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ABSTRACT

Obtaining a confidence interval for a parameter A. of an exponential

distribution is a frequent occurrence in life testing problems. Often-

times the test plan used is one in which all the observations are censored

at the same time point t . Several approximate confidence interval pro-

cedures are available in the statistical literature; however, to the

knowledge of the author, the performance characteristics of the various

approximations used in these procedures have not been established

analytically. The purpose of this paper is to report the results of an

empirical stucy of the performance of four of these procedures with

respect to the expected length of the interval, the variance of the

interval length, and the coverage probability.
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I. INTRODUCTION

In life testing applications, it is frequently desired to obtain a

confidence interval for the parameter A. of an exponential distribution.

In case a test plan is used for which all the observations are censored

at the same time point t , several approximate confidence interval pro-

cedures are available in the statistical literature. To the knowledge

of the author, the goodness of the various approximations used in these

procedures, and hence the goodness of the procedures themselves, have

not been established analytically. The purpose of this paper is to

report the results of an empirical study of the performances of four of

these procedures with respect to the expected length of the interval,

the variance of the interval length and the coverage probability.

The general setting of the problem is as follows: suppose the random

variables T, , T„ , ..., T are independent and identically distributed with

common exponential distributions

f
i
(t

i
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"Ui
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i
> °

;
i = 1} 2

'
••» n '

The random variables that will actually be observed are X,, X~ , ..., X ,12 n

where

fT. i f T. < t

X. =
x °

t if T > t ; i = 1, 2, ..., n.
o 1 o

These random variables are sometimes referred to as "censored" exponential

variables, and t is called the "censoring point". Define the random
o

variables Y, , Y„ , Y by12 n J

> n





It is easily seen that the random variables Y. , Y„ , .... Y are independentJ
1 2 n r

and have Bernoulli distributions with parameter p = 1-e o. In Section II,

four confidence interval procedures for X based on the X. and Y. are

discussed

.





II. CONFIDENCE INTERVAL PROCEDURES

A. PROCEDURE 1

This procedure is obtained as a special case of a solution to a more

general problem that has been derived by Halperin [1]. The random

variable Y = XY. has a binomial distribution with unknown parameter p.

Suppose y is the observed value of the random variable Y, then the 100

(l-a)$ confidence bounds p and p may be obtained by solving the
U Li

equations

y
P [Y < y] - Z (£) p

1
(l-p)

n_i
= a/2

i=o

and

P [Y>y] = S Qp 1
(1- P )

n]i
-a/2

i=y

for p. Due to the discreteness of the random variable Y, these equations

do not yield an exact 100(l-cc)$ confidence interval. The confidence

coefficient is at least 100(1-0.)$. The confidence interval for \ is

easily computed by inverting the relation p = 1-e o to get

X
h
= -ln(l-p

L
)/t

o
and ^ = -lntt-pj,)/^.

A useful tool in solving for p and p is the Incomplete Beta
Li U

function,

F(*
; a,B) = i2

±f±7
li

/ ^ d-0 P
dt -1 - S (^f

1)^ (l.x)^+H .

^ i=o
o

The upper confidence bound, p , is obtained by solving

F
(Pu;

y,n-y-l) = l-a/2
;

and the lower bound, p , is obtained from
Lj

F(p
L ;

y,n-y-l) = a/2.





The simplicity of the computation involved in this method is very

apparent; however, it should be noted that the observed values of the

random variables X.., X
?

, ..., X have been disregarded. Intuitively

it would appear that this procedure will not produce as good results

as one which incorporates all the information of the experiment. How-

ever, due to its simplicity, this procedure merits consideration.

B. PROCEDURE 2

For X t < < 1, Y = TY . is nearly a Poisson random variable with
1A Y

parameter XIX.. Rubenstein [2] shows that X = ycr- 1 + =r2n.
is a

nearly unbiased estimator for X, where the second factor is used to

correct for the bias of the otherwise minimum variance estimator

Y/XX.. Wilks [3] states that for a Poisson random variable P with

parameter p, the following relationship is approximately true:

p-P = Zvp where Z is the standard normal random variable. Rubenstein

applies this reasoning to the random variable Y along with his modified

estimator X to obtain the relationship X - X = ZvX . This equation is

solved for X and X by using the appropriate standard normal percentage
U Li

point corresponding to a 100(l-ct)$ confidence level. The resulting

1/2-

solutions for \ and \ are
L» U

and

\-

L

U

2^ + Z
2
C - (4^Z

2
C + Z

4
C
2
) n

1/2

2t + Z
2
C + (4^Z

2
C + Z

4
C
2

) H where C - (£X.)
1/2

C. PROCEDURE 3

This procedure is a modification of one which has been suggested by

Birnbaum [4] for application to uncensored life testing problems. Using

the terminology commonly used in the literature of life testing to

8





facilitate the explanation, imagine that the random variables X , X
9 ,

. .., X are observed sequentially. That is, a randomly selected item

is put on test and is replaced with a similar item at failure or after

a period of time t has elapsed, whichever occurs first. Then ther o

arrival process of failures is a Poisson process. Suppose the experi-

ment is continued until a total of k failures have been obtained. It

is well known that the individual inter-arrival times of failures are

exponentially distributed and the time to the k failure has a gamma

distribution. Consider a test plan in which the experiment is stopped

after a random amount of time (as would be the case for example, if n

items were to be tested). The number K of failures is then a random

variable. However, it would appear that, given K=k, the distribution

of the time, W, , until k failures have arrived can be approximated by a

gamma distribution. More precisely, suppose the observed value of the

k k
random variable K = £ Y. is k, and let W, = S X.. Then the con-

i=l i=l

ditional distribution of W, ,
given that K=k, is approximately the gamma

distribution

c( N _X k-1 -\w
f (w) - YKS w e ;

w > o.

It follows that V = 2\W can be approximated by a Chi-square variable
K.

2 2
with 2k degrees of freedom. Thus, if x l-Ct/2 and x Oc/2 are the upper

and lower a/2 percentage points of the Chi-square distribution with 2k
2 2

degrees of freedom, then \~~yT, > —oTp— ) constitutes an approximate
k k

100(l-a)$ confidence interval for X.

Birnbaum also suggests an estimator for X which is merely the average

of the upper and lower confidence bounds. This estimator has also been

computed and tabulated.





D. PROCEDURE 4

In Procedure 3 the distribution of the random variable W, , the waiting
K

time until the k failure, is approximated by a gamma distribution.

Since the test is terminated after n items are tested, the maximum value

that W, can attain is nt . Consider the conditional probability
k o

P [W < w and W < nt ] P [W < w]

P [W
k < w|w

k < nt
o ] =

p [u < „£ ]
° =

P tH*;,t l
k.

—
• o k — o

This yields a truncated gamma distribution having density function

f f(w)
t,/\\ o < w < nt
F(nt ) — — o

o w < o, w > nt
o

Where f(w) is the density function of the gamma distribution and

nt

r°
F(nt ) = / f(w) dw. Intuitively, this new function would seem to

o

approximate the probability distribution of W in a censored test. An

obvious drawback of this method is the difficulty of computation since

both X and F(nt ) which depends on X are unknown. Thus, given tables

of the Chi-square distribution function one is forced to use an itera-

tive method for obtaining the desired X such that

P [X
2
< 2Xw, ] P [X

2
< 2Xw ]

5 = a/2 2 = 1_a/2
P [X < 2Xnt ] P [X < 2Xnt ]

o o

to obtain X and X respectively.

The estimator for X described in Procedure 3 is applicable to this

procedure and is also tabulated.

10





III. COMPARISON OF PROCEDURES

A Monte Carlo study has been made to compare Procedures 1, 2, and 3

described above. One thousand samples of size n (n = 30, 40, 50) from

an exponential distribution with parameter X (K = .1, .2, .8, 3, 5, 10)

have been generated. For each sample, confidence intervals for X have

been obtained by using each procedure for various censoring points t

and confidence coefficients (l-cc) (a = .05, .01). The tabulated

quantities are the average length of the confidence interval, the sample

variance of these lengths, and the empirical coverage probability of the

intervals (i.e., the proportion of intervals which actually covered X).

An abbreviated Monte Carlo study has been made to compare Procedures

3 and 4. The lengthy computation of Procedure 4 required that the number

of repetitions be reduced to 100 and that fewer combinations of X , t , n,

and a be used.

11





IV. CONCLUSIONS

The results of this study differentiate each procedure as to its

merits and shortcomings with respect to certain life testing situations.

Each method is discussed below in order to define the situations in which

it could be used. The following discussion includes only comparisons for

Procedures 1, 2, and 3. Procedures 3 and 4 are compared separately and

to a lesser degree due to the differences in the Monte Carlo studies made

Procedure 1 performed as expected; it generally gave less accurate

results than the other procedures with respect to all three quantities-

expected interval length, sample variance of this length, and empirical

coverage probability. However, since the empirical coverage probability

of this procedure tends to be conservative and since the computation

required for this procedure is minimal, Procedure 1 would be favored in

cases whet a quick but dependable confidence interval is needed or when

a rough estimate is needed for use in more sophisticated procedures.

Disregarding the observed value of the random variable 2X . is the main

reason for the conservative results.

The overall performance of Procedure 2 seems to rank it first among

those studied. However, when t is near 1/A. Procedure 3 appears to give

comparable results with less computation.

Procedure 3 performs very well in cases where t is approximately

equal to l/X ; however, when t < < 1/A. few failures tend to occur and

the random interspersing of censored times causes the sample variance

of the procedure to be high. In general, the empirical coverage prob-

ability for this procedure is close to the chosen confidence coefficient.

The actual computations needed are comparable to those for procedure 1.

12





The estimators for \ defined under Procedures 2 and 3 have been

tabulated; the one given under Procedure 2 seems to be a nearly unbiased

estimator for \ as stated. The estimator arising from Procedure 3 is

consistently greater than the true value of X.

The comparison of Procedures 3 and 4 are based on an abbreviated

Monte Carlo study. This is due to the accuracy limitations of the

computer when computing small values of A. and also the added dependence

upon the time till k failure in the iterative step of the computation.

A more extensive study will be necessary to obtain more meaningful

results. It appears that the interval length obtained from using Pro-

cedure 4 is not as good as that of Procedure 3; however, the empirical

coverage probability for Procedure 4 seems to be close to the desired

confidence coefficient and the estimator for \ appears to provide a

nearly unbiased estimator.

13





V. COMPUTATIONAL PROCEDURES

The IBM/System 360 Model 67 computer with the Fortran IV programming

language has been used for all computations.

The exponentially distributed random sample is obtained by first

generating random numbers from a uniform distribution on the interval

(0, 1) and then by inverting these numbers to get a random sample from

an exponential distribution with parameter A. . This is done by using the

fact that if a random variable Z has an exponential distribution with

distribution function

f(z) = p[z < z] = ;

z < o

l-e~
Xz

o < z < 1

1 z > 1

the rando variable X = 1-e has a uniform distribution on the interval

(0, 1). Thus, if x is a random number from the interval (0, 1), the

number z = - In (l-x)A is a random sample number from an exponential

distribution with parameter \. The subroutine RANDU of the IBM

Scientific Library is used to generate these random numbers.

The second step in the computing procedure requires a simulation of

censored testing. Therefore, each random number z is compared with the

pre-determined censoring time t and a counter is used to obtain the

number of failures k = £Y. . For Procedure 1, only the value of k is

needed; however, Procedures 2, 3, and 4 require additional information.

If the value of z exceeds the value of t , it is disregarded and replaced

by t : these values of t and z which are less than t are summed toJ o o o

obtain the observed value of the random variable TX . for use in Procedure
l

2. The necessity of order in Procedures 3 and 4 require the random

numbers to be dimensioned in an array to maintain the order in which

14





they are generated. This array contains a random ordering of z's and

t *s which are summed to the point of the k failure after the entire
o

sample of size n has been generated. This sum contains some of the

truncated times t but generally not all and it contains all z < t .

o o

The value of this sum is the observed value of the random variable W.
k

of Procedures 3 and 4.

The computation of Procedure 2 is trivial after the required normal

deviate is read from a data card. However, due to the high number of

possibilities for the value of k (0 < k < n) subroutines of the Beta

and Chi-square distribution functions are used. These subroutines are

written as cumulative distribution functions and give only the resulting

probability, given the required input parameter. Since the input parameter

X is unknown, it has been required to write an additional function sub-

program to iterate toward the desired parameter given the confidence

coefficient. The restrictions on the input parameters for these sub-

routines force the cases of k = and k = n to be ignored. This is done

by disregarding the sample which produces k and by accounting for it in the

value of the number of repetitions. The IBM Scientific Library subroutines

BDTR and CDTR along with the function subprograms written by the author are

used for these computations.

For each of the thousand samples the confidence interval length is com-

puted and is tested to see if it actually covers X. The final number of

those covering X is divided by the number of repetitions yielding the

empirical coverage probability. The sample variance is computed by using

the relation a = ( 2 (x-x.) V(m-l) where x is the average length of the

intervals, x. is the length of the i interval and m is the number of

repetitions

.
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TabJe 1 CONFIDENCE COEFFICIENT l-o - .95

o
PROC.

30 40 50

AVG. VAR. C.P. AVG. VAR. C.P. AVG.

1

VAR. C.P.

3

:

1. .159 .001 .988 .136 .000 .971 .120
i
>

.000 .978

2- .148 .001 .963 .127 .000 .959 .112
jj

.000 .970

3. ; .157 .001 .951 .132 .001 .953 .116 .000 .960

i.
1

.107 .000 .961 .090 .000 .977 .080
j

.000 .963

2. ! .092 .000 .951 .080 .000 .951 .071
>

;ooo .955

3. \ .093 .000 .954 .081 .000 .945
i

' .071 j .000 .958

1.2

i.
!

.234 .002 .978 .200 .001 .963 .176
i

.001 .964

2-
1

.213 .001 .961 .183 .001 .958 .163 i .000 .952

3. .217 . 001 •

.954 .186 .001 .961
j

.165 j .000 .945

82

i. ! .943 .036 .966 .799 .017 .959 .703
i

.011 .961

2. i .855 .023 ' .942 .732 .012 .948 .647 \

i

.007 I .945

3. .871 .026 .936 .743 .012

•

.954 .657
i

.008 .936

11

i. i 4.54 .822 .954 ! 3.84 ! .423 .966
!

3.43
X

i .269
i

.957

2. ! 4.23 .664
]

.946 1 3.60
|

.349 .955 ' 3.22 i .227
!

.954

3. ! 4.56 7.10 .940 3.73 ! .473 .949 * 3.32
4

.292
j

.948

33

1. 3.18 1 .428 .970
!

2.73 !
.227 .972 ! 2.38

<

.122 i .962

2. 2.77 .196 | .963
!

2.41 I .113 .956 \ 2.12 \ .066 } .957

3 13. 2.80 5 .222 .959
!

2.42 .118 .957 2.14 r .071 \ .961

1

,12

I- 6.04 ! 1.29 .974
!

5.16
!

.704 .962 * 4.56
l

i .420 1 .957

2. 5.50 ! .874 .951
1

4.75 \ .499 .955 ' 4.22 I .311 \ .955

.3. 5.62 i 1.00 .951 4.84 i .562 .959 !
4.28 1 .338 ! .955

.06

1. 12.1 ; 5.39 .970
|

10.2 \ 2.60 ! .966 ? 9.07
?

1.56 ? .965

2. 11.1 1 3.70 \ .950
|

9.39 1.85 I .961 ! 8.40
1-

1.15 I .964

3. 11.4 ' 4.14 .949 9.55 f 2.02 i .956 ! 8.54
i

1.29 .962

.1

1. 10.7 ! 5.47 .961 9.08 \ 2.62 .971 \ 7.98 1.63 ! .959

2. 9.32 ' 2.46 I .945 1 7.99
!

1.30 .957 ! 7.08 .798 .950

3. .. 9.43
[
2.74 ; .939 i 8.05 \ 1.32 .958 7 . 12 i .827 * .950

\VC, = AVERAGE LENGTH

MR. - SAMPLE VARIANCE

P.P. = COVERAGE PROBABILITY

16





Table 2 CONFIDENCE COEFFICIENT 1-a = .99

t
o

n-

PROC.

30 40

i

1

50

AVG. VAR. C.P. AVG. VAR. C.P.
j

AVG. VAR. C.P.

3

1. .206
j
.002 .998

1

! .177 .001
\

.998
]

.156 .000
:

.996

2. .202
j
.001 .996

j
.172 .001

j
.990 .152 j .000

|
.989

3. .209
j
.002 .993 j .176

i

! .001
|

.993 |
.153

j
.000

j
.994

10

1. .139 .001 | .991
j

.117
j

.000 | .998
j

. 104 | . 000 j
.991

2. .123
j
.000 j .988

j
.106 | .000

!
.992 j .094 1 .000

\
.990

3. .123 .000 .988
1

!
.106 i .000

f
j

.995 .094
|

.000 1.992

3.2

1. .304
j
.003 1 .998 .260

;

.002
j

.996 .232
;

.001 ! .994

2. .286 .002 j .995 .245
}

.001
|

.993 .220
|

.001
\
.986

3. .287 .002 ! .994 .246
|

.001
|

.995 ! .220 .001
|
.989

.82

i

1. 1.22 .060
j .988 1.04

j

.030 ! .989 .913 .018
\
.991

2. 1.15 ! .040 1 .987 .979
j

.020
!

.988
!

.862 .013 I .993

3. 1.15 ; .046 .988 .980 ! .022 .988 .867
r

j
.015 j .988

1

!

.11

1. 5.90 | 1.38 j .996 4.99 1 .713 i .995 4.46 ! .454
j
.994

2. 5.78
|
1.11 | .989 4.87 ! .587 .989 4.34 ! .385

J
.990

3. 6.07 1 14.6 1 .992
• <

4.94 .813 1 .985 4.39 i .503 | .988
i

.33

1. 4.13
j
.729

| .993 3.55 .384 .997 3.12
!

.238 ! .994

2. . 3.70 .342 | .992 3.21 .197 .994 2.84
!

.132
J
.987

3. 3.70 .385 .989 3.20 .204 .994 2.83 .135
]
.986

1. 7.84 2.18 .995 6.70 1.19 .995 5.92 .710
|
.997

.12 2. 7.41 ! 1.50 .988 6.36 .859 .991 5.64 .536 | .994

3. 7.43 1.73 .987 6.39 .970 .992 5.64 .583
j
.994

.06

1. 15.7 9.16 .993 13.4 4.68 .993 11.8 3.05 .991

2. 14.8 6.20 .985 12.7 3.38 .991 11.2 2.14 .992

3. 14.9 7.31 .986 12.7 3.79 .991 11.2 2.31
j
.993

.1

1. 14.0 9.33 .989 11.8 4.44 .997 10.4 2.49
j

.998

2. 12.5 4.28 .981 10.6 2.26 .992 9.44 1.34 .996

3. • 12.4 4.74 .983 10.6 2.28 .994 9.43 1.44
1

.994
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TABLE IV

a = .05 n = 30

X t
o

Proc . Avg. Var. cp.
A

X Var. X

.8 .82

3 .884 .026 .96 .931 .055

4 1.13 .005 .96 .805 .075

3 .11

3 4.59 1.06 .91 3.92 1.55

4 5.92 4.42 .95 3.14 1.30

3 .33

3 2.72 .192 .95 3.15 .475

4 3.06 .030 .94 2.98 .626

5 .06

3 7.67 3.44 .96 6.16 3.98

4 9.63 6.41 .98 4.96 3.15

5 .12

3 5.69 1.05 .95 5.79 2.07

4 7.46 .123 .95 4.89 2.76

10 .06

3 10.9 3.45 .96 10.8 7.44

4 14.4 .642 .98 9.02 9.16

Avg,

Vai

cp
A
X

= Average Interval Length

= Sample Variance

= Coverage Probability

= Estimate of X

Var, X = Var:' nee of X
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