s. 3 d. what is I or the
whole Ship worth? Ship l. s, d. Ship After due reduction $\bar{x}_{0}^{3}-147: 11: 3-1$ is made by converting the 147 l . II s .3 d . into pence, and that number of pence, as alfo the third number I. into improper fractions, the 3 numbers will fland in the Rule thus,

Laftly, proceeding as in the firft Rule of this Chapter, the fourth number will be found to be 24 ± 120 d which being reduced firt by the 13 Rule of the 17 Chapter, and then by the 7 Kule of the 7 Chapter, the Anfoper at length is $49.11 .-17 \mathrm{~s}$. $-6 d$.
An Example of the Rule of three direct in Decimals may be this that follows. If 19 ounces, 3 peny meigbt, and 5 grains of Gold, be worth 62%.-IOs. - $6 d$ what is the value of $\mathrm{I} \frac{1}{2}$ ounce? $A_{n / w} .4 \%$ $-175 .-10 \frac{3}{4} \mathrm{~d}$, very near,

244 The Rule of Three Direct Book I.

By the 2. Tablet in the Tisble of Re-? daction in the 23 Chapter, the decimal 15 fraction correfpondent to 3 peny weight is

Alfo, the decimal of 5 grains is- 010416 The fum of thofe 2 decimals is - 160416
Wherefore the firft number in the 2 oz . Rule of three is Again, by the firft Tablet of the? aforementioned Table the decimal of $>: 5$ 10 faillings is.

Alfo the decimal of 6 pence is -.025
The fum of thefe two decimals is -.525
Wheretore the fecond number in $\{l$. the rule of three is-an $\$ 62.525$
Moreover by the faid Tablet 2.the decimal of $\frac{1}{2}$ of an ounce or 10 peny (oz. soeight is. 5 , wherefore the third num- 1.5 ber in the Rule of three is -

So that after the faid reduction is finitht, the 3 given numbers will fand in the Rule thus,

$$
\begin{array}{lll}
\text { oun. } & l . & \text { оин. } \\
19.160416-62.525-1.5
\end{array}
$$

Laftly, multiplying the fecond number by the third, and dividing the product by the firt number (according to the Rules of Multiplication and Divition of Decimals delivered in the 26 and 27 Chapters) the fourth number will be this, to wit, 4.8948 , \&xc. that is four poundsferling and $\frac{894}{100} \frac{80}{9}$ parts of a pound, which decimal being reduced according to the fourth Rule of the 26 Cbapter) gives 17 s.-10 d.-3 far.

Chap.XXIX. in Fractions. 245
The proof of the Rule of three direct in Fractions is the fame as in whole numbers, refpect being had to the Rules of Multiplication in Fractions.

CHAP. XXIX.

The Inverfe Rule of three in Fractions-

I. AFter a queftion belonging to this Rule is duly frated (according to the feventh rule of the eighth Chaprer) and prepared if need require, according to the fecond Rule of the 28 Chapter; The operation will be the fame as in the Rule of three Inverfe in whole numbers, refpect being had to the Rules of Multiplication and Divifion in Fractions, vizmultiply the firft number by the fccond, and divide the product by the third, the quotient is the fourth number fought, to wit, the anfwer of the queftion.

Or tbus, in Vulgar Fracions;

Multiply the Denominator of the third fraciion by the Numerator of the fecond, alfo mu'tiply that product by the Numérator of the firft fraction, and referve the laft product for a new Numerator: again multiply the numerator of the third fraction by the denominator of the fecond, alfo multiply this product by the denominator of the firft fraction, fo is the laft product a new denominator; lafly, this new fraction is the fourth number fought, or anfwer of the queftion.

Example,

Example, if of cloth,which is $\mathbf{1}_{\frac{3}{4}}^{\frac{3}{4}}$ yard in breadth, $3 \frac{1}{2}$ yards in length will make a Cloak, how much in length of fuff which is $\frac{5}{8}$ yard in breadth will make a Cloak of the fame bignefs with the former? $A n-$ fwer $9 \frac{4}{5}$ yards.

The 3 numbers being duly 3 brea. leng. brea. placed will ftand thus —— $\left\{\frac{3}{4} y .-3 \frac{1}{2} y .-\frac{5}{8} y_{0}\right.$

Then (after the firft and fecond numbers are reduced into improper fractions) the three numbers will fland thus

Laftly, 8, 7 and 7 being multiplied continually give 392 for a numerator; alfo 5, 2 and 4 being multiplied continually give 40 for a denominator, whereby this improper fraction $\frac{392}{40}$ arifeth, which (by the thirteenth rule of the feventeenth Chapter) will be found to be $9 \frac{32}{40}$, or (the fraction being reduced into its leaft terms) $9^{\frac{4}{5}}$, which is the Anfwer of the queftion.

Ex.2.Suppofe when Wheat is at $21 .-00$ s. - $6 d_{0}$ the Quarter, the peny white loaf ought to weigh 8 ounces and $1-\frac{5}{9}$ peny weight of Troy weight; what ought it to weigh when Wheat is at 36 thillings the Quarter ? Anfwer 9 ounces and $\leq \frac{3}{1} \frac{3}{16} p e$. ny weight.

The 3 given numbers being) pence p.w. pence $\left.\begin{array}{l}\text { duly placed in the rule and re- } \\ \text { duced will ftand thus, }\end{array}\right\} \frac{486}{1}: \frac{467 \frac{4}{29}:, 4 \frac{2 \pi}{1}}{}$

And if the operation be profecuted according to the rule before given, the $A n \int$ wer will be found $181 \mathrm{I}^{\frac{32}{2} 5 \frac{9}{28}}$ peny weight, or 9 ounces, $1-\frac{37}{1} \frac{1}{6}$ peny weight.

CHAP.

CHAP. XXX.

The Double Rule of Three in Fractions.

I. THe Double Rule of Three is fo called, becaufe it is compofed of two fingle Rules, and may either be refolved at one Work by the Rule compound of 5 numbers, or elfe by two diftinct fingle Rules of three; which latter way, to fuch as underfland the Rule of three in fractions is (as I conceive) lefs tfoublefome in the flating, and (in the method whereby I intend to profecute it) the fame in operation with the former. This Ithall manifeft firft in whole numbers, then in fractions.

Example I. If I pay 28 fillings for the carriage of 3 C.weight for 50 miles, how much ought I to pay for the carriage of 17 C.for 84 miles? Anfwer $13 \%-6$ s. - 6 d. $\frac{13}{25}$.

Of the 5 given numbers I make choice of three fuch which will make a fingle rule of three, and fay,

$$
\text { If } 3-\quad \text { Bilor } \quad \text { C. }
$$

Which rule I find(by the third rule of the ninth Chapter) to be direct, and therefore I multiply the third number 17 by the fecond 28 , and the product which is 476 I place as a numerator over the divifor as denominator. Then with this fraction (whether it happen to be a proper or improper fraction) and the remaining two numbers in the queftion, which have not yet been ufed, I form a fecond rule of Three, and fay,

Which being a rule of three direct, I work as a rule of three in fractions, according to the firft rule of the 28 chapter, and fo find the fourth number to be $\frac{399}{1} \frac{84}{5} \mathrm{~s}$. or 13 l . -6 s . $-6 \frac{18}{2} \frac{8}{5} \mathrm{~d}$.

Or the firft fingle rule being varied, the operation will be thus,
miles C. miles C.

1. By a rule inverfe, $50-3-84$ - $1 \frac{50}{84}$ 2. By a rule direct, $\frac{1850}{8}: \frac{20}{12}: 1 \frac{7}{8}:\left(\frac{32}{2} \frac{8}{1} \frac{84}{50}\right.$

Otberwife tbus,

1. By a rule inverse,
C. m. C. m.
. Byarnlo ind
$3-50-17 \cdot-\left(\frac{15}{1} \frac{0}{7}\right.$

Thus you fee the two fingle rules to be varied three manner of wayes in refolving the queftion propounded, and each way producerh the fame $A n$ froer ; the like diverfity may be found in all queftions refolvable by the double rule of three, of rule compound of 5 numbers.

Example 2. if $40 \frac{3}{5} l$. in $\frac{2}{3}$ of a year gain $2 \frac{1}{2} l$. what will 100% gain after that rate in $-\frac{7}{2}$ of a year? $A n \int \sum_{0} \frac{52500}{9744} l_{\text {. or }} 5 l_{0} \longrightarrow 7 s_{0}-9-\frac{3}{29} d$.

Chap. XXXI. in Fractions.

By 2 Single rules of three, thus,

Or by thee two single rules,

1. By a rale yirear y. year 1.
2. By a rale direct, $\frac{2}{1}: \frac{5}{2}:-\frac{1}{2}:\left(\frac{105}{48}\right.$,

$$
\text { l. l. l. } \quad \text { l. }
$$

2. By a rule direct, $\frac{203}{5}: \frac{105}{+8}: \frac{1025}{1}:\left(\frac{23500}{97+7}\right.$

Otherwise thus,

l year l year

Thus by 2 fingle rules of three varied three feveral ways, you fee the $A u f$ jose of the queltion to be $\frac{525200}{9744}$ l to wit, $5 l-7 s .-9-\frac{3}{2} d$.

CHAP. XXXI.

The Rule of Falfe in Fractions.

I. W Hen a queftion propounded cannot readily be applyed to the Rule of three, or any of the vulgar Rul:s in Aritbmetick; the beft refuge for fuch as are not acquainted with Algebra is the Rule of twofalfe Pofitions, which, for that it hathaiready been handled in mole numbers, 1 thall the more briefly touch upon in Fractions.
II. When a number is fought by a queftion, you are to feign or fuppofe fome number taken by guefs fo be the number fought, and to make tryal whether that feigned number will anfwer the conditions in the queftion or not, by comparing the number refulting at the end of the Work, wirh the given number refulting from the rue number fought; and if you,find both thofe refults to be the fame, then is the number which you firft took by guefs the true number or anfwer of the queltion ; but if the number refulting from the fuppofititious number be either greater or lefs than the given refult, with which it ought to be compared (to fee whether you have hit the mark or not) fuch excefs or defect mult be noted for the Error of the firft Pofition, to wit, anexcefs muft be fignified by this note ${ }^{+}$; and a defect by this
111. In like manner a fecond number muft be feigned, and after tryal is made therewith, to fee whether it will perform the conditions preferibed in the queftion, by comparing the refults as aforefaid,

Chap.XXXI. in Frations.
 faid, the erros of this fecond Pofition, if too muchr

 is to be noted by t, if too little by -, as before.1V. After the errors of both Pofitions are difcovered, the two numbers before fuppofed or feigned to be the number fought, muft be multiplied by the altern crrours, that is, the firlt 「ofition by the fecond errour, and the fecond Putition by the firft errour ; then if the notes of the errours be unlike, to wit, one of them ${ }^{\text {t }}$, and the orher - the fum of the faid products is to be taken for a dividend, and the fum of the crrours for a divifor; but if the notes of the errours be both alike, to wit, both of them t, or both -_, the difference of the faid products is to be taken for a dividend, and the difference of the errours for a divifor; lafly, the quotient arifing from the divifion made by the faid dividend and divifor, gives the true number fought, or anfwer of the queition, if it be folvable by the Rule of Falfe. Thefe Rules are the fame in fubfance with thofe delivered in the 15 Chapter, and may be farcher illulisated by the fullowing Queftions.

2uef. I. A Gentleman hired a fervant for a year for 6 poundsfterling, and a livery Cloak valued at a certain rate, but it happened that $\frac{1}{1}-\frac{1}{2}$ of the year being expired they fell at variance, and the Gentleman put away his fervant, giving him the Cloak together with 50 ohillings in mouty, which was the fervants full due for the time of his fervice, the queftion is to find what the Cloak was valued at? Anfor. $2 l . \longrightarrow 8 s$.

1. I fuppofe the Cloak to be valued at 3 pounds, and then feek how much thereof was due to the $Q_{2} \ldots$ fervant,

252

3. For as much as the Cloak together with the money which the fervant rcaived ought to be equal to the part of the Cloak, together with the part of the 6 pounds wages due to him at the end of $-\frac{7}{2}$ of the year, therefore $3 l$. (the fuppofed value of the Cloak) together with $2 \frac{1}{2} l$. (the money which the fervant received) thould be equal to $\frac{7}{4}$ of a pound (the value of part of the Cloak due to the fervant at the end of $\frac{7}{2}$ of the year) together with $\frac{7}{2} l$. (the wages due for the fame time) that is to fay,,$\frac{1}{2} l$. (the fum of $3 l$. and $2 \frac{1}{2} l$.) thould be equal to $0^{\frac{21}{4} l} l$. (the fum of $\frac{7}{4} l$. and $\frac{7}{2} l$.) but it is greater by $\frac{1}{4}$, wherefore the firf Polition for the value of the Cloak being 3 pounds, the errour is found to be $\frac{1}{4}$ too much.
4. I make a fecond Suppolition guefing the value of the Cloak to be 2 pounds, and proceeding in every refpect as with the firft fuppofition I find the errour to be $\frac{1}{6}$ too little; fo that the two Pofitions with their errours will be as you fee:

Now in regard the errours are fractions, I may take in their ftead whole numbers in the fame proportion, to wit, multiplying the Numeratur of the frlt fraction (or firft errour) by the Denominator of the fecond, I take the product which is 6 inftead of the firfe errour $\frac{1}{4}$; likewife multiplying the Numera. tor of the fecond fraction by the Denominator of the firft, I take the product

6
6
5) $12\left(2 \frac{2}{5}\right.$ p ми. which is 4 inftead of the fecond errour $\frac{1}{6}$, Or inAtead of the faid 6 and 41 may take 3 and 2 which are in the fame proportion with 6 and 4 , (or with $\frac{x}{4}$ and $\frac{1}{6}$:) Then multiplying the Pofitions and new errours crofswife, and adding the products together (becaufe the figns are utlike) the fum is 12 for a Dividend, and the fum o: the errours 3 and 2 is 5 for a Divifor, to the quorient will be found to be $2 \frac{2}{5} l$. fo much therefore was the valuc of the Cloak, as will eafily appear if trya! be made with $2 \frac{2}{5} l$. in the fame manner as with the firlif figned number.

Queft. 2. Vitruvius (in lib. 9.cap. 3.) report. eth that King Hiero having given commandment for the making of a Crewn of pure Gold, was informed that the Workman had detained part of the Gold, and mixt the reft with as much Silver, as he had flole of Gold; The King being much difpleafed at the deceit, recommended the examination of the bufinefs to the famous Archimedes of Syracufe, who without defacing the Crozon difovered the cheat in this manner; viz. Experience telling him that a quantity of Gold would poffers lefs roome os fpace than the fame quantity of Sil-

254 The Rule of Falfe छૅc. Book ì.
ver, and confequently that a mixt mafs of Gold and Silver of the fame quantity would take up fome mean fpace between the two former, he made a mafs of pure Gold of the fame weight with the Cronon, likewife another mafs of Silver of the fame weight, then having put the Crown as alfo the other two Maffes feverally into a veffec filled up to the brim with water, he diligently referved the water flowing over into another veffel, and from thofe 3 feveral quantities of water fo expeld, he found out the quantity of Gold and of Silver' in the Crown: But torafmuch as Vitruvius delivers not the practical operation, ithall here thew the fame after the manner of Cardanus, Gemma Frifius, and other Aritbmeticians.
Let us therefore fuppofe the weight of the Cromn as alfo of the two feveral Maffes to have been $5 l$. Suppofe alfo that by putting of the mafs of Gold into the veffel, $3 l$. of water was expeld; by putting in of the Crown, $3 \frac{1}{4} l$. and by putting in of the mals of Silver, $4 \frac{1}{2} l$. The queftion theretore is to know how much Gold and how much Silver the Crown was compofed of. This may be refolved after this manner. Suppofe 3 l. of Gold to be in the Crown, then there remained $2 l$.
$5-3-3-\left(1 \frac{4}{5} \quad\right.$ of Silver, now fay by $5-4 \frac{1}{2}-2-\left(1 \frac{4}{5} \quad\right.$ the Rule of 3 , if 5% of how much $3 l$. of Gold? Anfmer $\frac{4}{3} l$. Alfo if $5 l$. of Silver expel $4 \frac{1}{2} l$. of water, how much $2 l$. of Silver? Anfoper, $1 \frac{4}{5} l$. of water, add therefore the water of the Silver and of the Gold together, to wit, $I \frac{4}{3}$ and $1 \frac{4}{5}$, fo there will arife $3 \frac{3}{5} l$. of water: this ought to haye been $3 \frac{1}{4}$ l. (lar fo much overflowed

Chap.XXXI. - in Fractions.

flowed by putting in of the Crown; ;) but it is too much by $\frac{{ }_{2}^{2}}{20}$, wherefore $\frac{-1}{20}$ is to be noted with + for the errour of the firft Pofition 3%. Again, fcign another quantity of Guld to have been in the Cronon, to wit, $2 l$. therefore there remained $3 l$. of Silver, then fay if $5 l$ bf Gold expel 3 l. of water, how much a l.of Göld? Anfro. $1 \frac{1}{5} l$. of water : Alfo if 5%. of Silver expel $4 \frac{1}{2} l$. of water, how much 3% of Silver? Anfoeer, $2 \frac{1}{1} \frac{3}{2}$; then add $1 \frac{3}{5}$ unto $2-\frac{1}{1}$, the fum will be $3-\frac{2}{\mathrm{y}} \%$. of water: this ought to have been $3 \frac{1}{4} l$. but ir is ton much by $\frac{13}{2}$, wherefore $\frac{13}{20}$ is to be noted with ${ }^{+}$for the errour of the fecond Pof \mathcal{F}_{-}. tion 2 \%. Here becaufe the errours are fraviions having a commor Denominator, I take their Numerators 7 and 13 inflead of the enrours;

$5-3-2-\left(12 \frac{1}{2}-3-12 \frac{1}{10}\right.$
$5-4 \frac{1}{2}$

39
14
6$) 25\left(4 \frac{1}{6} \mathrm{lb}\right.$. of Gold.

256 The Rule of Falle ©̧c. Book 1. Pel $4 \frac{x}{2}$ of water, how much $\frac{5}{6}$ of Silver? Anfiver, ${ }_{3}^{3} l$. of water, which being added to $2 \frac{1}{2} l$. the fum is $3 \frac{1}{4} l$. of water, to wit, as much as flowed over when the Crowon was put into the veffel.

Here note, that in making a tryal of this nature, there is no neceffity that the mafs of Gold or of Silver be of the fame weight with the Crown, or whatfoever thing is to be examined, but of what notable part of weight you pleafe.

Note alfo, that for the more eafie difcovering of the Dividend and Divifor by the notes of t and - according to the fourth Rule of this Chapter, the following verfe may be a help, to wit.

> Addito diffimiles, fubtrabitoque pares.

Or thus,
Notes being unlike, Addition make; If like, leffer from greater take.

The Reader may fee more queftions to exercife the Rule of Falfe in the tenth Chapter of the Appeadix, and the demonftration thereof in the ninth Chapter of the fame.

CHAP

Chap. XXXII.

CHAP. XXXII.

The Extraction of the Square (or Quadrate) Root.
I. He^{2} Extraction of the Square root is that, by which having a number given, we find out another number, which being multiplied by it felf, produceth the number given.

II. In the Extraction of the Square-root, the number propounded is alwayes conceived to be a quare number, that is, a certain number of little quares comprehended within one intire great quare, and the root or number required is the fide of that great fquare, as will readily appear by this Diagram, where you fee 25 little fquares contained within one great fquare; now if the faid content 25 be given, and the fide or root of the fquare containing the faid 25 little fquares is required, the invention of fuch fide or root is called the extraction of the fquare roor; which root muft
be fuch, that ifit be fquared, that is, multiplied by it felf, the product mult be equal to the fquare content firft given: So 5 is the fquare root of 25 , for 5 times 5 is 25 . Likewife this fquare number 49 being propounded, his root is 7 .
III. Square numbers are either fingle or compound.
IV. A fingle fquare number is that, which being produced by the multiplication of

Afingle

 Square number. one fingle figure by it felf, is alwayes lefs than 100 : fo 25 is a fingle fquare number produced by 5 ; ikewife 4 is a fquare number produced by 2 ,V. All the fingle fquare numbers together with their refpective roots are expreffed in the Table following.

Here in the uppermoft rank of the Table are placed the fingle fquare numbers of every particular igure, and in the other their refpective roots; and therefore if it were demanded what is the fquare root of 36 , the anfwer will be 6 . So the fquare root of 16 is 4 , the fquare root of 9 is 3 \&cc. And contrarily the fquare of the root 6 is 36 , Alfo the fquare of 3 is 9 .
VI. When a fquare number is given, that exceeds not 100, and yet is none of the fquare numbers mentioned in the Table, for his root you are to take the root of the fquare number that being lefs, yet comes neareft unto it: fo 45 being given, the root that belongs unto it is 6 , and 10 being given, his correfpondent root is 3 .

VII. A

Chap. XXXII. the Square Root 259
VII. A compound fquare number is that, which being produced by a number (that conlifts of more places then one)multiplicd by it felf, is never lefs than

A compound fysare number. IOO: fo 1024 is a compound fquare number produced by the multiplication of 32 multiplied by it felf,

VII I. To prepare any fquare number given for extraction, put a point over the firft place thereof on the right hand (being the place of Units;) then proceeding towards the left hand, pafs over the fecond place; and put another point over the third place; alfo paffing over the fourth place put another point over the fifth, and fo forward in fuch manner that between every two points which are next one to the other, one place will be intermitted: fo if the fquare root of 1024 be required, the firft point is to be placed over 4, and the fecond over o as you fee, and 1024 fo many points as are in that manner. placed, of fo many figures the root demanded will confift.
IX. Having thus prepared your number, you may fee it diftributed by the points into feveral fquares: fo in the lat Example, 10 is the firft fquare and 24 the fecond, likewife if this number 144 were propounded for extraction, after points are duly placed according 144 to the laft Rule, you will fee 1 to be the firts fquare and 44 the fecond.
X. Having drawn a crooked line on the right hand of the number propounded for exiraction (after the fame manner as is ufually done in Divifion to denote the place of the quotient,) find the ent : foI find, by the fixth Rule afore1024 (3 of 10 ; wherefore I write 3 in the quotient, and then the Work will ftand as you fee.
XI. Subferibe the fquare of the figure placed in the quotient under the firtt 1024 (3 fquare of the number given, as you fee in the Margent.
XII. Hiving drawn a line under the fquare (of the figure placed in the quotient) fabferibed as aforefaid, fubtract the fame out of the firf fquare of the number propounded, 1024 (3 and place the remainder orderly un9 derneath the line; fo the fquare of 3 - which is 9 being fubtracted from 10 , 1 the remainder is x, and the Work will ftand as you fee in the Margent.
XIII. To the faid remainder bring down the next fquare of the number propounded, that is, write down the figures or cyphers fan1024 (3 ding in the two following places of the 9 number propounded on the right hand of the faid remainder : fo the fquare.
12424 being placed next to the remsinder 1 , there will be found this number 124 , which may be called the Kefolvend.
XIV. Double the root being the 1024 (3 number placed in the quotient, and 9 place the faid double on the left hand of the Refolvend, like a Divifor: fo 6) 124 the double of 3 is 6 , which being placed before a crooked line on the

Chap.XXXII. the Square Root 261

left hand of the Refolvend 124 , the work will fand as youfe.
$X V$. Let the whole Refolvend, except the firft place thereof on the right hand (being the place of units) be alwayes efteemed as a Dividend, then demanding how often the Divifor before found, is contained in the faid Dividend, and obferving in that behalf the Rules before taught in Divilion, write the anfwer in the quotient, and alfo on the right hand of the Divifor, to wir, between' the Divifor and the crooked line: fo if you ask how often the Divifor 6 is found in the Dividend 12, the anfwer is 2 , wherefore I write 2

62) 124 in the quotient, and alfo after the Divifor 6, as you fee in the Margent. XVI. Multiply all the number which flandeth on the left hand of the Refolvend, (to wit, before the crooked line) by the figure laft placed in the quotient, and write the product orderly underneath the Refolvend (to wit, u nits under units, tens under tens, \&c.) then having drawn a line under the faid product, fubtract it 1024 (32 from the Refolvend, and fub. fribe the remainder under the line: fo 62 being multiplied by 2, the product is 124 , which if I fubtract out of the Refolvend 124 , the remainder is 0 ; and thus the whole Work being finifhed, the fquare root of 1024 (the number propounded) is found to be 32.

Note

Note I. When the product before mentioned exceeds the Kefolvend placed above it, the work is erroneous, and then you are to reform it by placing a leffer figure in the quotient.

Note 2. For every one of the particular fquares (dittinguifhed by the points) except the firft on the left hand, a Refolvend is to be fet apart, by bringing down to the remainder the congruent particular fquare, as is circcted in the 13 Rule; and as often as a Refolvend is fet apart, fo often a new divifor is to befound by doubling or multiplying by 2 all the root in the quotient (confifting ot what number of places foever.)

Note 3. The Work of the $10_{2} 11$, and 12 Kules for finding of the firft figure in the root, is but once u fed in the extraction of the root of a number confifting of what number of places foever; but the Work of the $13,14,15$, and 16 Rules is to be repeated for the finding of every place in the root except the firft.

The practice of thefe 3 Notes will be fcen in the following Examples.

Example 2. Let it be required to extract the ؟quare root of 43623.

Having diftributed the number propounded into feveral fquares by points; as is directed in the eighth Rule of this
43623 (2 Chapter, I demand the fquare root of 4 . 4 the firft fquare, which I find by the 5 rule of this Chapter to be 2 ; wherefore placing 2 in the quotient, and the fquare thercof, which is 4 , under the firf fquare 4 , I draw a line, and fubtracting 4 from 4 the remainder is 0 , which I fubferibe un-

Chap.XXXII. the Square Root 263 derneath the line. This is alwayes the firft Work, which is no more repeated in the whole Extraction (as was intimated in the third Note aforegor ing.)

Then bringing down the next fquare, which is 36, and placing it next after the remainder O , the Refolvend is 36 ; and doubling the root 2 in the quotient, the product is 4 for a Divifor (by the 13 and 14 Rules) and the Dividend will be 3 (by the 15 Rule; wherefore I demand how often the Divifor 4 is contained in the dividend 3 , and not find- \qquad place o in the quotient, and alfo next after the Divifor 4 ; and becaufe the product of 40 multiplied by of the laft Character in the quotient $)$-is 0 , the refolveind 36 , from which the faid product ought to be deducted, remains the faine withour alteration, therefore 1 bring down 23 the next fquare, and place it after the remainder 36 , fo will 3623 be a new refolvend; then doubling the whole root in the quotient, which is 20 , the divifor will be 40 (according to the fecond Note before mentioned,) and the dividend will be

43623
4^{8}

$$
\text { 40) } 03623
$$ demand how often the divifor 40 is contained in the divided 362 , or how often 4 in 36 , \& though it be 9 times in it, yet(according to the firft Note aforegoing) Ican can take but 8 , (for if I fhould take 9 ; and proceed according to the is and 16 Rules, a number would arifé greater than the refolvend, from which fuch number arifing ought to be fubtracted;) wherefore I write 8 in the quotient, and alfo after the divifor 40 ; this done, I multiply 408 (the number on

 the left hand of the refolvend) by 8 the figure laft placed in the quotient, and the produft, to wit, 3264 I fublcribe under, and fubtract from the refolvend 3264 3623, fo there will remain 359 359, thus the work being finifhed I find 208 to be the number of unities contained in the root fought; and becaufe after the extraction is ended there happens to be a remainder, to wit, 359 , I conclude that the ront fought is greater than the faid 208 , but lefs then 209 , yet how much it is greater then 208 , no rules of Arr hicherto known will exactly difcover, although we may proteed infinitely near, as in the nest Rule will be manifen.
XVII. To find the fractional part of the root very near, a competent number of pairs of cyphers, to wit,00,0000,000000,0r 00000000,\&c. are to be annexed-to the number firf propounded, then efteeming the namber propounded with the cyphers annexed tobe but one entire number, the extraction is to be made according to the precedent Rules, and look how many points were placed over the number firt given, fo many places of Integers will be in the soot, the reft of the root towards the righe hand will be the Numerator of a decimal fraction, which Numerator confifteth of fo many places as there were points over the cyphers

Chap.XXXII. the Square Root 26.5 cyphers annexed: fo if 43623 were given as before, to find the root thereof (according to this rule) annex cyphers in this manner, and thenif you extract it according to the Rules aforegoing, you

$$
43623.000000 \text { (} 208.861,8 \mathrm{cc} .
$$

will find the ront arifing in the quotient to be 208 .861 , that is $208-\frac{861}{1060}$; and becaufe after the cx raction is finifhe there happens to be a remainder, I conclude that $208-\frac{861}{100}$ is lefs than the true or exact ront, bur $208-\frac{862}{1000}$ is greater than it; fo that by annexing three pairs of cyphers to the number propounded, you will not mifs $\frac{100}{100}$ part of an unit of the true root ; alfo by annexing 4 pairs of cy phers, you will not mifs $\frac{-100}{1000}$ part of an unit, and in that order you may proceed infinitely near, when you cannot obrain the true root. The whole operation of the faid Example here followeth.

$\begin{aligned} & 43623.000000 \\ & 4 \\ & \hline \end{aligned}$	$(208.86 \mathrm{I}, 8 \mathrm{c},$ The root.
408) 03623	4
3264	,
$4 1 6 8 \longdiv { 3 5 9 0 0 }$	
+ 33344	
41766) 255600	
250596	
$417721) 500400$	
417721	
82679	
	Again

Again if ro were propounded to be extracted, you mult prepare it thus,

10.00000000000000 (

And then the root thereof? being extracted will be -- $\}^{3} \frac{16502716}{1000000}, \& \mathrm{cc}$. which (according to the third) Rule of the 22 Chapter) may be 3 .1622776, \&c. written thus

See here part of the Work in the extraction of the root of 10 , which may give you a light and underfanding of the reft.

$61): 100$
$\begin{array}{r} 626) 3900 \\ 3756 \end{array}$
6322) $\begin{array}{r}14400 \\ \\ 12644\end{array}$
$63242\left(\begin{array}{l} 175600 \\ 126484 \end{array}\right.$
$\begin{array}{r} 632447) \quad 4911600 \\ 4427129 \end{array}$
484471

Chap.XXXII. the Square Root. 267

XVIII. The extraction of the Square root is proved by multiplyThe Froof. ing the root by it felf, for that done, the product 1 in fuch cafe when there is no remainder after the extraction is finithed) will be equal to the number whofe fquare root was enquired; fo in the firft Example of this Cbapter, the root 32 being multiplyed by it felf produceth 1024 the number propounded: but when after the extraction is finifhed there happeneth to be a remainder, and that the root is found as near as you pleafe, in a mixt number of integers and decimal parts (by annexing cyphers as in the 17 . Rule) then fuch mixt number being multiplyed by it felf mult produce a mixt number lefs than the number firft propounded for extraction, yet fo near unto it, that if the figure flanding in the laft place of the Numerator of the decimal fraction in the root be made greater by 1 , and then the mixt number fo increafed be multiplyed by it felf, the product muft be greater than the number firlt propounded: fo in the Example of the 17 . Rale, it 208.861 be multiplyed by if felf, it produceth 43622.917, \&c. which is lefs than the propounded number 43623 , but if 208.862 be multiplyed by it felf, the produat will be 43623.335 , \&c. which is greater than 43623 .
XIX. The fquare root of a FraCtion is found in this manner, viz. extract the root ot the Numerator

To extraEt the Square loot of a Fiaflion. (by the precedent Rules of this Chapter) which root thall be a new Numerator. Alfo the root of the denominator is to be taken for a new denominator, fo the new Fraction thall be the fquare root of the Fraction firft propoundR2 ed:
ded : thus the qquare root of $\frac{-2}{1} \frac{2}{6} \frac{3}{4}$, viz the root of 9 is 3 for a new numerator, alfo the root of 16 is 4 for a new denominator. In like manner the Square root of $\frac{1}{4}$ is $\frac{1}{2}$. But here note diligently, that if the FraEion whole fquare root is required be not in its leaft terms, it mutt firtt of all be reduced by the 4 . Fulo of the 17. Chapter before any extraction be made; for oftentimes it happens that the Fraction firft given hath not, a perfect root, but whenfuch Fracion is reduced into its leatiterms, the root thereof may be extracted: fo in this Fraction $-\frac{8}{8}$, each term is incommenfurable to its fquare root, viz.neither 8 nor 18 hath a Square raot expreffible by any true or rational number; but the faid $\frac{8}{8}$ being reduced to its leaft terms $\frac{4}{9}$, the root of shis may be extracted, for the roit of 4 is 2 for a new . Numerator; alfo the root of g is 3 for a new Denominator; fo that $\frac{2}{3}$ is found to be the fquare roat of $\frac{4}{9}$ (equivalent unto $\frac{-8}{1} \frac{8}{\delta^{\circ}}$.
$X X$. When either the Numerator or Denominator of a Fraction hath not a perfect fquare roor, fuch root is ufually expreft by prefixing this Character, $\sqrt{ }$ or $\sqrt{ } q$, before the Fraction given: fo the \int quare root of $\frac{13}{1}$ is fignified thus $\sqrt{\frac{1}{1} \frac{3}{6}}$, or thus $\sqrt{ }$ q. $\frac{13}{1} \frac{3}{6}$, becaufe the root of $\frac{13}{\frac{3}{6}}$ cannot be expreft by any true or rational number whatfoever, yet it may be found very near as in the next Rule.
$X X I$. The fquave root of a Fraciion
Tocxtraft the Square root near, of a fration incommenfurao b/e to its. Square root. which is in commenfurable to its root, may be found near, in this manner, viz reduce the fraction propofed into a decimal by the third Rule of the 23. Chapter: the more places are in the decimal, the nearer will the root be found, but the decimal muft confift of an even number

Chap.XXXII. the Square Rost ${ }_{259}$ number of places, viz. either of two, four, fix, eight or ten, \&c. places; then extred the fquare root of that decimal, as if it were a whole number, according to the Rules aforegoing, which root found fhall be a decimal expeffing ncar the fquare root of the fractios propofed.
Soif the fquare roos of $\frac{13}{6}$ be required wear, reduce the faid $\frac{13}{16}$ into a decimal (by the 3 d . Rule of the 23: Cbapter) which will be fruund .81250000 , \&c. Thenextracting the Square root thereof as if it were a whole number, it will be found goriz very near.
XXII. The Square root of a mixt number commenfurable to its root, Torxtialt the is found in the fame manner as in fagare root of the Rule of thic Chptes the mixt rumthe 19. Rule of this Chapter, the ber. mixt number being firft reduced in. to an improper iraction by the 10 . Rule of the ${ }^{7} 7$ Chapter.

So the f_{q} uare root of $34 \frac{33}{64}$ will be found $5 \frac{7}{8}$ viz. $34 \frac{33}{6} \frac{b}{4}$ being reduced into the improper Fraction $\frac{20.0+}{64}$, the Squareroot of the Numerator 2209 will be 47 for a new Numerator; alfo the Square root of the Denominator 64 i. 8 , for a new Denominator; fo is found $\frac{47}{8}$, which (by the 13 . Rule of the 17 . Chapter) is $5 \frac{4}{8}$ the fquare root fought. And here the fame caution is to be obferved as in the:19. Rule of this Chapter ; viz. the fractional part of the mixt number, or the improper fraction equivalent unto the mixt number, muft be in the leaft terms before any extraction be made.

To find be Square root oeur, of a mixt number ineommenfuratle to its root. XXIII. When the mixt number given is incommenfurable to its Square root, prefixing this Character before it,viz. $\sqrt{ }$ or $\sqrt{ }$. So the $\int q u a r e$ root of $7 \frac{2}{3}$ will be thus expreffed: $\sqrt{ } 7$ $\frac{2}{3}$ or $\sqrt{ }$. $7 \frac{2}{3}$: but if you defire to find the fquare root near of a mixt number incommenfurable to its root, reduce the fractional part of the mixt number into a Decimal of an even number of places, as in the 21 . Rule of this Chapter, and annex the Decimal fo found unto the whole part of the mixt number; then efteeming the faid whole number and Decimal as one entire number, extract the fquare root thereof according to the aforegoing Rules of this Chapter, and from the root found, cut off alwayes to the right hand, fo many places as thereare points over the Decimal annexed, which number fo cut off fhall be a Decimal , Thewing the fractionai part of the root, and that on the left hand fhall be the whole part of the root ; fo the Square root of $7 \frac{2}{3}$ will be found 2 .7688 very near.

C H A P. XXXIII.

The Extraction of the Cube Root.

I. THE Extraction of the Cube Root is that, by which having a number given, we find another number, which being firft multiplyed by it felf, and then by the product, produceth the number given.

Chap.XXXII. the Cube Rost. 275

II. In the Extraction of the Cube root, the number propounded is al-

A Cubial nunbero. wayes conceived to bea Cube number, that is a certain number of little Cubes, comprehended within one entire great Cube, and the root or number required is the fide of that great Cube : what a Cube is may be well exprett by a Die, which indeed is a little Cube it felf; wherefore if you place four Dice in a fquare form, that is, laying two and two in a rank, you thall havea fquare containing four Dice, upnon which if ynu yet erect fuch another fquare of Dice, you thall have a great entire Cube comprehending two times 4 , that is 8 Dice or little Cubis; and here 8 is the Cube number given, and two is the root, or number required: In like manner if you rank 25 Dice in a fquare form, viz. laying 5 in a rank, you have a fquare containing 25 Dice, now upon this fquare of Dice if you crect four other fuch fquares one upon another, you thall have a great entire Cube comprehending 5 times 25 , that is 125 little Cubes, and in this cafe 125 is the Cube number propounded. and 5 the root or number required.
III. A Cube number is cither fingle or compound.
IV. A fingle Cube number is that, which being produced by the Multi-

Afinglecube number. plication of one fingle figure firft by it felf, and then by the product, is alwayes lefs than 1000 . So 125 is a fingle Cube number produced by 5 multiplyed firft by it felf, and then by 25 the product ; for 5 times 5 is 25 , and 5 times 25 is 125.
V. All the fingle Cube numbers, and \{quare numa-

$$
R_{4} \text { bers }
$$

272. The Extraction of Book I. bers, together with their refpective roots, are expreffed in the Table following.

Cubes	181276	$64!1251216$	343				
Squares	$1 \mid 419$	16125136	49 !	64		81	
Roet	1\|213		41516	71	8		

Hire, in the uppermoft rank of the Table are placed the fingle Cube numbers of the particular figures $1,2,3,4,5,6,7,8.9$. in the next the fquares of thofe figures, and in the loweft rank the figures themfelves being the refpective roots of the Cubes and quares in the uppermoft ranks; and therefore the Cube root of 125 being demanded the anfwer is 5 , and the Cube root of 216 being required, the $T a$ ble will give you 6 , and fo of the reft.
VI. When a Cube number is given that exceeds not 1000 , and yet is none of the Cube numbers mentioned in the Table; for his root you are to take the root of the Cube number, that being lefs. comes reireft unto it. So 157 being given, the root that belongs unto it is 5 .
$V I I$, A compound Cube number A. compownd Cube number. is that, which being produced by a number (that confifts of more places than one) firfi multiplyed by it felf, and then by the product is never lefs than 1000 . So 157464 is a compossnd Cube number, being produced by 54 multiplyed firft by it felf, and then by 2916 the product, for 54 times 54 is 2916 , and then 54 times 2916 is 157464 , the compound Cube number proposided.
VIII. To

Chap. XXXIII. the Cube Root 273

VIII. To prepare a Cube number for extraction, put a point over the firft place thereef towards the right hand (to wit the place of units :) then paffing over the fecond and third plates; part another point over the fourth? and pating over the fifth and fixth put another prine over, the feventh; and in that ordex (to wit two platels beiog intermitted between -every fwo adjacher poiuts) place as many points as the number will permit: fo 157464 being given, you are to prace the points as in the Margent, and fo many points as are in that manner pla- 157,64 ced, of fo many figures the root demanded will confift.

- IX. Having thus prepared your number, you may fee it diftributed by the points into feveral Cubes: fo in the fame example 157 is the fint Cube, and 464 the fecond. 157464 In like manner if this number 7464 were propounded for extraction, after points are duly placed as before, you will fee $7 \quad 7464$ to be the firft Cube, and 464 the fecoind.
X. Having drawn a crooked line on the right hand of the number propounded to fignifie a quotient, find the Cube soot of the firft Cube and place it in the quotient: fo I finding (by the fixth Rule of this 157464 (5 Chapter) 5 to be the correfpondent root of 557 , I write 5 in the quotient, and then the work will fland as you fee in the Margent. - XI. Subfribe the Cube of the root placed in the quotient, under the firft Cube of the sumber given: fo 125 being the Cube of 5 the root (by the
fifth fifthrnule of this Chapter) Iwrite it under 157 the firft Cube of the number given, as you fee in the example.
XII. Draw a line under the Cube fubferibed as aforefaid (to wit the Cube of the root placed in the quotient) and fubtract this Cube from the firft Cube of the number propounded, 357464 (5 placing the remainder orderly un125 derneath the line: fo 125 the Cube of 5 being fubtracted from 157 , the remainder is 32 , and the Work will ftand as you fee.
XIII. To the faid remainder bring down the next Cube of the number propounded (to wit the figures or cyphers that ftand in 157464 (5 the 3 nexit places) placing the 125 faid Cube next after, to wit, on the right hand of the remainder, 32464 refolv.fo the next Cube 464 being placed after the remaioder 32 , there will be found this number 32464 , which may be called the Refolvend.
XIV. Having drawn a line underneath the ReSolvend, fquare the root in the quotient, that is, multiply it by it felf, and fubfcribe the triple of the faid fquare or product under the 157464 (5 refolvend in fuch manner, that the 125 firf place (to wit, the place of 5 nits) of the faid triple fquare 32464 refolvmay ftand directly under the third place (or place of hundreds) 75 in the refolvend: fo the Iquare of the root 5 is 25 , the triple where of is 75, which I fubfribe under the Refol-

Chap. XXXIII. , the Cube Root.
vend in fuch manner, that the figure 5 which is in the firit place (to wit the place of units) in the triple product 75 , may frand under 4 which is feated in the third place of the refolvend, as you fee in the Margent.
$X V$. Triple the root or number in the quotient, acd fubferibe this triple number in fuch manner that the firft place thereof (to wit the place of units) may fland directly under the fecond place(to wit the place of tens) in the Refolvend: fo the triple of the root 5 is 15 ; which 1157464 (5 fubferibe in fuch manner, that 125 the tigure 5 which is in the firft place(to wit the place of units) 32464 Refolv. in the faid triple number, doth fland directly under 6 , which is feated in the fecond place of the refolvend, and the Work will ftand as in the Margent.
$X \nu^{r} I_{\text {. The }}$ The triple fquare of the root, and the triple of the root being placed one under the other, as is directed in the 14. and 15 .Rules 157464 (5 a foregoing, draw a line un- 125 derneath, and add them together in fuch order as they are feated, and let the fum be efteemed as a divifor : fo the triple fquare 75 , and the triple number 15 , being added rogether as they are ranked in the Work, the fum will be 765 for a Divifor.

765 Divifor.

XVII. Let

276
 The Extraction of Book I.

$X V I$. Let the whole Refolvend, except the firlt place thereof towards the right hand (to wit the place of units) be efteemed as a Dividend, then demanding how often the firft figure (towards the left hand) 157464 (54 of the Divifor is contained in 125 , the correfpondent part of the dividend, and obferving in that 32464 Refolv. behalf the Rules before taught in Divition, write the anfwer
75 is the quotient : fo ifI ask how 15 often 7 (the firf figure of the Divifor towards the left hand) 765 Divifor. is contained in 32 (the corre\ldots, Spondent part of the Dividend placed above) the anfwer will be 4, wherefore I write 4 in the quotient, as you feee in the Example.
XVIII. Having drawn another line under the Work, multiply the triple fquare before fubfcribed (as is 157464. (54 directed in the 14. Rule) by the

125
32464 Refolv. under the faid triple fquare; (to wit units under units, tens
75
15
765 Divifor.
300 under tens, \&x.c.) fo 75 being multiplyed by 4 , the product is 300 which I fubfcribe under 75 (the triple fquare) and the work will ttand as you fee in the Margent.

XIX.Multiply

Chap.XXXII. * the Cube Root

XIX. Multiply the figure laft placed in the quotient firlt by it felf, and then the product by the criple number before fublcribed (as is directed in the 15 . Rule of this Chapter;) this done, fub- 157464 (54 Feribe the laft product under 125 . the faid triple number (to wit, units under units, tens 32464 Refolvend. under tens, \&c.) fo 4 being fquared or multiplyed by it 75 felf, the product is 16 , which being multiplyed by the triple number 15, the product is 240 , this therefore 1 fubfcribe under the aforefaid triple number 15 , and the

300
240 Work will fland as you fee.
XX. Subfribe the Cube of the figure laft placed in the quotient, under the refolvend, in fuch manner that the firft place of this 157464 (54 Cube (to wit, the place of u- 125 pits) may ftand under the place of units in the refol- 32464 Refolvend. vend: So 64 being the Cube of 4 , I write it under the refolvend 32464 , in fuch manner that the figure 4 , which is in the place of units in the Cube 64, may ftand under the figure 4 which is feated in the place of units of the refolvend: obferve the Work in the Margent. $157464^{\text {. (}} 54$ work, add the three laft 125
32464 Refolvend. numbers together in the fame order as they are feated, and fubtract the fum of thern from the refolvend, placing the remainder orderly un-

15
765 Divifor.
300
240
64
32464 derneath: fo the fum of the three laft numbers, as they are ranked in the Work, is 32464 , which if you fubtract out of the refolvend 32464 , the remainder is 0 . Thus the whole Work being finifhed, the Cube root of 157464 (the number propounded) is found to be 54.

Note I. When the fum of the three laft numbers before mentioned is greater than the refolvend, the Work is erroneous, and then you are to reform it by placing a leffer tigure in the quotient.

Note 2. For every one of the particular Cubes (diftinguifhed by the points) except the firtt Cube on the left hand, a refolvend is to be fet apart, by bringing down to the remainder the next Cube (as is directed in the $\mathbf{1 3}$. Rule.) And as often as a refolvend is fet apart, fo often is a new Divifor to be found, by adding the triple of all the root in the quotient (confifting of what number of places foever) to the triple of the fquare of fuch root, after they are orderly placed according to the 14° and 15. Rules.

Note

Chap.XXXII. the Cube Root.

Note 3. The Work of the 10, 11, and 12. Rules for finding of the firft figure in the root is but once ufed in the extraction of the root of any number whatfoever, but the Work of all the following Rules is to be ufed for the finding of every place in the root, except the firt.

The practice of thefe 3 Notes will be feen in the following Examples.

Example 2. Let it be required to extract the Cube root of 8302348 .

Having diltributed the number given into reveral Cubes by points, as is direeted in the eighth Rule of this Cbapter, I demand the Cubs root of 8 (the firft Cube on the left hand) which I find by the fifth Rule of this Chapter to be 2 , wherefore placing 2 in the quotient, and 8 the 830234^{8} (2 Cube thereof under 8 the firft 8 Cube, I draw a line, and fubtracting 8 out of 8 the o remainder is 0 , which I fub-
feribe under the line. This is alwayes the firf Work, and is no more repeated in the whole extraction (as was intimated in the 3 . Note aforegoing;) then bringing down the next Cube (to wit, the tigures ftanding in the three following places of the number propounded) which is 302 , I place it after the remainder O, fo is 302 the refot vend; this done, having drawn a line underneath the refolvend, I feek for the triple of the fquare of the root, viz. the root in the quotient is 2 , which multiplyed by it felf produceth the fquare 4 , the triple whereof is 12 , this I fubforibe under the refolvend, in fuch manner that the figure 2 refolvend, (to wit, the place of hundreds.) according to the 14. Rule aforegoing; Again I triple the root 2 ,
0302 Kefolvend. which produceth σ, and fabTribe this triple number 6 under the fecond place (or 12 06 place of tens) in the refolvend, to wit, under o (ac-
126 Divisor. cording to the 15. Rule of this Chapter;) then drawing a line under the Work, and adding together the fid two numbers laft futScribed, as they are ranked, the fum of them is 126 for a divifor (according to the 16. Rule aforegoing.)

That done, efteeming 30, to wit, all the paaces except the firft or place of units in the refolvend, as a Dividend, I demand how often the divisor 126 is contained in 30, and not finding it once contained therein, I write o in the quotient, and now because the fum of the three numbers which ought to have been produced (according to the 18, 19, and 20. Rules of this Chapter) by the multiplication of (which was lat placed in the quotient) amounts to 0 , the refolversd 302 out of which the faid fum mould have been fubtradAted, remains the fame without alteration, wherefore having drawn a line under the Work, I write down anew the old refolvend 302 , and bringing down the next Cube 348, I annex it to the faid

Chap.XXXIII. the Cube Root. 28 r 302 ; fo there will be a new refolvend, to wit, 302348.

Then fquaring the root 20 (that is, multiplying of it by it felf) the product is 400 , which I triple or multiply by 3 , and fubfribe the product 1200 underneath the new refolvend in fuch manner, that the place of units in this triple quadrate 1200 may fland under the place of hundreds, or third place of the refolvend 302348 , to wit, under 3 (according to the 14. Rule.) Again If fubfrribe the triple of the root 20 , which is 60 , in fuch manner that the place of units in this triple root 60 may ftand under the place of tens or fecond place of the refolvend, to wit, under 4 , then adding together the two numbers laft fubfrribed, to wit, 1200 and 60 , in fuch order as they are ranked in the Work, the fum is for.

0302 Refolvend

12
 06

126 Divifor
$\frac{302348 \text { Refolvend }}{1200}$
60

12060 Divifor

2400
240
08

242408 Ablatitixm
59940
12060 for a DiviS

Again,

$282 \therefore$ The Extraction of Book 1

Again, efteeming the whole refolvend, exept the finf place (or place of units) as a dividend, to wit, 30234 , 1 demind how often I (the tirlt figure of tive divifer toward's the lett hand) is contained in 3 the correfpondent part or the Dividend; and though it be three times containeu in it, yct (according to the firft Note at the end of the 2 I Rule of this Chapter) I dare take but 2, for is I thould take 3, and proced according to the $18,19,20$, and 21 Kules of this Chapter, a number would arife greater than the r : folverd (from whici fuch number arifing ought to be fubtracted,) wherefore I wrire 2 in the quotient:

Then multiplying the triple fquare 1200 before fubferibed, by 2 (the figure latt placed in the quotient,) the product is 2400 , which I fubfribe under the faid 1200 (to wit, units under units, and tens under tens, \&cc.) Alfo multiplying the sriple root 60 before fubferibed, by 4 (the quadrate of 2 "the tigure latt placed in the quotient) the product is 240 , which I fubfribe under the faid triple root 60 ; lalt of all I fubferibe 8 the Cube of the fiod new root 2 , under the place of units or firit place of the refolvend, to wit, under 8 , and having added together thofe three numbers laff fubferibed, to wit 2400,240 and 8 as they fland in ranks in the Work, the fum of them is 242408 , which being fubducted from the refolvend. 30234^{8}, there will remain 59940. Wherefore the work being finithed, I find 202 to be the number of unities contained in the Cube root of 8302348 the number propounded : and becaufe after the extract ion is ended there happens,

- Chap.XXXIII. the Cube Root. 283

 to be a remainder, to wit 59940 , I conclude that the Cube root fought is greater than the faid 202, but lefs than 203; yet how much it is greater than 202, no Rules of Art hitherto known wi lexactly difcover, although wee may proceed intnitely near, as by the next Rule will be manifett.XXI I. To find the fractional part of the root very near, ternaries of cyphers, to wit, 000 , 000000 , or 000000000 , \&c. are to be annexed to the number firft propounded ; then efleeming the number propounded with the cyphers annexed to be but one entire number, the Extraction is to be made according to the preceding Rules of this Chapter, and look how many points were placed over the number firft given, fo many of the foremoff places in the Quotient are the Integers or u nities contained in the Cube root fought, and the reft of theplaces in the quotient are to be efteen'd as the Numerator of a Decimal fraction, which Numerstor confifteth of fo many places as there were points over the cyphers firlt annexed : fo if 8302348 were given as before, to find the Cube root thereof (according to this Rule) annex cyphers in this manner,

$$
8302348,000000(
$$

And then if you profecute the extraction according to the Rules aforegoing, you fhall find the Cube root foughs to be 202.48, \&cc. that is, $202-\frac{48}{10}$ and more; wherefore you may conclude that $202 \frac{-4.8}{108}$ is lefs than the true root, but $202-\frac{40}{10}$? is ries of eyphers, to wit, 6 cyphers, to the number propounded, you will not mifs $-\frac{1}{0}$ part of an unit of the true root ; alfo by annexing 3 ternaries of cyphers, to wit 9 cyphers, you will not mifs $-\frac{1}{100} \frac{1}{0}$ part of an unit of the true root, and in that order you may proceed infinitely near, when you cannot obtain the true root. The whale operation of the faid Example here followeth, where you may obferve, that for the more certain and ealie placing, as well of the numbers which conflitute the feveral Divifors, as of thofe which conftitute the Ablatitious numbers to be fubtracted from the feveral and refpective refolvends, down-right lines are drawn between the particular Cubes of the number propounded, firft diftinguilhed by points as before.

Chap.XXXIII. the Cube Root. 285

In like manner the Cube root of 2 will be found t) be near equil to 1,25992 , \&c. that is, $1-\frac{25292}{100000}$ and more.
XXIII. The extraction of the Cube root is proved by multiplying the root cubically, The Proof. to wit, the root being firft multiplied by it felf, and then the product mulciplied by the root, the number arifing or laft product (incife there be no remainder after the extraction is fini hed) will be equal to the number propounded: fo in the firf Example of this Chapter, the Cube root 54 being multiplied firft by it felf produceth 2916, which being multiplied again by 54 produceth 157464 , to wit, the number whofe Cube root was inquired. But when after the Extraction is finifhed, there hpponeth to be a remainder, and that the yoot is found as near as you pleafe in Integers and decimal parts (by annexing cyphers as in the 22 Rule of this (bapter $_{3}$) then fuch mixt number expreffing the root, being mulciplied cubically, muft produce a mixt number lefs than the number firft propounded, yet fo near unto it, that it the figure ftanding in the laft.place of the decimal fration in the root be made greater by 1 , and the mixt number fo increafed be multiplied cubically, the product mult be greater than the number firft propouuded: fo in the Example of the 22 rale of this Chapter, if 202.48 be multiplied subically it produceth 8301305.49 , $\& c$. which is lefs than the propounded number $830234 \mathrm{\gamma}$, but if 202.49 be multiplied cubically, there will arife 8302535.49 , \& c. which is greater than the faid given number.
XXIV. The Cube root of a Fraction is found in this manner, viz. extract the Cube root of ${ }^{\circ}$ the

Chap.XXXIII. the Cibe Root.

Numerator (according to the storegoing Rules,) which root referve for a new Numerator ; alfo the Cube ront of the Denominator fhall bea new Dincmina- Cuberoot of a ror; laftly this new Fiaction hatl be the Cube ront ot the Fraction firft propounded: fo the cube root of $\frac{-8}{2}$ is $\frac{2}{3}$, for the cube root $0!8$ is 2 for a new Numerator, alfothe cube roct of 27 is 3 for a new Denominator. In like manner the cube
 fraction whole cube root is required, mult be in its leaft terms befrite any Extraction be made; for nftentimes it happens that the fraciion firlt given hath not a pertect root, $\mathrm{albc} \cdot \mathbf{i}$, when fuch fraction is reduced info its laft terms, the root thereof mai be? extracted: Co in this fraction $\frac{1}{5} \frac{1}{4}$ neither the wumerator nor dencminator hath a perticet cube ront. yet the fiid $\frac{10}{5} \frac{6}{4}$ being reduced to its leaft terms 7_{7}°, by the fourth Rule ot the 17 Chapter) the enbe rom of this may be extracted, lor the cube ront ot 8 is 2 for a new numerator, alfo the cube root of 27 is 3 for a new denominator, fo that the cube ront of $\frac{-8}{2} \frac{8}{7}$ (which ise. qual to $\frac{16}{5} \frac{6}{4}$) is found to ber $\frac{2}{3}$, then (t) then
$X X V$. The Cube root of a fraction which hath not a periect Cube ront may be found near in this manner viz reduce the Fraction given into a Decimal fraction: by the third Rule of the 23 Chaprer, the more places are in the Decimal, the nearer will the root befound, but the decimal mult confit of ternaries of places, to wit, either of three,fix, nine, or twolve, \&cc places; then extract the Cube root of the Numerator of that Decimal, as if it were a whole number (according to the Rules before given,) which root found fhall be a Deimal ti ${ }^{2}$ expreffing

So if the cube root of $\frac{2}{3}$ were required, I reduce the: faid $\frac{2}{3}$ into a decimal whofe numerator may confift of ternaries of places, to wit, into this, 66666666666 : \&c. then extracting the cube root thereof, I find .8735 , which is very near the cube root of $\frac{2}{3}$.
XXVI. The Cube root of a mixt number commenfurable to its root may be found in the fame manner as in the 24 Rule of this Chapter, the mixt number being firft reduced into an improper fran Ction (by the 10 Rule of the 17 Chapter.

So the cube root of $12 \frac{19}{27}$ will be found to be $2 \frac{1}{3}$, viz, reducing $12 \frac{12}{27}$ into this improper fraction $\frac{343}{27}$ the cube root of $\frac{343}{27}$ will be found $\frac{7}{3}$ or $2 \frac{1}{3}$. And here the famecaution is to be obferved as in the 24 Rule of this Cbapter, viz. the fractional part of the mixt number, or the improper fraction equivalent unto the mixt number, muft be expreffed by a Numerator and Denominator in the leaft terms before any extraction be made.
$X X V I I$. When the mixt number, whofe Cube root is required, hath not a perfect cube root, this claracter, $\sqrt{ } c$. is ufually prefixed before fuch mixt number; fo the cube roct of $2 \frac{3}{8}$ is thus expreffed, $\sqrt{ }$ c. $2 \frac{3}{8}$. Likewife $\sqrt{ } c \cdot \frac{\frac{5}{8}}{8}$ denotes the cube root of $\frac{5}{8}$ which is a fraction, whofe cube root is inexpreflible by any true or rational number: but if you defire to know the cube root near of a mixt number which hath not a perfect cube root, reduce the fractional part of the mixt number into a decimal (asin the 25 Rule of this Chapter) and annex the decimal fo found unto the Integers of the mixt number; then efteeming the faid Integers with the decimal fo annex-

Chap. XXXIII. the Cube Root.

 ed as one entire number, extratt the cube root thercof, and from the root found cut off alwayesto the right hand fo many places as there were points over the faid decimal annexed, which places focut off thall be the frattional part of the root, and thofe remaining on the leff hand fhall be the Integers of the root: lo the cube root of $2 \frac{3}{2}$ will be found 5.334 , and more.XXVIII. I might here proceed to thew the extraCtion of the roots of the Biquadrate (or fourth Poomer,) the fifth Poweer, \&xc. but their operations being exceeding tedious, and hardly intelligible without the knowledge of Algebra; I thall only in this place touch upon the Extraction of the Biquadrate-root, becaufe it may be extracted by the Rules delivered in the 32 Cbapter, and refer the more curious Arithmetician for further fatisfaction in this matter, to my Treatife of the Elements of Algebra.
XXIX. A quadrateor fquare namber multiplyed by it felf produceth a Biquadrate number: So 4 multiplied by it felf produceth the Biquadrate 16. Therefore if a

To exirafthe Biquadiate roos. number be propounded and the Biquadrate root thereof be required; firft extract the quadrate or Square root of the number propounded, and then extract the fquare root of that root for the Biquadrate root fought. Thus if 20736 be a number propounded, the Biquadrate root thereof will be found 12 : for the Square root of 20756 is 144 ; and the Square root of 144 is $\mathbf{1 2}$. When the number given hath not a perfect Biquadrate root, you are to annex guaternaries of cyphers, to wit, either $4 ; 8,12,0 \mathrm{r} 16$, \&xc.cyphers, and then proceed as before; fo will you find the root near, whofe fractional part will be a decimal. Thus the Biquadrate root of 7 will be found near 1.62.

CHAP.

CHAP. XXXIV.

The Relation of Numbers in quantity.
I. T Hus far fingle Arithmetick: Comparative Arithmetick infues, which is wrought by numbers, as they are confidered to have Relation one toanother.
Betius Arib.
II. This Relation confifts in quanLI cap:2E vity, or quality.
III. Relation in quantity is the reference or refpect that the numbers themfelves have one unio another: As when the comparifon is made between 6 and 2, or 2 and $6: 5$ and 3 , or 3 and 5 .
IV. Here the Terms or Numbers propounded are alwayes two, whereof the firft is called the Antecedent, and the other the Confequent: So in the firf eximple, 6 s the Antecedent, and 2 the Confquent: and in the fecond, 2 is the Antecedent, and 6 the Confequent.
V. Relation in Quantity confifts either in the difference, or elfe in the rate or reafon that is found betwixt the Terms propounded.
VI. The difference of two numbers is the remainder, which is left after fubtraction of Differenge: the lefs out of the greater : fo 6 and 2 being the terms propounded, 4 is the difference betwixt them : for if you fubtract 2 out of 6 , the remainder is 4 .

Chap. XXX. Numbers in Quantity 291

VII. The rate or reafon bet wixt two numbers is the quotient of the Antecedent divided by the Confequent : So if it be Rate or Reafon demanded what rate or reafon γ hath to 2,1 anfiwer, Triple reafon: for if you divide 6 the Antccedent, by 2 the Confequent, the quotient is 3,2 being contuined jult 3 times in 6. In like manner is there fubtriple reafon betwixt: 2 and 6 , for if you divide 2 by 6 , the quotient is $\frac{2}{6}$, or (which is all one) $\frac{1^{\circ}}{3}$, becaufe σ being not once found in 2, there remains 2 for the Numerator, 6 the Divifor being the Denominator of the Fraction given you in the Quotient, according to the 9 Rule of the 16 Chapter aforegoing.
VIII. This rate or reafon of numbers is either equal or unequal. 3 sis
1X. Equal reafon is the Relation that equal numbers have unto one another: Equal Reafon. as 5 to 5,6 to 6,7 to $7, \& \mathrm{c}$.
X. Here the one being divided by the other, the quotient is alwayes an Unit: for if it be demanded how often 5 is in 5 , the anfwer is 1 .
$X I$. Unequal reafon is the relation that unequal numbers have orie unto another : and this is either of the greater to the lefs, or of the lefs to the uncqual reafon. greater.
XII. Unequal reafon of the greater to the lefs, is when the greater Term is Antecedent: as of 6 to 2,5 to 3 , and the like.
XIII. Here the quotient of the Antecedent divided by the Confequent is alwayes greater than an Unit: So 6 divided by 2, the Quotient is
$X V$. Here the quotient of the Antecedent divided by the confequent is alwayes le fs than an unit: So 2 divided by 6 , the quotient is $\frac{2}{6}$ or $\frac{8}{3}$; and 3 divided by 5 , the quotient is $\frac{3}{3}$.

XV I. Each of thefe kinds of unequal reafon is again fubdivided into five other kinds or varieties; whereof the three firft are fimple, and the other two are mixt.
XVII. The fimple kinds of unequal reafon are 1. Manifold. 2: Superparticular. 3. Superpartient.
XVIII. Manifold reafon of the greater to the lefs is, when the Confequent is con-

Manifold Reaforo tained in the Antecedent divers times without any part remaining: as 4 to 2,8 to 4,16 to 8 , which is called Double reafon, becaufe the lefs is contained rwice in the greater; fo 6 to 2 is triple reafon, 8 to 2 fourfold reafon, \& c .
$X I X$. Here the quotient of the Antecedent divided by the confequent is alwayes a whole number: fo 8 divided by 2 , the quotient is 4 .
$X X$. The oppofite of this kind, viz. of the lefs to the greater, is called fubmanifold: Submanifold. Examples hereof are 2 to 4,4 to 8 , 8 to 16, \&c. Likewife 2 to 6, 2 to 8,
2 to $10, \& \mathrm{c}$.
XXI. Superparticular is, when the Antecedent contains the confequent once, and superpartion* befides an aliquot part of the confelaro

Chap.XXXIV. Numbers in Quantity 293

 quent; that is, an half, a third, a fourth, or a tifth part, \&c. of the confequent, as 3 to 2,4 to 3, 5 to 4,6 to 5 , and the like; here three divided by 2 , the quotient is $1 \frac{1}{2}$, and 4 being divided by 3 , the quotient is $I \frac{1}{3}$. In like manners divided by 4 , the quotient is $1 \frac{1}{4}$, and 6 divided by 5 the quorient is $\mathbf{1} \frac{1}{5}$; wherefore I fay $\mathbf{2}$ and half 2 (that is I) conttitute 3: So likewife 3 and one third part of 3 (viz. 1) conftitute 4, and foof the reft.XXII. Here the quotient of the Antecedent divided by the Confequent is a mixt number, whofe whole part, as alfo the numerator of the fraction annexed, isalwayes an unit: as is obfervable in the examples laft mentioned.
XXIII. The oppofite reafon of Subfuperpartithis kind is Subfuperparticular, as 2 cular. to 3, 3 to 4,4 to 5,5 to $6,8 c$.
XXIV. Superpartient is, when the Antecedent contains the Confequent once, and befides divers parts of the confe- Superparstiento quent: as 5 to 3,7 to 5,7 to.4, 8 to 5,9 to 5,11 to 7, \&cc. here 5 divided by 3, the quotient is $\mathbf{x} \frac{2}{3}$, and therefore 5 contains 3 once, and $\frac{2}{3}$ of 3 ; for 3 and two thirds of 3 (vizo 2) confitute 5 .
$X X V$. Here the quotient of the Antecedent divided by the confequent is a mixt number, whofe whole part being an unit, hath alwayes for the Numerator of the fraction annexed unto it a number compofed of more units than one: fo the conference being made betwixt 5 and 3 , and 5 the Antecedent being divided by 3 the confequent, the quotient is $\mathbf{I}: \frac{2}{3}$.

294
$X X V$ 1. The oppofite of this reafon is Subfuperpartient: Examples hercofare
subfuperarti- 3 to 5, 5 to 7,4 to 7,5 to $8 ; 5$ to ent. 9,7 to II, and the like.
XXVII. The mixt kinds of unequal reafon are Manitold Super particular, and mainfold fuperpartient.
XXVIII. Manifold Superparticular reafon is, when the Antecedent contains the

Manifold Su= perparticularo confequent divers times, and befides an aliquot part of the confequent : as 5 to 2, 10 to 3,17 to 4,21 to 5 , and the like.
$\boldsymbol{X X I X}$. Here the quotient of the Antecedent divided by the confequent is a mixt number, whofe whole part confifting of more units than one, hathalwayes an unit for the Numerator of the Fraction annexed unto it; fo 5 divided by 2 , the quotient is $2 \frac{1}{2}$, and 21 dividediby 5 , the quotient is $4 \frac{7}{5}$.

Submaxifold Superparticu. lato
$X X X$. The oppofite of this Reafon is Submanifold Superparticular; as 2 to 5,2 to 7,3 to 7,4 to $9,8 \mathrm{zc}$.
XXXI. Manifold Superpartient is, when the antecedent contains the confequent

Manifold Superpartient. diverstimes, and befides divers parts of the confequent; as 8 to 3,17 to 5,19 to 4. 28 to 5, 8xc.
$X X X 11$. Here the quotient of the Antecedent divided by the Confequent is a mixt
submanifold Number, whofe whole part as alfo superpartiento the Numerator of the Fraction annexed untoit, is alwayes a Number compofed of more units than one: fo 8 divided by 3 , the quotient is $2 \frac{2}{3}$, and 28 divided by 5 , the quotient is $5^{\frac{3}{5}}$ XXXIII. The

Chap.XXXV. Numbers in Quality 295

 XXXIII. The Oppofite here is Submanifold Superpartient:- as 3 to 8,5 to 17,4 to 19, 5 to 28, and the like.And thefe are the feveral kinds or varieties of the Rates or Reafons that are found amongft Numbers, fo that no two Numbers whatfoever can be named, but the rate or Reafon betwixt them is comprehended under one of thefe five kinds.

CHAP. XXXV.

The Relation of Numbers in Quality, where of Arithmetical and Geometrical Proportion.
I. P Elation in quality (otherwife called Proportion) is either the refesence or refpect that the Rea fons of Vide Euclide ! Numbers have one unto another, or 3. d. 5. d. Al fed. Arith.c. 5 elfe which the differences of numbers have onc to another.
II. Therefore here the Terms propounded ought alwayes to be more than two, for otherwife there cannot be a comparifon of Reafons or differences in the Plural number.
III. This proportion is either Arithmetical, or Geometrical.
W. Arith-
$I V$. Arithmetical proportion is, when divers

Ariihmetical Profortior.

 numbers differ according to an equal difference, as $2,4,6,8,10, \& \mathrm{cc}$. here 2 is the common difference betwixt 2 and 4,4 and 6,6 and 8,8 and $10, \& c$. So 1,2 , $3,4,5,6,7$, , \&c. differ by Arithmetical Proportion, being the common difference betwixt them.V. Arithmetical Proportion is either continued or interrupted.

V I. Arithmetical Proportion continued is, when divers numbers are linked to-

1. Continued. gether by a continual progreffion of equal differences. Such are the examples laft propounded, as alfo thefe $1,3,5,7$, 9, $11,13.8 \mathrm{cc}$. And $100000,200000,300000$, $400000,8 \mathrm{cc}$.
VII. In a rank of numbers that differ by Arith--metical Proportion continued, the fum of the firft and laft Terms being multiplyed by half the number of the Terms, the Product is the total fum of all the Terms: fo it being demanded, how many ftrokes the Clock ftrikes betwixt midnight and noon; the Terms of the Progreffion in this queftion are Twelve, viz. $1,2,3,4,5,6,7,8,9$, IO, 11, 12. for in that order the Clock ftrikes, wherfore if I multiply 13 the fum of 12 , and 1 (the firft and laft Terms) by 6 (being half the number of the Terms) the Product is 78 , which is the total fum of all the Terms propounded being added tegether.
VIII. Or thus, Multiply the number of the Terms by the halffum of the firft and laft Terms, \&c then likewife the Product will give you the total

Chap.XXXV. Numbers in Quality. 297 of all the Terms: fo $13,11,9,7,5,3$, being given, their total is 48 , for 8 the half fum of 13 and 3 , the firft and laft Terms being multiplyed by 6 , the number of the terms, the product is 48 .
$I X$. Three numbers being given, that differ by Arithmetical proportion continued, the mean being doubled, is equal to the fum of the extreams: fo $5,6,7$, being given, 6 being doubled is equal to the furm of 5 and 7 the two extreams.
X. Arithmetical Proportion may be continued either upwards or down- vpward. wards.

X I. Upwards, when the Terms of the Progreffion increafe, as thefe, $2,4,6,8,10, i_{2}$, \&c. or thefe, $1,2,3,4,5,6, \& c$. And this laft rank is more particularly termed Natural Progreffion:

XI I. Here when the firft term is alfo the common difference of the terms, the laft term being divided by the number of the terms, the quotient will give you the firft term of the rank: again in this cafe the firt term multiplyed by the number of the terms produceth the laft term : fo this rank $3,6,9,12,15,18,21$, being propounded, whërein 3 is both the firft term as allo the common difference of the terms; Ifay 21 the laft term being divided by 7 the Number of the terms, the quotient is 3 the firft term ; contrariwife 3 the firft term multiplyed by 7 , produceth 2 I the laft term.
XIII. Arithmetical proportion continued downwards is, when the terms of the progreffion decreafe: fuch as are 35, Downowards $32,29,26,23,20 \%$ And $40,35,30$, $25,20,15,10,5$.
XIV. Here when the laft term is alfo the com-

This Rule is in the inver fe of t^{\prime} e I2. Rute aforegoing. mon difference of the terms, the firft term being divided by the Number of the terms, the quotient will give you the laft term: Again, the laft - term multiplyed by the number of the terms, produceth the firft term of the rank.

For example, this rank $40,35,30,25,20,15$, 10,5 being propounded, in which 5 is bith the laft term, and likewife the common difference of the terms, I fay, 40 the firft term being divided by 8 the number of the terms, the quotient is 5 the laft t cm : on the other tide 5 the laft term being multiplyed by 8 , the product is 40 the firft term.
$X V$. Arithmetical Proportion interrupted is, when the Progreffion is difcontinu2. Interrupted. ed: as in thefé numbers $2,4,8,10$; here 2 and 4 being compared with 8 and 10 differ according to Arithmetical proportion, but fo do not 4 and 8 differ, for 2 is the common difference betwixt 2 and 4,8 and 10 , whereas the difference betwixt 4 and 8 is 4 . In like manner $8,14,17,23$, differ by Arithmetical proportion interrupted.
$X V I$. Four numbers being given, that differ by Arithmetical proportion either continued or interrupted, the fum of the two means is equal to the fum of the two extreams: $\int 05,6,7,8$, being given, the fum of 6 and 7 , the two mean numbers, is equal to the fum of 5 and 8 , the two extreams: and $8,14,17$, and 23 , being propounded, the fum of 14 and 17 being added together is equal to the fum of 8 and 23.

XVII,Geo-

Chap.XXXV. Numbers in Quality. 299

 XVII. Geometrical proportion is, when divers numbers differ according to like Rate or reafon : that is, when the reafons of numbers, being compared to-Geomatrical proportiono gether, are equal. So $1,2,4,8,16,32,8 \mathrm{c}$ which eiffer one from another by double reaton, are faid to differ by Geometrical proportion, for as one is half 2, $\{02$ is half 4,4 half 8,8 half 16,16 half $32,8 \mathrm{Cc}$.

XV II I. Geometrical proportion is either continued or interrupted.

1 Contisued.
XIX. Geometrical proportion continued is, when divers numbers are linked together by a continued. progreffion of the like reafon: of this fort is the example laft given: for as 1 is to 2 , fo is 2 to 4,4 to 8,8 to 16,161032 , त̌c. So !ikewife the numbers $3,9,27,81,243,729,8 \mathrm{c}$. diff r by Geometrical proportion continued, viz. by triple reafon, each of them being contained three times in the next number that follows it.
$X X$. In numbers continually proportional from \mathbf{r}, the firft number from \mathbf{I} is the root or firt power, the fecond is the fquare or fecond power, the third the cube or third power, the fourth the Biquadrate or fourth power, the fifth the fifth power, the fixth the fixth power, \&c. So in this rank of numbers, $1,3,9,27,81,243,729,8$ c. 3 is the root, 9 the fquare, 27 the cube, 81 the biquadrate, 243 the fitth power, 729 the fixth power, \&c.
$X X I$. The root being mulciplyed by it felf produceth the fquare, which being again multiplyed by the root produceth the cube, and fo each proportional being multiplyed by the root produceth the

$$
\mathrm{T}_{2} \text { proportional }
$$

proportional nextabove it, and then the numbers comprehended berwixt 1 , and the laft number produced are called mean proportionals: fo in this rank of proportional numbers, $1,2,4.8,16,32$; Bec. 2 the root teing multiplyed by it felf produceth 4 the fqeare, which being again multiplyed by 2 produceth 8 the cube, then 8 being multiplyed by 2 , the product is 16 the biquadrate, and fo of the reft in their order, and here $2 ; 4,8$, and r are the mean proportionals in the rank propounded.
XXII. If you multiply the root by it relf, and confequently the fubfequent num-
contirual bers by themfilves, the numbers inmeal:.
Briggius A. rith.Log.c. 6 tercepted betwixt 1 and the number laft produced may not unitly be called continual means: fo 2 being given for the root, multiplyed by it felf, the product is 4 , which being again multiplyed by it felf producth 16 , then 16 in like manner fquared produceth 25^{6}, which likewife multiplyed by it filf produceth 65536 , I fay then that $2,4,16$, and 256 are continual means betwixt I and 65536 .

X XIII. The continual means comprehended betwixt any number yiven and I, are difcovered by a continued extraction of the fquare roots; for example, 65536 being given, the root thersof extracted is 256 , whofe root is 16 , then the root of 16 is 4 . and the root of 4 is 2 ; fo that at laft I find $256,16,4$, and 2 to be continual means in a tercepted betwixt 65536 and 1 as before.
$X X I V$. In numbers that increafe by Geometrical proportion continued, if you maltiply the laft term by the quotient of any one of the terms divided

Chap.XXXV. Numbers in Ouality. 301

 divided by another term, which being lefs is nex ${ }^{t}$ unto it, and then deducting the firft term out of that "produc, divide the remainder by a number that is an unit lefs than the quotient, the laft quotient will give you the total of all the terms propounded in the progreffion; So this rank 2 , $6,18,54,162,486,1458$, being propounded, wherein the proporrionals differ by fubtriple proportion, Ifirf take 2 and 6 the two firft terms, and dividing 6 by 2 , I find che quotient 3 , whersfore inultipl, ing 1458 the laft term, by 3 the quotient, the product is 4374 , out of which if I deduct a the firlf term, the xemainder is 4377^{2}, which being divided by 2 (vizo a number winch is anunit lefs than 3 the quotiont) the laft quotient gives me 2186, which is the total fum of the proportionals propounded,$X X V$. Thrce proportionals being given, the fquare of the mean is equal to the praduct of the extreams: $\mathrm{fo} 4,8$, and 16 bing propounded, 8 times 8 being 64 , is equal to 4 times 26 , which is likewife 64.

XXV I. Geometrical proportión interrupted is, when the progreffion of like reafon is difcontinued, in fuch fort 2. Interruptece. that four numbers being given, the like reafon is not found betwixt the fecond and third, that is betwixt the firft and fecond, and the third and fourth; of this fort are thefe numbers $2,4,16,32$. here as 2 is to 4 , fo is 16 to 32 , for they differ by double reafon; but as 2 is to 4 , fo is not 4 to 16 , for 4 and 16 differ by fourfold reafon, 4 being contained 4 times in 16 : fo likewife 4, 8,8, 16 , differ according to Geometrical proportion interrupted. Divifion are proportional; for in Multiplication, as I is to the Multiplicator, $f o$ is the Multiplicand to the product, or as I is to the Multiplicand, fo is the Multiplicator to the product: Again-, in Divilionas the Divifor is to 1 , fo is the Dividend to the Quotient: or as the Divifor is to the Dividend, fo_{o} is \mathbf{I} to the Quotient.
XXVIII. Four proportional Numbers whatfoever being given, the product of the two means is equal to the product of the two extreams: So 2, 4, 16, 32, being propounded, 4 times 16 (which is 64) is equal to 2 times 32 , which is likewife 64.

Here endeth the firt Book, which containeth all that is abfolutely neceffary, for the full underflanding of common or practical Arithmetick. Such as defire to fee how the fame is performed by artificial, or borrowed numbers, called Logaritbmes, may perufe Mr. Wingates Second Book, being a diftinct Ireatife of artificial Aritbmetick.

$\AA \mathrm{N}$
 APPENDIX, CONTAINING

Choice knowledge in Arithmetick, both Praflical and Theoretical; the Contents whereof are expreft in the following Page:

Compofed by Gobn Kerey.

Teacher of the

MATHEMATICKS.

At the Sign of the Gloke in ShandoisStreet in Covent-Garden.

Vox audita perit, litera Scripta manet.

The Contents of the

APPENDIX.

CHAP.

"F Contraçions in the Rule of Tibree. 2. Of Rules of Practice by aliquot parts. 3. Of Exchanges of Coins, Weights, and Meafures.
4. Practical queftions aboute Tare, Tret, $L_{\rho} \int_{S}$, Gain, Barter, Faciorfhip, and meafuring of Tapeffry.
5. Of Intereft of Money, and the confruction of Tables to value Annuities, \&ct:
6. A demonftration of the Rule of Three.
7. A demonstration of the Double Rule of Fellowo bip.
8. A demonftration of the Rule of Alligation: where alfo of the compofition of Medicines.
9. A demonjitration of the Rale of Falfe.
10. A collection of choife queftions to exercife all the parts of vulgar Arithmetick, to which alfo are added various practical 2 ueftions, about the Menfuration of Superficial Figures and Solids, with the Gaging of Veffels,
11. Sports and Paffimes:

An Explication of fucb Notes or

 Characters，wobich for brevity Sake are used in this AP－ PENDIX．THist is a note of Addition，fignifying that the number which followeth fuch fign is to be added to the number preceding it；fo $3+4 \mathrm{im}-$ plyeth that 4 is to be added to 3 ：fometimes allo， when no number is placed next after the faid note， it implieth that the number preceding is not ex－ actiy expreft；fo the fquare root of 2 is 1.414^{+}or $1 .+14,8 \mathrm{c}$ ．that is， $1 \frac{414}{1000}$ and fomewhat more． ．This－is a fign of Subtraction，fignifying thit the number which followeth fuch fign is to be fub－ tracted from the number preceding it ；fo $6-2$ fignifieth the difference between σ and 2 ，or 2 to be fubtracted from 6.

This x is a fign of Multiplication，fignifying that the number which precedeth fuch fign is to be mul－ tiplyed into，or by the number following the fign： fo． 3×4 implieth that 3 is to be multiplyed by 4 ； likewife by $3 * 4 \times 8$ is underftood the continual muiltiplication of the numbers 3,4 ，and 8 ；viz． 3 is to be multiplyed by 4 ，and the product is to be multiplyed by 8．Sometimes alfo the faid fign hath reference to as many of the preceding or following numbers as have a little line placed over them； $103 \times \overline{2+6}$ or $\overline{2+6} \times 3$ fignifieth that 3 is to be multiplyed by the $\int u m$ of 2 and 6 ．Like－

$A p p$

quife tobe More $A \times B$
wife $8-5 \times 3$, or $3 \times 8-5$ implieth that 3 is to be mulciplied by the difference between 8 and 5 : Moreover if A and B reprefent two nambers, then $\mathrm{A} \times \mathrm{B}$ or A B inplieth the product of the multiplication of thofe numbers: Likewife $\overline{\mathrm{B}-\mathrm{C}} \times \mathrm{A}$ fignifieth the product arifing from the multiplication -of the excefs of the number B above the number C , by (or into) the number A. Again, if A B and $A C$ reprefent two lines, then口 $A B \times A C$ implietha reCtangular Figure or long fquare made of the lines $A \cdot B$ and $A C$.
Numbers placed as you fee in the 3) 18 (6 Margent denotea Divifor, a Dividend and a Quotient, to wit, 3 the Divifor, 18 the Dividend, and 6 the Quatient; the like is to be underftood of cther numbers fo placed.

Nuribers placed after the manner of f fration denote a quotient, which arifeth from dividing the

$$
2 \times 5 \times 6
$$

Numerator by the Denominator;fo-isequal

$$
3 \times 4
$$

to the Quotient, which arifeth from dividing the product of the continual multiplication of 2,5 and 6 by the product of 3 multiplied by 4 .

Four numbers placed as you fee in $2.4:: 6.12$ the Margent are Geometrical proportionals, viz. As 2 is to 4 ; Co is 6 to $\mathbf{1 2}$: or if 2 give 4, then 6 will give $\mathbf{1 2}$. Sometimes alfo they are placed thus, $2 \ldots . .4 \ldots .6$.... 12 .

This = is a note of equality or equation; fo by 3 $+4=5+2$ is fignified that the fum of 3 and 4 is equal to the fum of 5 and 2 : alfo $7-3=9-5$ fignifieth that the difference between 7 and 3 is $e-$ qual to the difference between 9 and 5 ; that is, 7 leffened
leffened by 3 leaves the fame remainder, as 9 leffened by 5: Alfo $4 * 3=12$ implieth that the pro$d x \neq 0$ of the multiplication of 4 by 3 is equal to 12 .
$>$ This is a fign of majority, fignifying that the number on the lelt hand of fuch fign is greater than the number on the right hand thereof; fo $5>3$ implieth that 5 is greater than 3.
$<$ This is a fign of minority, fignifying that the number on the left hand of fuch fign is lefs than the number on the right hand thereof; fo $3<5$ implieth that 3 is lefs then 5 .

This Character $\sqrt{ }$ or \backslash q. fignifies the fquare root of the number which follows it, fo $\sqrt{ } 144 \mathrm{imp}-$ plies the fquare root of 144 , to wit 12.

Alfo this \downarrow c. fignifies the cube root of the number which follows it, So $\sqrt{ }$ c. 1728 fignifiss the cubes root of 1728 , which cube root will be found to be 12

A N

APPENDIX

CHAP.I.

Of Contractions in the Rute of Three.

Uch as are well verft in the parts of Aritbmetick, which have been fully laid open in the precedent Book, and are mindfull of the Noses or Symbols before explained, will find no difficulty in the $1,2,3,4,5$, and 10 Chapters of this Appendix, wherein divers compendious operations no lefs delightful than ufeful are methodically handled, and the rell will be as eafie to fuch as are but meanly acquainted with Geometrical demonftration.
II. To repeat the breif wayes of Musltiplication fet forth in the 10,11 , and 12 Rules of the fifth Cbapter, or thofe of Divifton, in the 11,15 , and 16 Rules of the

310

 the fixth Cbapter aforegoing, would be a fuperfluous work, and thereforc I thall prefuppofe the Reader to be throughly acquainted with them, as alfo with competent knowledge in the operations of fractions both vulgar and decimal.IIL. It will be no fmall advantage to the PraCtical Aritbmetician, to have by heart not only the common Table of Multiplication,
 24 but this alfo in the Margent, 36 to tiee end that when a num48 ber is given to be multiplied 60 or divided by 12 , (which 72 happens in the Reduction of 84 fililings to pence and the con96 verfeche product or quoticnt 108 may be writen down in one line only,as in the Examples following.
347^{2}
12
12) $41664(3472$
$I V$. When a whole number is given to be divided by a Divifor, which is equal to the product of the Multiplication of two fingle figures, inflead of dividing by that Divifor you may firft divide by one of thofe fingle figures, and then divide the quotient by the other, fo will the laft quotient be the fame as if the Divifion had been finifht by the Divifor firft given:thus if 3466 fartbings be given to be reduced to ßiling s, becaufe $8 \underline{x} 6=48$ I firft divide 3466 by 8 ,

Chap. I.

8, fo there will arife 433
for a new Dividend, and
2 farthings remain; then I divide the faid 433 by 6, 6) $433\left(72.2 \frac{1}{2}\right.$ fo there will arife $72 \frac{1}{6}$, or
72 fhilings 2 pence, which with the 2 fartbings remaining of the firft Divifion make in all 72 s.: $2, \frac{1}{2} \mathrm{~d}$. which is the very quotient, when 3466 farthings are divided by 48. Note that you are to referve a farthing tor every unit remaining of the firt $\mathrm{Di}-$ vifion by 8 , and two pence for every unit remaining of the fecond Divifion by 6 . The reafon of the operation is evident, for $\frac{1}{6}$ of $\frac{1}{8}=\frac{1}{48}$.

In like manner, if 7136 pence are given to be reduced into pounds, becaufe $240 \mathrm{~d} .=1 \mathrm{l}$. alfo 6×40 $=240$, therefore if 7136 pence be firft divided by 6 , the quotient will give 1189 fix pences, and 2 pence remain; then if 118 g be divided by 40 , that is by 4, after 9 the laft place of the Dividend towards the right hand is cut off)
the quotient will be 29 l. and there will remain 29
6) 7136
l. s. d. fix pences, or 14 so 6 d. 40$) 118 \mid 9: 29: 14: 8$ which together with the 2 pence remaining of the firf Divition, and the faid 29 l . makes in all $29 \mathrm{l}_{\text {. }}: 14 \mathrm{~s} .: 8 \mathrm{~d}$. which is the fame with the quorient, when 7136 pence are divided by 240 , for $\frac{1}{40}$ of $\frac{1}{6}=\frac{1}{240}$.

Again, fuppofe 3463 pence are piven to be reduced into fhillings ; forafnuch as $4 \times 3=12$, I firt divide 3463 by 4 , fo there will arife 865 for a new Dividend and 3 pence remain: then I divide the faid 865 by 3 fo there will arife $288 \frac{1}{3}$ or 288 s. $4 d$. 4 d. which with the 3 4) 3463 pence before remaining 3) $865(288 . .7$ make $288 \mathrm{s}$.7 d . which 3) $865(288 \ldots 7$ is the fame with the quotient, when 3463 pence are divided by 12 , for $\frac{1}{3}$ of $\frac{1}{4}=\frac{1}{\frac{1}{2}}$.
V. In the Rule of Three as well direct as inverfe, when the Divifor with either of the other two given numbers may be feverally divided by forne common meafure, without leaving any remainder, the quotients may be taken for new terms and proceeding in like manner as often as is poffible, the operation according to the tenth Rule of the eighth Chapter, or the fecond Rule of the ninth Chapter, will be much contracted: fo if it be demanded what 5^{2} yards of Cloth will coft at the rate of 21 l. for 14 yards; the Awfiver will be found 78 pounds, in manner following.

In the firft rank you may obferve, that the Divifor 14 and the fecond term 21 , being feverally divided by their common meafure 7 , (the three new terms in the fecond rank) will be 2,3,52. Again in the fecond rank the Divifor 2 and the third term 52 being feverally divided by their common meafure 2 , the three new terms (in the third rank) will be 1, 3,26. Laftly, working with thefe according to the Rule of Three direct, the Anfower to the queftion (or fourth term) will be found to be 78 .

Chap. I.
The Rule of Three 313
Another Example, If 2 I men will finifh a work in 16 dayes, what time muft be allowed to 12 men for the finithing of fuch a work? Anjwer, 28 dayes.

men		dayes		men
21	\ldots	16	\ldots	12
7	\ldots	16	\ldots	4
7	\ldots	4	\ldots	1

In the firftrank you may obferve, that the Divifor 12 (for the rule is inverfe) and the firf term 21 being feverally divided by their common meafure 3, the three new terms (in the fecond rank) will be 7, 16, 4. Again, in the fecond rank, the Divifor 4, and the fecond term 16 , being feverally divided by their common meafure 4 , the three new terms in the third rank will be $7,4,1$. Lafly, working with thefe as the Rule of three inverfe requires, the Anfwer to the queftion (or fourth term) will be found 28.
VI.In the Rule of three, as well direct as inverfe, when the Divifor and either of the other two terms are fractions having a common denominator, the faild denominators may be rejected, and their numerators xetained as new terms: fo if it be demanded what is the value of $\frac{2}{8}$ of an $E I$, when $\frac{3}{8}$ of an Ellare worth 66 pence, the Anfiner will be found 154 pence, and the Work will fand as you fee.

$$
\begin{aligned}
& \frac{3}{8} \text {.. } 66 \text {., } \frac{7}{8} \\
& \text { 3.. } 66 \text {.. } 7 \\
& \text { 1.. } 22 \text {... } 7 \text { (} 154
\end{aligned}
$$

Another Example. If $3 \frac{3}{4}$ yards of Scarlet cloth coff 8 l. 15 f , what is the price of one gard at that rate? Anfiwer 21.6 s .8 d .

$$
\begin{aligned}
& \begin{array}{l}
25 \\
4 \\
15 \cdots 35 \cdots 1 \\
15 \cdots \cdots 1 \\
3 \cdots 7 \cdots 1 \cdots\left(2 \frac{1}{3} l .\right.
\end{array}
\end{aligned}
$$

VII. In the Rule of three as well direct as inverse, when the Divifor only is a fraction, either of the other two terms may be reduced to a fraction of the fame Denominator, and then the Denominators may be rejected, as before in the fixth Rule; aldo when one of the three given terms is a fraction, and is not the Divifor, the Diviformay be reduce to a fraction of the fame Denominator with the fraction first given, and then the common Denominators may be like wife canceled.

An Example of the firft Cafe may be chis, if $\frac{7}{8}$ of a yard coff 14 s. what is the price of I yard? Anfwor 16 fillings.

An Example of the fecond Cafe; if of fluff which is $\frac{3}{4}$ of a yard in breadth, 7 yards in length will make a Garment; how much of that fluff which is one yard in breadth will be fufficient for the fame purpose? Answer $5 \frac{1}{4} y$ ards.

Chap.II. Rules of Pract. by Alid. 0 arts 3 F

$$
\begin{aligned}
& \text { Rules of } 3 \\
& \text { Inverfe. }
\end{aligned}\left\{\begin{array} { l }
{ \frac { 3 } { 4 } \cdots 7 \cdots 1 } \\
{ \frac { 3 } { 4 } \cdots 7 \cdots) ^ { \frac { 4 } { 4 } } } \\
{ 3 \cdots 7 \cdots 4 ^ { 4 } }
\end{array} \left(\therefore \frac{21}{4} \text { or } 5 \frac{1}{4} .\right.\right.
$$

CHAP. II.

Rules of Practice by Aliquot parts.

I. A \mathbf{N} Aliquot part takes its name from the Latine word aliquoties, for (according to Euclid) an aliquot part is of a greater number fuch a part, which being taken (aliquoties or) certain times doth precifely conftitute that greater number;fo 3 is an aliquot part of 12 , for 3 taken four times doth exacty make 12 , without any excefs or defect; in like manner 4 is an aliquot part of 20 , becaufe 4 taken 5 times doth precifely make 20 ; but 7 is not an aliquot part of 20 , for 7 taken twice dorh want of 20 , and being taken thrice doth exceed 20 ; this kind of part laft mentioned is by fuclid called p.ars aliquanta, of which there will be no ule in thi; place.
II. When the Rule of Three direat hath i or an Integer for the firtt time, it is commonly called a Rule of Pradtice, either from the great ufe and praCtice thercof in common affairs, or elfe for that queftions of this nature, may be refolved by operations more fpeedy and practical than thofe of the Rule of Three.

$$
\text { Ul } 2 \text { III. The }
$$

316 Rules of Practice Appendix
III. The choiceft of thefe Rules of Pralice may be reduced to 5 Cafes, vize.
 of 1 or an I_{n-} 3. Of pence under 12. teger confits. 4. Of fhillings and perice. 2
5. Of pounds , fillings, pence, spith parts of a peny.

All which cafes with others of the like nature are handled in their order.
IV. Any even number of (hillings is either $\frac{1}{5}$ of a pound (that is 2 faillings,) or elle is coropofed of ${ }_{10}^{\frac{1}{0}} l$. (to wit 2 s.) taken certain times: fo 8 s. is compofed of $-\frac{1}{1} \frac{1}{0}$. (or 2 billings) taken four times, in like manner 18 s . is compofed of $\frac{1}{1} \frac{1}{0}$. taken nine times.
V. When the price of I, or an integer of what name foever, is 2 thillings, the price of as many Integers as one will of that name is difcoverable at firf fight, to wit by accounting the double of the tigure which flands in the firft place (towards the right hand) of the faid number of Integers, as Chillings and the reft of the faid number as pounds: ©0 345 fords at two Chillings the yard Shill. yards yard will cofl 34 l. 10s. for 1.. $2 \ldots 345$ the double of 5 is 10 , which I write down apart as thilAnfwer 34%. 10 s . lings, then effeeming the remaining figures towards the left hand, to wit 34 , as an entire number of pounds, the Anfwer will be 341.10 s. This contraction is nothing elfe, but dividing the number

Chap. It. by Aliquot parts. 317 ben of Integers, whore price is required by 10 , More examples hereof are there ;

V I. When the given price of 1 or an Integer is any even number of fillings greater than two fillings, multiply the number of Integers, whore price is required, by half the given number of thillings, with this caution, that the double of the figure which arifeth', in the firn place of the product be written apart as chillings, and the reft of the product as pounds: So if it be demanded what 218 yards at 8 fillings the yard will amount unto, the A newer will be found 871.4. s. for I multiply 218 by 4 (which is half 8 1. . 8 .. 218 the given number of thislings) laying, 4 times 8 is 32 , here the double of 2 (to wit, of chat figure which is to offers the firft place in the product) is 4 , which lEet apart as fillings, keeping 3 in mind for the three tens, again 4 times I is 4 , which U 3 with

318 Rules of Practice Appendix.

 with 3 in mind makes 7 ; laltly, 4 times 2 makes 8, fo I conclude that the Anfpeer to the queftion is $87 l .4 s$. The reafon of this contraction is evident from the fourth and fifth Rules aforegoing. More examples of this Rule are thefe following.$$
\begin{gathered}
\text { yard } \\
I \ldots 14 \cdots 436 \\
l_{0}
\end{gathered}
$$

$$
A n \sqrt{m} \cdot 305 \cdots 4
$$

$$
\begin{gathered}
\text { yard } s_{0} \text { yards } \\
1 \ldots 18 \ldots 230 \\
l . \ldots \frac{s}{s}
\end{gathered}
$$

Anfw. 207 .. 0
VII. Any odd number of thillings is either composid of $\frac{1}{10} l$. (or 2 s .) and of $-\frac{1}{2} l$. (or I s.) or elfe it is compos'd of $\frac{1}{1} \frac{1}{0} l$. (or 2 s .) taken certain times, and of $-\frac{1}{2} l$. (or I s.) So 3 s . is compos'd of 2 s . and 1 s . Alfo 7 s . is compos'd of 2 s . taken three times and of is. Likewife 13 s . is compos ${ }^{2} \mathrm{~d}$ of 2 s. taken fix times and of I s.
VIII. When the given price of 1 or an Integer is an odd number of thillings, work for the greateft even number of Thillings contained in that odd number, according to the fifth or fixth Rule aforegoing; then for the odd thilling remaining, take $\frac{-1}{2}^{\frac{1}{0}}$ of the number of Integers, whofe price is required (by the 16 Rule of the fixth Chapter of the preceding Book.) Thefe two rea fults added together give the Anfwer to the queftion:

Chap. II. by Aliquot parts.

queftion: fo if it be demanded what 2344 ounce ${ }^{s}$ at 13^{5}. the ounce will coff, the anfwerwill be found $1523 l .12$ s. For if (according to the fixth Rule of this Ctrapter)
I multiply 2344 by $6,0 z$. Bill. oz.
(to wit, by half the $1 \ldots 13 \cdots 2344$ remainder, when one is abated from 13 the given number of (hitlings) there will arife $1406 l .8$ s. Then taking $\frac{1}{20}$ of 2344 , there. will arife $117 \% .4 \mathrm{~s}$.
 which being added to Infin. 1523..12 the former product gives 1523%. 12 s. for the aufwer to the quefion.

Note, When 5 fillings is the given price of r or an Integer, the breifeft way will be to take $\frac{3}{4}$ of the number of Integers, whole value is required, for fuch quotient with give the pounds and foillings, which answer the queftion: fo 2347 ounces at 5 s . the ounce amount unto $586 l$. 15 s . for $\frac{1}{4}$ of 2347 is $586 \frac{3}{4}$ or $586 l .15$ s. But when the given price of 1 is any other odd number of Chillings; this eighth Rule will be as compendious as any other whatfoever.

More examples of this Rule are thee following.
yard frill, yards

665 ... 2
Anjou. $\frac{36 \ldots 19}{\mathrm{u}_{4}^{702 \ldots 1} \text { yard }}$
yard shill. yards

$$
\begin{array}{lllll}
1 & \ldots & 17 & \cdots & 345
\end{array}
$$

$$
276 \ldots 0
$$

$$
17 \ldots 5
$$

'Ansi. $293 \cdots, 5$
$I X$. When the given price of I or an Integer confifts of pounds and fillings, frt multiply the number of Integers whole price is required, by the number of pounds in the faid given price, and fubfcribe the product as pounds; then proceed with the fillings in the faid given price, according to the firth or eighth Rule of this Chapter, and hasing fubfribed that which arifeth under the aforefaid product of pounds, add them all together for the answer of the question: fo if it be demandded what 328 hundred weight will amount unto at $2 l .17 \mathrm{~s}$. per C. (or one hundred weight) the anfpeer will be found to be $234 l 16 \%$. as by the $0-$ peration is evident.

$$
\begin{aligned}
& \text { C. l. so C. } \\
& \text { 1... } 2: 17 \ldots 328 \\
& \text { l. } 5 \text {. } \\
& 65^{6} \therefore 0 \\
& 262 \text {.. } 8 \\
& 16: 8 \\
& \text { AnW0 } 934: 16
\end{aligned}
$$

Chap. II. by Aliquot parts. 327
More Examples to illuftrate this Rule are thefe following:

Anfor 690..
3
X. Any number of pence under 12 is either an Aliquot part of a fhilling, or elfe compos'd of Aliquor parts thereof; fo 3 pence is an Aliquot patt, to wit, $\frac{1}{4}$ of Thilling. Likewife 4 is $\frac{2}{3}$ of 12 ; moreover 5 pence are compos'd of 2 Aliquot parts, to wit, of 3 pence Which is $\frac{3}{4}$ of a ffilling, and of 2 pence which is $\frac{\pi}{6}$ of a fhilling; all which will readily appear by the following Table.

322 Rules of Practice :Appendix.

Pence	Aliquot parts of a Billing.
1	$-\frac{1}{1}$ (or $\frac{1}{3}$ of $\frac{1}{4}$)
$1 \frac{2}{7}$	$\frac{1}{8}$
2	$\frac{1}{6}$
3	$\frac{1}{4}$
4	$\frac{1}{3}$
5	$\frac{1}{4}+\frac{1}{6}$
6	$\frac{1}{2}$
7	$\frac{1}{4}+\frac{1}{3}$
8	$\frac{1}{3}+\frac{\pi}{3}$
9	$\frac{1}{2}+\frac{\pi}{4}$
10	$\frac{1}{2}+\frac{1}{3}$
11	$\frac{1}{3}+\frac{1}{3}+\frac{1}{4}$

XI. When the given price of 1 or an Integer is an Alqquot part of a chilling, divide the number of Integers whofe value is required by the denominator of fuch aliquot part ; fo will the quotient be the number of thillings which anfwer the queftion, which number of fhillings (when there is occafion) may be reduced to pounds by the brief way of dividing by 20 : fo if it be required to know what 2686 ounces at 4 pence the ounce will amount

Chap. II. by Aliquot parts.

amount unto; the anfwer will be found 44 l. 15 \% 4 d . for fine 4 d . is an aliquot part, to wit, $\frac{2}{3}$ of a (billing, I divide 2686 by 3 , fo will the quotient be $895 \frac{1}{3}$ s. or 895 s. 4 d. which Chillings being divided by 20 , give $44 \mathrm{l} .15 \mathrm{s.4} \mathrm{~d}$. For the anfwer to the queftion, as you fee by the following operation

More Examples of this Rule are there following.

$$
\begin{array}{cccc}
\text { yard } & \text { d. } & \text { yards } \\
1 \ldots . .1 & 204
\end{array}
$$

Ans. 17 failings,
XII. When the given price of an Integer is compos'd of aliquot parts of a filing, divide the numbbeer of Integers, whole price is required, by the feveral denominators of the aliquot parts contained in the given number of pence, then add the quotiants

$$
\begin{aligned}
& \text { yard d. yards } \\
& \text { 1... } 6 \text {... } 759 \\
& \text { - s. d. } \\
& \text { 20) } 3719 \ldots 6 \\
& \text { Anew. } 18 \ldots 19 \ldots 6
\end{aligned}
$$

324 Rules of Practice ens together, and the furn foal be the nurnber of fillings which anfwer the queftion: fo if it be demanned what 2347 yards of linen cloth will coff at 9 pence the yard, the anfwer will be found 88%. 0 J. 3 d . For fine 9 d . is compo ss ${ }^{2} \mathrm{~d}$ of 6 d . and 3 d . to wit, of the aliquot parts $\frac{1}{2}$ and $\frac{1}{4}$ of a filing, I firft divide 2347 by 2 (the denominator of the aliquot part $\frac{1}{2}$) fo there yard d_{0} yards arfieth $1173 \frac{1}{2}$,or 1173

$$
\text { I.... } 9 \ldots 2347
$$

 s. σ d. Again, dividing the fail 2347 by 4 (the denominator of the other aliquot part)there will rife $586 \frac{3}{4}$, or 586 s.9 d. which two quo20) 17610 : 3 tients being added tol. s. d. gather give 1760 s Answ. 88 :0: 3 3 d: or 88 l . os. 3 d. which is the answer of the queftion. More Examples to illustrate this Rule are theft:

$$
\begin{aligned}
& \text { yard d. yards } \\
& 1 \text {... } 8 . \therefore .782 \\
& \begin{array}{l}
260 \ldots 8 \\
260 . . .8
\end{array} \\
& \text { 20) } 5211 \quad \cdots \quad 4 \\
& \text { info. } 26 . .1 \text {.. } 4
\end{aligned}
$$

> Chap. II. by Aliquot parts.
> oz. d. oz.
> I ... II ...S 540
> 180 180
> 135
> 20) 4915 . d.
> Anfur. 24...15:0
XIII. When the given price of an Integer confifts of fhillings and pence, firft multiply the number of Integers whofe value is required by the faid given number of fhillings, and fubfcribe the product as fhillings, then divide the faid number of Integers by the feveral denominators which are correfpondent to the aliquot parts contained in the given number of pence, and fubfrribe the quotient or quotients underneath the aforefaid product of thillings, all which being added together give the number of thillings which anf wers the queltion: fo if it be demanded what 347 yards of cloth will cof at the rate of
7 so 10 do the yard, yard s. do yards the anfwer will be $1 \quad .7$: 10.. 347 found $135 l .18 \mathrm{l} .2 \mathrm{~d}$. for firft 347 being multiplied by 7 (the given number of Thillings) produceth 2429 hillings, then dividing 347 by 2 and 3 feverally, (becaufe ro d . is com-

326 Rules of Practice Appendix. posed of $\frac{1}{2}$ and $\frac{1}{3}$ of a chilling) the quotients will be $173 \frac{1}{2}$ and $115 \frac{2}{3}$, that is 173 s.6d.and 115 s .8 d . Latll, the fum of all is 2718 s .2 d . or 135 l .18 s .2 d . More Examples of this kind are there.

$X I V$. When the price of an Integer confines of Shillings and pence, and that fuch chillings and pence joyntly confidered do make an aliquot part of a pound, it will oftentimes be a briefer way than that in the lat Rule, to divide the number of Antegers, whole value is required, by the denominator of fuck aliquot part, fo will the quotient give the anfwer of a pound. Thus if it be demanded what $7^{6} 7$ yards will coft at the rate of 6 s .8 d . the yard, the anfwer will be found 2551.13 s .4 d . For fince 6 s .8 d dis an
aliquot part, to wit, $\frac{1}{3}$ of a pound, I divide 767 by 3 , fo there arifeth in the quotient $255 \frac{2}{3}$, or $255^{l}: 13{ }^{\circ}$ $: 4$ do which is the an-

```
y. s. d. d. 
```

l. s. d_{0} 3) $767(255 \cdot 13: 4$ fwer of the quefion. Nete that the Aliguot parts of a pound convenient for this Rule are thefe expreft in the following Table.

Sbo d.	Aliquot parts of a pound.
$6 . .8$	
$\left\lvert\, \begin{array}{lll} 3 & \cdots & 4 \\ 2 \end{array}\right.$	
1 . . 8	${ }^{\frac{8}{8}}$
1•. 4	$8 \frac{1}{2} \frac{1}{3}$...
I . . 3	- $\frac{1}{6}$

$X V$. When the given price of I or an Integer confifts of pounds, fhillings and pence, reduce the faid pounds and fhillings all into thillings, then procced according to the 13 Rule of this Chapter: So $517 \mathrm{C} \cdot \mathrm{at} 3 \mathrm{~h}: 17 \mathrm{f}: 5 \mathrm{sd} \mathrm{der} \mathrm{C}$. will be found to amount بnto $200 \mathrm{x} l .4 \mathrm{~s} .5 \mathrm{~d}$. for having reduced 31.17 s . into 77 s.I multiply 517 by 77 , and write down the particular particular products; then for the 5 pence which is compos'd of the aliquot parts $\frac{1}{4}$ and $\frac{1}{6}$ of a chilling, I take $\frac{1}{4}$ and $\frac{x}{6}$ of 517 , and fubfcribe the quotients orderly underneath the aforefaid products: Latly, adding all together the fum is 40024 5.5 d. or 2001 l. 4 s. 5 d. for the answer of the queftion,
C. \quad t. s. d. \quad C.
1...3: 17 : 5 .. 517
$77 \times 517=\left\{\begin{array}{l}3619 \\ 3619 .\end{array}\right.$
4) $517(\ldots 129: 3 \mathrm{~d}$
6) $517(\% 86: 2$
20) $400214: 5$

Ansi. 2001: $4: 5$
More Examples of this Rule are there following.
C. l. s. d. C.
1... 5: 13:8 ... 108
$113 \times 108=\left\{\begin{array}{r}324 \\ 108 . \\ 108 . .\end{array}\right.$
3) 108 (.- 36 36
20) 122716
J. is. d

Ansi $613: 16: 0$

Chap. II.
by Aliquot parts.

$$
\begin{array}{cccccc}
C . & \quad l . & \text { s. } & d_{0} & C \\
1 & \ldots & 2: & 10 & : & \ldots \\
\hline
\end{array}
$$

$$
50 \times 84=4200
$$

$$
\text { 20) }\left.424\right|^{2}(212: 2: \odot
$$

C. l. s. d. C.
1... $1: 12: 4^{\frac{1}{4}} \cdot$.. 306

Note, when the given price of an Integer confits of certain pence together with $\frac{1}{2}$ d. or $\frac{3}{4}$ dit will be convenient to take due aliquot parts of the numbbet of Integers propounded for all the given price of an Integer except $1 d$. and the raid $\frac{1}{2} d$. or $\frac{3}{4} d$. then for that peng, and $\frac{1}{2} d$. take $\frac{1}{8}$ of the fard Integers propounded, and if there be yet a farthing, take $\frac{1}{6}$ of the fad quotient which arifeth by taking $\frac{2}{8}$; both which quotients give the value in fillings. correfpondent to $1 \frac{3}{4} d$. this will be evident by the following Examples.

$$
\begin{aligned}
& \text { 20) } 98010: 4 \frac{1}{2} \\
& \text { AHFD: } 495: 0: 4 \frac{1}{2}
\end{aligned}
$$

33°

Rules (fPractice Appendix.

$$
1 \ldots 8^{\frac{1}{4} \cdots 3^{26}}
$$

$$
]_{\mathrm{s} \cdot} \mathrm{~d}_{0}
$$

$$
\text { 3) } 326(.0 \mid 108 \ldots 8
$$

$$
\text { 4) } 326\left(\ldots 0^{21} . .6\right.
$$

$$
\text { 8) } 3266 . .40 \ldots 9
$$

$$
\text { 6) } 40(.0
$$

$$
\text { 6) } 9(\ldots
$$

$$
0 . .1 \frac{1}{2}
$$

$$
\text { 20) } \begin{array}{lll}
2317 & . .8 \frac{1}{2} \\
\text { l. }
\end{array}
$$

- Anjou. $11: 17: 8 \frac{1}{2}$

$$
\begin{array}{cc}
\\
1 \ldots & s_{0} \\
d_{0} & 6 \frac{1}{2} \ldots \\
720
\end{array}
$$

$X V I$. When the price of an Integer is given, and the price of many Integers of the fame name together with $\frac{1}{4}$ or $\frac{1}{2}$ or $\frac{3}{4}$ of an Integer is required, the value of thole Integers may be firft found by forme of the precedent Rules, and then for the price of $\frac{1}{2}$ of an Integer, take $\frac{1}{2}$ of the given price

$$
\begin{aligned}
& \text { s. } \\
& \text { l. s. d. } \\
& \text { 20) } 25510(127: 10: 0
\end{aligned}
$$

Chap.II. by Aliquot parts.

of an Integer ; likewife for $\frac{1}{4}$ of an Integer, take $\frac{1}{4}$ of the faid given price, alfo for $\frac{3}{4}$ of an Integer take the compofed of $\frac{1}{2}$ and $\frac{1}{4}$ of the faid given price: So if it be demanded what 34 C. 3 qu. (to wit, 34 hundred weight, and $\frac{3}{4}$ of ap hundred weight) of Sugar will coft at $4 l .16$ s. 3 d. per C. the $A n$ fwer will be found 1671.4 s. $8 \frac{1}{4} d$ as by the fubfequent operation is manifert.

$$
\begin{aligned}
& \text { C. l. s. d. C. qo } \\
& \text { 1...4: } 16 \text { : } 3 \ldots 34 \text { : } 3 \\
& \text { - s. } d_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20) } 334 \left\lvert\, 4 \begin{array}{ll}
\text { l. } & \text { s. } d^{\frac{1}{4}} \\
\text { lo }
\end{array}\right. \\
& \text { Anfw. } 167 \cdots 4 \ldots 8^{\frac{1}{4}}
\end{aligned}
$$

An example of Averdupois greater weight, where the quantity whofe price is fought confilts of entire hundred weights, quarters of an hundred, and .of fome number of pounds, which is not an aliquot part of 28 or $\frac{1}{4} C$.

Anew. $1266: 2: 3^{\frac{1}{2}+}$

The example lat mentioned being (of those queftions which ordinarily happen in trade) one of the hardeft to be refolved by the Rule of Practice, I fall touch upon the aforegoing operation, where you may obferve the price of 218 C .3 qu . to be found after the manner of former Examples; then for 14 lb . part of the 24 lk . in the queftion, I take $\frac{1}{3}$ of the price of $\frac{1}{4}$ C. Likewife for 7 lb . 1 take half the price of 14 lb . and fo there yet remains 3 lb . whole price is found by taking $\frac{3}{7}$ of the price of 7 lb . viz the price of 7 lb . being very near $75.2 \frac{1}{2}$ dor $86 \frac{1}{2} \mathrm{~d}$. I multiply $86 \frac{1}{2}$ by 3 , and divide the quotient by 7. fo there arifeth 37 d. or 3 s . I d. very near; laftly, all being added together, the fum is found to

Chap: II.
 by Aliquot parts.
 333

be very near $25322 \mathrm{~s} .3 \frac{1}{2} \mathrm{~d}$. or $1266 \mathrm{l} .2 \mathrm{~s} .3 \frac{1}{2} \mathrm{~d}$.
Note that a quarter of a farthing (or $\frac{1}{1} \frac{1}{6}$ of a ny) is the fmalleft money expreft in the example, and where any thing arifeth lefs than a quarter of a farthing it is omitted, but it is fuppofed to follow this note ${ }^{\dagger}$, for which furplufages fnme refpect ought to be had in adding all together: now albeit, in refolving queftions afeer this practical manner there will be fome error, yet the lofs for the moft part will be lefs then a farthing, whifh is inconfiderable.

XV11. When the price of 1 or an Integer confifts of divers denominations, as pounds, fhillings, pence; and the price of a certain number of Integers, which exceeds not a fingle figure, is required, work as in the following Example, viz. If it be required to find what 8 C . muft coftat $3 \mathrm{l} .135 .7 \frac{1}{2} \mathrm{~d}$. per C. it is cyident that 8 C . mult coft 8 times $3 l$.

13 s. $7 \frac{1}{2}$ d.therefore I multiply $\frac{1}{2}$ by 8 , faying, 8 half pence make 4 pence, which I referve in mind; again, 8 times 7 pence make 4 s .8 d . (to wit, 8 fix pences make 4 s. and there are 8 pence befides) to which adding 4 pence in mind, there will arife 5 s . which I referve in mind, and fubfribe a cypher under the place of pence; again, I fay 8 times 13 Thillings make $5 l .4$ s. (to wit, 8 Angels make $4 l$. and 8 times 3 s.make I l. 4 s.) to which adding 5 s.

334 Rules of Practice
 Appendix.

 in mind, the fum will be $5 \mathbf{l . g}$ s. wherefore I fobfcribe $9 s$. (the excels above the pounds) under the Shillings, and keep $5 l$:in mind; laftly, I fay 8 times 3 pounds make 24 pounds, which with 5 pounds in mind make 29 pounds; fo that the total product or anfwer of the queftion is found to be $29 l .9 \mathrm{~s}$. More Examples of this kind are there.$$
\begin{aligned}
& \text { C. l. s. d. C. } \\
& \text { 1.. 17: 15: 5 } \frac{1}{4} \ldots 7 \\
& 7 \\
& \text { Anew. } 124: 8: 0 \frac{3}{4} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Anfor. 149:00:6 }
\end{aligned}
$$

- XVIII. When the price of $I l b$. weight is known, and the price or value of $1 C$. (to wit $112 l b$.) is required, the anfwer may sometimes be given more fpeedily than by any of the former Rules, by this Rule which follows, viz. Find the number offerthings contained in the given price of 1 lb . weight, then take twice that number of fillings, and once that number of groats, and having added them together the furn will give the value of I C. to wit 112 lb . weight : So if it be demanded what I C, or 112 lb . weight of Cheefe will coff at the rate of $3 \frac{1}{4}$ pence the pound weight, the anfwer will be I $l .10 \mathrm{~s}$ 。 $4 d$.

Chap. II.

by Aliquot parts.
For according to the faid Rule, the numbrr of firthings contained in $3 \frac{1}{4} d$. (the price of I pound weight) is I3, therefore the double of 13 hill l. s. do lings is .. 13 Groats make.:
Therefore the fum (which is the price of 1 C . or 112 lb . weight) is ...

The reafon of this Rule is evident, for if I $l b$. weight coft 13 farthings, then 112 lb . muft neceffarily coft 112 times 13 farthirga, or (which is the fame) 13 times 112 farthings; but 13 times 112 farthings are equal to twice thirteen fhillings together with once thirteen groats, becaufe 112 farthings are compofed of twice 48 farthings (or two fhillings) and of 16 farthing; (or one groat;) wherefore the truth of the faid Rule is evident.
Another Example, when Sugar is at $5 \frac{1}{2}$ do the pound weight, what is the value of 1 C .(or $1 \mathrm{I}_{2} \mathrm{lb}$. weight?) Anfm.2l.11 s. 4 d. For in $5 \frac{1}{2}$ d.are contained 22 farthings, therefore l s. d. the double of 22 fhillings is. $\quad 2: 4: 0$ 22 Groats, make.. Which added together give the price of $1 . C$. or 112 lb . $10-$ wit. .

XIX. When the gain of (or allowance for) 100 Integers confilt of fome number of pounds not exceeding 10 , the gain of as many like Integers and known parts of an Integer as one will, may be found very briefly by the follow-

Comperdious mayes of computingintereft and FaClorsallowances. ing method, viz. If 1001 . gain $3 l$. What is the $X_{4} \quad$ gain

336 Rules of Practice Appendix.

 Firft I multiply 246 l .18 s .10 d . by 3 (the fecond term) after the manner delivered in the 17 Rule of this Chapter, and write down the product which is 740 l . $16 \mathrm{s.6} \mathrm{~d}$. Then I divide the faid product by 100 (the firf term in this Rule of Three) in this manner, viz. I divide 740 pounds by 100 , which is performed by cutting off towards the right hand

$$
\begin{aligned}
& \begin{array}{rrrr}
\text { l. l. l. f. } \\
100 . .3 & \text { d. } \\
& \\
\hline
\end{array} \\
& \text { l. }\left.7\right|_{20} ^{40: 16: 06} \\
& \text { s. }\left.8\right|_{16} ^{12} \\
& \text { d. } 1 / 98
\end{aligned}
$$

the two laft places of 740 , fo the quotient gives 7 pounds, and there will be a remainder of 40 pounds, which 40 pounds I reduce into fhillings, fo there will arife 800 s . to which adding the 16 s . which ftand in the place of thillings, the fum will be 816 fhillings:; thefe are alfo to be divided by 100 (by cutting off two places as before,) fo the quotient will give 8 Thillings, and there will remain 16 hillings, which being reduced to pence, and unto them 6 pence being added (to wit the 6 pence which ftands in the place of pence) there will arife 198 pence ; thefe alfo are to be divided by 100 (by cutting off two places to the right hand as before,)

Chap. II. by Aliquot parts.
fo the quotient gives I peny, and there will remain 98 pence; fo the exact quotient or Answer of the queftion is found to be $7 l .8$ s. $1-\frac{9}{10} 8 \mathrm{~d}$.

More Examples of this Rule are thee following.

$$
\begin{aligned}
& \begin{array}{cccccc}
\text { 1. } & 1 . & 1 . & 8 & d \\
100 & \ldots & 6 & \ldots & 793: 12: & 7 \\
6
\end{array} \\
& \text { l. }\left.47\right|_{20} ^{61}: 15: 6 \\
& \text { 3. } 12 \left\lvert\, \begin{array}{l|l}
35 \\
12
\end{array}\right. \\
& \text { d. } 4 \mid 26
\end{aligned}
$$

$$
\begin{aligned}
& \text { l. l. } \quad \text { l. j. } d . \\
& 100 \ldots 8 \ldots 4: 14: 3 \\
& \text { 1. }\left.3\right|_{20} ^{49: 14: 0} \\
& \text { 3. }\left.9\right|_{12} ^{94} \\
& \text { d. } 11 \mid 28
\end{aligned}
$$

After the fame manner may this following quefin and foch like be refolved, viz. When 100 Ells of Linen cloth coff $30 \mathrm{l} .18 \mathrm{s.9} \mathrm{~d}$. what is the price of I Ell? Answer 6 s. 2 d. I fart.

Elis

338 Rules of Practice Appendix.

Реисе

- Fartb. $1 / 00$

X X. When the given gain of (or allowance for) 100 Integers confifts of fome number of pounds not cxceeding 10 , together with fome Aliquot part or parts of a pound, the operation will be little different from the laft mentioned Examples, as may appear by the refolution of the fublequent queftion, viz. What muft be allowed for 2156%. $13 \mathrm{s.4}$ d. at the rate of 6 l . is s. for 100 l .? Anfw. $145 l .11$ s. 6 d . thus found; firf I multiply the faid 2156 l . 13 s .4 d . by 6 (the number of pounds in the given allowance 61.155_{0}) after the manner of the laft Examples, and fubfcribe the product which is 12940 l. underneath the line as you fee, then fince $15 s$. are equal to $\frac{1}{2} l$. together with $\frac{1}{4} l$. I take $\frac{1}{2}$ of 2156 l .13 s. 4 d . which is $1078 \mathrm{l} .6 \mathrm{s.8} \mathrm{~d}$. likewife $\frac{1}{4}$ of the faid 2156 l . 13 s. 4 d. to wit, 539% 3 s .4 d . and having fubleribed thefe quotients underneath the produst firt found, and added them all together, I find 14557%. 10 s.o d.for the total protuct, with which I proceed as in the former Examples; and fo at length the Arlwor is found to be 145% II s .6 d . View diligently the operation.

Chap. III. by Aliquot parts.

$$
\begin{aligned}
& \text { 1. 1. 1. } \quad \text { s. } d_{0} \\
& 100 \therefore 6 \frac{3}{4} . .2156: 13: 4 \\
& 6 \frac{3}{4}
\end{aligned}
$$

C HAP. III.

Concerning Exchanges of Coins, Weights, and Meafures.

I. THe rate or proportion between Coins, Weights, ixc. of different kinds being known, either from fome good Author, or rather by experience ; it will notbe difficult, to fuch as underfand the Rule of Three, to know how toexchange a given quanty of one kind, for a quantity of the fame value in another kind. But fince in fome cafes, the common way of working may be much contracted,

34a Exchanges of Coins, Appendix. tracted, I frall endeavour to thew the moft compendious wayes to perform this bufinefs.
II. In exchanging of things of different kinds (whether they be Coins or Weights, \&c.) when two things of different kinds are compared together, the queftion may be refolved by one fingle Rule of Three, as will be evident by the fubfequent Examples, viz.

2uef. i. How many Riders at $215.2 \frac{1}{2}$ d.ferling the piece, ought to be received for $25 \mathrm{I} l .6$ s. $4 \frac{1}{2} d$. offterting money? Anfwer, 237 Riders. For the firft and third terms in the Rule of Three, which arife from this queftion, being converted into half pence, the proportion will be this,

$$
502 \cdot 1:: 120633 \cdot 237
$$

Queft.2.If 100 Ells of Antwerp make 75 yards of London, how many yards of London meafure will 27 Ells of Antwerp make? Anfmer $20 \frac{1}{4}$ yards.

$$
100 \cdot 75:: 27 \cdot 20 \frac{1}{4}
$$

III. When more than two different Coins, Weights, Meafures,\&c.are compared together, viz. when one kind of Coin is compared with a fecond of another kind; that fecond with a third; the third with a fourth; the fourth with a fifth, \&ce two different cafes are ordinarily raifed from fuch comparifon, viz.

1. How many pieces of the firft Coin It may be are equal in value to a given number of required to know, pieces of the laft coin: or
2. How manypieces of the laft Coin are equal in vàlue to agiven number of pieces of the firft kirsd of cein.

Chap. III. Weigbts and Meafures.

An Example of the firft cafe.

If 35 ells of Vienna make 24 ells at Lyons; 3 ells of Lyons 5 ells of Antwerp; and $\mathbf{1 0 0}$ ells of Antwerp 125 ells at Frankfort ; how many ells of Vienna are equal unto 50 ells at Frankfort? Anfover, 35 ells of Vienna.

For the more eafie underftanding of the refolution of this queftion and others of like nature, Let a reprefent an ellat Vienna; b an ell at Lyons; c an ell at Antwerp, and d an ell at Frankfort; then may the given terms in the queftion be fated in the following order.

$$
\begin{aligned}
& \text { Suppefitions }\left\{\begin{array}{rl}
35 & a=24 b \\
3 & b=5 \\
100 & c=125 d
\end{array}\right. \\
& \text { The quefion } 50 d=?
\end{aligned}
$$

Which order of placing the faid given numbers (or terms) being obferved, it appears that if 35 be accounted to fland in the firl place; $24 b$ in the fecond; $3 b$ in the third; $5 c$ in the fourth; $100 c$ in the fifth, \&.c. then all the terms which fiand ia odd places, to wit, in the firft, third, fifth, and feventh places, will neceffarily fall under the firft row or column on the left hand, and all the terms which ftand in even places, to wit, in the fecond, fourth, and fixth places, will fall under the latter column.

Thefe things premifed, all queftions which fall under Cafe I. before mentioned may be refolved by this Rule, viz:

342 Exchinges of Coins, Appendix.

Rule I.

Multiply all the given terms which ftand in odd places (to wit, in the firft column) according to the rule of continual multiplication, and referve the laft product for a dividend: Again multiply continually all the terms which ftand in even places, fo fhall the product be a divifor, and the quotient arifing from the faid Dividend and Divifor thall be the anfwer of the queftion.

So in the laft mentioned queftion, if all the numbers in the firtt column, to wit $35,3,102$, and 50 be multiplyed continually; the product will be 525000 for a Dividend; alfo if all the numbers in the latter column, viz. 24,5 and 125 be multiplied continually, the laft product will be 15000 for a Divifor, and the quotient arifing from the faid Dividend and Divifor will be 35 , which is the number of ells of Vienna required.

$$
\begin{array}{r|r}
35 & 24 \\
3 & 5 \\
100 & 125 \\
50 & \\
\hline 525000: 15000) & 525000(35
\end{array}
$$

The reafon of the faid Rule I. will be manifett by folving the queftion propounded by three fingle Rules of three, thus,

Chap. III. Weights and Meafures.
I. 24 b. $35 a:: 3$ b. $\frac{35 \times 3}{24} a(=5 c$.
II. $\frac{5 c 35 \times 3}{1} \frac{3}{4}$:: $\frac{100}{1}$ c. $\frac{35 \times 3 \times 100}{5 \times 24}$ ($=125 \mathrm{~d}$.
III. $\frac{125}{1} d: \frac{39 \times 3 \times 100}{5 \times 24} a:: \frac{50}{1} d \cdot \frac{35 \times 3 \times 100 \times 50}{125 \times 5 \times 24} \mathrm{~d}$
wftich fourth proportional laft found, to wit, $35 \times 3 \times 100 * 50$ being well viewed and compared $125 \times 5 \times 24$
with the before mentioned order of placing the terms given in the queftion gives the very Rule I. before expreft in words.

> An Example of the latter of the two Cafes before mentioned.

If, rolb.of Averdupois weight at $L_{\text {ondon }}$ be equal to 9 lb . of Am flerdam; 45 lb . at $\mathrm{Am} /$ ter dam, 49 lb . It Bruges; and 98 lb . at Bruges equal to 116 lb . at Dantzick; how many l6. of Dantzick are equal to 112 lb . of Averdupois weight at London? Anfiver, 119.92 lb . of Dantzick.

That the operation may be the more clear, let a reprefent one pound of Averdupois weight ; b one lb. of Amfterdam ; c one lb. of Bruges, and d one lb. of Dawtzick; then let the queftion be ftated after the order in the firft Cafe, viz.

443 Exchanges of Coins, Appendix.

Thefe things premifed, all queftions which fall under Cafe 2. before mentioned may be folved by this Rule, viz.

Rule II.

Multiply all the given terms which fland in even places (to wit in the latter column) and the laft odd term in the firt column according to the rule of continual multiplication, and referve the laft product for a Dividend; again, multiply continually the reft of the terms which ftand in odd places(to wit in the firft column) for a Divifor, fo thall the quotient arifing be the anfwer of the queftion.

Or in this latter cafe if you place the laft of the given terms in the fame column with the even terms, the rule for folving queftions, which fall under the latter cafe will be this which followeth, ขiæ.

Multiply continually all the numbers in the latter column for a Dividend; alfo multiply continually all the numbers in the firft column for a Divifor, fo thall the quotient arifing be the anfwer of the queftion. Thus the anfwer of the laft mentioned queftion will be found 129.92 , to wit, $129 \frac{9 z}{10} 16$. of Dantzick, as is evident by the fubfequett operation.

Chap.III. Weights and Meafures. 444

10	9
45	49
98	116
	112

44100) 5729472 (129.92

The reafon of the faid Rule 1I. will be manifef by folving the queltion propounded, by three fingle Rules of three, thus,
I. $9 b .10 a:: 45 b . . \frac{45 \times 10}{9} a$. $(=49 c$.
II. $\frac{49}{1} c \cdot \frac{45 \times 10}{9} a: \frac{98}{1} \cdot \frac{45 \times 10 \times 98}{49 \times 9}(=116 \mathrm{~d}$.
III. $\frac{.45 \times 10 \times 98}{49 \times 9}$ i16 $\mathrm{d}: \frac{112}{1} a \cdot \frac{49 \times 9 \times 116 \times 112}{45 \times 10 \times 98} \mathrm{~d}$.

Which fourth proportional laft found, to wit, $\frac{49 \times 9 \times 116 \times 112}{45 \times 10 \times 98}$ being well viewed and compa-
red with the before mentioned order of placing the terms given in the queftion difcovers the very Rule II. betore expreft in words.

Note, when the fame numbers happen to be Multiplicators in the Dividend, and alfo in the Divifor, fuch Multiplicators may be cancelled in both, and thereby much labour will oftentimes be fpared.

Such

Such which have much practice in calculating Exchanges, and do exactly know the rate or proportion between two different weights or measfares or coins, which they would compare togethen, may by the Rule of Three frame Tables of pro* portions for the more speedy reducing of a given quantity of one kind of weight, meafure, \&cc. into a quantity of the fame value in another kind of weight, $\& c$. In the exprofling of which proportions it will be very convenient that the firft number or Antecedent of each proportion be made ar unity, and the fecond term or confequent a Decimal, or elf a mixt numb x whole Fractional part is a Decimal, for then the Coin, Weight, \&c. of the one place (whole term is I) may be reduced into that of the other place, by help of thole Tables and of Multiplication of Decimals without fenfible error: For Example. It hath been observed by forme ingenous Merchants that $100 / 6$. of Averdupois weight at London, are equal unto $89 l b$.in Paris by the Kings beam, and consequently r lb. Averdupois is equal to $-8 \frac{8}{9} l \mathbf{l b}$ or .8 lb . at Paris (for if 100 give 89 , then I will give 89 ;) therefore any number of pounds A verdupois being multiplied by .89 (with respect unto Multiplication ot Decimals, explained in the 2) Chapter of the preceding Book) will produce pounds of Paris: Again, if $89 l b$. of Pax is be equal to 100 lb . Averdupois, then I lb . of Paris will be near equal to 1.1235 lb . of Averdupois; therefore any number of pounds of Paris being multiplied by 1.1235 will produce pounds Averdupois very near.
upon this ground I have collected the proportions in the following Tables, wherein I would not have any to confide further than they shall know them

Chap.III. Weigbts and Meafures. 347 them to be agreable to truth, for I have only derived them from thofe delivered by Mr. Lewes Roberts Merchant, in his Map of Commerce printed at Londen; Anno. 1638. and do herein only aim at the inftruction of ingenious Merchants and Factors in the breifef wayes of calculating their exchanges, the rate or proportion being truly known; in, which practice, Decimal Arithmetick (which hath no enemy but the Ignorant) will be very ferviceable.

447
 A Table.

ATible for the Reducton of Averdupois weight at London, to the reeights of divers foreign Cities aind remirk(iil able places.

Genoa,

```
Chap. III.
                A Table.


350 Of Exchanges EGc. Appendix.
The ufe of the preceding Table will be manifeft by the fubfequent example, viz.

How much weight at Danfick do 320 lb . Averdupois make ? AnJwer, 37 1.2 lb. Seek in the precedent Table for Danfick, and right againft it you thall find 16 , which fhews that \(1 l b\). Averdupois is equal 10 I. 16 lb at Danfick, therefore multiply 320 by J. 16, fo will the product be 371.2 lb . of Danfick, as by the Operation is manifelt.

> Aver. Danf. Aver. Danf. -

1:1.16:; \(320 \div 371.2\)
1.16


\section*{Chap. III.}

A Table.

A Table for the Reduction of the weights of divers foreign Cities and remarkable places to Averdupois weight at London-



Chap. III. Weights and Meafures. 452 The ufe of the laft mentioned Table, will be manifeft by this example, viz.

In 224 lb . weight at Hamburg, how many pounds Averdupois?
\[
A n \int x .243 .376 l b .
\]

Seek in the Table for Hamburg, and right againt it you will find 1.0865 , which the weth that i \(l b .0\) of Hamburg makes I .0865 lb . Averdupois; therefore if 1.0865 be multiplied by 224 the product will be pounds Averdupois.


A Table for the Reduction of English Ells to the Meafures of divers foreign Cities, and remarkable places.


\section*{Chap. III. \\ A Table.}


The ufe of the aforefaid Table will be manifet by the fubfequent example,viz.

In 325 ells of London, how many ells at Antwerp? AnSm. 541.645 ells: Seek in the Table for Antweerp, and right againft it you thall find 1.6666 which being multiplied by 325 produceth 541.645 ells of Antwerp a as by the operation is manifelt.
\[
\text { i... } 1.6666 \ldots 325
\]
\[
\begin{array}{r}
83330 \\
33332 \\
49998
\end{array}
\]

Chap. III.
A Table.


The ufe of the faid Table will be manifeft by the fublequent example, viz.

In 730 Aulnes at Lions, how many ells at London?

Anfw. 718.028. Seek in the Table for Lions, and right againft it you thall find .9836 , which being multiplied by 730 produceth 718.028 ells of Londow, as by the operation is manifeft.
\[
\begin{aligned}
& \text { 1... . } 9836 \text {... } 730 \\
& 730 \\
& 295080 \\
& 68852
\end{aligned}
\]

71810281

\section*{\(35^{8}\) Exchanges of Coins, EJc. Appendix.}

Note, that one and the fame kind of Weight or Meafure doth feldom or never alter from its peculiar quantity, in the Kingdom or Common wealth, where fuch weight or meafure was firtt eftablifhed; but one and the fame kind of money doth often rife and fall in its value in foreign parts: for which caufe I have fpared the pains of calculating Decimal Tables for Coins, yet to give fome light to fuch as read modern relations, and want experimental knowledge in this matter I fhall here infert a Table, in the fame eflate as I find it in the aforefaid Map of Commerce, and refer the Reader, for further fatisfaction, to the Tables in Riders Dičionary, concerning Coius, Weigbts, and Meafures, both ancient and modern.

Chap. III.
A Table.

Of Exchanges of London, with divers foreign Cities.

Pence
 \(\{\&\) Coles \(\} 1\) l.\{terl. for \(\left.34 \frac{1}{2}\right\}\) flem. Valentia
\begin{tabular}{|l|l} 
Saragofa \\
Barfelona
\end{tabular}
Lixborn
Bollonia
Berganso
Frankfort
i Genoa \(57 \frac{1}{2}\) for 1 Ducat 59 for I Ducat
64 for I Ducat \(53^{\frac{3}{2}}\) for 1 Ducat \(53_{2}^{12}\) for 1 Ducaton \(5^{2}\) for I Ducaton \(59 \frac{1}{2}\) for 1 Florin 83 for 1 Crown

London i

London exch angeth in the denomination of pence fterling with all other Countries, Antwerp and thofe neighbouring Countries of Flanders and H 0 llaind excepted, with which it exchangeth by the entire pound of 20 §hillings Engligh(or ferling.)

\section*{CHAP. IV.}

Practical Quefions about various things; viz. Tare, Tret, Lofs, Gain, Barter, Fractorßip, and Meajuring of Tapeftrry.
of abatements N the trade of Merchandize there and allowances in Traffick, tiz. 1. of Yare. are in ufe various allowances, and abatements, known by the names of Tare, Tret, \&c. concerning which I Thall give a few examples, whereby the practical Aritbmetician will eafily fee, that there is more difficulty in the name than in the thing; for the rate, or proportion agreed upon, in any allowance or abatement (be it called by what name foever ) being once known, the Arithmetical work will quickly be difpatcht by the Rule of Tbree, or elfe by that and fome of the former fules mixtly ufed, as will partly appear by the following queftions.
- Grofs weeight is compecfed of the neat weighe of she commodity, and alfo of the Tare, to wit, the Cheft, Bag, But, \&o'co which containet th the commodity.

2ueft. I. A Factor buyeth 4 Chefts of Sugar marked A.B.C.D. The grofs weight of each Cheft in Aveidupois greater weight is as

\section*{followeth.}
\begin{tabular}{l|ccccc} 
& C． & & q． & & 1 \\
A． & 11 & \(\ldots\) & 1 & \(\ldots\) & 19 \\
B & 10 & \(\ldots\) & 3 & \(\ldots\) & 120 \\
C． & 11 & \(\ldots\) & 2 & \(\ldots\) & 13 \\
D． & 10 & \(\ldots\) & 1 & \(\ldots\) & 17
\end{tabular}

The ratal grofs weight \(44 \ldots, \ldots, 13\)
Now fuppofing the Tare or weight of each Chert，when it is empty，to be 37 lb ．the queltion is what neat weight of Sugar will remain，when the total Tare is subtracted？Anfw． 43 C .0 oq .4 lb ．
c．q．ib．
from 44 ．．．1．． 13 the total grofs weight Subtr．I ．．I ．．． 08 the total Tare．

Rem． 43 ．． \(0:\) ： 05 the neat weight of fug \({ }^{\circ}\)
2xeft．2．If from 990 C． 3 qu． 21 lb ．gr os weight， Tare is to be fubtracted after the rate of 14 lb ．per C．（or 112 lb ．）of gross weight，how many C．neat will remain？\(A u f\) po． 867 C .0 qu． \(7 \frac{1}{8} \mathrm{Jb}\) ．。

I．The gross weight being converted into pounds by the 6 th．rule of the 7 th．Chapter of the preceding Book，will give 110985 lb ．

II．Then by the Rule of Three．
\[
\begin{array}{r}
112 \cdot 14:: 110985: 13873 \frac{1}{8} \\
\text { or } 8.1: \because 10985: 13873: \frac{1}{8}
\end{array}
\]

\author{
2：fうに．oJ III．From
}

Tare, Tret, \({ }^{l}{ }^{6}\).
III. From 110985 thegrofs weight: Subtr. \(13873 \frac{1}{8}\) the total Tare.

> c. qu. lb.

Reft neat \(9711 \frac{7}{8}=867 \ldots 0 \cdots 7 \frac{7}{8}\)
Note, when the number of \(l b . t\) be abated per \(C\). for Tare, is an aliquot part of 112 , as in the lat mentoned example, where \(14=\frac{2}{8}\) of 112 , the operation may be thus;
C. C. C. \(\quad\) q. \(\quad l b\). C. \(\quad q_{m}^{m} \quad l b_{1}\)
\(1 \cdot \frac{1}{8}:: 990: 3: 21,\left(123: 3: 13^{\frac{1}{3}}\right.\)
\(\frac{1}{8}\) of \(\left\{\begin{aligned} 990 c=123: 3: & 00 \\ 3 q^{\circ}=00: 0: & 10 \frac{4}{8} \\ 21 l b=00: 0: & 02 \frac{5}{8}\end{aligned}\right.\)
Total Tare \(123: 3: 13 \frac{1}{8}\)
Fief neat \(867: 0: 07 \frac{7}{8}\)
Ruff .3. Suppose at forme City, there is of Tret. a cuttom in felling of certain Merchandize by weight, to allow or caff in as an overplus to the buyer, 4 lb .weight for every 100 lb . weight that is bought, and in that proportion for a greater or leffer quantity. Now if a Merchant buy \(1175^{\mathrm{lb}}\). weight of forme commodity, and is to be allowed thereupon after the aforefaid rate, the queftion is, how many \(l b\). weight ought he to receive in all ? Anew. 1222 lb . weight. 100.104::1175.1222

This

\section*{Chap.IV.}

This kind of allowance is commonly called Tret 2uef. 4. Suppofe a Merchant hath 1222 l6. weight of a cerrain commodity, part whereof he bought at a certain rate per \(l 6\). and the reft was allowed to him or caft in as an overplus, after the rate of 4 lb . weight for every 100 lb . weight which he bought; the queftion is, to know how many pounds neat weight he bought ? \(A n \int m .1175 \mathrm{lb}\). weight.
\[
104 \cdot 100:: 1222 \cdot 1175
\]

This queftion is the converfe of the former, and fheweth how to make abatement for Tret.

2uef. 5. If from 55 C. i qu. of grofs weight, Tare is to be fubtracted after the rate of 16 lb . per C. and from the remainder Tret is to be abated after the rate of 4 lb . per 104 lb . the queftion is, what the neat weight is worth in money after the rate

I. The grofs weight in \(l \mathrm{~b}\). is 6188 l .
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

2ueft. 6, A Merchant hath brught Linen cloth at il s.per ell, which pro-
of lofs and gain. ving worfe than he expected, he is willing to fell it at fuch a price that he may lofe piecifely after the rate of \(I \frac{2}{3} l\). for every \(20 l\), that he laid out; the queftion is to know at what price he eughe to fell the ell, that the proportion in the
\[
\mathrm{Z}_{2} \quad \text { faid }
\]

364 Of Lo os, and Gain, Appendix. raid loft may be obferved? \(A n f m .10\) s. 1 d . raper ell.
\[
\begin{aligned}
& \text { I. } 20-1 \frac{2}{3}=18 \frac{1}{3} \\
& \text { II. } 20 \cdot 18 \frac{1}{3}:=11: 10 \frac{1}{2} \text { pence } \\
& \text { Otberwife, }
\end{aligned}
\]
\[
\begin{aligned}
& \text { I. } 20 \cdot 1 \frac{2}{3}:: 11 \cdot \frac{11}{1} \frac{1}{3} \\
& \text { II. } 11-\frac{1}{1} \frac{1}{2}=10 \frac{1}{12}
\end{aligned}
\]

Queft. 7. If 100 lb . weight of any commodity coff 30 s . at what price mut I \(l b\). weight of that commodity be fold to gain after the rate of 10 l for every 100 laid out? An fl. \(3 . \frac{24}{25}\) do per \(l 6\). weight.
\[
\begin{aligned}
& \text { I. } 100 \cdot 110: \because 30 \cdot 33 \\
& \text { II. } 100 \cdot 33: \because \quad 1 \cdot \frac{3.3}{100} s\left(\text { or } 3 \frac{24}{25} d .\right)
\end{aligned}
\]

2ueft. 8. A Merchant felleth a parcel of Jewels which conf him \(250 l\). ready money, for \(559 l\). payable at the end of 6 months ; the queftion is (his fecurity being fuppofed to be good) what his gain was worth in ready money upon rebate of intereft at the rate of \(6 l\). for \(100 \%\). for an year? An \(\int m .300 \%\)
\[
\begin{aligned}
& 559-250=309 \\
& 103 \cdot 100:: 309 \cdot 300
\end{aligned}
\]

2uef.9. How much Sugar at 8 doper of Barter. \(l l\). weight may be bought for 20 G . of Tobacco at 3 l.per C.? Infra. 1800 lb . weight of Sugar.
\[
\begin{gathered}
\text { Chap. V. Barter, and Factor/bip. } 365 \\
1 \cdot 3:: 20: 60 \\
-\frac{1}{a} \cdot 1: 60: 1800
\end{gathered}
\]

Queft. Io A. hath 100 pieces of Silks, which are worth but \(3 l\). per piece in rady moncy, yet he burters them with \(B\). at 416 .per piece, and at that rate takes their value of B . in Wonls at 7 l . Io \(\%\) : per \(C\). which are worth but \(6 l\). per \(C\). in ready money, the queftion is to know what quantity of Wools payes for the Silks, and which of the two A. or B . is the gainer, and how much ? An \(\int \mathrm{n} \cdot 53 \frac{1}{3}\) C. of Wools payes for the Silks, and A.. gaineth 20 l. by the barter.
I

So it is evident that the true worth of the Wool which B. delivered was 320 l. for which he received only of A. the worth of 300 l . in Silks, and therefore B. lofeth \(20 \%\). by the birter.

Queft. II. A Merchant delivered to his Factor \(600 l\). upon condition that if the Factor add to it 250 \%. of his own money, and beftow his pains in managing the whole frock; he Thall then have \(\frac{2}{5}\) parts of the total gain. The queftion is to know what flock the Factors fervice was eftimated at ? Anfin. \(150 \%\).
of Fatior flif. Secbrief ruites for compuling of Factors allowances in the 19, and 20 irikles of the feciondechap. ter of this Appendix.
I. The Fafors part of the gain being \(\frac{2}{3}\), the Merchant muft neceffarily have the remainder, which is \(\frac{3}{5}\).
II. \(\frac{3}{5} \cdot \frac{2}{5}:: 600 \cdot 400\)
III. \(400-250=150\) Z 3 2nefk
\[
\begin{aligned}
& \text { I. } 7 \frac{1}{2} \cdot 1:: 400 \cdot 53 \frac{1}{3} \\
& \text { II. }\left\{\begin{array}{c}
1 \cdot 6:: 53 \frac{1}{3} \cdot 320 \\
\text { or } 7^{\frac{1}{2}} \cdot 6:: 400,320
\end{array}\right.
\end{aligned}
\]

2uef. 12. A Merchant delivereth to his Factor \(320 \%\) and permittethhim to add to it \(64 \%\). of his own money, to be employed in traffick; and by agreement between them the Factors fervice is eftimated equivalent to a certain flock ; which is fuch, that if the total gain be divided proportionably according to thofe three flocks, the Factor is to reccive \(\frac{2}{3}\) of the total gain, in confideration of the faid imaginary flock (being the value of his fervice; ) the quefion is to know the full part of the gain belonging to each, and what flock the FaCors fervice was valued at? AnSw. the Merchant \(\frac{2}{3}\) of the gain, and the Factor \(\frac{2}{3}\), whofe fervice was valued at 96 l. fock.
\[
\begin{aligned}
& \text { I. } 320+64=384 \\
& \text { II. } \frac{4}{3} \cdot \frac{12}{3}: 3: 384 \cdot 96 \text {. } \\
& \text {-1 } 320 \\
& \text { III. } 64
\end{aligned}
\]

2reft. 13. If a piece of Arras hangings, in the form of a long fquare, hath for its of Meafuring length \(6 \frac{1}{4}\) yards Englifh, and breadth of Tupeftry 4 yards; how many fquare ells, or ficks Flemifh are contained in that piece, when the length of a Flemifh ell is equal to \(\frac{3}{4}\) yard Euglifl? Anfober, \(44 \frac{4}{9}\) fquare ells or fticks Flemifh.

Forafmuch as by fuppofition, a Flemifh ell in length, hath fuch proportion to an Englifh yard in length, as 3 to 4 , and confequently the fquare of the one to the fquare of the other, as 9 to 16 . Therefore

Therefore in a direct proportion, as 9 is to 16 ; fo is any given number of fquare yards Englifh to a number of fquare ells Flemith, which will take up equal fpace with the faid fquare ells Englifh. Alfo in a direct proportion, as 16 is tog, fo is any given number of fquare ells Flemith to a number of fquare yards Englifb, which will take up an equal fpace with the faid Flemilh ells: thcrefore to refolve the aforefaid queftion, firft fird the number of fquare yards Englif contained in the faid piece of Arras, by multiplying the length and breadth in yards mutually one by the other, then proceed according to the aforefaid proportion; fo the work will fand thus,

\section*{I. \(6 \times 4=25\) Tquare yards Englifh.}
II. \(9.16:: 25 \cdot 44 \frac{4}{9}\) fquare ells Flemifh.
\[
\text { Oiberw } / \int e \text {, }
\]
\(6 \frac{1}{4}\) yards Englib in length give? \(8 \frac{1}{3}\) length. by the Rule of Three in Flemifs ells

Alfo 4 yards Englifl give in Fle \(\} \leq \frac{1}{3}\) breadtb. mifh ells.
Therefore the product of the faid? \(\left.\begin{array}{l}8 \frac{1}{3} \text { multipiyed by } \frac{1}{3} \text {, gives for the } \\ \text { fuperficial content as before.... }\end{array}\right\} 44 \frac{4}{9}\)

2uefi. 14. If a piece of Tapeftry in the form of a long fquare be in length \(15^{\frac{1}{4}}\) ells Flemifh, and in breadth \(4 \frac{1}{3}\) ells Flemilh, how many fquare yards Englith are contained in that piece, when 4 ells Flemifh in length are equal to 3 yards Englifh? Anfw. \(37 \frac{11}{64}\) ๆquare yards Englịb.
\[
\begin{aligned}
& \text { I. } 15 \frac{1}{4} \times 4 \frac{1}{3}=66 \frac{1}{1} \text {. }
\end{aligned}
\]

Appendix.

Concerving the Intereft of Money, and the Confruction of Tables to that purpofe.
I. Nrefolving quefions concerning intereft of money, four things are to be well obferved, to wit, firf, the Principal, or money lent for gain orintereft; fecondly, the time for which the faid Principal is lent; thirdly, the rate or proportion which the Principal bears to the fum of the prin. (ipal and intereft; and fourthly the intereft it felf: Suif \(100 l\). be lent upon cundition that \(106 l\). Thall be repaid at the end of a year, the faid \(100 l\). is called Principal ; the time for which the faid principal is lent is one year ; the proportion which the principal bears to the fum of the principal and intereft is fuch as 100 hath 10106 ; laftly, the inrech it felf is \(6 \%\).
11. Intereft is either Simple or Compound.
III. Simple Intereft is that which arifeth or is computed from the prinsipal only: So if 100 l . be lent for two years, the fimple Intereft thereof after the rate of 6 pounds for 100 pounds for 1 year will be 12 pounds, viz. 6 pounds due at the firf years end, and 6 pounds due at the fecond years end.
IV. Compound Intereft is that which arifeth from the principal, and alfo from the intereft thereof, and therefore it is called intereft upon inrereft: So if roopounds be lent and forborn 3 \(y\) ears 'and compound intereft thereof is to be com-

\section*{Chap. V.}
puted after the rate of 6 pounds for \(100 \%\). for one year; there will arife befides the fimp'e intereft of the principal for three years, the infcrelf of 6 pounds (due at the firft years end) for 2 years, and the intereftof 6 pound (due at the fecond years end ) for one year following.
\(V\). Rebate or difcompt of money is, when a fum of money due at any time to come, is fatisfied by the payment of fo much prefent money, which if it were put forth at a certain rate of intereff for the faid cime, would become equal to the fum firft due: So if 100 pounds be due at the end of two years, and is to be fatistied by the payment of prefent money upon rebate, after the rate of 6 pounds per centum, per annum, fimple intereff, there ought to be fo much ready money paid, which in two years after the faid rate of intereft would be augmented unto 100 l . In like manner if the rebate of difcompt were to be made after any rate of compound intereft, fo much ready money ought to be paid, which at fuch rate of compound intereft, for the time agreed on, would become equal to the fum firft due Examples of the manner of computation by rebate may be feen in the tenth and fourteenth Rules of this, Chaptic.
V I. In the taking of interef, or ufe money, for the loan or forbearance of money lent, refpect mult be had to the rate limited by Act of Parliament, which now reffraincth all perfons from \(\mathrm{t}_{3}\) king more than \(6 l\). for the intereft or ufe of \(1,00 \mathrm{l}\). lent for a year, but The fuurdution apon which the Sives for computing fimple interife are what part of 6 l. may betaken for the intereff of 100 h. Lent for half a year, a quirter is not expreft in the AA; In this cafe therefore we muft obferve cuftom and daily practice, fo we thall find that \(3 l\). is ufually taken for half a years inrereft of 100 l . and 30 s . for a quarter of a year, \&c. by which practice, this followiug Analogy (which is the ground or reafon of the common sules for computing fimple intereft) feems to be affumed for a fafe expofition of the Statute, viz. That fuch proportion as the whole year (fuppofed toconfift of 365 dayes) hath to any propounded fpace of time more or lefs than a year, fuch prcportionany intereft ( not exceeding the rateli-. mited by the Act) for any Principal lent for a year, ought to have to the intereft of the fame Principal for the time propounded: This Analogy being granted, the manner of computing fimple intereft, for any Principal lent and forborn any time propounded, will befuch as is expreft in the two next Sections.
VII. The intereft or gain of rool. principal money forborn for a year being known, the intereft of any other principal money for the fame time may be found out by one fingle Rulo of Ibree; for as \(100 \%\). principal is in proportion to the intereft thereof, fo is any other principal to its intereft : So if it be demanded what \(270 l\). will gain in a year at the rate of \(6 l\). for \(100 \%\). For one year, the Anfwer will be found to be \(16 l .4^{s}\). For,

> l. l. l. l. l. s. d.

A fecond Example, What is the intereft of \(175 l\). 18 s . II d . for a year, at the rate of 6 l . for 100 l .

Chiap. V:
for a year? Anfw. 101 . \(11 \mathrm{~s} .1-\frac{62}{62}\) d, as by the fol \({ }^{-}\) lowing operation (which is performed after the practical manner delivered in the nineteenth Rule of the fceend Chapter of this Appendix ) is evident

VIII. If the interefl of roo l. principal for one whole year, or 365 dayes be known, the fimple intereft of any other principal, for any number of dayes more or lefs than 365 , may be found out by the following Rule, viz.

Multiply thefe three numbers according to the Rule of continual Multiplication, to wit, the given intereft of 100 l . for a year, the principal, whofe intereft is required, and the number of dayes prefcribed, referving the laft dayes. product for a Dividend : Alfo multiply 365 by 100 and referve this product for a Divifor; Lafly finith Divilion, fo thall the quotient be the intereft or gain fought.

Note here, that the two principals, to wit \(100 \%\). and the other propounded, are fuppofed to be of one and the fame denomination : Alfo the intereft required required will be of the fame denomination with the given intereff of \(100 \%\).

For an example of this Rule, let it be required to find out the intereft of \(400 \%\). for a weck, or 7 dayes at the rate of \(6 l\). for \(100 \%\). for a year, or 365 dayes; Firf multiplying thefe three numbers 6,4000 , and 7 continually (viz. multiplying 6 by 400. and the product thence ariling by 7 ) the laft product will be \(\mathbf{1} 6800\) for a Dividend;alfo multiplying 365 by 100 , the product is 36500 for a Divifor; laftly, dividing 16800 by 36500 (after cypiers at pleafure are added to 16800 ) the quotient (according to the fourth Rute of the 27 th. Chapter of the preceding Book) will be difcovered to be this decimal. 4602 , which is equal to 9 s. \(2 d\). I farth. (as will appear by the brief way of valaing a decimal fraction in the fourth Rule of the 26 th. Chapter.)

The reafon of the above mentioned rule for the computing of intereft for dayes, will be manifeft by this following way of folving the fame queftion by two fingle Rules of Three, viz.
I. \(100 \cdot 6: 1400 \cdot \frac{6 \times 400}{100}\)
\[
\text { II. } \frac{365}{1} \cdot \frac{6 \times 400}{100}:: \frac{7}{1} \frac{6 \times 400 \times 7}{365 \times 100}
\]

Which fourth proportional in the latter Rule of Tbree, to wit, \(\frac{6 \times 400 \times 7}{365 \times 100}\), being well viewed the truth of the rule before delivered will be \(\mathrm{ma}-\) nifeft.

Hence one vulgar errour in computing intereft
is difcovered, for fome argue thus, \(6 l\). is the intereft of \(100 \%\). for a year, therefore \(10 \%\) ( or \(\frac{1}{\frac{1}{2}}\) of \(6 l\). is the intereft for a moneth, and confequently 2 s. 6 d. for a week or feven dayes, and fo the intereft of 400 l . for 7 dayes, computed affer that manner would be 10 s. which exceeds the Anfwer found by the preceding Rulc by \(9^{\frac{3}{+}} \mathrm{d}\). very near, which failacy hath its rife from the taking, (or rather miftraking ) of 28 dayes for \(\frac{1}{1} \frac{1}{2}\) part of the number of dayes in a year, when indecd the juft \(T_{2}^{-1}\) part of 365 dayes confifts of \(30-\frac{1}{2}\) dayes.

Moreover, by the help of rhis decimal fration of a pound, to wit, . 000164383 , which is very near the intereft of Auther Fule one pound for a day at the rate of 6 per cent.per annums as willa ppear
for compusing fimplalntereft for dayes. by the preceding rule the intereft of any principal (fuppofed to be pounds or decimal parts of a pound ) for any number of dayes propounded, at the faid rate of intereft, may be found out by multiplication only, viz. Firft multiply the faid decimal . 000164383 by the principal whofe intereft is required, then multiply that product by the number of dayes propounded, fo thall this laft product be the intereft required; (but in thefe multiplications refpect mult be had to the cutting off of places in the products, according to the fecond and third rules of the 265 . Chapter of the preceding Book; ) for example, if it be required to find the intereft of 1000 l.for 131 dayes, at the rate of 6 per cent. per ann.the \(A n f\). will be found \(21.534+\), or \(21 \% .10\) s. \(8 \mathrm{~d} . t\) for according to the xule laft given.

But at another rate of intereff, a peculiar decimal inftead of the faid .000164383 (which ferves only for 6 per cent. per annum) mult be found out by the firf rule aforegoing, before the latter rule can take place, the reafon of which latter rule doth alfo evidently arife from two fingle rules of three.
IX. When an Annuity payable yearly is in arrear for any number of years, and it

The manner of fumming up Annuities in arrear woith allowances of fimple intereft. is required to know what the fame will amount unto, fimple interef being computed for each particular yearly payment, from the time it be \({ }^{-}\) came due, until the end of the term of years, the work will be as in this following example, viz. If an Annuity, or yearly rent of 134 l .10 s. 6 d . be all forborn till the end of 4 years, what will it then amount unto, fimple intereft being allowed at the rate of 6 per cent. per annum for each years rent, from the time on which it was due, until the end of the faid term of four years? Anfw. 586 l. 10 s. \(6 \frac{96}{100} d\).

It is evident by the queftion, that at the rate of intereft propounded, there muft be computed the intereft of 134 l . Io s. 6 d . (due at the third years end) for one year (to wit, the fourth year;) alfo the intereft of the like fum due at the fecond years. end, for two years ( to wit, the third and fourth years; ) likewife the intereft of the fame fum due at the firft years end, for three years (to wit, the fecond, third and fourth years: ) all which intercfo being added to the fum of the four years rent, the total fum will thew what the faid Annuity will amount

Chap. V.
mount unto at the end of the faid term of 4 years.

> Explication.
\[
\begin{aligned}
& \text { years l. s. d. } \\
& \text { The intereft of } 134 \text { i. } 1 \text { is } \ldots 8: 1: 5.16 \\
& 10 \mathrm{s.6} \mathrm{~d} \text {. at } 6 \text { per cent. per } 2 \text { is ... 16:2:10.32 } \\
& \text { annum, for } \\
& 3 \text { is ... } 24: 4: 3.4^{8}
\end{aligned}
\]

The fum of the 4 years)
rent ( to wit, 4 times is.. \(538: 2: 0\) 134 l. 10 s. 6 d .)
All which added together give the Anfwer of \(\quad \ldots .586: 10: 6.96\) the queftion, to wit, \(\quad\),
\(X\). When it is required to find out how much ready money will fatisfie a Debt due at the end of any face of time to come, by rebating or difcompting at a given rate of fimple intereff, it may

Of rebate or difcompt of money at finso ple intereft. be effected by this rule, viz. Firft find out the intereff of 100 l . at the given rate of intereft, for the time which the ready money is to be paid beforehand, then adding the intereft fo found to 100 l . make alwayes the fum of that addition the firft term in a rule of three; \(100 \%\), the fecond term; and the debt propounded to be fatisfied the third term ; laftly, the fourth proportional found out by the faid Rule of Three thall be the ready money which ought to be paid in fatisfaction of the debt propounded.

Example 1. If a debt of \(100 l\). be payable at the end of a year to come, how much ready money will difcharge that debr by rebating or difcompting at the rate of 6 per cent. per annum? Answ. \(94 \%\). 65

That is to fay, if 106 l . (which is composed of 100 l principal and \(6 l\). intereft) proceeds from \(100 l\). principal forborn for a year, from what principal forborn for a year doth \(100 l\). (composed of primcopal and intereft ) proceed from? An \(\leqslant\) w. 94.3396 l. t (or \(94 \mathrm{l} .6 \mathrm{~s}: 9 \frac{1}{2} \mathrm{~d}\). very near) principal money: therefore 941.6 s. \(9 \frac{1}{2}\) din ready money, is of equal value with \(100 l\). due at the end of a year to come; for if the fain 94 l.6 s. \(9 \frac{1}{2}\) d. be put forth at intereft for a year, at the rate of 6 per cent. per annam, it will gain 5 l. 1 3 s. \(2 \frac{1}{2} d\). very near, which together with the laid \(94 \mathrm{l} .6 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}\). makes the 100 l . the debt firft propounded to be difcharged by rebate.

Example 2. If 150 l. Ios. be payable at the end of 73 dajes to come, how much prefent money will difcharge the faid debt, by rebating after the rate of 6 per cent. per annum? Anew. 148l. 14\%. \(3 \frac{1}{2} \mathrm{~d} .+\) as by the following operation is manifeft.
\[
\begin{aligned}
& \text { dayes l. ayes l. } \quad \text { I. } \quad 365 \cdot 6:=73,1.2
\end{aligned}
\]
\[
i . \quad 1 . \quad i \quad t
\]
11. 101.2 . 100: : \(150.5 \cdot 148.7154\) + That is to fay, Firft I eek by a fingle lisle of Three the interest of 100 l . for 73 days, at the rate of intereft propounded, flying if 365 dayes (or a year) gain \(6 l\). what will 73 dates gain? An \(\int w .1\) rio l \(l\). or \(1.2 l\). Then adding the faid 1.2 to 100 , I fay,

\section*{Chap. V.}

\section*{'Interefl.} by a fecond Rule of Tbree, if ror. 2 l. principal and 377 intereft, payable at the end of 73 dayes to come, be equivalent to 100 l . ready money, what ready money is 150 l. 10 s. (or 150.5 ) payable at the end of 73 dayes to come equivalent unto? fo by multiplying and dividing (according to the rules of Decimal Multiplication and Divifion explained in Chapter 26 and 27 of the preceding Book) the quotient or anfwer of the queftion will be found 148.7154 t, that is, \(1481.14 \mathrm{~s} .3 \frac{1}{2} \mathrm{~d}\). + for the decimal .7154 being valued according to the brief way at the end of the fourth rule of the 26th Chapter, will by infpection only be difovered to be \(14 \frac{s}{s} .3^{\frac{2}{2}} \mathrm{~d}\). which rule I Thall here once for all, advife the Learner to be well acquainted
with.
The proof.

Seek ( by the Rule of Three) what the ready money found as aforefaid will gain, in fo much time as it is paid before hand at the rate of interefl propounded; then having added this gain to the faid ready mony, if the fum be equal to the debt firlt propounded to be fatisfied by rebate, the ready money was rightly found out. So the latt example will be thus proved.
\[
l_{100,}, l_{1.2}=: 148.7154 \cdot(1.7845
\]

Which fourth proportional 1.7845 being added to 148.7154 , the fum will be \(150.4999 t\), which doth not want a farthing of \(150 l .10\) s.the debt firft propounded.

A

XI, When
XI. When it is required to find the prefent worth of an Annuity, by rebating
of the present worth of \(A n-\) nuilics by diffcomping at fimple interest. or difcompting at a given rate of Simple incereft, the operation will be as in the following example, viz. How much prefent money isequivalent to an Annuity or rent of \(100 \%\). per annum to continue five years, rebate being made at the rate of 6 l . for 100 l . for one year, at fimble interift? Anfow. \(425 l\) l. 18 s. \(9^{\frac{1}{2}} d\). very near.

It is manifest that there mut be computed the prefent worth of \(100 \%\). due at the firft years end; alfo the prefent worth of \(100 l\). due at the fecond years end, and in like manner for the third, fourth and fifth years; all which particular prefent worth being added together, the agreggate or fum will be the total prefent worth of the Annuity, to wit in the example above propounded, \(425 \frac{8286150}{8821267} l\). that is, \(425 l\). 18 s. \(9 \frac{2}{2} d\). very near.

The operation by decimals (which will come near enough to the truth) will be as followeth viz.
\begin{tabular}{l|lll} 
& l. & l. l. l. \\
1. & 106. & \(100:: 100 \cdot 94,33962+\) \\
2. & 112. & \(100:: 100 \cdot 89,28,57.1+\) \\
3. & 118. & \(100:: 100.84,74576+\) \\
4. & \(124 \cdot\) & \(100:: 100.80,64516+\) \\
5. & \(130:\) & \(100:: 100 \cdot 76,92307^{+}+\) \\
\hline
\end{tabular}

An: wo: \(425,93933 \pm\)

\section*{Here}

\section*{Chap. V.}

Intereft.
Here by the way, from the manner of refolving the laft mentioned queftion, shat Rule commonly called Equation of payments, which is infifted onby divers Aritbmetical Writers, will be found erroneous, which I thus prove.
1. Since that rule aims at the reducing of feveral dayes of payment, upon which particular fums of money are due, unte a mean time upon which the aggregate or total of thofe particular fums ought to be paid, without damage to the Debitor or Creditor, there muft be neceffarily fome rate of intereft implied; for otherwife why may not any day at pleafure be affigned for one intire payment.
2. If fome rate of intereft be implied, then equity requires that the prefent worth of the total fum payable at one entire payment, rebate or difcompt being made according to that sate of intereff, may be equal to the fum of the prefent worths of the particular fums of money, rebate being made at the fame rate of intereft.
3. In regard the faid Rule doth mention no particular rate of Intereft, it ought to be true at any sate of intereft what foever.
4. Let us therefore examine the faid Rule according to the rate of 6 per centum, per annum, fimple intereft, by taking the laft mentioned queftion for an example, which (according to the accuftomed manner ) will be thus fated, viz. If \(500 l\). ought to be paid by five equal yearly payments, to wit, 10 ol. at each years end, what time ought to be given for the payment of the faid 500 l . at one entire payment, without lofs either to the Debitor or Creditor.
5. By proceeding according to the faid rule of Equation of payments (which faith, If the fum of the Aa \(2 \ldots\) products,
products, arifing from the multiplication of each particular fum of maney by its refpective time, be divided by the fum or aggregate of the faid particular fums of money, the quotient will be the mean time to be alfigned for one intire payment ) there will be found three years, which time (according to the faid rule )ought to be given for the payment of the whole \(500 l\).
6. Now it 500 l. due at the end of three years to come be worth as much in prefent money, as is the prefent worth of an Annuity of 100 l . to continue five years, then the faid Rule of Equation is crue; 0 therwife falfe; but the prefent worth of 500 .due at the end of three years to come, rebate being made at the rate of 6 per centum, per aunum, fimple intereft, will be found by the tenth rule of shisChapter)to be \(4_{23}\) l. 14 s.6 d .3 f. very near; alfo the prefent worth of the faid Awnuity, rebate being made as before, is found (as appeareth by the refolution of the laft inentioned queltion) to be \(425 \mathrm{l} .18 \mathrm{~s}, 9^{\frac{1}{2}}\) d. very near; wherefore it is cvident that the Creditor lofeth \(2 / .45 .2 \frac{3}{4} \mathrm{~d}\). very near, by receiving the whole 500 l . at three years end: moreover at 6 percentum, per annum, compound interef, he would lofe 13.8 s. 6 d . very near, as will be manifeft by the Tables of compound intereft hereafter expreffed: fo that the lofs will be either more or lefs according as the rate of intereft doth differ: and therefore I conclude the faid Rule (as alfo all other rules or refolutions of queftions which have dependance thereon) to be erroneous.

Although queftions of this nature feldom come into practice, yet he that will take the pains, may find out fuch a mean time as is required by the faid.

\section*{Cliap.V:}

Interefor
Rule of Eqiation of payments, at any rate of fimple intereft by this following rule, viz.

Firft, by the preceding tenth Rule of this Chapter find our the prefent worth of every particular fum in the queftion payable at a time to come, by rebating at the rate of interef agrced on; then find in what time the fum of thofe prefent worths will be augmented unto the total of all the particular fums payable at times to come, according to the firft agreement, fo thath the time found out be the mean time for the payment of the whole debe: thus the mean or equated time in the laft example will be found to be 2.8979 , \&c. years (not three years, as the faid Rule of Equation of payments would have-it.) for by rebating at 6 per cen. per arinum, fimple intereft, 500 l . payable at the end of \(2.8979 ; \& c\)..years to come (that is 2 years and 328 dayes very near ) is worth in ready money \(425 \%\). 18 s.g. \({ }_{2}^{3}\) dvery nearland the fame ready money is alfo the prefent value of rool Annuity for 5 years; at the fame rate of intereft, as before hath been manifefted. But to retuin to the path from which I have made a digreffior.
From the preceding tenth rule of this Chapter the following Tables I. and II. are deduced, whofe conifluetion and ufe are afterwatds declared.




The Cont ruction of Table I.
The numbers in the fort Table which are placed right againft the numbers of years \(1,2,3, \dot{4}, 5,6\), and 7, are decimal fractions, one pound of Englith money being the Integer, and are thus found (actording to the preceding tenth Rule of this Chapter) viz.
\[
\begin{aligned}
& 106: 100: 1 \cdot, 943396+ \\
& 112: 100:: 1 \cdot, 89857+ \\
& 118: 100:: 1 \cdot, 847457+ \\
& \text { whereby }
\end{aligned}
\]

\section*{Chap. V. Intereft.}
whereby it appears, that \(1 l\). due at the end of a year to come, is worth in ready money. \(943396^{+}\), that is, 18 s. \(10 \mathrm{~d} . \mathrm{If}\). and fomewhat more. Alfo \(1 l\). due at the end of two years to come, is worth in ready money 892857 t , or 17 s. \(10 \frac{1}{4} d\). rebate being made at the rate of 6 per centum, per annum, fimple interef the like is to be underftood of the reft of the numbers in Table I. which may be continued to more years, and other Tables alfo of rebate may be framed upon the fame ground, for monsths, or dayes, by the ingenious Artift.

\section*{The ufe of Table I.}

The practical ufe of the faid firf Table will be manife \(f\) by folving this following queltion; viz. How much ready money will difcharge 3451.15 s . \(6 d\). due at the end of five years to come, by rebating fimple intereft at the rate of 6 per centum, per annums Answer, \(26 \rho\) l. 19 s. \(7 \frac{1}{4} d\). which is thus found out; viz. In the preceding Table I. right againtt 5 years, I find the decimal .76923 , which thews that 1\% due at the end of five years to come is worth in ready money .76923 (that is, \(15 \mathrm{~s} .4 \frac{1}{2}\) d.) then inftead of 15 s .6 d . mentioned in the queftion propounded, taking the decinal. 775 which is equal to \(155.6 d\). (the fame being reduced according to the fifth rule of the 23 chapter of the preceding book') I fay, by the Rule of Tbree.

1 . \(76923: 345.775 \cdot(265.9805+\)
That is to fay if \(1 l\). give \(.76923 l\). what will 345 .775l. give? Aufw.2659805l.tor multiplying 345 .775 by .76923 , according to the fecond Rule of the 26 Chapter of the preceding Book, the product will be 365.9805 , that is, \(265 \mathrm{l} .19 \mathrm{f} \cdot 7^{\frac{1}{4}} \mathrm{~d}\).

\section*{The Confruction of Table II.}

The numbers in the fecond Table are found out by the addition of thofe in the firf, vis the firf number in the latter Table is the fame with the firtt number in the former, the fecond in the latter is the fum of the firt and fecond in the former; the third in the latter is the fum of the firft,fecond and third in the former, and in that manner the reft are found ; ( the reafon of which compofition is manifeft from the example of the eleventh rule aforegoing ; ) otherwife, the numbers in Table II. may be found more eafily thus, viz. the firft number in the faid Table II. is the fame with the firf number in Table 1. the fecond number in the latter Table is compos'd of the fecond number in the former and the firft in the latter, the third number in the latter Table is compos'd of the third number in the former and the fecond in the latter, the fourth in the latter is compos'd of the fourth in the former and the tl ird in the latter; the like is to be underfoad of the reft of the numbers in Table II. which might be continued to more years, and fitted to other ratis of intereft, but I hall fpare that labour, in rea gard a moreequal way of finding out the prefent worth of an Annuity, agreeable to the accuftomed and practical rates of buying and felling Annuities or Rents, for terms of years, is grounded upon a computation of intereft uponintereft, as will hereafter be made manifeff, for at fimple intereft an Annuigy will be overvalued.

The ufe of Table. IH.
The ufe of Table II. will appear by this follow-
ing example; viz. What is the prefent worth of an Annuity of \(100 l\). per annum payable ycarly during the term of five years, difcompt or rebate being made at the rate of 6 per centum, per annum, fimple intereff? Anfwer, 425 l. 18 s. \(9 \frac{1}{2}\) d.very near which is thus found out,viz.In the preceding Table II. right againft five years, I find this number 4.259393 , which thews that an Annuity of I l.payable yearly during five years, is worth in ready money 4.259393 \% (that is 41.5 s .2 d. and fomewhat more) therefore, I fay, by the Rule of Three;


That is to fay, it \(\mathbf{1 l}\). give \(4.259393 \%\), what will 100 l. give? Anfwer \(425 l .18\) s. \(9 \frac{1}{2}\) d.very near, for by multiplying 4.259393 by 100 , the product (according to the fecond rule of the 26 Chapter of the preceding Book) is 425.9393 , that is, 4251.18 s . \(g^{\frac{1}{2}} d\). very near. Which operation being compared with the manner of folving the fame queftion before mentioned in the eleventh Rule of this Chapter, the great benefit of Tables of this kind in point ofexpedition will be apparent.
XII. When it is required to know, unto what fum of money any propounded principal forborn any number of years will at the end of fuch term be augmented unto, intereft up-
of the forbeas rance of momy as compound interefo. on intereft being computed at a given rate, there muft be found a rank of continual proportionals, more in number by one than is the number of years is the quefion; of which proporitionals the firf is the principal affigned, the fecond muft increafe cond, \&cc. in fuch manner or rate, as 106 proceeds fro 100 (or as 108 from 100, if the rate of interef be 8 per centum ) then will the laft proportional. bethe Anfwer of the queftion: So if 300 pounds principal money be put forthat intereft upon intereft, at the rate of \(6 l\). for 100 l . for one year, and all forborn until the end of 4 years, there will then be due 378.743088 , or 3,8 . 1 . 14.s. \(10 \frac{1}{2}\) d.very near, as by the four following Rules of 7 bree is manifef.
\[
100 \cdot 106: \begin{cases}300 & 318 \\ 318 & 337.08 \\ 337.08 & 357.3048 \\ 357.3048 & \cdot 378.743088\end{cases}
\]

For the faid \(300 \%\). will at the firft years end be augmented unto \(318 l\). which \(318 l\) being put forth as a principal for 1 year, will (at the fecond years end. be augmented unto 337.08 , again this 337.08 being put forth as a principal for 1 year, will (at the third years end) be augmented unto 357.3 .048 , in like manner 357.3048 being put forth as a principal for in year, will (at the fourth yearsend) be augmented unto 378.743088 , which is the number required by the queftion. And if the work be wellexamined, it will appear (as was before declared) that the principal firft affigned, to wit \(300 l\). and the numbers refulting fucceliively at the ends of the feveral years are continual proportionals, viz, thefe five numbers are fo qualified, that if the fecond be mul-
\(300|318| 337.08|357.3048| 378.743088\)

\section*{Chap. V.}
tiplied by it felf, the product will be equal to the product of the firftand third; alfo if the third be multiplied by it felf, the product will be equal to the product of the fecond and fourth; in like manner, if there were more continual propertionals in a rank, if any one proportional which is placed between two next on each fide of fuch one, be multiplied by it felf, the product will be equal to the product of thofe two extreams (which is a property peculiar to continual proportionals.)

Note here by the way, that if any \(T_{\text {wo }}\) numbers two numbers be propounded, fuppofe being given to 300 and 318 , and it be required to find a third, a find to them a third, a fourth, a fifth, fourth, a fifth, \&c. in continual proportion, multi- occ. in contiply the fecond proportional 318 by on. it felf, and divide the produat
101124 by the firft proportional 300, fo thall the quotient 337.08 be a third in continual proportion ; In like manner if you multiply the third proportional 337.08 by it felf, and divide the product 113622.9264 by the fecond proportional 318 the quotient 357.3048 thall be a fourth in continual proportion, and after the fame manner a fifth, a fixth, or as many as you pleafe may be found out.

From what hath been faid by way of explication of the preceding twelfth Rule, the following Table III. is deduced, the confruction and ufe whereof is afterwards declared.

Intereff.
Appendix.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\sim \\
\underset{\sim}{2} \\
\stackrel{\rightharpoonup}{3}
\end{gathered}
\]} & \multicolumn{8}{|l|}{which fhowet what ono pannd will amount unto \(\mathrm{o}_{2}\) being foxborn of years under \(3 \mathbf{I}\), compornd intereft being computed yearly wit, \(4,5,6,7,8.9,10\), I1. and 12 per centum.per annum} \\
\hline & & & & & & & & \\
\hline & & & & & . 09 & 10000 & & I. 12000 \\
\hline & 1.08160 & 1.102501 & 1.12360 & & & & & \\
\hline & I. 12486 & 1.15762 & I. 19101 & 1.22504 \({ }^{4} .25971\) & 1.29502 & & 6763 & 1. 40492 \\
\hline & & 1.215501 & & 1.310791 .36048 & \(1.4115^{8}\) & 46410 & & \\
\hline \[
15
\] & 1.21665 & 1.27628 & & 1.402551 .46932 & 1. 53862 & 1 & & 34 \\
\hline 6 & 1. & & & 1.50073 I.58087 & 1.67710 & & & \\
\hline & & & & \(1.60578,1.7138 .2\) & & 71 & & \\
\hline \[
8
\] & 1.36856 & 1.47745 & . & 1.718181 .85093 & I. & & & \\
\hline  & & 1.55132 & & \(1.83845^{t} 1.99900\) & & 24 & & \\
\hline 16 & & 1.62889 & 1 & \(1.967 .15^{2.15892}\) & 2.3673 & & . 3942 & \\
\hline 1 & I. & & \[
1.89829
\] & & 2.5804 & 8 & & \\
\hline & 1.60103 & L.79585 & , & 2.252192 .51817 & & & & \\
\hline & 1.66507 & & 2 & 2.409842 .71962 & & & & \\
\hline & & 1.978 & O & 2.578 & , & & & \\
\hline & 0094 & 2.07892 & & & & & & \\
\hline
\end{tabular}

\section*{Chap. V \\ Interef.}


\section*{The Coinftruction of the preceding Table III.}

The numbers \(1,2,3,4, \& \mathrm{c}\). to 30 , in the firft column on the left hand fignifie years; the numbers \(4,5,6,7,8,9,10,11\), and 12 , placed at the head of the reff of the colums fignifie rates of intereft, for 100 l. lent for a year, and the numbers placed in the \(\mathrm{F}_{\mathrm{e}}=\) veral columns underneath thofe rates of intereft, are found out by the Rule of Thbre in decimals, in manner following; viz.


That is to fay, Firf, if 100 l. put forth at intereft for a year be augmented to \(104 \%\). at the years end, what will 1l. be then augmented unto at the fame rate? Anfw. 1.040 l . (that is \(1 \mathrm{ll.05.9d.2} \mathrm{f.and} \mathrm{fome-}\) what more) which 1.04 (or 1.04000 , the cyphers after the 4 being of no value in decimals) is the firt number in the fecond column belonging to 4 per centum, and is placed right againft 1 year in the firft column.

Secondly, fay if 100 . lent for a year be augmented to 104 l. at the years end, what will i.O4l. be then augmented unto at the famerate? Anf00 1.0816 l. ( (that is \(1 \mathrm{l} .1 \mathrm{s.7d.2ftt} \mathrm{)} \mathrm{which} \mathrm{1.0816}\) is the fecond nnmber in the faid column of 4 per cent. and is placed right againft 2 years in the firlt column.

\section*{Chap. V.}

Interef.
395
Thirdly, as 100 is to \(104, f 0\) is 1.0816 to 1.124864 ( or 1 l.2s.5d. 2 f.t) which 1.12486 is the third number in the column of 4 per centum, and is placed right againft 3 years in the firft column. Hence it appears, that I \(l\). at 4 per centum, per annum compound intereft, will at the end of 3 years be augmented unto 1.124864 \% (that is, 11.2 s .5 d .2 f . and fome what more.)

After the fame manner the reff of the numbers in the fecond column, as alfo in the other columns are found out (mutatis mutandis.)

\section*{The ufe of the preceding third Table.}

2uef. 1. What will \(136 l .15\) s.6d.be augmented unto, being forborn 20 years, intereft upon interefl being computed at the rate of 6 per centum per annum? Anโw. 4381.13 s. 1 d.very near, which is thus found out.

Firf, looking into the fourth column of the faid third Table, to wit, that column which hath the figure 6 placed at the head of it, I find sight againft 20 years the number 3.20713 , which fhews that 1 . being continued 20 years at 6 per centum, per anииm, compound interef, and all forborn untill the end of the faid term will be augmented unto \(3.20713 l\). (that is \(3 \mathrm{l} .4 \mathrm{~s} . \mathrm{id} .2 \mathrm{f}\). and fomewhat more) therefore after the \(15 \mathrm{s.6} \mathrm{~d}\). in the queftion is reduced to the decimal .775 (by the fixteenth rule of the 23 Chapter of the preceding book) I multiply the faid tabular number 3.20713 by 136.775 (the fum propounded in the queftion) according to the fecond rule of the 26th Chapter, fo the Product is found
found to be \(438.665,8 \mathrm{cc}\). that is, 438 l .13 s.1 1 . For the Anfwer of the queftion. View the operation here following.
\(\left.\begin{array}{l}1: \begin{array}{l}3.20713 \\ 136.775\end{array} \\ \frac{1603565}{2244991} \\ 2244991 \\ 1924278 \\ 962139 \\ 320713\end{array}\right]\)

Quefl. 2. If 320 l. be forborn 4 years, at interf uponintereft at 5 per centum, per винит, what will be due at the end of thofe eleven years for principal and intereft? Answer, 547 l . 6 s. I d.t. For in the third column of the third Table, under the fie gure five at the head of the column and right againft 11 years you will find this number 1.71033 , which thews that I l. at the end of II years will at five per centums, per anหwm, compound intereft, be aug-
 fomewhat more) wherefore by multiplying the faid 1.71033 by 320 the number of pounds propounded in the queftion) the product will be 547 -305 , \& \&c. that is \(547 \mathrm{ll.6s,1} \mathrm{~d}\). if for the anfwer of the queftion, See the following operation:
```

I.1.71033: }\because320:(547.305
320
3420660
513099
547130560

```

After the fame manner the numbers belonging to any of the other rates of interef mentioned in the third Table are to be ufed.
XIII. When an Annuity payable The manner of yearly is in arrear for any number fumming ap Anof years, and it is required to know nuilies in arwhat the fame will amount unto rear with atcompound intereft being computed tereft upon in. for each particular Annuity from teref. the time it became due until the end of the term of years, the work will be as in the following, example ; viz. Suppofe an Annuity of \(300 \%\) payable at vearly payments be forborn, and all unpaid untill the end of four years, the queftion is, what will then be due, compound intereft being computed at the rate of 6 per centum,per annum, for each yearly payment from the time it becomes due to the end of the faid term of four years \(?_{0}\) Anfwer \(1312 l .7\) s. 8 d . very near.

It is evident by the queftion, that there muft be computed what \(300 l\). due at the third years end will be augmented unto in one year (to wit the fourth year) at 6 per centum; Alfo what 300 l.due at the fecond years end will be augmented unto in two years( to wit the third and fourch yearsi, like\(\mathrm{Bb} \ldots\) wife

\section*{394}
wife what \(300 l\). due at the firft years end, will be augmented unto, in the three following years (to wit the fecond, third and fourth years) all which fums being added to 300 I . (the payment due at the end of the fourth year, which is incapable of any improvement) the aggregate or fum will be the total moncy in Arrear at the end of the fourth
 following operation, viz.

The laft payment of the Annuity? due at the end of the fourth year 300 . is
l.

Again, the 300 l . due at the third years end, will in one year after the ratc of 6 per centum, be augmented unto . . ...

Alfo 300 l . due at the fecond years end, will in two years at the rate of 6 per centums, per апnam, compound intereff, be augmented unto ( as appears by the firf example of the twelfth Rule aforegoing.)

In like manner; 300 l. due at) the firt years end, will in three years \(\{357.3048\) be augmented unto
The from due at four years \(\}_{13 i 2.3848}\)
The invention of the numbers before mentioned being well examined, it will appear, that if an Annuity or Rent payable at yearly paymertes be improved all forbosn or refpited unto the end of certain years, the total then due will be the fum of a rank of continual proportionals as many in number as thete are yearly payments, the firft of which pro. portionals is the firft (or any one) years rent, and the fecond proportional proceeds from the firt in the fame rate as 106 proceeds from 100 , if the rate of intereft be 6 per centum, (or as 108 proceeds from 100, if the rate of interef be 8 per centum, \&c.) and fo likewife the third from the fecond, the fourth from the third, \&c. (after the manner of the operation in the firftexample of the twelfth Rule of this Chapter.)

\section*{Otberwise.}

Find a principal which may have fuch propor. tion to 300 as 100 hath to 6 ,and fay by the Rule of Three,
\[
6 \cdot 100:: 300 \cdot 5000
\]

That is to fay, as 61 . intereft hath 1002 . for a principal, fo 300 l . intereft hath 5000 l . for a principal; then feek what 5000 .will be augmented unto, being forborn four years at 6 per centum, per anинm, compound intereft (after the manner of the firft example of the twelfth rule aforegoing; ) fo will you find \(\sigma_{3} 12.3848\), from which fabfracting the faid principal 5000 l . the remainder (as before) is \(1312.3848 \%\). being the fum which \(300 \%\). Annuity will be augmented unto at the end of four years, according to the faid rate of intereft; the Annuity being payable at yearly payments.

Bb 2

\section*{The reafon of the latter Rule.}

If a principal be put forth at intereft upon in: tereft payable by yearly payments, and all be forborn until the end of certain years, the total then due is equal to the aggregate or fum of thefe rhree numbers, to wit, the faid principal firft put forth ; the furn of the annual fimple interefts of that principal ; and the utmoft improvement of thofe fimple interefts by computing intereft upon intereft wherefore if from the faid aggregate the firft principal be fubtracted, the remainder muft neceffarily confift of the fum of the annual fimple interefts, (which are in the nature of an Annuity) and the utmof improvement of thofe fimple interefts (or Annuity ) by computing intereft upon intereft.

\section*{The Conftruction of the following Table IV.}

Upon the aforefaid grounds, the following Teble IV. is calculated, to thew what one pound Annuity, payableat yearly payments, and forborn any number of years under 31 , will amount unto by computing intereft upon intereft at any of the rates expreft at the head of the faid Table.

But the fame Table may be more eafily compofed by theaddition of the numbers in the preceding Table III. in this manner, vizo the firf number in each of thofe columns in the following Tabls. IV. at the head whereof are placed the numbers 4,5 , \(6,7,8,9,10,11\), and 12 , fignifying rates of intexeft

\section*{Chap. V. Intereff.}
tereft per centum, is I or unity; the fecond number in each of thefe columns in the latter Table is compos \({ }^{2}\) d of 1 or unity, and the firft number in the refpective columns of the faid preceding Table III.

Alfo the third number in each of the faid coJumns of this latter Table is compos'd of \(x\), and the fum of the firft and fecond numbers of the refpeCtive columns of the former Table, and in that order the reft are found out; or more eafity thus, the third number in the latter Table is compos \({ }^{3} d\) of the fecond number in the latter, and of the fecond in the former; the fourth number in the latter is compos \(^{3} d\) of the third in the latter, and of the third in the former, \&cc. But you are to obferve that according to either of hefe wayes of compofing the fourth Table by Addition, the numbers in the preceding Table III. ought to be continued to more places then are there expreft to prevent error which may happen by adding of defective decimal fractions.

Tablo



The ufe of the preceding Iable IV.
The ufe of the faid fourth Table will be manifeft by the manner of folving this Queftion, viz。if an Annuity of 201 . payable by yearly payments for is yetrs, be all forborn or unpaid until the end of the faid term, what will it then amount unto, upon a computation of intereft upon intereft, at the rate o! 6 per centum, per annum? Anfor. 465 l. 10 s.4d.2f. very near, as by the following operation is evident; For in the column belonging to 6 per centum (to wit, that column which hath the figure \(\sigma\) placed at the head of it) right againft 15 years, you will find 23.27596 , which fhews that an Annuity of Il.payableat yearly payments for 15 years will at the end of the faid term (compound intereft being computed at 6 per cent.per annum) amount unto 23.27596 l. (or 23 l. 5 s. 6 d. \(\pm\) ) Therefore multiplying the faid tabular number 23.27596 by 20. ( 20 becaufe the Annuity propounded is \(20 \%\).) the product will be \(465.519^{ \pm}\), that is \(465 l\). 10 s .4 d .2 f . which is the anfwer of the queftion; view the following operation.
\[
\frac{\frac{23.27596}{20}:: 20:(465.519 t}{465151920}
\]

In the fame manner the numbers in the other column are to be ufed.
XIV. When a fum of money is due of rebate at at a time to come, and it is required compound inte- to know what it is worth in ready reff. money, rebate being made at a given

\section*{Chap. V.}

Intereft.
401
rate of compound intereft, the work will not be much different from the 12 Rule of this Chapter, viz. there mut be found a feries or rank of continual proportionals more in number by one, than is the number of years in the queftion; of which proportionals, the firf is the money propounded to be rebated, the fecond muft decreafe or leffen from the firft, the third from the fecond, \& \&c. in fuch manner or rate as 100 decreafeth from 106 (or as 100 from 108 , if the rateof intereft be 8 per centam) then will the laft proportional be the anfwer of the queftion: So if \(378-\frac{743.08}{5} \frac{8}{5}\), be due at the end of four years wholly to come, it will be found to be worth in ready money \(300 \%\). rebate being made at compound intereft at 6 per centum, as by the four following Rules of Tbree is manifeft, which may be proved by the preceding twelfith rule, where it will appear that 300 l . being forborn four years, will at the faid rate of compound intereft be augmented unto \(378.743088 \%\).
\[
\begin{cases}l . & l \\ 378.743088 & \cdot 357.3048 \\ 357.3048 & 337.08 \\ 337.08 & 318 \\ 318 . & 300\end{cases}
\]

Upon this ground the following Table V . is calculated, to thew what one pound due at the end of any number of years to come, is worth in prefent money, rebate being made at the rates of compound intereft, mentioned in the faid Table ; by the help whereof and of Multiplication, queftions of rebate for any fum propounded may be perlormed withput confiderable error.



 Mbmn

\section*{The Conftrution of the preceding Table V .}

The numbers \(1,2,3,4, \& 6\). to 30 , in the firft column on the left hand, fignifie years ; the numbers \(4,5,6,7,8,9,10,11\), and 12 , placed at the head of the reft of the columns fignifie rates of intereft for 100 \%. lent for a year, and the numbers placed in the feveral columns underneath thofe rates of intereft are found out by the Rule of I hree in decimals, in manner following viz.
1. \(104 \cdot 100:: 1 \quad\) (,9615384615, \& 2 c. 11. 104.100: :,9615384615t.(,9245.562, \&x. HI. | 104 . \(100::, 9245562, \&\) c. \(^{2}(, 888996\) t

That is to fay, Firf, if 104 decreafe to 100 , or if \(104 l\). payable at the end of a year to come be worth 100l. ready money, what ready money is il. due at the end of a year to come worth? Ansper, .9615384615 + (or 19 s. 2 d. 3 f. very near) So that \(.96153^{8}\) is the firt decimal in the fecond column belonging to 4 per centum, in Table V.and is placed right againft I year in the firft column.

Secondly, fay in like manner if 104 decreafe to 100, what will .9615384615, \&xc. (the decimal found by the firft rule of three) decreafe unte? Anfreer, \(9245562,8 \mathrm{cc}\). the firft 6 places whereof, to wit, .924556 are the fecond decimal in the faid column of 4 per cent. which is placed right againft two years.

Thirdy;

Chap. V.
Intereff.
405
Thirdly, as 104 is to 100 ; fo is, \(9245562, \& 60\) (the decimal found by the fecond Kule of Three) to \(.888996+\) (or 175.9 d. if. t) which is the third decimal in the column of 4 per centum. Hence it appears that \(1 \%\) due at the end of 3 years to come is worth \(.888996+\) (or 175.9d. if. and foime what more) in ready money, rebate being made at the rate of 4 per centam, per annum, compound intereft.

After the fame manner the reft of the decimal fractions in the faid fecond column, as alfo in the other coluinns are found out (mutatis mutandis)

\section*{The ufe of the preceding Table V .}

Toexemplifie the faid fift Table, let it be required to find out how much ready money wil difcharge a debt of \(356 \%\). payableat the end of feven years to come, by rebating at the rate of 7 per centum, per аииит, compound intereft? Anfw. 221 l. 13 s. 11d.3f. very near. For in the fifth column, at the head whereof is placed 7 , rignifying 7 per centum, right againft 7 years, I tind .622749 , which fhews that \(1 l\). due at the end of 7 years ro come is worth in prefent money .622749 decimal parts of a pound, rebate being made at the faid rate of compound interef. Therefore multiplying the faid tabular number .622749 by the faid 3561 . (the debt propounded) the product (according to the fecond rule of the 26 th. Chapter) will be 221.698 , \&c.that is, \(221 l .13\) s. 11 d . 3 f . which is the Anfwer of the queftion. See the fubfequent operation.

2211698644
In the fame manner the numbers in the other \(c o\). lumns are to be ufed.
\(X V\). The finding out the prefent worth of an Annuity is grounded Anmuites by upon this foundation, to wit, if the computation of prefent money which is paid for the purchafe of an Annuity, to continue any term of years, be put forthat any Tofind the pree fint martib of compornd intexofo sate of compound intereft, and all forborn antill the end of the faid term, and that the total money then due be put into one Scale : alfo if the total fum of the utmof improvements of the annual payments of the Annuity, put forth at the fame rate of compound intereft, from the time thofe annual payments become due until the end of the term, be put into the other Scale, the Scales muft be even viz.the faid two total fums of money muit be equal one to the other.

Now to find out fuch a prefent worth of an Annuity, there are divers wayes, fome of which 1 thall here explain by emamples:

Firft therefore let it be required to find the prefent worth of an Annuity of 378.730881. to cons rimue three years compound interett being computed at 6 per cent.per amn. Anfuper, 1012.38481.

It is evident by the queftion, that there muft be computed (after the manner of the Example upon the fourteenth Rule aforegoing) the prefent worth of \(378 \frac{-2430888}{1} 200080\). due at the firft years end, alfo the prefent worth of the like fum due at the fecond years end, and in like manner for the third year; all which particular prefent values being added together, the aggregate or fum will be the total prefent worth of the Annuity propounded, viz. 378.743088 1. payable at the end) 1. of one year is worth in ready money (as is evident by the fourteenth rule \(357.304^{8}\) aforegoing.) ....

Alfo the like fum payable at the? end of 2 years to come is worth in 337.08 ready money

Again, the like fum payable at? the end of three years to come, is 318 . worth in ready money

Therefore the total prefent worth7 of an Annuity of 378.743088 l . 10 : 10012.3848 continue 3 years is

\section*{Otberwife.}

Find a principal which may be in fuch proportion to the propounded Annuity 378.743088 1. as 100 is to 6 . Which will be exaCtly 9312.38481 .for
\[
6: 100:: 378.743088: 6312,3848
\]

Then fuppofing this principal fo found to be a fum due at the end of three years to come, find what it will be worth in ready money, by diminiShing it according to the fourteenth Rule of this Chapter, fo you will find 53001 . for the ready money equivalen to the faid \(6312 \cdot 3848\) l. due at the
end of three years, which ready money 5300 . be ing fubtriacted from the faid \(\sigma_{312,3848} \mathrm{l}\). leaves ( as before) 1012.3848 l . For the prefent worth of the faid Annuity of 378.743088 I . to continue three years, compound intereft being allowed at 6 per centum, per аииит.
2) The reafou of the latter Rule.

It will not be difficult to apprehend, that if \(\sigma_{3}{ }^{12} .3848\). ready money be put forth as a Principal at intereft uponintereft, it will at three years end be augmented unto an Aggregate or fum compos \({ }^{\circ}\) d of thefe three numbers, to wit, the faid Principal 6312.3848 ; the fum of the annual fimple interefts of that Principal, and the utmoft improvement of thofe fimple interefts by intereft upon intereft : And becaufe (by the operation aforegoing) 5300 . ready money (part of the raid ready money \(6312.3848 l\) ) will at three yearsend be augmented unto \({ }^{312.38481}\). part of the faid Aggregate, therefore 1012.3848 l . the complement or remaining part of the. faid ready money 6312.38481 . muft neeeflarily be augmented unto the complement or remaining part of the faid Aggregate, which remaining part laft mentioned is compofed of the fum of the aforeffid fimple intereffs, and of their utmoft improvement at intereft upon intereft, that is, the faid remainder is the utmoft improvement of an Annuity of 378.7430881 . to continue three years, compound intereft being allowed at 6 per centum, per annum.

\section*{The Conftruation of the folloning Table VI.}

Upon the aforefaid grounds the following Table VI. is calculated, to thew how much ready money an Annuity of one pound to continue any number of years under 31 . and payable at yearly payments, is werth, upon a computation of compound intereft at any of the rates per centum, mentioned at the head of the faid Table. But the faid Table VI.may more eatily be compos \({ }^{\circ} \mathrm{d}\) by the help of the preceding Table V. in this manner, viz. the firft number in every of the Columns (except the Column of years) in the following Table V!. is the fame with the firt number in the like Columns refpectively in the preceding Table V. the fecond number in each of the faid Columns of the fixth Table is the fum of the firtt and fecond numbers in the refpective Columns of the fixth Table, the third number in the faid Columns of the fifth Table is the fum of the firft, fecond and third numbers in the refpective Columns of the fifth Table: Or yet more eafily thus, the third number in the fixth Table, is compofed of the chird in the fifth Table and of the fecond in the fixth; the fourth number in the fixth Table is compofed of the fourth in the fifth and of the third in the fixth; the like is to be underftood of the reft. But you are to obferve that according to this way of compoling the fixth Table by Addition, the numbers in the sifth Table muft be continued to more places then are there expret, to prevent error arifing by the addition of defective Decimal fractions.

Interef.
Apperdix:



\section*{The ufe of the preceding Table VI.}

The ufe of the faid fixth Table will appear by the manner of folving thefe two fubfequent queftions, viz.

2uef. I. What is the prefent worth of an Annuity or rent of \(56 \%\). per annum payable by yearly payments for 21 years, accompting intereft upon intereft at the rate of 6 per centum, per annum? Answer, 658 l. 15s.9d. very near, thus found our; In the fourth Column of the preceding Table VI. under the figure 6 at the head, and right againft 21 years, Ifind 11.76407 , which fhews that an Annuity of I \(l\). payable by yearly payments for 21 years, is worth in prefent money 11.76407 l. (or II \(1.15 \mathrm{s.3}\) d. if. and fomewhat more ) intereft upon interett being computed on both fides at the rate of 6 per centum, per annum; therefore multiplying the faid tabular number 11.76407 by 56 , ( 56 becaule the Annuity propounded is 56 pound) the product (according to the fecond rule of the 26th. Chapter of the preceding Book) will be found to be 658.787 , \&xc. that is 658 l. 15 s. 9 d. very near; Wherefore I conclude that the Anfwer of the queftion is 658 l. 15 s. 9 d. view the following operation.

Chap. V.
Intereft.
\[
\frac{\frac{1.11 .76407}{56}:: 56 \cdot(658,787 t}{\frac{705844^{2}}{5882035}} \begin{array}{r}
658178792
\end{array}
\]

Quef. 2. What is the prefent worth of an annual rent of \(45 \%\). payable by yearly payments for 21 years, intereft upon interell being computed at 1o per centum, per annum? Anfor. 38 g l.3s.10d. very near; for in the Column of 10 per centum, in the faid fixth Table, right againft 21 years, and under 10 at the head \(I\) find this number 8.64869 ; which fhews that at 10 per centum, compound intereft, an Annuity or rent of \(1 l\). payable by yearly payments for 21 years, is worth in ready money 8.64869 l. that is 8 l. 12 s. 11 d. 3 f. therefore multiplying the faid tabular number 8.64869 , by 45 (the rent propounded) the product will be \(389.191^{\dagger}\), that is 389 l .3 s. 10 d. very near, which is the Anfwer of the Queftion.
1. \(8.64869:=45 \cdot\left(389.191{ }^{\prime}\right.\)
    45
        4324345
    3459476
    389/19105

In the fame manner the numbers in the other Columns of Table VI, are to be ufed.

Cc 3
Moreover

Moreover the numbers in the faid fixth Table will at firff fight fhew how many years

To find how many years rurchafe an Annuity or a Leafe foryears is morth. purchafe an Annuity to continue any number of years under 31 is worth, to be fold for prefent money, compound intereft being computed on both fides, at any of the faid rates \(4,5,6,7,8,9,10,11\) and 12 per centuin: fo if you defire to know how many years purchafe an Annuity iffuing out of Lands for 21 years, to begin prefently, is worth, if it were to be fold for ready money, when the current rate of intereft is 6 per centum; Seek in the firtt Column of Table VI. for 21 years, and carry your eye from thence equidiftant to the head-line of the Table till you come under 6 , which (as before hath been faid) fignifies \(\sigma\) per centum. So in the fourth Column you will find 11.76407, whereof you need only confider 11.76, which hews that the faid Annuity is worth II years purchafe, (or 11 times one years rent whatever it be) and 76 parts of one years purchafe divided into 100 parts, or a \(11^{\frac{3}{4}}\) years purchafe and a little more. The fame annuity when money was at 8 per centum was worth 10 years purchafe and about \(-\frac{1}{1}-\frac{0}{0}\) part of a years purchafe more, as the number in the Column of 10 per centum right againft 2 y years will difcover.

In like manner fuppofing 10 per centum to be a fit rate to be allowed in the valuation of Leafes of houfes, the Leafe of a houfe for 21 years will. be found by the fald Table to be worth 8 years purchafe and \(-\frac{64}{10}\) parts of \(a\) years purchafe, or 8 years
purchafe

\section*{Chap, V.}

Interef.
purchafe and an half, and halfa quarter of a years purchafe, and fomewhat more; But note here, that in valuing of Leafes, the rate per centum is to be fet higher or lower according to the goodnefs of the thing leafed, and the certainly or uncertainsy of the rent.
XVI. When a fum of money is propounded, and it is required to know what Annuity ( to continue any number of years, and according to any given rate)that fum will buy, you may pre-

Of the purchafe of Annuities at componnd in lerifg. fuppofe at : pleafure an Annuity for the term of years propounded, and find the value of that Annuity in ready money (according to the fifteenth kuleaforegoing ) at the rateaffigned ; then will the proportion be as lollowesh.

As the value found is in proportion to the fuppofed Annuity; \(\int o\) is the fum of money propounded, to the Annuity required.

So if it be rcquired to find what Annuity to begin prefently, and to continue three years,500\%.in prefent money will purchafe, compound intereft being computed at 6 per centum, per annum: The Anfiner will be \(187 \mathrm{l.1.s.1}\) d. very near:

For prefuppofing an Arnuity at pleafure, to wit, 378.7430 .881 . payable yearly for 3 years, the value thereof in prefent money will (by the fifteenth Rule of this Chapter:) be found to be 3012.3848l. Therefore by the Rule of proportion fay.
\[
1012 \cdot 3^{848} \cdot 378,743088:: 500: 187,054
\]

That is to fay, if \(1012.3848 \%\) in ready money will buy an Annuity of \(37^{8.743088 ~} \mathrm{l}\). (to contienue threc years) then 500 l . in prefent money will purchafe an Annuity (to continue the fame term of years, and at the fame rate of intereft )of \(\mathbf{1 8 7 . 0 5 4 ,}\) \(\& c\), that is 187 l .1 f .1 d . very near.

\section*{The Conftruction of the following Table VII.}

Upon this ground the following Table VII. is calculated to fhew what Annuity ( to continue any term of years under \(3 \mathbf{I}\), and at any rate of intereft mentioned at the head of that Table) one pound will purchafe, by which Table, and by the help of Multiplication, queftions concerning the purchafe of Annuities, Rents or Penfions, by any fum of ready monty propounded, may be refolved without confiderable error. But a more ready way to make the faid Table VII. may be this following viz.

Forafmuch as it is evident by the conftruction of the third Table aforegoing, that one pound ready money is equivalent unto \(1.06 \%\). payable at the end of a year to come, at the rate of 6 per centum, per annum; therefore this 1.06 is to bethe firft number in the Columnintituled 6 per centum in the fubfequent Table VII. Again, the prefent value of one pound Annuity to continue two years at the faid rate will be found by the preceding Table VI. to be near 4.83339 l. Therefore by the Rule of Proportion, fay,

\section*{Chap. V. \\ Intereft. \\ 417}

\section*{\(1.83339: 1: 1 \div 54543,8 \mathrm{cc}\)}

That is, if \(\mathbf{1 , 8 3 3 3 9}\). ready money will purchate an Annuity of 11 . (to continue two years; ) what Annuity to continue the fame time will il. in prefent money purchare? Aufwer, an Annuity of. 54543 l . that is sos. 11 d. very near, to continue two years ; therefore the faid Decimal \(.54543 l\). is to be placed as the fecond number in the fourth Column of the fubfequent Table VIIHeace it follows, that if y or unity be divided by every one of the numbers in all the Columns of Table VI. except the firf Column of years, the quotients will givethe refpective numbers to be placed in the like Columns of the following Table VII. : In which operation it will be requifite, that the numbers in the preceding Table VI. be continued to more places than are there expreft, to prevent error that will arifeby adding of defeative decimals.

Table
Interef.

\section*{Chap. V.}

Interef?
419

\[
\begin{array}{|c|c|}
\hline 7 . & 8 . \\
\hline
\end{array}
\]

Years.


\section*{420 \\ Interef. Appendix:}

\section*{The ufe of the preceding Table VII.}

2uef. 1. What Annuity or yearly rent iffuing out ot Lands, to begin prefently, and to continue 14 years, wil \(320 \%\). purchafe, compound intereft being reckoned on both fides, at the rate of 6 per centum, per ажиит? Аи〔w. \(34 l .8\) s.6\% very near, which is thus found out, viz. In the fourth Co fumn of the preced ing Table VII. under 6 at the head of rhat Column, and right againft 14 years you will find this decimal . 10758 , which fhews that 1 . xeady money will purchafe an Annuity of .10758 \%. (that is \(2 \mathrm{f.1} .1 .2 \mathrm{f}^{+}\)) therefore multiplying the faid decimal . 10758 by the faid 320 ; the product (according to the fecond Rule of the 26 th. Chapter of the preceding Book) will be found to be 34.425 , \&xc. that is \(34 l .8 \mathrm{~s}\). 6 d . very near, which is the Awfwer of the queltion.

\[
34142560
\]

In like manner, if 10 per centum be thought a fit rate of insereft to be allowed in purchafing Leafes ot houfes, \(500 \%\). will buy a prefent yearly rent of 63 l .18 s. id. payable for 16 years out of a houfe. For underneath 10 at the head of the 8 th Column, and right againtt 16 years (in the preceding Table VII.) you will find this decimal. 12781 , which be-

\section*{Chap. V.}
ing multiplied by 500 , (the number of pounds propounded to purchafe the Leafe! the product will be fourd to bs 63.90500, that is, 63 l.18s.1d.t as by ihe futerequent operation is manifeft.
\[
\text { I ., } 12781:: 500 \cdot(63.905
\]
\[
500
\]

63190500
XVII Upon the fame foundations which have been laid in the \(12,13,14,15\) and 16 Rules of this Chapter, for the ma- The moking of king of Tables which refpect yearly payments; Tables may be made for half yearly and quarterly payments,

Tables for haiff yearly and quartcrly Pay: ments. the intereft of \(100 \%\). for \(\frac{1}{2}\) year, and likewife for \(\frac{x}{4}\) year being firft agreed upon: For if we fuppofe that at the rate of \(6 \%\) for \(100 \%\). for a year, the intereft of 100 l . for \(\frac{1}{2}\) year is \(3 l\). the numbers 100 and 103 are to be ufed in the fame manner to calculate Tables for half yearly payments, as the numbers 100 and 106 have been before ufed to form Tables for yearly payments. But if at the rate of 6 per centum. per annum, the intereft of rool. for \(\frac{1}{2}\) year ought to be fuch, that being added to the faid principal \(100 \%\).and the whole put forthat intereft for the next half year, at the faid rate, the fum then due (to wit, at the years end) muftexaAly amount unto \(106 \boldsymbol{l}\). In this cafe a Geometrical mean proportional number between the exa treams 100 and 106 muft be fought, which mean will (by the following 18 th. Rule) be found to be near 102.956301 t, And then the numbers 100 and 102.956301 , oxc, are to be ufed infead of the numai

\section*{Interefis}
numbers 100 and 106 in manner afotefaid. In like manner, if it be fuppofed that at the rate of 6 per centum, per annum, the intereft of \(100 l\). for \(\frac{1}{4}\) year is \(1 l .10\) S.Or \(1.5 l\). the numbers 100 and 10 r .5 are to be ufed for the calculating of Tables for quarterly payments, in the fame manner as the numbers 100 and 306 for yearly payments. But if at the rate of 6 per centum, per annum, the intereft of rool for \(\frac{1}{4}\) year ought to be fuch, that being added to the faid 100 l . and the whole put forth at the fame rate of intereft for the next \(\frac{1}{4}\) year, and in that manner for the third and fourth quarters, and that the fum due at the years end muft exactly amount unto \(\mathbf{1 0 6} \%\). In this cafe a feries or rank of five numbers in Geometrical proportion continued muft be confidered, viz: the prineipal iool. (which is the leffer of the two extream proportionals; ) the three fums (compofed of principal and intereft) due at the end of the firft, fecond and third quarters of the year, (which are the three mean proportionals) and \(106 \%\). due at the years end (which is the greater of the two extream proportionals; ) now between the faid extreams 100 and 106, the firft (to wit the leaft ) of the faid three mean proportionals is to be fought, which (by the following 20th.Rule of this Chapter) will be found to be near 101.4673 t. And then the numbers 100 and 101.4673 , \&c. are to be ufed inftead of the numbers 100 and 106 in manner aforefaid.

Tofind a Geo. metrical mean proportiomal number bstween two numbers givem
XVIII. Two numbers being given to find a Geometrical mean proportional between them; multiply the two given numbers one by the other and extract the fquare root of the
product, \(f 0\) is fuch fquare root the mean proportional fought:- for example, if 8 and 18 are two numbers given, and it is required to find a mean numberGeometrically proportional between them, multiply 18 by 8 , fo is the product 144, whofe fquare root is 12 for the mean proportional fought; fo that 8,12 and 18 , are three numbers in Geometrical proportion continued, viz. As 8 is in proportion to 12 , fo is 12 to 18 . In like manner a Geometrical mean proportional between the extreams 100 and 106 will be found near \(102.956301 t\).
XIX. Two numbers being given, to find the firft of two Geometrical mean proportionalnumbers between theextreams given, multiply the fquare of the leffer extream by the greater, and extract the cube root of the product, fo is fuch cube root the leffer of the two mean proportionals required: for example, if 8 and 27 are affigned

To findthe firf of the Gcometrical mean proportional sumbers be tween two extream tumbers given. for two extrearms, the leffer mean will be found 12 ; for according to the rule, the fquare of 8 the leffer extream is 64 , which being multiplyed by 27 (the greater extream) produceth 1728 , whofe cube root is 12 the leffer mean fought, then may the greater mean be found more eafily by the Rule of Three, for \(8 \cdot 12:: 12 \cdot 18\), fo that 12 and 18 are two means Geometrically proportional between the extreams 8 and 27 , viz. thefefour numbers are in geometrical proportion continued, to wit, 8 • 12 - 18 and 27.

\author{
XX.Two
}

To find the firft of three Geo metrical mean proportionals betweentwo
- extream numbers given.

\section*{Intereft.}

Appendix. \(X X\).Two numbers being given to find the firtt of three Geometrical mean proportionals between the extreams given, multiply the cube of the leffer extream by the greater, and extract the Biquadrate root of the product, fo is fuch Biquadrate root the firft (to wit, the leaft) of the three mean proportionals required: for example, if 2 and 32 are two extreams given, the firft and leaft of three Geometrical mean proportionals will be found to be 4, for (according to the Rule) the cube of 2 (the leffer extream given) is 8 , which being multiplied by 32 (the greater extream) produceth 256 , the Biquadrate root whereof being extracted (according to the 29 Rule of the 33 Chapter of the preceding Treatife) gives 4 for the firft and leaft of the three means fought, the other means may be eafily found by the Rule of Tbree for,
\[
2 \cdot 4:: 4 \cdot 8:: 8 \cdot 16:: 16 ; 32
\]

So that thefe five numbers will appear to be in Geometrical proportion continued, to wit,
\[
2 \cdot 4 \cdot 8 \cdot 16 \cdot 32
\]

In like manner the firff and leaft of three Geometrical mean proportionals between the extreams 100 and 106, will be found to be near 101.4673, \&c. Thus have I thewed the moft eafie wayes (raifed from clear grounds) to make Tables for the refolution of the ufual queftions, which depend upon the computation of intereft, by the help of Multiplicationonly.

Queftions

Queftions to excercife the precedent Tables, witb their ufe in Solving Queftions of the fame nature, when the number of years exceeds 30 .

Queft. I. If the Leafe of a houfe be worth \(153 \%\). Fine, and 161. yearly reut, payable yearly for 21 years, and the Leffee be defirous to bring down the Fine to 50l. and foto pay the more Rent, the quefion is, what rent the Tenant fhall pay, accompting compound intereft at the rate of 10 per centum, per аянзт? Anfoper, 271.18 5. \(\frac{3}{4} d\). near.

Firft find the difference between the Fines, which is \(1 \mathrm{O}_{3}\) l. Then after the manner of the examples of the ufe of the preceding Table VII. feek what Annuity or reat to continue 21 years, \(103 \%\) ready money will purchafe at 10 per centum, fo will you find \(116.18 \mathrm{~s} .1_{7}^{\frac{3}{4}} \mathrm{~d}\). which being added to the old rent \(16 \%\) gives 27 l . \(18 \mathrm{~s} .1 \frac{3}{4} \mathrm{~d}\). which the Tenant muft pay to the end that the Fine may be diminifhed unto \(50 l\).

Queft. 2. There is a Leafe of certain Lands to be let for 14 years for 250 l . Fine, and 44 l . Rent per. annum, payable yearly, but the Tenant is defirous to pay lefs Rent, viz. 20 pounds per annum, and to give a greater Fine; the queftion is what Fine ought to be paid to bring down the rent to 20 l . per annum, accompting compound intereft, at the rate of 6 per cent. per annum? Anfwer, 473 l . 1 s .7 d .

Firft find the difference between the Rents, which will be 24 pounds per an. Then by the help of the preceding Table VI. feek what Annuity or Rent of \(24 l\). per annwm, to continue 14 years, is worth in ready money at 6 per centum, per annum, , will you Dd
find
find 223 l. 1s. 7 d . which being added to the firft Fine 250 pounds, gives 473 l.1s. \(7 d\), which the Te- \(^{2}\) nant mulf pay, to the end the rent may be brought down to 201 . per anyum.

Quef.3.There is a Leafe of certain Lands worth 32l.per annum, more than the rent paid to the Lord for it, of which Leafe feven years are yet in being, and the Leffee is defirous to take a Leafe in reverfion for 21 years, tobegin when his old Leafe is expired, the queftion is, what fum of money is to be paid for this Leafe in reverfion, accompting compound intereft at the rate of 6 per centwm, per annum. Anfwer, 2501.75. 2 d. +

Firft by adding the 7 years of the Lease in being to the 21 years you would have in reverfion after thofe feven are expired, the fum is 28 . Then by the preceding Table VI.

The prefent worth of ill. An-2 nuity for 28 years at 6 per centum compound intereft, is

Likewife the prefent worth of \(1 . ?\) Annuity for 7 years is

Therefore the difference of thofe) preent worths, thall be the prefent value of \(i l\), Annuity for 21 years in reverfion after 7 years -

Which multiplied by 32 . (the? yearly rent propounded) gives the \(250.362: 56\) Answer of the queftion.

\section*{Chap. V,}

Interef.

\section*{Otberwife thus.}

Firft by the help of the faid Table VI. find out how much \(3^{2} l\). yearly rent for 21 years is worth in ready money, as if the 21 years were to begin prefently, at the rate of 6 per centum, which ready money will befound 376.45024 l. Then by Table V.find what 376.45024 l . due at the end of 7 years to come, is worth in ready money; fo will it be 2501.75 .2 d . which agrees with the Anfwer before found.

2aef.4. One would beftow 6301 . to purchafé a prefent yearly rent or Annuity of \(60 \%\), to be paid by yearly payments, the queftion is to know how many years the faid Annuity muft continue, compound intereft at 6 per centum, per annum, being allow'd on both fides. Anfm. 17 years, and 23 dayes, very near.

Firft I divide 630 by 60 , the quotient is 10.5 , which thews that 10 years purchafe and an half are given for the Annuity; then fearching for 10.5 , in Table VI. in the Column of 6 per centum, I find it not exactly, but the neareft lefs then it, is 10 .47725, ftanding right againft 17 years, and the next greater than 10.5 is 10.82760 which is placed againft 18 years, Whence I infer that the Annuity mult continue 17 years and more, yet lefs then 18 years. Now the proportional part of a year to be added to 17 years, may be found out near enough for ufe, thus, viz. fubtract the faid leffer tabular number 10.47725 from the greater 10.82760 , fo the remainder will be found .35035 : Alfo fubtracting the faid 10.47725 from 10.5 (the quoti-

Queft.5. If an Annuity of 961 . payable by yearly payments for 14 years be fold for 826 l, what rate of interefl per centum, is implied in that bargain Anfw. \(71.55 .7 \frac{1}{2} \mathrm{~d}\). near.
Firft, dividing 826 by 96 , the quotient is 8.60146 , which (hews how many years purchafe was given for the Annuity; then fearching for 8.60416 in Table VI. in a right line pating from i4 years, equidiflant to the head line of the Table, I find it notexactly, but the neareft lefs thanit is 8.24423 (which flands in the Column of 8 per cent. ) and the neareft greater is 8.74546 (which ftands in the Column of 7 per cent. whence I infer, that the rate of interef required is between 7 and 8 per cent. )and the proportional part of \(\mathrm{s} l\). to be added to \(7 l\). may be found out near enough for practice thus, viz. fubtrac: the faid leffer tabular number 8.24423 from the greater 8.74546 , the remainder will be . 50123. Alfo fubrract 8.60416 (the quotient firt fund, which falls between the faid tabular numbers from the faid greater tabular number 8.74546, the renainder will be 14130 ;then fay by the rule of three in decimals, as \(\boldsymbol{\rho} 123\) the greater remainder (or difference between the two tabular numbers) is to 14130 the leffer remainder; \(\{0\) is \(I l\). (the difference between 7 per cent. and 8 per cent.) to .2819 ,

Chap. V. Intereft. 429 \&xc.or 5 y .7 d .2 f . which added to 7 l .gives 71.58 .7 d . af. which is near the rate of intereft p.c. required.

2uef. 6. If a years rent (or one years purchafe) be paid as a Fine, for renewing or adding 7 years to 14 years yet to come of an old Leaje for 21 years, and accordingly a new Leafe be taken for 21 years, to begin prefently (which proportion is ordinarily obferved by Bißhops, Deans, and Cbapters, Heads and Fellows of Colledges in letting Leases of their Lands) what rate of intereft per centum is implied in that Agreement? Anfw. 11l.11s. 8d. If. and fomewhat more.

To folve this Queftion, firft I fearch in the presceding Table VI. to find out wo numbers of feated in forme one Column of intereft, that one of them may ftand right againft 14 years, and the other againft 21 years; and fo qualified that the difference bet ween them may be exactly 1 or unity ? but not finding any two numbers precifely anfwer-: ing thofeconditions, I take thofe numbers that come neareft, which will be found in the Columns of II and 12 per cent, for the difference between the numbers 698186 and 8.07507 , which ftand in the Column of 11 per centum, right againlt 14 years and 21 years, is 1.09321 , which exceeds \(\mathbf{1}\) (that is 1 years purchafe) by .09321 ; Alforthe difference berween 6.62816 and 7.56200 , which ftand in the Column of 12 per cent. right againft 14 years and 21 years, is .93384 , which wants .06616 of 1 ; therefore I divide \(1 \%\). (the difference between \(11 \%\), and \(12 \%\), per cent. ) into two parts, in fuch proportion one to the other, as the faid decimals .09321 and .06616 are one to the other; fo I find the faid parts of \(1 l\); to be near \(.584^{8}\) and 4151 ; or 11 s. \(8 \mathrm{~d} . \mathrm{if.t}\) and 8 s . Dd 3
\(3 d\). per centum, or the latter being fubtracted from \(12 \%\). per cent. gives \(11.5848 l\). or nl l . 115.8 d . If \(t\), which is very near the rate of intereft required by the queftion.

2uefi,7. What is the prefent worth of 11 . per ans. payable yearly for 10 years, compound intereft being computed at the rate of \(11.5848 \%\) per cent. An. \(5 l .15: 0 \mathrm{~d}\). very near, which is found out by the help of the preceding Table VI. in this manner, viz.

The tabular number for 10 years \(\} 5.88923\)
The tabular number for 10 years? at 12 per centum is 5.65022

Their difference is \(\qquad\) 0.23901

Then fay by the Rule of Three in decimals, as 1 l. (the difference between 11 and 12 per cent. )is to.5848 \(l\). (to wit, the decimal by which the given rate in the queftion exceeds \({ }^{11}\) per cent.) fo is 83901 ( the difference found out as above)to. \(13977^{+}\); swhich being fubtracted from 5.88923 (the greater of the two tabular numbers above mentioned ) there will remain 5.74946 , or \(5 l .15 \mathrm{~s}\). od. which is near the prefent worth, of one pound yearly \(r \in n t\) to continue 10 years, at the propofed rate of \(11.5848 \%\). per centum.
After the fame manner the prefent worth of \(i l\). yearly rent payablefor 21 years, at the fame rate of intereft, will be found to be 7.77503 l.or \(7 l .15\) s. \(6 \mathrm{~d}_{0}\) very near, from which if you fubftract 5.74946 (being the afore-mentioned prefent worth of \(1 \%\) yearly rent for 10 years) there will remain 2.02557

\section*{Chap. V.}
or \(21.05 .6 d\). which is near the prefent worth of a Leafe of 1 l. rent per annum, for 11 years in teverfion, to begin after 10 years yet to come in a Leafe are expired; Hence it isevident, that if a Tenant to a Colledge hath 10 years yet to come in a Leafe, at 1l.rent per annum, and defires to have 11 years renewed, or added to thofe 10 , and fo take a new Leafe for 21 years, to begin prefently at the fame rent, he muft give \(2 l .0\). \(6 d\). or two years purchafe and \(\frac{11}{40}\) part of a years purchafe, very near (accotding to the fundamental proportion before affumed in the fixth queftion.) The like may be done for any other term of years under 30 , by the help of the faid Table VI .

But yet by a Table calculated pur- Concerring tho pofely for the faid rate of \(11.5848 \%\). renceming of a per sentrim, (according to the fifteenth

Collidge Leaje Rale of this Chapter) queffions of the.
of Lands. fame kind with the two laft, may be more eafliy ant fwered, and therefore (for that they come often in practice) I hall here infert fuch a Table, as If find it ready calculated to my hand by Doctor Newotion, in his Scale of Interefl lately publifh \({ }^{2}\), which Table is to be ufed in every refpect like to the preceding Table VI. and will be very ready and afetul, for the proportioning of Fines, in the renewing of Leafes held from Cathedral Churches and Colledges, as will be manifeft by the manner bf folving the two following queftions.

Dd 4 2pef.

2uef. 8. If a Colledge Tunat hath 7 years yet to come or unfpent in a Leafe of lands for 21 years, at \(1 l\). yearly rent, and defires to have 14 years renewed or added to thofe feven years, and futo take a new Leafe for 21 years to begin prefently, what muft he pay for a Fine? Anfwo.31.35.0d.

The rule for finding out the anfwer of the queftion propofed, and fuch like, is this; viz.

From 7.77507 (being the number which an (wers to 21 years in this Table VIII.) fubtract alwayes the tabular number which belongs to the number of jears to come or unfpent in theold Leaje, fo the remainder will thew what Fine muft be paid for the years to be renewed or added, to make thofe unfpent years in the old Leafe to be 21 years compleat again, at \(1 \%\). yearly rent.

So to folve the queftion propofed.

\section*{TABLE VIII} Sbewing the prefont Annuity for any number of years under 22, at the rate of L11. 11 s .8 d . \(\hat{t}_{1}^{3} \mathrm{f}\) f. per centum
compound interefl.
Years \({ }^{\text {prifent worth }}\)
\begin{tabular}{|l|l|}
\hline 1 & 0.90034 \\
2 & 1.69938 \\
3 & 2.41922 \\
4 & 3.06438 \\
5 & 3.64262 \\
6 & 4.16088 \\
7 & 4.62940 \\
\hline 8 & 5.04176 \\
9 & 5.1496 \\
10 & 5.74948 \\
11 & 6.04934 \\
12 & 6.31819 \\
13 & 6.55907 \\
14 & 6.77507 \\
\hline 15 & 6.96868 \\
16 & 7.14226 \\
17 & 7.29786 \\
18 & 7.43737 \\
19 & 7.56243 \\
20 & 7.67455 \\
21 & 7.77507 \\
\hline
\end{tabular}

From

\section*{Chap. V.}

From the prefent worth of it 1.3 , 8.7507 yearly rent for 21 years, which is

Subtract the prefent worth of the) fame rent for 7 years (that were unfpent in the old Leafe.)

And there will remain the Fine? fought, to wit _—_

That is to fay, 3.14967 l. or 3 l. 3 r.od. (very near) muft be paid as a Fine, for renewing or adding 14 years to 7 years, that were unfpent in the old Leafe, the yearly rent being 1 /. Alfo the faid 3.14967 thews, that fuch a renewal is worth 3 years purchafe, and near \(\frac{11}{10} \div\) parts of a years purchafe (what ever the rent be.)

2uef. 9. If a Tenant that hath 17 years yet to come, in a Leafe of lands held of a Colledge for 21 years, at \(50 \%\) yearly rent, be defirous to repew 4 years, and fo make thofe 17 years to be 21 years compleat again at the fame rent, what mult he give for a fine? Answ.23l.17s.2d. 1f. For, according to the rule before given,

Subtract the prefent worth of the fame rent for 17 years (that were un(pent in the old Leafe.)

And there will remain — 0.47721
Which multiplied by the rent -1_ 50
The product will be the Fine
23186050
Queftions

Qeftions of this nature may be readily folved without the lofs of one fixteench part of a years Purchafe by the help of the following Table IX, which I have drawn from the foregoing Table VIII for the benefit of fuch as undertand not Decimal fractions:for example, if a Colledge-Tenant defireth to have 10 years added to 11 jears that are tocome or unfpent in a Leafe of Lands that he may have a new Leafe for the term of 21 years to begin prefently, the following Table IX. hews that he muft give for a Fine 1 yearsPurctiafe, and 2 quarters of 2 years Purchafe, and 3 quarters of a quarter of a years Purchafe, viz. one years rent, and half a years rent, and three quarters of a quarter of a years rent: Suppofing then the rent to be \(48 \%\) per аинит, the Fine may be computed thus.

One years rent is \(48: 00: 00\)
Halfa years rent is \(24: 00: 00\) Three quarters of a quarter of
\[
9: 00: 00
\]

The fum is the Fine required \(81: 00: 00\)
Whence it appears that the Tenant mult give \(8 \mathrm{I} \%\). as a Fine, for adding of to years to 11 years that were unexpired in his old Leafe, ro the end he may have a new Leafe for 21 years in being.

In like manner the following Table IX.fhews that the Fine for renewing or adding 7 years to 14 years that are unfpent in a Leafe of lands, to the end there may be a new Leafe for 21 years in being, is valued at 1 years Purchafe precifely, which is the fundamental proportion affumed in calculating the forea going Table VIII, as before was faid.

TABLE IX:


The like may be done for renewing any 0 other term of years under 21 , at any rent propofed.

But becaufe it may fometimes happen, that the number of years in queftions belon-
of finding out tabular numbers for any serm of ycars above 30. ing to the preceding \(3,4,5,6\) and 7 Tables may exceed 30 , I thall by the five following queftions thew, how by the help of thofe Tables the anfwer to any queftion of that nature may be found out near the truth, when the term of years is above 30 .

2 neft.io. If 340 l. be put forth at 4 per centum, compound intereft, and both principal and intereft be forborn until the end of 45 years, what will then be due? Anfwer, 1986 l . very near.

To refolve this queftion and the like, oblerve this rule, viz. Firft make choice of fuch numbers of years in Table III. that if they be added together will make the number of years propofed in the quefion, as 17 and 28 ,or 15 and 30 , each of which pairs make 45, then looking into Table III. in the Column belonging to 4 per centan, you will find right againft 17 and 28 years thefe numbers, 1.94790 and 2.99870 , which being multiplyed one by the other will produce \(5.84116+\). or \(5 l .165 .10 d\) which Thall be the increafe of \(1 l\). forborn 45 years at 4 per centum, compound intereft; therefore multiplying the faid 5.84116 by 340 , the Product will give 1985.994 , \&c. or \(1986 \%\). very near for the Anfwer of the queftion.

The reafon of the faid Rule will be manifeft by this Theorem, viz. If there be a rank of numbers in Geometrical proportion continued, beginning
with 1 or unity, as \(1,2,4,8,16,32,64,128,8 c\). Alfo if the firft term tbe catt away, and over or under all the reft of the terms there be placed another rank of numbers, beginning at 1 and proceeding according to the natural order of numbers, as \(1,2,3,4,5,6,7, \& c\). which may be called the Indices of thofe in the firft rank, after the firft term 1 is caft away; I fay if any two of thofe remaining Geometrical proportionals be multiplyed one by she other, the product thall be a proportional correfpondent to that Index, which is equal to the fum of the Indices anfwering to the two proportionals that were multiplyed one by the osher.
\[
\begin{aligned}
& \text { Proport. } 2 \cdot 4 \cdot 8 \cdot 16 \cdot 32 \cdot 64128 \\
& \text { Indices. 1. } 2 \cdot 3 \cdot 4 \text { • 5. } 67
\end{aligned}
\]

So if 4 and 32 , which are the fecond and fifth proportionals in the upper rank, be multiplyed one by the other, the product is 128 , which thall be the feventh proportional, becaufe the fuim of the Indices 2 and 5, which anfwer to the faid 4 and 32 , is 7 . In like manner becaufe the fum of the Indices 3 and 4 is 7 , therefore if the third and fourth proportionals, to wit, 8 and 16, be multiplyed one by the other, the product fhall alfo give the feventh propertional 128. Now forafnuch as the numbers in every one of the Coluinns, except the firft Column of years in the preceding Table III. are continual proportionals whofe firft term is 1 ,but'ris excluded out of the faid Columns, as appears by the Conftruction of that Table, and for that the numbers of years \(1,2,3,4,5, \& c\). are placed
placed as Indices thewing the order or feat of thofe proportionals inferted in the Columns, therefore the rule before given for continuing that Table to any numbers of years is manifeft.

Quef. 11. If one pound be due or payable 50 years hence, what is it worth in ready money, by rebating at \(S\) per centum, per anииm, compound intereft ? Anfw. .08720, \& c. or 1 s. \(9 d_{0}\) twhich is found out by the help of Table V. in the fame manneras the Anfwer to the lait Queftion; (refpect being had to the fecond and third rules of the 26th. Chapter of the preceding Book concerning the multiplication of decimal fractions.)

Queft. 12. If an Annuity of one pound payable yearly for 40 years, be all forborn until the end of that term, what will it then amount unto, compound intereft being compured at 5 per centum per annwm? Anfip. 120l. 16s od. thus found out: Firft, according to the fecond way of calculating the fourth Table in the thirteenth Section of this Cbapter, find out a Principal, which may have fuch proportion to the propofed Annuity 1l. as \(100 l\). hath to 5 , faying, if \(5 l\). interett hath \(100 l_{\text {. for a }}\) principal, what principal muft I \(l\). intereft have? Anfoper, 20l. Secondly, feek (after the manner of the preceding tenth queftion) what \(20 l\). will be augmented unto being forborn 40 years, at the rate of 5 per centum, per annsm, compound intereft, fo you will find \(140.798 t\), from which fubtracting the faid principal \(20 l_{\text {, the remainder will ber } 20 .}\) \(798^{+}\), or 1201.16 s. which is the anfwer of the queftion.

2uef. 13. If an Annuity of one pound payable yearly for 37 years, be to be fold for prefent mo- ney, what is it worth, compound intereft being computed on both fides at 6 per centum, per annam? Answer, \(14 l .14\) s.9 d. which is found out thus : Firf, according to the fecond way of calculating the fixth Table in the fifteenth Secition of this Chapter, find out a principal in fuch proportion to one pound (the propofed Annuity) as 100 is to \(\sigma_{1}, f_{0}\) will fuch principal be found \(16.66666+\), then after the manner of the preceding eleventh queftion find out the ready money which is equivalent to 16.66666, due 37 years hence, fo will fuch ready maney be found to be 1.92988 t ( or 1 l .18 s. 7 d ) which being fubtracted from the faid principal 16.66666 , the remainder will be \(14.73678 t_{\text {, }}\) or 14 l.14 s.9 d. which is the Anfwer of the Queftion propounded.

2uef. 14. What Annuity payable by yearly payments to continue 37 years will one pound Purchafe, at 6 percentum, per annum, compound intereft? Ansm. Is. 4 d near, which is found out thus; Firft find out the prefent worth of one pound Annuity to continue 37 years, which prefent worth (by the laft queftion) will be found 14.73678 I. Then fay by the Rule of Three, if 14.73678 l. will purchafe an Annuity of one pound, (to continue 37 years) what Annuity to continue the fame term will 11 . purchafe? Anfwer, .06785 t , or \(1 \mathrm{s}\).4 d which is the anfwer of the queftion propounded.
440. ADemonftration of Appendix.

\section*{CHAP. VI.}

A Demonftration of the Rule of Three, or Rule of Proportion.
1. FIOur numbers are faid to be proportionals, when the firft containeth the fecond fo of-- ten as the third containeth the fourth; likewife when the firft is fuch part of the fecond, as the third is of the fourth: So thefe numbers following are called proportionals, viz.
\[
\begin{array}{cc}
4 \times 6,6: 4 \times 9 \\
\frac{2}{3} \times 12,12: \because \frac{1}{3} \times 15
\end{array} 15
\]

That is to fay, 4 times 6 (or 24 ) is faid to havefuch proportion to 6 , as 4 times 9 (or 36) hath to 9. In like manner, \(\frac{2}{3}\) of 12 (or 8 ) hath fuch proportion to 12 ; as \(\frac{2}{3}\) of 15 (or 10 ) hath to 15 .
II. When four numbers are proportionals, the product arifing from the multiplication of the two extreams is equal to the product of the two means.

\section*{Demonfration.}

By the preceding Definition in 1. thefe four numbers are proportionals, viz.
\[
\left\{\begin{array}{l}
4 \times 6: 6: 4 \times 9: 9 \\
B \times C \cdot C:: B \times D: D
\end{array}\right.
\]

The

Chap. VI. the Rule of Three 444
The product of the \(3 \times 6 \times 9\) two extreams is \(-\int B \times C \times D\)

The product of the \(36 \times 4 \times 9\) two means is - \(\}\) C \(\times \mathrm{B} \times \mathrm{D}\)
\(\operatorname{But}\left\{\begin{array}{lllll}4 \times & \times & \times & 9 \\ \mathrm{~B} & \times & \mathrm{C} & \times & \mathrm{D}\end{array}\right\}-\left\{\begin{array}{l}6 \times 4 \times \\ \mathrm{C}\end{array} \times \mathrm{B} \times \mathrm{B}\right.\)
Therefore the Prop. is manifeft,

\section*{Likewife.}

By the preceding definition thefe four numbers are proportionals, viz.
```

2}\times12:12::\frac{2}{3}\times15,1

```

The product of the? two extreams is \(\frac{2}{3} \times 12 \times 15\)

The product of the \(12 \times \frac{2}{3} \times 15\)
But \(\frac{2}{3} \times 12 \times 15=12 \times \frac{2}{3} \times 15\)
Wherefore the propofition is every way proved.
III. From the laft propofition arifeth the Rule of Proportion commonly called the Rule of \(I\) bree, or Golden Rule, which teacheth by three numbers given to find a fourth proportional number in this manner, viz. Multiply the fecond and third numbers mutually one by the other, divide the product by the firft number; \(\int_{0}\) the quotient hall be tbe fourth proportional number fought, in a direct proportion. This Rule hath been fully exemplified in the 8th. Chapter of the preceding Book, and the truth of the E

\section*{442 ADemonfration of Appetidix.} faid Rule may be thusdemonfrated, viz. Let there be three numbers given to find a fourth in direct proportion, viz. if 24 gives 6 , what fhall \(3^{6}\) give? Ox as 24 is in proportion to 6 , fo is 36 to a fourth proportional number fought, which fourth proportional (whatfocver it be) we may fuppofe to be \(Q\), and then thefe four numbers will be proportionals, viz.
\[
24 \cdot 6:: 36 \cdot Q
\]

Therefore by the fecond propofition of this Chapter.
\[
24 \times C=6 \times 36
\]

And becaufe if equal plane numbers be feverally divided by one and the fame number, the quotients will neceffarily be equal between themfelves, therefore
\[
Q \cdot=\frac{6 \times 36}{24}
\]

Whereby it is manifeft that the fourth proportional number is equal to the quotient that arifeth by dividing the product of the multiplication of the Fecond and third proportionals by the fift, which was to be proved.

Note, that every Rule of Tbree inver)e thay be made a Rule of Three direct, by making the third term the firt, and by proceeding forwaid to the other two terms; therefore one and the latne demonftration ferveth for both rules.

CHAP.

\section*{Chap. VII. the Rute of FelloreJhip. 443}

\section*{CHAP. VII.}

A Demonfration of the Dorible Rule of Fellowinip.

THe Double Rule of Fतllomp/hip (commonly called the Rule of Fellowibip with time.) prefuppofeth two things, viz. 1. That the particular Stocks of Merchants in company, have cantinued unequal fpaces of time in the common Stock, 2. That at the end of their Parinerfhip \(p_{2}\) the total gain or lofs is to be divided amongt themp in fuch manner, that their thares fhall have fuch proportion between themfelves, as thofe fums of intereft money have one to another, which at any rate per centum, fimple intereft only being compured, might be gained by the partitular Stocks, within the refpective timed of wheir continuance in the common Stock : Now for the effecting bof fuch a proportional piaxtion, st the Gid Dowble Rule of Fellonoghip gives this direction, viz. Divide the total gain or lofs into fuch ipates, which thall have the fame eproportion one to the other, as is between the products arifing out of the नattiplication of each particular Stock by its correfpondent time.

EoriExample m (frpoferwo Merchanfo \(A\) ind \(B\) to be partners in Traffick, for a certain time firf EE 2

444 ADemonfration of Appendix. agreed on between them, and that A doth permit his Stock of \(100 \%\). to be employed in their joynt Traffick three moneths, and that B forbears his Stock of sol. eight moneths; I fay (according to the faid Kule of Fellow(bip with time) what ever the total gain or lofs be; that part thereof which belongs to A muf have fuch proportion to the gain or lofs of B,as \(100 \times 3\) (or 300) hath to \(50 \times 8\) ( 0 , 400.) This rule bath been fully exemplified in the 13 Chapter of the preceding Book, and the truth thereof, taking the two premifed Suppofitions for granted, may be thus demonftrated.
1. Suppofing \(100 \%\). (the Stock of A) to gain in 3 moneths any certain fum of money, as two pounds; I feek how much 501. (the Stock of B) will gain in the fame time, and at the faid rate: \(\mathrm{fo} I\) find \(2 \times 50\) -l. for,
\(100100 \cdot 2 \cdot 50 \cdot \frac{21}{100}\)
1112. Having found what 5 cl : will gain in 3 moneths, I feeek haw much the faid sol: will gain in
\(2 \times 50 \times 8\)
\& moneths, at the fame rate, and fo. I find
\(100 \times 3\)
lafor,

3. Thus it appears, that if 100 l . in 3 moneths doth gain 2 1. then gof in 8 moneths will gain at thit \& \(\rightarrow\) for !. 1.2 j

Chap. VII. the Rule of Fellorejhip. 445 \(2 \times 50 \times 8\); the fame rate \(\times 50 \times 8\) fo that the proportion \(100 \times 3\) of the gain of \(A\) to the gain of \(B\) is.
\[
2 \times 50 \times 8
\]

As 2 is 10
\[
100 \times 3
\]
4. If both the terms (to wit, the Antecedent and Con fequent) of the faid proportion be feverally multiplied by the faid Denominator \(100 \times 3\), the produets will be in the fame proportion with the numbers or terms mulciplied, (by 17 è 7 . Ewclid) vix, the gain of \(A\) will be to the gain of \(B\),

\section*{As \(2 \times 100 \times 3\) is to \(2 \times 50 \times 8\)}
5. Lafly, becaufe 2 ( the fuppofititious gain firt affumed) is a Multiplicator as well in the Antecedent as in the Confequent of the laft mentioned proportion, it may be expung"d out of both;"and fo the gain of \(A\) will be to the gain of \(B\) in this proportion (which was to be proved) to wit,
\[
\text { As } 100 \times 3 \text { is to } 50 \times 8
\]

EC 4 CHAP.

\section*{446. ADemonfitation of Appendix.}

\section*{C HAP. VIH.}

A Demonstration of the Rule of Alligation alternate, and the ule of. the Jaid Rule in the Compofition of Medicines.

I N order to the Demonfration of the faid Rule, 1 hall premife this Lemma, viz, if the difference of any two numbers given, be multiplied by a number affigned, the product will be equal to the difference between the products which axife from the multiplication of thofe two numbers feverally by the number affigned.

Suppofitions.
Two lines o: \(2 A C=10\) numbers given. \(3 B C=4\) Their difference. \(A B=10-4\) A multiplicator afligned.


Which fuppofitions, and the Diagram being well viewed, the truth of the faid Lemma will be evident, viz.

II. To

Chap. VILI. the Rule of Alligation. 447
II. To add the more light to the following Demonftration of the rule of Alligation alternate, I hall propound a queftion which properly belongs to the \(\mathfrak{f}_{3}\) id rule, viz. Suppofe a Vintner haviọg French- \(^{2}\) mines at \(5 d\), the \(q\) yart, and at \(10 d\), she quart, would make a mixture of them in fuch minner, that he might fell the mixe quantity at \(7 p\). the \(q\) wart, and fo. make as much money of the mixture, as if he Bould fell each quantity of wine at its own price : the queftion is to know what proportion the quantities of both forts of mine in the mixture muft bear one to another. Here according to the Rule of Alligation alternase, I take the differences berween the mean price affigned for the mixture, and the two other given prices, and place thofe differences alternately, viz. the difference between 7 and 10 being 3 , I write 3 againft 5 , likewife
2 beirg the difference between \(7,\{10 / 2\) and 5, I write 2 againft 10 ; fo I 7 亿 513 conclude, that the quantity to be taken of that fort of mine of 10 d . the quart, muft have fuch proportion to the quantity of \(5 d\). the quart, as 2 to 3. That is to fay, if 2 guarss at 10d. the quart be mixed with 3 quarts at 5 d. the quart, the total mixture 5 quarts being fold at \(7 d\).the quart, will yield as much money as the faid 3 quarts at 5 d. the quart, together with the faid 2 quarts at 10 d . thequart; as is cvident by the fubfequent work.


From the premiffes it appears, that when two things are given to be mixt in fuch manner as the Rule of alligation aliernate requires, the propofition to be demonftrated will be this, namely,

Three numbers A.B.C. being given in fuch fort that \(A\).is lefs than \(B\). but greater than \(C\). if the difference between A. and B. be multiplied by C. and the difference between \(A\). and \(C\). be multiplied by B. the fum of thofe products will be equal to the product arifing from the multiplication of A. by the fum of the faid differences,
\[
\text { A }\left\{\left.\frac{B}{C}\left|\frac{\text { Densonftration. }}{B-C}\right| \frac{B-C A}{B-C A} \right\rvert\,\right.
\]

The difference between B. and A. is B-A. which multiplied by \(C\) prodquceth (as is evident by the

Chap. VIII. The Rule of Alligation. 449 Lemma aforegoing in the firf Section of this Chapter) CB-CA.Alfo the difference between A and C is \(\mathrm{A}-\mathrm{C}\). which multiplied by B produceth \(B A-B C\). Then the fum of thofe \(t\) wo products is \(\mathrm{BA}-\mathrm{CA}\). (for +CB and - CB expunge one the other) which fum is manifently the fame with the product arifing from the multiplication of A the mean price, by B-C the fum of the aforefaid differences (to wit, the fum of \(A-C\) and \(B-A\) ) for \(+A\) and - A expunge one another.

When more than two things of different prices are given to be mixt as aforefaid, the Demonftration will not be otherwife : for if the fum of every two products arifing from the multiplication of two alternate differences by their refpective prices, be equal to the product of the mean price multiplied by the fum of the faid differences ; the fum of all the faid products will allo be equal to the product of the mean price multiplied by the fum of all the differences; as will clearly appear by view of the fublequent work.


\title{
\(45^{\circ}\) Compoofition of Apperdix. \\ Moreover, becaure if equal numbers be feverally, divided by one and the fame number, the quotients, will be equal between themélyes, theretore from the premiffes this Corollary will arife.
}

\section*{COROLLART.}
\[
\begin{aligned}
& \text { In the Rule of Alligation alternate, if the aggre- } \\
& \text { gate of the products arifing from the multiplication } \\
& \text { of the feveral alternate differences by their refpe- } \\
& \text { Ctive prices, be divided by the fum of the faid diffe- } \\
& \text { renees, the quotient wil be equal to the main price. } \\
& \text { This may be a provfof any example of the faid rule } \\
& \text { of Alligation. } \\
& \text { OF THE COMPOSITION OF } \\
& \text { MEDICINES. }
\end{aligned}
\]

Sermore of this 1.Medicines and Simples in refpect in Mr. J. Dee Bis Dathematical preface, alfo Tom 2. of P. Herigon and Maficr Mores Alitho metick. of their qualities are confidered in fome of thefe five wayes, viz. either as they are hot or cold, moift or dry, oras they are temperate; fo that fuch Simples or Medicines which work heat in our bodies, are faid to be, hotfuch cold which; are the caufe of coldnefs, \&xc.
II. The mean or middle between the extream qualities of Heat and Caldnefs, alfo between DryUeff and Moilture, is called Temperate or the Temperature;

\section*{Chap. VIII. Medicines. 45 L} perature ; from which each of the faid qualities hot, cold, moift and dry, doth differ in four degrees, fo that, a Mediciee or Simple is faid to be either temperate or elle bot, cold, moift, or dry, in the firft fecond, third or fourth degrec.
III. If the numbers \(1,2,3,4,5,6,7,8,9\), be plan ced as ycu fee from \(A\) to \(B\), the differences, betweem 5 (the middle number) and the fupexiour numbers \(6,7,8.2\), will be \(1,2,3,4\), which may reprefent the 4 degrees of the qualities hot and dry; likewife the differences between \(s\) and the inferipur numbers \(4,3,2,1\), will be \(1,2,3,4\), which may reprefent the 4 degrees of the qualities cold and moift, the temperature reprefented by 0 . being the mean or middle from whence the faid degrees do fwerve.


IK. Since the Rula of Alligation altematarcquires that of two things mifcible, the one muf ex:eed the

452 Compogition of Appendix. mean propounded and the other be lefs, therefore the queftions of Alligation in this kind are to be wrought with the numbers in the aforefaid CoJumn \(A B\), for by them the degrees and qualities are difcovered, being placed as you fee in the Column adjacent to \(A B\), and for dininction fake, thofe numbers in the faid Column AB, may be called the Indices or Exponents of the degrees, which Indices are to be ufed in the fame manner as the prices of Merchandizes in the queftions of Alligation alternate in Chapter 14 of the preceding Book, and therefore thofe examples may be compared with thefe.

\section*{Prop. 1.}

Having divers Simples whofe qualities are known, to make a compofition or mixture of them, in fuch manner that the quality of the medicine may be fome meanamonglt the qualities of the fimples, and the quantity thereof any quantity affigned.

Example 1. An Aposbecary hath four forts of Simples, A, B, C, D, whofe qualities are as followeth, viz. A is hot in the fourth degree, B is hot in the fecond, C is temperate, and D is cold in the third degree; the queftion is to know what quantities of each ought to be taken, to make a Medicine, whofe quantity may be 12 ounces, and the quality in the firtt degree of heat? Seek in the aforefaid column \(A B\), for the Indices or exponents of the qualities of the Simples given, viz. for A which is hot in the fourth degree, take \(9 ;\) for B which is hot in the fecond, take 7 ; for C which
which is temperate, take 5 ; and for \(D\) which is cold in the third degree, take 2 ; that done, rank thofe numbers in the fame manner as the prices of Merchandizes in the queftions of the 14 Cbapter, viz. defcend from the higheft degree of heat unto the temperature, and fo proceed downwards to the degrees of cold, fetting 6 the Index or exponent of the mean quality propounded, which is 1 degree of heat, as common to them all: then by crooked lines or otherwife connect two fuch Indices, whereof one may be greater than the mean, and the other lefs, and proceeding according to the Rule of the fourteenth Cbapter you will find that to make a Medicine of 9 ounces, and the quality refulting to be in the firft degree of heat, you mult take I - ounce of A (being that Simple which was hot in 4) 4 ounces of B, 3 ounces of C, and 1 ounce of \(D\), as will be manifeft by the proof,


3: Lafly, by the rule of proportion you may increafe 4. the Medicine to the quantity of 12 ounces, and yet The quality to continue in the firft degree of hext, according to the following operation.


\section*{The quantity a \(\int\) igued 12 ounces.}

By other connexions of the qualities, other quantities of each Simple would arife, but that hath been fufficiently manifelted in the queftions of the fourteenth Chapter.

Example 2. Suppofe there are five Simples, A, B, C, D, E, whole qualities are as followeth, suit. A is hot in \(3^{\circ}\). B is hot in \(2^{\circ}\). C is hot in \(1^{\circ}\). D is cold in \(1^{\circ}\). E is cold in \(3^{\circ}\). and it is required to mix four ounces of \(B\), with fuch quancities of the ref, that the quality of the Medicine may be temperate?


\section*{Chap. VIII.}

Medicines.
Proceed as before, fo will you find that to make a Medicine of 11 ounces, and the quality of the Form reffulting to be temperate, you mult take I ounce of \(A, 3\) ounces of \(B, 1\) ounce of \(C, \nRightarrow\) ounces of \(D\), and 2 ounces of \(E\); then fince the quantity of \(B_{2}\) in the compofition propounded is limited, vic. 4 ounces, find numbers which may be in fuch proportion to 4 (the quantity of \(B\) afligned) as the numbers \(1,1,4, \mathbf{2}\), (the quanticies of \(\mathbf{A}, \mathbf{C}, \mathbf{D}, \mathbf{E}_{2}\) in the aforefaid Compofition तf 11 ounces) are unto 3 (the quantity of \(B\) in she faid Compofition) in manner following:
\[
\begin{aligned}
& \text { 3. } 1:: 4 \text { - } 1 \frac{1}{3} \text { of A. } \\
& 3 \text {. } 1:: 4 \text { - } 1 \frac{1}{3} \text { of C. (to be mixed noitb } \\
& 3.4:: 4 \text {. } 5 \frac{1}{3} \text { of } D \text {. ( } 4 \text { runces of } B \text {. } \\
& 3.2:: 4 \text { - } 2 \frac{2}{3} \text { of E. } 2
\end{aligned}
\]

A Medicite being compounated of divers Simples Whofe qualities and quantities are known, to find the degtee of the Form refulting, tiz. the exade remperaftient of the Medicine.
Example I.Suppofe a Medictine to be compoundted of two Simples, viz. 6 ounces of ' \(\mathrm{B}^{\prime}\) hot in \(4^{\circ}\). and \(3^{\prime \prime}\) ounces of Chot in \(3^{\circ}\). and it is required to find the temperament of the Medicine, viz. the degriee and quality réfuilting from fuch mixture? Seets in the aforefitid Columin \(A\) ' \(B\) for the Indiles of the refpective degrees and qualities of the Simples given, and difpofe them erderly in ranks right againft their refpective quantities; then multiply each Index by its refpective quantity, and divide the fum of the products by the fum of the quantities:fo will the quotient be the Index of the degree and quality of the Medicine.


So in the faid example the Quotient will be found \(8 \frac{2}{3}\), which is the Index of \(3 \frac{2}{3}\) degrees of heat, and therefore the faid Medicine is hot in \(3 \frac{2}{3}\) de grees.

Forafmuch as any two quantities mifible according to the Rule of Alligation alternate, are in fuch proportion one to the other, as the refpective alternate differences between the mean quality of the mixture and the qualities carrefpondent unto the faid quantities, the demonftration of the aforefaid rale will be manifeft by the Gorollary aforegoing in this Chapter.
- Example 2. Suppofe a Medicine to becompounded of 4 Simples, whofe qualities and quantities are known, yiz. 2 ounces of \(A\) hot in \(3^{\circ} .3\) ounces

\section*{Chap: VIII.}

Medicines.
find the mean quality refulting from fuch mixture. According to the aforefaid rule, I muttiply each Index by its refpective quantity, and divide the fum of the products by the fum of the quantities, fo the quotient is \(4 \frac{3}{7}\), which is the Index of \(\frac{4}{7}\) degrees of cold (for the difference between \(\$\) the Indrx of the temperarure, and \(4 \frac{3}{7}\) the Index tound, is \(\frac{4}{7}\) degrees of cold ) which is the quality of the faid Mpdicine.
은
\(8 \times 2=16\)
\(7 \times 3=21\)
\(5 \times 4=20\)
\(1 \times \frac{5}{14)}=\frac{5}{62\left(4 \frac{3}{2}\right.}\)

Example 3.Suppofe a medicine tobe compounded of feveral Simples, whofe qualities and quantities are as followeth, viz. 4 ounces of a Simple which is cold in 20 . and moift in 10 . 5 ounces hot in \(3^{\circ}\). and (in refpect of drynefs and moifture) temperate; 3 ounces hot in \(2^{\circ}\), and \(d x y\) in \(2^{\circ}\). 6 ounces hot in 10 , and moift in 40.4 ounces cold in 30. and moift in 200 the queftion is to know the temper refulting ?

In the refolution of this quelion there mult be two diltinct operations, each of them like to that in the laft example, vizo

\author{
Ff
}
4. Find
\(45^{8}\) Compofition of Appendix.
1. Find in the fame manner as before, the degree and quality refulting from the commixture of the qualities hot and cold ; fo will you find \(5_{2}^{-\frac{7}{2}}\) which is the Index of \(-\frac{7}{2}\) degrees of heat (for the difference between 5 the Index of the temperature and \(5_{2}^{-\frac{1}{2}}\) the Index found, is \(-\frac{7}{2}\) degrees of heat.)
\begin{tabular}{|c|c|}
\hline  &  \\
\hline \(3 \times 4=12\) & \(4 \times 4=16\) \\
\hline \(8 \times 5=40\) & \(5 \times 5=25\) \\
\hline \(7 \times 3=21\) & \(7 \times 3=21\) \\
\hline \(6 \times 6=36\) & \(1 \times 6=6\) \\
\hline \(2 \times 4=8\) & \(3 \times 4=12\) \\
\hline 22) \(117\left(52 \frac{7}{2}\right.\) & 122) \(80 \cdot\left(3 \div \frac{7}{12}\right.\) \\
\hline
\end{tabular}
2. Find in the fame manner, the temper refulting from the mixture of the qualities dry and moift ; fo will you tind \(3-\frac{7}{1}\) which is the Index of \(1 \frac{4}{1} \frac{4}{3}\) degree of moifture, fo the quality of the faid Medicine is \(-\frac{7}{2}\) degree of heat, and \(1-\frac{4}{1}\) degree of moiflure, as by the operation is manifelt.

\section*{Prop. III.}

To augment or diminib a Medicine in quality acA cording to any degres afigned.

Suppofe a Medicine to be compounded as followeth, viz. I dram of a Simple hot in \(4^{\circ} .2\) drams hotin \(3^{\circ} .2\) drams hot in \(2^{\circ}\). 1 dram hot in \(1^{\circ}, 1\) buid.
dram

\section*{Chap. VIII.}
dram cold in \(1^{\circ}\) and I dram cold in \(2^{\circ}\). Then will the quality of the faid Medicine be in \(\mathbf{I}_{\frac{1}{2}}\) degree of heat (as will be manifeft by the fecond Propofirion.) Now let it be required to augment the faid Medicine in quality, viz. to add fuch a quantity of fome one of the Ingredients (or fome other fimple) which may raife the quality of the Medicine \(\frac{1}{2}\) degree; \(f\) that the temperament of the Medicine atter it is increafed in quantity, may be in \(2^{\circ}\). of heat. Make choice of fuch a fimple, the Index of whofe quality may exceed the Index of the quality affigned, viz. make choice of that fimple which is hot in \(3^{\circ}\). whofe Index is 8 , then proceed according to the I example of the firft Propofition; fo will you find that if I dram of the aforefaid Medicine be mixed with \(\frac{1}{2}\) dram of that fimple which is hot in 30 o the temper refulting from fuch mixture will be in \(2^{\circ}\). of hear.

Laftly,by the Rule of Three, fay, if i dram require \(\frac{1}{2}\) dram, what fhall 8 drams (the quantity of the the Medicine firf given) require?

Anfw. 4. drams: So that if 4 drams of a fimple which is hot in \(3^{\circ}\).be mixed with 8 drans of a Medicine which is hot in \(\mathbf{x}^{\frac{1}{2}}\) degree, the the temper refulting will be in \(2^{\circ}\), of hear, as by the operation is manifeft.
460. Compofition of, \&c. Appendix.
The proff.

If it be required to diminifh a Medicine in quality, you are to make choice of fuch a Simple, the Index of whofe quality may be lefs than the Index of the quality affigned, and then to proced as before.

Here obferve, that if in queltions of this nature, the quantities of the Simples be expreft by weights of divers denominations, they are to be reduced to that weight which is of the loweft denomination in the queftion, according to the fixth rule of the feventh chapter of the preceding book.

The augmenting or diminithing of a Medicine in refpect of quantity; Alfo the finding of the value of any quantity of a Medicine, the prices of the ingredients being known, will be familiar to fuch as underftand the Rule of Proportion, and therefore I thall not infift upon them.

CHAP.

Chap. IX. A Demonftration of \&c. 46r

\section*{CHAP. IX.}

A Demonfration of the common Rule of Falle by two Pofitions.
1. THat the ordinary donble Fule of Falfe is, and low to be ufed in refolving fuch queftions which cannot be readily applied to any of the other rules of Arithmetick, hath been fully declared in the 15 and 31 Chapters of the preceding book; it remaineth to thew what kind of o* peration is prefuppofed before the faid Rule can be applied to the refolution of a queftion, and then to demonftrate the truth of the Rule it felf.
II. In the faid Fule of Falfe, look what operation the queftion requircs to be performed with the number fought and fome given number or numbers, the fame kind of operation in every refpect is to be made with each of the two feigned numbers ( commonly called pofitions) and the faid given number or numbers; which threefold procefs being finitht (whether it be by any one, or all of thefe rules, to wit, Addition, Subtrátion, Multiplication, and Divifion) there will arife three remarkable numbers or refults, to wit, one refulting from the true number fought, and two others refulting from Ff \(3 \ldots\) the

4ヶ2 ADemonffration of Appendix. the two feigned numbers; then from thefe three refults, the errors are collected, which are nothing elfe but the differences between the true refult, and tach of the two folfe refults.
III. After the faid errors or differences are difcovered, the Rule of Falfe will be of no force, urilffs this Analogy or proportionality doth arife, namely, the firfterror muft have the lame proportion to \(t^{\prime} e\) fecond, as the difference between the number Sought and the firf feigned number hath to the difference between the faid number fought and the fecond feigned number; here therefofe it may be demanded, what kind of operation will produce the faid Analogy? To this I anfwer, when the queftion requires the number fought to be increafed, leffened, multiplied or divided by forne given number, or the number ariling from fuch operation to be increafed, leffened, multiplied or divided by fome given number; in any of thofe cafes, the aforefaid Analogy will neceffarily arife, as I thall here manifelt in all the faid cafes. Firft, therefore I fay when unto each of three numbers (namely the number fought by the Rule of Falfe and the two feigned numbers) one and the fame number is added, the faid Analogy will enfue, for in this cafe the difference between the firf fum and the fecond will \(b\) ? equal to the difference betwcen the firtt and fecond ot the faid three numbers; likewife the difference between the firf fum and the third will be equal to the difference between the firft number and the third, which may be proved in manner following.

Suppofitions.

\section*{Chap. IX. \\ The Rule of Falle.}

\section*{Suppofirions.}

Let there be three numbers, to wir,
\[
\begin{aligned}
& A \cdot B \cdot C \\
& 12 \cdot 7,5
\end{aligned}
\]

Suppofe alfo that the firf number \(\mathbf{A}\) is greater than either of the numbers \(B\) and \(C\),

Suppofe alfo, fome number as D (3) to be added to each of the faid three numbers, fo will the three fams be,
\[
\begin{array}{l|l}
A+D & 15 \\
B+D & 10 \\
C+D & 8
\end{array}
\]

The Propofition to be demonftrated is, that the difference between the firft fum and the fecond is equal to the difference between the firft number and the fecond; alfothat the difference between the firft fum and the third is equal to the difference between the firft number and the third.

\section*{Demon(tration.}

The difference between the firft number and the fecond is,
\[
A=B
\]

The difference between the firff furm and the fecond is,
\[
A+D-B-D
\]

\section*{4h4. ADemonfiration of Appendix:}

But the latter difference is manifefly equal to the former ( for \(+D\) and \(-D\) expunge one the o ther) to wit,
\[
A+D-B-D=A-B
\]

Therefore the firff part of the propofition is proved.

Again, the difference between the firf number and the third is,
\[
A-C
\]

The difference between the firf fum and the third is,
\[
A+D-C-D
\]

But the latter difference is manifefly equal to the former, for \(+D\) and \(-D\) expunge one the other, viz.
\[
A+D-C-D=A-C
\]

Wherefore the propofition is fully proved.
The like property might be proved after the fame manner, when one and the fame number is fubtracted from three numbers feverally.

Secondly, when three numbers(namely the number fought by the rule of Falfe and the two feigned numbers) are feverally multiplied by one and the fame number; the aforementioned Analogy will likewife enfue, as may be thus proved.

Suppofitions.
Let there be three numbers, to wit,
\[
\begin{gathered}
A \cdot B \cdot C \\
3 \cdot 5 \cdot 8
\end{gathered}
\]

Chap. IX. the Rule of Falle. 465
Suppore alfo that the firft number \(A\) is lefs than either of the numbers \(B\) and \(C\).

Suppofe alfo, each of thofe three numbers to be multiplied by one and the fame number as \(D\) (4) and the three products to be thefe,
\begin{tabular}{l|l}
\(D A\) & 12 \\
\(D B\) & 20 \\
\(D C\) & 32
\end{tabular}

The Propofition to be demonftrated is, that the difference between the firft product and the fecond hath fuch proportion 10 the difference between the firft product and the third, as the difference bet ween the firft number and the fecond hath to the difference between the firlt number and the third, viz.
\[
D B-D A \cdot D C-D A: \therefore B-A \cdot C-A
\]

Demonftration
Forafmuch as (by the 17 th. Prop. of the feventh book of Euclids Elem.) if a number ( \(D\) ) multiplying two numbers ( \(B-A\) and \(C-A\) ) produceth other numbers \((D B-D A\) and \(D C-D A)\) the numbers produced by the multiplication thall be in the fame proportion as the numbers multiplied are, therefore
\[
D B-D A \cdot D C-D A:: B-A \cdot C-A
\]
which was to be demonftrated.
Likewife when 3 numbers are divided by one and the fame number, the demonfiration will not be otherwife;

466 ADembnftration of Appendix. otherwife; and becaufe by the fecond Seçion of this Chapter, the errors in the Rule of Falfe are the differences between the true refult and the two falfe refults, therefore from the precedent demonferations it is evident, that the aforementioned Analogy or proportionality (namely, when the firft error hath fuch proportion to the fecond, as the difference bet ween the number fought and the firft feigned number hath to the difference between the faid number fought and the fecond feigned number) will fucced from fuch operation, as is before declared in the beginning of the third Section of this Chapter. operation will not produce the faid Analogy, obferve this note, viz. when a queftion requires fome given when a queftion requires fome given
number to be divided by the rumber fought or any part thereof, al fo when the number fought or fome part thereof is to be fquared, cubed, \&c. like wife when fome parts of the number fought are to be multiplied one by the other; I fay from fuch operations the aforementioned Analogy will not arife, and in thofe cafes, the ordinary rule of Falfe will be ufelefs; as may partly appear by the two following examples, viz.What number is that, by mbich if 360 be divided the quotient will be 24 ? Here if two pofitions or feigned numbers be taken, and 360 be divided by each of them, the errors will not be in the fame proportion with the differences between the true number fought and the 2 feigned numbers, and therefore the rule of Falfe will be ufed in vain: yet if it be asked what number is that, which being multiplied
> IV. Now to difern what kind of

o


Chap. IX. the Rule of Falle. 467 by 24 , the product will be 360 , the Ansoper sothis latter queftion is the fame with the anfwer to the tormer, and may befound by the rule of Falje; but fuch kind of interpretations and inferences are not alwayes obvious, and thertfore lince the preparative work of the rule of Falfeiafter the number is takenby guels for the nuinber fought) proceeds gradually from one condition in the queftion to another, it will for the moft part be eatie to determine whether the ordinary rule of Falfe will take place or not, by comparing the conditions of a queftion with the note before given.

Anotber Example;a certain perfon being demanded what number of years he had lived, anfwered if \(-\frac{1}{1}\) of chat number were multiplied by \(\frac{x}{4}\) of the fame number, the product would thew the number, or his age: here it will be in vain to fearch the number fought (which is 40) by the rule of Fal \(\int e\); for the aforementioned Analogy or proportionality will not fucceed, and the quettion cannot eafily be refolved without Algebra.

Now from this fuppofition, that afrer the preparative work of the rule of Falfe is finifht, the errors will be in fuch proportion as aforefaid, I thall make it manifeft that the Rule of Falje will difcover the number fought.
\(V\). In the Rule of two falfe Pofitions there are 3 cafes, viz. the errors are either both exceffes and nored wilht, or elfe both defects and nored with -, or laftly one of the erruss is noted with \(t\), and the other with -.

In the two firft cafts the Rule is this, Multiply the Pofitions or feigned numbers by the altern errors, viz. the firt Pofition by the fecond error,

468 A Demonffration of Appendix. the fecond Pofition by the firt error, and referve thore produधs; then dividing the difference of the faid prodưts by the difference of the faid errors, the quotient fhall be the number fought by the quefiion.
The demonfrration of the fiid Rule here followeth.

Cafe I. When the errors are botb exceffes and noted witb + .

\section*{Suppofitions.}
1. Let fome number unknown and fought?A by the rule of Falfe be reprefented by.... ber) be
3. And the fecond feigned number .... \(C\)
4. Suppofe alfo that B is greater then \(C\), and each of them greater then \(A\).
5. Moreover fuppofe the error of the firft? \(F\) Pofition to be ....
6. And the error of the fecond Pofition \}G
7. Suppofe alfo that this Analogy will be found in the faid numbers, viz.
\[
B-A \cdot C-A: F \cdot G
\]
8. The propofition to be demonftrated.
\[
A=\frac{F C-G B}{F-G}
\]

Demon-

Chap. IX. the Rule of False. 469

\section*{Demonfiration.}

9 Forafmuch as by fuppofition in \(7^{\circ}\).
\[
B-A \cdot C-A:: F \cdot G
\]
10. Therefore by comparing the reCtangle of the extreams to the rectangle of the means.
\[
\mathrm{GB}-\mathrm{GA}=\mathrm{FC}-\mathrm{FA}
\]
11. And by equal addition of FA.
\[
\mathrm{FA}+\mathrm{GB}-\mathrm{GA}=\mathrm{FC}
\]
12. Again, forafrnuch as by fuppofition in \(40^{\circ}\)
\[
B>C
\]
13. And consequently out of \(4^{\circ}\), and \(12^{\circ}\).
\[
B-A>C-A
\]
14. Therefore out of \(9^{\circ}\). and \(13^{\circ}\).
\[
\mathbf{F}>\mathbf{G}
\]
15. Therefore
\[
\mathrm{FA}>\mathrm{GA}
\]
16. Therefore
\[
F A-G A>0
\]
17. There-

470 A Demonftration of Appendix.
17. Therefore by equal fubtraction of GB from the equation in \(113^{\circ}\).
\[
\mathrm{FA}-\mathrm{GA}=\mathrm{FC}-\mathrm{GB}
\]
18. Wherefore by dividing both parts of the laft equation by \(F-G\),equal quotients will arife,viz.
\[
A=\frac{F C-G B}{F}
\]
which was to be demonfirated.
Cafe II. When the errors are both defecis, and noted with-

\section*{Suppofitions.}
1. Let fome number unknownand fought \(\}_{A}\) by the rule of Falfe be reprefented by ..... SA
2. Let the firft pofition (or feigned num- \(\}_{\mathrm{B}}\)

er) be'...... ber) be
3. And the fecond pofition, \(\ldots \ldots\) C them lefs then \(A\).
5. Moreover, fuppofe the error of the firft \(\} \mathbf{F}\) Pofition to be .....
6. And the error of the fecond Pofition .. G
7. Suppofe alfo that this Analogy will be found In the faid numberst, viz.
\[
\mathrm{A}-\mathrm{B} \cdot \mathrm{~A}-\mathrm{C}: \mathrm{F} \cdot \mathrm{G}
\]
8. The

Chap. IX. the Rule of False. 471
8. The Propofition to be demonfrated.


\section*{Demonstration.}
9. Forafmuch as by fuppofition in \(7^{\circ}\).
\[
\mathrm{A}-\mathrm{B} \cdot \mathrm{~A}-\mathrm{C}:: \mathrm{F} \cdot \mathrm{G}
\]
10. Therefore by comparing the rectangle of the means to the reCtangle of the extreams:
\[
F A-F C=G A-G B
\]
11. Any by equal addition of FC
\[
F A=F C+G A-G B
\]
12. Again, forafmuch as by fuppofition in \(4^{\circ \circ}\)
\[
B>C
\]
13. And consequently out of \(4^{\circ}\). and \(12^{\circ}\).
\[
A-B>A-C
\]
14. Therefore out of \(b^{\circ}\), and \(13^{\circ}\).
\[
F>G
\]
35. Therefore
\[
F A>G A
\]
16. There-

\section*{\(47^{2}\) A.Demoufliation of Appendix.} 16. Therefore
\[
F A-G A>0
\]
17. Therefore by equal fubtraction of GA from the equation in \(11^{\circ}\).
\[
\mathrm{FA}-\mathrm{GA}=\mathrm{FC}-\mathrm{GB}
\]
18. Wherefore by dividing both parts of the laft equation by \(F\)-G,equal quotients will arife, viz.
\[
A=\frac{F C-G B}{F-G}
\]
which was to be demonftrated.
Cafe III. When one of the errors is an excefs (to poit, noted by \(t\) ) and the other a defect (noted by-)
In this third Care the Rule of Falfe is this, viz.
Multiply the Pofitions by the altern errors, to wit the firf Pofition by the fecond error, alfo the fecond Pofition by the firfterror, and referve thofe products; then dividing the fum of the faid products by the fum of the faid errors, the quotient thall be the number fought by the queftion.

The Demonftration of this latter Rule here folJoweth.

\section*{Suppofitions.}
1.Let fome number unknown and fought by \(\}_{A}\) the rule of Falfe be reprefented by ....... is A
2. Let the firt Pofition be .....

B
3. And

Chap. IX. the Rule of Falfe. 473
3. And the fecond Pofition ...... C
4. Suppofe allo that \(B\) is greater than \(C\), and allo greater than \(A\), and that \(C\) is lefs than \(A\). Pofition to be .......
6. And the etror of the fecond Pofition to be. G
7. Suppofe alfo that this Analogy will be found in the faid numbers, viz.
\[
B-A, A-C: F \cdot G
\]
8. The Propofition to be dernonftrated.
\[
\frac{G B+F C}{F+G}
\]

\section*{Demonfratiost}
9. Forafnuch as by fuppofitionin \(7 \%\) :
\[
\mathrm{B}-\mathrm{A}, \mathrm{~A}-\mathrm{C}:: \mathrm{F}, \mathrm{G}
\]
10. Therefore by comparing the reCtangle of the means to the rectangle of the extreams.
\[
\mathrm{FA}-\mathrm{FC}=\mathrm{GB}-\mathrm{GA}
\]
11. And by equal addition of \(F C\) and \(G A\) to the laft equation, this will arife.
\[
\mathrm{FA}+\mathrm{GA}=\mathrm{GB}+\mathrm{FC}
\]
12. Wherefore by dividing both parts of the laft

474 ADemonftration of, \&c. 'Appendix; equation by \(\mathrm{F} \times \mathrm{G}\), equal quotients will arife, viz.
\[
A=\frac{G B+F C}{F+G}
\]
which was to be demonfrated.
The learned Herigonius (in cap. 13. Tom.2. of his Curfus Matbematicus) hath delivered another way of refolving the rule of Falfe, namely by the two following rules, viz.

When tbe figns of the Errors are unlike.
Rule I. As the fum of the errors is to the firft error, fo is the difference of the fuppofed numbers to a fourth proportional, which being added to the firff fuppofed number, when the faid firft fuppofition is lefs than the fecond, or fubtracted from it when it exceeds the fecond; the fum or remainder will be the true number fought.

\section*{When the figns of the Errors are unlī̌e.}

Rule II As the difference of the errors is to the firfterror, , 0 is the difference of the Suppofed numbers to a fourth proportional, which being added to the firff fuppofed number when the figns are or fubrracted from it when the figns are + ; the fum or remainder will be the number fought.
Both which rules the faid Herigonius demonftrateth geometrically by lines, upon a fuppofition of the Analogy or proportionality before mentioned in the third Section of this Chapter, and the fame may likewife be eafily demonftrated according to the precedent method by letters.

CHAP:

Chap. X.

\section*{CHAP. X.}

ACollection of pleafant and fubtilQueftions, to exercise all the parts of Villgar Arithmetick. To which alfo are added various practical Queftions about the menfuration of Superficial Figures and Solids.

Examples of the Rule of Three mifxtly afd with other vules.

\(\int^{v}\)Veft. 1. If a wedge of Gold weighing \(17 \frac{3}{7} \mathrm{lb}\). of T'roy weight be worth \(679 \frac{5}{7} \mathrm{lb}\). fterling, what is the value of \({ }_{1} \frac{-3}{3}\) grain of that Gold? Anfw. 2 pence.
\[
\begin{aligned}
& \text { I. } 1_{1}^{-\frac{3}{1}} \text { (or } \frac{18}{1} \frac{6}{3} \text { ) of } \frac{1}{24} \text { of } \frac{1}{2} 0 \text { of } \frac{-1}{12}=\frac{1}{4680} \\
& \text { II. } \frac{122}{7} \cdot{ }^{412 \frac{8}{7}: \therefore \frac{4680}{46} \cdot \frac{1}{12} \frac{8}{0}}
\end{aligned}
\]

Quef. 2. A man dying gave to his eldeft Son \(\frac{2}{3}\) of \(\frac{x}{4}\) of his eftate to his fecond Son \(\frac{1}{5}\) of \(\frac{x}{2}\) of his eftate and when they had counted their Portions, the one had \(40 \%\). more than the other; the remainder of the eltate was given to the wife and younger children. The queftion is, what was the portion of the eldeft Son, alfo of the fecond, and how much did belong to the wife and younger children?

Auf(w. The eldeft Sons portion 100l. the fecond Sons portion 60\%. and 440l. for the wife and youngerchildren.

The fraclions being reduced, it will be manifort that the eldeft Son bad \(\frac{1}{6}\), and the fecond \(\frac{1}{1} \frac{1}{0}\) allo the
difference of the Jaid fractions in \(\frac{1}{1} \frac{1}{5}\), then \(\int a y\),


2ueff. 3. A young man reccived \(66 \frac{2}{3} l\). which was \(\frac{2}{3}\) of \(\frac{1}{2}\) of his elder brothers portion, and \(3^{\frac{1}{2}}\) times of his elder brothers portion was \(x_{\frac{1}{4}}\) times of his fathers eflate, the queftion is, what was the fathers eftate? Anfw. \(500 \%\).
\[
\begin{aligned}
& \frac{1}{3} \cdot 66 \frac{2}{3}:=1 \cdot 200 \\
& 200 \times 3=700 \\
& 1 \frac{1}{4} \cdot 700:=1 \cdot 560
\end{aligned}
\]

2ueft.4. If A can finith a work in 20 dayes, and \(B\) in 30 dayes; in what time will the work be finithed by A and B working rogether? Answer 12 dayes.

Firf find what quantity of the work will be done by each workman in one and the fame time; then it will be, as the fum of thofe quantities is in proportion to the faid time, fo is I or the whole work to the time wherein fuch work will be finithed by both workmen working together.

Chap. X. Queftions.


Hence it appears that \(A\) and \(B\) working together 20 dayes, will finifh that work once, together with \(\frac{2}{3}\) of the fame work; therefore fay again by the Rule of Tbree,
\[
\begin{aligned}
& \text { zvork dayes work dayes } \\
& 1 \frac{2}{3} \cdot 20:: 1 \text {. } 12
\end{aligned}
\]

Queft. 5
Erous adjto leo, tubuli mibilumina bina, Ofque exiam, dextrific quoque planra pedis. Binis dextro oculo, ternis lacus ijfe diebus Impletur lavo, Sedpede bis geminis. Ori fufficiunt fex bire. Dic fimul ergn, 2uo Spatio os, oculi, pefque replere valent?

The fence is this. A brazen Lyon being placed in an artificial fountain, conveyeth water into a Ciftern by two ftreams iffuing from his eyes, allo by one from his mouth, and by another at the bottom of his right foot. Now the Pipes through which thefe ftreams pafs, are of different capacities, in fuch fort, that by the right eye fet open alone, the reft of the freams being ftopt, the Ciftern will be filled in two dayes ( the length of a day being fuppofed to be 12 hours; ) by the left eye alone in three dayes; by the foot alone in four dayes; and Gg 3
by the mouth alone in fix hours. The queftion is, to find in what time the Ciftern will be filled, if all thofe freams be fet open at once?

Anfiver, \(\frac{2 \pi}{3} \frac{2}{7}\) day,
\begin{tabular}{|c|c|c|c|}
\hline dayes & Cijt. & dayes & Cift. \\
\hline 2 & 1 & : 3 & - \(\mathrm{I}^{\frac{1}{2}}\) \\
\hline 4 & 1 : & : 3 & - \(\mathrm{O}^{\frac{3}{4}}\) \\
\hline \(\frac{1}{2}\) & 1 : & &  \\
\hline
\end{tabular}

The fum is \(9 \frac{1}{4}\) Cifterns that will be filled in three dayes by all the four fresms running together: Then fay by the rule of Three.

> Cift. Dayes Ciff. day
> \(9 \frac{1}{4} \cdot 3:=1 \cdot \frac{x 2}{37}\)

2ueft . 6. A Ciftern in a certain Conduit is fup. plied with water by one pipe of fuch bignefs, that if the cock \(A\) at the end of the pipe be fet open, the Ciftern will be filled in \(\frac{1}{2}\) hour; moreover at the bottom of the Ciftern two other cocks \(B\) and \(C\) are placed, whofe capacities are fuch, that by the Cock \(B\) fet open alone (all the reft being fopt) the \(\mathrm{Ci}-\) ftern fuppofed to be full) will be emptied in \(1 \frac{3}{7}\) hour; alfo by the cock \(C\) fet open alone the Ci ftern will be emptied in \(2 \frac{1}{3}\) hour : now becaufe more water will be infufed by the cock \(A\), than can be expelled by both the cocks \(B\) and \(C\) in one and the fame time; the queftion is to find in what time the Ciftern will be filled if all the faid three cocks be fet open at once? Anfw. \(1-\frac{9}{6}\) hour.

After the manner of the fourth queftion of this Chapter

Chapter, find how many times the Ciftern will be emptied in one and the fame fpace of time, by the cocks \(B\) and \(C\) running fogether; alfo how much of the Ciftern will be filled by \(A\) in the fame time; then will the difference fhew how much of the Ci Aern is gained by the filling cock in the faid time: Laftly, as the Cifferns or parts gained are in proportion to the correfpondent time; fo is the whole Ciftern, to the time wherein it will be gained or filled.
bou. cift. bou, cift.

bow. cift. bou. II. \(\frac{1}{2} \cdot 1:: 1^{\frac{3}{7}}, \frac{\left(2 \frac{6}{7} \text { filled by } A\right.}{\left.1 \frac{1}{49} \text { gained by } A\right)}\)
\[
\begin{aligned}
& \text { cif. bou. cijt. bow. } \\
& \text { HII. } 1 \frac{12}{49} \quad 1 \frac{3}{7}: 1=1 \frac{1}{610}
\end{aligned}
\]

Queft.7. Suppofe a Dog, a Wolf and a Lion, were to devour a Sheep, and that the Dog could eat up the fheep in an hour, the Wolf in \(\frac{3}{4}\) hour, and the Lion in \(\frac{1}{2}\) hour ; now if the Lion begin to eat \(\frac{1}{8}\) hour before the other two, and afterwards all three eat together, the queftion is, in what time the fheep would be devoured? Anfwo. \(\frac{31}{10}\) hour.

Thus

Thus it appears that \(\frac{1}{4}\) of the hheep would be exten by the Lion, betore the Dog and Wolf began toeat.
11. Proceed according to the fourth queftion, fo. will you tind the remaining \(\frac{3}{4}\) to be eaten by them all in \(\frac{-9}{3}\) hour, which added to \(\frac{1}{8}\) gives \(\frac{-31}{1} \frac{1}{4}\) hour, in which time the theep would be devoured.

Quej.8. If \(120 \frac{1}{3} l\). be to be diftributed amongt three perfons \(A, B, C\), in fuch fort, that as often as A takes 5, B thall take 4, and as often as B takes 3, C thall take 2; what thall be the thare of each ?

Find three Numbers which may exprefs the proportions of their thares, by the Rule of Tbree, or (to avoid'fractions) thus,
\[
\begin{aligned}
& \underbrace{5 \cdots \cdots \cdots 4}_{\text {thws fond }} \\
& 5 \times 3=15 \\
& 3 \times 4=12 \\
& 4 \times 2=\frac{8}{35 \cdot 12 \cdot 8}
\end{aligned}
\]

2uef. 9. A Governour of a certain Garrifon,

\section*{Chap. X.}

\section*{Quefions.}
certain moneths, made choice of a loyal fervant, giving himorder to receive of every coachman paffing with a coach \(4 d\). of every horfman \(2 d\). and of every foorman \(\frac{1}{2} d_{0}\) Now at the years end, the fervant making his accompt to the Governour, giveth him 94l. 15s. 10d. and lets himknow that as often as 5 paffed with coaches, 9 paffed on horfback ; and as often as 6 paffed on horfeback, 10 paf fed on foot; the quetion is how many coaches, horfemen, and footmen paffed? Anfwer, 2500 coaches, 4500 horfmen, 7500 footmen.

Find three proportional numbers after the manner of the 8 queftion, which will be \(5,9,15\), then proceed as followeth,


2ueft. 10. A Facior would exchange 780 l.fterling for double Ducats, Dullars, and FrenchCrowns, the Ducats at 7 s .6 d . the piece, the Dollars at 4 s . 4 d . and the French Crowns at 6 s . the piece, 10 be in fuch proportion, that \(\frac{1}{2}\) of the number of Ducats may beiequal to \(\frac{1}{3}\) of the number of Dollars, and \(\frac{1}{4}\) of the Dollars equal to \(\frac{3}{16}\) of the Crowns, thequeftion is, how many pieces of each coin he thall receive for his 780 pounds.

Anfin. 600 Ducats,900 Dollars, 1200 Crowns. Find three proportional Numbers ( after the man。 manner of the eighth queftion) which will be \(6,4,3\),

\[
\begin{gathered}
\frac{1}{8} \cdot 7^{\frac{1}{2}} \cdot 7^{\frac{1}{6}} \\
6 \cdot 4 \cdot 3
\end{gathered}
\]

Thus it appears that fix times the number of Du cats muff be equal to four times the number of Dollars, alfo equal unto three times the number of Crowns. Then make choice of three numbers to answer thole proportions, fuch are there, \(2,3,4\), ( \(\operatorname{for} 6 \times 2=4 \times 3=3 \times 4\) ) with which numbers proceed as followerh,
\[
l .
\]

2 ducats... \(\frac{3}{4}\)
3 dollars . \(\frac{x}{2} \frac{3}{0}\)
4 crowns .. \(1 \frac{1}{5}\)
fay if \(\ldots \cdot 2 \frac{3}{5} \cdot 780 \quad:\left\{\begin{array}{l}\text { l. } 1 . \\ \begin{array}{l}\frac{3}{4} \cdot 225 \\ \frac{1}{2} \frac{1}{20} \cdot 195 \\ 1 \frac{1}{5} \cdot 360\end{array}\end{array}\right.\)
\[
\begin{aligned}
& \text { l. ducat } l \text {. } \\
& \frac{3}{8} \text {. I : } 225: 600 \text { ducats. } \\
& \text { doll. } \\
& \frac{13}{60} \text {. } 1: \text { : } 195 \text {. } 900 \text { dollars. } \\
& \text { crown } \\
& 13.1 \because 360 \div 1200 \text { crowns. }
\end{aligned}
\]

Quef. II. Twenty Knights, 30 Merchants, 24 Lawyers and 24 Citizens, Spent at a dinner 64 pound, which was divided among them in fuch manner, that 4 Knights paid as much as 5 Merchants, 10 Merchants as much as 16 Lawyers; and

Chap. X.
8 Lawyers as much as 12 Citizens; the queftion is, to know the fum of money paid by all the Knights, alfo by the Merchants, Lawyers and Citizens.
\(A n \int\) wer, The 20 Knights paid 20 pounds, the 30 Merchants 24 pounds, the 24 Lawyers 12 pounds, and the 24 Citizens 8 pounds.

Find four numbers to exprefs the proportions of their payments, by the Rule of Three, or ( to avoid fractions) in manner following, fo will the proportional numbers be \(4,5,8,12\), viz. 4 K nights paid as much as 5 Merchants, or 18 Lawyers, or 12 Citizens.


Then prefuppofing that a Knight is to pay 4 s . proceed as followet'?, viz.


2uof. 12. A certain man with his wife did ufually drink out a veffel of Beer in is dayes, and the husband found by often experience, that his wife being abfent, he drank it out in 20 dayes; the queftion is, in how many dayes the wite alone could drink it out? Answer 30 dayes.

Note, it is to be fuppofed that the husband in 12 of the 20 dayes wherein he drark alone, did drink as much as in the 12 dayes wherein he drank with his wife; hence it followeth, that in the remaining 8 of the faid 20 dayes, he drank as much as his wife did in 12 dayes. Therefore by the Rnle of Three fay, If 8 give 12, what 20 ? Anfip. 30. view the following form of the wark.
\[
\text { From } 20
\]

SubtraCt 12
\[
\text { Tben if } 8 \cdot 12:: 20 \cdot 30
\]

Queft. 13. If a houfe be to be built by three Carpenters, A, B, C, working in fuch fort, that \(A\), alone will finith it in 30 dayes \(B\) in 40 dayes

\section*{Chap. X.}

Quefions. and \(A, B, C\), together in 15 dayes, in what time could Calone build the houfe? Answ. 120 dayes.
I. After the manner of the fourth queftion, find in what time \(A\) and \(B\) working together will finilh the houle; \(A n \int\) mo. \(17 \frac{1}{7}\) dayes.
\[
\begin{aligned}
& \text { fuin } 1 \frac{3}{4} \\
& \text { work dayes work dayes. } \\
& 1 \frac{3}{4} \text { - } 30 \text { : } 1 \cdots 17 \frac{1}{7}
\end{aligned}
\]
II. Suppofing the work of \(A\) and \(B\) to be performed by one perfon, as \(D\), the houfe will be built by \(D\) in \(17^{\frac{1}{7}}\) dayes, but by \(D\) and \(C\) together in 15 dayes; Then find (according to the 12 th. queftion) in what time \(C\) will build the fame; \(\operatorname{Anf} \mathrm{fw}^{2}\) 120 dayes.

From . \(17 \frac{1}{7}\)
Subfiract 15
\[
\text { Thex if } 2 \frac{1}{7} \cdot 15:: 17 \frac{1}{7} \cdot 120
\]

The proof may be wrought according to the fourth or fifth queftions.

Qneft.14. Two Travellers \(A\) and \(B\) perform 2 journey to one and the fame place in this thanner, viz. A travels 14 miles every day, and had travelled 8 dayes before B began; upon the ninth day B fets forward, and rravels 22 miles every day; the
the queftion is, to find in what time B fhall overtake A ? Aujw. at the end of 14 . dayes:
I. Find how many miles A had travelled before B fet forward? Anfoo. 112 miles; For

II. Find how many miles \(B\) gains of \(A\) in a day; Anfow. 8 miles; For


Quef. 15. There is an Ifland which is 36 miles in compafs. Now if at the fame time, and from the fame, place, two footmen A and B fet forward to travel round about the faid Ifland, and follow one another infuch manner that A travelleth every day 9 miles, and \(B 7\) miles; the queftion is to find in what fpace of time they will again meet, alfo how many miles, and how many times about the Inand each footman will then have travelled ?

Anfoer, They will meet at the end of 18 daycs from their firft parting ; and then A will have rravelled 162 miles (or \(4 \frac{1}{2}\) times the compafs of the Ifland) and B will have travelled 126 miles ( or \(3 \frac{1}{2}\) times the compafs of the Ifland.)
miles
From... 9
Subtract 7


2uef. 16. Two footmen \(A\) and \(B\) depart at the fame time from London towards York, travelling \(^{\text {a }}\) at this rate, viz. A goeth 8 miles every day, B goeth I mile the firft day, 2 miles the fecond day, 3 milcs the third day, and in that progreffion he goeth forward, travelling in every following day one mile more than in the preceding day; the queftion is to know in how many dayes \(B\) will overtake A ?
\[
\text { Anfwer, } 15 \text { dayes. }
\]

To refolve this and fuch like queftions, double 8 (the number of miles which A travelleth daily) which make 16 , from which fubtract 1 , the remainder is 15 the number of dayes fought.

2ueft. 17. If Exeeter be diftant from London 140 miles, and that at the fame time one footman A departed from London towards Exceter, travelling every day 8 miles, and another B from Exceter towards London, travelling every day 6 miles the queftion is in how many dayes they will meet one another, and how many miles each footman will have then travelled?
\(A n f\) wer,

\section*{Arithmetical}

Appendix:
Anfwer, They will meet at the end of 10 dayes, and then \(A\) will have travelled 80 miles, and \(B 60\) miles:
> add \(\$ 8\) miles travelled daily by A. 6 miles travelled daily by B.

fum 14 miles which A and B together did travel daily.
m. da. miles da.
14. 1 :: 140 . 10 in which time \(A\) and \(B\) will meet each other.
\(10 \times 8=80\) miles travelled by \(A\). \(10 \times 6=60\) miles travelled by B.

Quefi.18. A certain footman A departeth from London towards Lincoln, and at the fame time another footman B departeth from Lincoln towards London; alfo A travelleth every day \(2 \frac{1}{2}\) miles more then B. Now fuppofing thofe two Cities to be 100 milesdifant one from theother, and that thofe two footmen do meet one another at the end of 8 dayes after the beginning of their journeys ; the queftion is, how many miles each will have then travelled, as alfo how many miles each travelled daily?

Anfwer, A 60 miles, B 40 míles. Alfo A travelled \(7 \frac{1}{2}\) miles every day, and B 5 miles.
\[
\begin{gathered}
\text { day miles dayes miles } \\
1.2 \frac{\frac{1}{2}}{2}:: \frac{1}{8}, 20
\end{gathered}
\]

Hence it appears that at the time of their meeting \(A\) had travelled 20 miles more than \(B\), which

\section*{Chap. X.} 20 miles being fubtracted from 100 miles leave 80 miles, whereof the half is 40 miles which B had travelled, therefore A had travelled 60 miles.

Now to find how many miles each travelled daily, fay.

> dayes miles day miles 8 : \(40: 11\)
> Therefore \(\left\{\begin{array}{l}A \\ B\end{array}\right\}\) travelled \(\left\{\begin{array}{c}7 \frac{1}{2} \\ 5\end{array}\right\}\) daily:

2nef. 19. There is an 1 Ifand which is 134 miles in compars; now at the fame time; and from the fame place, two footmen \(A\) and \(B\) begin a journey round about the faid Ifland, but they travel towards contrary parts, at this rate, viz. 'A travelleth 11 miles in everyz dayes, and B 17 miles in 3 dayes: the queltion is to find in what fpace of time \(A\) and \(B\) will meet one another; and how many miles each will then have travelled ?
Answer, They will meet at the end of 12 dayes and then \(A\) will have travelled 66 miles, and \(B 68\) miles.

After the manner of the fourth queftion of this chapter the time fought will be found 12 dayes.
dayes miles dayes miles
\(2,11: 2,16 \frac{1}{2}\)

dayes miles dayes
\(33^{\frac{1}{2}} \cdot 3: 134 \cdot 12\)
\(\qquad\)

The miles travelled by each will be found in chis manner.
dayes miles dayes
2. \(11:: 12.66\) miles travelled by \(A\).
\[
3: 17:: 12.68 \text { miles travelled by B. }
\]

2ueff. 20.1 Ifa Clock hath two Indices(or hands) one of which (to wit \(A\) ) is carryed twice round the whole circumference of the Dyal in one day; and the other ( \(B\) ) once in 30 dayes, and that both at once thewing the fame point begin to be moved ; the queftion is, in what time they will be again conjoyned?

Ansper, \(\frac{30}{59}\) day or \(\frac{12}{10}\) hours.

> day circum. dayas circum, 1.2. 2. : 30 . 60 Subraif i

\section*{59}

Hence it appears, that in 30 dayes \(A\) will have run through 60 circumferences, and \(B\) one circumference only in the fame time ; therefore \(A\) gains of \(B 59\) circumferences in 30 dayes therefore fay.
circum. dayes circum. day
\(59 \cdot 30:=10 \cdot \frac{30}{9}\)
Queft. 21 . If 6 lb . of Sugar be equal in value to 7 lb . of Raifins; 5lb. of Raifins to 2 lb . of Almonds; 3 lb . of Almonds to \(\mathbf{5} \mathrm{lb}\). of Currants ; 2 lb . of Currants to 18 d . how many pence are the value of 3 lb . of Sugar? Anfmo 21d.


2uef. 22. If 3 dozen pair of Gloves be equal in value to 2 pieces of Ribbon; 3 pieces of Ribbon to 7 dozen of points; 6 dozen of points to 2 yards of Flanders-lace; and 3 yards of Flanderslace to 81 thillings; how many dozen pair of Gloves may be bought for 28 fhillings?

Anfw. 2 dozen pair of Gloves.

2ue(f.23. Suppofe a Graybound to be courfing a Hare, in fuch fort that the Hare takes five leaps for every four leaps of the Graybound, and that the Hare is one hundred of her own leaps diftant from the Graybound;now if three of the Graybounds leaps be equal to four leaps of the Hares, the queftion is to know how many leaps the Graybound mult take before he obtain his prey?

Anfwer, 1200 leaps.
\[
\mathrm{Hh}_{2}
\]
I. If

\section*{I. If \(3 \cdot 4: 4 \cdot 5^{\frac{1}{3}}\)}

Thus it appears, that 4 of the Graybounds leaps are equal to \(5 \frac{1}{3}\) of the Hares leaps; and becaufe by the queftion the Graybonnd takes 4 leaps for every 5 of the Hares, therefore the Graybound in every four of his leaps gains \(\frac{1}{3}\) of one of the Hares leaps; therefore fay by the Rule of Timbre,
\[
\text { II. If } \frac{1}{3} \cdot 4:: 100 \cdot 1200
\]

2 ref. 2,4 . There is a certain room whole Bafis is a long fquare, which is in circuit \(50 \frac{1}{2}\) feet, and the height of the walls or fides of the room is \(8 \frac{1}{4}\) feet; all which walls of the room except a face taken out for a window in the form of a long quire, whole height is five feet, and breadth four feet, are to be furnithed with Hangings of ell-broad fluff at \(3 \mathrm{s}\).4 d . the yard, the queftion is to know how much money the fluff will cont?

Answer, 5l. 17 s. \(6 \frac{2}{9} d\).
\[
\begin{aligned}
50 \frac{1}{2} \times 8 \frac{1}{4} & =416 \frac{5}{8} \text { Square feet. } \\
5 \times 4 & =20 \text { subtract }
\end{aligned}
\]
\[
396 \frac{5}{8}
\]

Queft. 25. There is a certain Walk which is a
\[
\begin{aligned}
& 3 \frac{3}{4} \times 3=11 \frac{1}{4} \text { Square feet in one yard of Info. } \\
& \begin{array}{cccc}
\text { feet } & d_{0} & \text { feet } & d_{1} \\
\text { IF }_{11}^{\frac{1}{4}} \cdot & 40 \therefore & 396 \frac{5}{8} & 1410_{9}^{2}
\end{array}
\end{aligned}
\]

Chap. IX. Aritbmetical 493
long fquare, whofe length is 40 yards, and breadth 7 yards, to be paved with ftones, each of which being in form of a long fquare is 28 inches in length, and 24 inches in breadth: the queftion is to know how many fuch flones will be requifite to pave the faid Walk ?

Anfwor, 540.

> Incbes Inches
> \(1440 \times 25^{2}=362880\) Square Incbes. \(28 \times 4=672=\) Square Incbes. \(672,1: 362880 \cdot 540\) Stones.

2uef. 26. Suppofe a piece ofTapeffy to be \(5^{\frac{3}{8}}\) yards Englifb in length, and \(3 \frac{7}{8}\) yards in breadth, the queftion is, how many fquare ells Flemifh are conrained in that piece of Tapeftry, when the length of 1 ell Flemilh is equal to \(\frac{3}{4}\) of a yard Englibh?

Anfwer, \(37 \frac{-1}{36}\) fquare ells Flemilh.
\[
5 \frac{3}{8} \times 3 \frac{7}{8}=\frac{2133}{6+} \text { Squareyards. }
\]

Then becaufe \(\frac{-2}{1}\) of a fquare yard is equal to \(\mathbf{I}\) ell fquare of Flemifb meafure (for \(\frac{3}{4} \times \frac{3}{4}=\frac{-1}{1}\) ) ( ay ,
\[
\text { If } \frac{9}{16}, ~ I: \frac{1333}{64} \cdot 37 \frac{7}{36} \text { is oos }
\]

2uef: 27. A Workman hath performed a piece of Tiling bearing the form of a long fquare, whofe length is 273 feet, 7 irches; and breadth 2 I feet 5 inches; now when Tiles are fold at the rate of \(115.10^{\frac{3}{4}}\) d. . for 1000 Tiles, and every fquare of tiling confifting of ro feet as well in length as in breadth doth take up 1000 Tiles, what doth the faid piece of Tiling amount ninto?

Quef. 28. A Merchant would beftow 2201 . in Cloves, Mace and Nutmegs, the Cloves being at 5 s. the pound; the Mace at is s. the pound, and the Nutmegs at 6 s. the pound; now he would have of each fort an equal quantity, the queftion is how many pounds he may have of each fort? Anfwer, 200 lb.


2uef.29. A Factor is to receive a fum of money, and is offered Dollars at 45.4 d . which are worth but 48. 3 d, or French Crowns at \(68,1 \frac{1}{2} d\). which

Chap. X.
are worth but 6s. the queftion is by which coin he fhall fuftain the leaft lofs?

Anfwer, the Dollars.
\[
\begin{array}{ccccc}
d_{0} & d_{0} & d_{0} & d_{1} \\
52 & 1 & : & 73^{\frac{1}{2}} & \\
1_{1}^{4 \frac{42}{02}}
\end{array}
\]

That is, in receiving the Dollars every \(6 s_{\text {. }} 1 \frac{1}{2} \mathrm{~d}_{\text {。 }}\) lofeth \(1-\frac{43}{04} d_{0}\) but in receiving the Crowns \(\sigma_{5} 1 \frac{1}{2} d_{0}\) lofeth \(1 \frac{1}{2} d\). which is a greater lofs than \(1-\frac{43}{104}\) d.

2ueft. 30. A Butcher agrees with a Grafier, for the feeding of 20 Oxen, during the fpace of \(12 \mathrm{e}-\) qual moneths, but at 2 moneths end, the Butcher adds 5 Oxen more, and \(6 \frac{3}{3}\) moneths after that, he added 10 Oxen more, and then it is agreed between them, that the Grafier thall feed them all, fo long time as will be equivalent to the keeping of the firft twenty daring 12 moneths; the queftion is how long time he fhall feed them all, after the putting in of the laft 10 ?

\section*{Anfwer, 1 moneth.}

Confider, that as he receives more Oxen to feed he ought to keep them all the lefs time; therefore work as the queftion imports by the Rale of Three inverfe.


Examples of 2 eff.3i. Two Merchants, viz. A the Rale of and B, have entred Company;A puts Fellowfhip. in 50.01 . and at 4 moneths end rakes out a certain fum, leaving the remainder to continue 8 moneths longer., B puts in \(250 l\), and at five moneths end puts in three hundred pounds more, and then his whole fum continues feven moneths longer. Now at the making of their Accompt A findeth that he hath gained \(106 \frac{2}{5}\) pounds, and B gained \(133 \frac{1}{3}\) pounds; the queftion is to know how much A took out of the bank at 4 moneths end? Ansper, \(240 /\).
\[
\begin{aligned}
& 250 \times 5=1250 \\
& \text { add } 300
\end{aligned}
\]
\[
550 \times 7=3850
\]
\[
333 \frac{1}{3} \cdot 5100:: 106 \frac{2}{3} \cdot 4080
\]
\[
500 \times 4=2000 \text { (fubtract }
\]
\[
\text { 8) } 2080(260
\]

Laflly, \(500-260=240\) taken out by A.

> The Proof.

\section*{Chap. X.}

\section*{Quefions.} 497
Queft. 32. Five Merchants,viz. \(A, B, C, D\), and \(\mathbf{E}\) have gained 2025 l. which they divide in fuch fore that \(\frac{1}{2}\) of the thare of \(A\) is equal feverally to \(\frac{2}{4}\) of the thare of \(B, \frac{1}{5}\) of \(C, \frac{1}{6}\) of \(D, \frac{1}{8}\) of \(E\). The queftion is, what was the thare of each Merchant ?

Awfiper, A 162 l. B 324 l. C 405 l.D \(4861 . \mathrm{E} 6481\). Divide a number at pleafure into fuch parts which may be in fuch proportion as the thares required, and proceed according to the fubfequens operation.


2uef. 33. Two merchants \(A\) and \(B\) are in company, the fum of their ftocks is \(300 \%\). the money of A continuing in company 9 moneths, the money of B 1 moneths, they gain 200 l. which they divide equally, the queftion is to know how much each Merchant did put in?

Anfoer, A 165l. B 1351.
Divide 300 into two fuch parts which may be in proportionas II to9, fo will the greater part be the ftock of \(A\), and the leffer the frock of \(B\), which flocks being multiplied by their refpective times, the products will be equal.


Queff. 346 Two Merchants, viz. \(A\) and \(B\), are in company, \(A\) did put in \(32 \boldsymbol{\rho}\).more then \(B_{9}\) and the fock of \(A\) continued in company \(7 \frac{1}{2}\) moneths ; \(B\) put in a certain fum which is unknown, and ft continued in company \(10 \frac{3}{4}\) moneths: after a certain time they divide the gain equally; the queftion is, what each Merchant did put in? Answer, B 750 l. and \(A\) ro75l.

Divide the product of the difference of their flocks multiplied by the time of \(A\), by the difference of their times, fo will the quotient be the flock of \(B\), which addedto 325 l.gives the flock of \(A\)
\[
\begin{gathered}
325 \times 7 \frac{1}{2}=2437 \frac{1}{2} \\
\left.3^{\frac{1}{4}}\right)^{2437 \frac{1}{2}}(750 \text { (tockof } B \\
\text { add } 325
\end{gathered}
\]

1075 fitock of \(A\)

> Examples of the Rule of Alligation, How the fineriefs of sold and filo evor is effimated, v.p. 11 . Gold of 24 Carects, others of 22 Ca rects, and another fort of 18 Carects fine; he would fo mix thefe together that the mafs mixed might be \(60 l 6\). and that the whole mixture might bear 20 Carects fine. How much of each fort mult he take?

Chap. X .
\[
\text { Anjwer, }\left\{\begin{array}{l}
12 . \\
12 \text { of } 24 \text { Careitis. } \\
32 \text { of } 22 \text { Careifs. } \\
36 \text { of } 18 \text { Careifis. }
\end{array}\right.
\]

\[
\begin{array}{l|l}
2 & 2 \\
2 & 2 \\
4^{+} & 6
\end{array}
\]
\[
10: 60:: \begin{cases}2, & 12 \\ 2 & 12 \\ 6 & 36\end{cases}
\]

Note; fome may think that queftions of \(A t\) ligation are capableonly of fo many feveral anfwers as there are different wayes to connect the mean rate or price with the extream rates or prices; yet it is moft certain, thatiany ordinary queftion of Alligation, where three or more things are propounded to be mixt in fuch manner as that rule requires, is capable of infinite anfwers, if fractions be admitted, and fometimes of many anfwers in whole numbers, whichare not difcoverable by the common rule of Alligation: fo albeit to the laft-mentioned queftion, the faid rute of Alligation can find but one anfwer only, which is before given; yet there are eight other anfwers in whole nuribers, which are thefe that follow (the invention whereof I have thewn in the 19th. Queftion of the thirteenth chaprer of my fecond Book of te'e Elements of Algebra.)
\begin{tabular}{l|r|r|r|r} 
Of 24 Carects & 18 & 16 & 14 & 10 \\
Of 22 . Carects & 3 & 6 & 9 & 15 \\
Of 18 Carects & 39 & 38 & 37 & 35
\end{tabular}
\begin{tabular}{l|r|r|r|r} 
Of 24 Carects & 8 & 6 & 4 & 2 \\
Of 22 Carects & 18 & 21 & 24 & 27 \\
Of 18 Carects & 34 & 33 & 32 & 31
\end{tabular}

See chap.8. of 2ueft. 36. An Apothecary hath fethis Appendix. veral Simples,viz. A hot in \(3^{\circ}\). B hot in \(2^{\circ}\). C temperate, \(D\) cold in \(2^{\circ}\). and E cold in \(4^{\circ}\). Now he defies to make a Medicine of thole Simples, in fuch fort that the temper thereof in respect of quality may be in \(I^{\circ}\). of heat, and the quantity \(8 \frac{1}{2}\) Drams, the Demand is what quantity of each Simple he muff take?

Anfover, \(4 \frac{1}{2}\) Drams of \(\mathrm{A}, \frac{1}{2}\) Dram of \(\mathrm{B}, 1 \frac{1}{2}\) Dram of \(C_{2}\) I Dram of D, and I Dram of E.


Drams

17.

\section*{Drams}

Quef.

\section*{2uef. 37. A Merchant buyeth 2} forts of Clothes, viz. of blacks and of whites for 68\%. 2s. after the rate

Examples of the Rule of Falfe Pofition: of 21 s . the yard for the blacks, and 12 s . the yard for the white, and he raketh fo much of each fort, that \(\frac{5}{6}\) of the number of yards of the black, are equal to \(\frac{7}{8}\) of the white; the demand is how many yards he boughe of each fort?

Anfuaer, 42 yards of black, and 40 yards of white.
2 ueft. 38 A certain perfon A payethunto the ufe of \(B\) for ever \(2500 l\). in prefent money, upon this condition, that \(B\) thall pay unto \(A\) an Annuity or yearly rent to be continued four years, the equality of their agreement being thus grounded, viz. the faid 2500 l. is fuppofed to be put forth at intereft for a year (to commence from the time of their agreement) at the vate of 8 per centum, per annume. Then from the fum of that principal and intereft (arifing due at the years end) the firt payment of the Annuity being fubtracted, the remainder is likewife fuppofed to be put forth at the fame rate of intereft for the fecond year; then from the compofed of this principal and intereft (due at the fecond years end the fecond payment of the Annuity being fubtracted, the remainder is likewife fuppofed to be put forth at the fame rate of intereft for the third year ; then from this principal and intereft the third payment of the Arinuity being fubrracted, the remainder is in like manner fuppofed to be put forth : at the fame rate of intereft for the Fourth year: laftly from this principal and intereft the fourth and laft payment of the Annuity being fubtracted, there muft be nothing left : the queftion is, what fum of money muft be fubfequent proof.


\section*{Quef. 39 .}

Mule, A ineque dwos imponis fervulus utres Impletos vino; fegnemque wt vidit AJellans Pondere defeflam veftigia figere tarda, - Mula rogat ; quid chara parens cunctare, gemifque? Unam ex utre tuo menfuram fi mibi redidas,
Duplsm oneris tunc ipfa feram; fedfisibi tradams
Unam menfuram, fient aqualia utrique.
Pondera; menfuras dic docie Geometer iftas?
The fence is this. A Mule and an \(A / s\) carried two unequal quantities of Wine, each confuting of a

\section*{Chap．X．}
certain number of meafures，in fuch fort，that if the Af imparted one of her meafures to the Mince，then the Muses number of meafures fo increafed would be the double of tho fe which the \(A f_{s}\) had remain－ ing；but if the Mule gave one meafure to the \(A \int f_{\text {，}}\) then the Ames meafures with that increate would be equal to the Mules remaining meafures．．The queftion is，how many meafures each carried？ Answer，the Mule 7 and the ASs 5.

Quef． 40.
正，forum，ftannum mifcens，antique motallam， Sexaginta mines penfantem finge coronam． Es aurumque duos fimul efficianto trientes． Termor quadrates fino nixtum inzpleat warm． At totidem quintas auri vis addita jere． Ergo age die fulvi quantum tiki conjicis aurist， Mifcendum ：ic quantum eris ftannique requires： Die quoque \(\int\) officiant dur quass ponder a peri： Prefariptam ut valeas rite offormare cưzonam．

The fenfe is this，Suppofe a Crown that foal weigh 60 ．is to be made of Gold，Brass，Iron，and Tin，mixed together in fuch proportion，that the weight of the Gold and of the Brats together may be \(40 l\) ．the joynt weight of the Gold and of the Tin 45 lb ：and the joynt weight of the Gold and of the Iron， 3616 ．The question is how much of every one of thole four metals mut be taken？
\[
\text { Ans per, }\left\{\begin{array}{l}
\text { l. } \\
30^{\frac{1}{2}} \text { of Gold. } \\
9^{\frac{1}{2}} \text { of Brass. } \\
5 \frac{1}{2} \text { of Iras. } \\
14^{\frac{1}{2}} \text { of Tin. }
\end{array}\right.
\]

> Ruff:

2neff. 41. One being demanded what was the prefent hour of the day, anfwered, that the time then paft from noon was equal to \(\frac{2}{5}\) of \(\frac{3}{8}\) of the time semaining until midnight. The queftion is, what a clock it was? (fuppofing the fime between noon and inidnight to be divided into twelve equal parts or hotirs.)

Anfower, \(\frac{26}{43}\) hour after noon,
Queft. 42. A Factor delivers 6 French Crownis and 2 Dollars for 45 fhillings fterling; alfo at another time he delivers 9 French Crowns and 5 Dollars (at the fame rate with the former) for 76 thillings. The queftion is to know the value of a French Crown, alfo of a Dollar? (2) Anfwer, A Crown was valued at 6 s 0 I do and a Dollar at 4 s. 3 d.

Queft. 43. A certain ufurer received 36 Dollars :for the fimple intereft of 186 l . lent for a certain time unknown ; alfo he received 90 Dollars for the gain of 360 l . at the fame rate of intereft for a certain time unknown; now the fum of the moneths wherein both the faid numbers of Dollars were lgained was ewenty moneths. The quettion is to : know in what time as well the 36 Dollars as the 90 Dollars were gained? गis Anfwer, The 36 . Dollars were gained in \(8 \frac{-3}{Y}\) imoneths, and the 90 Dollars in \(I_{1} \mathbf{1}_{1}^{-\frac{3}{1}}\) moneths, as may be proved by the Double Rule of Tbree.

Which anfwer may be difcovered by the following Canon found out by the Algebraick art.

Multiply the Dollars firft gained, the latter Principal, and the given time, according to the rule of continual Multiplication, for a dividend; then multiply the firf principal by the Dollars laft gained;

Queftions:
alfo multiply the latter Rrincipal by the Dolders firf gained, and referve the fum of thefe two laft products for a Divifor; laftly, divide the Dividend firff found by the faid Divifor, fo thall the quetient be the time wherein the firf number of Dollars was gained, which fubtracted from the time given in the queftion difcovers the time wherein the latter number of Dollars was gained,
\[
\begin{gathered}
36 \times 360 \times 20=259200 \\
186 \times 90_{2}+300 \times 36=29700
\end{gathered}=8-\frac{2}{2}
\]

And confequently .... \(20-8 \frac{-\frac{8}{1}}{1}=\left(4 \frac{3}{3} \frac{3}{2}\right.\)
244. If 3481 Souldiers are to Exampleas the be placed in afquare battel, how maExtration of roots. ny are to be fet in rank or in File?

Anfw. 59 (for the fquare root of 3481 is 59 )
2 uef. 45 .If 4050 Souldiers are to be fet in battel in a figure, which beareth the form of a fong fquare in fuch manner, that the number in File may be to the number in Rank as Ito 2 ; how many Souldiers are to be placed in rank and how many in File?

Anfwer, 90 in rank and 45 in File (found by this Canon or general rule) viz.

As the greater term of the proportion given is to the leffer, fo is the number of men io be placed in battel to a fourth proportional, whofe fquare root is the leffer number feught (whether it be for the rank or File: ) alfo as the leffer term of the given proportion is to the greater; fo is the number of men to be fet in battel to a fourth proportional,

506 Arithmetical Appendix. whole fquare root is the greater number fought (whether it be for the rank or File.)
\[
\begin{aligned}
& \text { 1. } 12 \text { 1 : } \quad 4050 \div 2025 \\
& \text { aI. } \sqrt{ } \mathrm{q} \cdot 2025=45 \text { ( men in File } \\
& \text { III. } 1 \text {. } 2: 4050 \text { • } 8100 \\
& \text { IV. } \mid \sqrt{ } \mathrm{q} \cdot 8_{100}=90 \text { (men in Rank. }
\end{aligned}
\]

> The proof.
\[
\begin{aligned}
& \text { AlSo } 45 \times 90=4050 \\
& 45 \cdot 90:=1.2
\end{aligned}
\]
d Or when one of the numbers fought ( whether it be for the rank or File) is found, the other may be difcovered by Divifion, viz.
\[
\begin{array}{lll}
45) & 4050(90 \\
90) & 4050(45
\end{array}
\]

Queft. 46. Suppose the wall of a Garrison to be in height 21 feet, and the breadth of the Moat furrounding the fid wall to be 28 feet; the queftion is, what length mut a foaling ladder have to reach from the outermoft fide of the Moat to the top of the Wall ?

Answer, 35. (to wit, the fquare root of the fum of the (quares of 21 and 28.)
\[
\begin{aligned}
& 21 \times 21=441 \\
& 28 \times 28=784 \\
& \text { aq. } 122535
\end{aligned}
\]

Chap. X. Queftions. 507
2थeff. 47. If 1001 . being put forth for infereft at a certain rate, will at the end of two years be augmented unto \(112 \frac{1}{1} \frac{16}{1} \circ l\). (compound intereft, or intereft upon intereft being ecmputed) what principal and intereft will be due at the firft years end ?

Anfiver, 1061 . (compofed of 1001 . principal and 61. intereft) which 106 is a mean Geometrically proportional bet ween 100 and \(112.3^{6}\) (and may be found by the eighteenth rule of the fifth Chapter of this Appendix.)
\[
100 \times 112.36=11236
\]

Queft. 48. If \(100 \%\) being put forth for intercit at a certain rate, will at the ond of three years be augmented unto 115.7625 l. (compound intereft being compured) what principal and intereft will be due at the firft years end?

Anfwer, \(105 \%\). (compofed of ico l. Principal, and \(5 l\). intereft ) which 105 is the firft of two mean proportional numbers between 100 and \(1 i 5\). 7625 l. (See the nineteenth rule of the fifth Chapter of this Appendix.)

Various Practical 2 qeftions to exercife Decimal Aritbmetick, in the menfuration of Swe perficial Figures and Solids.

Quef. 49. If the fide of a fquare Superficies be 3 feet, what is the area or content of that Supericies? Or (which is the fame thing) how many fquares, each of which is a foot fquare, are contained in that Superficies? Anfier,

\section*{Arithmetical Appendis.}

Anfoer, 9 fquare feet, which content is found out by multiplying the given fide 3 by it felf, viz. 3 multiplyed by 3 produceth 9 .

In like manner, if the fide of a fquare pavement of fone be 15.7 feet , the fuperficial content of that pavement will be 246.49 feet, that is 246 feet and an half very near, (for 15.7 muitiplied by it felf produceth 246.49.)

Likewife, a fquare piece of Wainfeot whofe fide is 3.24 yards, will be found to contain ro. 49 + yards, or 10 yards and an halfalmoft; for, 3.24 multiplied by it felf, to wit, by 3.24 will produce 10.49 t

Alfo if the fide of a fquare piece of Land be 37.25 perches, the content in fquare perches (neglecting the fraction in the product) will be found 1387, which being reduced (according to the feventh Tablet in Rule 4 , chapter 7 of the preceding book) will give 8 acres, 2 roods, and 27 perches for the content of that fquare piece of land.

Quejt. 50. Ifalong fquare be 8 feet in length and 5 feet in breadth, what is the fuperficial con* tent?

Anfoer, 40 feet ; which content is found out by multiplying the length by the breadth, viz. 8 multiplyed by 5 produceth 40 . So if one of the lights of a glafs window fuppofed to be in the form of a long fquare, hath for its length 3.06 feet, and breadth 1.47 feet, the content of that glats will be 4.4982 feet, or 4 feet and an half almoft, (for 3.06 multiplied by 1.47 produceth 4.4982.)

In like manner if there be a piece of Wainfcot, Plaftring,or any other fuperficies in the form of
a long fquare, which is in length 6.325 yards and in breadth 3.214 yards; the fuperficial content will be found \(20.32 \dagger\) yards, that is 20 yards, one quarter of a yard, and Somewhat more, for, 6.325 multiplied by 3.214 produceth 20.32 た.

Likewife a piece of Tiling in the form of a long rquare whofe length is 18.5 feet, and breadth 11.7 feet will be found to contain 216.45 fquare feet, which will be reduced to 2.1645 (quares of Tiling by allowing (according to cultom) 100 (quare fect to one fquare of Tiling.

Alfo if a piece of land in the form of a long fquare be 48.75 perches in length, and \(36: 25\) in breadth, the arta or content in perches will be found \(1767.18 t\), which 1767 perches being reduced will give II acres and 7 perches for the content of that piece of ground.

Quef. 5x. If it be required to fet forth in a Meadow one acre of grafs to ly in the falhion of a long fquare, and that she length theref be limited or agreed to be 20 perches, what mult the breadth be ?

Anfeer, 8 perches, which breadth is found out by dividing 160 (the number of fquare perches contained in an acre) by the given length 20 . If two acres were required, then 320 (to wir, twic. 160) muft be divided by the given fide, whetherrit be the length or breadth; fo if 7.25 pérches be prefcribed for the breadth, of tyoacres, the dength muft be 44. 13 + perches.

In like manner, if the breadth of a Board be 1. 32 foot, and it be demanded how far nne ougl t to meafure along the fide thereof to hive a fuperficial foot, or a foot fquare of that Board; divide

Ii \(3 \quad 1\) by

I by the given breadth, fo you will tind in the quotient this decimal traction. 757 t, which repre-- fents threc quarters of a loot or nine inches and fomewhat more, ant fo much in length ought to be mafured along the fide of that Board to make a fuperticial foot. Likewife if the breadth of a board be given in inches, then I 44 (the number of fquare inches contained in a fuperficial foot fquare) being divided by the given breadth, the quotient will thew how many inches ought to be meafured along the fide of that board to make a fuperticial foot; fo the breadth of a board being 9 inches, the length forward to make a fuperficial foot will be found 16 inches.

Queff. 52. If the three fides of a piece of land that lyes in the form of a triangle be 15 perches, 14 perches, and 13 perches, what is the area or number of fquare perches contained in that triangle?

Anfoper, 84 perches, or half an acre and four perches, which content is found out by this Rule viz.

From half the fum of the three fides of any plane triangle fubtract each of the three fides feverally, and note the three remainders ; then multiply the frid half furn and thofe three remainders one into the other (according to the rule of continual Muliplication; ) that done, extract the fquare root of the laft product, fo fhall fuch fquare root be the area or content of the triangle.
The 3 fides of a triangle \(-\left\{\begin{array}{l}\text { Percbes } \\ 14 \\ 13\end{array}\right.\)
The fum of the 3 fides ..... 42
The half of that fum ..... 21

The 3 remainders found out by fub- \(\left\{\begin{array}{l}6 \\ 7\end{array}\right.\) tracting each fide from the halffum- \(\left\{\begin{array}{l}7 \\ 8\end{array}\right.\)

The product arifing from the continual multiplication of the four laft \(705^{6}\) numbers
The fquare root of which product is \(\{84\)
the content required, to wit,

\section*{Another Example.}

\section*{Percbes}

The 3 fides of a triangle \(-\left\{\begin{array}{l}120 \cdot 5 \\ 112 \cdot 6 \\ 90 \cdot 3\end{array}\right.\)
The fum of the 3 fides \(\quad 323 \cdot 4\)
The half of that fum \(\quad 161.7\)
The 3 remainders found by fubtra- \(\left\{\begin{array}{l}41: 2 \\ 49: 1\end{array}\right.\) Cting each fide from the half fum- \(\left\{\begin{array}{l}49,1 \\ 71,4\end{array}\right.\) The product arifing from \(\{2335389\). 1096 of the fourlaft numbers -

Thefquare root of that product-4832, \(7 \dagger\)
Ii 4 Wherefore

\section*{512 Arithmetical Appendix.}

Wherefore I conclude that the content of a plane triangle, whofe three fides are 120.5 perches 112.6 perches, and 90.3 perches, is \(4832.7^{\dagger}\) perches, which reduced give 30 acres and 32 perches (the fataction of a perchbeing neglected.)

Now forafmuch as every irregular piece of ground may bedivided into triangles, for a fourfided field will be divided into two triangles by one innginary ftreight line leading overthwart from corner to corner called a Diagonal line; a five-fided field into three iriangles by two Dizgonals; a fix-fided ground into four triangles by thsee Diagonals, \&\%. the rule before given will be of excellent ufe to find out the Contents of large rields, efpecially if the land be of a dear value, as alfo when any controverfie arifeth by the reafon of the different admeafurements of Surveyors of land: for if the fides of thofe triangles be meafured in the field, and their leng this be agreed on, all Artilts to whom the reafon of the rule before givenisknown, will agree in one and the fame content. But yet this way of meafuring prefuppofeth that there is no obftacle, as Water, Wood, or other impedimen', fo hinder the meafuring of the fides of thofe triangles into which the field Is divided as aforefaid.

2uef. 53 . If the diameter of a Circle be 28.25 , - what is the cirdupdermence

Anfuper, 88,1749 tia for as is 13 is in propartion product hall be the circumference required.

\section*{Chap. X.}
what is the fuper ficial content of that Circle? Anfwer, \(626.79^{+}\): for as \(r\) is in proportion to \(.78 \mathbf{5} 39\), fo is the fquare of the diameter to the fuperticial content: Therefore multiplying alwaies the frid decimal fraction. 98539 by the fquare of the givendiameter (which fquare is the product of the multiplitation of the diameter by it (elf) the product thall be the fuperficial content required.
2uiff. 55 . If the diameter of a Circle be 28.25 . what is the fide of a fquare which may be inferibed within the fame Circle?

Anfwer, \(19.975+\) for the fquare root of half the Tquare of thre diameter, or the Tquare root of the double of the fquare of the fernidiameter, fhall be the fide of the infribed fquare fought. Otherwife, as 1 is 10.707 rob , fo is the diameter to the fide required. Therefore if you multiply (alwayes') the faid .707 rob , by the diamerer given, the product will be the fide of the infcribed fquare required. 2.. 2uef. 56. If the Circumference of a Circle be 88.75 what is the diameter?
\(A n f\) wer, \(28.249+\) for as 355 is to 113 , or as I is to 318309 , 10 is che Circumference to the Diame"ter. Therefore if .318309 be multiplied alwayes by the given Circumference, the producthall be the diameter fequired.

2uef. 57. It the Circumffence of a Circle be 88.75, what is the fuperticil content of that Cir clê?

Ansmer, \(626.801+\); for ass 1 is to .079578 .f is the fquare of the Circumference to the fuperficial content. Therefore if .079578 be alwayes multiplyed by the fquare of the given circumference, the product thalt be the fuperficial content fought.
Queft.

2uef. 58. If the circumference of a Circle be 88.75. what is the fide of a fquare that may be infcribed within the farae Circle?

Anfwer, 19.975 t; for as 1 is to .225078 , fo is the circumferencs to the fide required. Therefore if 225078 be alwayes multiplied by the circumference given, the product will be the fide of the inferibed fquare fought.

2reft. 59. If the fuperficial content of a Circle be 626.8 , what is the diameter?

Anfwer, \(28.25 \dagger\); for as I is to \(\mathbf{1} .27324\), fo is the eontent to the fquare of the diameter. Therefore multiplying alwayes \(\mathbf{I} 27324\) by the given content, the fquare root of that product fhall be the diameter required.

Queft. 60. If the fuperficial content of a Cirele be 626.8 , what is the circumference?

Anfwer, \(88.75 \dagger\), for as \(I\) is to 12.5664 , ,o is the content to the fquare of the circumference. Therefore if 12.5664 be alwaies multiplied by the given content, the fquare root of the product fhall be the circumference required.

2ueff. 61. If the fuperficial content of a Cirole be 626.8 , what is the fide of a quare equal to the fame Circle?

Anfwer, 25.035 t, for the fquare root of the given content is the fide of the fquare required.

Quef. 62. If the fide of a Cube be 12 inches, how many cubical inches are contained in that Cube?
Anfwer, 1728. Whata Cube is may be well reprefented by a Dye, which is a little cube it felf being a rectangular or fquare folid, that hath an equal length, breadth and depth, and is compre-
hended under fix equal fquares; now if the fide of one of thofe equal fquares ; which is alfo the fide of the Cube) be 12 inches, the fuperficial content of that fquare will be 144 fquare inches (for according to the preceding 49 th. queftion, 12 multiplied by 12 produceth 144 ) which multiplied by the depth J 2 inches, produceth 1728 cubical inches, and fuch is the folid content of that Cabe whofe fide is 12 inches: fo that by one foot of timber or frone in what foever kind of folid it be found, is underflooda Cube, containing 1728 cubical or dye-fquare inches, and confequently halfa foot folid contains 864 cubick inches, and a quarter of a foet folid contains 432 cubick inches.

In like manner, it the fide of a Cube of flone be 2.53 feet, the folid content of that Cube will be found \(16.194 \dagger\) feet, for 253 being multiplied by it felf produceth 6.4009 fuperticial feet, which product being multiplied by thefaid 2.53 will produce \(16.194 \dagger\) folidf eet.

Alfo if the fide of a Cube of tone or wood be 6 inches, or .5 foot, the folid content will be found 216 cubick inches or .125 parts of a foot folid (for 6 multiplyed cubically produceth 216, likewife. 5 multiplyed cubically produceth . 125;) whence it may be infer'd, that 8 lietle cubes of fone or wood, each of which is half a foot or 6 inches fquare, are contained in a foot of flone or timber; for 8 times 216 produceth 1728 (being the number of cubick inches contained in a foot folid) likewife 8 times .125 produceth I (to wit one entire foot folid.)

2ueft. 63 . If the breadth of a quared piece of timber, fuppofed to be freight and terminated at both

\section*{516 \\ Aritbmetical \\ Appendix:}
both ends by two equal fquares, be \(\mathbf{1 . 5 5}\) foot, the depthalfo 1.55 foot, and the length 17.33 feet, how many cubick feet are contained in that piece of timber?

Anfwer, 41.635 feet, that is, 41 feet and an half, and about halfa quarter of a foot. Which folid content is found out by this rule, viz. multiply the breadth 1.55 by the depth 1.55 the product will be 2.4025 fuperficial feet, which is the content of the Bafe (that is, the Area of either of the two equal fquares at the ends of the piece;) laftly multiplying the faid \(\mathrm{B}_{3}\) fe 2.4025 by the length 17.33 the product will be 41.635 t , which is the folid content required.

In like manner if the breadth of a fquared piece of timber, fuppofed to be ftreight and terminated at both ends by two equal long fquares. (which are called the Bafes ) be 2.34 feet, the depth 1.61 foot, and the length 17.58 feet, the folid content will be \(66.23^{\dagger}\), feet; for (as before) multiplying the breadth by the depth, and that product by the length, the laft product fhall be the folid content xequired.

2nef.6. 4 . If the breadeh, as alfo the depth of a : quared piece of timber having equal fquare Bafes, be 1.55 foat, how far ought one to meafure along the length of that piece of timber to makea foot folid?

Anfwer, 416 parts of a foot, or 5 inches yery near ;) which decimal is thus found, viz. Firlt tind the fuperficial content of the Bafe, which willibe 2.4025 (for 1.55 multiplied by 1.55 produceth i. 2.502 5;) Then dividing 1 (to wit 1 folid foot) . by the Bafe 2.4025 the quotient will be \(.416+\)

\section*{Chap. X.}
or \(\frac{-416}{100} 0\) parts of a foot, or five inches almoft, and fo far ought to be meafured along the length of the piece to make a foot folid. In like manner, if the breadth be 2.34 feet, and the depth 1.61 feet, the length forward along the piece to make one folid foot will be found .265 parts of a foot, or three inches and almoft \(\frac{1}{5}\) part of an inch.

2ueft. 65. If a freight fquared piece of rimber be terminated by unequal Bafes, whereof one contains 1.92 fuperficial foot, the other .85 foot, and the length of that piece of timber be 17.4 feet; what is the folid content, or how many Cubical feet are contained in that piece of timber?

Answer, \(23.474+\) feet (found out by one of Mr. Ougbtreds Rules for meafuring a fegment of a Pyramid in Problem 21. Chapter 19. of his Clavis Mathemat.) The rule is this.

Multiply the greater Bafe by the lefs, and extract the fquare root of that product, then multiply the fum of the two Bafes and that quare root by one third part of the length of the folid propounded, fo thall the laft product be the folid content raquired.

\author{
Example
}

Example:
The greate Bafe
92
The leffer Bafe
\(\longrightarrow-1\) .85 The product of the mulciplication \(\{\) of thofe two Bafes The fquare root of that product--I . 2774 the fum of that fquare root and the two Bafes

One third part of the length is --5.8 The producz of the multiplications of the two laft numbers is the folid \(-23: 474^{\dagger}\)
content required content required

2uelt. 66. A Pyramid is a folid comprehended under plane furfaces, and from a triangular, quadrangular, or any multangular Bafe, diminifheth equally lefs and lefs till it finith in a point at the top; now if the fuperficial content of the Bafe of a Pyramid be 5.756 feet, and the height thereof 14.25 feet(which height is the length of the perpendicular line that falleth from the top of the Pyramid to the Bafe)what is the folid content of that Pyramid? Anfwer, 27.341 feet: for if the Area of the Bafe of a Pyramid, be multiplied by one third part of the height thereof, the product fhall be the folid content of the Pyramid; therefore \(5.756 \times 4.75\) \(=27.34 \mathrm{I}\) feet E the folidity of the Pyramid propounded.

Note, If a Pyramid be cut into two fegments by a Plane parallel to the Bafe, one of thofe fegments will be a Pyramid, and the other will have two unequal Bafes, for the meafuring of which latter feg-

\section*{ment}
ment, a rule hath been already given in the fixty fifth queftion, the Area of each Bafe being known.

Quef. 67. A Cone is a folid, which hath a Circle for its Bafe, from whence it grows equally lefs and lefs (like a round Steeple of a Church) till is finifh in a point at the top; now if the Area of the Bafe of a Cone be 5.756 feet, and the height thereot be 14.25 feet, what is the folid content of that Cone?

Anfwer, 27.341 feet: for if the Area of the Bafe of a Cone be multiplyed by one third part of the height thereof, the produal thall be the folid content of the Cone.

Note, If a Cone be cut into two fegments by a Plane parallel to the Bafe, one of thofe fegments will be a Cone, and the other fegment will have 2 unequal Bafes which are Circles, the folidity of which latter fegment may be found out by the rule before given in the 65 queftion, the Area of, each Bafe ( or circle) being known.

Queff. 68. A Cylinder is a folid which may be well reprefented by a Stone-roll, fuch as are ufed in Gardens for the rolling of Walks. Now if the circumference of a Cylinder be 4.57 feet, and the length 3.25 feet, what is the folid content of that Cylinder?

Anfoper, \(5.4+\) feet, thus found out: Firf by the help of the given circumference 4.57, find out the fuperficial content of that Circle) being the Bafe of the Cylinder) which content (by the preceding 57 th.queftion) will be found 1.6619 t foot, then multiplying the faid 1.6619 by the given length 3.25 , the product will be 5.4008 which is the folid content required.
\[
2 u e f t .
\]

2ueft. 69 If the Bafe of a Cylinder be 1.6619 foot, how much in length of that Cylinder will make a foot folid?

Anfuper, 60 I parts of a foot ; For 1 (to wit, 1 folid foot) being divided by the bafe 1.6619 , gives in the quatient the decimal \(.601+\) for the length required.

Queft. 70. A Globe is a perfect round body con: tained under one Plane ; in the midle of the Globe there is a point called the Center, from whence all fireight lines drawn to the outfide are of equal length, and called Semidiameters, the double of any one of which is equal to the Diameter of the Globe; now if the Diameter of a Globe of Stone be. 1.75 feet, how many feet folid are contained in that Globe?

Anfoper, \(2.807+\) feet, for as 21 is in proportion 1011. or as 1 is to. 5238 , fo is the Cube of the Diameter to the folid content of the Globe : Therefore, multiplying alwayes the Cube of the Diameter by the faid decimal .5238 , the product fhall be the folid content required: So the Diameter 1.75 being firft multiplied by it felf, the product will be 3.0625 , which multiplied by the faid 1.75 , gives in the product 5.359375, to wit, the cube of the diameter, which being multiplied by .5238 , the product thence arifing will be \(2.807^{+}\), which is the folidity of the Globe propounded.

Queft. 71. What is the Diameter of a Glabe of ftone which contains 4 cubical or folid feet?

Anfwer, \(1.96+\) foot, for as a 11 is in proportion t02 1 , or as 1 is to 1.9090909 fo is 4 (the folid content given ) to a fourth proportional, to wit, 7.636363 t whofe cubick root is 1.96 t the diameter required.

\section*{Concerning the gaging of Veffals.}

The eafieft and apteft wayes for practice in ga* ging, are thofe which are perform'd by the help of Tables, or Gaging rods purpofely compos \({ }^{\circ} \mathrm{d}\) : Neverthelefs to give the Reader of this Treatife fome light in this matter, I thall herc infert one xule to find out the number of Gallons cuntained in a full Tun, Pipe, Hoethead, Barrel, or fuch like veffel, according to Mr. Wing ate's way ofreducing a Veffel to a Cylender. The Rule is this;

Having tound the difference of the swo diameters at the bung and head of the veffel, take \(-\frac{1}{3}\) of that difference and add it to the leffer diameter; then fquare that fumand referve the produf; that done, if the content be required in Wine gallons multiply the product referved, this decimal iraction . 0034 , and the length of the veffel, one into the other (according to the Rule of continual Multiplication ) fo thall the laft product be the number of Wine gallops sequired: but if the content be required in Ale gallons, multiply the product before referved, this decimal fraction .0027 , and the length of the veffel, one into the other continually, fo thall the product be the content in Ale gallons: This Rule I thall firt explain by two queftions, and then fhew how it is raifed.

2nef. 7 2. If the diameter at the bung of a veffel be 32 inches, the diameter at she head 28.2 inches, and the length 39 inches (whioh dimenfions
\[
\mathrm{K}_{\mathrm{k}}
\]

8 c
are faid to agree very near with thofe of an Englifh veffel called a pipe) what is the content of that veffel in Wine gallons ?

Anfwer, 126.278 Wine gallons, that is 126 Wine gallons and about a quart more (found out by the rule above given, 35 will be manifeft by the following operation.)

\section*{Explication.}

The Diameter at the bung.
The Diameter at the head
Their difference
\(1-1.8\)
Which multiplied by \(\frac{7}{2}\), that is, - 0.7
The product will be -2 . 66
Which adddd to the leffer diame-? ter gives the mean diameter

Which mean diameter being? fquared (that is, multiplied by it 252.33 .396 felf) produceth
which product multiplied by -+0.0034
The product thence arifing will be \(-3.2379^{+}\)
Which multiplyed by the length of 39.
The product is the number of Wine gallons fought, viz,

Queft. 73. If the diameter at the bung of a barrel be 23 inches, the diameter at the head 19.9 inches, and the length 27.4 inches; what is the content of that barrel in Ale gallons?

Anfwer, 36.031 Alc gallons, that is 36 gallons and about a quarter of a Pint more (found out by the preceding Rule.)

Explication.

\section*{Chap. X.} Queftions.

Explication.

The diameter at the bung - 23 . 0
The diameter at the head ——19.9
Their difference - 3 . 1
Which multiplied by \(\frac{-1}{1}\), that is - 0 • 7
The product will be \(\quad\) - 17
Which added to she leffer diame-
ter gives the mean diameter _- \(\}^{-22.07}\)
Which mean diameter being fquared (that is, multiplyed by ir \(\$ 487.0849\) felf) produceth -_
which product raultiplyed by - 0.0027
The product thence ariting is - \(1 \cdot 315^{\dagger}\)
Which multiplied by the length \(\zeta_{27} \cdot 4\) of the veffel

The 'product is the number of? Ale gallons fought, to wit \(-36.031^{t}\)

\section*{The reason of the Rule}

Two things are taken for granted in the faid rule, viz. Firlt, it is fuppofed that if \(\pi_{1}^{2} \frac{1}{0}\) of the ditference of the two diameters at the bung and head, be added to the leffer diameter, the fum fhall be an equated or mean diameter ( near enough for practical ufe though it be not exact ) viz. If there be a Cylinder whofe diameter is equal to that mean diameter, and whofe length is equal to the length of the veffel, that Cylinder thall be equal to the capacity of the veffel very near, S:condly Kk 2 the
the faid Rule prefuppofeth that 23 I cubick inches are equal toa Wine gallon, and 282 equal to an Ale gallon; concerning which equalities (efpecially the latter) Artifts differ fomewhat in their experiments; but according to any equality which in that particular fhall be agreed on, from this that follows a rule may be framed, and Tables thence calculated for gaging a full veffel without confiderable error.

Taking then thofe two things above mentioned for granted, we may rightly infer that if a Cylinder hath for its Bafe a Circle whofe fuperticial content is 23 I inches, every inch in length of that Cylinder will contain 23 I cubick inches, or one intire Wine gallon; Now forafmuch as all Circles are in fuch proportion one to the other as the Squares of their diameters, it thall be as 294.11844, (to wit, the fquare of the diameter of that Circle whofe fuperficial content is 231 ) is to I (to wit, the fuperficial content 231 confidered as the Bafe of one Wine gallon;) or as I is to 0034 ; So is the fquare of the (quated (or any other) diameter, to the fuperficial content of that Circle in Wine gallons and parts of a gallon, which content multiplied by the length of the veffel will produce its folidity or capacity in Wine gallons: Therefore the firft part of the preceding rule for finding of the number of Wine gallons contained in a full veffel is manifeft: And after the fame manner, fuppofing as before 282 cubick inches are equal to an Ale gallon, the decimal .0027 prefcribed in the faid rule will be found out.

Upon thofe grounds Mr. Wingate compos'd his Gaging rod; Mr. Ougbtred alfo in his circles of

Chap. X.
Proportion hath delivered another rule for \(\mathrm{Ga}^{-}\) ging,from whence his Gaging rod is deduced; but the particular conffructions of thofe rods, and likewife the making of Tables for the fame.purpofe, being handled by feveral Artifts, I fhall not infilt upon them.

Now if the induftrious and more curious Arithmetician, after he is well exercis \({ }^{\text {d }}\) in vulgar Arithmetick, defires further knowledge in finding out the Anfwer of fubtil Queftions about numbers, his beft Guide will be the admirable Algebraical Art, which difeovers rules for the folving of Problems, as well Arithmetical as Geometrical, that are above the reach of any of the rules of common Arithmetick, or practical Geometry, as may partly appear by the two rules in the aforegoing 52 and 65 Queftions, as alfo by the \(t\) wo following Queftions, with which I thall corclude this Chapter.

2ueft. 74. To find two numbers in a given proporion, fuppofe the leffer to the greater as 2 to 3 and fuch, that if the leffer number be added to the fquare of the greater, alfo if the greater number be added to the fquare of the leffer, the two fums fhall be fquare numbers whofe roots are expreffible by rational or true numbers (fractions being admitted for numbers.)

Anfwer, \(\frac{-1}{10}\) and \(\frac{-3}{20}\).

K k

To which adding the leffer number root is \(\qquad\)
Again, the fquare of \(\frac{-1}{10}\) (the leffer? number) is \(\qquad\) \(100 \frac{1}{2}\)
To which adding the greater number

The fum in its leaft terms will be \(\frac{-4}{25}\)
Which is a \{quare number whofe root?
Alfo the faid numbers \(-\frac{1}{7}\) and \(\frac{-3}{20}\) are one to the other as 2 to 3 , wherefore the quefion is folved. Which numbers \(5_{10}^{\frac{3}{0}}\) and \(\frac{-3}{20}\) are found out by this following

\section*{Theoreme.}

Ifthe fraction \(\frac{1}{4}\) be divided into any two parts; either of thofe parts being increafed with the Square of the other part fhall give a fraction having a rational fquare root.
Wherefore by dividing \(\frac{1}{4}\) into the two fractions \(-\frac{1}{10}\) and \(\frac{-3}{2} \frac{3}{0}\), which are in the prefcribed proportion of 2 to 3 , thofe fractions will ratisfie the conditions in the queftion propounded.

Likewife thefe two fractions \(-\frac{722}{10} \frac{20}{80}\) and \(\frac{-1023}{100} \frac{80}{86}\) will anfwer the queftion, and are found out without extracting any root; but the manner of finding out the faid Theorem and laft mentioned fractions, I have fhewn in the 24th. queftion of my third book of the Elements of Algebra.

Chap. X. Queftions.
2uef. 75 . To find 3 numbers, fuch that the fquare of any one of them being added to the other two numbers, the fum of fuch addition fhall be a fquare number, whofe root is a rational number.

Anfwer, \(1, \frac{8}{32}\) and \(\frac{16}{3}\).

\section*{The proof.}

Firft, the fquare of the firf number? \(I\) is

To which adding the fecond and third numbers \(\frac{8}{3}\) and \(\frac{16}{3}\), the fum will be \(\}\)

Which is a \{quare number whole \(\} 3\)
Secondly, the fquare of the fecond
amber \(\frac{8}{3}\) is number \(\frac{8}{3}\) is

To which adding the firft and third numbers \(I\) and \(\frac{16}{3}\), the fum in its leaft \(\frac{12}{9}\) terms will be

Which is a fquare number whofe? \(1 \frac{1}{3}\) root is

Thirdly, the fquare of the third num- \(\}=\frac{26}{9}\) ber \(\frac{16}{3}\) is

To which adding the firft and fecond? numbers 1 and \(\frac{3}{3}\) the fum in its leaft \(2 z 0\) terms will be

Which is a quare number whofe root is \(\qquad\)
Wherefore it is manifeft that the three numbers \(1, \frac{8}{3}\) and \(\frac{16}{3}\) will fatisfie the conditions in the queftion, which may be folved alfo by other numbers, but the manner of finding them out I have thewn in the 32 Queftion of my third Book of the Eliments of Algebra.

K \(k 4\)
CHAP.
528 Of Sports

\section*{CHAPXI.}

\section*{Of Sports and Paftimes.}

\section*{Probl. I.}

To difcever a number wobich any one Shall bave in bis mind, witbotst requiring him \(t\) o reveal any part of that or any nmmber wobat foever.

\(A\)
Fter any one hath thought upon a number at pleafure, bid him double it, and to that double bid him add any fuch even number which you pleafe to affign, then from the fum of that addition let him reject one half, \& referve the orher half: Laftly from this half bid him to fubtract the number which he firf thought upon;then may youboldly tell him what number remaineth in his mind after that fubtraction is made, forit will alwayes be half the number which you affigned him to add.

For example fuppofe he thought upon 6, the double thereof is 12 , to which bid him add fome even number at your pleafure, fuppofe 4 , fo will the fum be 16 , whereof the half is 8 , from which if he fubtract 6 (the number firft thought on) the remainder is 2 (to wit, half the number 4 , which was by you affigned to be added;) which remainder you difcover, notwithftanding all the operation was performed in his mind, without his making known of any number whatfoever. Note that the adding of an even nuinber as aforefaid is not of neceffity, but only to avoid a fraction which will arife by taking the half of an odd number.

\section*{The reafon of tbe Ruls.}

If to the double of any number (which number for diftinction fake I call the firft) a fecond number be added, the half of the fum muft neceffarily confift of the foid firft number, and half the fecond; therefore if from the faid halffum the firft number be fubtracted, the remainder muft of neceffity be half of the fecond number which was added.

\section*{Probl. II.}

Troo numbers, the one cven and the otber odd, being propounded unto tzoo perfons, to the end they may (out of your fight) Severally chufe one of thofe numbers; to difcover wobicb of tbefo numbers each perfon ghall have cbofen.
Suppofe you have propounded unto Peter and Fobn two numbers, the one even and the other odd, as 10 and 9 , and that each of thofe perfors is to chufe one of the faid numbers unknown to you. Now to difcover which number each perfon thall have chofen, you muft take two numbers, the one even and the other odd, as 2 and 3 ; then bid Pcter multiply that number which he fhall have chofe, by 2 ; and caufe Jobn to multiply that number which he thall have chofen by 3 ; that done, bid them add the two products together, and let them make known the fiun to you, or elfe demand of them whether the faid fum be even or odd, or by any other way more fecret endeavour to difover it, by bidding them to take the half of the faid fum,
for by knowing whether the faid fum be even or odd, you do obtain the principal end to be aimed at, becaufe if the faid furm be an even number, then infallibly he that multiplied his number by your odd numberíto wit, by 3 ) did chure the even number ( \(t 0\) wit, 10 ; ) but if the faid fum happen to be an odd number, then he whom you caufed to multiply his number by your odd number ( to wit, by 3 ) did infallibly chufe the odd number (to wit, 9.)

For example, if Peter had made choice of 10 , and Fobn 9, fuppofe you willed Peter to multiply his number 10 by 2 and Fobn, to mulciply his number 9 by 3 ; the products will be 20 and 27 , whereof the fum is 47 , which being an odd number, you may thence conclude that fobw whom you caufed to multiply his number by 3 , did chufe the odd number 9 , and therefore Peter did chufe 10 . But if you had willed Jobn to have multiplied his number 9 by 2 , and Peter to have multiplyed his number 10 by 3, the products would have been 18 and 30, whereof the fum is 48 , which is an even number, from whence you may infer that he that multiplyed his number by 3 did chufe the even number, and therefore Peter had chofe \(\mathbf{1 0}\), and Fobn 9.

\section*{Demonfiration.}

The reafon of the faid rule is very eafie, and dependeth principally upon the 28 and 29 propofitions of the 9 th.book of Euclid; for one may infer from the 21 of the fame book, that an even number multiplied by any number whatfoever produceth an even number, but an odd number is of a different nature, for if it be multiplied by an even num-

Chap. XI. and Paffimes. 531 ber, the product is an even number (by the faid 28 propofition;) and if it be multiplied by an old number, the product is odd (by the faid 29 propofition.) Therefore if in making this fport it happeneth that the even number be multiplied by your odd number, both the products fhall be even, and confequently the fum fhall be infallibly an even number (by the faid 21 propofition.) But if it happen that you caufe the odd number to be multiplied by your odd number, that product will be odd, and the other product even, therefore the fum of thefe two products fall be anodd number (as Clavius hath demonftrated upon the 23. of the gth. of Eu. clid.

Probl. 3.
A certain number of diftincit things being propounded, to difpofe them in fuch an order, that calting away alwayes the ninth, or the tentb, or any otber that hall be afigned, unto a certain number, tbofe remaiuing may be fuch as weere firlit internded to be left.

This Problem is ufually propounded in this manner, viz. fifteen Cbritians and fifteen Turks being at Sea in one and the fame Ship in a terrible florm, and the Pilot declaring a neceffity of cafting the one half of thofe perfons into the Sea, that the reft might be faved; they all agreed that the perfons to be calt away thould be fet out by lot after this manner, viz. the thirty perfons fhould be placed in a round form like a Ring, and then beginning to count at one of the Paffengers, and proceeding circularly, every ninth perfon fhould becaft into the Sca, until of the thirty perfons lot might infallibly fall upon the fitteenTurks, and not upon any of the fifteen Cbrifitians? For the more eafie xemembring of the rule to refolve this queftion, I thall prefuppofe the five vowels, a,e,i,0,w to fignifie five numbers, to wit, (a) one, (e) two. (i) three, \((0)\) four, and \((u)\) five; then will the rule it felf be bricfly comprehended in thefe two fol lowing verfes.

> From numbers, sid and art Never will fame depart.

In which verfes you are principally to obferve the vowels, with their correfpondent numbers before affigned, and then beginning with the Cbriftians, the vowel o(in form) fignifieth that four Cbriftians are to be placed together; next unto them, the vowel \(u\) (in num) fignifieth that five Turkes are so be placed; In like manner \(e\) (inbers) denoteth 2 Chriftians, \(x\) (in aid) 1 Turk, \(i\) (in aid) 3 Clariftians, \(a\) (in and I Turk, a (in art) 1 Cbriftian, e (in ne) 2 Turkes,e (in ver) 2 Cbriftians, \(i\) (in will) 3 Turkes, a (infame) I Cbriftian, e( in fame) 2 Turkes, e(in de) 2 Cbriftians, a (inpart) I Turk.

The invention of the faid Rule, and fuch like, dependeth upon the fubfequent demonflation, viz. if the number of perfons be thirty, let thirty figures or ciphers be placed circularly, or elfe in a right line as you fee,

\section*{000000000000000000000000000000}

That done, begin to count from the firf, and mark

\section*{Chap. XI. and Paffimes. \\ 533}
mark the ninth (or what other fhall be affigned) by putting a point or crofs over it ; then count forward from that which you have marked, and place another point over the next ninth; and continue to do the fame, beginning again when you fhall be at the end (if the cyphers are placed in a right line) and paffing over thofe, which you flall have already marked, until you have marked the number required, as in the example propounded, untill you have mar ked fifteen, for then all the cy phers marked thall be thofe which muft be caft away, and the others thofe which fhall remain. Hence it is evident, that if you obferve how thofe cyphers which are marked, are difpofed amongft thofe which are not marked, you will cafily make a rule for any number whatfoever.

By this invention (as fome do conjecture) the famous Hifforian Fofepbus the Jem, preferved his life very fubtily in the Cave, to which himfelf and forty of his Countreymen had fled from the furious and conquering Romans at the Scige of Fotapata: for his faid Countreymen having moft wickedly refolved to kill one another, rather than yield to their enemies, he at length (when no arguments that he could ufe would diff wade them frum fo horrid an act ) prevailed with them to execute their tragical defign by lot; and fon by the help of the aforefaid artifice (as we may fuppofe) himfelf with one other perfon only remairing alive, after the reft were inhumanly murthered, they agreed to put an end to the lot, and thereby fave their lives. This fiory you may fee at large in the fourteenth Chapter of the third book of the Hiltory of Jofepious of the Warrs of the Jems.

Many numbers whicb proceedfriom I or unity in a progreffion,according to the natural order of numbers, - ( uch as tbefe, \(1,2,3,4,5,6, \& c\).) being placed in a round form like a Ring; to dif fover nobich of thofe numbers any one fhall bave thougbe apon.

Let any multitude of numbers in the aforefaid progreffion, fuppofe thefe 10 , to wit, 1.2.3.4 5.6. 7.8.9.10. be written upon 10 ivory counters (er for want thereof upon 10 (mall pieces of paper) which may be reprefented by thefe to letters, A. B.C.D.E.F.G.H.I.K.L.viz.fuppofe 1 to be written upon the counter \(\mathrm{A}, 2\) upon \(\mathrm{B}, 3\) upon C , \&c. Then having placed thofe Counters circularly as you fee(with their blank faces uppermoft, and the figures underneath, that the fubrilty of the fport

may the better be concealed) let any one think upon any number of unities which dorh not exceed 10; that done bid him touch one of thofe Counters at pleafure, and to the number on the backfide of the counter touched (which you cannot be ignorant of, having noted well the place of 1 or
A) add fecretly in your mind, the juft number of all the counters, and referve the fum; then bid him imagine in his mind the counter touched to be the number which he thought, and from that counter to count backwasds, untill he fhall have made up the aforefaid fum, which you referved, fo will his computation infallibly end upon the counter upon which the number thoughtupon is written.

For example,fuppofe that he thought 7 or \(G\),and that he touched B , to wit, 2 Add to 3 the number of all the counters, to wit, 10 , fo the fum will be 12 ; then bid him to count unto '12 beginning at \(B\) and going backwards, and efteeming \(B\) to be the number thought, to wit 7 , fo will 8 fall upon A, 9 upon \(\mathrm{L}, 10\) upon \(\mathrm{K}, 11\) upon H , and laftly, 12 upon the counter \(G\), which being turned up will thew 7 the number thought.

The reafon of this rule is not difficule to be apprehended, two principles being prefuppofed, the one is this, to wit, many counters or things whatfoever being difpofed orderly one after the other, inone continued line, whether it be right or circular; if you value or name the firf counter to be fome number of unities at pleafure, and continue to coune forward according to their natural order of numbers, untill another number be named which falleth upon the laft counter; or if youimagine or name the laft counter, to be the fame number of unities as before you put upon the firft, and contitinue to count backwards unto the firft counter; I fay, that the fame number will be named at the end of both thofe computatipns: for example, in thefe 9 letters A.B.C.D.E.F.G.H.K. if the letter A be effecmed
\(53^{6}\) Of Sports Appendix, efteemed to be 4 , and from thence you count forwards unto \(K\), according to the natural order of numbers, the letter \(K\) will fall upon the number 12 . In like manner, if you efteem K to be 4 , and count backwards from K to A, the letter A will likewife fall upon 12.
\begin{tabular}{lllllllll} 
4. & 5. & 6. & 7. & 8. & 9. & 10. & 11. & 12. \\
A. & B. & C. & D. & E. & F. & G. & H. & K. \\
12. & 11 & 10 & 9. & 8. & 7. & 6. & 5. & 4.
\end{tabular}

The other principal is this, to wit, many counters being difpofed in a round manner like a Ring, if you efteem any one of thofe contents to be fome number at pleafure, and then from that counter if you count circularly, until you end upon the counter where you began, the number laft named will be equal to the fum of the number of all the counters, and of the number which you put upon the firft counter ; for example; If D be one of 10 Letters placed in a circumference, and that imágining D to be 7 , you begin with it, and count round the whole circumference, according to the natural progreffion of numbers, till


You end with \(D\) where you began; the number i 7 which is compofed of 10 and 7 will neceffarily fall upon D ; for 9 (which is the number of letters in the circumference befides \(D\) ) being added to 7 (which was firft put upon D) makes 16 , to which 1 being added (becaufe \(D\) doth end as well as begin the circumference) the fum is 17 .

Now thefe two principles being prefuppofed, it \({ }^{\text {I }}\) will not be difficule to appehend the reafon of the aforefaid rule in all cafes that can happen; for imagine that one hath thought upon 7 , or the counter \(G\), then that counter which he fhall touch muft either be the fame counter \(G\) or fome other that proceedeth or followeth G.

Firft therefore fuppofing the counter or number: touched to be the fame with the number thought, the truth of the rule will be then cvident, for by the rule given, he fall begin to count from the fame G unto 17, putting 7 upon G , therefore by the fecond prefuppofition the number 17 will fall upon G .

Secondly imagine that he touched a counter or number following \(G\) the number thought, as \(L\) or 10,then according to the rule adding io (the multitude of all the counters placed circularly ) unto 10; or L. (the counter touched) bid him count backwards unto 20 by beginning at \(L\), and efteem L to be 7. Now becaufe by beginning to count at G which is 7 , and proceeding to count forward, the number 10 will fall upon \(\mathbf{L}\); therefore by the firt prefuppofed principle, if we efteem \(\mathbf{L}\) to be 7 and count backwards, the number 10 will infallibly fall upon \(G\),and then the number 20 fhall alfo fall upon the fame \(G\) by the fecond prefuppofed principle.
Li Laftly,

Lafly, imagine he touched Corine number or counter which precedeth 7 the number fought, as B or 2 ; then adding 10 to 2 , you are to bid him count unto 12 , he having fiffi imagined \(B\) to be the number thought 7 , and going backwards to \(\mathrm{A}, \mathrm{L}\), \(\mathrm{K}_{3}\) \& \(\mathrm{c}_{\text {a }}\) Now becaufe by proceeding to count at B , which is 2 , and beginning to count forward to \(C\), \(D_{j} \&\) ce. the number 7 falleth upon \(G\); therefore if Ont imagine that G is \(\mathrm{a}_{2}\), and from thence count back wards towards \(\mathrm{F}, \mathrm{E}, \&\) \&c, the number 7 will fall upon \(B\) (by the firt prefuppofed principle;) there+ fore when one affumeth B to be 7 , and counteth towards \(\mathrm{A}, \mathrm{L}\), i\&c. ito any afligned number, it is in efo fect as much as when ore imagineth \(G\) to be 2 , and counteth towards. F, E, \& \& . unto the faid affigned number, for each of thofe computations will end in the fame poior ; but it is manuifeft (by the fecond prefuppofed principles) that iefteerning \(G\) to be 2 ; and counting rowards F, E, D, \&c. round the whole dircumference, the number. 12 will fall upon the fame \(G\). And becaufe \(G\) being fuppofed to be 2 , and counting on the fame coaft as before, the number 7 falls upon B; therefore if the computation be continued on the fame coalt from B 7 anto 12 , the number 12 will fall upen the fame \(G\). So that the practice of this fport in all its cafes is fully demonfrated.

Note, that to the number of the counter touched you may not only add the number of all the counters once (as the rule direCis sbut twice, thrice or more times : for example, B being touched, you may caufe him to count unto 12 , or unto 22 , or to \(32,42,8 \mathrm{cc}\). the reafon whereof is evident from the fecond prefuppofed principle.

Probl.

\section*{Chap. XI.} and Paftimes.

Probl. 5.
Many numbers boing fhewed by pairs, so wit, woo by twoo, unto any one, that be may think zpon ary \(\therefore\) one of thofe pairs at pleafure; to difeover the pair that was thougbt upor.

Let 20 numbers, fuppofe thefe, \(1.2 \cdot 3 \cdot 4 \cdot 5 \cdot 6.7\). 8.9.10.11.12.13.14.15.16.17.18.49.20. be written upon Ivory counters (or for want thereof upon frmal pieces of paper) to wit, I upon one counter, 2 upon another, 3 upon a third, \&ec. Then difpofe them into pairs as you fee, viz. fuppofe I and 2 to be one pair, 3 and four to be another
\begin{tabular}{|c|}
\hline 1. 2 \\
\hline 3. 4 \\
\hline 5. 6 \\
\hline 7. 8 \\
\hline 9. 10 \\
\hline 11. 12 \\
\hline 13. 14 \\
\hline 15. 16 \\
\hline 17. 18 \\
\hline 19. 20 \\
\hline
\end{tabular}
pair, \&ec. and of the fe pairslet any one think upon which pair he pleafeth. That done you are to difribute the faid 20 numbers in ranks, in the form of a long fquare, until there be 5 numbers in length, and 4 in breadth, after this manner. viz.
lay the three firt numbers \(\mathbf{I}, 2\), and 3 in a rank (as you fee in the fecond figure) from \(A\) towards \(B\); then place 4 underneath \(I\), and 5 after 3 (in the faid rank AB.) Again place 6 under 4; and 7 after. 5 (in the faid rank AB.) Then place 8 under 6 , alfo 9.10 .11 on the right hand of 4 in the rank CD. Again place 12 under 9, and 13 on the right hand of II in the rank CD. and 14 under 12. Moreover place 15.16 .17 . on the right hand of 12 in the rank EF. Laftly, place 18.19.20. on the right hand of 14 in the rank GH, fo will all the numbers be sanked as you fee in the Table. That done, you are to demand of him that thought upon two numbers as aforefaid, in what rank or ranks the faid numbers do happen to be found, viz.
\[
\begin{array}{l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{I} & 2 & 3 & 5 & 7 & \mathrm{~B} \\
\mathrm{C} & \frac{4}{4} & \frac{9}{9} & \frac{10}{} & \frac{11}{13} & \mathrm{D} & \mathrm{D} \\
\mathrm{E} & \frac{6}{12} & \frac{15}{16} & \frac{17}{17} & \mathrm{~F} \\
\mathrm{G} & \mathrm{8} & \frac{1}{14} & 18 & 19 & 20 & \mathrm{H}
\end{array}
\]
in which of the ranks \(\mathrm{AB}, \mathrm{CD}, \mathrm{EF}, \mathrm{GH}\), or in which two of the faid ranks: now if he anfwer that the two numbers which he firft thought upon are in the firft rank A B. then I and 2 Thall be the numbers thought upon; if in the fecond CD, then 9 and 10 thall be the numbers thought; if in the third rank E F, then 15 and 16 fhall be the numbers thought: if they are in the fourth rank G H, then 19 a nd 20 thall be the numbers thought; but if he thall fay that the numbers thought are in different ranks, then you are heedfully to mark the faid numbers 1 and 2,2 and 10,15 and 16,19 and 20 , which

Chap. XI. and Paftimes. 541 which may be called the keys of the fport, in regard they ferve not only to difcover the two numbers thought, when they are both in one and the fame rank (as aforefaid) but alfo when they are in two different ranks, for in this latter cafe as foon as it hath been declared to you in which two ranks the two numbers thought are placed, you maft take the key of the higheft of thofe two ranks, and defcending in a down right line from the firft number of that key unto the lower of the faid two ranks, you thall there find one of the two numbers thought, and upon the right hand of the fecond number of the faid key, at the fame diffance fidewife from the fecond number of the key, as one of the numbers thought was diffant from the firft number of the key, you fhall find the other number thought,

For example, fuppofe the two numbers thought are 7 and 8 , and that it thall be declared unto you that they are in the firft and fourth ranks; take then the key of the higheft of thefe two ranks, to wit of the firft, which is 1 and 2 , and defcending down right from I unto the fourth rank, you thall there find 8 one of the numbers thought; then feek fide wife on the right hand of 2 (the fecond number of the key) a number as far feparated from 2, as 8 is diftant from \(\mathbf{I}\), and you will find 7 the other number thought.-

Again, fuppofe he faith that the numbers thought are in the fecond and third ranks; take then the key of the fecond rank which is 9 and \(\mathbf{r 0}\), and defeending downight from 9 to the third rank, you fhall there find 12 which is one of the numbers thought; then feek fidewife on the right

\section*{542 \\ Of Sports \\ Appendix.}
hand of 10 ( the fecond number of the key) a number as far diftant from 10 as 12 is from 9 , and you Thall find II which is the other number thought.

The reafon of this will be apparent from a ferious confideration of the placing of the numbers according to the rules before given, for it is thereby evident that of the two numbers coupled two by two, there can never be found more then one pair in one and the fame rank, and of all the other pairs one number is alwayes found in one rank, and the other number in an other rank.

Note alfo, that this fport may be practifed with divers perfons at once, and not only with 20 numbers, but with any fuch multitude of numbers which is produced by the multiplication of any two numbers which differ by 1 or unity ; as 30 , which is the product of 5 multiplied by 6 , and 42 which is the product of the multiplication of 6 and 7. That which is chiefly to be regarded is the placing of the numbers in ranks according to the directions before given : and for the more eafie comprehending of that order, I have in the following Table ranked 30 numbers in their due places, which being compared with the former Table, and well viewed, will be a clearer illuftration than can be expreft by many words.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 5 & 5 & 7 & 1 & 9 \\
\hline 4 & 1 & 11 & 1 & 12 & 1 & 1 & 3
\end{tabular}\(|\)

Probl.

\section*{Probl. \(\sigma\).}

Three jealous busbands with their wives, being ready to pass by nigbt over a river, do find at the river fide a boat wobich can cary but two perfons at once, and for woant of a Boatman they are neceffitated to rawo themfelves over the river at the feveral times: tbe queftion is bow thefe 6 perS ons falll pas 2 by \(2, \int_{0}\) that none of the 3 wives may befound in the company of 1 or of 2 men unleff ber husband be prefent.

They muft pars in this manner, viz. Firft two women pafs, then one of them bringeth back the boat and repaffeth with the third woman; that done, one of the three women bringeth back the boat, and fitting down upon the ground with her hufband permitteth the other two men to pafs over to find their wives; then one of the faid men with his wife bringeth back the boat, and placing her upon the ground he taketh the other man and repaffeth with him ; lafly, the woman which is found with the three men entereth into the boat, and at twise goeth to fetch over the other two women.

\section*{Probl. 7.}

Two merry companions aroto have equal hhares of 8 Gallows of mine; which are in a veffel containing exacily 8 Gallons, nosid to make this equal partition they bavc only troo otber empty veffel, whereof once centainetb 5 Gallons, and the otber 3 ; the queftion is, bown they fhall exacily divide the wine by the belp of thofe thr ce veffels.

Firft, from the veffel which containeth \& gallons and
and is full of wine, let 5 gallons be poured into the empty veffel of 5 , and from this veffel fo filled let 3 be poured into the empty veffel of three, fo there will remain 2 gallons within the veffel of 5 . Then let the three gallons which are within the veffel of 3 be poured into the veffel of 8, which will now have 6 gallons within it, that done let the 2 gatIons which are in the veffel of \(\$\), be put into the empty veffel of 3 , then of the 6 gallons of wine which are within the \(v\) effel of 8 fill again the five, and from thofes pour out I gallon into the veffel of 3, which wanted only 1 gallon to fill it, fo there will remain exactly 4 gallons within the veffel of \(\$\) and 4 gallons within the other two veffels. This queftion may be refolved in another way, but I leave that as an exercife to the wit of the ingenivus Reader.

Now albeit at firft fight it may be thought by fome, that the two laft mentioned Problems cannot be refolved by any certain Rule, but only by many trials, yet by infallible argumentation and difcourfe, the folution of thore queftions may be found out or elfe the impoffibility of them, if by chance they thould have been propounded impoffible; as the moft ingenious Gafper Bachet hath manifetted in a litgle Book in the French Tongue, intituled Problemes plaifans © delectables qui Se fons par les nombres; from which book I have extracted the Contents of this Chapter.

\section*{Soli Deo Gloria.}
```


[^0]: 8) 192 (
