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PREFACE

This work has been prepared for the purpose of providing

a thoroughly usable textbook in projective geometry. It is not

intended to be an elaborate scientific treatise on the subject,

unfitted to classroom use ; neither has it been prepared for

the purpose of setting forth any special method of treatment

;

it aims at presenting the leading facts of the subject clearly,

succinctly, and with the hope of furnishing to college students

an interesting approach to this very attractive and important

branch of mathematics.

There are at least three classes of students for whom a study

of the subject is unquestionably desirable ; namely, those who
expect to proceed to the domain of higher mathematics, those

who are intending to take degrees in engineering, and those

who look forward to teaching in the secondary schools.

Although the value of the subject to the second of these

classes has not as yet been duly recognized in America,

European teachers for several decades have realized its useful-

ness as a theoretical basis for some of the practical work in this

field. For the large number of students belonging to the third

class, trigonometry, analytic geometry, and projective geometry

are the three subjects essential to a fair knowledge of elemen-

tary geometry, and it is believed that the presentation given

in this book is such as greatly to aid the future teacher. There

is a healthy and growing feeling in America that teachers of

secondary mathematics need a more thorough training in the

subject matter, even at the expense of some of the theory of

education which they now have. This being the case, one of

the best fields for their study is projective geometry.
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It is recognized that students of projective geometry have

usually completed an elementary course in analytic geometry

and the calculus, that they have a taste for mathematics which

leads them to elect this branch of the science, and that there-

fore there may fittingly be some departure from the elementary

methods employed in the earlier mathematical subjects. On the

other hand, for some students at least, projective geometry is a

transition stage to higher mathematics, and the subject should

therefore be presented with due attention to the important

and recognized principles which must always be followed in

the preparation of a usable textbook.

It is the belief of the authors that they have followed these

principles in such a way as to afford to college students a simple

but sufficient introduction to this interesting and valuable

branch of geometry. Especial attention has been given to the

proper paging of the book, to a clear presentation of the great

basal propositions, to the illustrations accompanying the text,

to the number and careful grading of the exercises, and to the

application of projective geometry to the more elementary field

of ordinary Euclidean geometry.
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GREEK ALPHABET

The use of letters to represent both numbers and geometric

magnitudes has become so extensive in mathematics that it is

convenient for certain purposes to employ the letters of the

Greek alphabet. In projective geometry the Greek letters are

used particularly to represent planes and angles. These letters

with their names are as follows

:

A



ELEMENTS OF

PROJECTIVE GEOMETRY

PART I. GENERAL THEORY

CHAPTER I

INTRODUCTION

1. Orthogonal Projection. In elementary geometry the

projection of a point upon a line or upon a plane is usually

defined as the foot of the perpendicular from the point to

the line or to the plane, and the projection of a line is defined

as the line determined by the projections of all its points.

This simple projection is called orthogonal projection.

°A\ K^^1

,oA

i

A '"
A\ A\

Fig. 1 Fig. 2 Fig. 3

Thus, the point A' in Fig. 1 represents the orthogonal projection

of the point A upon the line I; the line A {A'2 in Fig. 2 represents

the projection of the line A
x
A

t
upon the line I; and the line V in

Fig. 3 represents the projection of the curve k upon the plane a.

2. Symbols. Projective geometry, like other branches

of mathematics, employs special symbols, generally using

capital letters to denote points, small letters to denote lines,

the first letters of the Greek alphabet, a, /3, y, 8, • • ., to de-

note planes, and the Greek letters
<f>
and 6 to denote angles.

1



INTRODUCTION

3. Parallel Projection. In a plane a which contains a

line p and the points Av A\, A3, • • •, An , if a line I is drawn

making an angle <£ with p, each of the lines through

Av Av A3, • • , An parallel to I makes with p the angle 0.

The points A'v A'2, A'3, • • •, A'n, in which these lines inter-

sect p, are called the projections of Av A2, A3, • • •, An upon

p and are said to be found by parallel projection.

In space of three dimensions a plane figure A
1
A

2
A

3
may

be projected upon a plane ir by parallel projection.

4. Central Projection. If several coplanar points Av Av
A

3,
• • •, An are. joined to a point P of their plane, and if

these lines are cut by a line p, the points of intersection

Ai A\



KINDS OF PROJECTION

5. Projection from an Axis. Let Av Av A
3, • • • , An be

points which are not all coplanar. Their orthogonal pro-

jections upon a line p may be obtained by drawing a line

from each of them perpendicular to p, or

by passing a plane through each of them

perpendicular to p. The latter method

may be generalized by requiring merely

that the planes passed through the

points shall be parallel to a fixed plane

which is not necessarily perpendicular

to p, or by requiring that the planes

passed through the points shall pass

also through a fixed line p' instead of making them parallel

to a fixed plane, p' being different from p. Then the points

are said to be projected from an axis, and this second kind of

projection is called projection from an axis or axial projection.

The projection of points by parallel planes is the limiting case of

projection from an axis in which the axis has receded indefinitely.

6. Operations of Projection and Section. The process of

finding the projection of a plane figure upon a line or

plane consists of two parts. The first part is called the

operation of projection and consists in the construction of a

figure composed of lines, or of planes, or of both lines and

planes, passing through the points and lines of the figure

and through the center or axis of projection. These lines

and planes are called the projectors of the points and

lines of the figure, and constitute the projector of the figure.

The second part is called the operation of section and

consists in cutting the projector of the figure by a line or

plane called the line of projection or the plane of projection.

The center or axis of projection, and the line or plane of projection,

should be so taken as not to be parts of the figure to be projected.
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Exercise 1. Simple Projections

1. Draw a figure showing the orthogonal projection of a

given circle upon a given plane.

The figure may lie drawn freehand, and at least three cases should

be considered : (1) the circle parallel to the plane
; (2) the circle oblique

to the plane
; (3) the circle perpendicular to the plane. In (2) consider

also the case in which the circle cuts the plane.

2. Draw a figure showing the parallel, but not necessarily

orthogonal, projection of a given square upon a given plane.

3. Draw a figure showing the central projection of a given

straight line or a given plane curve upon a given line.

4. Draw a figure showing the central projection of a given

square upon a given plane.

Consider three cases, as in Ex. 1. Consider the case in which P is

between the square and the plane as well as the case in which it is not.

5. Draw a figure in which the four vertices of a square

are projected from a given axis upon a given line.

In projecting from a center P upon a plane -rr, describe the

projectors and the projections of the following, mentioning all

the noteworthy special cases under each

:

6. A set of points. 10. Two intersecting lines.

7. A line. 11. Two parallel lines.

8. A triangle. 12. A quadrilateral.

9. A circle. 13. A pentagon.

14. Four points and the lines joining them in pairs.

15. A tangent to a circle at any point.

In projecting from an axis p' upon (1) a plane ir and

(2) a line p, describe the projectors and the projections of the

following, mentioning the noteworthy special cases under each

:

16. A set of points. 18. A line not parallel to p'.

17. A line parallel to p'. 19. A circle.
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7. Elements at Infinity. Considering central projection

only, and supposing the center P and the plane of projec-

tion it to be given, these questions now deserve attention

:

1. Does every point of a plane a have a projector?

Does it have a projection ?

Since every point of the plane a can be joined to P by a straight

line, every point of a has a projector ; but since this projector may
happen to be parallel to ir, a point of a may have no projection.

2. Is every line which passes through P the projector

of some point of a ?

No ; for certain of these lines may be parallel to a.

3. Does every line of a have a projector ? Does it have

a projection ?

Consider the answers to Question 1. Draw the figure.

4. Is every plane which passes through P the projector

of some line of a?

Consider the answer to Question 2. Draw the figure.

Certain exceptional cases have been suggested in con-

nection with these questions. Their occurrence is due to

the existence of parallel lines and parallel planes, and the

difficulty caused by them may be removed as follows

:

Every straight line is assumed to have one and only

one infinitely distant point, and this point is called the

point at infinity of the line.

Every plane is treated as having one and only one

straight line situated entirely at an infinite distance, and

as having all its infinitely distant points situated on that

line. This line is called the line at infinity of the plane.

Space is treated as having one and only one plane situ-

ated entirely at an infinite distance, and as having all its

infinitely distant points and lines situated on that plane.

This plane is called the plane at infinity.
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9. Ideas of Projector and Projection Simplified. From the

considerations set forth in §§ 7 and 8 it appears that the

introduction of the elements at infinity has distinct advan-

tages arising out of the fact that, from the new point of

view, statements can often be more briefly and more simply

made. The greater simplicity is due to the fact that certain

cases involved in the questions cease to be exceptional.

For example, in dealing with the first question in § 7 we now
say that every point of a plane a has a projection upon the plane ir

;

for if a projector happens to be parallel to 7r, it is regarded as meet-

ing it in one point at infinity.

It is also clear that we may now say that all the lines through a

point P, and lying in a plane determined by P and a line a, consti-

tute the projector from the center P of all the points of a.

Similarly, we may say that all the lines and all the planes passing

through P constitute respectively the projectors from the center P
of all the points and all the lines of any plane not passing through P;
and that all the planes through any line p form the projector from

the axis p of all the points of any line not parallel to p.

Exercise 2. Projectors and Projections

1. Draw figures illustrating the four statements in the last

three paragraphs above.

2. Consider the truth of the statement that two lines in

a plane have one and only one common point. Illustrate the

statement by a figure.

3. Do every two planes in a space of three dimensions

determine a line ? Explain the statement.

4. In what case do a straight line and a plane fail to

determine within a finite distance exactly one point ?

5. In what case do a straight line and a point fail to

determine a plane ?

6. Two straight lines which determine a plane determine,

without exception, a point.
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10. The Ten Prime Forms. As fundamental sets of ele-

ments we use the following sets, called the ten prime forms :

One-Dimensional Forms. 1. The totality of points of a

straight line (the base) is called a range of points, a range,

or, less frequently, a pencil of points.

The distinction between a line and the totality of its points may
be appreciated by considering points as arranged on a line like beads

on a string. Similar considerations apply to the other prime forms.

2. The totality of planes through a straight line (the

base) is called an axial pencil.

This is also called a, pencil ofplanes or a sheaf ofplanes.

3. The totality of straight lines in a plane and through

a point of the plane is called a flat pencil.

In a flat pencil, either the point common to the lines or the plane

containing the lines may be regarded as the base of the pencil.

The terms range ofpoints, axial pencil, and flat pencil are used for

a finite number as well as for an infinite number of elements.

Two-Dimensional Forms. 4. The totality of points in a

plane (the base) is called a plane of points.

5. The totality of planes through a point (the base)

is called a bundle of planes.

6. The totality of lines in a plane (the base) is called

a plane of lines.

7. The totality of lines through a point (the base) is

called a bundle of lines.

It is also called a sheaf of lines, but because the word sheaf is

used in conflicting senses, we shall not use it.

Three-Dimensional Forms. 8. The totality of points of

three-dimensional space.

9. The totality of planes of three-dimensional space.

Four-Dimensional Form. 10. The totality of lines of three-

dimensional space.
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Exercise 3. The Ten Prime Forms

Draw a rough sketch to illustrate each of the following

:

1. Eange of points. 4. Plane of points.

2. Axial pencil. 5. Bundle of planes.

3. Flat pencil. 6. Plane of lines.

Examine each of the following prime forms when the base

is at infinity :

7. Flat pencil. 9. Bundle of lines.

8. Axial pencil. 10. Bundle of planes.

11. Find the central projection of a range of points; of a
flat pencil ; of a plane of points ; of a plane of lines.

12. Find the plane section of a flat pencil ; of an axial

pencil ; of a bundle of planes ; of a bundle of lines.

13. Find the axial projection of a range of points and also

of a flat pencil, the axis passing through the base.

14. Find the linear section of an axial pencil and also of a

flat pencil, the line of section being in the plane.

15. Investigate the central projection of a bundle of lines
;

of the points of space ; of the lines of space.

16. Investigate the plane section of a plane of lines ; of the

planes of space ; of the lines of space.

17. Investigate the projection from an axis of a plane of

points and also of the points of space.

18. Investigate the linear sections of a bundle of planes and
also of the planes of space.

19. Apply each of the four operations to the prime forms

not already considered in connection with it.

20. Examine the results of Exs. 11-19 and in each ease

determine whether to every element of the original figure there

corresponds one element and only one element of the resulting

figure, and vice versa.
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11, Classification of Prime Forms. In each of the first

three classes of the ten prime forms mentioned in § 10

the prime forms of every possible pair are connected by

a simple relation.

Consider first a range of

points A
X
A^A

Z
• • • An • • • on a

base p, and consider its pro-

jector a
x
a2a3 • • • an • • • from a

point P exterior to p, this pro-

jector being manifestly a flat pencil. By setting up, or

arranging, the infinitely many pairs of elements Av a
x ;

A
2 , a

2 ; As, a
3 ; • • •; An, an ; > • , we find that for every

point of the range there is a corresponding line of the

flat pencil, and vice versa; and that if two points are

nearly coincident, so also are the corresponding lines.

Next, make a section of an axial pencil by a plane tr.

From the planes av a
2, a3, • • ., an , • • • of the axial pencil

of the section of theseand the lines av a
2 , a

3, • •, an , • •

planes by the plane it, infinitely

many pairs of elements av a^,

«v «2 ;
a

3>
a

s''
'

' -5 am an> • may
be set up. Evidently for every

plane of the axial pencil there

is a line of its section (the flat

pencil), and vice versa ; similarly

for the range and the axial pencil.

A similar conclusion may be

reached regarding any two prime forms of the second class,

and also regarding the two prime forms of the third

class. In each case, by the setting up of the pairs, there is

established a one-to-one correspondence between the elements

of the two forms.

This is often written as a 1 — 1 correspondence.
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12. Perspectivity. Certain cases of one-to-one corre-

spondence between the elements of prime forms of the same
kind should also be noted. For example, in this figure if two
transversals^,^ cut

the lines av a
2 ,

. . ., an ,

• • • of a flat pencil

in the points Av A\ ;

4 4' • . . . 4 4'

the ranges A
t
A

2
•

and A'
X
A^ • • • corre-

spond in this way.

Similarly, in this figure, if two flat pencils a
x
a
2

• • • an

a'n • • • are so situated that av a[ ; a
2, a'

2 ;

intersect in

and a[a
2

&*,, a,

the points Av Av • • •,

An, • • • of a range, such

a correspondence exists.

The correspondences

in the cases in § 11 re-

sulted from one opera-

tion of projection or one of section. In the cases just men-

tioned the correspondences resulted from one operation

of projection and one of section. All these cases and other

similar cases may be brought into one group by means of

the following definition

:

If either of two prime forms can be obtained from the

other by means of one operation of projection, or one opera-

tion of section, or by means of one operation of each kind,

the two forms are said to be perspectively related, or to be

in perspective, or to be perspective.

The symbol Jr is often used for " is perspective with."

The perspective relation is called a perspectivity.



12 INTRODUCTION

Exercise 4. Perspectivity and Projection

1. If the line a' of the plane a' is the projection, from the

center P, of the line a of the plane a, then the lines a and a'

intersect in a point on the line of intersection of a and a'.

2. If the angle formed by the lines a[ and a\ of the plane

a' is the projection, from the center P, of the angle formed by

the lines a
x
and a

2
of the plane a, the pairs of lines av a[

;

a2 , al intersect in points on the line of intersection of a and a'.

3. If two triangles A
1
AsA t

and A X
A\A\ of the planes a and

a' respectively are so situated that the lines A^A'-y, A 2A'2 ,
and

A aA£ pass through a common point P, the intersections of

the pairs of sides A
r
A# A[A'

2 ; A
2
A

S
, A'^; A

%
A

X,
A'tA[ are

collinear.

4. If two polygons A,A
t

A n and A[A'2 A'n of the

planes a and a' respectively are so situated that the lines

A^, A aA'2 , , A nA'n pass through a common point P, the

intersections of the pairs of sides A^A^ A[A% ; A
2
A

&,
A'2A'a ;

• • •

;

AnA v A'nA[, and the intersections of the pairs of diagonals

A
X
A V A[A't ; A x

A
t

, A[A[; ; A^AV A'tA't ; ; A kAm, A'kA'm ; ,

are collinear.

It will be noticed that Exs. 1-4 form a related set of problems, as is

also the case with Exs. 5-8.

5. If two lines a and a' of the planes a and «' respectively

intersect, either may be regarded as the projection of the other

from any point exterior to both lines but in their common plane.

6. State and prove the converse of Ex. 2.

7. State and prove the converse of Ex. 3.

8. State and prove the converse of Ex. 4.

9. Given three points on a line a and a point A
x
not on the

line, construct a triangle that shall have i
t
as a vertex and

shall have each of its sides, produced if necessary, pass through

one and only one of the three given points. How many such

triangles can be constructed ?
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10. Investigate the problem similar to Ex. 9 in which two

given points A
1 and A

2
of the plane a are to be vertices of the

required triangle, and show how to construct the triangle when
such a triangle exists.

11. Given the points A 1 and A[ of two planes a and a' which

intersect in a given line a, and given in the plane a a triangle

constructed as required in Ex. 9, use Ex. 3 to obtain a triangle

in the plane a' that shall have i}as a vertex and shall have

sides which, produced if necessary, shall intersect the line a

in the points in which this line is cut by the sides of the given

triangle in a. How many constructions are possible ?

12. Investigate the cases of Ex. 11 in which a second vertex

of one or of each of the triangles is also given.

13. If two triangles A^^Ag and A[A'2A'a in the same plane

a are so situated that the lines A XA\, A 2A 2, and A aA's are con-

current, the intersections of A^A t, A[A'2 ; A 2A S , A^A^ ; A aA lt
A'SA[

are collinear.

Let A^A
2
and A\A

2
meet in C

s , A2A 3
and A'2A'S in Ov and A

3
A

r

and A'
a
A\ in C

2
. Take a center of projection P not in the plane a, and

project the whole figure upon a plane pai-allel to the plane PO
s
Cv thus

obtaining the line at infinity as the projection of CgC^ Prove that the

projection of C
2

is on this line.

The development of this problem and similar problems is fully-

considered in Chapter V.

14. State and prove the converse of Ex. 13.

15. State and prove the proposition of plane geometry which

corresponds to Ex. 4.

16. State and prove the converse of Ex. 15.

17. Given three points Av A
2, A s

on a line a in a plane a,

and three points A[, A 2, A'3 on a line a' also in the plane a, find

three points A[', A 2
', A'

s
', not necessarily collinear, into which

both sets of three points can be projected.

18. With the same data as in Ex. 17 find three collinear

points A[', A'2\ A's ' into which the first two sets of three points

mentioned can be projected.
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19. In Ex. 17 consider also the case in which the lines a

and a! are coincident and in which the points A[, A'
2)

A'z are

not necessarily all distinct from the points A v A^ A
a

.

20. Given three points on a line a, construct a quadrilateral

such that the pairs of opposite sides shall intersect in two of

the given points, and such that one of its diagonals shall pass

through the other point.

21. Assuming the construction asked for in Ex. 20, use Ex. 4

and Ex. 16 to obtain additional quadrilaterals fulfilling the

same conditions as the first. Do the other diagonals of these

quadrilaterals intersect ?

22. Given two quadrilaterals so constructed as to fulfill the

conditions of Ex. 20, the straight lines joining corresponding

vertices of these figures are concurrent.

23. If the quadrilateral constructed in Ex. 20 moves so as

continuously to fulfill the conditions stated, the other diagonal

constantly passes through a fixed point.

24. Show how to find the fixed point mentioned in Ex. 23.

25. In Ex. 20, if the third of the given points bisects

the segment joining the other two given points, determine the

position of the fixed point mentioned in Ex. 23.

26. Given five points on a line a, construct a quadrilateral

such that each of its sides and one of its diagonals, pro-

duced if necessary, shall pass through one and only one of

the given points. Obtain additional quadrilaterals fulfilling

the same conditions.

27. In Ex. 26 investigate the relation that the other diago-

nals of any two of the quadrilaterals bear to each other and to

the given line a.

28. Extend the problem in Ex. 26 to the case of the pentagon.

.

29. Given two quadrilaterals so constructed as to fulfill the
conditions of Ex. 26, the straight lines joining pairs of corre-

sponding vertices of these figures are concurrent.



CHAPTER II

PRINCIPLE OF DUALITY

13. Principle of Duality. It is now highly desirable to

consider a certain important relation between pairs of

figures in space, and also between their properties. The
nature of this relation, by the use of which the difficulties

of the subject may be reduced by almost half, is explained

by the Principle of J)uality, or the Principle of Reciprocity,

which may be stated as follows:

Corresponding to any figure in space which is made up of

or generated by points, lines, and planes there exists a second

figure which is made up of or generated by planes, lines, and

points, such that to every point, every line, and every plane of

the first figure there corresponds respectively a plane, a line,

and a point of the second figure, and such that to every propo-

sition which relates to points, lines, and planes of the first

figure, but which does not essentially involve ideas of measure-

ment, there corresponds a similar proposition regarding the

planes, lines, and points of the second figure, and these two

propositions are either both true or both false.

The two figures which are related in the manner just

described, as well as the two propositions, are said to be

dual, reciprocal, or correlative.

As a simple illustration of the principle, consider the following

:

Two points determine a line. Two planes determine a line.

Two lines through a point deter- Two lines in a plane determine

mine a plane. a point.

15
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14. Assumption of the Principle of Duality. The validity

of the principle of duality will not be proved in this book,

although it is possible so to formulate the axioms of pro-

jective geometry that they are unchanged if everywhere the

words point and plane are interchanged, and thus to show

this validity. Nevertheless the principle will be applied

with great frequency in deriving properties of figures, and

in so doing either of two courses may be adopted: On
the one hand, it may be assumed that the principle is valid

and is capable of a proof which is, of course, entirely inde-

pendent of any results obtained by means of the principle

itself; on the other hand, the principle may be used

simply as the basis of a rule for formulating the dual of

any proposition, the rule being justified in every case by a

proof of this dual proposition.

Of these two courses the- latter is not a difficult one, for

after the principle of duality has been used to derive the

enunciation of the dual proposition, it may be applied to

the various steps of the proof of the original proposition to

obtain a new set of statements which may be examined

to see if they constitute a proof of the dual. In each case it

will be found that a proof is secured. The plan has the

further advantage that it avoids the feeling of dissatisfac-

tion and uncertainty attendant upon making a very general

and far-reaching but apparently unjustified assumption,

besides which the repeated application of the principle

leads to that confidence in its validity which comes from

increasing experimental evidence.

For this reason the second course has been adopted in

this book; and whenever the dual of a proposition is derived

by applying the principle of duality, either the proof of

the dual is derived by the same means or such derivation

is left to serve as an exercise for the student.
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15. Derivation of Dual Propositions. If a figure or a

proposition in the geometry of space is given, the first

considerations which enter into the derivation of the dual

figures or propositions are the facts that the point and the

plane are dual elements, and that every geometric figure

may be obtained by using either the point or the plane

as the primary generating element. Although neither the

point nor the plane has a superior claim over the other

to be considered as the primary generating element, it fre-

quently happens that the statement of a proposition is so

framed as to imply that one or the other of these .elements

has been so used. For this reason the derivation of the dual

of any proposition generally requires more than the mere

interchange of the words point and plane. On the other

hand, it is true, almost without exception, that propositions

which have duals may be so stated that the latter may be

found from the former by such interchange.

Skill in the derivation of dual figures and propositions

is quickly gained, and the examples given in § 16 will

assist the beginner in acquiring this skill. In general it

may be said that the student will find it advantageous to

consider, in every proposition he meets, the proposition

which results from the method of treatment mentioned

atiove, and then to consider whether the proof of the

derived proposition can be obtained from the original

proof in the same way.

In plane geometry the point and the line are dual ele-

ments, and any figure may be regarded as having been gen-

erated by either of these elements. In a general way, duals

in the plane are derived by interchanging these elements.

The principle of duality for threefold space, applied to

plane geometry, yields the geometry of the bundle of lines

and planes, the line and the plane being dual elements.
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16. Examples of Duality.

the more simple examples of

1. Point A.

2. Line a.

3. Two points determine a line.

4. Two lines which determine

a plane also determine a

point.

5. Three points in general de-

termine a plane.

6. Several points which lie in a

plane.

7. Several lines which lie in a

plane.

8. A plane triangle; that is,

three points and the three

lines determined by them
in pairs.

9. A plane polygon.

10. A range ofpoints.

11. A flat pencil.

12. A plane of points and. & plane

of lines.

13. Four points in a plane and
the six lines joining them
in pairs ; a complete quad-

rangle, or four-point.

14. Four lines in a plane and the

six points determined by
the various pairs of these

lines ; a complete quadri-

lateral, or four-line.

15. Four points in space and the

lines and planes deter-

mined by them.

The following are a few of

duality

:

1'. Plane a.

2'. Line a'.

3'. Two planes determine a line.

4'. Two lines which determine

a point also determine a

plane.

Three planes in general de-

termine a point.

Several planes which pass

through a point.

Several lines which pass

through a point.

A trihedral angle; that is,

three planes and the three

lines determined by them
in pairs.

A polyhedral angle.

An axial pencil.

A flat pencil.

A bundle of planes and a

bundle of lines.

Four planes through a point

and the six lines of inter-

section in pairs; a com-

plete four-flat.

Four lines through a point

and the six planes deter-

mined by the various pairs

of these lines ; a complete

four-edge.

Four planes in space and
the lines and points deter-

mined by them.

10'

11'

12'

13'.

14'.

15'.
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16. Given three collinear points

A, B, C, find four pointsPv
P

2 , Ps , Pt
such that the

lines P
X
P% and P8

P
4
shall

meet in A, the lines P
2
P

S

and PiP1
shall meet in B,

and the lineP
1
P

3
shall pass

through C.

17. If the line a' of the plane a'

is the projection from the

center P of a line a of
the plane a, the lines a and

a' intersect in a point of
the line of intersection of a
and a.

Proof. The lines a and a' lie in

the plane determined by P and

a, and hence they determine a

point. Since their point of in-

tersection lies in the plane a
and also in the plane a', it

lies in the line determined by

a and a.

16'. Given three coaxial planes a,

B, y, find four planes rtv
n-j, 7r

3 , vi
such that the

lines t^ and ir
87r4

shall

lie in a, the lines Tr
2
-rrs

and ir,,^! shall lie in B,

and the line tt^tt^ shall lie

in y.

17'. If the line a' through the point

A' is determined by A' and

the point of intersection of
the plane it with the line a

through the point A, the lines

a and a' lie in a plane which

passes through the line A A'.

Proof. The lines a and a' pass

through the point determined

by ir and a, and hence they

determine a plane. Since their

plane passes through the point

A and also through the point

A, it passes through the line

determined by A and A'.

17. Figures in a Plane and Figures in a Bundle. The
Principle of Duality may also be stated for the geometry

of figures in a plane, and likewise for the geometry of

figures in a bundle. In the first case the point and the line

are dual elements, and in the second case the line and

the plane. Simple modifications of the statement of the

principle in § 13 yield the statements" for the two cases.

Pairs of the examples of § 16 may be used to illustrate this fact.

For example, the following pairs are duals in the plane : 1, 2 ; 6, 7

;

8, 8; 9,9; 10, 11; 13,14.

The following pairs are duals in the bundle : 1', 2' ; 6', T ;
8', 8'

;

9', 9'; 10', 11'; 13', 14'.

Many other examples of duality will be found as we proceed.
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Exercise 5. Principle of Duality

1. By means of the Principle of Duality obtain for three-

fold space the statement and also the. proof of the dual of Ex. 3,

page 12.

2. Similarly, find the space dual of Ex. 4, page 12.

3. Derive and prove the space dual of Ex. 13, page 13.

4. Obtain for plane geometry the statement and proof of

the dual of Ex. 13, page 13.

5. Derive the space dual of Ex. 4.

6. Verify that in the geometry of the bundle the results

of Exs. 3 and 5 are dual.

7. If a proposition in plane geometry or in the geom-

etry of the bundle has a dual, but is not self-dual in that

geometry, then in the geometry of threefold space it belongs

to a set of four propositions each of which is dual with two

of the others.

8. If a proposition is self-dual in plane geometry, then the

four propositions mentioned in Ex. 7 reduce to two.

9. Can the four propositions of Ex. 7 ever reduce to one

proposition ? Discuss in full.

10. Give an example of a self-dual figure in threefold space.

11. State a simple self-dual proposition regarding the figure

mentioned in the answer to Ex. 10.

12. Are all propositions regarding the self-dual figure of

Ex. 10 themselves self-dual ? Discuss in full.

13. Given three planes passing through a line a of a bundle

whose base is A, construct in this bundle a four-edge such that

pairs of opposite edges lie in two of the given planes and one

of its diagonal lines lies in the remaining plane.

Compare this example with Ex. 20, page 14. Notice that when a prop-

osition is harder to prove than its dual the proof of the latter may be

used to suggest that of the former.



CHAPTER III

METRIC RELATIONS. ANHARMONIC RATIO

18. Metric and Descriptive Properties. Properties of geo-

metric figures are of two sorts : (1) metric, that is, those

which relate to the measurement of geometric magnitudes

;

(2) descriptive, that is, those which "are not metric. Nearly

all the propositions of ordinary elementary geometry deal

with metric properties, while, speaking generally, those of

projective geometry deal with descriptive properties. In

fact, it is possible to exclude almost entirely from projec-

tive geometry the consideration of the metric properties of

figures. On the other hand, even when the object in view

is the study of the descriptive properties of figures, it

frequently happens that brevity is secured by the use of

metric considerations. For this reason the metric proper-

ties of figures will be used freely whenever the nature of

the work is such as to make this course advisable.

If the student will consider the work which has thus far been done

in this book he will see that no statement has been made that depends

in any way upon measurement. The lines projected may be of any

desired length, the angles may have any desired measure, and the

closed figures may have any desired area. It is therefore evident that

the work thus far has not been metric in any way.

In this chapter, on the other hand, we proceed to establish certain

important properties which will prove to be of great service to us in

subsequent work. Moreover, as we proceed, it will appear that by

virtue of the propositions proved in §§ 26 and 27 the study of these

properties is appropriate in connection with the descriptive properties

of figures.

21
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19. Relations of Line Segments. In measuring distances

along a straight line attention is given to direction as well

as to length. One direction along a line is selected as posi-

tive, the opposite one being negative. The direction of a

line segment is called its sense and is indicated by the

order of the end letters, AB denoting the segment of a line

thought of as extending from A to B and BA the segment

of a line thought of as extending from B to A. Evidently,

therefore, we have
AB = -BA,

or AB+BA = 0.

Having adopted this convention with respect to signs,

many identical relations can be proved. For example, A,

B, C, • • ',J, K being collinear points in any order

:

O

A D B C K ' E J

1. AB +BC+ CD+... + JK+KA = 0.

2. AB • CD +BC • AD + CA BD = 0.

3. BC.AD 2+CA.BDz+AB.CD2+BC-CA.AB==0.
In one method of proving these relations we employ

as origin any point on the given line. Then for any

segment AB we have
AB = OB-OA.

This substitution and others of a similar nature being

made in any identity of this sort, the truth of the identity

becomes apparent.

The proof may be made algebraic if the measures of the

segments OA, OB, • • • are denoted by the letters a, b, • • •.

Moreover, having an identical relation among real alge-

braic numbers, we may deduce a corresponding relation

among line segments.
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20. Relations of Angles. In measuring angles attention

is given to the direction of rotation as well as to the magni-

tude of the angles. Rotation is called positive if it proceeds

in the direction opposite to that taken by the hands of a

clock; otherwise it is called negative. The direction of

rotation is called the sense of the angle and is indicated by
the order of the letters which denote its arms, the angle

formed by the rotation of a line from the position of the

line a to that of the line h being called the angle ab.

The ambiguity which may be felt to attach to this

method of representing angles may easily be removed in

the following way: Take as the standard line any line o

through the intersection of the lines a and b, and let it be

agreed that the angle between a and b

shall be understood to mean that angle

formed by the lines a and b which does

not contain the line o, and that the angle

oa formed by o and a shall mean the

angle included between a specified one

of the halves of the infinite line o which proceed from the

point common to a and b and that half of a which is first

reached by a positive rotation from o.

Then the algebraic identities by means of which the rela-

tions between line segments were proved, as well as all

other algebraic identities, are capable of interpretations with

respect to angles. In the above case ab = ob — oa, and by

means of such identities the relations may be verified.

The dihedral angles formed by pairs of planes of an

axial pencil may be treated in a similar fashion, a standard

plane a> being used. In this case the angle between two

planes a and /3 will be denoted by «/3 if the planes a, /3,

and a> have the same general positions as the lines a, b,

and o in the figure shown above.
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21. Anharmonic Ratio. The most useful metric element

in projective geometry is called an anharmonic ratio. It is

related to a range of four points, a flat pencil of four lines,

and an axial pencil of four planes, as follows

:

1. The anharmonic ratio (ABCD~) offour collinear points

A, B, C, D, is defined as .„ .-^.

bc'bd'

2. The anharmonic ratio (abcd~) of four concurrent and

coplanar line segments a, b, e, d is defined as

sin ac
_
sin ad

sin be sin bd

3. The anharmonic ratio (a/378) offour coaxial planes a, yS,

7, S is defined as • „ • s" J sin ay _ sin ao

sin/37'.sin/38

An anharmonic ratio is also called a cross ratio or a double ratio.

The anharmonic ratio (ABCD) is easily remembered by writing

A A
: and then writing C in both terms of the first fraction and

B B 6

D in both terms of the second fraction.

The above definition of anharmonic ratio, though not universal,

has the approval of the leading authorities of the present time.

22. Corollary. If A, B, C, D are collinear points, then:

1. (ABCDy is negative when and only when the segment

AB contains either C or D, but not both.

2. (ABCU) approaches AC/BC as a limit as D recedes

indefinitely in either direction.

Exercise 6. Anharmonic Ratios

1. If (ABCDJ = (ABCD
2),

D^ and D
2
are coincident.

2. Consider Ex. 1 and § 22 for the anharmonic ratio (abed).

3. Consider Ex. 1 and § 22 for the anharmonic ratio (a/3-yS).
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23. Twenty-four Anharmonic Ratios. Corresponding to

the order A, B, C, D of four collinear points, there has been

defined the anharmonic ratio (ABCD). There are, however,

twenty-four possible orders for these points, that is, the 4 !

permutations of the four letters; and therefore there are

twenty-four anharmonic ratios for the four points, as follows:

(ABCD), (ABDCy, (ACBD), (ACDB), (ADBC), (ADCB),

(BACH), (BADC), (BCAD), (BCDA), (BDAC), (BDCA),

(CABD), (CADB); (CBAD), (CBDA), (CDAB), (CDBA),

(DABC), (DACB), (DBAC), (DBCA), (DCAB), (DCBA).

But by definition (§ 21)

y J AC AD ACBD
... rA-RT,^ At> AC AD.BC

whne (^IH7) =_:— =-^-_
and so (BACD) = (ABDC).

In like manner it may be shown that the last eighteen

ratios fall into six sets of three each, all those in any set

being equal to one of the first six anharmonic ratios.

Exercise 7. Anharmonic Ratios

Given the three collinear points A, B, C, proceed as follows :

1. Find the collinear point D such that (ABCD) = 7.

2. Find the collinear point D such that (ABCD) = — 7.

3. Find the collinear point D such that (ABCD) = k.

4. Prove that (ABCD) = (BADC) = (CDAB) = (DCBA).

5. Determine the several permutations of the four elements

A, B, C, D which leave the value of (ABCD) unchanged.

6. Which of the twenty-four ratios are equal to (ADBC) ?
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24. Relations of the First Six Ratios. The first six

anharmonic ratios given in § 23 are also connected by sim-

ple relations. If (ABCD) = x, we have the following

:

1. (ABCB)= x.

2. (ABDC)= ~-

x- ,Ai>n™ A C AD AC-BD
For iABCD)

=— :m = JF
-w = x,

/.DT-v-n AD AC AD-BC 1
and iABDC) =— :— = JU

-m = -.

3. (ACBD~)= \-x.

For (§ 19, 2) AB-CD+ BC-AD + CA-BD=0;
AB CD , CA-BD , AC AD

,Wh6nCe ZD'CB
=1

-I^Cfi
= 1 -lc :

fi5
= 1 - a: -

But MC2?m =^:^ =^.^.
1 ; Cfi CD AD CB

Therefore (A CBD) = l-x.

1
4. (ACJDBy.

1-x

For (ACDB) = 777757^-' since we have simply interchanged the

last two letters, as in 1 and 2 above. Hence the result follows from 3.

5. (XZ>5<7) =^—

^

For (A CBD) = 1 — x, by 3, where we merely interchange the

second and third letters. Hence, by similar reasoning,

(ADBC) =1 - (ABDC) = 1 - - = izi.

6. (ABGB~) = -^—
x — 1

For we found from 1 and 2 that the transposition of the third and
fourth letters gave the reciprocal of the original anharmonic ratio,

1 x
and so from 5 we have (ADCB) =—— = .

v J (ADBC) x-1



RELATIONS OF THE RATIOS 27

25. Equality of the Six Expressions. We may now de-

termine the values of x for which any pair of the six

expressions x, - , 1 -
:-l

and are equal,
x ' 1 — x x x — 1

and therefore we may determine the values of these six

expressions which correspond to the values of x so

found. The results may be put in tabular form as follows

:

X
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Theorem. Prime Forms Related by Projections

and Sections

26. If two primeforms of the first class are so related that

either may be obtained from the other by a finite number of

projections and sections, the anharmonic ratio of any four

elements of one is equal to the anharmonic ratio of the corre-

sponding four elements of the other.

Proof. I. Let either form be obtainable from the other

by means of one operation of projection or one of section.

1. Range ABCD and fiat pencil abed.

From P, the base of the flat pencil, draw PQ perpendicular

to p, the base of the range ABCD. Then, equating pairs

of expressions for double the

areas of the triangles ACP, BCP,
ADP, BDP, we have

PA PC sin ac = PQ.AC,

PB . PC sin bc = PQ. BC,

PA • PD sin ad = PQ- AD,

PB . PD sin bd = PQ- BD.

TT PA sinac AC PA sin ad AD
Hence —

and

PB sin be BC PB sin bd BD
sin ac sin ad AC AD
sin be sin bd BC BD

whence (abed) = (ABCD).

2. Mange ABCD and axial pencil afiyS.

From a pointP in the base of the axial pencil a/3y$ project

the range ABCD, obtaining as projector the flat pencil abed.

Then (ABCD) = (abed). But in Case 3 it will be shown
that (abcd)=(aj3y8). Hence (ABCD)= (a/3y8).
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3. Flat pencil abed and axial pencil afiyS.

Through a point ijj in the base of the axial pencil a/878

pass a plane perpendicular to this base, cutting the planes

a
> A 7> 8 in the lines a , b

Q , c
Q , dQ

and the lines a, b, c, d in

the points A, J5, C, D. From the

definition of the angles between the

planes it follows that

(a/3y8)= (a b c
Qd ).

But (a V d ) = CABCI

= (abed).

Hence (a/3y8) = (abed')

.

II. Let either form be obtainable from the other by

means of several operations of projection or of section,

or of both. .

Let two prime forms ft
and fn + 1

be obtainable, either

from the other, by means of n operations, and let the prime

forms which are successively produced beginning with fx

be/
2,/3, • •, /„,/»+!• Also let ek , e'k , e'k\ e'k

" and ek+v 4 + 1,

ek+1 , ek [ 1
be corresponding sets of four elements of two

consecutive prime formsfk,fk+v

Then, by Part I, (eke'ke'k'
e'
k")= (ek + x

e'k + x
e'k\^ j).

This relation is true for all values of h from 1 to n.

Hence (e
1
e[e{'e\;'') = (en+1e^ +1e^+1ei"+1 '),

and the truth of the theorem is established.

27. Corollary. If two prime forms of the first class are

perspective, the anharmonic ratio of any four elements of

one form is equal to that of the four corresponding elements

of the other form.
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Exercise 8. Relations of the Ratios

1. Show how the table on page 27 is obtained, verifying

each result.

2. Any two letters in the anharmonic ratio (ABCD) may
be interchanged without affecting the value of the ratio, pro-

vided the other two letters are also interchanged.

T ,, 1 . 1 x — 1 x
In the six expressions x, — » 1 — x, ' >

X 1 — X x x — 1

make successively the following substitutionsfor x and note the

recurrence of the originalforms of the expressions:

x'-l
3. x'. 5. 1 — x'. 7.

x'

1 1 . x'
4. -• 6. - ;• 8.

9. If the point and three nonconcurrent lines a, b, c are

in one plane, draw a line through which shall cut a, b, c in

points A, B, C such that (OABC) = k, any given number.

10. Solve the dual of Ex. 9 in plane geometry.

11. Solve the space dual of Ex. 9.

12. If A v Ay Bv By Cv C2, Dj, D2, X, Y are eollinear points,

and if (A
1
A

2
XY)= (B

1
B

2
XY)= (C

1
C

2
XY)= (D

1
D

2
XY)= -1, it

follows that (i^C^ = (Afi2
C

2
D^.

13. If Av A
2, -, A n , X, Y are n + 2 eollinear points, then

(A
1
A

2
XY)(A

i
A

s
XY) . • (A n _ 1

AnXY)(AnA 1
XY)=l.

14. If Av Ay Ap X, Y are five coplanar points, and if

A^A^A XY) denotes the anharmonic ratio of the four lines

from A
x
to A

2, A
s

, X, Y, it follows that the product of the

anharmonic ratios A^A^A^XY), A^A^XY), A^A^A^XY) is 1.

15. Generalize the result found in Ex. 14.

16. If A v Ay A %, A t,
X, Fare concyclic points, it follows that

the anharmonic ratios X(A
1
A

2
A

iAJ and Y(A
r
A

2
A

a
A

t)
are equal.
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HARMONIC FORMS

28. Harmonic Range. When four collinear points A, B,

C, -D are so situated that (ABCD) =— 1, the four points

are said to constitute a harmonic range.

In the same way we may define a harmonic flat pencil and

a harmonic axial pencil.

Any one of these three forms is spoken of as a harmonic

form, and it follows (§ 26) that every form derived from a

harmonic form by a finite number of projections and sec-

tions is a harmonic form. If three elements of a harmonic

form are given, it is evident that the fourth element, called

the fourth harmonic to the three, is uniquely determined.

Moreover, since the anharmonic ratio is here negative,

from the above definition the elements of the first pair,

say A and B, separate those of the second pair, say C and D.

T, ,. . f . nm i
AC-BD AC AD

That is, since (ABCD) = - 1, AD BQ
= - 1, and— = -—

,

so that the two ratios have opposite signs. Therefore, either C or D
divides AB internally and the other divides it externally.

The elements of either of these pairs, A and B, or C
and D, are said to be conjugates or harmonic conjugates

with respect to the other pair. They are also said to be

harmonically separated by the elements of the other pair.

Since from the definition (§ 21) the anharmonic ratios (ABCD)
and (CDAB) are equal, it follows that the relation between the pairs

of elements A, B and C, D is symmetric with respect to them.

31
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Exercise 9. Harmonic Ranges

1. Given three collinear points A, B, C, with C bisecting

AB, determine the fourth harmonic D.

2. Consider Ex. 1 when C is the point at infinity.

3. Consider Ex. 1 when A, B, C are any collinear points.

4. Given three concurrent lines a, b, c, with c bisecting the

angle ab, determine the fourth harmonic d.

Compare Ex. 4 with Ex. 1.

5. Consider Ex. 4 when a, b, c are any concurrent lines.

Compare Ex. 5 with Ex. 3.

6. If (ABCD) = —1, the four points A, B, C, D may, by a

finite number of projections and sections, be projected into the

positions A, B, D, C.

7. If ABCD is a harmonic range, the line segments AC,

AB, and AD are connected by the proportion AC:AD =
AC —AB-.AB — AD.

8. If AB
1
C

1
D

1
and AB^C

2
D

2
are harmonic ranges on differ-

ent bases, the lines B
X
BV CjC

2
, DJ)^ are concurrent, and the

lines .Bj-Bj, Cj-Dj, C2
D

l
are also concurrent..

9. If ^Ij-BjCj-Dj and AJi
2
C

2
D

2
are harmonic ranges, and if

AjAp -BjBj, CjCj are concurrent at 0, then D^D^ also passes

through 0.

10. If A, B, C, D, 0, P are points on a circle and are

so placed that the pencil O(ABCD) is harmonic, the pencil

P(ABCD~) is also harmonic.

11. If ABCD is a harmonic range, and if is the midpoint

of CD, then OC
2 = OA OB.

12. Use the result of Ex. 11 to find a pair of points which

shall be harmonic conjugates with respect to two given pairs

of collinear points Av B
x

\ Av B2
.

13. Given four coplanar lines, draw when possible a line

which shall cut them in a harmonic range.
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29. Complete Quadrangle. The figure formed by four

points in a plane, no three of which are collinear (asP, Q, B, S
in the figure below), and the six lines determined by them

is called a complete four-point or complete quadrangle.

Any two of the six lines of a complete quadrangle which

do not intersect in one of the original four points are called

opposite sides. The intersections of opposite sides are called

diagonal points, and they are the vertices of the diagonal

triangle of the complete quadrangle.

Theorem. Harmonic Property of a Quadrangle

30. Iffour collinear points A, B, C, D are so situated that

two opposite sides of a complete quadrangle pass through, A,

two opposite sides pass through B, and the two remaining sides

pass through C and D respectively, then (ABCDS
) = — 1.

Let P, Q, B, S be the vertices of the complete quadrangle,

and let FQ, BS pass through A ; PS, QB through B ; PB
through C ; and QS through D.

Then (ABCD-) = (SQOD)= (BACV) = ^ •

Hence (ABCDy = l,

and (XBCZ>) = -1.

(ABCD) cannot be equal to + 1, since no two points are coinci-

dent, as would then be the case.
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31. Complete Quadrilateral. The figure formed by four

lines in a plane, no three of which are concurrent (as

p, q, r, s below), and the six points determined by them is

called a complete four-side or complete quadrilateral.

Any two of the six points of a complete quadrilateral

which do not both lie on one of the original four lines

are called opposite vertices. The lines determined by pairs

of opposite vertices are called

diagonal lines, and they deter^

mine the diagonal triangle.

The student should compare this fig-

urewith that of the complete quadrangle

in § 30, and should notice also the duality

suggested by §§ 29 and 31, the dual ele-

ments being the point and line.

Theorem. Harmonic Property of a Quadrilateral

32. If four concurrent lines a, b, c, d are so situated that

two opposite vertices of a complete quadrilateral are on a, two

opposite vertices on b, and the two remaining vertices on c and

d respectively, then (abed) = — 1.

Let p, q, r, s in the figure above be the sides of the

complete quadrilateral, and let^> and q, and also r and s,

intersect on a; p and s, and also q and r, intersect on b;

p and r intersect on c ; and s and q intersect on d.

(abed) = (sqod) = (bacd)Then

Hence

and

(abed)* = 1,

(abed*) = — 1.

(abed])

Why cannot (abed) = + 1 ? Students should compare this proof,

step by step, with that of § 30.
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Exercise 10. Quadrangles and Quadrilaterals

1. State and prove the converse of § 30.

2. State and prove the converse of § 32.

3. Two vertices of the diagonal triangle of a complete

quadrangle are harmonically separated by the points in which
the line determined by them is cut by the remaining pair of

opposite sides of the quadrangle.

4. By interchanging certain elements, it is possible to

derive § 32 from § 30 and Ex. 2 above from Ex. 1. Derive a

proposition in this way from Ex. 3 and investigate its truth.

5. From § 30 derive a theorem respecting the complete

four-flat and prove it.

In the geometry of space the figure dual to the complete quadrangle

is called the complete four-flat, and, similarly, the complete four-edge in

Ex. 6 is dual to the complete quadrilateral.

6. As in Ex. 5, from § 32 derive a theorem respecting the

complete four-edge and prove it.

7. The six points, other than the diagonal points, in which

the diagonal lines meet the sides of a complete quadrangle

lie in sets of three on each of four lines.

8. Erom the result in Ex. 7 prove the existence of a com-

plete quadrilateral which has the same diagonal triangle as any

complete quadrangle.

9. Prove the plane duals of Exs. 7 and 8.

10. In this figure QS is parallel to AB. Show
that PC is a median and is divided harmonically.

Consider D, the intersection of QS and AB, to have

moved to infinity.

11. In the complete quadrangle shown in § 30 show that

AQ PS BC = — AC • BS • PQ.

12. As in Ex. 11, show that AQ • PS BD = AD BS PQ.

13. Using § 30, prove Ex. 12, page 30.
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33. Descriptive Definitions of Harmonic Forms. The har-

monic forms might originally have been denned in a purely

descriptive fashion based upon the facts just developed.

Thus, a harmonic range might have been defined as a set

of four collinear points so situated that through each of

the first two points there pass two opposite sides of a com-

plete quadrangle, and through each of the other two points

there passes one of the remaining sides of the quadrangle.

Similar definitions might have been given for the har-

monic flat pencil and the harmonic axial pencil. These

are the definitions which are usually adopted when it is

desired to avoid as far as may be possible the use of con-

siderations based upon measurement.

Exercise 11. Harmonic Forms

1. Given three collinear points A, B, C, construct the fourth

harmonic D from the descriptive definition of § 33.

In the constructions on this page use only an ungraduated ruler.

2. Given three concurrent lines a, b, o, construct the fourth

harmonic d from the descriptive definition of § 33.

3. Given a line segmentals and an indefinite line parallel

to AB, bisect AB.

4. Given a line segmentals, its midpoint C, and any point

not in the line of AB, through draw a line parallel to AB.

5. Given two intersecting lines and the bisector of one of

the angles formed by them, construct the bisector of the

supplementary angle formed by the lines.

6. Given a line segment AB divided at C in the ratio m : n,

construct a point D that divides the segment AB externally

in the same ratio.

7. Dualize for space the descriptive definitions of a harmonic
range and a harmonic flat pencil.



CHAPTER V

FIGURES IN PLANE HOMOLOGY

34. Homologic Plane Figures. Further interesting appli-

cations of the anharmonic ratio and illustrations of its

significance occur in homologic plane figures.

Given two figures in a plane, if to every point of one

figure there corresponds a point of the other, if to every

line of one there corre-

sponds a line of the other,

if the lines joining corre-

sponding points of the

two figures are concur-

rent, and if the inter-

sections of corresponding

lines are collinear, the

two figures are said to be

homologic, or in (plane)

homology.

The point in which all lines joining corresponding points

are concurrent is called the center of homology; the line

which contains all intersections of corresponding lines is

called the_axis_j^Jiomolpgy.

In the above illustration the two given figures are the triangles

ABC, A'B'C. The corresponding points indicated are the three

pairs of vertices, but any number of other pairs of points may be

chosen. The corresponding lines are AB and A'B', BC and B'C,

CA and C'A'. The center of homology is 0, and the axis of

homology is o.

37
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Theorem. Figures in homology

35. If two figures are in plane homology, it follows that:

1. All sets offour collinear points consisting of the center of

homology, a point on the axis of homology, and two correspond-

ing points of the figure have a common anharmonic ratio.

2. All sets of four concurrent lines consisting of a line

through the center of homology, the axis of homology, and two

corresponding lines of the figure have a common anharmonic

ratio.

3. These two common anharmonic ratios are equal.

Proof. Let Av A2, A3
and A[, A

2 , A'3 be corresponding sets

of three points of two homologic figures; and let OAxA[,

OA
2
A

2 , OA3
A

3
intersect o in O

x, 2 , 3
respectively ; also

let 44> A[A
2
meet in P

z ; A2
A

3, A2
A

3
meet in P

l ; and

A
3
AV A'

3
A[ meet in P

2
. Then it is evident that

(oo
x44) = (00^,4) = (oo

844)
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36. Constant of Homology. The common value of the

two anharmonic ratios found in the theorem of § 35 is called

the constant of homology for the two figures.

Given a center and an axis of homology o, we can

construct a figure homologic with any given figure in such

a way that to any point A of the given figure there shall

correspond any selected point A' on the line OA, or that to

any line a of the given figure there shall correspond any

selected line a' concurrent with o and a. For the point A'

selected there is a value of the constant of homology.

Conversely, for any assigned value of the constant of

homology, the center and axis being given, one and only

one point A' corresponds to any given point A of a given

figure. The fact is that when the center, axis, and constant

of homology are given, one and only one figure homologic with

a given figure can be constructed.

Examples of such constructions are given on page 40.

There are several notable special cases of the homologic

relation. One such case is that of harmonic homology in

which the constant of homology is — 1.

Another case is that in which the axis of homology is

the line atjnfinity. Then all pairs of corresponding lines

are parallel, and the figures are similar. In this case the

constant of homology (OO^^) becomes OAjOA'v which

may be shown to be the ratio of similitude. If in addition

the constant is — 1, the center is a center of symmetry

for the figure composed of the two homologic figures.

A third case is that in which the center of homology is

a point at infinity. Then the constant is O
x
A'

x
/O

x
Av If

also the homology is harmonic, the axis of homology is

an axis of symmetry for the figure composed of the two

homologic figures.
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Exercise 12. Figures in Homology

1. Given a center of homology 0, an axis of homology o,

and any triangle A^A^AW construct, homologic with A^A^A^, a

triangle that has a vertex A[ at a given position on OAy
As to the possibility of this construction, see Ex. 13, page 13.

Given a triangle A
X
A^A

%, the center of homology 0, the axis

of homology o, and the following constants of homology, con-

struct the figures homologic with A
1
A

2
A

3
:

2. 3. 3. -3. 4. -1. 5. 1.

6. In each of Exs. 2-5, if A[A'
tAl is the result of the con-

struction, use the same center, axis, and constant of homology

to construct the figure homologic with A[A!ZA'S .

7. If there are three coplanar figures fv f2, fz
, and if for

a given center and a given axis of homology two of them,

/x
and /jj,

are homologic with the constant c
8
, and if /2

and /8

are homologic with the constant c , then ft
and ft

are homo-

logic with the constant of homology c
2
equal to c

s
• er

8. Consider carefully Exs. 2-7 for the case in which is

a point at infinity and the case in which o is the line at infinity.

9. For a given center, axis, and constant of homology con-

struct the line corresponding to the line at infinity.

This line is called the vanishing line.

10. In Exs. 2-5 determine the vanishing line.

11. Under what conditions is the vanishing line at infinity?

Given a circle, the axis of homology o, and the center of

homology 0, construct the figure homologic with the circle

under each of the following conditions

:

12. The vanishing line does not meet the circle.

13. The vanishing line is a secant of the circle.

14. The vanishing line is a tangent to the circle.



CHAPTER VI

PKOJECTIVITIES OF PEIME FOKMS

37. Projective One-Dimensional Prime Forms. Whenever
there exists between the elements of two one-dimensional

prime forms a one-to-one correspondence such that, by

means of a finite number of operations of projection and

section, it is possible to pass simultaneously from all the

elements of one prime form to the corresponding elements

of the other, the two prime forms are said to be projeetively

related or to be projective.

The correspondence existing between two projective one-

dimensional prime forms is called a projectivity.

The symbol j- is frequently used for " is projective with.''

THEOREM. PROJECTIVE PRIME FORMS

38. Prime forms which are projective with the same prime

form are projective with each other.

Proof. If n
t
operations yield a form /2

from a form fv
and if w

2
operations yieldfz

from/
2, then nx + n

2
operations

yield /„ from fv
It is not the purpose of -this book to discuss the projectivities

of prime forms other than one-dimensional ones, but it may be

stated that between the prime forms of higher dimensions there

exist relations which have the same general character as those

just denned, and that these relations are also called projectivities.

A complete study of projective geometry would include the consider-

ation of these higher projectivities and of many important geometric

propositions relating to them.

41
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Theorem. Projectivity of Triads

39. Between two one-dimensional prime forms, each of

which consists of three elements in a specified order, there

exists a projectivity.

Proof. If either of the prime forms is not a range, it is

possible by operations of projection and section to obtain

from it a range which is projective with it. Hence it is

necessary to prove the proposition only for the case in

which both prime forms are ranges of three points.

This theorem is what was formerly called a lemma, a proposition

inserted merely for the purpose of leading up to a fundamental theo-

rem ; in this case, the one given in § 40. The proof involves the

consideration of the three cases below.

1. The ranges may he coplanar and upon different bases.

Let the ranges be A
X
B

X
C
X
on the base px

and A^B
2
C
2
on

the base p2, and let both ranges be in the same plane.

Draw the line through A
x
and Av and on it take any

points -^ and P,, not coincident with A
x
and A

2
respectively.

Draw P
X
B

X
, P

X
C

X
, P2B2, P2 C2 ; and let P

X
B

X, Pfi2
intersect

at B, and let P
X
C

X
, Pfi2 intersect at C.

Through B and C draw the line p, cutting A
X
A

2
at A.

Then range A
X
B

X
C

X
— range ABC — range A

2
B
2
Cr

Hence range A
X
B

X
C

X
— range A

2
B

2
C
2

. § 38
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2. The ranges may be coplanar and upon the same base.

Let the ranges A
X
B

X
C
X
and A

2
B

2
C
2 be on the same base p.

_ Ai -Bi Ci . „
BiA x

°2 B
x C?*

B% C% A2

It is here assumed that the points A
2, S2, Cz may be the

same except for order as the points A
x
, Bv Cv or may be

partly or wholly distinct from these points.

In any case from a center P, exterior to the base p,

project A
Z
B

2
C
2
upon a new base p'. Then apply Case 1

to show that the range so obtained on the base p' is pro-

jective with the range A
X
B

X
C

X
. It then follows that the

range A^B
2
C
2

is projective with the range A
X
B

X
C
X

.

3. The ranges may not be coplanar.

C,

Let the bases px
and p2

of the ranges A
X
B

X
C

X
and A2

B
2
C
2

not be in any one plane.

Join any point O
x
of the base px

to any point
2
of the

base p2
by the line p. Select three points A, B, C on p.

Then, by Case 1, it follows that

range A
2
B
2
C
2
— range ABC,

and range A
X
B

X
C

X ^ range ABC.

Therefore range AJB2
C
2 -^ range AX

B
X
G
X
.

From these results the existence of a projectivity follows.

PQ
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Theorem. Fundamental Theorem of Prime forms

40. Between two one-dimensional prime forms there exists

one and only one projectivity in which three elements of one

form, in a specified order, correspond to three elements of the

other form, also in a specified order.

Proof. Let us first consider three special cases.

1. Suppose that the two prime forms are a fiat pencil and

the range obtained by cutting the pencil by a line.

Let the lines of the flat pencil be a, b, c, • • •, I, • • • and

let these lines be cut by a line p in the points A, B, C, •,

L, .. Then these prime forms are perspective in such a

way that a, A; b, B; e, C ; • • ; I, L ; • • • are pairs of cor-

responding elements.

Assume that, if possible, a second projectivity exists in

which the first three of these pairs of elements correspond,

but in which I corresponds to M and not to L.

Then, from the perspectivity,

(abcl) = (ABCL);

and, from the second projectivity,

(abcl)^(ABCM).

Then (ABCL) = (ABCM),

which is impossible unless L = M.

Hence the second projectivity cannot exist, and the only

projectivity existing between the forms is the perspectivity.
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2. Suppose that the two prime forms are an axial pencil

and the range obtained by cutting the pencil by a line.

Fig. 1 Fig. 2

Let the planes of the axial pencil be a, /3, 7, • • • , X, • •

(Fig. 1), and let p cut the planes in A, B, C, • • -, L, • • •.

A proof similar to that on page 44 should be given by the student.

3. Suppose that the two prime forms are ranges.

Let Av Bv Cj (Fig. 2) be three points of the first range,

and let them correspond respectively to the points A2 , B2 , C2
of the second. A projectivity exists between these sets of

three points, and this projectivity can be extended to include

the whole of both ranges. Let L
x
correspond to Lv

If possible let there be a second projectivity connecting

the ranges, in which L^ corresponds to M2 , a point other

than Lv Then, from the two projectivities,

and (^j^CjZj) = (A
2
B

2
C2M2

~).

Therefore (A 2
B

2
C
2
L

2) = (A 2
B

2
C2M2),

which is impossible unless L
2
= M

2
.

Hence in this case two projectivities cannot exist.
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4. Consider now the general case.

Let the two forms be /, /', and let the three pairs of

corresponding elements be 1, 1' ; 2, 2' ; 3, 3'.

/ r n "^T~

A' B' C D' E'r

If/ is a range, let the elements 1, 2, 3, 4, 5, • • • be A,

B, C, D, E, • • •
; but if / is not a range, let the elements

1, 2, 3, 4, 5, • • • be cut by a line in the points A, B, C,

D, E, . Similarly, if /' is a range, let the elements 1',

2', 3', 4', 5', • • be A', B', C, D', £",•••; but if/' is not a

range, let the elements 1', 2', 3', 4', 5', • . be cut by a line

in the points A', B', C, D', E' .

Between the ranges ABCD • • and A'B'C'B' • • • there is

just one projectivity in which A, A'; B, B' ; C, C are cor-

responding elements. Let D, D' be corresponding elements.

Then form 1234 ... - range ABCD
- range A'B'C'D'- form 1'2'3'4', ....

Hence form 1234 ... - form 1'2'3'4' ....

Suppose that, if possible, between / and /' there is a

second projectivity in which 1, 1'; 2, 2'; 3, 3' are pairs of

corresponding elements and 4, 5' are corresponding elements.

Then range ABCD • • • -^ form 1234 • • .,

and form 1'2'3'5' • • • - range A'B'C'E' . • •;

whence range ABCD • — range A'B'C'E' ....

Accordingly there would be a second projectivity between

the ranges ABC • • • and A'B'C • -, in which A, A'; B, B'\

C, C are pairs of corresponding points. This, however, is

impossible. Hence the theorem is true in all cases.



FUNDAMENTAL THEOREM -±7

41. Corollary. There is one projectivity and only one

projectivity between one-dimensional forms on the same base

which makes three distinct elements of a one-dimensionalform
correspond each to itself. This projectivity makes every element

of the form correspond to itself.

Exercise 13. Projectivities of Triads

1. If A, Bv B2 , Cv C
2
are five distinct points on a line, find

a set of projections and sections, minimum in number, which

connects the triads AB
1
C

1
and AB

2
C
2

.

2. Examine Ex. 1 for the case in which B
x
coincides with Br

3. If A, B, C are three points on a line, find the set of

projections and sections, minimum in number, which connects

these points with themselves in any selected order.

Consider Ex. 3 for each of the six possible orders of the points.

4. If A
x
j A

t
, Bv jBjj, Cv C

2
are six distinct collinear points,

find a set of projections and sections, minimum in number,

which connects the triads A
1
B

1
C

1
and A^C^.

5. If A, Bv -B
2 , Cv C2

are five points, no four of which are

coplanar, find a set of projections and sections, minimum in

number, which connects the triads AB
1
C

1
and AB

2
Cr

This is a special case of a more general problem.

6. In how many ways can a projectivity between the triads

specified in Ex. 5 be established ?

7. If Av A 2 , Bv -B
2 , Cj, C

2
are six points in space, no four

of which are coplanar and no three of which are collinear,

the triads A^C^ and A^^C
2
are projective. Specify a set of

projections and sections which constitutes such a projectivity.

8. Investigate the possibility of establishing a projectivity

between the triads specified in Ex. 5 such that any fourth

point D
1
in the plane AB

1
C

1
shall correspond to any fourth

point D
2
in the plane AB

2
C

2
.
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Theorem. Metric condition for a Projectivity

42. If between the elements of two one-dimensional prime

forms there exists a one-to-one correspondence such that the

anharmonic ratio of every set offour elements of one prime

form is equal to that of the set offour corresponding elements

of the other prime form, the correspondence is a projectivity.

A1 Bx d Z>,

A 2 Bz C2 D2

Proof. It is sufficient to consider the case of two ranges

because if either of the given prime forms is not a range,

it is possible by operations of projection and section to

obtain from it a range which is projective with it.

From § 39 it follows that a projectivity exists between

three points Av Bv C
x

of the first range and the three

corresponding points A
2, B2, C2 of the second range. Then

if a fourth pair of corresponding points Dv 2>
2
on the ranges

are found, it follows by hypothesis that

(A
1
B

1
C

1
D

1 )
= (AzB2

C^)
2).

Also let range A^B^C-yD^ -j- range A
2
B

2
C
2
D

2
.

Then (A
2
B

2
C
2
D!

i)
= (A

1
B

1
C

1
I)

1
-), §26

and so (A
2
B

2
C
2
D<

2)
= (A

2
B

2
C
2
D

2).

Accordingly D
2
coincides with Z>

2 ; and therefore

range A
2
B

2
C
2
D

2 j. range A^B^Dy

Thus, any fourth point D
%
of the first range has the same

corresponding point D
2
in the given one-to-one correspond-

ence as it has in the projectivity between the ranges which is

determined by the triads of points A^Q and A
2
B

2C2 .

Hence the correspondence is this projectivity.
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If it is given that two one-dimensional prime forms are

projective, it should be noted that it is necessary only that

three elements of one of them and the corresponding ele-

ments of the other be specified in order that by the con-

struction of § 39 the whole projectivity may be established

;

and this construction furnishes a standard method of

establishing a projectivity.

Associated with the general results of §§ 39-42, several which are

special in their nature and application are considered in §§ 43-46.

Exercise 14. Projectivity of Prime Forms

1. Given three points Av Bv C
1
of a range and the corre-

sponding points A
2 , B2 , C'

s
of a second range projective with

the first, the bases being different, construct the point Z)2 of

the second range corresponding to a fourth point D
1
of the first.

2. Consider Ex. 1 when the point D
1
is at infinity.

3. Consider Ex. 1 when the ranges are coplanar and D
1

is their intersection.

4. Obtain simplified constructions for Exs. 1 and ,2 when

A and A coincide at the intersection of the ranges.

5. Consider Ex. 1 when the bases are coincident.

6. Consider Ex. 5 when A v B
2 ; A

2 , B
1

;
C

a , Dx
are all pairs

of coincident points.

7. Prove the theorem suggested by the result of Ex. 6.

8. If two ranges are projective, to every harmonic range in

one of them there corresponds a harmonic range in the other.

9. Assuming that if four points .1, B, C, D are properly

divided into pairs a common pair of harmonic conjugates with

respect to these pairs exists, prove the converse of Ex. 8.

10. Investigate the question of dividing a set of four col-

linear points into pairs so that a common pair of harmonic

conjugates may exist.
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Theorem. Projective Ranges in Perspective

43. Two projective ranges whose bases are not coplanar

are perspective.

Proof. Let A^B^-^ • • • L
x

• • • on the base px
and A

2
B

2
C
%

• • • L
2

• • • on the base p2
be projective ranges in which

Av A
2 ; By, B

2 ; Cv C
2 ; • • • are corresponding elements,

their bases not being coplanar.

On the line A
1
A

%
take a point A, and let C be the point

in which the line C
X
C
2
intersects the plane determined by

the points and the line B^B
2

. Let the line AC intersect

the line B
±
B

2
in the point B.

Denote by a, ft, 7, • • •, X, • • • the planes determined by the

line ABC and the points Av Bv Cv • • , Lv • • respectively.

The axial pencil afty • • • X • • is perspective with the

range A-^B^ • • • L
x

• • • and cuts the line^
2
in a range pro-

jective with the range AyB^C^ • • L
1

- • •.

Moreover, in the projectivity thus established the points

A
2, B2, C2 correspond to the points Av Bv C

x
respectively.

This projectivity is therefore the same as the one that was
originally assumed to exist between the ranges (§ 40).

Hence from the range A
1
B

1
C

1
• • • on the base p x

it is

possible to pass to the range ^
2

-B2^2 • • • on the base p2

by one operation of projection from the axis ABC and

one operation of section by the line p2
. Hence the pro-

jectivity existing between the ranges is a perspectivity.
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Theorem. Condition for perspective Ranges

51

44. Two projective ranges on different bases in a plane

it are perspective if and only if the point common to them is

self-corresponding in the projectivity.
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Theorem. Ranges Perspective with a Third Range

45. Two projective (but not perspective") ranges on different

bases in a plane are both perspective with the same range

on any line that does not pass through the intersection of the •

bases of the given ranges.

Proof. The construction used in Case 1 of § 39 estab-

lishes the existence of a range which is perspective with

each of the two given coplanar ranges. It is now necessary

to show that the points P
1
and P

2
can be so selected that

the line ABC shall be any line which does not pass through

the intersection of px
and p2

.

Let p be any line not concurrent with px
and p2

. Let

the intersection of p1
and p be Dv and that of p2

and p
be E

2
. Suppose that the point i>

2
corresponding to Dv and

the point E
x
corresponding to E

2 , have been found by the

method of Case 1 of § 39, or by any other suitable method.

The problem now is to choose points P
x
and P

2
such that

the line ABC shall coincide with the line p or D
X
E

2
.

Draw D%DV and let this line meet A
2
A

X
in i^. Draw

E
X
E

2, and let this line meet A
t
A

2
in JJ. Join Pj to Bv

Cv — , and let these lines meet T>
X
E

2
in B, C, • • ••
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Then range ABCDJS
2

= range A^B^DJ^ ....

Hence range ABCD
X
E

2
•- range A

2
B

2
C'
2
D

2
E

2
....

But the triad AB
X
E

2
is perspective with the triad A

2
D

2
E

%,

and these triads determine completely the nature of the

projectivity between the range ABCB
X
E

2
• • . and the range

A
2
B

2
C
2
B

2
E

2
....

Therefore the two ranges A
1
B

1
C

1
B

1
E

1
... on p1

and

A
2
B

2
C
2
B

2
E
2
... on j)2

are perspective with a range on

the given line p.

Exercise 15. Projective and Perspective Forms

1. State and prove the dual of § 43.

State and prove the duals of each of the following :

2. § 44, in the plane. 5. § 45, in the plane.

3. § 44, in space. 6. § 45, in space.

4. Ex. 3, in the bundle. 7. Ex. 6, in the bundle.

Solve the duals of each of the following

:

8. Ex. 1, page 49, in space.

9. Ex. 3, page 49, in the plane.

10. Ex. 3, page 49, in space.

11. Ex. 1, page 49, in the plane, considering the case in

which the ranges are coplanar.

12. If three ranges in a plane have concurrent bases and if

two of the ranges are perspective with the third, these two

ranges are perspective with each other.

13. Three fixed lines p , pv ps
radiate from Av one of three

fixed collinear points Av A v A
a

. A point P
1
moves on^, and

the lines A^PV AJP^ cut p2 , ps
respectively in P

2 , Pr Show that

P
t
P

3
has a fixed point.
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46. Special Case. In the construction described in § 39

the only limitation upon the position of the points P^ and P
2

was that ij should not be at A
1
and that P

2
should not be at

Av The necessity for this limitation is due to the complete

failure of the construction which would result from the

coincidence of the lines ]\AV P
1
BV PxCv We shall now

consider a special case which is noteworthy because it

puts in evidence a line that has important relations to all

pairs of corresponding points of the ranges and furnishes

a basis for several simple constructions.

Let ij be taken at Av and P2 at Av Then the line p is

determined by the intersection of P
i
B

1
(^A

2
B

1
~) and P

2
B

2

(A
tB^) and the intersection of PiC^A^C^) and EjC^A^^).

It contains likewise the intersections of A
2
DV A1

D
2 ; A2

EV
A

X
E

2 ; and so on. It can now be shown that this line p
can be located independently of the placing of 2J and P^

on the particular line A
X
A

2
.

If the ranges A
1
B

1
C

1
and A2

B
2
C
2

• •. • are projective

but not perspective, the point of intersection of px
and p2

will not be self-corresponding. Regarding this point as

belonging to the range A
X
B

X
C

X
• • •, call itXv In the other

range there will correspond to X
x
a point 2T

2
. Regarding

the intersection as a point of range A2B2C2
• • , call it Y

2
.

To it will correspond a point Y
t
of the first range. Then

A
X
X

2
and A2

X. intersect on the line p. But their inter-

section is X
2

.
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Similarly, Y
x , the intersection of A

X
Y

2
and A

2
Y

X , is on the

line p. Accordingly the line p is the line determined by the

points of_tiie_Jn2§t_and_.S£Cond ranges which correspond to

the^oint^fjntej^ecJioJi_^the_^ang^sregarded_a^_a point

of the second and first ranges respectively. It follows that

the line p is determined by the projectivity between the

ranges and bears the same relation to any two correspond-

ing points of the ranges that it does to A
x , A2 . Accordingly

not only do A
X
BV A2

B
X ; AX

C2 , A2CX ; A
X
D

2, A
2
D

X ;
•••

intersect on p, but so do B
X
C
2 , B2

C
X ; BX

D
2 , B2DX ;

••;

C
X
D

2 , C2
D

X ; C
X
E

2 , C2EX ; •••; and so on.

If the ranges A
X
B

X
C
X

• • • and A2
B

2C2 • • are perspective,

their common point X is self-corresponding. Let p be the

line joining X to the intersection of A
X
B

2
and A

2
BV

We then see that the flat pencils A
X
(A

2
B

2C2
• • • X • • •)

and A
2
(A

X
B

X
C

X
• • -X- • •) are projective and have a com-

mon line A
x
Ay Hence these pencils are perspective, and

the axis of perspective is p. Hence, as in the other case,

A
X
B2, A2

B
X ; Ax

C2, A2
C

X
;.A

X
D

2, A2
D

X ; ; B
X
C
2, B2

C
X ; • • •

;

C
X
D2, C2

D
X

all intersect on p.

Exercise 16. Perspective Forms

1. If a simple reentrant hexagon has its first, third, and

fifth vertices on one straight line of a plane it and has its

second, fourth, and sixth vertices on a

second straight line of that plane, the

intersections of the first and fourth,

the second and fifth, and the third and

sixth sides are collinear.

2. State and prove the proposition dual in a plane to Ex. 1-.

3. State and prove the proposition dual in space to Ex. 1.

4. State and prove the proposition dual in the bundle to Ex. 3
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Problem. Line to an Inaccessible Point

47. To draw a line which shall pass through the inacces-

sible intersection of two given straight lines and also through

a given point of their plane.

P

Solution. To draw a line which shall satisfy the first

condition, let the given lines be p x
and p2

. Select a point

P in the plane of the lines p 1
and j»

2
, but not on either

line, and through P pass three lines cutting p1
in Av Bv C

x

and p2 in A2, B2, C2
.

Since the ranges A
X
B

X
C

X
and A

2
B

2
C
2

are perspective,

the pairs of lines A
X
B

2 , A2
B

X ; AX
C
2 , A2

C
X ; BX

C
2 , B2

C
X
inter-

sect on a line p which passes through the intersection of

the lines p x
and p2 (§ 46).

Now to satisfy the second condition we must so choose

the point P that the line p will pass through 0.

Through draw two lines and let them intersect px
in

A
x
and B

x
and intersect p2

in A
2
and B

2
. Take P to be

the intersection of A
X
A2 and B

X
B

2
. Through P draw an-

other line cutting px
in C

x
and p2

in G
2

. Then the line p
which is determined by the intersections of two of the three

pairs of lines A
X
B

2, A 2
B

X ; A
X
C
2, A2

C
X ; B

X
C
2, B2CX

satisfies

the two given conditions.
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Problem. Line Parallel to a Given Line

48. Given two parallel lines and a point in their plane,*

to draw through the point a line parallel to the given lines.

The solution is left for the student, who should write out the

proof after the method used in § 47.

The case in § 49 is somewhat different.

Problem. Line Parallel to a Given Line

49. Given in a plane a point 0, a line px
not passing

through 0, and a parallelogram none of whose sides is known

to be parallel to pv to draw through a line parallel to pv

Pi A1

Solution. This problem may be reduced to the preced-

ing one as follows:

Let the adjacent sides a
x
and b

1
of the parallelogram

meet px
in A

x
and B

x
respectively. Let C be any point on

the diagonal P
t
P
2 , and let the lines CA

t
and CB

1
meet a

2

and b2 in A
2
and B

2
respectively.

Then the triangles P
l
A

l
B

l
and P

2
A

2
B

2
are homologic, and

since the intersections of P
X
AV P2

A
2
and of P

X
BV P2

B2
are

at infinity, the axis of homology is at infinity.

Hence A
2
B

2
is parallel to pv

We now have two parallel lines A
2
B

2
and pv and by

means of § 48 we can draw through the given point a

line parallel to the given line pv
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Theorem. Similar Ranges

50. If in two projective ranges the points at infinity are

corresponding points, the ratios of all pairs of corresponding

segments are the same, and conversely.

Proof. Let the points at infinity of two ranges be J
x

and J2 , and suppose that the points Jv Av Bv C
t, • of

the first range correspond respectively to the points J
2 ,

A
2 , B2 , C2 , • • • of the second range.

Then (4|5s
C

9̂) = (^1
S

1
C

1
«r

1),

or A
2
C
2
:B

2
C2 =A X

C
X
:B

X
C

X
. §22

Hence A
2C2

: A
x
C

x
=B

2C2
: B

x
C

x
.

Similarly, it can be shown that

A2
B

2
: A

X
B

X
=A2C2

: A
X
C

X
=A

2
D

2
: A

X
D

X
=

=B
2
G
2

: B
X
C

X
= B

2
D

2
: B

X
D

X
= • • = r,

where r is independent of the pair of corresponding seg-

ments involved.

Conversely, suppose that all the pairs of corresponding

segments have the same ratio.

Let Av A2 ; Bv B2 ; C
x , C2 ; Jx, K2 be pairs of correspond-

ing points, J
x
being the point at infinity of the first range.

Then (A
X
B

X
C

X
J

X
~) = (A

2
B

2
C
2
K

2),

or A^l _ -^2^2
.
-^2-^2

B
X
C

X
B

2C2
B

2
K

2

But A
1
C

1
:A

2
C2 =B1

C
1

: B
2C2.

Therefore A
2
K

2
: B2
K

2
= 1,

and hence K
2
must be at infinity and should be called J

2
.

Accordingly J
x
and J

2 , the points at infinity of the two

ranges, are corresponding points.
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51. Similar Ranges. Two projective ranges whose points

at infinity are corresponding points are said to be similar.

An example of similar ranges is furnished by sections of a flat

pencil by parallel lines, or by sections of a flat pencil of parallel rays

by any two lines.

If similar ranges are on the same base, the point at

infinity is a self-corresponding point. If the ratio of corre-

sponding segments (§ 50) is 1:1, there is no other such

point, but in any other case a second point exists.

52. Congruent Ranges. Similar ranges in which the ratio

of corresponding segments is unity are said to be congruent.

If two similar ranges have parallel bases, their common point at

infinity is self-corresponding and the ranges are perspective.

53. Similar and Congruent Pencils. The terms similar

and congruent are applied to certain special cases of flat

pencils and axial pencils, the mere mention of this fact

being sufficient for the present treatment.

Two projective flat pencils whose bases are at infinity

are said to be similar if linear sections of these pencils

are similar ranges.

In this and in similar cases the student should draw the figure.

Two projective flat pencils whose bases are in the finite

part of the plane are said to be equal or congruent if every

pair of lines of one pencil contains an angle equal to the

angle contained by the corresponding pair of lines of the

other pencil.

Similar and congruent axial pencils are defined in the same way.

Flat pencils and axial pencils are said to be proper or

improper according as their bases are or are not in the

finite part of space.
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Exercise 17. Projectivities

1. There exist infinitely many sets of projections and sec-

tions which connect a prime form with itself.

2. There exist infinitely many sets of projections and sec-

tions which connect two projective prime forms.

3. A plane quadrangle is projective with a properly chosen

parallelogram.

4. A plane quadrangle is projective with a properly chosen

square.

5. A plane quadrangle is projective with every square.

6. Every two plane quadrangles are projective. Specify

a set of operations that connects the quadrangles.

7. A triangle and any point in its plane, but not in its

perimeter, are projective with any equilateral triangle and

its center.

8. Solve the duals of Ex. 6.

9. Two ranges on the same base are projective if they are

so related that every pair of corresponding points is a harmonic

conjugate with respect to a given pair of points on the base.

Apply Ex. 12 on page 30.

10. If J
x
and K are the points at infinity of two projective

ranges A
1
B

1
C

1
• • • and A

2
B

2
C

2
•, J

2
and K^ being the points

corresponding to them, then A^K^ -A^T
2
= B^K^ • 5

2
/
a
= • •

.

11. If the ranges in Ex. 10 are on the same base, and if
1

is the midpoint ofJ
i
K

1
and if

2
is the point corresponding to Ov

then 0,4, • 0^ 2
- O^j • 0/2

- 0& O
r
A

2
+ O^ O

x 2
= 0.

12. If A
x
and A

2
in Ex. 11 coincide with A, it follows that

o^I
2+<W A = -

13. If P
4
is a fixed point on the side P^P^ of a given triangle

P^^Pg, and if a moving line cuts P^ in P
4

, P2
P

8
in Q, and

P
8
Pj in R, P

r
Q and P

2
/J meeting in P, then P

a
P cuts P^P^ in

a fixed point.
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14. Generalize Ex. 12, page 53.

15. Given A
1
B

1
C

1
• • , A^B^C^ • • •, and A

g
B

s
C

s
• • , three pro-

jective but not perspective ranges whose bases pv p%, pa
are

coplanar and concurrent, prove that, if any triad of corre-

sponding points is collinear, there exists a range ABC •

which is perspective with each of the three given ranges.

16. If Pv P
2 , P

a
in Ex. 15 are the centers from which the

three ranges on pv p2 , pg
respectively are projected into the

range ABC • • •, each of the sides of the triangle PjP
2
P

3
cuts

a pair of the given ranges in points which correspond in one

of the projectivities.

17. If in Ex. 16 P moves along the base p of the range

ABC •, the lines P
1
P, PJP and P

g
P trace on any fourth line

of the plane three projective ranges which have one point that

is self-corresponding for all three projectivities.

18. liXv X2
; Yv Y2 ; Av A 2

are pairs of corresponding points

of two coplanar projective ranges, and if (§ 46) X
1
and Y

2
coin-

cide at the intersection of the bases, determine the position

of B which corresponds to any fourth point B
t
of the first

range, basing the solution on § 46.

19. Solve the plane dual of Ex. 18.

20. Solve the space dual of Ex. 18.

In solving the remainder of the problems in this exercise, use only the

ungraduated ruler. These exercises are chiefly due to Steiner, one of the

founders of the science of projective geometry.

21. Given a segment AB extended to twice its length, divide

it into any number of equal parts.

22. In an indefinite straight line given a segment AB
divided at C in the ratio of two given whole numbers, draw

through any given point a line parallel to the given line.

23. Given two parallel lines p and^', and given onp a seg-

ment AB, from any given point on p lay off a segment of p
equal to any given multiple of AB.

24. Divide AB in Ex. 23 in the ratio of two given integers.
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25. Given a parallelogram, divide any segment in its plane

in the ratio of two given integers.

26. In a plane, given three parallel lines which cut a fourth

line in the ratio of two given integers, draw through a given

point a line parallel to a given line.

27. If two parallel line segments which have to each other

the ratio of two given integers are given, draw a line parallel

to a given third line.

28. Given two parallel lines and a segment divided in the

ratio of two given integers, draw through a given point a line

parallel to a given fourth line.

29. Given two nonparallel segments, each divided in the

ratio of two given integers, draw a line parallel to a given line.

30. Given a square, a point, and a line, all in one plane,

draw through the point a line perpendicular to the given line.

31. Given a square and a right angle, both in the same

plane, bisect the angle.

32. Given a square and an angle, both in the same plane,

construct any multiple of the angle.

In each of the following problems, in addition to the data mentioned,

one circle fully drawn and its center are assumed to be given.

33. Through a given point draw aline parallel to a given

line.

34. Through a given point draw a line perpendicular to a

given line.

35. Through a given point draw a line which shall make
with a given line an angle equal to a given angle.

36. From a given point draw a line parallel and equal to

a given line.

37. Determine the intersections, if any, of a given line and
a circle of given center and radius.

38. Determine the intersections, if any, of two circles of

given centers and given radii.



CHAPTER VII

SUPERPOSED PROJECTIVE FORMS

54. Superposed Projective Forms. Hitherto only inci-

dental reference has been made to the existence of pro-

jective forms on the same base, but the general results

obtained apply to them except when the contrary is in-

dicated. It is proposed now to consider some special

properties of one-dimensional projective prime forms on

the same base. Such forms are called superposed forms.

In the first place, the existence of superposed projective

forms is established if, when two projective ranges are on

different bases, as A
1
B

1
C

l
• • • on the base p1

and A
2
B^C

2
• • •

on the base p2 , the second range is projected on the base p1

from a center P so taken as not to be on the line A
X
AV

The result is a range A[B'fi[ • • on the base pt
which is pro-

jective but not identical with A
1
B

1
C

1
• • •, since A

l
and A[

are not coincident.

In the second place, if each of two superposed projective

forms is operated upon by section or projection, the result-

ing forms are superposed and projective.

63
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Theorem. Existence of superposed projective Forms

55. There exist pairs of projective prime forms which

have common hoses and which have not all their corre-

sponding elements coincident.

The proof of this theorem is evident from § 54.

Theorem. Invariance under Projection

56. If from two superposed projective prime forms two

other superposed prime forms are obtained by projection or

by section, the latter forms are projective.

The proof of this theorem is evident from § 54.

57. Self-corresponding, or Double, Elements. It has been

shown (§ 39) that three points Av Bv C
1

of a line are

projective with any three points of the same line, even

though some or all of the two sets of three are the same

;

and it follows from § 40 that the correspondence of the

three pairs of points establishes for all points of the line a

projectivity in which some of the points may coincide with

their corresponding points. It is evident that similar con-

siderations apply to flat pencils and to axial pencils.

Elements of superposed projective prime forms that

coincide with those to which they correspond are called self-

corresponding elements, or double elements; and the deter-

mination of the number of such elements is a problem

of importance. Since from superposed flat pencils or

axial pencils we may by section obtain superposed ranges

whose self-corresponding points are situated on the self-

corresponding elements of the pencils, the discussion of this

question is substantially the same for all one-dimensional

prime forms, and hence will be limited to the case of

superposed ranges.
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Theorem. Self-corresponding Elements

58. The number of self-corresponding elements of two dis-

tinct superposed projective one-dimensional prime forms is

two, one, or none, and all three of these cases occur.

Proof. The proof consists of the following four parts

:

1. There may be two self-corresponding elements.

If Av Bv Cv C2
are four points on a line p, the triads

A-^B-jC-^ and A-JS^C^ determine a projectivity between dis-

tinct ranges on p with A
x
and Bv but not with either C

1

or C2, as self-corresponding points.

2. There may be just one self-corresponding element.

On a line p take four points A, Bv Bv Cv and through

A pass two lines a and p'. On a take any point I{. Let

the line EB^ cut p' in B', the line B'B
l
cut a in Pv the line

E
i
C

1
cut p' in C", and the line P

X
C cut pin (72 .

The triads AB
X
C

X
and AB

2
C
2
determine a projectivity

between distinct ranges on p in which the point A is self-

corresponding. Moreover, each of these ranges on p is

perspective with the range AB'C' ••• on p' and hence, if

TJ
X
and Z7

2
are corresponding points of the range on pv it

follows that P
r
U2

and ^ TJ
X
must intersect on p'. This would

not happen if C^ and U2
were coincident, except at A.

Therefore A is the only self-corresponding
1

point.
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3. There may he no self-corresponding element.

Taking a range A
l
B

x
C

1
• • • on a base p, let its projector

from a point P, not in the base, be the pencil a
x
b
x
c
x

Through P draw the lines a2 , bv c
2 , • • •, making any fixed

angle, say 30°, with av bv cv • • • respectively, and let these

lines meet the base p in A
2 , B2 , C2 , • • •.

Then range A
t
B

tCf " -r pencil aj>
x
c
x

• • •

j- pencil a
2
J
2
c2 *

'

j- range A
2
B

2
C2

Since the ranges A
X
B

X
C

X
• • • and A2

B
2C2 • • have no cor-

responding element, this part of the theorem is proved.

4. There cannot be three self-corresponding elements.

It follows from § 41 that if three elements are self-

corresponding, all elements are self-corresponding, and the

forms are coincident. Hence if the forms are distinct, there

cannot be three self-corresponding elements.

In selecting the triads of elements which determine the projec-

tivity between superposed forms we may include self-corresponding

elements. Thus, for ranges the projectivity is determined if the two

self-corresponding points X, Y and a pair of corresponding points

A v A
2
are given, for then the triads of corresponding points are

XYA
1
and XYA

2
. Also, if one self-corresponding point X and two

pairs of corresponding points A v A 2 ; B
x , B2

are given, the deter-

mination is complete. Here the triads are XA
X
B

X
andXAJRV In each

of these cases simple constructions serve to determine additional

pairs of corresponding points.

In this connection the student may review the solutions of Exs. 1

and 2, page 47, which furnish constructions for these cases.

59. Classes of Projectivities. The projectivity between

superposed forms is said to be hyperbolic when there are

two self-corresponding elements, parabolic when there is

one, and elliptic when there is none.
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Theorem. Anharmonic Ratio

60. If two superposed projective ranges have two self-

corresponding points, the anharmonic ratio of these two points

with any pair of corresponding points is independent of the

choice of the latter.

Proof. Let X, Y be self-corresponding points of two
superposed projective ranges, and let Av A

2 ; Bv B
2 be

any two pairs of corresponding points.

Tben (XYA
1
B

1) = (ZFJ
2
5

2).

Therefore ^l
:
^l = £^ :^,

YA
1
YB

X
YA2 YB

2

, , XA, XA2 XB, XB„
and hence k : * = *

:

*.

YA
1
YA

2
YB

l
YB

2

Therefore (XYA
X
A^ = (XYB^.

Exercise 18. Superposed Ranges

Given a range XYA
1
B

1
• • • , find two points A2 , B2 of a

range on the same base, projective with the given range, such

that X, Y shall be self-corresponding points and the ratio

(XYA-^A^) shall be as follows:

1. 4. 2.-4. 3. -1. 4. 1.

5. Consider Exs. 1 and 3 when Fis the point at infinity.

In Exs. 1-5 observe the situation of pairs of corresponding points with

respect to the self-corresponding points.

6. Construct two superposed ranges in which the point at

infinity shall be the only self-corresponding point.

7. Given a self-corresponding point and two pairs of corre-

sponding points, construct the other self-corresponding point

of two superposed projective ranges.
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Theorem, congruence of projective Ranges

61. Two superposed projective ranges that have the point at

infinity as their only self-corresponding point are congruent.

Proof. Let A
X
B

X
G
X

• • • and A
2
B

2
C2 • • • be two projective

ranges on the same base p, the only self-corresponding

point of the"ranges being the point J at infinity. Let X
x

and X2 be corresponding points not at infinity.

Then (A
X
B

X
X

X
J)= (A2

B
2
X

2
J~) ;

22whence
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62. Alternative Proof. Let p' be a line parallel to p,
and hence intersecting p at J. Let the range A

1
B

1
. . . J be

projected from any center P
2 upon the base p', the resulting

range being A[B[ • • • J.

Because the latter range is

perspective with A
l
B

1
• • • J,

the point J at infinity must

be self-corresponding (§ 44).

Therefore the range A
2
B

2
• • J

is projective with the range

A[B'
X

• • • J in such a way that the point J at infinity is

self-corresponding, and hence these ranges are perspective.

The center of perspective of these ranges must be on

A[A
2

. Let it be ij. Then B
%
must be the intersection of

B[P
X
and p. Draw P

l
P
2

.

It will be proved that i^ is parallel to p and p'.

If im is not parallel to p and p', let it meet p \n X
l

and p' in X[. Then

range A
1
B

1
• X

x
• • • J=- range A{B[ • • • X[ • • • J

= range A
2
B

2
•••X

1
---J.

Hence the given ranges have two self-corresponding

points X
1
and J, which is contrary to the hypothesis, and

so P
X
P
2

is parallel to p.

From similar triangles it follows that

A
X
B

X = P2A, = P,A
2 = A

2
B

2

A{B\ P
2
A[ J£4 A'X

and hence that ^1-^1 = A-^2-

Similarly, any two corresponding segments are equal.

Hence the ranges are congruent.

Compare the above figure with the one in § 58.



70 SUPERPOSED PROJECTIVE FORMS

Theorem. Angle subtended by corresponding Points

63. Given two superposed projective ranges having no

self-corresponding point, it is possible to find a point at

which all pairs of corresponding points in the range subtend

equal angles.

Proof. Let A
X
B

X
C

X
• • and A2B2C2

• • be projective

ranges on a base p, and let J
x
and K2 be the point at

infinity of p. Let K
x
and J2 be the points of the two

ranges which correspond to the point at infinity.

Bisect K
X
J2

in Ov and let 2 of the second range corre-

spond to O
x
of the first range.

Then, J
x
and K2

being the point at infinity and Av Bx

being any points of the first range, we have

(A R T K -\ - A*
J

i
A

i
K

i- - 1 •

A
*
K

* - Bi
K

i
,

and OWi*^^; §22

and since (A
X
B

X
J

X
K

1
') = (A2

B
2
J2K2

~), we have

A
X
K

X
A2J2 = BX

K
X

• B2J2 =...= O
x
K

x
. OJv

Hence

(O
x
K

x
- O

x
A

x
-) (O

x
J2 - O

x
A

2
-) - O

x
K

x
. (O

x
J2 - OfiJ = 0,

and O
x
K

x
Ox
J2 - O

x
A

x
O

x
J2 - O

x
K

x
• O

x
A

2

+ O
x
A

x
• O

x
A2
- O

x
K

x
O

x
J2 + O

x
K

x
-O

x 2
= 0.

If now A
x
and A2

should coincide at A, a self-corre-

sponding point, then, since O
x
J
2
= — O

x
Kv O

x
being the

midpoint of J
2
K

X, it would follow that

O^Z
2 = - O

x
K

x
-O

x 2
= O

x
J
2

O
x 2

.

Then O
x
J2 and O

x 2
would agree in sign; that is, O

x

would not lie between J
%
and 2 .
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On the other hand, if
1
does not lie between

2 and
J2 , a point A, related to Ov 2 , J2 as above, may be found

and will be self-corresponding. Hence, when there is no self-

corresponding point, Oj must be within the segment
2J2

.

Let Kv J2 , Ov 2
be indicated on the base. Erect at

Oj the perpendicular C^P meeting at P the semicircle

whose diameter is
2J2 .

Through the point P draw a line parallel to p.

Then angle
2
PJ

2
= 90°, and angles K

2
PK

Y
(acute),

J2PJV and
2
PO

x
are equal. But the triads K

1
J

1
O

l
and

K2J2 2
determine the projectivity of the ranges.

Let Av A2 be any pair of corresponding points.

The projectors from P of the ranges K
2 2J2

A
2
and

K
x
O

x
J^A^ are pencils which by the rotation of the second

through the common value 6 of the three angles K
2
PKV

J2PJV 2
P0

1
could be made to have three common lines

while the projectivity would not be destroyed.

Then all the corresponding lines would be made to

coincide ; and by the rotation of PA
2
through the angle 6

it would be brought into the position PAV
Hence angle A

2
PA

X
= 8, and the theorem follows.

In Case 3 of § 58 the existence of superposed projective ranges

having no self-corresponding point was established by means of an

example. In this example the two ranges could have been generated

simultaneously by the intersection of their base with the arms of an

angle of constant size rotating about its vertex. It has just been

established that every pair of such superposed projective ranges can

be generated in this way.
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Theorem. Involution of elements

64. If the projectivity between two superposed projective

one-dimensional forms is such that when any one element is

taken as belonging to the first form that element has the same

corresponding element as it has when it is taken as belonging

to the second form, then every element has this property.

Proof. We shall consider the theorem for ranges only,

the proof being similar for other forms.

Between two triads A
1
B

1
C

1
and A

2
B

2C2
that lie on a

base p there exists a projectivity which determines two

superposed projective ranges on this base. In connec-

tion with this projectivity every point of the line p may

be given two names. Thus, a point might be L
x
and Rv

Moreover, the original triads A
1
B

1
C

1
and A2

B
2C2

may have

some points in common.

Suppose now that B
t

is taken to be the same as A
2, and

B2
the same as Av Let a point D

x
be taken to be the

same as C2
. The theorem is then proved if we can show

that D
2 coincides with Cv

From the conditions of the case

(A.A^C^ = (A.B^D,) = (A
2
B

2C2
D^) = (^,C

2
Z)

2)

;

whence A
1
C
l

: A2
C
X
= A

1
D

2
: A

2
D

2 ,

and D2 coincides with Cv

65. Involution. When two superposed prime forms are

connected by a projectivity such as that described in the

above theorem, they are said to form an involution.

Elements of an involution which correspond to each

other are said to be conjugate.

The projectivity is also called an involution.

66. Corollary. Every projection and every section of

an involution of elements yields an involution.
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Theorem. Anharmonic Ratios in Hyperbolic Involution

67. In a hyperbolic involution the anharmonic ratio of the

two self-corresponding elements and any pair of correspond-

ing elements is — 1.

Proof. If X, Y are the self-corresponding points and

Av A% are corresponding points of a point involution, then

(xya
1
a2) = (Xya2a1) = -

(XYA^)
Hence (XYA

1
A

2)
2 =1, and (XYA

1
A

3) = -1.

(XYA
t
A

2 )
cannot be equal to 1, iorX, Y, A v A 2

are distinct points.

The classification of projectivities into hyperbolic, parabolic, and

elliptic applies to the involutions, and it is easy to prove that invo-

lutions of all these classes exist. Hence §§ 58-61 apply in the case

of involutions. In particular, the value of the anharmonic ratio

mentioned in § 60 has been determined in the above theorem.

The converse of this theorem is easily proved ; and hence,

when any two elements of a range or pencil are given, it becomes

easy to determine any desired number of pairs of corresponding

elements of an involution of which the two given elements shall

be self-corresponding. A similar remark may be made regarding

the more general case of § 60.

68. Corollary 1. In a hyperbolic point involution the

point at infinity, if not self-corresponding, corresponds to a

point midway between the self-corresponding points.

69. Corollary 2. In a hyperbolic point involution, if

the point at infinity is a self-corresponding point, the other

self-corresponding poiyit bisects the line joining every pair of

corresponding points.

70. Corollary 3. In a hyperbolic involution of lines

(or planes), the line (or.plane) which bisects the angle between

the self-corresponding lines (or planes) has for its correspond-

ing line (or plane) the one which is perpendicular to it.
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71. Involution Determined. An involution is determined

whenever enough is known to establish two determining

triads of the projectivity. Consequently the following

data are sufficient for this purpose

:

1. Two pairs of corresponding elements.

2. One self-corresponding element and a pair of corre-

sponding elements.

3. Two self-corresponding elements.

Considering the argument for ranges only, the other

cases admitting of similar treatment, we see that the fol-

lowing triads determine projectivities

:

In Case 1 the triads A
X
A

2
BV A2AX

B
2, where Av A2 ; B

x, B2

are corresponding pairs of points.

In Case 2 the triads XA
X
A

2, XA2
A

X , where X is a self-

corresponding point and Av A
2
are a pair of correspond-

ing points.

In Case 3 the triads XYAV XYA2, where X, Y are self-

corresponding points and Av A
2

are a pair of harmonic

conjugates with respect to them.

72. Center of Involution. Let the pairs of points J, 0;
Av A

2 ; Bv B2 (J being the point at infinity) be corre-

sponding.

Then (AX
B

X
OJ~) = (A

2
B

2J 0)

;

whence —— = —2-

,

B
x

A2

and 0A
X

• 0A
2
= 0B

X
. 0B

2
= ....

Then in a point involution the point corresponding to

the point at infinity is such that the product of its dis-

tances from any pair of corresponding points is independent

of the choice of the pair. This point is called the center

of the involution.



POINT INVOLUTION 75

73. Two Cases of Point Involution. A further examina-
tion of the relations just found suggests two possible cases

:

1. The product OA
x
OA

2
may be negative.

2. The product OA
t

• OA
2
may be positive.

In Case 1 no self-corresponding point X can exist ; for

if it did we should have OX 2
negative, which is impossible

for real values of OX. The involution is therefore elliptic.

Also, from the relation OA
t

• OA
2
= OB

1
• OB

2, if each

product is negative, it follows that the point separates

every pair of corresponding points. Moreover, if OA
1

is

longer than OBv it is evident that OA2 is shorter than OB
2,

and so any two pairs of corresponding points, as Av A
2 ;

Bv B
2, mutually separate each other.

In Case 2 by similar reasoning we establish that the

involution is hyperbolic with the self-corresponding points

equidistant from 0, that any two corresponding points lie

in the same direction from O, and that no two pairs of

corresponding points mutually separate each other.

These metric properties are sometimes used to define elliptic and
hyperbolic point involutions.

Exercise 19. Point Involutions

1. Choosing two pairs of corresponding points that will

determine an elliptic involution, find by construction a third

pair of corresponding points and also find the center.

2. Solve Ex. 1 for a hyperbolic involution.

3. Find a pair of corresponding points of an involution of

which X (a given point) and / (the point at infinity) are the

self-corresponding points.

4. Given one self-corresponding point of an involution and

a pair of corresponding points, find by construction the other

self-corresponding point.
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Theorem. Line Involution

74. Every involution of lines has one pair of correspond-

ing lines at right angles ; if it has two pairs at right angles,

all its pairs are at right angles.

Proof. Let av a
2 ; bv b

%
be pairs of corresponding lines

of an elliptic involution on a base P. If av a
2
or bv S

2

are at right angles, the first part needs no proof.

If neither of these pairs of lines is at right angles, cut

the four lines by any line p in the points Av A2, Bv Bv
Describe the circles PA

X
A2

and PB
X
B2 meeting again

in Q. ~LebPQ cut p in 0, and let the perpendicular bisector

of PQ cut p in V.

Describe the circle whose center is V and whose radius

is VP, or VQ, and let it cut p in C
x
and C2

.

Then OC
x

• OC2
= OP-OQ
= OA

x
OA2

= OB
1

. OBv
Hence the lines ev or PCV and <?

2, or PC
2, belong to the

original involution. Furthermore, they are at right angles,

because C
X
PC% is a semicircle.

For the case of a hyperbolic involution see § 70.
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Again, if two pairs of corresponding lines are at right

angles, these pairs separate each other, and the involution

is elliptic.

Suppose now that the lines av a
2
and also the lines bv b2

are at right angles. Then the segments PA
X
A2 and PB

X
B

%

are semicircles, and their common chord PQ is at right

angles to p at 0. Now if cv c2 , any other pair of corre-

sponding lines of the involution, cut p at Cv C2 , then

OC
x

• OC2
= OP OQ,

and the segment G
X
PC2 is a semicircle.

Accordingly, cv c
2 , any two corresponding lines of the

involution, are at right angles.

Exercise 20. Review

1. On a given base p, if each of two ranges is projective

with a third range in such a way that X and Y are self-

corresponding points for both projectivities, then these two

ranges are projective with each other, and X and Y are self-

corresponding points in the projectivity connecting them.

2. In Ex. 1, if the anharmonie ratios (§ 60) associated with

the two projectivities are r
x
and r

2, find the anharmonie ratio

associated with the third projectivity.

3. Interpret the results of Exs. 1 and 2 when the first two

projectivities are involutions.

4. A projectivity between superposed forms is determined

if two self-corresponding elements and the anharmonie ratio

of these elements and two corresponding elements are given.

5. Given two self-corresponding points X and Y of two

superposed projective ranges, find a third range on the same

base between which and each of the other two ranges there

exists a projectivity for which X and Y are self-corresponding

points. Consider the number of solutions.



78 SUPEEPOSED PROJECTIVE FORMS

6. A point involution is completely determined by its

center and one self-corresponding point.

7. A point involution is completely determined by its center

and a pair of corresponding points.

8. The circles which pass through two given fixed points

determine, on any line which cuts them, corresponding points

of an involution.

9. If A, B, C, B are fixed coplanar but noncollinear points

and a point moves in their plane in such a way that the

anharmonic ratio of the pencil 0(ABCD) is a given constant k,

the lines OC and OD meet the line AB in corresponding points

of two superposed projective ranges.

10. Consider Ex. 9 for the case in which k = — 1.

11. In Ex. 9 the path of O intersects the line AB in A and B
and in no other points, and hence it passes through all four

of the points A, B, C, D.

12. Every line through one of the points A, B, C, D in Ex. 9

cuts the path of in one and only one additional point.

13. In Ex. 12 find the other point in which the path of is

cut by any given line through A.

14. In Ex. 9, assuming that as a point moving along a curve

approaches a fixed point the secant through the two points ap-

proaches the tangent to the curve at the fixed point, construct

the tangent to the path of O at the point A.

15. If A v A
2 , A s

are noncollinear points, a
lf
a
2 , at

noncon-

current lines, P
t
a point on av Pj-4

X
and a

2
intersect in P

,

P^A^ and a
s
in P

& , and Ps
A

i
and a

x
in P[, then, as P

1
and P[

move along av they trace two superposed projective ranges.

16. In Ex. 15 under what circumstances (if any) do the

lines P
X
AV P

2
A

2 , and Pg
4

a
form a triangle with its vertices

on the three given lines ?

17. What modifications of the data in Ex. 15 render it cer-

tain that in all positions the lines P
1
A V P2

A
2

, and PA form a

triangle with its vertices on the same three given lines ?



PAET II. APPLICATIONS

CHAPTER VIII

PROJECTIVELY GENERATED FIGURES •

75. Statement of the General Problem. Application of

the properties of prime forms will now be made to the

study of a problem which is connected with a somewhat

wide range of topics in geometry. This problem, to the

discussion of which the remainder of the book is devoted,

may be stated in these words:

To determine, the character of all geometric configurations

whose generating elements are determined oy corresponding

elements of two •projective one-dimensional prime forms.

The problem divides naturally into a number of cases

according as the two projective one-dimensional prime

forms are any one of the following -pairs

:

1. Two ranges, considered in §§ 84 and 85.

2. Two flat pencils, considered in §§ 86-89.

3. Two axial pencils, considered in §§ 90 and 95.

4. A range and a flat pencil, considered in § 96.

5. A range and an axial pencil, considered in § 97.

6. A flat pencil and an axial pencil, considered in § 98.

76. Locus of a Point. If a point moves in space subject

to a given law, the figure consisting of all the points with

which the moving point may coincide, and of no others,

is called the locus of the point.

79



80 PROJECTIVELY GENERATED FIGURES

77. Envelope of a Plane. If a plane moves in space

subject to a given law, the figure which is tangent to all

the planes with which the moving plane may coincide, and

to no others, is called the envelope of the plane.

78. Envelope of a Line. If a line moves in a plane sub-

ject to a given law, the figure which is tangent to all the

lines with which the moving line may coincide, and to no

others, is called the (plans') envelope of the line.

79. Generation of a Figure by a Line. If a line moves
in space subject to a given law, the figure consisting of all

the lines with which the moving line may coincide, and of

no others, is said to be generated by the moving line.

80. Order of a Figure. The greatest number of points

of a figure that lie on a line which is not entirely in the

figure is called the order of the figure.

Thus a circle may be met by a line in two, one, or no points.

Consequently the order of the circle is two. Similarly, the order of a

straight line is one. The order of a plane is also one, while that of

a sphere is two.

81. Class of a Figure in Space. The greatest number of

tangent planes of a figure in space which pass through a

line that does not have all the planes through it tangent

to the figure is called the class of the figure.

Thus a sphere may have tangent to it two, one, or no planes which

pass through a straight line, and hence the sphere is of class two.

82. Class of a Figure in a Plane. The greatest number
of tangent lines which can be drawn to a plane figure from

any point in its plane is called the class of the figure.

Thus, of the lines in a plane which pass through a given point

two, one, or none may be tangent to a given circle, and hence the

circle is of class two.
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83. Dual Elements. From the point of view of the Prin-

ciple of Duality the following are corresponding elements

:

1. In geometry of three dimensions, a point on a figure

and a plane tangent to a figure.

It can also be shown that a line on a figure is self-dual.

2. In geometry of the plane, a point on a figure and a line

tangent to a figure.

3. In geometry of the bundle, a line on afigure and a. plane

tangent to a figure.

Exercise 21. Preliminary Definitions

1. What is the envelope of a system of tangents to a given

circle ? "What is the dual of a circumscribed polygon ?

2. What is the order and what is the class of the projector

of a circle from a point not in its plane ?

The student may consult the chapters on higher plane curves in texts

on elementary analytic geometry, such as the one in this series, and deter-

mine the orders and the classes of the curves considered there.

3- In Ex. 2 what is the order and what is the class of any
plane section of the figure ?

4. Find the surface generated by a line so moving as to be

constantly parallel to and at a given distance from a given line,

and state the order and the class of this surface.

5. In Ex. 4 consider the various plane sections of the sur-

face, stating the order and the class of each.

6. Find the locus in space of a point which so moves as to

be constantly at a given distance from the nearest point of a

given line segment, stating the order and the class of the locus.

7. Find the order and the class of the plane sections of the

figure obtained in Ex. 6.

8. Find the envelope of a plane which so moves as to be

constantly at a given distance from the nearest point of a

given line segment, stating the order and the class of the locus.
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Theorem. Ranges with a Common Element

84. The envelope of the line which so moves as always to

contain corresponding points of two coplanar projective ranges

is of the second class, unless the ranges are superposed and

without a self-corresponding point, in which case the envelope

is the common base. If the ranges are perspective, the enve-

lope consists of two points, one of which is common to the

ranges. If the ranges are not perspective and not superposed,

the envelope is tangent to the base of each range at that point

of it which corresponds to the point common to the ranges

when this common point is regarded as belonging to the other

range.

Proof. The two projective ranges referred to in § 75

may or may not have one common element, and in this

theorem we consider two ranges having such an element.

In this case the ranges must evidently be coplanar.

The element determined by two corresponding points of

the ranges is a straight line, and hence in this case the

problem is that of determining the envelope of a line

which so moves as always to contain two corresponding

points of two coplanar projective ranges.

These ranges may be (1) superposed ; (2) not superposed

but perspective ; (3) neither superposed nor perspective.

1. Let the ranges be superposed.

Then all pairs of corresponding but not self-corresponding

points determine the common base of the ranges ; and the

lines through any self-corresponding point are infinitely

many. The only figure that has all these lines and no others

as tangents consists of the one or two self-corresponding

points or, if there is no self-corresponding point, consists

of the common base of the ranges.
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2. Let the ranges be not superposed but perspective.

Then all lines determined by distinct corresponding

points pass through the center of perspective, and every

line through the point common to the ranges joins that

point to its corresponding point, that is, to itself. Hence

the envelope consists of two points ; namely, the center of

perspective and the point common to the ranges.

3. Let the ranges be neither superposed nor perspective.

To the common point Xv or Y
2, there correspond in the

ranges two points X
2
and Yv Since the base p-^ of the first

range joins Y
2
to Yv the enve- p

lope is tangent to pt ; similarly,

it is tangent to p2.

Consider now V
1
and V2, two

corresponding points nearly co-

incident with X
x
and X

2
respec-

tively. The line v joining them

is nearly coincident withpv If,

now, V
1
approaches coincidence

with Xv v and F2
approach p%

and Xr But if a moving tan-

gent to a curve approaches a

fixed tangent as a limiting line, the intersection of these

two approaches the point of contact of the fixed tangent

as a limiting point. Hence in this case X2
is the point of

contact of p2
with the envelope. Similarly, Y

1
is the point

of contact of pv
Finally, the class of the envelope is two ; for two tan-

gents to the envelope, namely, px
and A

t
A2,

pass through

a point Av If through any point there should pass three

tangents to the envelope, would be a center of perspec-

tive for the ranges ; but the ranges are not perspective.
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Theorem, ranges with No common Element

85. The lines which join corresponding points of two pro-

jective ranges that have no common point are the intersections

of corresponding planes of two projective axial pencils which

have no common plane.

Proof. If two projective ranges have no common ele-

ment, their bases cannot meet, and therefore the ranges

cannot be coplanar.

Let A
l
B

l
C

l
• • and A2

B
2C2 • be projective ranges on

the bases p x
and p2

which are not coplanar.

Let av J3V yj, • • be the planes determined by the line p1

and the points Av B2 , C2 , • • • respectively, and let a
2 , /32, y2 , • • •

be the planes determined by the line p% and the points

Av Bv Cv • • • respectively. Then we have

axial pencil a^iYi • • •
7^ range A

2
B

2C2
• • •

x range A
X
B

X
C

X
- .

.

— axial pencil a^tf^

Also the line A
X
A

2
is the intersection of the planes a

x

and a
2

. Moreover, if the axial pencils had a common
plane, the ranges along their axes would both be in this

plane. But this is contrary to hypothesis.

Hence the proof is complete.

As a consequence of this theorem the discussion of the figure

which is generated by these two projective ranges may be deferred

until we consider the figure which is generated by projective axial

pencils that have no common plane (§ 95).
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Theorem. Coplanar Flat Pencils

86. The locus of the point which so moves as always to be

common to two corresponding lines of two coplanar projective

flat pencils is of the second order, unless the pencils are super-

posed and without a self-corresponding line, in which case the

locus is the common vertex. If the pencils are perspective, the

locus consists of two straight lines, one of which is common to

the pencils. If the pencils are not superposed, the locus con-

tains the base of each pencil and at each of these points is

tangent to the line of the corresponding pencil which corre-

sponds to the common line of the pencils when this common

line is regarded as belonging to the other pencil.

Proof. Two flat pencils may or may not have a common
base. In the former case the common base may be a plane

containing both pencils or a point which is the vertex of

both pencils. We shall now deal with the first of these

subcases, the second being discussed in § 87.

Essentially, then, the theorem involves the problem of

finding the locus of the intersection of two coplanar pro-

jective flat pencils. It is evident that these pencils may

be (1) superposed ; (2) not superposed but perspective

;

(3) neither superposed nor perspective.

1. Let the pencils be superposed.

In this case the flat pencils have in common not only

their planes but also their vertices. The points common to

the corresponding lines include in any case the common

vertex and also include all points of any self-corresponding

lines of the pencil. Hence in this case the locus is the one

or two self-corresponding lines of the pencils or, in case

there is no self-corresponding line, the common point of all

the lines of the pencil.
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2. Let the pencils be not superposed but perspective.

In this case the pencils have a self-corresponding line,

all the points of which are in the locus. In addition the

intersections of pairs of corresponding lines are in the

locus. But these intersections are on a straight line, and

accordingly the locus is a pair of straight lines.

3. Let the pencils be neither superposed nor perspective.

Since the common line is not self-corresponding, let it

be called x
1
and y2

. In the two pencils it has corresponding

to it the lines yx
and xv

The base J{ of the first pencil, being the intersection of

the lines yx
and y2 , is on the locus. Similarly, the base P2

of the second pencil is on the locus.

Consider now a line v
1
that is nearly coincident with xv

and the corresponding line «
2
that is nearly coincident with

xv The point Vol the locus determined by v
t
and v

2
is nearly

coincident with Pv If, now, the point V approaches J% along

the locus, the line v2 , or VE^, approaches xv But the limit-

ing position of a secant VJ% as V approaches j^ is the tan-

gent to the locus at Pv Hence the locus is tangent to the

line £
2
at i^. Similarly, it follows that the line y1

is tangent

to the locus at ij.
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Finally, the order of the locus is two; for any line of

the first pencil, as av meets the locus at 2J and at A, the

intersection of a^ and its corresponding line «
2

. Moreover,
if any line o cuts the locus in three points, the triads of

lines of the pencils which would intersect in these points

would be perspective, and so would the complete pencils.

But the pencils are not perspective. The theorem is,

therefore, completely proved.

Exercise 22. Ranges and Pencils

1. Two fixed lines AO
x
B and CO^D are each perpendicular

to OjOj, and a moving line cuts them in P
x
and P

2
so that the

ratio O^P^. O^P
2
is a constant. Find the envelope of the moving

line. Consider the case in which
1
P

1
and O^P

7
are equal.

Compare the ranges traced by P
x
and P2 .

2. Two fixed lines intersect at right angles at 0, and a

moving line cuts them at equal distances from 0. Find the

envelope of the moving line.

3. Examine Ex. 1, substituting the condition that
1
P

1
and

0J
3
i
maintain a constant difference.

4. Examine Ex. 2, substituting the condition that the dis-

tances from maintain a constant difference.

5. Examine Ex. 2, substituting the condition that one dis-

tance exceeds a given multiple of the other by a fixed amount.

6. Two lines revolve at the same angular velocity in opposite

senses about the fixed points
1
and

2
respectively. Initially

they make angles of 90° and 45° respectively with the line Oft^.

Find the locus of their intersection.

7. Consider Ex. 6, substituting the condition that initially

the lines coincide.

8. Examine Exs. 6 and 7 on the assumption that the lines

revolve in the same sense.
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Theorem. Flat Pencils with a Common vertex

87. The envelope of the plane, which so moves as always to

contain corresponding lines of two projective flat pencils that

are not coplanar but have a common vertex, is of the second

class. If the flat pencils are perspective, the envelope consists

of two straight lines, one of which is common to the pencils.

If the pencils are not perspective, the envelope is a surface

tangent to the plane of each flat pencil along the line which

corresponds to the common line of the pencil when this common

line is regarded as belonging to the other flat pencil. All the

planes and the surface generated pass through the common

vertex of the pencil.

Proof. Since each pair of corresponding lines of the

given flat pencils determines both a point and a plane,

we are concerned with the problem of finding the aggre-

gate of elements, either points or planes, determined by

corresponding lines of two projective flat pencils which

have a common vertex. The first of these cases is trivial.

It may here be assumed that the flat pencils are not coplanar, as

the case of coplanar pencils has just been discussed.

From the point of view of loci the points determined by

corresponding lines either will be the common vertex alone

or, if the common line happens to be self-corresponding,

will be this common line itself.
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On the other hand, any two corresponding lines deter-

mine a plane which passes through the common vertex.

If we cut the whole configuration by a plane that does not

pass through the common vertex, we obtain two pro-

jective coplanar ranges and the lines joining corresponding

points. This section of the envelope is then one of the

figures described in § 84. Consequently the envelope

sought is the projector, from the common base of the two

flat pencils, of one of these figures. If the flat pencils are

perspective, this projector consists of two straight lines

through the common vertex. If the flat pencils are not

perspective, the projector is a conic surface and is tangent

to the plane of each flat pencil. This is evident from the

fact that the plane of either pencil is determined by the

common line of the pencils and x, that one of its own lines

which corresponds to the common line. The plane of this

pencil has the line x in common with the envelope.

Through the common line of the pencils there pass the

two planes of the pencils, and these are tangent to the

envelope. If through any line there should pass more than

two tangent planes, the given pencils would be perspective.

88. Flat Pencils having no Common Base. The discus-

sion of the case of projective flat pencils that have a com-

mon line but are not coplanar and do not have a common

vertex can be given quickly. No intersection of corre-

sponding lines can occur except on the common line. The

common line may be self-corresponding, in which case any

point on it is common to corresponding lines, and any

plane through it contains corresponding lines. If the

common line is not self-corresponding, there is in each

pencil a line corresponding to it. With these lines it deter-

mines two points, the vertices of the pencils, and two planes,

the planes of the pencils.
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89. Projective Flat Pencils having no Common Element.

Figures generated by means of projective flat pencils hav-

ing no common line are so simple as not to demand special

study. They will be noticed in passing, but no formal

theorem regarding them need be stated.

Since pencils which lie in the same plane or in differ-

ent planes that intersect in a line of the pencils have a

common element, it follows that the pencils under consider-

ation lie in planes whose intersection does not pass through

the vertex of either pencil. Upon this line the pencils

determine ranges which may be either identical or distinct.

If the ranges are identical, their common base is the

locus of the intersections of corresponding lines of the pen-

cils. Likewise each pair of corresponding lines determines

a plane through the line joining the bases of the flat pencils

;

and the envelope of these planes is this line. Hence the

figure determined is either the line determined by the ver-

tices of the pencils or the line determined by the planes

of the pencils, according to the point of view.

If the superposed ranges mentioned above are not iden-

tical, the only pairs of corresponding lines of the flat pen-

cils which determine elements are those which meet in the

self-corresponding points of the superposed ranges. These

determine two, one, or no points on the line common to the

planes of the pencils, or two, one, or no planes through

the line joining the vertices. Hence, from the point of view

of loci, the figure generated by means of the projective flat

pencils consists of two, one, or no points; and from the

point of view of envelopes, the figure consists of two, one,

or no planes. Though neither of the configurations obtained

has any special interest for us, it is clear that they conform

in a general way to the type of figures which we obtain

in the other cases.



PLAT AND AXIAL PENCILS 91

Theorem. Axial Pencils with a common Plane

90. The surface generated by the line which so moves as

always to be contained in corresponding planes of two axial

pencils that have a common plane is of the second order

unless the axial pencils are superposed and are without self-

corresponding planes, in which ease the surface degenerates

into the common axis of the pencils. If the axial pencils are

perspective, the surface consists of two planes, one of which

is common to the pencils. If the pencils are neither perspective

nor superposed, the surface contains the axis of each pencil

and along each of these axes is tangent to the plane which

corresponds to the common plane of the pencil when this com-

mon plane is regarded as belonging to the other pencil. The

generating line continually passes through the intersections of

the axes of the pencils.

Proof. Two projective axial pencils may have or may
not have a common element. In this theorem we con-

sider only the former case. Evidently the axes of the two
pencils are coplanar. Then the pencils may be (1) super-

posed ; (2) not superposed but perspective ; (3) neither

superposed nor perspective.

1. Let the axial pencils be superposed.

Then all pairs of corresponding planes intersect in the

axis, but any line in a self-corresponding plane may be

regarded as common to two coincident corresponding

planes. The surface generated by the lines common to

corresponding planes consists, therefore, of one or two

self-corresponding planes if there are such planes or, if

there are no such planes, this surface degenerates into

a line, the common axis of the pencil. This last case is

of minor importance only.
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2. Let the axial pencils he not superposed but perspective.

The axes of the pencils intersect in a point which

lies in every plane of both pencils. Then the line deter-

mined by any pair of corresponding planes passes through

this point. Moreover, if a plane is passed so as not to con-

tain this point, it cuts the axial pencils hi coplanar per-

spective flat pencils, and the locus of the intersections of

corresponding lines of these pencils is two straight lines,

one of which is the line through the bases of the flat pencils

(§ 86). Consequently the surface generated by the inter-

sections of corresponding planes of the axial pencils is the

projector of the two straight lines from the point ; that

is, the surface is two planes, one of which is the common
plane of the axial pencil.

3. Let the axialpencils he neither superposed norperspective.

As in the previous case, the axes px
and p2

intersect in

a point through which passes every line determined by

corresponding planes of the axial pencils. A plane which

does not pass through cuts the axial pencils in coplanar

projective but not perspective flat pencils whose bases are

P
1
and P

2, the locus of whose intersections is described by

§ 86. The surface generated by the lines common to cor-

responding planes of the axial pencils is the projector from

the point of the locus just mentioned.
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91. Regulus. Any three straight lines, no two of which

are coplanar, are met by infinitely many straight lines

which, taken as an aggregate, are said to form a regulus.

The three given lines are called the directrices of the

regulus, and the lines which meet the directrices are called

the generators of the regulus.

Regulus Quadric Surface

Skew Quadric Ruled Surfaces

92. Quadric Surface. The aggregate of the points of the

lines of a regulus constitute a surface called a quadric

surface, and the generators of the regulus are also called

the generators of this surface.

There are quadric surfaces which are not constituted in this way.

93. Ruled Surface. A surface generated by the move-

ment of a straight line is called a ruled surface.

94. Skew Ruled Surface. A ruled surface in which no

two consecutive generators intersect is called a skew ruled

surface.

For a full discussion of skew ruled surfaces see § 187.
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Theorem. Axial Pencils with No Common Element

95. The lines of intersection of two projective axial pencils

which have no common element generate a skew ruled surface

of the second order in which lie the bases of the pencil. Every

section of this surface by a plane through a generating line

is a pair of straight lines. All other plane sections are curves

of the second order.

Proof. The proof may be divided into five parts:

1. The ruled surface is skew.

Each generator intersects each axis. If two generators

intersect, they determine a plane which contains two points

and therefore all points of each axis. This plane must

then be a common element of the pencils, which is con-

trary to hypothesis. Hence no two generators intersect,

and so the surface is skew.

2. The bases of the two axial pencils lie in the surface.

Through any point A of the base of either axial pencil

there pass all the planes of that pencil and one plane a

of the other. Hence A is on the line determined by the

plane a and its corresponding plane. Hence the surface

contains every point of the base of either pencil.

3. Every section of the surface by a plane which does not

pass through a generating line is a curve of the second order.

Any plane ir which does not contain a generating line

cuts the axial pencils in two projective flat pencils. If

these flat pencils were perspective, their common line would
be self-corresponding and the plane w would cut two planes

of the axial pencils in their common line, that is, in a gen-

erating line ; and this is contrary to hypothesis. Then

(§ 86) the section is a curve of the second order.
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4. Every section of the surface by a plane through a .gen-

erating line is a pair of straight lines, one of which is the

generating line and the other of which meets every one of the

generating lines mentioned above.

Let the surface be generated by the projective axial

pencils a
1^8171

• • • and a
2fi2y2

Any plane that is an element of one of these axial

pencils intersects the surface in two straight lines, of

which one line is the base of its pencil, and the other

line is the line of intersection of this plane with the plane

that corresponds to it in the other pencil.

Now let a plane ir that does not belong to either axial

pencil be passed through a generating line a which is deter-

mined by the planes a
1
and a

2 of the axial pencils.

This plane cuts the axial pencils in projective flat pencils

ab
x
c
x

• • • and ab2c2 • • •. It cuts the generating lines and

hence the surface generated in the locus determined by

these flat pencils. The latter have a self-corresponding

line a, and accordingly they are perspective.

Consequently the locus determined by these flat pencils

consists of two lines ; namely, a and the line in which lie

the points of intersection of the lines bv b
2 ; cv c

2 ; • • •.

The line containing the points of intersection of the

pairs of lines bv b
2 ; cv c

2 ; • • • intersects every one of the

generating lines determined by the axial pencils. For if

we consider the line determined by the corresponding

planes /3V /32, we find that it passes through the intersec-

tion of the lines bv b
2

. Similarly, it may be shown that

it meets the line determined by any other pair of corre-

sponding planes except av a
2

. The line and a, the inter-

section of av a
2 , are in the same plane ir, and hence the

statement is established.
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5. Tfie surface itself is of the second order.

Let any line p which is not a generating line intersect

the surface in a point P. Pass a plane ir through the line p.

The section of the surface is a curve of the second order,

and consequently the line p cannot meet it in more than

two points. Furthermore, it cannot meet the surface in

points not in this curve. ' Hence p cannot meet the sur-

face in more than two points. That many lines actually

meet the surface in two points follows from Case 4. Hence

the surface is of the second order.

96. A Range and a Flat Pencil. If a range and a flat

pencil are projective, they may or may not be coplanar.

If the range and pencil are coplanar, each point of the

range taken with the corresponding line of the flat pencil

determines the plane containing both the range and the flat

pencil; and this plane is the figure sought.

If the range and pencil are not coplanar, let the range

be ^j-Bj Cj • • • on the base pv and the flat pencil a
1
b
1
c
1

•

on the base Pv The plane determined by A
1
and a

x
is the

same as the plane determined by P
l
A

1
and av Hence this

case yields the same result as that of two noncoplanar

projective flat pencils which have a common base ij (§ 87).

97. A Range and an Axial Pencil. The case of a range

and an axial pencil may also be considered briefly.

A point and a plane have not been considered as deter-

mining a third element. If, however, the point is in the

plane, they may be said to determine either the point or

the plane ; and since all, two, one, or none of the points

of a range might lie on the corresponding planes of an

axial pencil projective with the range, the configuration

sought in the problem might be regarded as consisting of

points or planes as indicated. The case is not important.
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98. A Flat Pencil and an Axial Pencil. The case of a

flat pencil and an axial pencil demands but little attention.

There are two subcases, a somewhat trivial one in which

the base of the flat pencil is on the base of the axial pencil,

and another subcase which has been dealt with from a

different point of view.

A little consideration shows that the first subcase may
be regarded as yielding all, two, one, or none of the

elements of the flat pencil, for these elements contain all

points common to pairs of corresponding elements of the

flat pencil and the axial pencil.

In the second subcase the lines of the flat pencil and

the corresponding planes of the axial pencil determine a

locus of points. But the plane of the flat pencil cuts the

axial pencil in a second flat pencil projective with the first

;

and the locus in question is also determined by the inter-

sections of corresponding lines of this second flat pencil

and the given flat pencil. Hence the locus is the same as

that described in § 86.

99. Summary of Results. From the discussion in this

chapter there have come to notice the following figures,

exclusive of certain trivial ones:

1. Certain plane curves of the second class.

2. Certain plane curves of the second order.

3. Certain conical surfaces of the second class.

4. Certain conical surfaces of the second order.

5. Certain ruled surfaces of the second order in space.

The study of these curves and surfaces will be under-

taken with a view to exhibiting the symmetry among them

and to establishing their more striking properties, as well

as with a view to showing the power of methods which

are based upon the principles that have been set forth.
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Exercise 23. Review

1. If two points of a circle are each joined to four other

points of the circle, the anharmonic ratios of the two pencils so

formed are equal.

2. If a point moving on a circle is constantly joined to two

fixed points on the circle, the flat pencils generated by the two

joining lines are projective.

3. If a variable tangent to a circle meets two fixed tangents,

the ranges traced by the intersections are projective.

4. A line so moves as to cut the sides BC, CD of a square

ABCD in points X, Y such that the angle XAY is constant.

Eind the nature of the envelope of the moving line.

5. A line so moves as always to be at a constant distance

from a fixed point. Eind the nature of the envelope of the line.

6. A wire fence consists of a number of horizontal strands of

wire at equal intervals, crossed by a number of vertical strands

also at equal intervals between each pair of posts. One of two

posts is pushed into an oblique position. What sort of surface

passes through all the wires between the two posts ?

7. Two lighthouses are in a north-and-south line. The lamps

revolve at the same uniform rate in the same angular sense,

and each lamp throws two shafts of light in opposite directions.

If the lamps are so adjusted that when one light shines north

and south the other shines northeast and southwest, find the

nature of the locus of the spot illuminated simultaneously by

both lights. Has this locus any infinitely distant points ?

8. Consider Ex. 7 when the lamps are so adjusted that

periodically the shafts of light coincide.

9. Consider Exs. 7 and 8 when the two lamps revolve in

opposite senses.

10. In Ex. 7, if one light rotates twice as quickly as the

other, do the rays generate projective flat pencils?
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11. A number of lamps, each of which throws two shafts of

light in opposite directions and rotates at a uniform rate, are

to be placed so that their rays shall all continually converge

upon an object which moves along a circle. If all the lamps

have the same angular rate, specify a possible arrangement.

12. In Ex. 11 specify an arrangement and adjustment in

which all the lamps do not have the same angular rate.

13. Each of the circles cv c
2 ,

• •, en is tangent to the circle

next preceding and to the one next following but to no others

of the set, and Pv Pi
,---,Pn are variable points on the respec-

tive circles such that each line PicP/t+i contains the point of

contact of the circles ck , ck+1 . If
1
is any point on cv and n

is any point on cn , find the nature of the locus of the intersec-

tion of OjPj and OnPn , the figure being plane.

14. Consider Ex. 13 with the omission of the restriction

that no circle shall be 'tangent to any other except the one

next preceding and the one next following.

15.. Each of the circles ev c
2 ,

• • •, c„ is tangent to the circle

next preceding and to the one next following but to no others

of the set, and tv t
2 ,

• • -, tn are variable tangents to the respec-

tive circles such that the point tk tk+ x is on the common tangent

of C/e, ck+1 . If o is any fixed tangent to cv and on is any fixed

tangent to c„, find the nature of the envelope of the line join-

ing the intersection of ov t
x
and that of on , tn .

16. Each of two circles in one plane is divided into ten equal

arcs. Eor each circle the tangent at one point of division and

the secants through that point and the other points of division

are drawn. If these two sets of lines are produced indefinitely,

their 100 points of intersection lie in sets of ten upon 10 curves

of the second order.

17. At the same moment two trains leave a junction on

straight diverging lines and travel at uniform rates. If two

passengers, one on the rear platform of each train, watch each

other, find the envelope of their line of sight.
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18. Solve Ex. 17 with the modification that the trains leave

nearly but not quite at the same time.

19. Each of the right circular cones Cv C2,
• • , Cn is tangent

along a straight line to the one following it. The variable lines

PvPv •
" '>Pn on the respective cones are such that each plane

PkPk+i contains the line of contact of the cones Ck , C^+1 . If

ov on are any fixed lines lying on C
1}
Cn respectively, find the sur-

face generated by the intersection of the planes o
lp 1

, onpH .

20. As a train is running along a straight track at a uniform

rate, an automobile moves, also at a uniform rate, down a hill

along a straight road which passes beneath the railroad. Find

the figure generated by the line joining two fixed points, one

on the train and the other on the automobile.

21. Initially a plane cuts two fixed intersecting planes per-

pendicularly in the lines o
1
and o

2
. As it moves it cuts these

planes in the lines pvpv which cut o
1
arid o

2
at their intersection

and always make equal angles with them. Find its envelope.

Examine the flat pencils traced bypj and_p
2

.

22. If ABCD is a regular tetrahedron, and a line so 'moves

as always to intercept on AB and CD equal distances from

A and C, find the surface generated by the line.

23. Consider Ex. 22 if the line continually divides AB and
CD proportionally.

24. A sloping telephone wire and an electric-light pole cast

upon the side of a house shadows which intersect. If the wind
causes the source of light to swing in a straight line, find the

path traced by the intersection of the shadows.

25. Consider Ex. 24 if the source of light swings in a circle

which intersects the wire and the pole.

26. Two fixed lines o
1
and o

3
intersect and pierce a plane m

at the points
1
and Or Two planes 7r

a
and 7r

2
revolve about o

x

and o
2
respectively so that their intersections with a> describe

equal angles in the same time. Find the nature of the envelope

of the intersections of ir
l
and 7r

2
.



CHAPTER IX

FIGUEES OF THE SECOND OEDEE

100. Purpose of. the Discussion. The results obtained in

the preceding chapter may be given a more general as well

as a more compact and symmetric form. It will be noted

that these results relate to three types of figures, namely,

figures in a plane ; figures in a bundle, or conical figures

;

and figures in space. These three types of figures will be

considered separately.

101. Plane Figures. It has already been shown that the

figure obtained as the envelope of the line joining corre-

sponding points of coplanar projective ranges is a curve

of the second class, and the one obtained as the locus of

the intersections of corresponding lines of projective flat

pencils is a curve of the second order. Whether all curves

of the second class and all curves of the second order may
be generated in this way, whether the ranges and flat pen-

cils which give rise to the curves in question have special

situations relative to those curves, and what relation, if any,

exists between curves of the second class and those of the

second order, are questions whose answers will exhibit clearly

the importance and generality of the results obtained. These

questions will now be discussed, but for the sake of brevity

the treatment will be limited, the parts of the argument

which are omitted being indicated. The student should

not lose sight of the omission, and he should later seek

to complete the argument which answers the questions.

101
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102. Generalization of Results. By a line of reasoning

which will not be given here the following can be proved

:

Every curve of the second class is the- envelope of the lines

joining corresponding points of two coplanar projective ranges

whose bases are tangent to the curve.

The application of the Principle of Duality for the plane

to this result immediately leads to the further result

:

Every curve of the second order is the locus of the inter-

sections of corresponding lines of two coplanar projective fiat

pencils whose bases are on the curve.

Accordingly it is clear that the developments in the

preceding chapter relate to all curves of the second class

and to all of the second order.

Consider the second question suggested in § 101. We
have already seen that the bases of the projective ranges

by means of which the curves of the second class were

obtained are tangent to these curves at certain of their

points. It will be shown (§ 106) that any two tangents

to a curve of the second class may be taken as the bases

of projective ranges such that the given curve is the

envelope of the lines joining corresponding points of these

ranges. Correspondingly, it may be shown that any two

points on a curve of the second order may be taken as

bases of projective flat pencils such that the given curve

is the locus of the intersections of corresponding lines of

these pencils ; and because to most students the idea of the

locus of points is more familiar than that of an envelope,

the latter proposition will be established first.

The proofs of these statements regarding curves of the

second order depend upon an auxiliary proposition which

will now be stated and proved. This theorem will later

(§ 120) be generalized.
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Theorem. Auxiliary Proposition

103. If P^, ijj, P^, P, are four points on a curve of the sec-

ond order which is the locus of the intersections of correspond-

ing lines of the two coplanar projective flat pencils whose bases

are P^ and P
& , then the pairs of lines i^, i^ij? ; P,P

Z , PbP, ;

P^PV P,P
X
determine collinear points.

Proof. By hypothesis the points on the curve in ques-

tion determine projective flat pencils whose bases are P^

and P
&

. These flat pencils may be denoted by P
1
(P>B

i
P

lBJ
and P^P^Ps).
Cut these pencils by the lines P^P^ and jgij} respectively,

and let the resulting ranges be Q^P^Q^ and I^P^B^^.

These ranges are not only projective but also have a

self-corresponding element P^. Hence they are perspective,

and the lines PfQ2 (or iji^), P
l
B

i
(or i^), and Q6

B
6
pass

through 0, the center of perspective.

Therefore the points Q6 , B6
are collinear with the inter-

section of P^P
2 and P±P

5
. But Q6

is the intersection of P
l
P
i

and P^, and B
g

is the intersection of P
l
P
i
and P

b
P^.

Hence the proposition is proved.

By means of the above theorem the desired proposition, known
as Steiner's theorem, may now be proved.
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Theorem. Steiner's Theorem

104. Every curve of the second order is the locus of the

intersections of coplanar projective flat pencils whose bases

are any two points of the curve.

Proof. Let ij, P^ be the bases of the projective flat

pencils which generate the curve, and let J^, P±, P^ be any

three fixed points on the curve.

Let ijj be any point moving along the curve and occu-

pying successive positions, as i^, P
z
', • • •.

It will be shown that the flat pencils generated by the

moving lines i^ig and P^ are projective.

For each position of P^ the pairs of lines 1^, P^;
J^P^, P

5
P
& ; TjjiJ, ijjij determine as collinear the fixed point

and the points Q6, B6 (§ 103).

As ijj moves, Q6
and R

6
move along the fixed lines P_P$

and P-Pq and trace ranges on them.

Then flat pencil P^P^ • • -)^ range P
a
P^ . . .(on P

5
P,~)

= range Q6 Q^ ... (on P^)
= flat pencil 3(J># . . .).

,
Accordingly the curve is the locus of the intersections

of corresponding lines of the projective flat pencils whose
bases are i£ and P

A , any two points of the curve.
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Theorem. Auxiliary Proposition

105. If tv t
B , tv t

6
are four tangents to a curve of the

second class which is the envelope of the lines joining cor-

responding points of two coplanar projective ranges whose
bases are t

x
and t

& , then the pairs of points t
x
tv t^ ; t

2
t
s , t

&
t
6 ;

t
s
tv t

6
t
t
determine concurrent lines.

This theorem is the dual of the theorem of § 103 and leads to the
dual of Steiner's theorem. It will later (§ 121) be generalized into

a highly important proposition. The proof is left for the student.

Theorem. Dual of Steiner's Theorem

106. Every curve of the second class is the envelope of the

lines joining corresponding points of the coplanar projective

ranges whose bases are any two tangents to the curve.

It is particularly important that by means of the Principle of

Duality, or otherwise, the student should follow out in detail the
proof of this proposition, as well as the proof of the proposition which
immediately precedes it (§ 105). There is not much difficulty in

obtaining the steps of the proof as duals of the corresponding steps

of the proof in § 104, but the figure and the verification of the various

steps of the argument in connection with this figure require close

attention on the part of the student.

107. Relations between Curves of the Second Order and

Curves of the Second Class. The two sorts of plane curves

which have been obtained can now be shown to be iden-

tical. In other words, it can be shown that every curve

of the second order is of the second class, and conversely.

Only one of these proofs will be given, since the other can

be derived from it by means of the Principle of Duality.

In this proof use will be made of a limiting case of the prop-

osition in §103, in which two of the four arbitrarily chosen

points on the curve have moved up to coincidence with

the bases of the pencils, and this will first be established.
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Theorem. Inscribed Quadrangle

108. If I£, ijj are two points on a curve of the second

order which is generated by two coplanar projective flat pen-

cils whose bases are P^ and ij?, the tangents at I[ and J%, the

tangents at J| and P~, and the pairs of opposite sides I^I£,

ij(ij|; ijjij?, ijtij of the inscribed quadrangle JJi|ij!iJ inter-

sect in collinear points.

Proof. In the figure of § 103 let Jj| and ^ move along

the curve so as to approach ij and P
h
as limiting points.

Then P^l^ and P^ approach the tangents to the curve at

P
x
and P

b
respectively, and O approaches the intersection of

the tangents at P\ and P
b
as a limiting point.

The hexagon PP^P^P^ approaches the quadrangle

iJJjj2j(ij}, together with the tangents at 1\ and P
b

.

During the motion of the points and lines the intersec-

tions of the pairs of lines JJJJ, P^; P^, P
b
P,; P^, P

6
P
X

remain collinear, and the limiting positions which they

approach are collinear.

Since Pv Pb are not special points on the curve (§ 104),

it follows that the tangents at Pa , P6 meet on the same line.

Then the theorem of § 103 takes the form of this theorem.

This proposition will be used as auxiliary to the proof of the

identity of curves of the second order with those of the second class.
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Exercise 24. Steiner's Theorem and Related Theorems

1. In the theorem of § 103, if Pv P2 , P
4

, P
6
are fixed points,

and if P. and P. so move that the intersection R. of P„P„, P.P.

moves on a fixed line through the intersection of PjP
2 , P4

P
5 ,

then the intersection Q6
of P

s
P

t , P
6
P

X
moves on the same line,

and Q6 , Rf
trace on this line two superposed projective ranges.

2. In Ex. 1 find the self-corresponding points of the super-

posed projective ranges.

3. Prove the proposition which is related to the theorem of

§ 108 as Ex. 1 is related to the theorem of § 103.

4. Solve the problem which is related to Ex. 3 as Ex. 2 is

related to Ex. 1. <

5. If t
g , t

e
are two tangents to a curve of the second class

which is the envelope of the lines joining corresponding

points of two coplanar projective ranges whose bases are tv tp
the points of contact of tv t

5
, the points of contact of t

a
, t

& ,

and the pairs of opposite vertices t^, ^6
; t

a
t
s

, t^ of the

circumscribed quadrilateral tfjkj^ determine concurrent lines.

6. A variable hexagon P
1
P

2
P

8
P

4
P

5
P

6
inscribed in a curve

of the second order so moves that P
X
P

2 , Pt
P

s ; P2
P

S , pb
p

6

always intersect in fixed points O and R respectively. Eind

the locus of the intersection of P
s
P

t , Pt
Py

7- Prove the duals of Exs. 1, 3, and 6 for the plane.

8. Solve the dual of-Ex. 2 for the plane.

9. By an argument independent of that given in this chap-

ter prove Steiner's theorem for the special case of the circle.

10. By an argument independent of that referred to in § 106

prove the theorem stated there for the special case of the circle.

11. P , P2, P8 , P4 , P5
are five fixed coplanar points no three

of which are in a straight line ; find the locus of a point

P which so moves that the intersections of the pairs of lines

p
i
p

t>
P

t
P

i '
P

2
P

a>
P

b
P

>
P

a
Pv PPi

are constantly collinear.
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Theorem. Identity of Curves

109. Every plane curve of the second order is of the

second class, and conversely.

Proof. When a curve of the second order is given, the

pencils of lines drawn from two of its points to all of

its points are projective. From any three pairs of corre-

sponding lines all additional pairs can be obtained by the

method of § 39. In particular, since the tangent at either

of the two points corresponds to the line joining the two

points, it can be drawn by the same method; and there-

fore, when the whole curve is given, the tangents at as

many points as may be desired can be drawn.

Let a curve of the second order be given, and select

on it any three points J^, i£, P^. Draw JJ2£, j£jjj, iji^ and

the tangents MI[N, NP^L, and LP
ZM. The projectivity is

determined by the triads %M, i^, JJijj and P^, P^L, P^.

Consider the curve as the locus of a moving point P.

It will be shown that as P moves along the curve the

tangent at P so moves as to meet the tangents at P^ and P
%

in corresponding points X and 1" of two projective ranges.
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Let 0, K be the intersections of the sides JJJ£, P^P and
J^P, P^ of the quadrangle -Pi^-Tjj inscribed in the given

curve. For this inscribed quadrangle, M is the intersection

of tangents at opposite vertices and 0, K are intersections

of pairs of opposite sides, and hence it follows from § 108

that the points M, 0, K are collinear. By means of a like

reasoning the points 0, K, Y are proven collinear. Hence
the points M, 0, Y are collinear.

Similarly, the points L, 0, X may be proved collinear.

Since Py, ijj, P^ are fixed points, the tangents at these

points are also fixed. As the point P moves, so do the

lines P
X
P, P^P, P

dP, XY, P
z O, LO, MO, and the points

0, X, Y. The lines LO, MO generate perspective flat pen-

cils with bases at L and M, and the points X and Y trace

on the lines MP^N and LI^N ranges perspective with these

pencils and hence projective with each other. Therefore,

as P moves, the tangent at P so moves as always to meet

the tangents at JJ and i^ in corresponding points of two

projective ranges.

The given curve is the envelope of the tangent at P
and, by § 104, is of the second class.

The converse of this proposition being also its dual for

the plane, its proof is also the dual of the above argu-

ment. The theorem is therefore established.

110. Conic. A plane curve which is of the second order

and second class can be shown to be a curve ordinarily

called a conic section or a conic.

The proof will not be given, but, independently of its other uses,

the word conic will be employed to designate any curve of the

second order. The use "of properties of conies not deduced from the

definition here given will be avoided.

A conic section, or conic, is a curve of the second order

and second class.
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Theorem. Order and Class of Surfaces (in the Bundle)

111. Every surface (in the bundle) that is of the second

order is of the second class, and conversely.

Proof. A comparison of the problems whose discussion

led to §§84 and 90 shows that these theorems deal with

figures and state results that, for threefold space, are dual.

Similarly, the theorems of §§86 and 87 are dual. It was

indicated, but not proved, that § 84 is true for all plane

curves of the second class and that § 87 is true for all

plane curves of the second order. Correspondingly, §§90
and 87 can be shown to apply to all surfaces (in the

bundle) that are of the second class and all surfaces (in

the bundle) that are of the second order. Moreover, the iden-

tity of the curves of the second order with curves of the

second class having been established in § 109, the identity of

these surfaces of the second order with those of the second

plass may be established by reasoning dual to that of

§ 109. This involves the derivation of an auxiliary theorem

dual for space to that of § 103 and one that is dual to the

limiting case of the latter as worked out in § 108. The

student will find that the principal difficulty is connected

with the drawing of appropriate figures for these cases.

In this way the classes of figures numbered 3 and 4 in § 99 are

shown to be identical.

112. Quadric. Since a surface (in the bundle) of the

second order and second class may be thought of as gener-

ated by the motion of a line that always passes through

a fixed point, it is said to be a conic surface or a cone

;

and on account of its order and class it is called a

quadric conic surface.

A quadric conic surface or quadric cone is a surface (in

the bundle) of the second order and second class.
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Theorem. Skew Ruled Surfaces

113. Every ruled surface (not in the plane Or in the bundle)

of the second order is of the second class, and conversely.

Proof. In §§85 and 95 certain ruled surfaces of the

second order that exist in threefold space but not in the

plane or in the bundle were found to be generated by means

of both projective ranges and projective axial pencils.

It can further be shown that all ruled surfaces of
.
the

second order can be so generated. Moreover, a complete

discussion of these surfaces from the point of view of

both methods of generation would have led to results

similar to those obtained for the conies and for the quadric

cones. Among other things it would have appeared that

the planes which pass through a point P not on, the sur-

face, and are tangent to the surface, would generate a

quadric cone, and that of these planes not more than two,

but in some cases two, would pass through a line that

contains P. Hence these surfaces are of the second 'class,

The converse may also be proved.

The discussion indicates that the class of figures numbered 5 in

§ 99 is self-dual in threefold space.

114. Summary. We have now shown that the config-

urations whose generating elements are determined by

corresponding elements of two projective one-dimensional

prime forms are as follows:

1. All plane curves of the second order and second class

(conies').

2. All conic surfaces of the second order and second class

(quadric cones).

3. All ruled surfaces of the second order and second class

not in the plane or in the bundle.
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Exercise 25. Review

1. State and prove the dual for space of § 103.

2. State and prove the dual for the bundle of Ex. 1.

3. Compare the dual for space of the theorem in § 105

with the result of Ex. 2.

4. Give the dual for the plane of the statement and proof

of Ex. 11, page 107.

5. Give the dual for space of the statement and proof

of the theorem in § 108.

6. Compare the space dual of the result of Ex. 5, page 107,

with the dual for the bundle of the result of Ex. 5, above.

7. Derive the dual for space of Ex. 1, page 107.

8. Establish three projectivities between flat pencils which

shall lead to the generation of conies having respectively two,

one, and no points of intersection with any given straight line.

In this connection consider § 58.

9. Consider Ex. 8 for the case in which the given straight

line is the line at infinity of a given plane.

The student will observe that the solution of this problem establishes

the existence of conies with two, one, and no points at infinity.

10. Establish three projectivities between ranges which

shall lead to the development of conies having respectively

two, one, and no tangents whose points of contact are on

any straight line.

11. Consider Ex. 10 for the case in which the given straight

line is the line at infinity of a given plane.

12. Prove the dual for space of Ex. 6 on page 107.

13. Solve the dual for the plane of Ex. 8.

14. Consider' Ex. 13 for the case in which the given point

is at infinity in a given direction.

15. Solve the dual for space of Ex. 8.



REVIEW EXERCISES 113

16. Five concurrent lines, no three of which are in any one

plane, all lie on one conic surface of the second order.

17. Prove the proposition regarding five parallel lines which
corresponds to Ex. 16.

18. Establish three projeqtivities between axial pencils

which shall lead to the generation of conic surfaces having

their vertices at infinity and having as right sections curves

with two, one, and no points at infinity respectively.

19. Establish between two given ranges which are not in

the same plane a projectivity such that if the surface gener-

ated is cut by any given plane in the finite part of space, the

section shall be two straight lines.

20. In a bundle ttv 7r
2 , 7r

s , 7r
4 , 7r

5
are five fixed planes, no

three of which are coaxial. Eind the envelope of a plane ir

which moves so that the planes determined by the intersec-

tions of 7r
x
, 7r

2
and 7r

4
, 7r

6 , of 7r
2 , 7r

a
and 7r

6
, 7r, and of 7r

a , 7r
4

and 7r, 77-j are constantly coaxial.

21. Consider Ex. 19 for the case in which the given plane

is at infinity.

22. Given a plane and two projective axial pencils which

have no common element, establish between other pencils a

projectivity which shall lead to the generation of a surface

that shall be the projector from a given center of the intersec-

tion of the given plane and the surface generated by the given

axial pencils.

23. Derive the dual of Ex. 22 for space.

24. Given in a plane three nonconcurrent bases pv pi} pz

passing through the points Av A % , A g
respectively, specify three

projectivities which connect ranges on the bases p 1 ,p2 ; P^Pi}

PqP-l respectively, and which are such that the three conies

that they determine shall coincide and also be tangent to the

three lines p\, pv pa
at Av A^, A

s
respectively.

25. Examine Ex. 24 for the case in which the three points

A
lt
A

2
, A a

are collinear.
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26. In Ex.24 select such lines pv p2 , ps
and such points'

Av A 2 , Az
that the conic generated shall be a circle.

27. Given in a bundle three. non-coaxial planes trv 7r
2 , ir

3

passing through the lines av a
2 , «s

respectively, specify three

projectivities which connect flat pencils in the planes 7r
1(

7r
2 ;

7r
2 , 7r

8 ; 7r
8 , 7r

t
respectively, and which are such that the three

conic surfaces they determine shall coincide and shall be

tangent to the planes ttv 7r
2 , 7r

8
along the lines av a

2
, «

8
.

28. Solve the dual of Ex. 27 for the bundle.

29. Consider Ex. 19 for the case in which the section by the

plane at infinity is to be two straight lines.

30. Establish such a projectivity between two given axial

pencils, not in the same bundle, that if the surface generated

is cut by any given plane in the finite part of space, the section

shall be circular.

31. Find two axial pencils, not in the same bundle, between

which such a projectivity may be established that the. corre-

sponding surface generated shall be cut by a given plane in a

given circle of that plane.

32. Given two projective axial pencils, not in a bundle, pass

a plane which shall cut the surface generated by them in two

straight lines.

33. Given three bases pv p2 , ps
in space, no two of which

intersect, specify three projectivities between ranges on the

bases pv p^; p.v pg ; p% , p 1
respectively, such that the three skew

ruled quadric surfaces determined by them shall coincide.

34. Solve the dual for space of Ex. 33.

35. Develop completely the proof of the theorem corre-

sponding to the theorem of § 109 for the case of figures of

the second order in the bundle.

36. For the case of figures of the second order in three-

fold space describe accurately the figure for the theorem

corresponding to that of § 109, and outline the proof.



CHAPTER X

CONICS

115. Determination of Conies by Certain Conditions. Some
of the more important properties of the curves and sur-

faces to which attention has been. drawn in the preceding

chapters will now be deduced. The conies will be dealt

with much more fully than the other figures because of

their more frequent application and also because, after

their properties have been set forth, the corresponding

properties of the quadric cone may be obtained by means

of the Principle of Duality.

Chapters X-XII are devoted to the conies.

In Chapter XIII there is given a .discussion of quadric

cones, this being confined to a few topics in addition to those

suggested by the developments obtained for the conies.

Notwithstanding this limitation, students should give due

attention to these properties of quadric cones.

In Chapter XIV will be found a brief introduction to

the study of the properties of skew quadric ruled surfaces.

A thorough study of these figures may well be deferred

until the student has an opportunity to approach the sub-

ject from the point of view of analytic geometry also, when

a comparison of the analytic and synthetic treatments will

heighten the interest.

The first body of facts to be established relates to sets

of data which completely determine conies. It constitutes

the important theorem stated in § 116, which consists of

six simple propositions.

115
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Theorem. A Conic Determined

116. In a plane there is one and only one conic which has

one of the following properties :

1. It passes through five given points, no four of which are

collinear.

2. It passes through four given points, no three of which

are collinear, and at any one of these points is tangent to a

given line which passes through this point but not through

any other of the given points.

3. It passes through three given points, not collinear, and

at each of two of these points is tangent to a given line which

passes through this point but not through any other of the

three given points.

4. It passes through two given points, and at each of these

is tangent to a given line which passes through that point but

not through the other given point, and in addition is tangent

to a third given line which is not concurrent with the other

two given lines.

5. It passes through a given point and is tangent at that

point to a given line through the point, and is tangent to

each of thre'e other given lines so situated that offour given

lines no three are concurrent.

6. It is tangent to five given lines, no four of which are

concurrent.

Without doubt the student will generally use in his work an

abridgment of this statement. The longer statement given above

may be regarded as an interpretation of the shorter one in § 117,

making clear the meaning of the determination of a figure by means
of certain data. The student will find that very frequently in geom-

etry this abridged form of statement is used in the sense expressed

more fully by the other one. Occasional expansions of shorter

statements into the corresponding longer ones are well worth the

attention of the student.
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Theorem. Alternative Statement of § 116

117. A conic is determined by any one of the following

sets of elements that are associated with it:

1. Five of its points.

2. Four of its points and the tangent at one of these points.

3. Three of its points and the tangents at two of these points.

4. Three of its tangents and the points of contact on two of

these tangents.

5. Four of its tangents and the point of contact on one

of these tangents.

6. Five of its tangents.

Proof. We shall deal with the cases in the above order.

1. A conic is determined by five of its points.

Let Pv i£, i^, Pv Pb be five points of a plane, no four of

them being collinear. Join P
t
and P

2
to P

3 , P^ P
h

.

The triads of lines PPV BPV P^ and P,PV Pfi, Pfc
determine a projectivity between the flat pencils whose

bases are Pv Pv and hence they determine a conic through

the five points. Any conic through these points could be

generated from the projectivity determined by the same

triads (§ 104) and would be the same as the one mentioned.

If three of the five points are situated on a line I, the other two

points should be taken as the bases of the pencils. In this case

the conic consists of the line I and the line through the bases.
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2. A conic is determined by four of its points and the

tangent to it at one of these points.

Let i£, P,, !£, Pi be four points of a plane, no three of

them being collinear, and in the plane let t
x
be any line

which passes through P
x
but which does not pass through

any other of the four given points.

Draw from P
x
the lines 1\P

Z , PXPV and draw from P2 the

lines P
2
PV P

2
P
3 , P,P

4
.

Consider i^ and ^ as bases of flat pencils. The lines tv
P^ ; I{PZ, P^PZ ; PPV P^ being taken as corresponding, one

and only one projectivity is thereby established between

the flat pencils. This projectivity determines one conic

passing through the points Pv Pv P
z , 2£ and having the

line t
x
as its tangent at P.

No other conic can fulfill these conditions, since in that

case the conic would also be generated from the projectivity

just mentioned, and hence this conic would coincide with

the first one.

Therefore the second statement is proved.

If three of the four points other than the one at which the tangent

is given are on a line I, the conic consists of the given tangent and

the line I. \i P
t
and two only of the other points are collinear, no

conic is determined.
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3. A conic is determined by three of its points and the

tangents to it at two of these points.

Let ij, 1%, J^ be three noncollinear points of a plane,

and in the plane let t
x
and t

2 be lines which pass through

1\ and i^ respectively but through no other of the three

given points. Draw the lines P
X
PV P

X
P±, and J^PV

The triads tv I[PV Py
Pi and P^PV tv P2P± determine a pro-

jectivity between the pencils whose, bases are P
x
and i|,

and this projectivity determines a conic passing through

Tj", P,, P^ and tangent at ij and ijj to t
x
and t

2
respectively.

As in the other cases, it may be shown that there is

only one such conic. Hence the third statement is proved.

If the three points are on a line I and if one of the given tangents

is I, the conic consists of I and the other tangent. If neither of the

tangents coincides with I or both tangents coincide with /, the conic

may be thought of as the line I taken twice.

4. A conic is determined by three of its tangents and the

points of contact of two of these tangents.

Since Nos. 3 and 4 are dual in the plane, the proof of

No. 4 follows at once.

5. A conic is determined by four of its tangents and the

point of contact of one of these tangents.

Since Nos. 2 and 5 are dual in the plane, the proof of

No. 5 follows at once.

6. A conic is determined by five of its tangents.

Since Nos. 1 and 6 are dual in the plane, the proof of

No. 6 follows at once.
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118. Construction of Conies. The statements of § 117

establish the existence of conies that fulfill certain condi-

tions, and suggest but do not solve the problem of con-

structing the conies under these various conditions. The
solution of this problem can be based upon the notion

of projectivity involved in § 117, but it can also be based

upon two very celebrated theorems which will be considered

on page 121. After these theorems have been proved, the

problems of the construction of conies will be treated from

both points of view.

Before considering these two theorems, however, it will

be found necessary to make some extension of the common
notion of a hexagon with which the student is familiar from

elementary geometry.

119. Hexagon. If any six coplanar points are taken in

a given order, the figure formed by the lines through all

pairs of successive points, as well as through the first and

last points, is called a hexagon.

As in the ordinary case of the hexagon, the first and

fourth, the second and fifth, and the third and sixth sides

are called' opposite sides.

Thus, in the above figures the pairs of opposite sides are P
X
P

2 >pp.pppp.pppp
In each of the above figures the diagonals from P

t
are PjPg,

P
X
P„ and PJ?V
A similar generalization applies to each of the other polygons. It

thus appears that opposite sides of a quadrilateral may intersect and
that a diagonal may lie wholly outside a polygon.
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Theorem. Pascal's Theorem

120. If a hexagon is inscribed in a conic, the three

intersections of the three pairs of opposite sides are collinear.

Proof. This is the theorem of § 103 with the restriction

upon Pv P5 removed by Steiner's theorem (§ 104).

Unless a cross hexagon is taken, the figure is usually very large.

The proposition is due to Blaise Pascal (1623-1662).

Theorem. Brianchotts Theorem

121. If a hexagon is circumscribed about a conic, the three

lines joining the three pairs of opposite vertices are concurrent.

Proof. This is simply a generalization of § 105.

The student should write out the proof of this theorem.

The proposition is due to Charles Julien Brianchon (1785-1864).
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122. Pascal Line. The line containing the points of inter-

section of the three pairs of opposite sides of a hexagon

in a conic is called the Pascal line of the hexagon.

123. Brianchon Point. The point of concurrence of the

three lines joining the opposite vertices of a hexagon about

a conic is called the Brianchon point of the hexagon.

124. Converses of the Theorems of Pascal and Brianchon.

The converses of the theorems of Pascal and Brianchon

can be established as in the exercise below, and each of

them may then be given a different interpretation. Thus,

if six coplanar points are chosen and joined to form a hexa-

gon, a conic passes through any five of them. Does it pass

through the sixth point ? It does if and only if the three

points of intersection of the pairs of opposite sides are

collinear. Hence Pascal's theorem and its converse imply

the necessary and sufficient conditions for the passing of

a conic through six given coplanar points. Brianchon's

theorem can be interpreted in a corresponding fashion.

Exercise 26. Theorems of Pascal and Brianchon

1. State, and prove the converse of Pascal's theorem.

2. If two pairs of opposite sides of a hexagon inscribed in

a conic are parallel, the other two opposite sides are parallel.

3. A hexagon is to be inscribed in a conic in such a way that

a given line shall be its Pascal line. Determine the maximum
number of sides of the hexagon that may be given, and solve

the problem.

4. Solve Ex. 3 for the case when the given line is at infinity.

5. State and prove the converse of Brianchon's theorem.

6. Circumscribe a hexagon about a given conic in such a way
that a given point shall be its Brianchon point, as many of the

vertices of the hexagon as possible being given in advance.
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125. Limiting Cases of the Theorems of Pascal and Brian-

chon. There are several limiting cases of the theorems

of Pascal and Brianchon which have useful applications

and which require mention at this point. They arise out of

approach to coincidence of vertices of an inscribed hexagon

of a conic and also of sides of a circumscribed hexagon.

Let JJi£Jj}iJJj?2g be a hexagon inscribed in a conic. If i|

approaches ij along the conic, the line P^ approaches the

tangent t
x
at the point P^, and the hexagon approaches the

figure composed of the pentagon ijijjijjjjij} and the tangent t
x

to the conic at P. The pairs of opposite sides are tv PJE^ ;

PP^ P^P^ ; ijjij, JgiJ. These pairs determine collinear points.

Similarly, P^ may approach P
x
and either P± approach ijj

or ij? approach Pv yielding an inscribed quadrilateral and

tangents to the conic at two of the vertices of. the quad-

rilateral. A third case is that in which P^ approaches P,

P
i
approaches J%, and P, approaches P

b
.

In each case the propriety of extending Pascal's theorem, and

others, to limiting cases in which two distinct elements are allowed

to become coincident is left for the student's consideration.

In the case of a circumscribed hexagon, if one side

approaches coincidence with a second, their point of in-

tersection approaches a' limiting position at the point

of contact of the second side. There arise out of the

approach of sides to coincidence a number of limiting

cases of Brianchon's theorem which can be worked out

and which will be needed from time to time.

Other limiting cases of these propositions are those in

which the points or lines of the figures are not all in the

finite part of the plane. For example, one or two vertices

of the Pascal hexagon and one side of the Brianchon

hexagon may be at infinity. Coincident elements and

infinitely distant elements may be present in one hexagon.
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Problem, conic through Five points

126. Given jive points in a plane, no four of them being

collinear, construct the conic which is determined by them.

Solution. This problem admits of two simple solutions.

1. Method based on a projectivity;

Let the given points be JJ, Pv B
A , P±, ijj. Then in any

chosen direction from any point, as P
x , there can be found

another point of the conic which is not collinear with two

of the others. Let the chosen direction be along the line pv
and let the point to be found be called P. Draw P

X
P
Z ,

Prf, P^, P^, P2P„ P2Py The triads of lines P,P
S , P,PV PXP&

and i^ijj, P^, PtPb determine the projectivity between two

flat pencils which generate the required conic.

The point P is the intersection of p1
and its correspond-

ing line of the pencil whose base is P^ ; and it may be found

by the method used in § 39, Case 1. Draw this line and

produce it to meet pv thus determining P.

By varying the position of the line px
any number of

additional points of the conic may be found.

Evidently it is not feasible to obtain all the points of the conic

by this method, nor is the method convenient in practice. In this

respect it is similar to the method of plotting in analytic geometry.
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(2^)Method based on Pascal's theorem.

Let the given points be Pv Pv Ps , J», Jj?. As before, an-

other point P can be found on a chosen line p1
that passes

through any one of the points, as ij.

The given points Pv Pv ijj, Pv 1* and the point P, which

is to be found, are the vertices of a hexagon inscribed in

the conic determined by the five given points.

Then J=J», P
t
P
b ; J^, ij?P; P

3
PV PPX intersect on the Pascal

line of this hexagon. Of these six lines, PP is not given

and PP^ is the given line pv The Pascal line is determined

by the intersection of J^Pj, T^P
t
and that of P

6
PV pv

Draw the Pascal line and let it meet P^ in Qr Draw
Q^P

b
. This line Q%

P
b
must coincide with the line P

b
P and

must intersect the line px
in the required point P.

Since every line through ij determines a point on the

conic, it is possible to locate any number of points.

This method, like the first one, bears a certain resemblance to

the method of plotting in analytic geometry. From the point of

view of convenience it is decidedly superior to the first method.

The student will observe that, since the conic is of the

second order, the line px
cuts it in one and only one point

other than ijf, and also that in either solution of the prob-

lem the use of the ruler alone is sufficient.
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Problem. Four Points and a Tangent

127. Given four points in a plane, no three of them col-

linear, and a line passing through one and only one of these

points, construct the conic which passes through the given

points and at one of them is tangent to the given line.

Solution. As was the case in § 126, there are two simple

methods of construction. In each method any number of

additional points of the conic may be found by determining

where the conic would be cut by lines which pass through

one of the points.

1. Method based on a projectivity.

Let the given points be P
L , i£, Pv P

b, and let the given

line be t
2
passing through the point Pr Draw any line p1

through the point I\. Join P^ to each of the points Pv Pv Pb ,

and join Ph to each of the points Pv Pb .

The triads P
X
PV PPV P

x
P
b
and t

2 , P^, P^P
b
determine a

projectivity between the flat pencils whose bases are P, Pv
and the required conic is the locus of the intersections of

corresponding lines of the projective pencils.

The line through J^ which corresponds to p1
of the pencil

whose base is JJ can be determined by the method used in

§ 39, Case 1, and P, the intersection of this line with pv is

the point required.

By varying the position of py
any number of points of

the conic may be found.
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2. Method based on Pascal's theorem.

Let P be the point on px
that is to be found. It is

determined if the direction of P^P can be determined.

The pentagon P^I^I^P^P is inscribed in the required

conic, and the line £
2

is tangent to the conic at 1%.

The intersections of JJiJ, PJ>b ; t
2 , PP; and P

2
PV PP

X

(or ^j) are on the Pascal line.

Produce PyP^ and im to meet at Qv and produce P^
and px

to meet in Q3
. Draw the Pascal line. Let t

%
meet

this line in Q2 ; join ij- and Q2
.

Then the lines R,Q2
and P

5
P are coincident and the

intersection of P^Q2
and px

is the required point P.

Problem. Three Points and Two Tangents

128. Griven in a plane three noncollinear points and two

lines, each of which passes through one and only one of the

given points, construct the conic which passes through the three

given points and at each of two of them is tangent to the

given line through that point.

The solution is left for the student. It should be effected by two

methods, as in the two preceding theorems. As in the other prob-

lems the second method is to be preferred for practical reasons.

An appreciation of the superior convenience of the second method

is best secured by making the actual construction necessary for find-

ing by the first method the line through P
2
which corresponds to p 1

of the first pencil.
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Problem. Three Tangents and Two Points

129. Given three nonconeurrent lines in a plane, and on

each of two of these lines a point which is not on any other

of the three, construct the conic which is tangent to each of

the given lines and has each of the given points as the point

of contact of the given line on which it lies.

Of what problem is this the dual? The solution is left for

the student.

Problem. Four Tangents and One Point

130. Given four lines in a plane, no three of them con-

current, and a point on one but not on two of them, construct

the conic which is tangent to each of these lines and has the

given point as the point of contact of the given line on which

it lies.

Of what problem is this the dual? The solution is left for

the student.

Problem. Five Tangents

131. Given five lines in a plane, no four of them con-

current, construct the conic which is tangent to each.

Of what problem is this the dual? The solution is left for

the student.

Problem. Constructing a Tangent

132. Given five or more points of a conic, construct the

tangent to the conic at any one of these points.

The solution is left for the student.

Problem. Finding a point op Contact

133. Given five. or more tangents to a conic, determine by

construction the point of contact of any one of these tangents.

The solution is left for the student.
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Exercise 27. Problems of Construction

1. If two projective flat pencils generate a circle, they are

congruent.

2. Using the result in Ex. 1, find any number of additional

points of a circle when three of its points are given.

3. Eind any number of points of a circle when two of its

points and the tangent at one of them are given.

4. Solve the problem in § 126 when one of the five points

is at infinity in a given direction.

5. Solve the problem in § 126 when two of the points are

at infinity in given directions.

6. Solve the problem in § 127 when the given line is at

infinity.

7. Solve the problem in § 127 when one of the four points

is at infinity in a given direction.

8. Solve the problem in § 128 when one of the points is

at infinity in a given direction and the tangent at that point

is given to be the line at infinity.

9. Solve the problem in § 129 when the two given points

are at infinity.

10. Solve the problem in § 131 when one of the five given

lines is the line at infinity.

11. Solve the problem in § 132 when the point at which the

tangent is to be constructed is at infinity in a given direction.

12. Solve the problem in § 133 when the given tangent

whose point of contact is to be found is the line at infinity.

13. If a parallelogram is inscribed in a conic, the tangents

to the conic at the vertices form a parallelogram circumscribed

about the conic.

14. If Pv P2, P
a
, P4 , P6

are fixed points and P moves on the

conic determined by them, find the envelope of the Pascal line

of the hexagon P
1PJ

J
e
P

i
P

l
P.
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Theorem. Involution on Complete Quadrangle

134. If a straight line cuts all the sides of a complete

quadrangle but does not pass through any vertex, it cuts the

three pairs of opposite sides of the quadrangle in conjugate

points of an involution.

Proof. Let a straight line p cut the pairs of opposite

sides of the complete quadrangle whose vertices are ij, P
% ,

P
3 , Pi in A, A'; B, B'; C, C'\ and let M, iV,' be the diagonal

points of the quadrangle.

Then range ABA'C x flat pencil P^MP^P^)

-£ range MP
}
A'P

i

x flat pencil P
x
(MP^A'P^)

grange AC'A'B'.

But range ABA' C x range A'CAB. § 23

Hence range AC'A'B' -^ range A' CAB.

Accordingly, A, A'; B, B'; C, C are conjugate points of

an involution on p. § 65

This theorem is auxiliary to, and is in fact a special case of, an

interesting and important .theorem which was first established by

the French geometer Girard Desargues (1593-1662).

Desargues's theorem offers another line of approach to some of

the preceding constructions and to other similar problems. In

particular, on page 133, it is applied to the solution of § 126.
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Theorem. Desargues's Theorem

131

135. If a complete quadrangle is inscribed in a conic, and

if a straight line cuts the conic in two points distinct from
each other and from the vertices of the quadrangle, these two

points form a conjugate pair of the involution of points on

the line, which is determined by the intersections of the line

with the pairs of opposite sides of the quadrangle.

Proof. Let the complete quadrangle iJig-Zgij be inscribed

in a conic, and let a line p which does not pass through

any of the four vertices cut the conic in P, P' and the

pairs of opposite sides in A, A'; B, B'; C, C'.

Then range PBP 1'A- flat pencil P^PP^P'P^

^-flat pencil P
z
(P^P'i^) - range PA'P'B'.

But range PA'P'B'-^ range P'B'PA'. § 23

Therefore range PBP'A- range P'B'PA'.

Hence P, P'; A, A'; B, B' are conjugate points of an

involution on p determined by the pairs A, A' ; B, B'.

The involution formed by the intersections of p with the

pairs of opposite sides of the quadrangle /J2|IjjiJ is also

determined by the pairs of points A, A'; B, B'.

Accordingly, P, P' are conjugate points of the involution

of points determined by the intersections of the line p with

the pairs of opposite sides of the quadrangle JJiJijjiJ.
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136. Restatement of Desargues's Theorem. It should be

noted that many conies pass through the four points ij, P
2 ,

P
3 , PA and that to each of such conies Desargues's theorem

applies. Moreover, it should be remembered that the pairs

of lines P^, ijjij; P^, B^P^ are degenerate conies through

the four points. Hence Desargues's theorem is capable of

restatement as follows

:

The infinitely many conies, including pairs of lines, which

pass throughfour given coplanar points, no three of which are

collinear, determine on any line which intersects them (but does

not pass through any one of the points) infinitely many pairs

of points of an involution.

137. Corollary. If the involution determined by the

conies is hyperbolic, two of the conies which pass through the

four points touch the straight line; if it is elliptic, no conic

through the four points is tangent to the straight line.

Exercise 28. Application of Desargues's Theorem

1. What sort of involution is determined upon a side of the

diagonal triangle of the quadrangle mentioned in the theorem

of § 135 ?

2. Test the validity of the proof of Desargues's theorem when
it is applied to a line through one of the given points, say P

2
.

Given four points in a plane, no three of which are col-

linear, show how to draw a straight line subject to each of the

following conditions :

3. There shall be two conies passing through the four points

and tangent to the line.

4. There shall be one conic passing through the four points

and tangent to the line.

5. There shall be no conic such as described in Ex. 4.
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Problem. Conic through Five points

133

138. Given five points, no four of which are collinear, con-

struct the conic which is determined by them.

Solution. Let us consider two cases.

1. No three of the five given points are collinear.

Let the. five points be Pv P2 , P3 , Pv P& . Draw P
X
P2 , P2P3 ,

PgP^ i^Jj?, P
5
PV P

S
P
2 , and any transversal px

through Py
It is now required to find the point P in which this line

again cuts the conic determined by the five given points.

The points Av A2 , Bv B2 , in which px
is cut by the lines

P
2
P
3 , P±Ph , P^Pi-, ^6-^2! determine an involution in which P

x

and the required point P are corresponding points.

Hence the point P can be determined from the pro-

jectivity between the ranges in the involution. For in-

stance, the three known points Av Bv A2
and the required

point P are projective with the four known points A
2 , B2 ,

Av Pv Various special devices for finding P based upon

the method of § 39, Cases 1 and 2, can be found.

By varying the position of the line px
any number of

points on the conic can be found.

2. Three of the five given points are collinear.

In this case the required conic is a pair of straight lines,

one the line through the three points and the other the line

through the other two points.
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Problem, position of Self-corresponding Elements

139. Given two superposedprojective one-dimensionalprime

forms, construct the position of the self-corresponding elements.

Solution. If the superposed prime forms are not ranges,

it is possible by operations of projection and of section to

obtain from them two superposed projective ranges. Hence

it is necessary to solve the problem only for the case in

which the prime forms are ranges.

Let A
1
B

l
C

l
and A2B2

C2 be two triads of corresponding

points of superposed projective ranges on a base p.

Describe any circle coplanar with the line p. Join any

point P of the circle to each of the six given points, and let

these lines cut the circle again in A'v B'v G
x
and A'2 , B'2 , C2

.

Join A[ to A'
2 , B'

2 , C2 , and A'
2 to B'v C{.

Then flat pencil A'
2
(A[B[ (?{•••)

•£ flat pencil P^A\B\C'
X

• • •) § 53

- range A
X
B

X
C
X
...

j- range A2
B

2C2
- •

- flat pencil P CA2
B'

2 Cl •)

- flat pencil A[ (A'
2
B'

2
C
2

• • •)•

But the flat pencils A'
2
(A'^ C[ • • ), A[ (A!2B'2C2

• •) have

a self-corresponding element, and hence are perspective.
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Let X' be a point, if there be any, in which p', the axis of

perspectivity, cuts the circle, and let PX' meet p at X.

In the four flat pencils previously mentioned the corre-

sponding lines are A[X', PX', A'
2
X', PX', and hence in the

superposed pencils whose bases are at P, PX' is a self-

corresponding line. Therefore X is a self-corresponding

point of the ranges on p.

Conversely, it is true that, corresponding to each self-

corresponding point of the ranges on the line p, there is an

intersection of the line p' with the circle.

Hence, to find the self-corresponding points on p we join

P to the intersections of p' and the circle, and produce

these lines to intersect p. There may be no, one, or two
intersections with p, and each of these intersections is a

self-corresponding point.

140. Constructions of the Second Order. All constructions

made before § 139 were effected wholly by the use of

straight lines, and at every stage the results were uniquely

determinate ; that is, all the problems had one and only

one solution. If the solutions of the problems analogous

to these constructions are effected by the methods of

analytic geometry, it is found that only equations of the

first degree are used. For this reason these and similar

problems are said to be of the first order.

Beginning with § 141, attention will be given to prob-

lems whose solutions by the method of analytic geometry

would involve the use of at least one equation of the second

degree, as in § 139. Correspondingly, each construction will

require the use (at least once) of a curve of the second

order, and for simplicity the circle will be taken.

The problem in § 139 furnishes a basis for others, and hence has

been deferred from its most natural place, which was in connection

with the treatment of superposed projective forms in Chapter VII.
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Problem. Intersections of a Line and a conic

141. Given any of the sets of elements mentioned in §117

as determining a conic, construct the intersections (if there are

any) of the conic with a given straight line p in its plane.

Solution. If the set of elements is not five points, by

means of §§ 127-133 find five points Pv P2, P3, Pv P5 on the

conic. Join any two of the points, as P
x
and P

2 , to Ps, P±, Pb,

and let these lines meet the line p in P
3 , P[, Pi and P

z
", JJ", PJ'.

These triads determine superposed projective ranges on p.

By the method of § 139 find the self-corresponding points

(if there are any) of these ranges.

Since these self-corresponding points are common to

corresponding lines of the projective flat pencils whose

bases are J\ and i^, they are on the conic. Moreover, they

are the only points of p which are on the conic. There

may, therefore, be two, one, or no intersections.

Problem. Tangents from a point

142. Given any of the sets of elements mentioned in § 117

as determining a conic, construct the tangents (if there are any)

to the conic from a given point P in its plane.

Solution. If the set of given elements is not five tangents

to the conic, by means of §§127-133 find five tangents

tv t
2 , t

3 , tv <
6
'to the conic. The tangents t

3 , tv t
5
cut tv t

2

in triads of points which, being joined to P, determine a

projectivity between flat pencils whose base is P.

Find the self-corresponding lines of these pencils. Any
such line passes through P and also joins corresponding

points of the projective ranges on tv t
2
which serve to

generate the conic. Hence the line is tangent to the conic.

The number of these lines is two, one, or none.
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Problem. Four Points and a Tangent

143. Construct a conic which shall pass through four given

points, no three of which are collinear, and shall be tangent to

a given line that does not contain any of the points.

Solution. Let the given points be Pv P2 , Ps , Pv and let

the given line be tv Let t
x
cut the lines P]PV P^ in Av A2

•

and cut the lines P
X
P±, P^ in Bv By

Find the self-corresponding points of the involution on t
x

which is determined by these pairs of points. Through the

four points and any self-corresponding point P
h
construct

a conic (§ 138). This conic is tangent to t
x
at P

h
. For if

it cuts t
x
in a second point P~, then the point P

&
is not

self-corresponding, and this is contrary to fact.

Hence, for every self-corresponding point of the involu-

tion on t
x
one conic can be constructed.

There may be no, one, or two self-corresponding points

(§ 139). Hence no, one, or two conies may be constructed.

Theorem. Four Points and a Tangent

144. The number of conies which pass through four given

points, no three of which are collinear, and are tangent to

a given straight line which does not pass through any of the

points, is none, one, or two.

The proof is left for the student.
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Problem, four Tangents and a point

145. Construct a conic which shall he tangent to each

of four given straight lines, no three of which are concur-

rent, and which shall pass through a given point exterior to

the lines.

This problem is the dual of § 143 and may be solved as such.

The solution is left for the student. Likewise, a theorem dual to

§ 144 results from the proof of the construction.

146. Special Case of Desargues's Theorem. To complete

a set of constructions which include §§ 126, 129-133, 143,

and 145, two others are necessary, and these are given in

§ § 148 and 149. In order to solve these two problems special

cases of Desargues's theorem (and its dual) may be used.

Instead of the four distinct points of the conic con-

sidered in Desargues's theorem, let the first and second

points move up to coincidence, and also let the third and

fourth points move up to coincidence. Then the line join-

ing the first and second points and that joining the third

and fourth points become tangents to the conic. Also the

lines joining the first and third points, the second and

fourth points, the first and fourth points, and the second

and third points move into coincidence upon the chord of

contact of the two tangents mentioned.

Theorem. Special Form of Desargues's Theorem

147. Two straight lines and the conies which are tangent

to them at two given points intersect a given line that does

not pass through either of these points in pairs of points of an

involution, one of the self-corresponding points of which is the

intersection of the given line with the chord of contact.

The proof is left for the student.
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Problem. Three Points and two Tangents

148. Construct a conic which shall pass through each of

three given noncollinear points and be tangent to each of two

given lines that do not pass through any of the points.

Solution. Let the points be Pv P2 , Pa , and let the lines

be tv t
2

. Let tv t
2
cut the line P

X
P
2
in Av A2

and the line

P
2
P
%
in Bv B2

. We shall first find the points of contact of

.tv t
2
with the conic.

Find the self-corresponding points (if there are any) of

the involutions determined by Pv P2 and Av A
2
and by

P
2 , Pz and Bv B

2
respectively. Let the line through Mv

one of the first of these, and M
2 , any one of the second, cut

t
2

in P
t ;

and t
x
in P

t
. Pass a conic through P

2 , and tangent

to t
x
and t2 at Ph and P

i
respectively (§ 128).

Since the point corresponding to i£ in the involution

on A
X
A

2
is completely determined by M

x
and the pair of

points Av A2 , it follows that this conic must pass through

ij (§ 147), for the involution determined on P^ by conies

tangent at P± and ij? to t
2
and t

x
is also determined by

a self-corresponding point and the pair of points Av A2
.

Similarly, this conic can be shown to pass through P
3
.

Hence, for every possible pair of points Pv Pb one conic

may be constructed.

There may be no, one, two, or four pairs of points, as

Pv P
5 (§ 144), and for each a conic may be constructed.
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Theorem, three points and Two Tangents

149. The number of conies which pass through three given

noncollinear points and which are tangent to two given lines

that do not contain any of the points is none, one, two, orfour,

as the case may be.

The student should write out the proof, which is essentially that

of § 148.

Problem. Three Tangents and Two Points

150. Construct a conic which shall be tangent to three given

nonconcurrent lines and shall pass through two given points

which are exterior to the lines.

The student should write out the solution, which is simply the

dual of that of § 148.

Exercise 29. Review

1. If the sides of an angle of constant size rotating about

a fixed vertex intersect respectively two fixed lines, the line

joining these intersections envelops a conic.

2. Two vertices of a variable triangle move along two fixed

lines, and the three sides respectively pass through three fixed

collinear points. Find the locus of the third vertex.

3. Consider Ex. 2 for the case in which the three fixed

points are not collinear.

4. If two triangles are in plane homology, the intersections

of the sides of one triangle with the noncorresponding sides

of the other lie on a conic.

5. State Pascal's theorem for the case in which the first

and second, the third and fourth, and the fifth and sixth

vertices have become coincident.

6. The complete quadrilateral formed by four tangents to

a conic, and the complete quadrangle formed by their four

points of contact, have the same diagonal triangle.
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7. If a variable quadrangle P
1
P

2
P

a
P

4
inscribed in a conic

Las as fixed points Pv P2 , and the intersection of P^, P
a
P

4
, the

other vertices of its diagonal triangle move along the same
fixed straight line.

8. If P
3 , P5

are fixed points on a given conic, and if P is

a moving point, as P moves along the conic the Pascal line

of the hexagon, consisting of the triangle PP
a
P

s
and the

tangents to the conic at the points Pv Ps
, P

6
, envelops a conic.

9. If Pj, P
8
, P

4
are fixed vertices of a complete quadri-

lateral whose fourth vertex P moves along a given conic

through P , P
3
, P

4
, all the vertices of the diagonal triangle trace

straight lines and all the sides pass through fixed points.

10. If the points P
2
and P

8
trace superposed projective

ranges on the base AB of a fixed, triangle ABC, if P
t
is a fixed

point not on any side of the triangle, if P^P^ meets AC in P
4 ,

and if P,P„ meets BC in P., find the locus of P, the inter-18 5' '

section of A P. and PP..
5 4

11. In Ex. 10 find the envelope of P
4
P

6
.

12. State Desargues's theorem for the case in which a pair

of the four given coplanar points become coincident.

13. State Desargues's theorem for the case in which two

pairs of the given coplanar points become coincident.

14. Three sides, AB, AD, CD respectively, of a variable

quadrangle inscribed in a given conic pass through three given

points of a line. Find the envelope of BC.

15. Extend Ex. 14 to the case of a simple inscribed polygon

having 2 n sides.

16. Erom the data of § 127 construct, by means of § 147,

tangents at additional points of the conic.

17. Prove the dual of § 149, namely, that the number of

conies which can be constructed under the conditions of § 150

is none, one, two, or four.

18. Solve the dual of § 139 for the plane.
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19. If the lines p1
and^>

2
are drawn through the vertices P

1

and P
2
respectively of a given quadrangle, the conies which

pass through the vertices of the quadrangle determine perspec-

tive ranges on^ and^
2

.

20. If the lines p 1
and p2

are drawn through the vertex P
of a given quadrangle, the system of conies which pass through

the vertices of the quadrangle determine projective ranges

on p1
and pr

21. State and prove the dual of Ex. 19 for the plane.

22. Construct a conic which shall' pass through two given

points Pj and P
2
, shall be tangent to a given line t

s
at the

point P , and shall be tangent to a second given line tf .

Apply Ex. 12 for the line t
4

. Find the self-corresponding points of

the involution.

23. Construct a conic which shall be tangent to a given

line t
x
at the point P , to t

2
at P

2 , and to t
a

.

24. Consider the problem of §141 for the case in which the

given line is the line at infinity.

25. Consider the problem of §143 for the case in which the

given line is the line at infinity.

26. Consider the problem of § 148 for the case in which one

of the given lines is the line at infinity.

27. Solve the dual of Ex. 22 for the plane.

28. Construct a triangle which shall be inscribed in a given

triangle and have its sides pass through three given points.

Observe that if a triangle has two vertices, as required, but not the

third, the sides through the latter cut a side of the given triangle in

corresponding points of superposed projective ranges.

29. Construct a triangle which shall be inscribed in a given

conic and have its sides pass through three given points.

30. If a conic can be described through the six vertices of

two given triangles, another conic can be described which shall

be tangent to the six sides of the two given triangles.



CHAPTER XI

CONICS AND THE ELEMENTS AT INFINITY

151. Classification of Conies. In the discussion of conies

in the preceding chapter no classification was made, nor

was any account taken of the fact that on certain occasions

the term straight line may mean " straight line at infinity
"

and the term point may mean " point at infinity." These

considerations can be associated very advantageously.

Ellipse Parabola Hyperbola

In projective geometry, conies are classified by means of

their relations to the line at infinity. This line, like any

other, may intersect a conic in no, one, or two points, and

hence conies are divided into three classes as follows

:

1. Ellipses, or conies that do not intersect the line at

infinity.

2. Parabolas, or conies that intersect the line at infinity

in one point (or are tangent to the line at infinity).

3. Hyperbolas, or conies that intersect the line at infinity

in two distinct points.

While these conies are familiar to the student from his work in

analytic geometry, the study of conies will now be considered from

a different point of view.

143
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152. Elements at Infinity. In the interpretation of the

results already obtained, in so far as the ellipse is con-

cerned, it will be seen that the expressions point on the curve

and tangent to the curve always mean a point and a line in

the finite part of the plane.

On the other hand, in connection with the parabola, one

and only one tangent, and one and only one point of the

curve (the point of contact of that tangent), may be taken

to be at infinity.

In the case of the hyperbola there are two points on the

curve which are at infinity, but the line at infinity is not

a tangent. At each of the infinitely distant points of the

curve there is, however, a tangent which has no infinitely

distant point except its point of contact.

It follows that in the cases of the parabola and hyperbola

the interpretations of the theorems of Pascal and Brianchon

and of similar theorems obtained by the methods of pro-

jective geometry vary according as all or only part of the

elements are assumed to be in the finite part of the plane.

In the light of the procedure indicated, the results which have

been obtained are capable of restatements which vary for the three

types of conies, but which have a great interest, because they bring

these results into clearer relation to those obtained by the methods

of analytic geometry.

153. Asymptote. A line, not the line at infinity, which

is tangent to a conic at an infinitely distant point is called

an asymptote.

In this figure a is an asymptote.

Every hyperbola has, then, two asymp-

totes, and the other conies have none,

though sometimes the parabola is said

to have the line at infinity as an asymptote. This latter form of

statement is convenient when geometry is treated algebraically,

but it will not be adopted in this text.
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154. Special Interpretations. As indicated in § 152, each
of the results that have been derived for the conies should
be examined for interpretations based upon the rela-

tions of the elements at infinity to the three types of
conies. The great variety of results that can be obtained
prevents a systematic and detailed reexamination in this

place of all the theorems and constructions that have
been derived. A few of these will be obtained, but for the

most part their derivation must be left to the student, a
work which will prove both interesting and profitable.

Of the elements (points and lines) which determine a

conic not more than two points and not more than one
line may be at infinity, except in the limiting case of

coincident points or coincident tangents. The existence

of one infinitely distant point on a conic determines that

the curve is not an ellipse, and the existence of two such,

points determines that the curve is a hyperbola. Similarly,

the tangency of the line at infinity to the curve determines

it to be a parabola.

On the other hand, when all the given determining

elements are in the finite part of the plane, the conic may
prove to be of any one of the three types. The determi-

nation of the character of the conic of which certain ele-

ments are given is a particularly interesting case. It is the

problem of § 141 as modified in Ex. 24, page 142.

In view of what is said above, we shall now restate

the important theorem of § 116.

In each case the student should draw the figure and satisfy him-

self that the statement is correct and that it is a special case of one

of the corresponding statements in §§ 116 and 117. He should also

supplement the results here set forth by the others which can be

obtained if a thorough examination of the theorem is made for its

various interpretations.
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Theorem. A Conic Determined

155. 1. There is one and only one conic (parabola or

hyperbola?) which passes through four points in the finite

part of a plane and one infinitely distant point in a speci-

fied direction.

This follows from the theorem stated in § 116, No. 1.

2. TJiere is one and only one hyperbola which passes through

three points in the finite part of a plane and has given direc-

tions for its asymptotes.

This follows from the theorem stated in § 116, No. 1.

3. There is one and only one parabola which passes through

three noncollinear points in the finite part of a plane and has

its infinitely distant point in a given direction.

This follows from the theorem stated in § 116, No. 2.

4. There is one and only one hyperbola which passes through

any point in the finite part of the plane and has two given

straight lines as asymptotes.

This follows from the theorem stated in §116, No. 3.

5. There is one and only one hyperbola which has two given

lines as asymptotes and is tangent to a third line which is not

parallel to either of the others.

This follows from the theorem stated in § 116, No. 4.

6. There is one and only one parabola which is tangent to

each of three nonconcurrent lines lying in the finite part of the

plane and has its infinitely distant point in a given direction.

This follows from the theorem stated in § 116, No. 5.

7. There is one and only one parabola which is tangent to

any four lines of a plane, no three of which are concurrent and

no two of which are parallel.

This follows from the theorem stated in § 116, No. 6.
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Theorem. Special Interpretation op Pascal's Theorem

156. The chords from a point on a hyperbola to each of
two other points on the hyperbola intersect the lines through

these two points parallel to one of the asymptotes, the inter-

sections being collinear with the intersection of the tangents at

the two points.

The proof of this theorem is included in the proof given in § 157.

Theorem. Further Interpretation of Pascal's Theorem

157. The chords from a point on a parabola to each of

two other points on the parabola intersect the lines from these

two points to the infinitely distant point of the curve, the inter-

sections being collinear with the intersection of the tangents

at the two points.

Proof. These two theorems are closely related, being

obtained by applying to such conies the case of Pascal's

theorem in which two pairs of vertices coincide. If a

conic is known to have one point at infinity, it may be

either a hyperbola or a parabola.

Consider a hexagon inscribed in a conic in such a way
that the first and second vertices coincide, the fourth and

fifth vertices coincide, and the sixth vertex is at infinity.

We may also assume that the curve is a hyperbola or that

it is a parabola. If it is a hyperbola the sides of the

hexagon which intersect at the infinitely distant point are

parallel to the same asymptote. In either case one pair

of opposite sides is a pair of tangents.

The two theorems considered above are merely state-

ments of Pascal's theorem for the two cases described,

the terms used being appropriate in connection with these

two kinds of conies.
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Theorem. Special Interpretation op Brianchon's Theorem

158. Given five tangents to a parabola, the line parallel

to the first tangent and concurrent with the third and fourth

tangents cuts the line parallel to the fifth tangent and concur-

rent with the second and third tangents on the line joining the

intersection of the first and second tangents to that joining the

fourth and fifth.

Proof. In Brianchon's theorem (§ 121), simply let one

of the tangents be the line at infinity, and the proof

follows at once.

Pascal's theorem and Brianchon's theorem have a large number
of special interpretations. Of these we have space for only the three

given in §§ 156-158. They have been selected not because of

their intrinsic importance but because they indicate the method
of procedure.

159. Special Constructions. On account of the elements

at infinity the problems which were considered in Chap-

ter X may also be given special statements for certain

cases. Thus a point at infinity may be specified by its

direction ; and since a hyperbola is determined by means

of any three of its points in the finite part of the plane

and its two points at infinity, it is determined by the three

points mentioned and the directions of the two points at

infinity. These latter directions are also the directions of

the asymptotes.

In actual constructions certain special situations arise.

Thus, drawing a line to a given infinitely distant point is

the same as drawing a line parallel to a given line. To
effect this with the ungraduated ruler it is necessary to

have additional data, as in the exercises on pages 99 and

100. Problems involving considerations of this sort will

be considered in §§ 160-162.
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Problem. Construction of the Hyperbola

160. Given in a plane three noncollinear points and two

pairs of parallel lines, each pair having a direction different

from those of the lines joining the three points and also

different from that of the other pair, construct a hyperbola

through the three given points and having asymptotes parallel

to the two given pairs of lines.

The student should write out the solution, making appropriate

modifications of the methods employed in §§ 126 and 138.

Problem. Determination of a Conic

161. Given a set of elements sufficient for the determination

of a conic, determine the nature of the conic and the directions

of its infinitely distant points (if there are any).

Among the constructions of the second order the construction in

§ 141 deserves attention in this connection, and this problem is one

of its special forms. If elements sufficient for the determination of

the conic are given, the finding of the intersections of the conic

with the line at infinity includes determining whether the conic is

an ellipse, a parabola, or a hyperbola.

As in the original case, if five points of the conic are not given

they may be found by construction. Let them be Pv P2 , Ps , P4 , P5
.

The triads of lines P^^ P
X
PV P1

P
5
and P

2
P

3 , P2
P

4 , P2
P

S
deter-

mine the projectivity by means of which any number of additional

points of the conic may be found.

A difficulty now arises in following the original construction,

because the line p is at infinity. The triads of points of the super-

posed projective ranges on this line that are determined by the triads

of the flat pencil are now not available from the point of view of

construction by the ruler. If, however, the possibility of drawing

lines parallel to all given lines is assumed, the resulting difficulty

disappears. For the purpose of drawing the necessary parallels, the

compasses must be used more freely than in the construction in

§ 141. With this difference the construction follows as before, and

the student should write out the solution in full.
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Problem, construction of the Parabola

162. Given four points in a plane, no three of them col-

inear, construct the parabola which passes through these points.

By § 144 the number of such parabolas is none, one, or two.

The solution of this problem, which is based on that of § 143, is

left for the student.

Exercise 30. Elements at Infinity

As suggested on pages 144-148, investigate with respect to

the elements at infinity the following cases already considered

:

1.
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POLES AND POLARS OP CONICS

163. Polar of a Point. In § 165 it will be proved that

if three lines, concurrent at a point 0, cut a conic in

Av A2 ; Bv B2 ; Cv C2, the harmonic conjugates A, B, C
of with respect to Av A

% \

Bv B
2 ; Cv C

2
are collinear.

Since OC
x
G2

may be any line

through 0, it follows that all

harmonic conjugates of with

respect to the pairs of points

in which lines through cut

the conic are on the line de-

termined by A and B, two of

these conjugates.

The line thus determined by two harmonic conjugates

is called the polar of the point with respect to*the conic.

164. Pole of a Line. Suppose that there are given a conic

and a line o. If from a point of the line o two tangents

are drawn to the conic, then

k, the harmonic conjugate of

o with respect to the two tan-

gents, may be constructed.

This line will be spoken of as

a harmonii conjugate of o with

respect to the conic, or simply

as a harmonic conjugate of o. The point of intersection of

two harmonic conjugates of o will be called the pole of o.

151
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Theorem, triangles in homology

165. If through a point three lines are drawn cutting

a conic in the pairs of points Av A
2 ; Bv B

2 ; Cv C2 , the

triangles A
X
B

X
C

X
and A

2
B

2
C2 are in harmonic homology.

Proof. The triangles A
1
B

1
C

x
and A

2
B

2C2 are in homology,

as is indicated in the note under Ex. 13, page 13.

The axis of homology passes through Xv X2 , Xs, the

intersections of B
X
CV B2

C
2 ; C

X
AV C2A2 ; A X

BV A
2
B

2
.

The Pascal line of the hexagon A
1
C

1
C
i
A

2
B

2
B

1
contains

the points L, 0, M, which are the intersections of the oppo-

site sides A
X
CV A

2
B

2 ; C
1
C2 , B2

B
1 ; C

2
A

2 , AX
BV Moreover,

the Pascal line cuts the line X
X
X

2
in a point N.

Also range LMON= range A
2
A

X
OA

^ range OAA
2Av

But (LM02T) = -1.

Therefore (OAA
x
A^ = 1 -=- (OAA

2
A

x)= - 1.

Hence the constant of homology is — 1.

§23

§30

§24
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Exercise 31. Poles and Polars

Prove the theorem of § 165 for the following triangles :

1. A^CV A 2
B

2
CV 2. AACV AJB&. 3. i^C,, A^C

y

4. In the figure of §165 A&, A&; A
X
C„ AjOv ; Bf9

B
2
C

X
also intersect on the line X,X

3
X .

5. Draw a large and accurate figure consisting of the figure

of § 165 and the additional lines which would be introduced

in proving Exs. 1, 2, and 3.

It is suggested that the sets of lines introduced on account of Exs. 1-3

be given distinctive colors.

6. State and prove the dual of § 165 for the plane.

7. Construct carefully the figure which is the dual of that

required in Ex. 5.

8. If two triangles are homologie and the constant of

homology is —1, the six vertices are on a conic.

9. If two triangles are homologie and the constant of

homology is — 1, the six sides are tangent to a conic.

10. By means of § 165 find a figure harmonically homo-

logic with any polygon inscribed in a conic.

11. Inscribe in a conic a polygon which shall be harmoni-

cally self-homologic.

12. Use § 165 to obtain a line that bisects a given set of

parallel chords of a conic.

13. Given a circle or a carefully drawn ellipse, parabola, or

hyperbola, show experimentally that the polar of a given

point is the same line whatever pair of three given lines

through O is used in constructing it.

14. Construct the polar o of a given point O of a conic, and

then find the intersection of the polars of two points on o.

15. Construct the polar of a vertex of the diagonal triangle

of a complete quadrangle inscribed in a conic.
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166. Properties of a Polar. The polar of a point with

respect to a conic has the following important properties:

1. The polar of a point with respect to a conic con-

tains all harmonic conjugates of with respect to the conic.

In the preceding discussion the polar, though deter-

mined by A and B only, contains C, no matter what is the

direction of OC
t
C2

. Accordingly, any two of the harmonic

conjugates of determine a line through all of them.

In each of these cases the student should draw the figure and be

certain that the suggested proof is clearly followed.

2. The polar of a point with respect to a conic contains

the other intersections of opposite sides of any inscribed com-

plete quadrangle of which is a diagonal point.

In the discussion of §165, A-^B^A^B^ is any inscribed

quadrangle of which is a diagonal point ; and the other

intersections of pairs of opposite sides of this quadrangle

are situated on the axis of homology, which coincides with

the polar of 0.

3. The polar of a point with respect to a conic contains

the intersections of pairs of tangents to the conic at the points

in which any line through cuts the conic.

Let the line OB
x
B^ (§ 165) approach coincidence with

the line OA
x
Av Then B

X
A

2
approaches the tangent at Av

and B%AX
approaches the tangent at A

x \ and at all stages

these lines intersect on the polar of 0.

4. The polar of a point with respect to a conic contains

the points of contact of the tangents (if there are any) from
to the conic.

If the line OA
x
A

%
rotates about and approaches the

position of tangency to the conic, the points Av A, A2

approach coincidence at the point of contact.
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167. Properties of a Pole. Applying the Principle of

Duality to the statements of § 166, we have the following

:

1. The pole of a line o with respect to a conic is on all

harmonic conjugates of o with respect to the conic.

The student should draw the figure in each of these cases and
should write out the duals of the proofs suggested in § 166.

2. The pole of a line o with respect to a conic is on the

other lines joining opposite vertices of any circumscribed com-

plete quadrilateral of which o is a diagonal line.

3. The pole of a line o with respect to a conic is on the

chord of contact (produced if necessary') of the tangentsfrom
any point of o to the conic.

4. The pole of a line o with respect to a conic is the in-

tersection of the tangents to the conic at the points (if there

are any) in which the line o cuts the conic.

A comparison of the properties of pole and polar as stated in

§§ 166 and 167 leads to various interesting conclusions. A few of

these are stated in §§ 168-171.

Exercise 32. Construction of Poles and Polars

1. Give a construction based upon § 166, 2, for the polar of

a given point with respect to a given conic.

2. Construct the tangents to a conic from a given point 0.

3. Find the pole of a given line with respect to a conic.

4. At a given point on a conic draw a tangent to the conic.

5. For any conic construct the polar o of a given point 0,

and then find the pole of the line o.

The figure should be drawn very carefully.

6. With respect to a given conic find the polar o
x
of a given

point , the polar o
2
of a given point

2
on ov and the polar o

8

of the intersection of o
t
and o

2
.

ro
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Theorem. Relation of Pole and Polar

168. If a point is the pole of the line o, the line o

polar of the point 0.

O

Proof. Let be the pole of the line o, and let Ov 2

be points on o. Let the chords of contact of the tangents

to the curve from
1
and

2
cut o in

3
and

4
. These

chords pass through (§ 167, 3). Draw OjO and
2
0.

Since the lines 0^0, 2
are conjugates of the line o

(§ 167, 1), the points O
s , Oi are conjugates of 0, and

therefore o is the polar of (§ 164).

169. Inside and Outside of a Conic. If a point moves

up to a position on a conic, its polar o becomes a tangent

;

but if O is not on the conic, either no tangent or two tan-

gents pass through it. According as is on two tangents

or on no tangent, it is said to be outside or inside the curve.

If is outside the curve, its polar cuts the conic in the

two points of contact of the tangents from to the conic.

Suppose is inside the curve ; then, since the polar meets

all tangents to the conic, infinitely many of its points -are

outside the curve. Moreover, the polar does not meet the

curve ; for if it did, tangents could be drawn from to the

intersections. The proof of the theorem that every point

of the polar, that is, every harmonic conjugate of Q, is

outside the conic is, however, somewhat complicated and

will be omitted from this book,' the fact being assumed.
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Theorem, points on a Polar

170. If the point
1

is on the polar of the point
2 , then

2 is on the polar of the point Ov

o2

Proof. Of the points O
x
and

2, at least one must be

outside the conic. For if O
x
and

2
are both inside the

conic, then (§ 169) every point of o2, including Ov is out-

side the conic, which is contrary to the hypothesis made.

Let
2
be outside the conic. Then § 166, 3 and 4, yields

the desired conclusion.

Let
2
be inside the conic. Then Ov being on o

2, is out-

side the conic. Let o
x
cut the conic in the points A, B.

It will cut the line
1 2

in
2 ; for otherwise the tangents

of which
2
A is the chord of contact would not meet on

o
2, as they must by § 166, 3. Hence

2
is on ov

171. Corollary. If a point
1
traces out a range whose

base is o
2 , its polar o

1
traces out a flat pencil whose base

is
2 , the pole of o

2 .

The relation between the range traced by the point O
t
and the

flat pencil described by o
x
is stated in the theorem of § 177.

172. Conjugate Points and Conjugate Lines. Two points

so situated that each is on the polar of the other are said

to be conjugate, and two lines so situated that each contains

the pole of the other are said to be conjugate.

Accordingly, harmonic conjugates are special cases of conjugates.
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173. Self-Polar, or Self-Conjugate, Triangle. If any point

Ov not on a conic, is taken, its polar Oj may be found. On
this line let any point

2, not on the conic, be taken, and

let its polar o2 be found. Then o
2
passes through Ov Let

the intersection of o
t
and o

2 be
3

.

The polar o
3
of

3
is the" line Oj02 , and 3

is conjugate

to both Oj and
2 . The triangle

1 2 3
is such that each

side is the polar of the op-

posite vertex. Every such

triangle is said to be self-

polar, or self-conjugate, with

respect to the conic. Evi-

dently there is an infi-

nite number of triangles

which are self-polar with respect to a given conic.

No self-polar triangle has two vertices inside the conic

;

for if one vertex is inside the curve, its polar in which the

other two vertices lie is entirely outside the curve.

If we should attempt to construct a self-polar triangle

all of whose vertices are outside the conic, we might

choose a point
1
outside the conic and draw its polar ov

Let A, B be the two points in which this line would cut

the conic. Then the other vertices 2, Os would be on o
t

and would be separated by A, B. If we should take
2

outside the conic, it would remain to determine whether S

would be inside or outside the conic; that is, whether

tangents could be drawn from 3 to the conic. The con-

siderations adduced thus far would not enable us to give

a sufficiently brief but complete discussion of this question,

but an application of principles of continuity, which have

not been developed in this book, would enable us to go

farther and to establish the proposition that every self-

polar triangle has one and only one vertex within the conic.
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Theorem. Diagonal triangle

174. The diagonal triangle of a complete quadrangle

inscribed in a conic is self-polar ; and, conversely, a self-polar

triangle is the diagonal triangle of an inscribed complete

quadrangle.

Proof. Let
1 2 3

(Fig. 1) be the diagonal triangle of a

complete quadrangle A
1
A

2
B

2
B

1
inscribed in a given conic.

From § 166, 2, it follows that O
x 2 3

is a self-polar triangle.

Conversely, let
1 2 3

(Fig. 2) be a self-polar triangle

with respect to a given conic.

From Av any point on the conic, draw A
1 2 , A^03 , and

let them meet the conic again in A
2 , B2

. Draw
2
B

2 ,

O
x
B

2 , 1
A

1, 3
A

2 , and let O
t
Av 3

A2
meet in Bv Also

let
3AV O

x 2
meet in K, let 2AV 3

Oj meet in L, and

let
1
AV 2Os meet in M.

Then (A^KOg) = - 1 = (A
x
A2 2

L).

Hence range A
1
B

2
K0

3
= range A

1
A2 2

L,

and the points A
2 , B2 , 1

are collinear.

Again, since range A
1
B

1
M0

1
= harmonic range A-^A^L

and M is on the polar of Ov then B
t

is on the conic.

Hence the quadrangle A
X
A

2
B

2
B

X
is inscribed.
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Theorem. Ranges and their conjugates

175. On a line the range of points and the range of their

conjugates with respect to a conic constitute an involution.

Proof. Let
2 be the pole of a line o2 with respect to

a given conic. Through
2
draw lines cutting the conic

in Av At ; and also in Bv B2
-, B[i ^2' 73" B"- Then

OjOjOg is the diagonal triangle of A
XAJB7

B
X ; 2

O
x 3

of

A
X
A

2
B'

2
B[; • ••. The pairs of points Ov 3 ; 0[, 0'

z \ • • •

are conjugate, and, associating with A
X
A

2 all lines through

2, we obtain all pairs of conjugates on o
2

.

But range O
x
O[0'

x
' • • . OsO^'

= pencil A
x
(O

x
O[0{'

.

,- , . ,
o

a
opj[...-)

- pencil A2 (Ox
O> 0{' ...

3O.^' ..
.)

x pencil M****** ' • •AW ' •

x pencil ^ (B.BJBJ' • • • ^A^r • •)

x rmge6,OjOj'...O
1 1

'O
1
"....
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Theorem. Pencils and their conjugates

176. The pencil of lines through a point and the pencil of

their conjugates with respect to a conic constitute an involution.

The proof of this dual of § 175 is left for the student.

The properties of poles and polars furnish one basis for the estab-

lishment of the validity of the Principle of Duality for figures in

a plane, and Poncelet practically used them in this way.

Theorem, point Describing a Range

177. If a point describes a range, the polar of the point

with respect to a conic describes a flat pencil which is projective

with that range.

O

Proof. Let O be the pole of the range, and let the point

take the positions Ov 2 , 3 , Ov • • •. Then its polar

always passes through 0. The polars of Ov 2 , 3 , Oi
•

intersect o, the base of the range, in 0[, 0%, 3 , 0[, • • •, the

conjugates of Ov Ov 3 , 4 , • • • respectively.

Then range 0^0^ • • ^ range 0[0^0[ ... § 175

= pencil 0J02V4"
Hence range

1 2 3
Oi

• • -^ pencil o
1
o
2
o
3
o
i

• • •.



162 POLES AND POLAES OF CONICS

178. Duality in Plane Figures. It is now possible to indi-

cate a line of argument by which the Principle of Duality

may be established for plane geometry. In the plane of a

given figure, composed of, or generated by, points and lines,

take any conic and construct the polar of every point and

the pole of every line. Then a new figure is obtained in

which there is a point for every line and a line for every

point of the first figure, and in which to the intersection of

any two lines of the first figure there corresponds the line

determined by the poles of these two lines in the second.

To any locus of points in the first figure there corresponds

an envelope of lines in the second. Hence it is evident that

a duality in figures exists.

179. Duality in Properties of Figures. Likewise, if any

nonmetric proposition is true for some or all of the points

and lines of the first figure in § 178, it follows that this figure

cannot be constructed by choosing arbitrarily in the plane the

sets of points and lines which constitute it, but that, certain

points and lines being selected, the choice of the remaining

ones is restricted. For the proposition, by its assertion of a

relation, or of relations, existing among the points and the

lines of a given figure, is a denial of the possibility of choos-

ing all of them arbitrarily. Hence the second figure is not

merely a set of lines and points, each chosen arbitrarily in the

plane. In fact, there exists a certain limitation upon the

choice of the lines and points of the second figure, and

the statement of this limitation constitutes the proposition

correlative to the one regarding the first figure. Hence
there is a duality in properties of figures.

180. Polar Reciprocal or Polar Dual. A figure obtained

from a given figure by the method explained in § 178 is

called the polar reciprocal or polar dual of the given figure.
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181. Center and Diameters of a Conic. As in some pre-

ceding cases, useful metric relations are obtained by con-

sideration of the elements at infinity. Thus, the line at

infinity has a pole, and from the property of the harmonic

range this pole is seen to bisect every chord of a conic

which passes through it. Because of this symmetry of the

curve with respect to the pole of the line at infinity, this

point is called the center of the conic. If the conic is

a parabola, the center is also the point of contact of the

parabola with the line at infinity; and since this point is

at infinity and the notion of symmetry, loses its usual force,

the parabola is generally said not to have a center. In the

case of the other conies the center is not at infinity, the

center of the ellipse being inside the curve and that of

the hyperbola being outside. In the case of the latter it

is the intersection of two tangents to the curve whose

points of contact are at infinity. These tangents are, of

course, the asymptotes.

Again, every point on the line at infinity has a polar

which passes through the center. The polar of a point at

infinity is called a diameter of a conic. In the case of a

parabola, since all the points at infinity are on the line at

infinity, the diameters intersect in a point at infinity and

hence are parallel. Also, any point on the line at infinity

being chosen, all lines through that point are parallel ; and

if any one of these lines meets the conic, the harmonic con-

jugate of the chosen point at infinity that is situated on

that line bisects the segment of it which is intercepted by

the curve. Hence, every diameter bisects each of the set of

parallel chords of the conic which passes through its pole.

Likewise, the tangents at the points in which a diameter

cuts the conic pass through the pole of that diameter ; that

is, they are parallel to the chords bisected by the diameter.
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182. Conjugate Diameters and Principal Axes. If two

diameters are conjugate lines with respect to a conic, each

diameter passes through the pole of the other, which is

the point at infinity, and so each is parallel to the chords

bisected by the other. Such diameters are called conjugate

diameters. According to § 176 they constitute an involu-

tion, and since, in general, only one pair of corresponding

lines of an involution is 'at right angles, in general only

one pair of conjugate diameters is at right angles. These

two diameters are called the principal diameters and form

the principal axes. Moreover, it follows from § 74 that if

there are more pairs of conjugate diameters which are at

right angles, all pairs have this property. In this case it

can be shown that the conic is a circle.

When the involution of diameters is hyperbolic, the

self-corresponding elements are the asymptotes ; and these

separate harmonically every pair of conjugate diameters^

Two conjugate diameters and the line at infinity consti-

tute a self-polar triangle, and of such a triangle just two

sides cut the conic. Hence both of two conjugate diam-

eters of an ellipse meet the curve, but only one of any

two conjugate diameters cuts the hyperbola.

Exercise 33. Review

1. Find the locus of the harmonic conjugates of a given

point with respect to a given pair of straight lines.

2. Find the point which is the harmonic conjugate of a

given point with respect to each of two given pairs of

straight lines.

3. Find the point which has an infinite number of harmonic

conjugates with respect to each of two given pairs of straight

lines, and find the locus of these conjugates.
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4. Find three points each of which is conjugate to the

other two with respect to a pair of opposite sides of a given

complete quadrangle.

5. Each of the three points found in Ex. 4 is conjugate to

the other two with respect to any conic which passes through

the four vertices of the quadrangle.

6. Given any five points, no four of which are collinear,

construct, with the ruler only, the polar of a given point with

respect to that conic.

7. Solve the dual of Ex. 6.

8. Construct a self-polar triangle for a given conic, using

the ruler only.

9. Construct the common self-polar triangle for all conies

which pass through four given points.

10. If all parts of a figure which consists of a conic and

a self-polar triangle are erased except the triangle and two

points of the curve, reconstruct the figure.

11. Through three given points construct a conic which has

a given point and a given line as pole and polar.

12. Solve the dual of Ex. 11.

13. Through two given points construct a conic which is

tangent to a given line and has a given point and a given line

as pole and polar.

14. Through four given points construct a conic which has

a given pair of points as conjugates.

15. Through four given points and through some pair (not

specified) of points of a given involution on a straight line

construct a conic.

16. Given four points Pv Pv P8 , Pi
and two fixed lines pv

p passing through P
1
and P

2
respectively, find the envelope of

the line joining the other intersections of these two lines with

a variable conic through the four points.
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17. Given the two points common to two conies and three

other points of each, find all the intersections of the conies.

18. Given five points of a conic, find any diameter and the

diameter conjugate thereto.

19. Given five points on a conic, construct the center, the

axis, and the asymptotes of the conic.

The student should consult § 70 and § 74.

20. If a conic has more than one pair of conjugate diam-

eters which are at right angles, the conic is a circle.

21. Given six points on a conic and the tangents at these

points, the Pascal line of the inscribed hexagon is the polar

of the Brianchon point of the circumscribed hexagon.

22. If the pole of the line P^P^ with respect to one conic

which passes through the points P , P
2 , Pa , Pt

coincides with

the pole of P
a
P

4
with respect to a second conic through these

points, the pole of PjP
2
with respect to the second conic coin-

cides with the pole of P
3
P

4
with respect to the first.

23. Construct a conic which has a given triangle as a self-

polar triangle and a given point and a given line as pole

and polar.

24. Construct a conic which has a given point as center

and a given self-polar triangle.

25. Construct a conic which has a given pair of lines as

conjugate diameters and a given point and a given line as pole

and polar.

26. Construct a conic that has each side of a given pentagon

as polar of the vertex opposite to it.

27. In the construction of Ex. 26 find the polar reciprocal of

the conic determined by the vertices of the pentagon.

28. If a moving point traces a given conic, find the envelope

of the polar of the point with respect to another given conic.

29. The lines joining the vertices of a triangle to the corre-

sponding vertices of the triangle polar to it are concurrent.



CHAPTER XIII

QUADRIC CONES

183. Properties of Quadric Cones. A large number of the

properties of quadric cones can be derived as duals of

those of the conic. Thus, it is evident that a quadric

cone is determined by its relation to certain sets of five

planes and lines. Moreover, the theorems of Pascal,

Brianchon, and Desargues, and their limiting cases, have

duals which relate to the tangent planes and generating

lines of the quadric cones.

In the problems of construction of the first order the

possibility of drawing lines through pairs of points and of

finding points as the intersections of lines was assumed.

For the corresponding problems of this chapter there

should be assumed the possibility of drawing lines common
to pairs of planes and of constructing planes determined

by pairs of lines.

In the problems of the second order the constructibility

of at least one conic, ordinarily a circle, was assumed. At
this point the corresponding assumption is that of the con-

structibility of at least one quadric cone. On the basis

of these assumptions the problems analogous to those of

Chapter X can be adequately treated.

Similarly, the theory of polar planes and lines of quad-

ric cones follows from that of poles and polars of conies,

and can be made to furnish an evidence of the truth of

the Principle of Duality for the bundle. The development

of the subject along these lines is left as an exercise.

167
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Theorem. Sections of Quadric cones

184. A quadric cone the vertex of which is not infinitely

distant may be so cut by a plane as to yield an ellipse, a

parabola, or a hyperbola.

Fig. 1

Proof. Every quadric cone can be generated by means

of the lines of intersection of corresponding planes of

projective axial pencils that belong in the same bundle,

and every plane section of a quadric cone is a conic.

Suppose now that a quadric cone (Fig. 1) is generated

from the intersections av a
2 , a

3 , • of pairs of correspond-

ing planes av a[ ; a
2 , a'

2 ; av a'
z ; • of two axial pencils

whose bases are the lines p andp'; and let the base of the

bundle be P, a point not at infinity.

First, to secure a plane section which is a hyperbola, let

ir be a plane not through P but parallel 'to a
x
and av

This plane cuts the cone in a conic, and since the plane

cuts a
x
and a

2 at infinity, the conic has two distinct points

at infinity. The conic is not a pair of straight lines, since

its projector from P is not a pair of planes.

Hence the conic is a hyperbola.
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Next, to obtain a section which is a parabola, let a[ be the

plane tangent to the cone (Fig. 2) along the generator av
This plane contains the whole of the line a

x
but meets

any other generator, as a2 , in only one point, namely, P.

Cut the cone by a plane a
x
parallel to a[. This plane

cuts any generator other than av as a
2 , at a finite distance

from P, and it cuts a
x
at infinity.

Hence the section of the cone has one and only one

point at infinity, and the conic is a parabola.

Fig. 2 Fig. 3

Finally, to obtain a section which is an ellipse, let 7r
2
be

a plane (Fig. 3), through P but not coincident with any

plane of either axial pencil, and let tt2
be a plane not

through.P but parallel to 7r2
at a finite distance from it.

The intersection of any pair of corresponding planes, as

a and a', since it meets ir'
%
at P, cannot be parallel to 7r2

.

Hence the intersection of 7r2
and the cone has no point

• at infinity, and the conic is an ellipse.

If the vertex of the cone is at infinity, the generating lines are

all parallel. It will be seen (§ 186) that the surface must contain no,

one, or two infinitely distant generators.' In these cases the sections

made by planes not parallel to the generators will be all ellipses, all

parabolas, or all hyperbolas respectively. Hence the theorem fails.
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185. Axes of a Quadric Cone. Let o be a line through

the vertex of a quadric cone, and let w be the polar

plane of o with respect to the cone. In to there is one

line, and there may be many lines, perpendicular to o.

Through o and a line o' in a> perpendicular to o pass a

plane tt, and let I and I' be the lines in which the plane ir

cuts the cone. Then the lines o and o' are conjugates with

respect to I and I', and, being perpendicular to each other,

they bisect the angles formed by I and I'. Hence, through

any line o there is one plane which cuts the cone in lines

that form an angle of which a is the bisector.

If and only if the line o is perpendicular to its polar

plane », all planes through o cut the cone in lines that

make an angle of which o is the bisector. In this case the

line o is an axis of symmetry with respect to the cone.

Manifestly every axis of symmetry is perpendicular to

its polar plane. Also, a line o' parallel to o, an axis of

symmetry, cuts a cone in two points, and the segment

joining these points is bisected by the polar plane, since

the axis of symmetry, the line joining the vertex to the in-

tersection of the plane a> with o', and the lines I and I' are

harmonic. Hence the polar plane of an axis of symmetry

is a plane of symmetry.

It can be shown that every quadric cone has one axis

Oj of symmetry and a plane io
1
of symmetry which is per-

pendicular to it. The plane Wj cuts the cone in a conic

that has two principal axes which we may call o2 and o
3.

Of the lines ov o
2 , o

z each pair is conjugate to the third

line and determines the polar plane of this line. Moreover,

each of these polar planes is perpendicular to its polar line,

and hence to the other two polar planes. There are, there-

fore, three axes of symmetry, perpendicular each to each,

and three planes of symmetry, perpendicular each to each.
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186. Cylinders. Hitherto it has been assumed that the
axes of the generating axial pencils intersect in the finite

part of space. If, however, the axes of the generating axial

pencils are parallel, then all the generating lines are parallel

to them, and the vertex of the surface is at infinity. In
this case the surfaces generated are called cylinders.

Hyperbolic Cylinder Parabolic Cylinder Elliptic Cylinder

Cylinders are classified with reference to their relation

to the plane at infinity. The plane at infinity may cut

the cylinder in two, one, or no straight lines. In these

cases a section perpendicular to the generating lines of

the cylinder is a hyperbola, a parabola, or an ellipse

respectively; and the cylinder is said to be hyperbolic,

parabolic, or elliptic, as the case may be.

In the case of a cylinder the plane at infinity and cer-

tain of its lines are in the bundle to which the cylinder

belongs. The plane at infinity has a polar line which is

an axis of symmetry and is called the axis of the cylinder.

It can be shown that certain planes through this axis and

all planes perpendicular to it are planes of symmetry. In

the case of the parabolic cylinder the polar line of the

plane at infinity is at infinity and lies in the cylinder.
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Exercise 34. Quadric Cones

1. Prove the theorem regarding quadric cones which corre-

sponds to Steiner's theorem regarding conies.

2. Every conic surface of the second class is of the second

order. Prove also the converse.

3. The hexahedral angle whose faces are determined by
the six pairs of alternate edges of another hexahedral angle

which is inscribed in a quadric cone has its faces tangent to a

quadric cone.

4. Inscribe in a quadric cone a trihedral angle whose three

edges shall be in three given planes.

5. If a variable simple four-flat so moves as always to be

circumscribed about a given quadric cone, while three of its

edges move each in one of three fixed coaxial planes, then

the fourth edge moves on a fourth fixed plane coaxial with

the three given cones.

6. State the properties of polar lines and planes of quadric

cones corresponding to those of poles and polars of conies which

are given in §§ 166 and 167.

7. Find the points of intersection of a given straight line

with a quadric cone of. which five determining elements are

also given.

8. In a bundle a
lt /3V yt

and a
2 , /32 , y2

are two sets of fixed

coaxial planes. Two planes ir and 7r
2
so move that the lines

determined by w
1
and av 7r

2
and «

2 ; ir
x
and /3j, 7r

2
and /82 ;

•jr
l
and yv 7r

2
and y2

lie in three coaxial planes. Find the surface

generated by the line common to jt
1
and ir

2
.

9. In a bundle the edges of a trihedral angle, whose planes

are a, /J, y and which is self-polar with respect to a given quadric

cone, determine with any line o the planes a', /?', y'. If the

polar plane of o is o>, the pairs of lines determined by <u with

a and a', by <u with /? and /?', and by <u with y and y' form a

pencil in involution.
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SKEW RULED SURFACES

187. Skew Ruled Surfaces. The third set of figures

which were projectively generated was found to consist of

the ruled surfaces of the second order that are not conic.

Before discussing these we shall consider the classification

of ruled surfaces in general.

One classification of ruled surfaces is based upon the

law governing the motion of the generating line. At any

instant the motion of this line may be a revolution about

one of its own points or it may be a displacement by

virtue of which the line immediately ceases to intersect

its present position. In the former case it is sometimes

said that every pair of consecutive generators intersect,

and in the latter case it is said that no two consecutive

generators intersect. Surfaces generated in the first way

are called developable surfaces, and those generated in the

second way are called skew surfaces. Cones and cylinders

are examples of developable surfaces, but they are of a

special type, inasmuch as each of their generators inter-

sects every other one. Likewise, skew ruled surfaces of the

second order and second class are special in character, for

no generator intersects any other of the set, even though

they be not consecutive. Generators usually cut other

generators of the set if the latter are not consecutive.

In this chapter only a few specially interesting facts

regarding the surfaces of the second order and second

class will be established.

173
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Theorem. Second Set of generating Lines

188. Every skew ruled surface generated by the intersec-

tions of corresponding planes of two projective axial pencils

has also a second set of generating lines whose relation to the

surface is similar to that of the first set. Each member of

either set of generators intersects no others of its own set, but

intersects every one of the other set. Through every point of

the surface there pass two generators, one of each set.

Proof. Every plane through any generating line a of

the surface cuts the surface along the line a and also

along a second line av and nowhere else.

Moreover, the line a
1
cuts each of the generating lines

that have been noted. The infinitely many planes through

a cut the surface in infinitely many lines av a
2 , a

3, • •,

each of which cuts every one of the. generators; and

every point of the surface lies on one and only one of

the new lines.

No two of these lines intersect; for if they did, all the

generators would lie in the plane determined by them.
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Consider now the two sets of points Bv Bv B
3 , • .

and Cv C
2 , C3 , • in which the lines av a

2 , a3 , • • intersect

two other generators b and c.

These sets of points are the intersections of the gener-

ators b and c with the planes of the axial pencil whose

base is a and whose planes pass through the lines av a
2 ,

a
3 , • • • ; and consequently they constitute perspective (but

not coplanar) ranges.

Then the axial pencil whose base is b and whose planes

pass through Cv C
2 , C3 , • • and the axial pencil whose

base is c and whose planes pass through Bv B2 , B3 , • •
,

being perspective respectively with the ranges Cl
C2C3

- • •

and B
1
B

2
B

S
• • •, are projective with each other.

Corresponding planes of these axial pencils intersect in

the lines av a
2 , a

3 , • • •, which are therefore generating

lines of a skew quadric ruled surface.

The latter skew ruled surface must coincide with the

original one, since the lines av a
2 , a

3 , • contain all the

points of the original ruled surface, and no others. Hence

these lines must constitute a second set of generators for

that ruled surface.

189. Corollary. The lines of either set of generators

determine projective ranges on any two lines of the other set.

190. Conjugate Reguli. Two reguli which are related as

are the two in § 188 are called conjugate reguli.

The theorem of § 188 may be restated as a corollary to

this definition as shown below.

191. Corollary. Every shew ruled surface of the second

order carries two conjugate reguli. Each line of either regulus

intersects no lines of its own regulus, but intersects each line

of the other regulus. Through every point of the surface there

pass two lines, one from each regulus.
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Theorem, determination by Generators

192. Given three straight lines no two of which are eoplanar,

there exists one and only one shew guadric ruled surface of which

each of these lines is a generator.

A s -a

Proof. Let a, b, c be three straight lines no two of which

are coplanari

Through each point of a one line and only one can be

drawn to meet all three of the lines.

Let pv p2 , and ps
be three lines which meet a, b, c.

Then px
together with the three lines a, b, c, and p2

together with the same lines, determine triads of planes of

axial pencils whose bases are px
and p2

. These triads

determine a projectivity between the pencils, and this

projectivity determines one skew quadric ruled surface of

which a, b, c are generators.

Any two corresponding planes of the projective axial

pencils intersect in a line that meets px
and pv This line

also meets p3 ; for if p3
meets a, b, c in A

3 , B3 , C
s
respec-

tively, the two axial pencils above mentioned are each per-

spective with the same range on p3 , the perspectivities being

determined by the correspondence of A
3 , B3 , C3 to the planes

px
a, px

b, px
c in the one case, and the planes p2

a, p%b, p2
c in

the other. It follows that corresponding planes cut pz
in

the same point, and hence their line of intersection cuts ps
.

Accordingly, the surface is uniquely determined by the

three generators a, b, c.
...
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Hyperbolic Paraboloid, the conjugate reguli beingformed
by rods. Certain sections are parabolas, other sections

are hyperbolas. The curvature of the surface is not
secured by the pressure ofone set ofrods upon the other

Hyperboloid of One Sheet, the conjugate reguli being

formed by straight rods. The surface in the neighbor-

hood of its center of symmetry is shown. Horizontal

sections are ellipses, vertical sections are hyperbolas

ingiillMffl^^
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193. Skew Quadric Ruled Surfaces Classified. These sur-

faces are classified according to the nature of their sections

by the plane at infinity. As has been shown, any plane

section of one of these surfaces is a conic and degenerates

into two straight lines if the cutting plane contains a

generator. The surfaces are, therefore, of two sorts:

1. Hyperbolic paraboloids, or those whose intersections

with the plane at infinity are pairs of generators.

2. Hyperboloids of one sheet, or those whose intersections

with the plane at infinity are nondegenerate conies.

It may be noted that if a hyperbolic paraboloid is regarded

as generated by the joining lines of corresponding points of

two projective ranges, the points at infinity of the ranges

are found to be corresponding points. Hence in this case

(and in this case only) the ranges are similar. Accord-

ingly, if corresponding points of two similar (but not

coplanar) ranges are connected by threads, a good model

of a hyperbolic paraboloid may be constructed.

To exhibit both sets of generating lines it is better to use a
quadrilateral ABCD hinged at two opposite vertices, as B and D, so

that the triangles ABD,
CBD can be adjusted to g?n' tfD

lie in different planes. A^S*. ,» ]/£ll
Congruent ranges can be

taken on AB and CD and

also on BC and DA. Cor-

responding points can be

joined by strings, and in

this manner an excellent

model can be constructed

with very little trouble.

Directions for constructing a string model of the hyperboloid of

one sheet are not so easily given. The existence of such a surface is

evident, since it is generated by the lines joining corresponding

points of projective ranges which are not coplanar and not similar.
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JBSiiDB^mnmim mmmium mnmninni|_

Hyperbolic Paraboloid, the conjugate reguli beingformed
by straight rods. The surface near the vertex, or

saddle point, is shown. Certain sections through the

vertex are parabolas, others are hyperbolas

Hyperbolic Paraboloid, the conjugate reguli beingformed

by strings. Ifevery string in either set is cut, the strings

in the other set retain their positions

^^m^smmss m̂rnmssm m̂mmsm^mm^^
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Exercise 35. Skew Ruled Surfaces

1. A regulus is determined by two nonintersecting lines

and three noncollinear points, no two of which are coplanar

with any of the lines.

2. If a regulus contains a line at infinity, the conjugate

regulus also contains a line at infinity.

3. Determine three pairs of quadric ruled surfaces which

have in common two given noncoplanar lines and also respec-

tively no, one, and two generators of the other set.

4. Determine a quadric ruled surface which contains two

given noncoplanar lines and a given point exterior to them.

How many such surfaces are there ? Find any additional lines

which are common to such surfaces.

5. If four generators of a regulus cut one generator of

the conjugate regulus in a harmonic range, they cut every

generator of the conjugate regulus in a harmonic range.

Four generators of a regulus which have the property mentioned in

Ex. 5 are called harmonic generators.

6. Given any three lines in space, no two of which are

coplanar, find a fourth line which, with the three given lines,

constitutes a set of harmonic generators of a regulus.

7. If a line so moves as constantly to intersect each of two

noncoplanar lines and also to remain parallel to a given plane,

the line generates a hyperbolic paraboloid.

8. If a range and a flat pencil which do not lie in the same

plane or in parallel planes are projective, and if from each

point of the range a line is drawn parallel to the correspond-

ing line of the flat pencil, these parallel lines all lie on a

hyperbolic paraboloid.

9. The locus of the harmonic conjugates of any point with

respect to a ruled surface is a plane.

10. The lines (or planes) of any bundle which are tangent

to a quadric ruled surface generate a quadric cone.



HISTORY OF PROJECTIVE GEOMETRY

The history of geometry may be divided roughly into

four periods: (1) The synthetic geometry of the Greeks,

including not merely the geometry of Euclid but the

work on conies by Apollonius and the less formal contri-

butions of many other writers ; (2) the birth of analytic

geometry, in which the synthetic geometry of Desargues,

Kepler, Roberval, and other writers of the seventeenth

century merged into the coordinate geometry of Descartes

and Fermat ; (3) the application of the calculus to geom-

etry,— a period extending from about 1650 to 1800, and

including the names of Cavalieri, Newton, Leibniz, the Ber-

noullis, L'HQpital, Clairaut, Euler, Lagrange, and D'Alem-

bert, each one, especially after Cavalieri, being primarily

an analyst rather than a geometer; (4) the renaissance

of pure geometry, beginning with the nineteenth century

and characterized by the descriptive geometry of Monge,

the projective geometry of Poncelet, the modern synthetic

geometry of Steiner and Von Staudt, the modern analytic

geometry of Pliicker, the non-Euclidean hypotheses of

Lobachevsky, Bolyai, and Riemann, and the laying of the

logical foundations of geometry,— a period of remarkable

richness in the development of all phases of the science.

It is in this fourth period that projective geometry has

had its development, even if its origin is more remote.

The origin of any branch of science can always be traced

far back in human history, and this fact is patent in the

case of this phase of geometry. The idea of the projection

181
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of a line upon a plane is very old. It is involved in the

treatment of the intersection of certain surfaces, due to

Archytas, in the fifth century B.C., and appears in various

later works by Greek writers. Similarly, the invariant prop-

erty of the anharmonic ratio was essentially recognized

both by Menelaus in the first century A.D. and by Pappus

in the third century. The notion of infinity was also famil-

iar to several Greek geometers, so that various concepts

that enter into the study of projective geometry were com-

mon property long before the science was really founded.

One of the first important steps to be taken in modern

times, in the development of this form of geometry, was

due to Desargues, a French architect. In a work on conic

sections, published in 1639, Desargues set forth the founda-

tion of the theory of four harmonic points, not as done

today, but based on the fact that the product of the dis-

tances of two conjugate points from the center is con-

stant. He also treated of the theory of poles and polars,

although not using these terms. In 1640 Pascal, then only

a youth of sixteen, published a brief essay on conies setting

forth the well-known theorem that bears his name.

The descriptive geometry of Monge is a kind of pro-

jective geometry, although it is not what we ordinarily

mean by this term. He was a French geometer of the

period of the Revolution, and had been in possession of

his theory for over thirty years before the publication of

his "G6ometrie Descriptive " (1795). It is true that certain

of the features of this work can be traced back to De-

sargues, Taylor, Lambert, and Frezier, but it was Monge
who worked out the theory as a science. Inspired by the

general activity of the period, but following rather in the

steps of Desargues and Pascal, Carnot treated chiefly of

the metric relations of figures. In particular he investigated



HISTOEY 183

these relations as connected with the theory of transver-

sals,— a theory whose fundamental property of a four-

rayed pencil goes back to Pappus, and which, though
revived by Desargues, was set forth for the first time in

its general form by Carnot in his " Geometrie de Posi-

tion " (1803), and supplemented in his " Theorie des

Transversales " (1806). In these works Carnot introduced

negative magnitudes, the general quadrilateral, the general

quadrangle, and numerous other similar features of value

to the elementary geometry of today.

Projective geometry had its origin somewhat later than

the period of Monge and Carnot. Newton had discovered

that all curves of the third order can be derived by central

projection from five fundamental types. But in spite of this

the theory attracted so little attention for over a century

that its origin is generally ascribed to Poncelet. A pris-

oner in the Russian campaign, confined at Saratoff on the

Volga (1812-1814), " prive," as he says, " de toute espece

de livres et de secours, surtout distrait par les malheurs

. de ma patrie et les miens propres," Poncelet still had the

vigor of spirit and the leisure to conceive the great work,

"Traite des Propriete*s Projectives des Figures," which he

published in 1822. In this work was first made promi-

nent the power of central projection in demonstration and

the power of the principle of continuity in research. His

leading idea was the study of projective properties, and

as a foundation principle he introduced the anharmonic

ratio,— a concept, however, which dates back to Menelaus

and Pappus, and which Desargues had also used. Mobius,

following Poncelet, made much use of the anharmonic

ratio in his " Barycentrische Calcul" (1827), but he gave

it the name Doppelschnitt^VerJialtniss (ratio bisectionalis),

a term now in common use under Steiner's abbreviated
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form DoppelverMltniss. The name anharmonic ratio or

anharmonic function (rapport anharmonique, or fonction

anharmonique') is due to Chasles, and cross-ratio was sug-

gested by Clifford. The anharmonic point-and-line prop-

erties of conies have been elaborated by Brianchon, Chasles,

Steiner, Dupin, Hachette, Gergonne, and Von Staudt. To
Poncelet is due the theory of figures homologiques, the per-

spective axis and perspective center (called by Chasles

the axis and center of homology), an extension of Carnot's

theory of transversals, and the cordes iddales of conies, which

Pliicker applied to curves of all orders. Poncelet also

discovered what Salmon has called " the circular points at

infinity," thus completing and establishing the first great

principle of modern geometry, — the principle of continuity.

Brianchon (1806), through his application of Desargues's

theory of polars, completed the foundation which Monge
had begun for Poneelet's theory of reciprocal polars (1829).

Steiner (1832) gave the first complete discussion of the

projective relations between rows, pencils, etc., and laid the

foundation for the subsequent development of pure geom-

etry. He practically closed the theory of conic sections, of

the corresponding figures in three-dimensional space, and

of surfaces of the second order. With him opens the period

of special study of curves and surfaces of higher order. His

treatment of duality and his application of the theory of pro-

jective pencils to the generation of conies are masterpieces.

Cremona began his publications in 1862. His elementary

work on projective geometry (1875) is familiar to English

readers in Leudesdorf's translation. The recent contribu-

tions have naturally been of an advanced character, seek-

ing to lay more strictly logical foundations for the science,

and in this line the American work by Professors Veblen

and Young is noteworthy.
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