NAVAL POSTGRADUATE SCHOOL Monterey, California

TECHNICAL

FIRST PASSAGE TIMES FOR COMBINATIONS OF RANDOM LOADS

ΒY

P. A. JACOBS

FEBRUARY 1985

Approved for public release; distribution unlimited

Prepared for:

Cheif of Naval Research Arlington, VA 22217 National Science Foundation Washington, DC 20550

Feddocs D 208.14/2 NPS-55-85-002

NAVAL POSTGRADUATE SCHOOL Monterey, California

Commodore R. H. Shumaker Superintendent David A. Schrady Provost

Reproduction of all or part of this report is authorized.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL NONTEREY CA 93943-5101

REPORT DOCUMENTATION R	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
NPS 55_25_002	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
		5. TYPE OF REPORT & PERIOD COVERED		
First Passage Times for Combi	nations of	Technical		
Random Loads.		6. PERFORMING ORG. REPORT NUMBER		
	······			
		6. CONTRACT OF GRANT NUMBER(8)		
P. A. Jacobs		NSF ECS 82 16852		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	·····	10. PROGRAM ELEMENT, PROJECT, TASK		
Naval Postgraduate School		$61153N \cdot RR014 - 05 - 01$		
Monterey, CA 93943		N0001485WR24061		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
		February 1985		
		13. NUMBER OF PAGES		
		39		
Office of Naval Research	from Controlling Office)	19. SECURITY CLASS. (of this report)		
Arlington, VA 22217		UNCLASSIFIED		
National Science Foundation		15. DECLASSIFICATION DOWNGRADING		
Washington, DC 20550		JOREOULL		
17. DISTRIBUTION STATEMENT (of the abstract entered I	n Block 20, if different fro	m Report)		
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
First Passage Time, regenera loads, Asymptotic exponentia	tive process, lity	combinations of random		
and the second sec				
20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)			
Structures are subject sources. In many instances apparently random fashion. stress put on the structure be described by a regeneration first time until the stress level x is studied. Asympto	to changing l these loads f Models are co by various lo ve process. on the struct tic propertie	oads from various luctuate in time in an nsidered for which the ads simultaneously can The distribution of the ure exceeds a given s of the distribution		
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOL	ETE UNO	(over)		

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

(cont.)

are given for a large stress level x and for the tail of the distribution for fixed finite stress level x. Simulation results are given to assess the accuracy of using the asymptotic results to approximate the distribution.

FIRST PASSAGE TIMES FOR COMBINATIONS OF RANDOM LOADS

by

P.A. Jacobs Operations Research Department Naval Postgraduate School Monterey, CA 93943

0. ABSTRACT

Structures are subject to changing loads from various sources. In many instances these loads fluctuate in time in an apparently random fashion. Models are considered for which the stress put on the structure by various loads simultaneously can be described by a regenerative process. The distribution of the first time until the stress on the structure exceeds a given level x is studied. Asymptotic properties of the distribution are given for a large stress level x and for the tail of the distribution for fixed finite stress level x. Simulation results are given to assess the accuracy of using the asymptotic results to approximate the distribution.

.

1. INTRODUCTION

Many physical structures are subject to varying physical loads from various sources: wind, snow, and earthquakes being examples. In many instances the total load experienced by a structure varies in time in an apparently random fashion. Certain load components, e.g. those of snow and ice accumulation, vary rather slowly; others such as those associated with winds or earthquakes occur more nearly as impulses. The problem is to design structures to withstand a coincidence of such loads with approximately a prescribed (high) probability. In engineering terms we wish to work towards developing a rational safety factor criterion for designing structures to withstand the combination of loads anticipated.

In this paper we will study the time for the load combination process, $\{X(t); t \ge 0\}$ to exceed a given stress level for the case in which the load combination process is a regenerative process taking non-negative values (c.f. Cinlar [1975], page 298). Many of the models for load combinations that have been studied are regenerative processes; (cf. Pearce and Wen [1983], Wen [1981], Shanthikumar and Sumita [1983]).

EXAMPLE 1. The load combination process is the superposition of two load types: shock loads and constant loads. A constant load (e.g. caused by snow or rain accumulation) exists at one level for a random time and then changes to a new level. Let Y(t) denote the constant load magnitude at time t. The instants of change in the magnitude of Y(t) occur according to

1

a renewal process with inter-renewal distribution H; successive magnitudes of the constant load process are independent identically distributed with distribution F. Impulse or "shock" loads (e.g. caused by wind gusts or earthquakes) occur at random moments and have time duration of length 0. Let Z(t) denote the shock load magnitude at time t. Given the constant load magnitude at time t, Y(t) = y, the probability a shock load will occur in the time interval [t,t+h] is $\mu(y)h + o(h)$; the magnitude of the shock load is conditionally independent of everything given Y(t) = y and has distribution G(y;·).

The load combination process magnitude at time t is X(t) = Y(t) + Z(t). {X(t); t ≥ 0 } is a regenerative process with regeneration times the times of change of the constant load process.

Gaver and Jacobs [1981] studied a special case of the above model in which the interrenewal distribution H is exponential, and the shock load process is a compound Poisson process independent of the constant load process with shock arrival rate μ and magnitude distribution function G. Other similar load combination models have been studied in the past; cf. Peir and Cornell [1973], Wen [1977], Pearce and Wen [1983].

Let X(t) denote the magnitude of the load combination process at time t. The process {X(t), t ≥ 0 } is assumed to be a regenerative process. Let

 $T_x = \inf\{t \ge 0: X(t) \ge x\}$, (1.1)

the first time the load combination exceeds a level x.

2

Section 2 is concerned with asymptotic distribution of T_x as $x \to \infty$. It is shown that under certain assumptions the distribution of the normalized random variable $T_x(E[T_x]^{-1})$ is approximately unit exponential for large x, and error bounds on the rate of convergence are obtained. This result is related to that of Keilson [1979, page 134].

In Section 3 the tail of the distribution of T_x for finite x, $P\{T_x > t\}$, will be studied. An asymptotic result concerning the exponentiality of $P\{T_y > t\}$ for large t is given.

In Section 4 simulation results are presented to study the accuracy of using the two asymptotic results to approximate the distribution of T_x .

2. THE DISTRIBUTION OF THE FIRST PASSAGE TIME FOR THE LOAD COMBINATION PROCESS

Let {X(t); $t \ge 0$ } be a regenerative process taking non-negative values representing the load combination process; [cf. Cinlar [1975], page 298]. Let S_n denote the nth regeneration time; {S_n} is a renewal process. We will assume there is a regeneration at time 0. Let T_x be as in (1.1) and put $\phi(\xi) = E[exp(i\xi T_x)]$, the Fourier transform of T_y. A renewal theoretic argument yields

$$\phi(\xi) = E[\exp\{i\xi T_{x}\}; T_{x} \leq S_{1}] + E[\exp\{i\xi T_{x}\}; S_{1} < T_{x}]$$
(2.1)

 $= E[exp\{i\xi T_x\}; T_x \le S_1] + E[exp\{i\xi S_1\}; S_1 < T_x]\phi(\xi)$

Thus,

$$\phi(\xi) = \frac{E[e^{i\xi T_{x}}; T_{x} < S_{1}]}{\frac{i\xi S_{1}}{1 - E[e^{i\xi S_{1}}; S_{1} < T_{x}]}}$$
(2.2)

Similarly, if $m(x) = E[T_x]$, then

$$m(x) = E[T_{x}; T_{x} \leq S_{1}] + E[T_{x}; T_{x} > S_{1}]$$
(2.3)
$$= E[T_{x}; T_{x} \leq S_{1}] + E[S_{1}; T_{x} > S_{1}]$$
$$+ P\{T_{x} > S_{1}\}m(x).$$

Therefore,

$$m(x) = \frac{E[min(T_x, S_1)]}{1 - P\{T_x > S_1\}} = \frac{E[min(T_x, S_1)]}{P\{T_x \le S_1\}} .$$
(2.4)

The following assumptions will be made for the remainder of this paper.

$$0 < E[S_1^2] < \infty$$
; (2.5)

$$\lim_{X \to \infty} \mathbb{P}\{\mathbf{T}_{X} \leq \mathbf{S}_{1}\} = 0 \quad . \tag{2.6}$$

It now follows from (2.4)-(2.6) that

$$\lim_{X \to \infty} m(x) = \infty .$$
 (2.7)

LEMMA 1.

$$\frac{1}{|\xi|} |\phi(\frac{\xi}{m(x)} - \frac{1}{1 - i\xi}| E[S_1; S_1 < T_x]$$

$$\leq \beta(x) \frac{E[S_1^2]}{2E[\min(S_1, T_x)]} + E[S_1^2]^{1/2} \beta(x)^{1/2}$$

$$+ |\xi| \beta(x)^{3/2} \frac{E[S_1^2]^{1/2}}{2E[\min(S_1, T_x)]}$$

where $\beta(\mathbf{x}) = P\{T_{\mathbf{x}} \leq S_1\}$.

Proof. It follows from (2.2) that there are random variables ϵ_1 and ϵ_2 such that

$$\begin{split} \varphi\left(\frac{\xi}{m(x)}\right) &= E\left[1 + \frac{i\xi}{m(x)} T_{x} + \varepsilon_{1}; T_{x} \leq S_{1}\right] \\ &\times \left[1 - E\left[1 + \frac{i\xi}{m(x)} S_{1} + \varepsilon_{2}; S_{1} < T_{x}\right]\right]^{-1} \\ &= \left[P\left\{T_{x} \leq S_{1}\right\} + \frac{i\xi}{m(x)} E\left[T_{x}; T_{x} \leq S_{1}\right] + E\left[\varepsilon_{1}; T_{x} \leq S_{1}\right]\right] \\ &\times \left[P\left\{T_{x} \leq S_{1}\right\} - \frac{i\xi}{m(x)} E\left[S_{1}; S_{1} < T_{x}\right] - E\left[\varepsilon_{2}; S_{1} < T_{x}\right]\right]^{-1} \\ &= (m(x)P\left\{T_{x} \leq S_{1}\right\} + i\xi E\left(T_{x}; T_{x} \leq S_{1}\right) + m(x)E\left[\varepsilon_{1}; T_{x} \leq S_{1}\right]\right) \\ &\times \left[m(x)P\left\{T_{x} \leq S_{1}\right\} - i\xi E\left[S_{1}; S_{1} < T_{x}\right] - m(x)E\left[\varepsilon_{2}; S_{1} > T_{x}\right]\right]^{-1} \end{split}$$

The difference between the Fourier transform of $T_x(E[T_x]^{-1})$ and that for a unit exponential is

$$[(a + i\xi b) \times (c - i\xi d)^{-1}] - (1 - i\xi)^{-1}$$

$$= [(a - c + \xi^{2}b) + i\xi(b - a + d)] \times [(c - i\xi d)(1 - i\xi)]^{-1}$$

$$= \frac{NUM}{DEN} \cdot$$
(2.9)

The term

$$\begin{aligned} a - c + \xi^{2}b &= m(x) P\{T_{x} \leq S_{1}\} + m(x) E[\varepsilon_{1}; T_{x} \leq S_{1}] \\ &- m(x) P\{T_{x} \leq S_{1}\} + m(x) E(\varepsilon_{2}; S_{1} \leq T_{x}] \\ &+ \xi^{2} E[T_{x}; T_{x} \leq S_{1}] \\ &= m(x)([E[\varepsilon_{1}; T_{x} \leq S_{1}] + E[\varepsilon_{2}; S_{1} \leq T_{x}]) \\ &+ \xi^{2} E[T_{x}; T_{x} \leq S_{1}]. \end{aligned}$$
(2.10)

It follows from (2.4) that the term

$$b - a + d = E[T_{x}; T_{x} \le S_{1}] - [m(x)P\{T_{x} \le S_{1}\} + m(x)E[\varepsilon_{1}; T_{x} \le S_{1}]]$$
$$+ E[S_{1}; S_{1} < T_{x}]$$
(2.11)

$$b - a + d = E[min(T_x, S_1)] - E[min(T_x, S_1)] - m(x)E[\varepsilon_1; T_x \le S_1]$$
$$= -m(x)E[\varepsilon_1; T_x \le S_1].$$

Thus,

$$|\text{NUM}|^{2} = \{m(x) (E[\varepsilon_{1}; T_{x} \leq S_{1}] + E[\varepsilon_{2}; S_{1} < T_{x}])$$
(2.12)
+ $\xi^{2} E[T_{x}; T_{x} \leq S_{1}]\}^{2} + \xi^{2} (-m(x) E[\varepsilon_{1}; T_{x} \leq S_{1}])^{2}.$

From Lemma 1 on page 512 of Feller [1971]

$$E[|\epsilon_{1}|; T_{x} \leq S_{1}] \leq \frac{1}{2} (\frac{\xi}{m(x)})^{2} E[T_{x}^{2}; T_{x} \leq S_{1}]$$
(2.13)

$$E[|\epsilon_{2}|; S_{1} < T_{x}] \leq \frac{1}{2} (\frac{\xi}{m(x)})^{2} E[S_{1}^{2}; S_{1} < T_{x}] . \qquad (2.14)$$

Thus

$$|\text{NUM}| \leq \frac{1}{2} \left(\frac{\xi^2}{m(x)} \right) \left(\mathbb{E} \left[T_x^2; T_x \leq S_1 \right] + \mathbb{E} \left[S_1^2; S_1 < T_x \right] \right)$$
(2.15)
+ $\xi^2 \mathbb{E} \left[T_x; T_x \leq S_1 \right] + |\xi| \frac{\xi^2}{m(x)} \frac{1}{2} \mathbb{E} \left[T_x^2; T_x \leq S_1 \right].$

Further,

$$|\mathbf{c} - \mathbf{i}\xi \mathbf{d}| \geq |\xi| \mathbf{E}[\mathbf{S}_1; \mathbf{S}_1 < \mathbf{T}_x] . \qquad (2.16)$$

Thus

$$\begin{aligned} |\frac{a+i\xi b}{c-i\xi d} &- \frac{1}{1-i\xi} | E[S_1; S_1 < T_x] \\ &\leq \frac{|\xi|}{m(x)} \frac{1}{2} (E[T_x^2; T_x \le S_1] + E[S_1^2; S_1 < T_x]) \\ &+ |\xi| E[T_x; T_x \le S_1] + \frac{\xi^2}{m(x)} \frac{1}{2} E[T_x; T_x \le S_1]. \end{aligned}$$
(2.17)

Application of Schwartz' Inequality yields

$$\frac{1}{|\xi|} |\phi(\frac{\xi}{m(x)}) - \frac{1}{1 - i\xi}| E[S_1; S_1 < T_x]$$

$$\leq \frac{1}{2m(x)} E[S_1^2] + (1 + \frac{|\xi|}{2m(x)}) E[T_x; T_x \leq S_1]$$

$$\leq \frac{1}{2m(x)} E[S_1^2] + (1 + \frac{|\xi|}{2m(x)}) (E[S_1^2]^{1/2} P\{T_x \leq S_1\}^{1/2}).$$

Let $\beta(x) = P\{T_x \leq S_1\}$. Then

$$m(x) = \frac{E[min(T_x, S_1)]}{\beta(x)} .$$
 (2.19)

Thus,

$$\frac{1}{|\xi|} |\phi(\frac{\xi}{m(x)}) - \frac{1}{1 - i\xi}| E[S_1; S_1 < T_x]$$

$$\leq \beta(x) \frac{E[S_1^2]}{2E[\min(S_1, T_x)]} + E[S_1^2]^{1/2} \beta(x)^{1/2}$$

$$+ |\xi| \frac{\beta(x)^{3/2} E[S_1^2]^{1/2}}{2E[\min(S_1, T_x)]} .$$
(2.20)

THEOREM 1. Under Assumptions (2.5)-(2.6)

$$\left| P\{\frac{T_{x}}{m(x)} \leq y\} - (1 - e^{-y}) \right| \leq O(P\{T_{x} \leq S_{1}\}^{1/10})$$
.

Proof. It follows from Lemma 1 that

$$\begin{split} |\xi|^{-1} e^{i\xi} |E[exp\{i\xi\frac{T_{x}}{m(x)}\}] &- (1-i\xi)^{-1}) |E[S_{1};S_{1} < T_{x}] \quad (2.21) \\ &\leq |\xi| (\beta(x)) \frac{E[S_{1}^{2}]}{2E[min(S_{1},T_{x})]} + E[S_{1}^{2}]^{1/2} \beta(x)^{1/2}) \\ &+ |\xi|^{2} (\beta(x))^{3/2} \frac{E[S_{1}^{2}]^{1/2}}{2E[min(S_{1},T_{x})]} \end{split}$$

where $\beta(x) = P\{T_x \le S_1\}$ as before. Thus, applying Lemma 2 on page 538 of Feller [1971] for $T = \beta(x)^{-1/5}$,

$$\pi | P\{T_{x} \leq y\} - (1 - e^{-y}) | \leq 24\beta(x)^{1/5}$$

$$+ E[S_{1}; S_{1} < T_{x}]\{\beta(x)^{-2/5}[\beta(x) - \frac{E[S_{1}^{2}]}{2E[\min(S_{1}, T_{x})]} + E[S_{1}^{2}]^{1/2}\beta(x)^{1/2}]$$

$$+ \beta(x)^{-3/5} \frac{2}{3} \beta(x)^{3/2} \frac{E[S_{1}^{2}]^{1/2}}{2E[\min(S_{1}, T_{x})]}.$$

The result now follows.

EXAMPLE. In Example 1

$$\beta(\mathbf{x}) = \overline{F}(\mathbf{x}) + \int_{0}^{\mathbf{x}} F(d\mathbf{y}) \int_{0}^{\infty} H(d\mathbf{t}) \left[1 - \exp\{-\mu(\mathbf{y})\overline{G}(\mathbf{y}, \mathbf{x} - \mathbf{y})\mathbf{t}\}\right]$$

$$= 1 - \int_{0}^{x} F(dy) \hat{h}(\mu(y) \overline{G}(y, x-y))$$
 (2.22)

where $\hat{h}(s) = \int_{0}^{\infty} e^{-st} H(dt)$ is the Laplace transform of H and $\overline{F}(t) = 1 - F(t)$. If C and S are two independent random variables having distributions F and H respectively, then

$$\beta(x) = 1 - E[\exp\{-\mu(C)\overline{G}(C, x-C)S\}; C < x] .$$
 (2.23)

Consider two independent load combination processes $\{x_1(t); t \ge 0\}$ and $\{x_2(t); t \ge 0\}$ of the type in Example 1. Assume that the conditional distribution of the shock load process, given the constant load process, is the same for both load combination processes; the constant load magnitudes have distributions F_1 and F_2 respectively with $\overline{F}_1(t) \le \overline{F}_2(t)$; and the times between constant load changes have distributions H_1 and H_2 respectively with $\overline{H}_1(t) \le \overline{H}_2(t)$. Let C_i and S_i have distributions F_i and H_i respectively for i = 1, 2. If $y \Rightarrow \mu(y)\overline{G}(y, x-y)$ is an increasing function of y for $y \le x$, then

$$\beta_{1}(\mathbf{x}) \equiv 1 - E[e^{-\mu(C_{1})\overline{G}(C_{1},\mathbf{x}-C_{1})S_{1}};C_{1} \leq \mathbf{x}]$$

$$\beta_{1}(x) \leq 1 - E[e^{-\mu(C_{2})\overline{G}(C_{2}, x-C_{2})S_{2}}; C_{2} \leq x]$$

$$\equiv \beta_2(\mathbf{x}) \quad (2.24)$$

Thus, Theorem 1 suggests that the convergence to exponential of the distribution of the time for the load combination process to exceed a level x is faster for load combination process 1 than that for process 2. This behavior has been seen in the simulation studies reported in Section 4.

3. THE TAIL OF THE DISTRIBUTION OF T FOR FINITE $\mathbf x$

In this section we will study the behavior of $P\{T_x > t\}$ for finite x and large t. The probability, $P\{T_x > t\}$, satisfies the following renewal equation

$$P\{T_{x} > t\} = P\{S_{1} > t, T_{x} > t\} + \int_{0}^{t} L_{x}(du) P\{T_{x} > t-u\} \quad (3.1)$$

where

$$L_{v}(t) = P\{S_{1} \leq t, T_{v} > S_{1}\}$$
 (3.2)

We will assume $L_x(0) = 0$.

Following the argument on page 376 of Feller [1971] we will assume that for each x there exists a constant $\kappa(x)$ such that

$$\int_{0}^{\infty} e^{\kappa (x) u} L_{x}(du) = 1 , \qquad (3.3)$$

$$\gamma(\mathbf{x}) = \int_{0}^{\infty} t e^{\kappa(\mathbf{x})t} L_{\mathbf{x}}(dt)$$
(3.4)

is finite, and the function

$$g_{x}(t) = e^{\kappa(x)t} P\{S_{1} > t, T_{x} > t\}$$
 (3.5)

is directly Riemann integrable.

It now follows from the Key Renewal Theorem that

$$\lim_{t \to \infty} e^{\kappa(x)t} P\{T_x > t\} = \frac{1}{\gamma(x)} \int_0^\infty g_x(t)dt . \qquad (3.6)$$

Since g is assumed to be directly Riemann integrable, integrating (3.3) by parts yields

$$1 = P\{T_{x} > S_{1}\} + \kappa(x) \int_{0}^{\infty} e^{\kappa(x)t} P\{S_{1} > t, T_{x} > S_{1}\}dt. (3.7)$$

Thus

$$\kappa(x) = \frac{P\{T_{x} \leq S_{1}\}}{\int_{0}^{\infty} e^{\kappa(x)t} P\{S_{1} > t, T_{x} > S_{1}\}dt}$$
(3.8)

It follows from (2.4) that

$$\kappa(\mathbf{x})\mathbf{m}(\mathbf{x}) = \frac{E[\min(\mathbf{T}_{\mathbf{x}}, \mathbf{S}_{1})]}{\int_{0}^{\infty} e^{\kappa(\mathbf{x})t} P\{\mathbf{S}_{1} > t, \mathbf{T}_{\mathbf{x}} > \mathbf{S}_{1}\}dt}$$
(3.9)

The defining equation for $\kappa(x)$, (3.3), (3.8), and (2.6) imply that as a function of x, $\kappa(x)$ is nonnegative and decreasing with lim $\kappa(x) = 0$. If it is further assumed that there $x \rightarrow \infty$ exists $\theta > 0$ such that $E[e^{-1}] < \infty$, then it follows from the dominated convergence theorem and (3.9) that

$$\lim_{X \to \infty} \kappa(x) m(x) \equiv 1 .$$
 (3.10)

EXAMPLE. In Example 1, assume that $\overline{H}(t) = e^{-\lambda t}$, $\mu(y) \equiv \mu$, and $G(y,x) \equiv G(x)$. Then $\kappa(x)$ satisfies the equation

$$1 = \int_{0}^{X} F(dy) \frac{\lambda}{\lambda + \mu \overline{G}(x-y) - \kappa(x)}$$
(3.11)

where $\overline{G}(x) = 1 - G(x)$.

Further,

$$g_{x}(t) = \int_{0}^{x} e^{\kappa (x)t} e^{-t} e^{-\overline{G}(x-y)t} F(dy) .$$

Thus

$$\int_{0}^{\infty} g_{x}(t) dt = \int_{0}^{x} F(dy) \frac{1}{\lambda + \mu \overline{G}(x-y) - \kappa(x)} = \frac{1}{\lambda} . \quad (3.12)$$

Therefore,

$$\lim_{t \to \infty} e^{\kappa(x)t} P\{T_x > t\} = \frac{1}{\lambda \gamma(x)}$$
(3.13)

where

$$\gamma(\mathbf{x}) = \int_{0}^{\infty} \int_{0}^{\mathbf{x}} F(d\mathbf{y}) t e^{\kappa(\mathbf{x})} \lambda e^{-\lambda t} e^{-\mu \overline{G}(\mathbf{x}-\mathbf{y})t} dt$$

$$= \int_{0}^{X} F(dy) \frac{\lambda}{(\lambda + \mu \overline{G}(x-y) - \kappa(x))^{2}} . \qquad (3.14)$$

If it is further assumed that $\lambda = \mu = 1$, then it follows from (3.9) and (3.11) that

$$\kappa(x)m(x) = \frac{\int_{0}^{x} F(dy) \frac{1}{1 + \overline{G}(x-y)}}{\int_{0}^{x} F(dy) \frac{1}{1 + \overline{G}(x-y) - \kappa(x)}}$$
(3.15)

$$\leq \int_{0}^{x} F(dy) \frac{1}{1 + \overline{G}(x-y)}$$

Thus $\kappa(x) \leq \frac{1}{m(x)}$ in this case.

In the further special case in which $\overline{F}(x) = \overline{G}(x) = e^{-x}$, $\lambda = 1$ and $\mu = 1$, $\kappa(x)$ satisfies the equation

$$l = f(\kappa(x)) \equiv \int_{0}^{x} e^{-y} \frac{1}{1 + e^{-(x-y)} - \kappa(x)} dy$$
(3.15)

where

$$f(1) = \frac{1}{2} [e^{x} - e^{-x}]$$
(3.16)

and for $y \neq 1$ such that $0 \leq y \leq 1 - e^{-x}$,

$$f(y) (1-y)^{2} = (1-y) (1-e^{-x}) - e^{-x} [ln((1-y)+e^{-x}) - ln((1-y)e^{-x}+e^{-x})] .$$
(3.17)

Further,

$$\gamma(x) = \int_{0}^{x} \frac{1}{(1 + e^{-(x-y)} - \kappa(x))^2} e^{-y} dy;$$
 or

$$\gamma(x) (1-\kappa(x))^{3} = (1-\kappa(x)) (1-e^{-x}) - 2e^{-x} [\ln((1-\kappa(x)) + e^{-x}) - \ln((1-\kappa(x)) e^{-x} + e^{-x})] .$$
(3.18)

4. A SIMULATION STUDY OF THE ACCURACY OF THE EXPONENTIAL APPROXIMATIONS TO THE FIRST PASSAGE TIME DISTRIBUTION

In this section some results of a simulation study of the accuracy of using the asymptotic results of Sections 2 and 3 to approximate the distribution of T_x are reported. All simulations were carried out on an IBM 3033 computer at the Naval Postgraduate School using the LLRANDOM II random number generating package (see Lewis and Uribe (1981)).

The model of Example 1 was simulated for various cases of distributions H, F, G and shock arrival rate μ . Each realization simulated the sample path of the process {X(t); $t \ge 0$ } and the first passage times $0 \le T_{x_1} \le T_{x_2} \le \cdots \le T_{x_n}$ were recorded for several levels $x_1 \le x_2 \le \cdots \le x_n$. The number of replications was 5,000. Sample moments and quantiles were computed for each T_{x_i} . A more detailed account of the simulation can be found in Noh (1984).

4.1 The Exponential Approximation $P\{T_x > t\} = exp\{-E[T_x]t\}$ a. Model A

Tables 1-1, 1-2 and 1-3 report the simulation results for the model in which H = F = G are all unit exponential and $\mu \equiv 1$. Table 1-1 reports simulated sample mean and coefficient of variation for T_x for various levels of x. As expected, the simulated coefficient of variation approaches the exponential distribution's value of 1 as x gets larger. To assess the quality of the exponential approximation 1 - $\exp{\{E[T_x]^{-1}t\}}$ to the distribution of T_x , quantiles from the simulated data were computed and compared to the approximating exponential

16

TABLE 1-1

Simulated Moments for T in the Case F = G = H = exp(1) and μ = 1

x-Level	Ê[T _x]	Coeff Var[T _X]
0.50	0.276 *(0.01)	1.984
1.00	0.669 (0.014)	1.451
2.00	2.000 (0.033)	1.177
3.00	4.878 (0.074)	1.080
4.00	11.539 (0.167)	1.024
5.00	26.945 (0.382)	1.002

 $^{\star}\ensuremath{(}$) is the standard error of the mean

quantile q_{α}

$$q_{\alpha} = -E[T_{x}] \ln(1-\alpha)$$
(4.1)

where for this model $E[T_x]$ can be computed analytically and is found in Gaver and Jacobs [1981]. Table 1-2 reports the simulated quantiles with the approximating exponential quantiles below in parentheses. As expected, the exponential approximation is better for the large level x = 5 than for x = 0.5. The approximation is also better for $\alpha > 0.5$.

One way the distribution of T_x differs from an exponential is that it has an atom at 0; in particular for the model A $P\{T_x = 0\} = 1 - F(x) = e^{-x}$. The sample quantiles for the simulated conditional distribution of T_x given $T_x > 0$ appear in Table 1-3. Below the simulated quantiles in parentheses appear approximating exponential ones computed as

$$H_{\alpha}^{C} = \frac{-E[T_{X}]}{P[T_{X} > 0]} \ln(1-\alpha) . \qquad (4.2)$$

The quantiles of the simulated conditional distribution are much closer to their exponential approximation than those for the unconditional distribution.

b. Model B

Tables 2-1, 2-2, and 2-3 report simulation results for the model which is the same as Model A except that the distribution of the constant load magnitudes F is exponential with mean 1/2. The simulated means and coefficient of variations

18

TABLE 1-2

Simulated $\alpha-Quantiles$ for the Distribution of $T_{\rm X}$ for the Model with F = G = H = Unit Exponential and μ = 1

I

	0.1	0.2	0.25	0.30	0.50	0.75	0.80	06.0	0.95	0.98	0.99
Level :	×										
0.5	0.0	0.0	0.0	0.0	0.0	0.335	0.496	0.959	1.432	2.007	2.485
	*(0.03)	(0.64)	(0.083)	(0.102)	(0.199)	(0.398)	(0.462)	(0.661)	(0.860)	(1.123)	(1.322)
1.00	0.0(0.071)	0.0(0.151)	0.0 (0.195)	0.0 (0.242)	0.261 (0.470)	0.972 (0.940)	1.200 (1.091)	1.918 (1.561)	2.683 (2.031)	3.631 (2.652)	4.358 (3.122)
2.00	0.0	0.171	0.313	0.454	1.233	2.877	3.393	5.111	6.490	8.875	10.419
	(0.215)	(0.454)	(0.586)	(0.726)	(1.411)	(2.823)	(3.277)	(4.688)	(6.099)	(7.965)	(9.376)
3.00	0.252 (0.525)	0.847 (1.113)	l.164 (l.434)	1.525 (1.778)	3.175 (3.456)	6.916 (6.912)	8.099 (8.025)	11.497 (11.481)	15.012 (14.937)	20.501 (19.505)	24.655 (22.961)
4.00	0.990	2.229	2.944	3.726	7.962	16.339	18.902	26.659	34.861	47.158	54.212
	(1.225)	(2.594)	(3.344)	(4.146)	(8.057)	(16.114)	(18.708)	(26.765)	(34.822)	(45.473)	(53.530)
5.00	2.404	5.738	7.584	9.387	18.598	37.717	44.380	62.979	81.667	105.922	123.817
	(2.837)	(6.009)	(7.748)	(9.606)	(18.66)	(37.334)	(43.344)	(62.011)	(80.678)	(105.355) (124.022)

*() Approximating exponential quantile

	Sim T X	ulated c > 0, for	x-Quanti the Mod	les for el with	the Cor F = G =	ditiona. - H = Un:	l Distri it Expon	bution lential	of T _X , Gj and µ =	.ven 1	
 X	0.1	0.2	0.25	0.3	0.5	0.75	0.80	06.0	0.95	0.98	0.99
Level	×										
0.5	0.075	0.159	0.207	0.264	0.505	0.966	1.120	1.590	2.007	2.621	3.072
	*(0.074)	(0.156)	(0.201)	(0.250)	(0.485)	(170.0)	(1.127)	(1.612)	(2.098)	(2.739)	(3.225)
1.0	0:112	0.238	0.295	0.373	0.727	1.445	1.667	2.384	3.117	4.295	4.859
	(0.110)	(0.232)	(0.300)	(0.272)	(0.722)	(1.444)	(1.677)	(2.399)	(3.121)	(4.075)	(4.797)
2.0	0.231	0.481	0.628	0.796	1.575	3.203	3.705	5.353	6.927	9.239	10.737
	(0.244)	(0.516)	(0.665)	(0.825)	(1.603)	(3.206)	(3.722)	(5.325)	(6.927)	(9.046)	(10.649)
3.0	0.510	1.094	1.442	1.783	3.435	7.218	8.306	11.763	15.419	20.761	24.913
	(0.541)	(1.146)	(1.478)	(1.832)	(3.560)	(7.121)	(8.267)	(11.827)	(15.388)	(20.094)	(23.654)
4.0	1.187	2.404	3.172	3.957	8.126	16.575	19.076	26.773	35.131	47.471	54.212
	(1.239)	(2.623)	(3.382)	(4.193)	(8.148)	(16.297)	(18.920)	(27.068)	(35.216)	(45.988)	(54.136)
5.0	2.523	5.877	7.775	9.552	18.691	37.877	44.527	63.174	81.777	105.922	123.817
	(2.857)	(6.051)	(7.801)	(9.672)	(18.792)	(37.594)	(43.645)	(62.442)	(81.239)	(106.087)	(124.884)

TABLE 1-3

*() the approximating exponential quantile

TABLE 2-1

Simulated Moments for Model B

Level x	E[T _x]	Coeff $Var[T_x]$
0.5	0.577 *(0.010)	1.453
1.0	1.329 (0.022)	1.144
2.0	3.980 (0.058)	1.036
3.0	10.530 (0.150)	1.006
4.0	28.014 (0.395)	0.997
5.0	75.425 (1.070)	1.003

 $\star\,$ () is the standard error of the sample mean

					T7	ABLE 2-2					
		Simulat	ed α-Qui	antiles	for the	e Distri	bution c)f T _X fo	r Model	В	
си : •	0.1	0.2	0.25	0.3	0.5	0.75	0.80	06°0	0.95	0.98	0.99
Level	×										
0.5	0.0 *(0.60)	0.0 (0.126)	0.0 (0.163)	0.0 (0.202)	0.232 (0.392)	0.843 (0.785)	1.048 (0.911)	1.660 (1.304)	2.281 (1.696)	3.082 (2.215)	3.856 (2.607)
1.0	0.0 (0.138)	0.118 (0.293)	0.219 (0.377)	0.327 (0.468)	0.838 (0.909)	1.913 (1.818)	2.267 (2.111)	3.351 (3.020)	4.309 (3.930)	5.913 (5.132)	6.693 (6.041)
2.0	0.329 (0.422)	0.822 (0.894)	1.084 (1.152)	0.329 (1.428)	2.699 (2.775)	5.491 (5.551)	6.441 (6.444)	9.237 (9.220)	12.194 (11.995)	16.075 (15.664)	19.031 (18.400)
3.0	1.072 (1.128)	2.321 (2.389)	2.954 (3.080	3.643 (3.819)	7.180 (7.422)	14.649 (14.843)	17.429 (17.232)	24.906 (24.654)	31.688 (32.075)	41.991 (41.886)	48.155 (49.308)
4.0	2.907 (2.988)	6.253 (6.327)	8.247 (8.157)	10.036 (10.114)	19.494 (19.655)	38.714 (39.309)	45.090 (45.637)	65.697 (65.291)	84.429 (84.946)	107.641 (110.928)	123.499 (130.582)
5.0	8.137 (7.975)	17.063 (16.890)	21.753 (21.776)	26.729 (26.998)	52.403 (52.466)	104.272 (104.933)(120.132 (121.823)	170.902 (174.290)(224.441 (226.756)	298.617 (296.113)	350.441 (348.579)

 $^{\star}($) is the approximating exponential quantile

		Simu	lated α -	-Quantil of T _X , G	es for . iven T _X	the Cond > 0 for	itional Model H	Distrib 3	ution		
 N	0.10	0.20	0.25	0.30	0.5	0.75	0.80	06.0	0.95	0.98	66.0
Level >	>										
0.5	0.098	0.212	0.275	0.336	0.629	1.255	1.436	2.019	2.711	3.546	4.232
	*(0.095)	(0.202)	(0.261)	(0.323)	(0.628)	(1.256)	(1.458)	(2.085)	(2.713)	(3.543)	(4.171)
1.0	0.157	0.349	0.443	0.543	1.063	2.157	2.488	3.580	4.533	6.065	6.841
	(0.162)	(0.344)	(0.443)	(0.549)	(1.067)	(2.134)	(2.478)	(3.545)	(4.612)	(6.023)	(7.090)
2.0	0.399	0.899	1.146	1.408	2.772	5.566	6.502	9.277	12.202	16.086	19.031
	(0.428)	(0.905)	(1.167)	(1.447)	(2.812)	(5.625)	(6.530)	(9.343)	(12.155)	(15.873)	(18.686)
3.0	1.098	2.348	2.978	3.667	7.220	14.689	17.450	24.933	31.743	41.991	48.155
	(1.113)	(2.357)	(3.038)	(3.767)	(7.321)	(14.641)	(16.998)	(24.319)	(31.640)	(41.317)	(48.638)
4.0	2.907	6.253	8.247	l0.036	19.494	38.714	45.090	65.697	84.429	107.641	123.499
	(2.952)	(6.252)	(8.061)	(9.994)	(19.422)	(38.844)	(45.096)	(64.518)	(83.940)((109.614)((124.036)
5.0	8.137	17.063	21.753	26.729	52.403	104.272	120.132	170.902	224.441	298.617	350.441
	(7.948)	(16.834)	(21.703)	(26.908)	(52.291)((104.582)((121.416)((173.707)((225.998)((295.122)((347.413)

*Approximating exponential quantiles

appear in Table 2-1. An analytical expression for $E[T_x]$ for this model appears in Gaver and Jacobs [1981]. This expression is used in the approximating quantiles (4.1) and (4.2). The approximating quantiles for the conditional distribution of T_x given $T_x > 0$ which appear in Table 2-3 are closer to their corresponding simulated quantiles than the approximating quantiles for the unconditional distribution. Comparison of Tables 2-2 and 2-1 for the $x \ge 2$ and $\alpha \le 0.3$ suggests that the distribution of T_x is converging faster to an exponential for Model B than for Model A. It follows from (2.2) that $P\{T_x < S_1\}$ is smaller for Model B than for Model A. Thus, Theorem 1 suggests that the convergence of the distribution of T_x to exponential should be faster for Model B than for Model A.

In this subsection simulation will be used to study the exponential approximation suggested by the asymptotic result (3.6). This is an approximation for $P\{T_x > t\}$ for fixed finite x; it should be more accurate for t large.

Two cases of Model 1 were simulated. In both cases, shock loads arrive according to a Poisson process with rate 1 and constant loads change magnitude at the times of arrival of a Poisson process with rate 1; the shock level magnitudes have an exponential distribution with mean 1. In Case A, the distribution of the constant load magnitude is exponential with mean 1; in Case B, it is exponential with mean 1/2.

In both cases considered, it is possible to determine analytical expressions for the integrals determining $\kappa(x)$ and

24

 $\gamma(x)$. The value for $\kappa(x)$ was found numerically. Values of $\kappa(x)$ and $\gamma(x)$ for the two models can be found in Tables (3-1) and (4-1). Note that as x increases $\kappa(x)$ decreases and approaches $E[T_x]^{-1}$. As x increases $\gamma(x)$ decreases and approaches 1. As expected $\kappa(x) \leq E[T_x]^{-1}$ for all levels of x.

To assess the accuracy of the exponential approximation, quantiles of the simulated data were computed. These quantiles appear in Tables (3-2) and (4-2). For each level x, the first row gives the simulated quantile, the second row gives the approximating exponential quantile

$$Q_{\alpha}^{\star} = - \frac{1}{\kappa(\mathbf{x})} \ln(\gamma(\mathbf{x})(1-\alpha)) ; \qquad (4.3)$$

and the third row gives the approximating exponential quantile

$$Q_{\alpha}^{+} = -E[T_{X}] \ln(1-\alpha). \qquad (4.4)$$

The exponential approximation (4.3) is in general closer to the simulated quantile than (4.4). However the two approximations become closer as x gets larger. As expected (4.3) approximates well the simulated quantile Q_{α} for $\alpha > 0.75$ for all values of x. However if x is sufficiently large (4.3) approximates fairly well the simulated Q_{α} for α as small as 0.1. A comparison of Tables (3-2) and (4-2) suggests once again that the convergence of the distribution of T_x to exponential is faster for Model B than for Model A.

25

TABLE 3-1

Values of $\kappa(x)$ and $\gamma(x)$ for Model A

Level	х	к(х)	E[T _x] ⁻¹	γ(x)
0.2		1.708	9.492	5.942
0.4		1.459	4.486	3.254
0.6		1.247	2.814	2.364
0.8		1.066	1.977	1.923
1.0		0.912	1.475	1.670
1.2		0.780	1.142	1.502
1.4		0.667	0.906	1.386
1.6		0.570	0.730	1.303
1.8		0.487	0.596	1.238
2.0		0.417	0.491	1.193
2.2		0.355	0.407	1.155
2.4		0.303	0.339	1.125
2.6		0.259	0.284	1.102
2.8		0.221	0.238	1.085
3.0		0.188	0.201	1.068

TABLE 4-1

Values of $\kappa(x)$ and $\gamma(x)$ for Model B

Level	x	к(х)	E[T _x] ⁻¹	γ(x)
0.2		1.563	4.760	3.109
0.4		1.237	2.265	1.860
0.6		0.975	1.433	1.400
0.8		0.801	1.015	1.286
1.0		0.650	0.762	1.183
1.2		0.531	0.592	1.122
1.4		0.435	0.470	1.084
1.6		0.358	0.378	1.059
1.8		0.296	0.306	1.044
2.0		0.244	0.250	1.032
2.2		0.199	0.204	1.019
2.4		0.166	0.168	1.017
2.6		0.136	0.138	1.011
2.8		0.112	0.113	1.007
3.0		0.092	0.093	1.005

TABLE 3-2

Simulated Quantiles for Model A

	0.10	0.20	0.25	0.40	0.50	0 • 60	0.75	0.80	0.90	0.95	0.98	66.0
Level x												
0.20	0.0 *0.0 +0.11	0.0 0.0 0.024	0.0 0.0	0.0 0.0 0.054	0.0 0.0 0.073	0.0 0.0 0.097	0.0 0.0 0.146	0.0 0.0 0.170	0.336 0.305 0.243	0.722 0.711 0.316	1.234 1.247 0.412	1.639 1.653 0.485
0.60	0.0 0.037	0.0 0.0 0.079	0.0 0.0 0.102	0.0 0.0 0.182	0.0 0.0 0.246	0.095 0.045 0.326	0.449 0.422 0.493	0.619 0.601 0.572	1.151 1.157 0.818	1.744 1.712 1.065	2.484 2.447 1.390	3.086 3.003 1.637
1.00	0.0	0.0	0.0	0.065	0.249	0.467	0.971	1.208	1.999	2.779	3.689	4.506
	0.0	0.0	0.0	0.0	0.198	0.443	0.958	1.203	1.963	2.724	3.729	4.489
	0.071	0.151	0.195	0.346	0.470	0.621	0.940	1.091	1.561	2.031	2.652	3.122
1.60	0.0	0.007	0.115	0.455	0.774	1.151	1.984	2.392	3.558	4.766	6.393	7.623
	0.0	0.0	0.041	0.433	0.752	1.144	1.969	2.360	3.576	4.792	6.400	7.616
	0.144	0.305	0.394	0.699	0.949	1.254	1.898	2.203	3.152	4.101	5.356	6.305
2.00	0.0	0.198	0.332	0.845	1.267	1.839	2.941	3.462	5.114	6.813	9.104	10.895
	0.0	0.113	0.268	0.803	1.241	1.777	2.905	3.441	5.105	6.769	8.969	10.633
	0.215	0.454	0.536	1.040	1.411	1.866	2.823	3.277	4.688	6.099	7.965	9.376
2.60	0.117	0.523	0.797	1.662	2.347	3.191	4.913	5.814	8.513	11.420	15.234	17.831
	0.033	0.488	0.737	1.599	2.304	3.165	4.981	5.843	8.520	11.198	14.737	17.415
	0.371	0.786	1.013	1.798	2.440	3.226	4.880	5.666	8.106	10.546	13.772	16.212
3.00	0.272	0.872	1.184	2.380	3.337	4.458	6.892	8.177	12.086	15.933	20.633	23.946
	0.208	0.833	1.175	2.360	3.327	4.511	7.005	8.189	11.867	15.545	20.407	24.085
	0.325	1.113	1.434	2.547	3.456	4.569	6.912	8.025	11.481	14.937	19.505	22.961

* Quantile for exponential approximation (4.3)

+ Quantile for exponential approximation

(4.4)

TABLE 4-2

Simulated Quantiles for Model B

α.	0.10	0.20	0.25	0.40	0.50	0.60	0.75	0.80	06.0	0.95	0.98	0.99
Level	×											
0.20	0.0	0.0	0.0	0.0	0.0	0.0	0.192	0.327	0.765	1.205	1.765	2.144
	*0.0	0.0	0.0	0.0	0.0	0.0	0.161	0.304	0.747	1.191	1.777	2.221
	+0.022	0.047	0.060	0.107	0.146	0.193	0.291	0.338	0.484	0.624	0.822	0.967
0.60	0.0	0.0	0.0	0.154	0.341	0.561	1.032	1.253	1.901	2.561	3.514	4.195
	0.0	0.0	0.0	0.179	0.366	0.595	1.077	1.306	2.017	2.728	3.668	4.379
	0.074	0.156	0.201	0.356	0.484	0.639	0.967	1.123	1.607	2.090	2.730	3.213
1.00	0.0	0.118	0.219	0.545	0.823	1.160	1.871	2.208	3.242	4.381	5.787	6.947
	0.0	0.085	0.184	0.527	0.808	1.151	1.874	2.217	3.284	4.350	5.759	6.826
	0.138	0.293	0.377	0.670	0.909	1.202	1.818	2.111	3.020	3.930	5.131	6.041
1.60	0.165	0.486	0.660	1.296	1.763	2.386	3.678	4.297	6.197	8.255	10.953	12.856
	0.136	0.465	0.645	1.269	1.779	2.403	3.717	4.340	6.278	8.216	10.778	12.716
	0.279	0.591	0.762	1.353	1.836	2.427	3.671	4.262	6.098	7.933	10.360	12.195
2.00	0.342	0.817	1.099	1.987	2.760	3.683	5.593	6.550	9.376	12.197	16.032	18.469
	0.305	0.788	1.053	1.969	2.717	3.632	5.561	6.477	9.321	12.165	15.925	18.769
	0.422	0.894	1.152	2.045	2.775	3.669	5.551	6.444	9.220	11.995	15.664	18.440
2.60	0.729	1.584	2.048	3.672	5.059	6.687	10.121	11.658	16.645	21.655	28.242	33.846
	0.694	1.558	2.032	3.669	5.007	6.645	10.095	11.732	16.819	21.906	28.631	33.718
	0.764	1.618	2.086	3.704	5.026	6.644	10.052	11.670	16.695	21.721	28.365	33.391
3.00	1.121	2.340	3.036	5.460	7.539	9.830	14.826	17.378	24.827	32.112	43.109	51.064
	1.093	2.371	3.071	5.492	7.470	9.891	14.989	17.410	24.930	32.449	42.390	49.910
	1.128	2.389	3.080	5.469	7.422	9.811	14.843	17.232	24.654	32.075	41.886	49.307
	* Que	antile	for exp	onentia	al appr	oximati	ion (4.3	(

+ Quantile for exponential approximation (4.4)

5. ACKNOWLEDGEMENTS

This research was partially supported by the National Science Foundation Grant ECS 82 16852 and the Probability and Statistics Program of the Office of Naval Research.

REFERENCES

- W. Feller. An Introduction to Probability Theory and Its Applications, Volume II, Second Edition, John Wiley and Sons Inc., New York, 1971.
- D.P. Gaver and P.A. Jacobs. On Combinations of Random Loads. SIAM J Appl. Math. 40 (1981), pp. 454-466.
- J.C. Peir and C.A. Cornell. Spatial and Temporal Variability of Live Loads. Jour. Structural Div., ASCE, 99, ST5, (1973), pp. 903-922.
- Y-K Wen. Statistical Combination of Extreme Loads. Jour. Structural Div., ASCE, 103, ST5, (1977), pp. 1079-1093.
- H.T. Pearce and Y-K Wen. A Method for the Combination of Stochastic Time Varying Load Effects. Structural Research Series No. 507, UILU-ENG-83-2010, Civil Engineering Studies, University of Illinois, Urbana, Illinois, June 1983.
- E. Cinlar. Introduction to Stochastic Processes. Prentice Hall, Inc. New Jersey, 1975.
- J.G. Shanthikumar and U. Sumita. General Shock Models Associated with Correlated Renewal Sequences. J. Appl. Prob. 20 (1983), pp. 600-614.
- J. Keilson. Markov Chain Models--Rarity and Exponentiality. Springer-Verlag, New York, 1979.
- Y-K. Wen. A Clustering Model for Correlated Load Processes. J. Structural Div. ASCE, 107, No. ST5, (1981), 965-983.
- P.A.W. Lewis and L. Uribe. The New Naval Postgraduate School Random Number Package--LLRANDOM II. Naval Postgraduate School Technical Report NPS 55-81-005, 1981.
- Noh. A Simulation Study of Models for Combinations of Random Loads. M.S. Thesis, Naval Postgraduate School, September 1984.

NO. OF COPIE

Dr. M. J. Fischer Defense Communications Agency 1860 Wiehle Avenue Reston, VA 22070	1
Professor George S. Fishman Cur. in OR & Systems Analysis University of North Carolina Chapel Hill, NC 20742	1
Dr. R. Gnanadesikan Bell Telephone Lab Murray Hill, NJ 07733	1
Professor Bernard Harris Department of Statistics university of Wisconsin 610 Walnut Street Madison, WI 53706	1
Dr. Gerhard Heiche Naval Air Systems Command (NAIR 03) Jefferson Plaza, No. 1 Arlington, VA 20360	1
Professor L. H. Herbach Department of Mathematics Polytechnic Institute of N.Y. Brooklyn NY 11201	1
Professor W. M. Hinich University of Texas Austin, TX 78712	1
P. Heidelberger IBM Research Laboratory Yorktown Heights New York, NY 10598	1
W. D. Hibler, III Geophysical Fluid Dynamics Princeton University Princeton, NJ 08540	1
Professor D. L. Iglehart Department of Operations Research Stanford University Stanford, CA 94350	1

Dr. D. Vere Jones Department of Mathematics Victoria University of Wellington P. O. Box 196 Wellington NEW ZELAND	1
Professor J. B. Kadane Department of Statistics Carnegie-Mellon Pittsburgh, PA 15212	1
Professor Guy Latouche University Libre Bruxelles C. P. 212 Blvd De Triomphe B-1050 Bruxelles BELGIUM	1
Dr. Richard Lau Office of Naval Research Branch Office 1030 East Green Street Pasadena, CA 91101	1
A. J. Lawrance Dept. of Mathematics Statistics University of Birmingham P. O. Box 363 Birmingham B15 2TT ENGLAND	1
Dr. John Copas Dept. of Mathematics Statistics University of Birmingham P. O. Box 363 Birmingham B15 2TT ENGLAND	1
Professor M. Leadbetter Department of Statistics University of North Carolina Chapel Hill, NC 27514	1
Mr. Dan Leonard Code 8105 Naval Ocean Systems Center San Diego, CA 92132	1

DISTRIBUTION LIST

HOL OF OOT TI	NO.	OF	COPIE
---------------	-----	----	-------

Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2
Research Administration Code Ol2A Naval Postgraduate School Monterey, CA 93943	1
Library Code 55 Naval Postgraduate School Monterey, CA 93943	1
Professor D. P. Gaver Code 55Gv Naval Postgraduate School Monterey, CA 93943	1
Professor P. A. Jacobs Code 55Jc Naval Postgraduate School Monterey, CA 93943	5
Professor L. C. Thomas Department of Decision Theory University of Manchester Manchester, United Kingdom	1
Professor M. L. Abdel-Hameed Department of Mathematics University of North Carolina Charlotte, NC 28223	1
Dr. G. P. Alldredge Department of Physics The University of Missouri Columbia, MO 65211	1
Professor F. J. Anscombe Department of Statistics Yale University, Box 2179 New Haven, CT 06520	1

Naval Research Laboratory Technical Information Section Washington, DC 20375	1
Professor Gordon Newell Dept. of Civil Engineering University of California Berkeley, CA 94720	1
Dr. David Oakes TUO Centenary Inst. of Occ. Health London School of Hygiene/Tropical Med. Keppel St. (Gower St.) London WOl E7H1 ENGLAND	l
Dr. Alan F. Petty Code 7930 Navy Research Laboratory Washington, DC 20375	1
E. M. Reimnitz Pacific-Arctic Branch-Marine Geology U. S. Geological Survey 342 Middlefield Rd., (MS99) Menlo Park, CA 94025	1
Prof. M. Rosenblatt Department of Mathematics University of California – San Diego La Jolla, CA 92093	2
Professor I. R. Savage Department of Statistics Yale University New Haven, CT 06520	1
Professor W. R. Schucany Department of Statistics Southern Methodist University Dallas, TX 75222	1
Professor D. C. Siegmund Department of Statistics Sequoia Hall Stanford University Stanford, CA 94305	1

NO. OF COPIES

Professor H. Solomon Department of Statistics Sequoia Hall Stanford University Stanford, CA 94305	1
Dr. Ed Wegman Statistics & Probability Program Code 411(SP) Office of Naval Research Arlington, VA 22217	1
Dr. Douglas de Priest Statistics & Probability Program Code 411(SP) Office of Naval Research Arlington, VA 22217	1
Dr. Marvin Moss Statistics & Probability Program Code 411(SP) Office of Naval Research Arlington, VA 22217	1
Technical Library Naval Ordnance Station Indian Head, MD 20640	1
Professor J. R. Thompson Dept. of Mathematical Science Rice University Houston, TX 77001	1
Professor J. W. Tukey Statistics Department Princeton University Princeton, NJ 08540	1
P. Wadhams Scott Polar Research Cambridge University Cambridge CB2 1ER ENGLAND	1
Daniel H. Wagner Station Square One Paoli, PA 19301	1
Dr. W. Weeks U. S. Army CR REL 72 Lyme Road Hanover, NH 03755	1

NO. OF COPIES

P. Welch IBM Research Laboratory Yorktown Heights, NY 10598	1
Dr. Roy Welsch Sloan School M.I.T. Cambridge, MA 02139	1
Dr. Morris DeGroot Statistics Department Carnegie-Mellon University Pittsburgh, PA 15235	1
Professor R. Renard Head, Meteorology Department Naval Postgraduate School Monterey, CA 93943	1
Paul Lowe Naval Environmental Prediction Research Facility Monterey, CA 93943	1
Dr. Colin Mallows Bell Telephone Laboratories Murray Hill, NJ 07974	1
Dr. D. Pregibon Bell Telephone Laboratories Murray Hill, NJ 07974	1
Dr. Jon Kettenring Bell Telephone Laboratories Murray Hill, NJ 07974	1
Professor Grace Wahba Department of Statistics University of Wisconsin 1210 W. Dayton St. Madison, WI 53706	1
Head, Systems Theory & Operations Research Program Division of Electrical, Computer, & Systems Engineering National Science Foundation Washington, DC 20550	2

NO. OF COP

M. Lepparanta Winter Navigation Res. Bd. Helsinki FINLAND	1
J. Lehoczky Department of Statistics Carnegie-Mellon University Pittsburgh, PA 15213	1
Library Naval Ocean Systems Center San Deigo, CA 92132	l
Library Code 1424 Naval Postgraduate School Monterey, CA 93943	1
Dr. J. Maar (R51) National Security Agency Fort Meade, MD 20755	1
Bob Marcello Canada Marine Engineering Calgary CANADA	1
Dr. M. McPhee Chair of Arctic Marine Science Oceanography Department Naval Postgraduate School Monterey, Ca 93943	1
Dr. M. Mazumdar Dept. of Industrial Engineering University of Pittsburgh Oakland Pittsburgh, PA 15235	1
Professor Rupert G. Miller, Jr. Statistics Department Sequoia Hall Stanford University Stanford, CA 94305	1
National Science Foundation Mathematical Sciences Section 1800 G. Street, NW Washington, DC 20550	1

Dr. Barbara Bailar Associate Director Statistical Standards Bureau of Census Washington, DC 20024	1
Mr. C. M. Bennett Code 741 Naval Coastal Systems Laboratory Panama City, FL 32401	1
Dr. Derrill J. Eordelon Code 21 Naval Underwater Systems Center Newport, RI 02840	1
Dr. David Brillinger Statistics Department University of California Berkeley, CA 94720	1
Dr. R. Butterworth Systems Exploration 1340 Munras Avenue Monterey, CA 93940	1
Dr. D. R. Cox Department of Mathematics Imperial College London SW7 ENGLAND	1
Dr. D. F. Daley Statistics Department (IAS) Australian National University Canberra A.C.T. 2606 AUSTRALIA	1
Mr. DeSavage Naval Surface Weapons Center Silver Springs, MD 20910	1
Professor C. Derman Dept. of Civil Eng. & Mech. Engineering Columbia University New York, NY 10027	1
Dr. Guy Fayolle I.N.R.I.A. Dom de Voluceau-Rocquencourt 78150 Le Chesnay Cedex FRANCE	1

