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Sc. ,ices

THIRD EDITION. 1%^S

Having prefixed my name to the present edition

of Euler's Algebra, it may be proper to give some

account of the Translation ; which I shall do with

the greater pleasure, because it furnishes a fa-

vorable opportunity of associating my own labors,

with those of my distinguished pupil, and most

excellent friend, the late Francis Horner, M. P.

When first placed under my tuition, at the cri-

tical and interesting age of seventeen, he soon

discovered uncommon powers of intellect, and the

most ardent thirst for knowledge, united with a

docility of temper, and a sweetness of disposition,

which rendered instruction, indeed, a " delightful

task." His diligence and attention were such, as

to require the frequent interposition of some ra-

tional amusement, in order to prevent the in-

tenseness of his apphcation from injuring a con-

stitution, which, though not delicate, had never

been robust.

Perceiving that the natural tendency of his

mind led to the exercise of reason, rather than to

the indulgence of fancy ;— that he was particularly

interested in discussing the merits of some specious

theory, in exposing fallacies, and in forming legi-

timate inductions, from any premises, that were

a 2

459399



IV ADVERTISEMENT.
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supposed to rest on the basis of truth ; but findin)

also, that, from imitation and habit, he had bee

led to think too highly of those metaphysical

speculations, which abound in terms to which we

annex no distinct ideas, and which often require

the admission of principles, that are either unintel-

ligible, or incapable of proof; I recommended to

his notice Euler's Algebra, as affording an ad-

mirable exercise of his reasoning powers, and the

best means of cultivating that talent for analysis,

close investigation, and logical inference, which he

possessed at an early period, and which he after-

wards displayed in so eminent a degree. At the

same time, I was of opinion, that to translate a

part of that excellent work from the French into

English, when he wished to vary his studies, would

improve his knowledge of both languages, and be

the best introduction for him to the mathematics.

He was soon delighted with this occasional em-

ployment, which seemed to supply his mind with

food, that was both solid and nutricious ; and he

generally produced, two or three times a week, as

much as I could find time to revise and correct.

In the course of the first twelvemonth, he had

translated so large a portion of the two volumes,

that it was determined to complete the whole, and

to publish it for the benefit of English students

:

but he returned to Scotland before the manuscript

was ready for the press ; and, therefore, the labor

of editing it necessarily devolved on me.

I wished to give this short history of the Trans-
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ADVERTISEMENT. V

lation at first, without any eulogium on his cha-

racter and talents, while living, of course ; but he

modestly, though, at the same time, resolutely

opposed it, saying that whatever merit or emolu-

ment might be attached to the work, it belonged

to me. The same proposal was made to him,

on publishing the second edition *
; but he still

persisted in his former determination.

From the pleasure and instruction which he re-

ceived from Euler's Algebra, it was natural for

him to wish to know something more of the life

and character of that profound mathematician.

Having therefore in some measure satisfied his

curiosity, and collected the necessary materials,

by consulting the ordinary sources of information,

I advised him, by way of literary exercise, to draw

up a biographical Memoir on the subject. He
readily complied with my wishes ; and this may

be considered as one of his earliest productions.

Its merits would do credit, in my opinion, to any

writer ; and therefore in appreciating them, the

reader will not deem any apology necessary on

account of the author's youth.

I have been led into this short detail of circum-

stances, first, because 1 disdain the contemptible

vanity of shining in what may be thought bor-

rowed plumes, and because I feel a melancholy

pleasure in speaking of my highly valued, and

* The care of correcting the press for this edition was en-

trusted to Mr. P. Barlow, being engaged myself, at that lime,

in the laborious employment of editing the Bible.



MEMOIR
OF THE

LIFE AND CHARACTER OF EULER,

BY THE LATE

FRANCIS HORNER, ESQ., M. P.

Leonard Euler was the son of a clergyman in

the neighbourhood of Basil, and was born on the

15th of April, I707. His natural turn for mathe-

matics soon appeared, from the eagerness and fa-

cility with which he became master of the elements

under the instructions of his father, by whom he

was sent to the university of Basil at an early age.

There, his abilities and his application were so

distinguished, that he attracted the particular no-

tice of John Bernoulli. That excellent mathe-

matician seemed to look forward to the youth's

future achievements in science, while his own

kind care strengthened the powers by which they

were to be accomplished. In order to superintend

his studies, which far outstripped the usual routine

of the public lecture, he gave him a private lesson

regularly once a week ; when they conversed to-

gether on the acquisitions, which the pupil had

been making since their last interview, considered

whatever difficulties might have occurred in his
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progress, and arranged the reading and exercises

for the ensuing week.

Under such eminent advantages, the capacity

of Euler did not fail to make rapid improvements ;

and in his seventeenth year, the degree of Master

of Arts was conferred on him. On this occasion,

he received high applause for his probationary

discourse, the subject of which was a comparison

between the Cartesian and Newtonian systemg.

His father, having all along intended him for

his successor, enjoined him new to relinquish his

mathematical studies, and to prepare himself by

those of theology, and general erudition, for the

ministerial functions. After some time, however,

had been consumed, this plan was given up. The
father, himself a man of learning and liberality,

^abandoned his own views for those, to which the

inclination and talents of his son were of them-

selves so powerfully directed
;
persuaded, that in

thwarting the propensities of genius, there is a

sort of impiety against nature, and that there

would be real injustice to mankind in smothering

those abilities, which were evidently destined to

extend the boundaries of science. Leonard was

permitted, therefore, to resume his favorite pur-

suits;, and, at the age of nineteen, transmitting

two dissertations to the Academy of Sciences at

Paris, one on the masting of ships, and the other

on the philosophy of sound, he commenced that

splendid career, which continued, for so long a

period, the admiration and the glory of Europe.

About the same time, he stood candidate for a
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vacant professorship in the university of Basil

;

but having lost the election, he resolved, in con-

sequence of this disappointment, to leave his na-

tive country ; and in 1727 he set out for Peters-

burg, where his friends, the young Bernoullis, had

settled about two years before, and where he

flattered himself with prospects of literary success

under the patronage of Catherine I. Those pro-

spects, however, were not immediately realised

;

nor was it till after he had been frequently and

long disappointed, that he obtained any prefer-

ment. His first appointment appears to have been

to the chair of natural philosophy ; and when

Daniel Bernoulli removed from Petersburg, Euler

succeeded him as professor of mathematics.

In this situation he remained for several years,

engaged in the most laborious researches, enrich-

ing the academical collections of the continent

with papers of the highest value, and producing

almost daily improvements in the various branches

of physical, and, more particularly, analytical

science. In 1741, he complied with a very press-

ing invitation from Frederic the Great, and re-

sided at Berlin till I766. Throughout this pe-

riod, he continued the same literary labors, di-

rected by the same wonderful sagacity and com-

prehension of intellect. As he advanced with his

own discoveries and inventions, the field of know-

ledge seemed to widen before his view, and new

subjects still multiplied on him for further specula-

tion. The toils of intense study, with him, seemed

only to invigorate his future exertions. Nor did
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the energies of Euler's mind give way, even when

the organs of the body were overpowered : for in

the year 1735, having completed, in three days,

certain astronomical calculations, which the aca-

demy called for in haste ; but which several ma-

thematicians of eminence had declared could not

be performed within a shorter period than some

months, the intense application threw him into a

fever, in which he lost the sight of one eye.

Shortly after his return to Petersburg, in I766,

he became totally blind. His passion for science,

however, suffered no decline ; the powers of his

mind were not impaired, and he continued as in-

defatigable as ever. Though the distresses of age

likewise were now crowding fast upon him, for he

had passed his sixtieth year
;

yet it was in this

latter period of his life, under infirmity, bodily

pain, and loss of sight, that he produced some of

his most valuable works ; such as command our

astonishment, independently of the situation of

the author, from the labor and originality which

they display. In fact, his habits of study and

composition, his inventions and discoveries, closed

only with his life. The very day on which he

died, he had been engaged in calculating the orbit

of Herschel's planet, and the motions of aerostatic

machines. His death happened suddenly in Sep-

tember 1783, from a fit of apoplexy, when he was

in the seventy-sixth year of his age.

Such is the short history of this illustrious man.

The incidents of his life, like that of most other
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laborious students, afford very scanty materials for

biography ; little more than a journal of studies

and a catalogue of publications : but curiosity may

find ample compensation in surveying the charac-

ter of his mind. An object of such magnitude,

so far elevated above the ordinary range of human

intellect, cannot be approached without reverence,

nor nearly inspected, perhaps, without some de-

gree of presumption. Should an apology be ne-

cessary, therefore, for attempting the following

estimate of Euler's character, let it be considered,

that we can neither feel that admiration, nor offer

that homage, which is worthy of genius, unless,

aiming at something more than the dazzled sensa-

tions of mere wonder, we subject it to actual ex-

amination, and compare it with the standards of

human nature in general.

Whoever is acquainted with the memoirs of

those great men, to whom the human race is in-

debted for the progress of knowledge, must have

perceived, that, while mathematical genius is di-

stinct from the other departments of intellectual

excellence, it likewise admits in itself of much di-

versity. The subjects of its speculation are become

so extensive and so various, especially in modern

times, and present so many interesting aspects, that

it is natural for a person, whose talents are of this

cast, to devote his principal curiosity and attention

to particular views of the science. When this hap-

pens, the faculties of the mind acquire a superior

facility of operation, with respect to the objects
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towards which they are most frequently directed,

and the invention becomes habitually most active

and most acute in that channel of inquiry.

The truth of these observations is strikingly

illustrated by the character of Euler. His studies

and discoveries lay not among the lines and figures

of geometry, those characters, to use an expres-

sion of Galileo in which the great book of the

universe is written ; nor does he appear to have

had a turn for philosophising by experiment, and

advancing to discovery through the rules of in-

ductive investigation. The region, in which he

dehghted to speculate, was that of pure intellect.

He surveyed the properties and affections of

quantity under their most abstracted forms. With

the same rapidity of perception, as a geometrician

ascertains the relative position ofportions of exten-

sion, Euler ranges among those of abstract quan-

tity, unfolding their most involved combinations,

and tracing their most intricate proportions. That

admirable system of mathematical logic and lan-

guage, which at once teaches the rules of just

inference, and furnishes an instrument for prose-

cuting deductions, free from the defects which

obscure and often falsify our reasonings on other

subjects ; the different species of quantity, whether

formed in the understanding by its own abstrac-

tions, or derived from modifications of the repre-

sentative system of signs ; the investigation of the

various properties of these, their laws of genesis,

the limits of comparison among the different
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species, and the method of applying all this to the

solution of physical problems ; these were the re-

searches on which the mind of Euler delighted to

dwell, and in which he never engaged without

finding new objects of curiosity, detecting sources

of inquiry, which had passed unobserved, and ex-

ploring fields of speculation and discovery, which

before were unknown.

The subjects, which we have here slightly enu-

merated, form, when taken together, what is called

the Modern Analysis : a science eminent for the

profound discoveries which it has revealed ; for

the refined artifices that have been devised, in

order to bring the most abstruse parts of mathe-

matics within the compass ofour reasoning powers,

and for applying them to the solution of actual

phfenomena, as well as for the remarkable degree

of systematic simplicity, with which the various

methods of investigation are employed and com-

bined, so as to confirm and throw light on one

another. The materials, indeed, had been col-

lecting for years, from about the middle of the

seventeenth century ; the foundations had been

laid by Newton, Leibnitz, the elder BernouUis,

and a few others ; but Euler raised the superstruc-

ture : it was reserved for him to work upon the

materials, and to arrange this noble monument of

luiman industry and genius in its present sym-

metry. Through the whole course of his scientific

labors, the ultimate and the constant aim on which

he set his mind, was the perfection of Calculus
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and Analysis. Whatever physical inquiry he be-

gan with, this always came in view, and very fre-

quently received more of his attention than that

which was professedly the main subject. His

ideas ran so naturally in this train, that even in

the perusal of Virgil's poetry, he met with images

that would recall the associations of his more fa-

miliar studies, and lead him back, from the fairy

scenes of fiction, to mathematical abstraction, as

to the element, most congenial to his nature.

That the sources of analysis might be ascertained

in their full extent, as well as the various modifica-

tions of form and restrictions of rule that become

necessary in applying it to different views of

nature ; he appears to have nearly gone through a

complete course of philosophy. The theory of

rational mechanics, the whole range of physical

astronomy, the vibrations of elastic fluids, as well

as the movements of those which are incom-

pressible, naval architecture and tactics, the doc-

trine of chances, probabilities, and political arith-

metic, were successively subjected to the analytical

method ; and all these sciences received from him

fresh confirmation and further improvement*.

It cannot be denied that, in general, his at-

tention is more occupied with the analysis itself,

* A complete edition of his works,, comprising the numerous

papers which he sent to the academies of St. Petersburg,

Berlin, Paris, and other public societies, his separate Treatises

on Curves, the Analysis of Infinites, the differential and integral

Calculus, &c. would occupy, at least, forty quarto volumes.
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than with the subject to which he is applying it;

and that he seems more taken up with his instru-

ments, than with the work, which they are to assist

him in executing. But this can hardly be made a

ground of censure, or regret, since it is the very

circumstance to which we owe the present per-

fection of those instruments ; a perfection to which

he could never have brought them, but by the un-

remitted attention and enthusiastic preference

which he gave to his favorite object. If he now

and then exercised his ingenuity on a physical, or

perhaps metaphysical, hypothesis, he must have

been aware, as well as any one, that his conclusions

would of course perish with that from which they

were derived. What he regarded, was the proper

means of arriving at those conclusions ; the new

views of analysis, which the investigation might

open ; and the new expedients ofcalculus, to which

it might eventually give birth. This was his uni-

form pursuit ; all other inquiries were prosecuted

with reference to it ; and in this consisted the

peculiar character of his mathematical genius.

The faculties that are subservient to invention

he possessed in a very remarkable degree. His

memory was at once so retentive and so ready,

that he had perfectly at command all those nu-

merous and complex formulae, which enunciate

the rules and more important theorems of analysis.

As is reported of Leibnitz, he could also repeat

the ^neid from beginning to end ; and could

trust his recollection for the first and last lines in



EULER. XVll

every page of the edition, which he had been ac-

customed to use. These are instances of a kind

of memory, more frequently to be found where

the capacity is inferior to the ordinary standard,

than accompanying original, scientific genius.

But in Euler, they seem to have been not so much

the result of natural constitution, as of his most

wonderful attention ; a faculty, which, if we con-

sider the testimony of Newton * sufficient evi-

dence, is the great constituent of inventive power.

It is that complete retirement of the mind within

itself, during which the senses are locked up

;

that intense meditation, on which no extraneous

idea can intrude ; that firm, straight-forward pro-

gress of thought, deviating into no irregular sally,

which can alone place mathematical objects in a

light sufficiently strong to illuminate them fully,

and preserve the perceptions of " the mind's eye"

in the same order that it moves along.

Two of Euler's pupils (we are told by M. Fuss,

a pupil himself) had calculated a converging

series as far as the seventeenth term ; but found,

on comparing the written results, that they dif-

fered one unit at the fiftieth figure : they com-

municated this difference to their master, who

went over the whole calculation by head, and his

decision was found to be the true one.—For the

purpose of exercising his little grandson in the

extraction of roots, he has been known to form to

* This opinion of Sir Isaac Newton is recorded by Dr.

Pemberton.

b
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liimself the table of the six first powers of all num-

bers, from 1 to 100, and to have preserved it

actually in his memory.

The dexterity which he had acquired in analysis

and calculation, is remarkably exemplified by

the manner in which he manages formulas of the

greatest length and intricacy. He perceives,

almost at a glance, the factors from which they

may have been composed ; the particular system

of factors belonging to the question under present

consideration ; the various artifices by which that

system may be simplified' and reduced ; and the

relation of the several factors to the conditions of

the hypothesis. His expertness in this particular

probably resulted, in a great measure, from the

ease with which he performed mathematical in-

vestigations by head. He had always accustomed

himself to that exercise ; and having practised it

with assiduity, even before the loss of sight, which

afterwards rendered it a matter of necessity, he is

an instance to what an astonishing degree of per-

fection that talent may be cultivated, and how

much it improves the intellectual powers. No
other discipline is so effectual in strengthening

the faculty of attention ; it gives a facility of ap-

prehension, an accuracy and steadiness to the

conceptions ; and, what is a still more valuable

acquisition, it habituates the mind to arrangement

in its reasonings and reflections.

If the reader wants a further commentary on

its advantages, let him proceed to the work of
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Eiiler, of which we here offer a Translation ; and

if he has any taste for the beauties of method,

and of what is properly called composition^ we
venture to promise him the highest satisfaction

and pleasure. The subject is so aptly divided,

the order is so luminous, the connected parts

seem so truly to grow one out of the other, and

are disposed altogether in a manner so suitable to

their relative importance, and so conducive to

their mutual illustration, that, when added to the

precision, as well as clearness with which every

thing is explained, and the judicious selection of

examples, we do not hesitate to consider it, next

to Euclid's Geometry, the most perfect model of

elementary writing, of which the scientific world

is in possession.

When our reader shall have studied so much
of these volumes as to relish their admirable style,

he will be the better qualified to reflect on the

circumstances under which they were composed.

They were drawn up soon after our author was

deprived of sight, and were dictated to his ser-

vant, who had originally been a tailor's apprentice

;

and, without being distinguished for more than

ordinary parts, was completely ignorant of mathe-

matics. But Euler, blind as he was, had a mind

to teach his amanuensis, as he went on with the

subject. Perhaps, he undertook this task by way

of exercise, with the view of conforming the

operation of his faculties to the change, which the

loss of sight had produced. Whatever was the

b 2
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motive, his Treatise had the advantage of being

composed under an immediate experience of the

method best adapted to the natural progress of a

learner's ideas : from the want of which, men of

the most profound knowledge are often awkward

and unsatisfactory, when they attempt elementary

instruction. It is not improbable, that we may

be farther indebted to the circumstance of our

Author's blindness ; for the loss of this sense is

generally succeeded by the improvement of other

faculties. As the surviving organs, in particular,

acquire a degree of sensibility, which they did not

previously possess ; so the most charming visions

of poetical fancy have been the oiFspring of minds,

on which external scenes had long been closed.

And perhaps a philosopher, familiarly acquainted

with Euler's writings, might trace some improve-

ment in perspicuity of method, and in the flowing

progress of his deductions, after this calamity had

befallen him ; which, leaving " an universal blank

of nature's works," favors that entire seclusion of

the mind, which concentrates attention, and gives

liveliness and vigor to the conceptions.

In men devoted to study, we are not to look for

those strong, complicated passions, which are con-

tracted amidst the vicissitudes and tumult ofpublic

life. To delineate the character of Euler, requires

no contrasts of coloring. Sweetness of disposition,

moderation in tife passions, and simplicity of man-

ners, were his leading features. Susceptible of tlie

domestic aftections, lie was open to all their amiable
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impressions, and was remarkably fond of children.

His manners were simple, without being singular,

and seemed to flow naturally from a heart that

could dispense with those habits, by which many
must be trained to artificial mildness, and with the

forms that are often necessary for concealment.

Nor did the equability and calmness of his temper

indicate any defect of energy, but the serenity of a

soul that overlooked the frivolous provocations,

the petulant caprices, and jarring humours of

ordinary mortals.

Possessing a mind of such wonderful compre-

hension, and dispositions so admirably formed to

virtue and to happiness, Euler found no difficulty

in being a Christian : accordingly, *' his faith was

unfeigned," and his love " was that of a pure and

undefiled heart." The advocates for the truth of

revealed religion, therefore, may rejoice to add to

the bright catalogue, which already claims a Bacon,

a Newton, a Locke, and a Hale, the illustrious

name of Euler. But, on this subject, we shall

permit one of his learned and grateful pupils * to

sum up the character of his venerable master.

*' His piety was rational and sincere ; his devotion

" was fervent. He was fully persuaded of the

" truth of Christianity ; he felt its importance to

" the dignity and happiness of human nature

;

" and looked upon its detractors, and opposers, as

" the most pernicious enemies of man."

The length to which this account has been ex-

* M. Fuss, Eulogy of M. L. Euler.
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tended may require some apology ; but the cha-

racter of Euler is an object so interesting, that,

when reflections are once indulged, it is difficult

to prescribe limits to them. One is attracted by

a sentiment of admiration, that rises almost to the

emotion of sublimity ; and curiosity becomes eager

to examine what talents and qualities and habits

belonged to a mind of such superior power. We
hope, therefore, the student will not deem this an

improper introduction to the work which he is

about to peruse ; as we trust he is prepared to

enter on it with that temper and disposition, which

will open his mind both to the perception of ex-

cellence, and to the ambition of emulating what

he cannot but admire.



ADVERTISEMENT BY THE EDITORS OF
THE ORIGINAL, IN GERMAN.

Wis present to the lovers of Algebra a work, of which a

Russian translation appeared two years ago. The object

of the celebrated author was to compose an Elementary

Treatise, by which a beginner, without any other assistance,

might make himself complete master of Algebra. The loss

of sight had suggested the idea to him, and his activity of

mind did not suffer him to defer the execution of it. For

this purpose M. Euler pitched on a young man, whom he

had engaged as a servant on his departure from Berlin, suf-

ficiently master of arithmetic, but in other respects without

the least knowledge of mathematics. He had learned the

trade of a tailor ; and, with regard to his capacity, was not

above mediocrity. This young man, however, has not only

retained what his illustrious master taught and dictated

to him, but in a short time was able to perform the most

difficult algebraic calculations, and to resolve with readiness

whatever analytical questions were proposed to him.

This fact must be a strong recommendation of the man-

ner in which this work is composed, as the young man who

wrote it down, who performed the calculations, and whose

proficiency was so striking, received no instructions whatever

but from this master, a superior one indeed, but deprived of

sight.

Independently of so great an advantage, men of science

will perceive, with pleasure and admiration, the manner in

which the doctrine of logarithms is explained, and its con-

nexion with other branches of calculus pointed out, as well
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as the methods which are given for resolving equations of

the third and fourth degrees.

Lastly, those who are fond of Diophantine problems will

be pleased to find, in the last Section of the Second Part, all

these problems reduced to a system, and all the processes of

calculation, which are necessary for the solution of them,

fully explained.



ADVERTISEMENT BY M. BERNOULLI, THE
FRENCH TRANSLATOR.

The Treatise of Algebra, which I have undertaken to

translate, was published in German, 1770, by the Royal

Academy of Sciences at Petersburg. To praise its merits,

would almost be injurious to the celebrated name of its

author ; it is sufficient to read a few pages, to perceive, from

the perspicuity with which every thing is explained, what

advantage beginners may derive from it. Other subjects

are the purpose of this advertisement,

I have departed from the division which is followed in

the original, by introducing, in the first volume of the

French translation, the first Section of the Second Volume

of the original, because it completes the analysis of de-

terminate quantities. The reason for this change is obvious

:

it not only favors the natural division of Algebra into de-

terminate and indeterminate analysis ; but it was necessary

to preserve some equality in the size of the two volumes, on

account of the additions which are subjoined to the Second

Part.

The reader will easily perceive that those additions come

from the pen of M. De la Grange ; indeed, they formed one

of the principal reasons that engaged me in this translation.

I am happy in being the first to shew more generally to

mathematicians, to what a pitch of perfection two of our

most illustrious mathematicians have lately carried a branch

of analysis but little known, the researches of which are at-

tended with many difficulties, and, on the confession even of

these great men, present the most difficult problems that

they have ever resolved.
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I have endeavoured to translate this algebra in the style

best suited to works of the kind. My chief anxiety was to

enter into the sense of the original, and to render it with the

greatest perspicuity. • Perhaps I may presume to give my
translation some superiority over the original, because that

work having been dictated, and admitting of no revision from

the author himself, it is easy to conceive that in many pas-

sages it would stand in need of correction. If I have not

submitted to translate literally, I have not failed to follow

my author step by step ; I have preserved the same divisions

in the articles, and it is only in so few places that I have

taken the liberty of suppressing some details of calculation,

and inserting one or two lines of illustration in the text, that

I believe it unnecessary to enter into an explanation of the

reasons by which I was justified in doing so.

Nor shall I take any more notice of the notes which I

have added to the first part. They are not so numerous as

to make me fear the reproach of having unnecessarily in-

creased the volume ; and they may throw light on several

points of mathematical history, as well as make known a

great number of Tables that are of subsidiary utility.

With respect to the correctness of the press, 1 believe it

will not yield to that of the original. I have carefully com-

pared all the calculations, and having i-epeatcd a great num-

ber of them myself, have by those means been enabled to

correct several faults beside those which are indicated in the

Errata.
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PART I.

Containing the Analysis of Determinate Quantities.

SECTION I.

Ofthe different Methods of calculating Simple Quantities.

,
CHAP. I.

Of Mathematics in general,

ARTICLE I:

Whatever is capable of increase or diminution, is called

magnitude, or quantity.

A sum of money therefore is a quantity, since we may
increase it or diminish it. It is the same with a weight, and
other things of this nature.

2. From this definition, it is evident, that the different

kinds of magnitude must be so various, as to render it dif-

ficult to enumerate them : and this is the origin of the dif-

ferent branches of the Mathematics, each being employed
on a particular kind of magnitude. Mathematics, in general,

is the science of quantity ; or, the science which investigates

the means of measuring quantity.

3. Now, we cannot measure or determine any quantity,

except by considering some other quantity of the same kind
as known, and pointing out their mutual relation. If it

were proposed, for example, to determine the quantity of a
sum of money, we should take some known piece of money,
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as a louis, a crown, a ducat, or some other coin, and shew

how many of these pieces are contained in the given sum.

In the same manner, if it were proposed to determine the

quantity of a weight, we should take a certain known weight;

for example, a pound, an ounce, &c. and then shew how
many times one of these weights is contained in that which

we are endeavouring to ascertain. If we wished to measure

any length or extension, we should make use of some known
length, such as a foot.

4. So that the determination, or the measure of mag-
nitude of all kinds, is reduced to this : fix at pleasure upon
any one known magnitude of the same species with that

which is to be determined, and consider it as the measure or

iinit ; then, determine the proportion of the proposed mag-
nitude to this known measure. This proportion is always

expressed by numbers ; so that a number is nothing but the

proportion of one magnitude to another arbitrarily assumed

as the unit.

5. From this it appears, that all magnitudes may be ex-

pressed by numbers; and that the foundation of all the

Mathematical Sciences must be laid in a complete treatise

on the science of Numbers, and in an accurate examination

of the different possible methods of calculation.

This fundamental part of mathematics is called Analysis,

or Algebra *.

6. In Algebra then we consider only numbers, which

represent quantities, without regarding the different kinds

of quantity. These are the subjects of other branches of

the mathematics.

7. Arithmetic treats of numbers in particular, and is the

science of numhers properly so called; but this science ex-

tends only to certain methods of calculation, which occur in

common practice : Algebra, on the contrary, comprehends
in general all the cases that can exist in the doctrine and
calculation of numbers.

* Several mathematical writers make a distinction between
Analijx'is and Algebra. By the term Analysis, they understand

the method of determining those general rules, which assist the

understanding in all mathematical investigations; and hy Algebra,

the instrument wliich this method employs for accomplishing

that end. This is the definition given by M. Bezoiit in the

preface to his Algebra. F. T.
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CHAP. II.

Explanation of the Signs + Plus and — Minus.

8. When we have to add one given number to another,

this is indicated by the sign + , which is placed before the

second number, and is read plus. Thus 5+3 signifies

that we must add 3 to the number 5, in which case, every

one knows that the result is 8 ; in the same manner 12 + '7

make 19 ; 25 + 16 make 41 ; the sum of 25 -1- 41 is QQ, Sic.

9. We also make use of the same sign + plus, to con-

nect several numbers together; for example, 7+5 + 9
signifies that to the number 7 we must add 5, and also 9,

which make 21. The reader will therefore understand what
is meant by

8 + 5 + 13+11 + 1+3 + 10,

viz. the sum of all these numbers, which is 51.

10. All this is evident; and we have only to mention,

that in Algebra, in order to generalise numbers, we re-

present them by letters, as a, b, c, d, &c. Thus, the ex-

pression a -r b, signifies the sum of two numbers, which we
express by a and b, and these numbers may be either very

great, or very small. In the same manner,y + m + b -\- x,

signifies the sum of the numbers represented by these four

letters.

If we know therefore the numbers that are represented by
letters, we shall at all times be able to find, by arithmetic,

the sum or value of such expressions.

11. When it is required, on the contrary, to subtract one
given number from another, this operation is denoted by the

sign — , which signifies minus, and is placed before the

number to be subtracted : thus, 8—5 signifies that the

number 5 is to be taken from the number 8 ; which being

done, there remain 3. In like manner 12 — 7 is the same
as 5 ; and 20 — 14 is the same as 6, &c.

12. Sometimes also we may have several numbers to

subtract from a single one ; as, for instance, 50 — 1 — 3 —
5 — 7 — 9. This signifies, first, take 1 from 50, and there

remain 49 ; take 3 from that remainder, and there will re-

main 46 ; take away 5, and 41 remain ; take away 7, and
34 remain ; lastly, from that take 9, and there remain 25

:

this last remainder is the value of the expression. But as

the numbers 1, 3, 5, 7, 9, are all to be subtracted, it is the

b2
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same thing if we subtract tlieir sum, wliich is 25, at once

from 50, and the remainder will be 25 as before.

13. It is also easy to determine the value of similar ex-

pressions, in which both the signs + plus and — minus are

found. For example

;

12 — 3 — 5 + 2 — 1 is the same as 5.

We have only to collect separately the sum of the numbers

that have the sign + before them, and subtract from it the

sum of those that have the sign — . Thus, the sum of 12

and 2 is 14; and that of 3, 5, and 1, is 9; hence 9 being-

taken from 14, there remain 5.

14. It will be perceived, from these examples, that the

order in which we write the numbers is perfectly indifferent

and arbitrary, provided the proper sign of each be pi-eserved.

We might with equal propriety have arranged the expression

in the preceding article thus; 12 + 2 — 5 — 3 — 1, or

2 _ 1 _ 3 _ 5 + 12, or 2 + 12 - 3 - 1 - 5, or in still

different orders; where it must be observed, that in the ar-

rangement first proposed, the sign -f is supposed to be placed

before the number 12.

15. It will not be attended with any more difficulty if, in

order to generalise these operations, we make use of letters

instead of real numbers. It is evident, for example, that

a — b — c + d ~ e,

signifies that we have numbers expressed by a and cZ, and
that from these numbers, or from their sum, we must sub-

tract the numbers expressed by the letters b, c, e, which
have before them the sign —

.

16. Kence it is absolutely necessary to consider what sign

is prefixed to each number: for in Algebra, simple quan-
tities are numbers considered with regard to the signs which

])recede, or affect them. Farther, we call those positive

quaMitiCS, before which the sign + is found; and those

are called negative quantities, which are affected by the

sign —

.

17. The manner in which we generally calculate a per-

son's property, is an apt illustration of what has just been
said. For we denote what a man really possesses by positive

numbers, using, or understanding the sign + ; whereas his

debts arc represented by negative numbers, or by using the

sign — . Thus, when it is said of any one that he has 100
crowns, but owes 50, this means that his real possession

amounts to 100 — 50; or, which is the same thing, + 100
— 50, that is to say, 50.

18. Since negative numbers may be considered as debts,

because positive numbers represent real possessions, we
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may say that negative numbers are less than nothing. Thus,

when a man has nothing of his own, and owes 50 crowns, it

is certain that he has 50 crowns less than nothing ; for if

any one were to make him a present of 50 crowns to pay his

debts, he would still be only at the point nothing, though

really richer than before.

19. In the same manner, therefore, as positive numbers
are incontestably greater than nothing, negative numbers
are less than nothing. Now, we obtain positive numbers by
adding 1 to 0, that is to say, 1 to nothing ; and by con-

tinuing always to increase thus from unity. This is the

origin of the series of numbers called natural numbers ; the

following being the leading terms of this series

:

0, +1, +2, +3, +4, +5, +6, +7, +8, +9, +10,
and so on to infinity.

But if, instead of continuing this series by successive ad-

ditions, we continued it in the opposite direction, by per-

petually subtracting unity, we should have the following

series of negative numbers

:

0, -1, -2, -S, -4, -5, -6, -7, -8, -9, -10,
and so on to infinity.

20. All these numbers, whether positive or negative,

have the known appellation of whole numbers, or integers,

which consequently are either greater or less than nothing.

We call them integers, to distinguish them from fractions,

and from several other kinds of numbers of which we shall

hereafter speak. For instance, 50 being greater by an entire

unit than 49, it is easy to comprehend that there may be,

between 49 and 50, an infinity of intermediate numbers, all

greater than 49, and yet all less than 50. We need only

imagine two lines, one 50 feet, the other 49 feet long, and it

is evident that an infinite number of lines may be drawn, all

longer than 49 feet, and yet shorter than 50.

21. It. is of the utmost importance through the whole of

Algebra, that a precise idea should be formed of those ne-

gative quantities, about which we have been speaking. I

shall, however, content myself with remarking here, that all

such expressions as

+ 1 - 1, + 2 - 2, +3—3, + 4 - 4, &c.

are equal to 0, or nothing. And that

+ 2 — 5 is equal to — 3

:

for if a person has 2 crowns, and owes 5, he has not only

nothing, but still owes 3 crowns. In the same manner,

7 — 12 is equal to - 5, and 25 — 40 is equal to — 15.

22. The same observations hold true, when, to make the

expression more general, letters are used instead of numbers;
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thus 0, or nothing, will always be the value of + t*^ — " '•>

but if we wish to know the value o^ + a ~ b, two cases are

to be considered.

The first is when a is greater than b ; b must then be

subtracted from a, and the remainder (before which is

placed, or understood to be placed, the sign -[- ) shews the

value sought.

The second case is that in which a is less than b : here a
is to be subtracted from b, and the remainder being made
negative, by placing before it the sign — , will be the value

sought.

CHAP. III.

Ofthe Multiplication o/^' Simple Quantities.

23. When there are two or more equal numbers to be

added together, the expression of their sum may be abridged

:

for example,

a + a is the same with 2 x a,

a + a + a - 3x«,
a + a -\- a -\- a 4xa, and so on ; where x is the

sign of multiplication. In this manner we may form an idea

of multiplication ; and it is to be observed that,

2 X a signifies 2 times, or twice a
S X a 3 times, or thrice a
4i X a 4 times a, &c.

24. If therefore a number expressed by a letter is to be
multiplied by any other number, we simply put that number
before tl .e letter, thus

;

a multiplied by 20 is expressed by 20.'/, and
b multiplied by 30 is expressed by oOb, &c.

It is evident, also, that c taken once, or Ic, is the same as c.

25. Farther, it is extremely easy to multiply such pro-

ducts again by other numbers ; for example

:

2 times, or twice 3a, makes 6a
3 times, or thrice 4i, makes 12b
5 times 7a; makes 35.r,

and these products may be still multiplied by other numbers

at ])leasure.

26. When the number by which we are to multiply is

also represented by a letter, we place it immediately before

the other letter; thus, in multiplying b by a, the product is
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written ab ; and pq will be the product of the multiplication

of the number q by p. Also, if we multiply this -pq again

by a, we shall obtain apq.

27. It may be farther remarked here, that the order in

which the letters are joined together is indifferent; thus ab

is the same thing as ba ; for b multiplied by a is the same

as a multiplied by b. To understand this, we have only to

substitute, for a and ft, known numbers, as 3 and 4 ; and
the truth will be self-evident ; for S times 4 is the same as

4 times 3.

28. It will not be difficult to perceive, that when we sub-

stitute numbers for letters joined together, in the manner we
have described, they cannot be written in the same way by
putting them one after the other. For, if we were to write

34 for 3 times 4, we should have 34, and not 12. When
therefore it is required to multiply common numbers, we
must separate them by the sign x, or by a point: thus,

3 X 4, or 3.4, signifies 3 times 4 ; that is, 12. So, 1 x 2 is

equal to 2; and 1x2x3 makes 6. In like manner,

Ix2x3x4x 56 makes 1344 ; and Ix2x3x4x
5x6x7x8x9x 10 is equal to 3628800, &c.

29. In the same manner, we may discover the value of an
expression of this form, S.^.S.abcd. It shews that 5 must
be multiplied by 7, and that this product is to be again

multiplied by 8 ; that we are then to multiply this product

of the three numbers by a, next by b, then by c, and lastly

by d. It may be observed, also, that instead of 5.7.8, we
may write its value, 280; for we obtain this number when
we multiply 35, (the product of 5 by 7) by 8.

30. The results which arise from the multiplication of

two or more numbers are called products ; and the numbers,

or individual letters, are cdWedi factors.

31. Hitherto we have considered only positive numbers;
and there can be no doubt, but that the products which we
have seen arise are positive also : viz. -\- a hy -\- b must
necessarily give + ab. But we must separately examine
what the multiplication of + a by — &, and of — « by — &,

will produce.

32. Let us begin by multiplying —a by 3 or H-3. Now,
since — a may be considered as a debt, it is evident that if

we take that debt three times, it must thus become three

times greater, and consequently the required product is

— 3tf. So if we multiply —a by +b, we shall obtain —ba,
or, which is the same thing, — ab. Hence we conclude,

that if a positive quantity be multiplied by a negative quan-

tity, the product will be negative; and it may be laid down

l>Ai).
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as a rule, that + by + makes + or plus ; and that, on the

contrary, + by — , or — by +, gives — , or viinus.

33. It remains to resolve the case in which — is mul-
tiplied by — ; or, for example, — « by — ^. It is evident,

at first sightj with regard to the letters, that the product will

be ab; but it is doubtful whether the sign +, or the sign —

,

is to be placed before it; all we know is, that it must be one

or the other of these signs. Now, I say that it cannot be
the sign — : for — « by +6 gives — a6, and —a by —b can-

not produce the same result as —a by +6; but must pro-

duce a contrary result, that is to say, + ah ; consequently,

we have the following rule: — multiplied by — produces

+ , that is, the same as + multiplied by -\- *.

* A farther illustration of this rule is generally given by
algebraists as follows

:

First, we know that -\-a multiplied by +5 gives the product

-\-ab ; and if +« be multiplied by a quantity less than b, as b— c,

the product must necessarily be less than ab ; in short, from ab
we must subtract the product of a, multiplied by c; hence
a y. [b — c) must be expiessed by ab — ac; therefore it follows

that ax — c gives the product — ac.

If now we consider the product arising from the multiplication

of the two quantities (a—b), and (c— d), we know that it is less

than that of (a — b) x c, or of ac — be; in short, from this pro-

duct we must subtract that o^ [a — b) x d : but the product
(a — b) X (c — d) becomes ac — be — ad, together with the

product of —h X —d annexed 5 and the question is only what
sign we must employ for this purpose, whether -f or — . Now,
we have seen that from the product ac — be we must subtract

the product of (a—b) x d; that is, we must subtract a quantity

less than ad. We have therefore subtracted already too much
by the quantity bd ; this product must therefore be added ;

that is, it must have the sign -|- prefixed ; hence we see that

— b X —d gives -\- bd for a product ; or — jnhws multiplied by
— minus gives + j^/us. See Art. 273, 27+.

Multiplication has been erroneously called a compendious
method of performing addition : whereas it is the taking, or re-

peating of one given number as many times, as the number by
which it is to be multiplied, contains units. Thus, 9x3 means
that 9 is to be taken 3 times; or that the measure of multiplica-

tion is 3 ; again 9 X | means that 9 is to be taken half a time,

or that the measure of multiplication is f. In multiplication

there are two factors, which are sometimes called the mul-
tiplicand and the multiplier. These, it is evident, may re-

ciprocally change places, and the product will be still the same:
for 9X3 = 3X9, and 9 X f = i x9. Hence it appears, that

numbers may be diminished by nuiltiplication, as well as in-

creased, in any given ratio; which is wholly inconsistent with
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34. The rules which we have explained are expressed

more briefly as follows

:

Like signs, multiplied together, give -f ; unlike or con-

trary signs give — . Thus, when it is required to multiply

the following numbers ; + «, — 6, — c, + ^ ; we have first

+ a multiplied by — 6, which makes — ab; this by — c,

gives 4- o,bc; and this by + d, gives + abed.

35. The difficulties with respect to the signs being re-

moved, we have only to shew how to multiply numbers that

are themselves products. If we were, for instance, to mul-
tiply the number ab by the number cd, the product would
be abed, and it is obtained by multiplying first ab by c, and
then the result of that multiplication by d. Or, if we had
to multiply 36 by 12; since 12 is equal to 3 times 4, we

the natm-e of Addition ; for 9 x f = 4f , 9 x t = 1 » 9 X t^=
Tg-o-, &c. The same will be found true with respect to algebraic

quantitiesj a X b =^ ab, —9 x 3 =— 27, that is, 9 negative in-

tegers multiplied by 3, or taken 3 times, are equal to —27, be-

cause the measure of multiplication is 3. In tlie same manner,
by inverting the factors, 3 positive integers multiplied by —9,
or taken 9 times negatively, must give the same result. There-
fore a positive quantity taken negatively, or a negative quantity

taken positively, gives a negative product.

From these considerations, we may illustrate the present sub-
ject in a different way, and shew, that the product of two ne-
gative quantities must be positive. First, algebraic quantities

may be considered as a series of numbers increasing in any
ratio, on each side of nothing, to infinity. [See Art. 19.] Let
us assume a small part only of such a series for the present
purpose, in which the ratio is unity, and let us multiply every
term of it by —2.

5, 4, 3, 2, 1, 0,-1,-2,-3,-4,-5,
-2, —2, —2, —2, -2, -2, -2,-2, —2, —2, -2,

-10, -«, -6, -4, -2, 0, +2, +4, +6, +8, +10.
Here, of course, we find the series inverted, and the ratio dou-
bled. Farther, in order to illustrate the subject, we may con-
sider the ratio of a series of fractions between 1 and 0, as in-

definitely small, till the last term being multiplied by —2, the

product would be equal to 0. If, after this, the multiplier

having passed the middle term, 0, be multiplied into any negative
term, however small, between and — 1 , on the other side of the
series, the product, it is evident, must be positive, otherwise the
series could not go on. Hence it appears, that the taking of a
negative quantity negatively destroys the very property of ne-
gation, and is the conversion of negative into positive numbers.
So that if -f X — = — , it necessarily follows that — x — must
give a contrary product, that is, +. See Art. 170, 177.
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should only multiply 36 first by 3, and then the product

108 by 4, in order to have the whole product of the mul-

tiplication of 12 by 36, which is consequently 432.

36. But if we wished to multiply ^ab by Serf, we might

write ^cd x Bah. However, as in the present instance the

order of the numbers to be multiplied is indifferent, it will

be better, as is also the custom, to place the common num-
bers before the letters, and to express the product thus:

5 X Sabcd, or I5abcd; since 5 times 3 is 15.

So if we had to multiply 12j}qr by Kxy, we should obtain

12 X Ipqrxy, or ^^pqrxy.

ipC

CHAP. IV.

Of the Nature of whole Numbers, or Integers, with respect

to their Factors.

.37. We have observed that a product is generated by the

multiplication of two or more numbers together, and that

these numbers are called factors. Thus, the numbers
a, h, c, d, are the factors of the product abed.

38. If, therefore, we consider all whole numbers as pro-

ducts of two or more numbers multiplied together, we shall

soon find that some of them cannot result from such a mul-
tiplication, and consequently have not any factors; while

others may be the products of two or more numbers mul-
tiplied together, and may consequently have two or more
factors. Thus 4 is produced by 2 x 2; 6 by 2 x o ; 8 by
2 X 2 X 2 ; 27 by 3 X 3 X 3 ; and 10 by 2 k 5, &c.

39. But on the other hand, the numbers 2, 3, 5, 7, 11,

13, 17, &c. cannot be represented in the same manner by
factors, iniless for that purpose we make use of unity, and
represent 2, for instance, by 1x2. But the numbers
which are multiplied by 1 remaining the same, it is not

proper to reckon unity as a factor.

AH numbers, therefore, such as 2, 3, 5, 7, 11, 13, 17,

&c. which cannot be represented by factors, are called

simple, or prime numheis ; whereas others, as 4, 6, 8, 9, 10,

12, 14, 15, 16, 18, &c. which may be represented by factors,

are called comj^osite numbei's.

40. Simple or prime members deserve therefore particular

attention, since they do not result from the multi[)lication of

i"" y , /, 1 /
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two or more numbers. It is also partlculariy worthy of ob-

servation, that if we write these numbers in succession as

they follow each other, thus,

5?, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, &c. *

we can trace no regular order; their increments being some-

times greater, sometimes less ; and hitherto no one has been

able to discover whether they follow any certain law or not.

41. All composite numbers, which may be represented

by factors, result from the prime numbers above mentioned ;

that is to say, all their factors are prime numbers. For, if

we find a factor which is not a prime number, it may always

be decomposed and represented by two or more prime num-
bers. When we have represented, for instance, the number

* All the prime numbers from 1 to lOOOOO are to be found
in the Tables of divisors, which I shall speak of in a succeeding

note. But particular Tables of the prime numbers from 1 to

101000 have been published at Halle, by M. Kruger, in a Ger-
man work entitled " Thoughts on Algebra;'' M. Kruger had
received them from a person called Peter Jaeger, who had cal-

culated them. M. Lambert has continued these Tables as far as

102000j and republished them in his supplements to the loga-

rithmic and trigonometrical Tables, printed at Berlin in 1 770
3

a work which contains likewise several Tables that are of great

use in the different branches of mathematics, and explanations

which it would be too long to enumerate here.

The Royal Parisian Academy of Sciences is in possession of
Tables of prime numbers, presented to it by P. Mercastel de
rOratoire, and i)}' M. du Tour ; but they have not been pub-
lished. They are spoken of in Vol. V. of the Foreign Memoirs,
with a reference to a memoir, contained in that volume, by M.
Rallier des Ourmes, Honorary Counsellor of the Presidial Court
at Rennes, in which the author explains an easy method of
finding prime numbers.

In the same volume we find another method by M. Rallier des
Ourmes, which is entitled, " A new Method for Division, wlien
the Dividend is a Multiple of the Divisor, and may therefore be
divided without a remainder ; and for the Extraction of Roots
when the Power is perfect." This method, moi-e curious, in-

deed, than useful, is almost totally different from the common
one : it is very easy, and has this singularity, that, provided v.e

know as many figures on the right of the dividend, or the power,
as there are to be in the quotient, or the root, we may pass over
the figures which precede them, and thus obtain the quotient.

M. Rallier des Ourmes was led to this new method by reflecting

on the numbers terminating the numerical expressions of pro-
ducts or powers, a species of numbers which 1 have remarked
also, ou other occasions, it would be useful to consider. F. T.
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CHAP. V.

Of the Division o/*Simple Quantities.

45. When a number is to be separated into two, three, or
more equal parts, it is done by means of division^ which
enables us to determine the magnitude of one of those parts.

When we wish, for example, to separate the number 12 into

three equal parts, we find by division that each of those

parts is equal to 4.

The following terms are made use of in this operation.

The number which is to be decompounded, or divided, is

called the dividend ; the number of equal parts souo-ht is

called the divisor ; the magnitude of one of those parts,

determined by the division, is called the quotient: thus, in

the above example,

12 is the dividend,
"

3 is the divisor, and
4 is the quotient.

46. It follows from this, that if we divide a number l)y 2,

or into two equal parts, one of those parts, or the quotient,

taken twice, makes exactly tlie number proposed ; and, in

the same manner, if we have a number to divide by 3, the

quotient taken thrice must give the same number again. In
general, the multiplication of the quotient by the divisor

must always reproduce the dividend.

47. It is for this reason that division is said to be a rule,

which teaches us to find a number or quotient, which, being
multiplied by the divisor, will exactly produce the dividend.

For example, if 35 is to be divided by 5, we seek for a
number, which multiplied by 5, will produce ^5. Now,
this number is 7, since 5 times 7 is 35. The manner of
expression employed in this reasoning, is ; 5 in 35 goes 7
times ; and 5 times 7 makes 35.

- 48. The dividend therefore may be considered as a product,
of which one of the factors is the divisor, and the other the

quotient. Thus, supposing v/e have 63 to divide by 7, we
endeavour to find such a product, that, taking 7 for one of
its factors, the other factor multiplied by this may exactly
give 63. Now 7 x 9is such a product; and consequently

9 is the quotient obtained when we divide 6S by 7-

49. In general, if we have to divide a number ab by a, it

is evident that the quotient will be 6; for a multiplied by h
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gives tlie dividend ah. It is clear also, that if we liad to

divide ah by 6, the quotient would be a. And in all ex-

amples of division that can be proposed, if we divide the

dividend by the quotient, we shall again obtain the divisor ;

for as 24 divided by 4 gives 6, so 24 divided by 6 will

give 4.

50. As the whole operation consists in representing- the

dividend by two factors, of which one may be equal to the

divisor, and the other to the quotient, the following ex-

amples will be easily understood. I say first that the di-

vidend abc, divided by a, gives hc\ for «, multiplied by ic,

produces abo: in the same manner abc, being divided by 5,

we shall have ac; and abc, divided by ac, gives h. It is

also plain, that \2mn, divided by 3»2, gives 4?i; for 3«/,

multiplied by 4«, makes \9.mii. But if this same number
\%mn had been divided by 12, we should have obtained the

quotient mil.

51. Since every number a may be expressed by la, or a,

it is evident that if we had to divide «, or \a, by 1, the

quotient would be the same number a. And, on the con-

trai-y, if the same number a, or Iff, is to be divided by a,

the quotient will be 1.

52. It often happens that we cannot represent the di-

vidend as the product of two factors, of which one is equal

to the divisor ; hence, in this case, the division cannot be

performed in the manner we have described.

When we have, for example, 24 to divide by 7, it is at

first sight obvious, that the number 7 is not a factor of 24;
for the product of 7 x 3 is only 21, and consequently too

small ; and 7x4 makes 28, which is greater than 24. We
discover, however, from this, that the quotient must be

greater than 3, and less than 4. In order therefore to de-

termine it exactly, we employ another species of numbei's,

which are called fractions, and which we shall consider in

one of the following chapters.

53. Before we pi-oceed to the use of fractions, it is usual

to be satisfied with the whole number which approaches

nearest to the true quotient, but at the same time paying

attention to the remainder which is left ; thus we say, 7 in

24 goes 3 times, and the remainder is 3, because 3 times 7

produces only 21, which is 3 less than 24. We may also

consider the following examples in the same manner

:

6)34(5, that is to say, the divisor is 6, the

30 dividend 34, the quotient 5, and tlie

remainder 4.

4
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9)41(4, here the divisor is 9, the dividend

36 41, the quotient 4, and the remain-

der 5.

5

The following rule is to be observed in examples where

there is a remainder.

54. Multiply the divisor by the quotient, and to the pro-

duct add the remainder, and the result will be the dividend.

This is the method of proving the division, and of dis-

covering whether the calculation is right or not. Thus, in

the first of the two last examples, if we multiply 6 by 5,

and to the product 30 add the remainder 4, we obtain 34,

or the dividend. And in the last example, if we multiply

the divisor 9 by the quotient 4, and to the product 36 add
the remainder 5, we obtain the dividend 41.

55. Lastly, it is necessary to remark here, with regard to

the signs + pZz^^ and — minus, that if we divide + ah by

+ rt, the quotient will be +6, which is evident. But if we
divide -\- abhy — cr, the quotient will be — 6 ; because —a
X — b gives + ab. If the dividend is — ab, and is to be

divided by the divisor +a, the quotient will he —b; because

it is —b which, multiphed by +a, makes —ab. Lastly,

if we have to divide the dividend —ab by the divisor —a,
the quotient will be + 6 ; for the dividend — ab is the

product of — a by -\- b.

56. With regard, therefore, to the signs + and — , di-

vision requires the same rules to be observed that we have

seen take place in multiplication ; viz.

-h by 4- makes + ; + by — makes —
;

— by 4- makes —
;
— by — makes + :

or, in few words, like signs give plus, and unlike signs give

viinus.

57. Thus when we divide 18pq by — 3p, the quotient is

— 6q. Farther

;

— SOxi/ divided by -j- 6y gives — 5x, and
— 54a6c divided by — 9b gives + 6ac

;

for, in this last example, — 9b multiplied by 4- 6ac makes
—6 X 9abc, or — 54fl6c. But enough has been said on the

division of simple quantities ; we shall therefore hasten to,

the explanation of fractions, after having added some further

remarks on the nature of numbers, with respect to their

divisors.
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CHAP. VI.

Of the Properties o/" Integers, with respect to their Divisors.

58. As we have seen that some numbers are divisible by
certain divisors, while others are not; it will be proper, in

order to obtain a more particular knowledge of numbers,

that this difference should be carefully observed, both by
distinguishing the numbers that are divisible by divisors

from those which are not, and by considering the remainder

that is left in the division of the latter. For this purpose,

let us examine the divisors

;

2, 3, 4, .5, 6, 7, 8, 9, 10, &c.

59- First let the divisor be 2 ; the numbers divisible by it

are, 2, 4, 6, 8, 10, \% 14, 16, 18, 20, &c. which, it appears,

increase always by two. These numbers, as far as they can

be continued, are called even numbers. But there are other

numbers, viz.

1,3, 5, 7,9, 11, 13, 15, 17, 19, &c.

which are uniformly less or greater than the former by unity,

and which cannot be divided by 2, without the remainder 1

;

these are called odd numbers.

The even numbers may all be comprehended in the ge-

neral expression 2a ; for they are all obtained by successively

substituting for a the integers 1, 2, 3, 4, 5, 6, 7, &c. and
hence it follows that the odd numbers are all comprehended
in the expression 2a + 1, because 2a + 1 is greater by unity

than the even number 2fl.

60. In the second pla<;e, let the number 3 be the divisor

;

the numbers divisible by it are,

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, and so on

;

which numbers may be represented by the expression 3a

;

for 3a, divided by 3, gives the quotient a without a re-

mainder. All other numbers which we would divide by 3,

will give 1 or 2 for a remainder, and are consequently of

two Kinds. Those which after the division leave the re-

mainder 1, are,

1, 4, 7, 10, 13, 16, 19, &c.

and are contained in the expression 3a + 1 ; but the other

kind, where the numbers give the remainder 2, are,

2,5,8, 11, 14, 17, 20, &c.

which may be generally represented by 3a + 2 ; so that all

numbers may be expressed either by 3a, or by 3a -f 1, or

by 3a + 2.
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61. Let US now suppose that 4 is the divisor under con-

sideration ; then the numbers which it divides are,

4, 8, L?, 16, 20, 24, &c.

which increase uniformly by 4, and are comprehended in

the expression 4a. All other numbers, that is, those which

are not divisible by 4, may either leave the remainder 1, or

be greater than the former by 1 ; as,

1, 5, 9, 13, 17, 21, 25, &c.

and consequently may be comprehended in the expression

4a + 1 : or thev may give the remainder 2 ; as,

2, 6, 10, 14, 18, 22, 26, &c.

and be expressed by 4a + 2 ; or, lastly, they may give the

remainder 3 ; as,

3,7, 11, 15,19,23,27, &c.

and may then be represented by the expression 4a + 3.

All possible integer numbers are contained therefore in

one or other of these four expressions

:

4a, 4a + 1, 4a + 2, 4a + 3.

62. It is also nearly the same when the divisor is 5;

for all numbers which can be divided by it are compre-

hended in the expression 5a, and those which cannot be

divided by 5, are reducible to one of the following ex-

pressions :

5a + 1, 5a + 2, 5a + 3, 5a + 4

;

and in the same manner we may continue, and consider any

greater divisor.

63. It is here proper to recollect what has been already

said on the resolution of numbers into their simple factors;

for every number, among the factors of which is found

2, or 3, or 4, or 5, or 7,

or any other number, will be divisible by those numbers.

For example; 60 being equal to 2 x 2 x 3 y 5, it is

evident that 60 is divisible by 2, and by 3, and by 5 *'.

* There are some numbers which it is easy to perceive

whether they are divisors of a given number or not.

1. A given number is divisible by 2, if the last digit is even

;

it is divisible by 4, if the two last digits are divisible by 4 ; it is

divisible by 8, if the three last digits are divisible by 8 ; and,

in general, it is divisible by 2", if the n last digits are divisible

by 2".

2. A number is divisible by 3, if the sum of the digits is di-

visible by 3 ; it may be divided by (3, if, beside this, the last

digit is even ; it is divisible by 9, if the sum of the digits may be

divided by 9.

3. Every number that has the last digit O or 5, is divisible

by 5.

c
^*
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64. Fartlier, as the general expression alicd is not only

divisible by o, and b, and c, and d, but also by
ah, ac, nd, be, bd, cd, and by
abc, add, acd, bed, and lastly by
abed, that is to say, its own value

;

it follows that 60, or 2 x 2 x 3 x 5, may be divided not

only by these simple numbers, but also by those which are

composed of any two of them; that is to say, by 4, 6, 10,

15 : and also by those which are composed of any three of

its simple factors; that is to say, by 12, 20, 30, and lastly

also, by 60 itself.

65. When, therefore, we have represented any number
assumed at pleasure, by its simple factors, it will be very

easy to exhibit all the numbers by which it is divisible.

For we have only, first, to take the simple factors one by
one, and then to multiply them together two by two,

4. A number is divisible by 11^ when the sum of the first,

third, fifths &c. digits is equal to the sum of the second, fourth,

sixth, &c. digits.

It would be easy to explain the reason of these rules, and to

extend them to the products of the divisors which we have just

now considered. Rules might be devised likewise for some other

numbers, but the application of them would in general be longer

than an actual trial of the division.

For example, I say that the number 53704689213 is divisible

by 7, because I find that the sum of the digits of the number
64004245433 is divisible by 7; and this second number is formed,
according to a very simple rule, from the remainders found after

dividing the component parts of the former number by 7-

Thus, 53704689213 = 50000000000 + 3000000000 +
700000000 + 4- 4000000 + 600000 + 80000 + 9000 + 200
+ 10 + 3; which being, each of them, divided by 7, will leave

the remainders 6, 4, 0, 0, 4, 2, 4, 5, 4, 3, 3', the num.ber here
given. Bernoidli.

If a, b, c, dy e, &c. be the digits composing any number, the

number itself may be expressed universally thus; a -\- ]0b +
10*c + 10^0? H- \0*c, Sec. to 10"^; where it is easy to perceive
that, if each of the terms a, \0b, lOV, &c. be divisible by 7i, the
number itself a + lOb + 10%, &c. will also be divisible by n.

^ , .- « 106 \0"'C ^ .
,

. , „ . .

And, it — , — , , &c. leave the reraamders p, q, r, &c. it is
n H 71 ' ^

obvious, that a 4- 106 + lO'c, &c. will be divisible by n, when
p {• q + r, is divisible by n ; which renders the principle of the
rule sufficiently clear.

The reader is indebted to that excellent mathematician, the

late Professor Bonnycastle, for this satisfactory illustration of

M. Bernoulli's note.
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three by three, four by four, &c. till we arrive at the number
proposed.

66. It must here be particular!}^ observed, that every

number is divisible by 1 ; and also, that every number is

divisible by itself; so that every number has at least two
factors, or divisors, the number itself, and unity : but every

number which has no other divisor than these two, belongs

to the class of numbers, which we have before called simple,

or prime numbers.
Except these simple numbers, all other numbers have,

beside unity and themselves, other divisors, as may be seen

from the following Table, in which are placed under each

number all its divisors *.

TABLE.
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CHAP. VII.

Of Fractions in general.

68. When a number, as 7, for instance, is said not to be
divisible by another number, let us suppose by 3, this only

means, that the quotient cannot be expressed by an integer

number ; but it must not by any means be thought that it is

impossible to form an idea of that quotient. Only imagine

a line of 7 feet in length ; nobody can doubt the possibility

of dividing this line into 3 equal parts, and of forming a

notion of the length of one of those parts.

69. Since therefore we may form a precise idea of the

quotient obtained in similar cases, though that quotient may
not be an integer number, this leads us to consider a par-

ticular species of numbers, caWedi fractions, or broken num.'

hers ; of which the instance adduced furnishes an illustration.

For if we have to divide 7 by 3, we easily conceive the

quotient which should result, and express it by \- ; placing

the divisor under the dividend, and separating the two
numbers by a stroke, or line.

70. So, in general, when the number a is to be divided by

the number b, we represent the quotient by y-, and call

this form of expression a fraction. We cannot therefore

give a better idea of a fraction -^-j than by saying that it ex-

presses the quotient resulting from the division of the upper
number by the lower. We must remember also, that in all

fractions the lower number is called the denominator, and
that above the line the numerator.

71. In the above fraction ^, which we read seven tliirds,

7 is the numerator, and 3 the denominator. We must also

read y, two thirds; |, three fourths; |-, three eighths;
-x-o^;;,

twelve hundredths; and 4, one half, &c.

72. In order to obtain a more perfect knowledge of the

nature of fractions, we shall begin by considering the case

in which the numerator is equal to the denominator, as in

— . Now, since this expresses the quotient obtained by

dividing a by o, it is evident that this quotient is exactly

unity, and that consequently the fraction — is of the same
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value as 1, or one integer; for the same reason, all the fol-

lowing fractions, ^
a 3 4- 5 6 7 8 f^f,
o-J T» "4' T' "6' T» T' ^

are equal to one another, each being equal to 1, or one

integer.

73. We have seen that a fraction whose numerator is

equal to the denominator, is equal to unity. All fractions

therefore whose numerators are less than the denominators,

have a value less than unity : for if I have a number to

divide by another, which is greater than itself, the result

must necessarily be less than 1. If we cut a line, for ex-

ample, two feet long, into three equal parts, one of those

parts will undoubtedly be shorter than a foot : it is evident

then, that ^ is less than 1, for the same reason ; that is, the

numerator 2 is less than the denominator 3.

74. If tlie numerator, on the contrary, be greater than the

denominator, the value of the fraction is greater than unity.

Thus \ is greater than 1, for ^ is equal to ^ together with i.

Now ^ is exactly 1 ; consequently 1 is equal to 1 + 4» ^^^^

is, to an integer and a half. In the same manner, ^ is equal

to ly, 4" to 1|., and |- to 2|. And, in general, it is sufficient

in such cases to divide the upper number by the lower, and
to add to the quotient a fraction, having the remainder for

the numerator, and the divisor for the denominator. If the

given fraction, for example, were ^|^, we should have for the

quotient 3, and 7 for the remainder ; whence we should

conclude that 41 is the same as S-^^.

75. Thus we see how fractions, whose numerators are

greater than the denominators, are resolved into two mem-
bers ; one of which is an integer, and the other a fractional

number, having the numerator less than the denominator.

Such fractions as contain one or more integers, are called

improperJractions, to distinguish them from fractions pro-

perly so called, which having the numerator less than the

denominator, are less than uviity, or than an integer.

76. The nature of fractions is frequently considered in

another way, which may throw additional light on the sub-

ject. If, for example, we consider the fraction |, it is evident

that it is three times greater than \. Now, this fraction \
means, that if we divide 1 into 4 equal part?, this will be the

value of one of those parts; it is obvious then, that by
taking 3 of those parts we shall have the value of the

fraction |.

In the same manner we may consider every other fraction
;

for example, -J^; if we divide unity into 12 equal parts, 7 of

those parts will be equal to the fraction proposed.
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77. From this manner of considering fractions, the ex-

pressions numerator and denominator are derived. For, as

in the preceding fraction -/^, the number under the line

shews that 1 2 is the number of parts into which unity is to

be divided ; and as it may be said to denote, or name, the

parts, it has not improperly been called the denominator.

Farther, as the upper number, viz. 7, shews that, in order

to have the value of the fraction, we must take, or collect, 7
of those parts, and therefore may be said to reckon or num-
ber them, it has been thought proper to call the number
above the line the numerator.

78. As it is easy to understand what | is, when we know
the signification of |, we may consider the fractions whose

numerator is unity, as the foundation of all others. Such

are the fractions,
I I I I I I I I J I I Crp
'ii T» T' T» 6"> 7' T' 9"' ~o> TTTJ XTJ *-^^*

and it is observable that these fractions go on continually

diminishing : for the more you divide an integer, or the

greater the number of parts into which you distribute it, the

less does each of those parts become. Thus, -^^-o is less

than -rV ; -ToW is less than ^^ ; and -rohro is less than

79- As we have seen that the more we increase the de-

nominator of such fractions the less their values become, it

may be asked, whether it is not possible to make the de-

nominator so gi'eat that the fraction shall be reduced to

nothing? I answer, no; for into whatever number of parts

unity (tiie length of a foot, for instance) is divided ; let

those parts be ever so small, they will still preserve a certain

magnitude, and therefore can never be absolutely reduced

to nothing.

SO. It is true, if we divide the length of a foot into 1000

parts, those })art5 will not easily fall under the cognisance of

our senses ; but view them through a good microscope, and
cacii of them will appear large enough to be still subdivided

into 100 parts, and more.

At present, however, we have nothing to do with what
depends on ourselves, or with what we are really capable of

performing, and what our eyes can perceive; the question

is rather what is possible in itself: and, in this sense, it is

certain, that however great we suppose the denominator, the

fraction will never entirely vanish, or become equal to 0.

81. We can never therefore arrive completely at 0, or

nothing, however great the denominator may be ; and, con-

se([uentlv, as those fractions nuist always preserve a cer-

tain quantity, we may continue the series of fractions in the
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78th article without interruption. This circumstance has in-

troduced the expression, that the denominator must be in-

finite, or infinitely great, in order that the fraction may be
reduced to 0, or to nothing; hence the word infinite in

reality signifies here, that we can never arrive at the end of

the series of the above-men tionedjTraci^iowi-.

82. To express this idea, according to the sense of it

above-mentioned, we make use of the sign x , which con-

sequently indicates a number infinitely great ; and we may
therefore say, that this fraction ^ is in reality nothing ; be-

cause a fraction cannot be reduced to nothing, until the

denominator has been increased to injinity.

83. 1 1 is the more necessary to pay attention to this idea of

infinity, as it is derived from the first elements of our know-
ledge, and as it will be of the greatest importance in the

following part of this treatise.

We may here deduce from it a few consequences that are

extremely curious, and worthy of attention. The fraction ^
represents the quotient resulting from the division of the

dividend 1 by the divisor co . Now, we know, that if we
divide the dividend 1 by the quotient ^, which is equal to

nothing, we obtain again the divisor oo : hence we acquire

a new idea of infinity ; and learn that it arises from the

division of 1 by 0; so that we are thence authorised in

saying, that 1 divided by expresses a number infinitely

great, or oo

.

84. It may be necessary also, in this place, to correct the

mistake of those who assert, that a number infinitely great

is not susceptible of increase. This opinion is inconsistent

with the just principles which we have laid down ; for ^^

signifying a number infinitely great, and ~ being incon-

testably the double of ^, it is evident that a number, though
infinitely great, may still become twice, thrice,- or any num-
ber of times greater *.

* There appears to be a fallacy in this reasoning, which con-

sists in taking the sign of infinity for infinity itself; and applying

the property of fractious in general to a fractional expression,

whose denominator bears no, assignable relation to unity. It is

certain, that infinity may be represented by a series of units (that

is, by ^ = = I -f- 1 +1, &c.) or by a series of numbers

increasing in any given ratio. Now, though any definite part

of one infinite series may be the half, the third, &c. of a definite

part of another, yet still that part bears no proportion to the

whole, and the series can only be said, in that case, to go on to

infinity in a diffeitnt lalio. But, farther, -^j or any other nu-
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CHAP. VIII.

Of the Properties of Fractions.

85. We have already seen, that each of the fractions,
2 3 4 S 6 7 a C,„
T> 3» T> T» g' T> "3> *^'-*

makes an integer, and that consequently they are all equal

to one another. The same equality prevails in the following

fractions,

T» •;• ) T*

each of them making two integers ; for the numerator of

each, divided by its denominator, gives 2. So all the fractions
3 6 9 la IJ 1_8 ^p

are equal to one another, since 3 is their common value.

86. We may likewise represent the value of any fraction

in an infinite variety of ways. For if we multiply both the

numerator and the denominator of a fraction by the same
number, which may be assumed at pleasure, this fraction

will still preserve the same value. For this reason, all the

fractions
1.234 5 6 7 8 910 0^^
2' 4» 6> "»> "ns"; TT' TT> TT> T?' ''"O'' "'*^'

are equal, the value of each being i. Also,
13 3 4 s 6 7 8 9 10 0,^
3! TJ TJ TT> -rsi T1b» ITTJ TT> 'JT> TTVy tX^ •

are equal fractions, the value of each being ^. The fractions
84 3 10 12 14 16 0,„
T> T' TT5 TTJ T7» "iTTJ TT' "*'•

have likewise all the same value. Hence we may conclude,

in general, that the fraction -7- may be represented by any

of the following expressions, each of which is equal to -^; viz.

merator, having for its denominator, is, when expanded, pre-
cisely the same as -i^.

2
Thu3j ^ = 7z

—
-i by division becomes

A—

^

2—2)2 (1 + 1 + 1, &c- ad infinitum

2-2

2
2-2

2
2-2

2, &c.
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a 2a 3a 4a 5a 6a 7a

T' 2b' 3b' W 5// W W ^'''

87. To be convinced of this, we have only to write for the

value of the fraction -7- a certain letter c, representing by

this letter c the quotient of the division of « by 6 ; and to

recollect that the multiplication of the quotient c by the

divisor b must give the dividend. For since c multiplied by
b gives a, it is evident that c multiplied by 2b will give 2a,

that c multiplied by 3b will give Sa, and that, in general, c

multiplied by mb will give ma. Now, changing this into an
example of division, and dividing the product ma by 7nb,

one of the factors, the quotient must be equal to the other

factor c; but ma divided by ?nb gives also the fraction

—7, which is consequently equal to c ; and this is what was

to be proved : for c having been assumed as the value of the

fraction -y-, it is evident that this fraction is equal to the

fraction —r, whatever be the value of m.
mb

88. We have seen that every fraction may be represented

in an infinite number of forms, each of which contains the

same value ; and it is evident that of all these forms, that

which is composed of the least numbers, will be most easily

understood. For example, we may substitute, instead of y,
the following fractions,

4 6 8 I I 2 Sj-f,
6> J> TT' TJ) TY'

but of all these expressions ^ is that of which it is easiest to

form an idea. Here therefore a problem arises, how a

fraction, such as —^ which is not expressed by the least

possible numbers, may be reduced to its simplest form, or to

its least terms; that is to ?ay, in our present example, to ^.

89. It will be easy to resolve this problem, if we consider

that a fraction still preserves its value, when we multiply

both its terms, or its numerator and denominator, by the

same number. For from this it also follows, that if we
divide the numerator and denominator of a fraction by the

same number, the fraction will still preserve the same value.

This is made more evident by means of the general ex-

ma
pression —7 ; for if we divide both the numerator tna and

mb
the denominator mb by the number m, we obtain the fraction

a ..
. .

ma
-7-, whicli, as was before proved, is e(jual to —r.

^'•^
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90. In order therefore to reduce a given fraction to its

least termS) it is required to find a number, by which both

the numerator and denominator may be divided. Such a

number is called a common divisor ; and as long as we can

find a common divisor to the numerator and the denominator,

it is certain that the fraction may be reduced to a lower

form ; but, on the contrary, when we see that, except vmity,

no other common divisor can be found, this shews that the

fraction is already in its simplest form.

91. To make this more clear, let us consider the fraction

^-. We see immediately that both the terms are divisible

by 2, and that there results the fraction -|^ ; which may also

be divided by 2, and reduced to ~- ; and as this likewise

has 2 for a common divisor, it is evident that it may be re-

duced to -^^. But now we easily perceive, that the nume-
rator and denominator are still divisible by 3; performing

this division, therefore, we obtain the fraction
-I-,

which is

equal to the fraction proposed, and gives the simplest ex-

l^ression to which it can be reduced ; for 2 and 5 have no
common divisor but 1, which cannot diminish these numbers
any farther.

92. This property of fractions preserving an invariable

value, whether we divide or multiply the numerator and
denominator by the same number, is of the greatest import-

ance, and is the principal foundation of the doctrine of
fractions. For example, we can seldom add together two
fracticnis, or subtract the one from the other, before we have,

by means of this property, reduced them to other forms;

that is to say, to expressions whose denominators are equal.

Of this we shall treat in the following chapter.

93. We will conclude the present, however, by remarking,
that all whole numbers may also be represented by fractions.

For example, 6 is the same as ~, because 6 divided by 1

makes 6 ; we may also, in the same manner, express the

number 6 by the fractions '^^, 'j?, ^^*, \^, and an infinite

number of others, which have the same value.

QUESTIONS FOR PRACTICE.

1. Reduce —--—-— to its lowest terms. Ans. —r.
ca^ + a-x a-

% Reduce ——^rr r to its lowest terms. Ans. ——r-.
a:2 + 2Zi.r + Z»- x-\-b
^i J4 x"+b-

Ci. Reduce -,-—,—:, to its lowest terms. Ans. :r—

.

ijj^
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X^—l/^ 1
4. Reduce —

r

r to its lowest terms. Ans.
X*—7J*

'
*

X-+I/"'
Q* ^*

5. Reduce -r
:;

. to its lowest terms.

a-+x'^

o. Reduce -^

—

, ^ , ^ ,
,.—. 2 to its lowest terms.

r-ta^ + ^a^x
Ans.

a-x + ax" + a;'*

CHAP. IX.

Of the Addition and Subtraction q/" Fractions.

94. When fractions have equal denominators, there is no
difficulty in adding and subtracting them ; for ~ + ^ is

equal to 4, and ^ — ^ is equal to ~. In this case, therefore,

either for addition or subtraction, we alter only the nume-
rators, and place the common denominator under the line,

thus;
7 _|_ 9 I a I s I 2 o

I'c pniinl tfi 9 .
""00^ i^ To^' joo 100 '^ 100'^'' tv^uaj. vj -To^o-

,

|4°- ^ - i4 + i4 is equal to f^, or if

1 o + 44isequal to44, ori:;

also ^ + |. is equal to
-I,

or 1, that is to say, an integer ; and

^ — f 4- i is equal to ^, that is to say, nothing, or 0.

95. But when fractions have not equal denominators, we
can always change them into other fractions that have tlie

same denominator. For example, when it is proposed to

add together the fractions i and g, we must consider that i
is the same as ^^ and that g is equivalent to |^ ; we have
therefore, instead of the two fractions proposed, |. + |:, the

sum of which is ~. And if the two fractions were united by
the sign m'mus, as i — 3> we should have |- — -|, or i.

As another example, let the fractions proposed be | + |.

Here, since | is the same as |-, this value may be substituted

for i, and we may then say f + |- makes -g-, or If.

Suppose farther, that the sum of ^ and | were required, I

say that it is -J^ ; for
-J-
= /^, and i = -^^ : therefore ^^-

4- -^- = -^-.

96. We may have a greater number of fractions to reduce
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to a common denominator ; for example, ^, ~, |^, ^, 4- I"

this case, the whole depends on finding a number that shall

be divisible by all the denominators of those fractions. In

this instance, 60 is the number which has that property, and

which consequently becomes the common denominator. We
shall therefore have ||, instead of ~

;
|-°, instead of

-f ; ^|,
instead of | ; ||, instead of ^^ ; and ^, instead of |. If

now it be required to add together all these fractions, |4,
4^, 4-1, 4_8-, and -g-l

; we have only to add all the numerators,

and under the sum place the common denominator 60 ; that

is to say, we shall have y^^- , or 3 integers, and the fractional

remainder, ||-, or 44- .

97. The whole of this operation consists, as we before

stated, in changing fractions, whose denominators are un-

equal, into others whose denominators are equal. In order,

therefore, to perform it generally, let -r- and —j- be the frac-

tions proposed. First, multiply the two terms of the

first fraction by d, and we shall have the fraction y-^ equal

to
-J-

; next multiply the two terms of the second fraction

by 6, and we shall have an equivalent value of it expressed

be
by j-^ ; thus the two denominators are become equal. Now,

if the sum of the two proposed fractions be required, we

VI I
• • o,d-\-bc , . . , . -.

may immediately answer that it is —7-7— ; and il their dif-

ference be asked, we say that it is —tt~- If the fractions

I and ^, for example, were proposed, we should obtain, in

their stead, A| andff; of which the sum is '-^' and the

difference — *.

98. To this part of the subject belongs also the question,

Of two proposed fractions which is the greater or the less ?

* The rule for reducing fractions to a common denominator
may be concisely expressed thus. Multiply each numerator
into every denominator except its own, for a new numerator,
and all the denominators together for the common denomi-
nator. When this operation has been performed, it will appear
that the numerator and denominator of each fraction have been
nuiltiplied by the same quantity, and consequently that the

iVactions retain the same value.



CHAP. IX. OF ALGEBRA. 29

for, to resolve this, we have only to reduce the two fractions

to the same denominator. Let us take, for example, the two
fractions -| and ^ ; when reduced to the same denominator,

the first becomes 4-r> ^"^ the second i4> where it is evident

that the second, or i^, is the greater, and exceeds the former

Again, if the fractions
-f
and | be proposed, we shall have

to substitute for them 1
J-
and ^ ; whence we may conclude

that ^ exceeds ^, but only by ^.
99. When it is required to subtract a fraction from an

integer, it is sufficient to change one of the units of that

integer into a fraction, which has the same denominator as

that which is to be subtracted ; then in the rest of the opera-

tion there is no difficulty. If it be required, for example, to

subti'act ~ from 1, we write |- instead of 1, and say that |-

taken from 4 leaves the remainder j-. So —, subtracted

from 1, leaves -^.

If it were required to subtract f from 2, we should write

1 and 1^ instead of 2, and should then immediately see that

after the subtraction there must remain li.

100. It happens also sometimes, that having added two

or more fractions together, we obtain more than an integer;

that is to say, a numerator greater than the denominator

:

this is a case which has already occurred, and deserves

attention.

We found, for example [Article 96], that the sum of the

five fractions i,
f, ~,

-f,
and ^ was %'--J, and remarked that

the value of this sum was 3|4 or S^-. Likewise, ^-\-^, or

^ 4- _?_., makes ^, or l-j-'^^. We have therefore only to

perform the actual division of the numerator by the deno-

minator, to see how many integers there are for the quotient,

and to set down the remainder.

Nearly the same must be done to add together numbers
compounded of integers and fractions; w^e first add the

fractions, and if the sum produces one or more integers, these

are added to the other integers. If it be proposed, for ex-

ample, to add 3{- and 2y; we first take the sum of i and |,
or of 1^ and |, which is |^, or 1- ; and thus we find the total

sum to be 6|.

QUESTIONS FOU PRACTICE.

Qx b
1. Reduce — and — to a common denominator.

a c

9.CX ah
Ans. — and —

.

ac ac
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- _^ - a , a+ Z)

2. Reduce -v- sincl to a common denominator.
o c

flc ah-{-h"
Am. -J- and —-, .

be be

„ „ , 3^ 25 , , ^ . , .

3. Reduce TT", rz-. and fZ to tractions havma; a common
2a' 3c '^

9ca; 4«& Qacd
denominator. Ans. y,— ,

7:— , and ;^—

.

bac oac oac

, „ , 3 2.r , 2a;
4. Reduce 7, -tti and a H to a common denominator.

4 3' a

9a 8a^' 12a2+24a:
^??s. 77:-, tttj and 75—-•

12ft 12ft 12ft

^ „ . 1 ft- , a;-+ ft' -

5. Reduce -, -tt-, and to a common denominator.
2' 3' a;+ fl

^ 3ar + 3ft 2a2^ + 2fl^ 6.r'- + 6fl2

* 6a; + 6ft' 6^ + 6ft ' 6^ + 6ft
'

6. Reduce 7i—, -tt-, and — to a common denominator.
2ft- 2ft' a

. ^.a^b ^a?c , ^aH b ac . 2aJ
^^"- 1^' 4^' ""^ -4^' °^' 2^' 2^='

^"^^ 2^-

CHAP. X.

Ofthe Multiplication and Division of Fractions.

101. The rule for tlie multiplication of a fraction by an
integer, or whole number, is to multiply the numerator
only by the given number, and not to change the deno-
minator : thus,

2 times, or twice ^ makes ^, or 1 integer

;

2 times, or twice ^ makes ~
; and

3 times, or thrice ^ makes -|) or -|^

;

4 times -^^ makes 44? or l-i^, or 1|..

But, instead of this rule, we may use that of dividing the

denominator by the given integer, which is preferable, when
it can be done, because it shortens the operation. Let it be
required, for example, to multiply |. by 3 ; if we multiply

the numerator by the given integer we obtain Y» ^vhich
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product we must reduce to y. But if we do not c'aangc the

numerator, and divide the denominator by the integer, we
find immediately ^, or 2|-, for the given product ; and, in

the same manner, 44 multiphed by 6 gives y , or 3^^.

102. In general, therefore, the product of the multiplica-

tion of a fraction -j- by c is -j- ; and here it may be re-

marked, when the integer is exactly equal to t!ie denominator,

that the product must be equal to the numerator.

( i taken twice, gives 1

;

So that< ^ taken thrice, gives 2

;

( i taken four times, gives 3.

And, in general, if we multiply the fraction -j- by the

number b, the product must be a, as we have already shewn
;

for since -j- expresses the quotient resulting from the di-

vision of the dividend a by the divisor b, and because it has

been demonstrated that the quotient multiplied by the divisor

will give the dividend, it is evident that -j- multiplied by b

must produce a.

103. Having thus shewn how a fraction is to be mul-

tiplied by an integer ; let us now consider also how a fraction

is to be divided by an integer. This inquiry is necessary,

before we proceed to the multiplication of fractions by frac-

tions. It is evident, if we have to divide the fraction ~ by
2, that the result must be^; and that the quotient of|-

divided by 3 is y. The rule therefore is, to divide the

numerator by the integer without changing the denominator.

Thus:
i-i divided by 2 gives -^ ;

^ divided by 3 gives -— ; and
i|- divided by 4 gives ^ ; &c.

104. This rule may be easily practised, provided the

numerator be divisible by the number proposed ; but very

often it is not : it must therefore be observed, that a fraction

may be transformed into an infinite number of other ex-

pressions, and in that number there must be some, by which
the numerator might be divided by the given integer. If

it were required, for example, to divide ^ by 2, we should

change the fraction into |, and then dividing the numerator
by 2, we should immediately have |- for the quotient

sought.
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, a
In general, if it be proposed to divide the fraction -j-

ctc

by c, we change it into -,—, and then dividing- the nume-

rator ac by c, write -j— for the quotient sought.

105. When therefore a fraction -j- is to be divided by an

integer c, we have only to multiply the denominator by that

number, and leave the numerator as it is. Thus |^ divided

by 3 gives -—, and -^ divided by 5 gives ^^^-.

This operation becomes easier, when the numerator itself

is divisible by the integer, as we have supposed in article

103. For example,
-f'-^

divided by 3 would give, according

to our last rule, ^^; but by the first rule, which is applica-

ble here, we obtain -^-^^ an expression equivalent to ^y, but

more simple.

106. We shall now be able to understand how one fraction

d c

J- may be multiplied by another fraction -j. For this pur-

pose, we have only to consider that — means that c is di-

vided by d; and on this principle we shall first multiply the

fraction -j- by c, which produces the result -j- ; after which

ttC
we shall divide by d, which gives y-v.

Hence the following rule for multiplying fractions. Mul-
tiply the numerators together for a numerator, and the de-

nominators together for a denominator.

Thus ~ by i- gives the product ^, or ^

;

f-
by A makes -—-

;

4 by it: produces i|-, or -^-^ ; &c.

107. It now remains to shew how one fraction may be
divided by another. Here we remark first, that if the two

fractions have the same number for a denominator, the

division takes place only with respect to the numerators

;

for it is evident, that -^ are contained as many times in ^
as 3 is contained in 9, that is to say, three times ; and, in

the same manner, in order to divide -^ by -j^, we have only

to divide 8 by 9, which gives ^. We shall also have -^^ in

44, 3 times; -^l^ in -±%, 7 times; ^ in -i-j-, |-, &c.

108. But when the fractions have not equal denominators,
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we must have recourse to the method ah-eady mentioned for

reducing them to a common denominator. Let there be,

for example, the fraction — to be divided by the fraction

c
-7-. We first reduce them to the same denominator, and

there results 7-^ to be divided hy -rr;\t is now evident that
bd ^ do

the quotient must be represented simply by the division of

ad by be ; which gives -j
—

.

Hence the following rule : Multiply the numerator of the

dividend by the denominator of the divisor, and the de-

nominator of the dividend by the numerator of the divisor

;

then the first product will be the numerator of the quotient,

and tlie second will be its denominator.

109. Applying this rule to the division of |- by i, we
shall have the quotient i^

' ^^^^ the division of i by f will

give I, or A, or If ; and |4 by l- will give 44°, or
f."'

110. This rule for division is often expressed in a manner
that is more easily remembered, as follows : Invert the

terms of the divisor, so that tlie denominator may be in the

place of the numerator, and the latter be written under the

line ; then multiply the fraction, which is the dividend bv
this inverted fraction, and the product will be the quo-

tient sought. Thus, I divided by t is the same as | mul-
tiplied by ^ , which makes 1, or \\. Also |- divided by i is

the same as |- multiplied by 4, which is \t ; or 1|- divided

by -i gives the same as i|- multiplied by ~, the product of

which is ^4^°, or |.

We see then, in general, that to divide by the fraction | is

the same as to multiply by 3, or 2; and that dividing by i

amounts to multiplying by \, or by 3, &c.

111. The number 100 divided'by f will give 200; and
1000 divided by \ will give 3000. Farther, if it were re-

quired to divide 1 ^y -reooi the quotient would be 1000;
and dividing 1 by -q-oWo^j the quotient is 100000. This

enables us to conceive that, when any number is divided by
0, the result must be a number indefinitely great ; for even

the division of 1 by the small fraction -to^tto^ c^-oo o gives for

the quotient the very great number 1000000000.
112. Every number, when divided by itself, producing

unity, it is evident that a fraction divided'by itself must also

give 1 for the quotient ,• and the same follows from our rule :

for, in order to divide | by |, we must multiply i by 4, iii



34 ELEMENTS SECT. I.

which case we obtain 44, or 1 ; and if it be required to

divide -f-hy ~r~, we multiply -t" by — ; where the product

ah .

—r IS also equal to 1.

113. We have still to explain an expression which is

frequently used. It may be asked, for example, what is the

half of I? This means, that we must multiply i by f. So
likewise, if the value of ~ of |- were required, we should

multiply I by f , which produces i^
; and | of -^-^ is the

same as -j^^. multiplied by f, which produces ^.
114. Lastly, we must here observe, with respect to the

signs + and — , the same rules that we before laid down for

integers. Thus + f multiplied by — 4, makes — -g ; and
— y multiplied by — *, gives + J,-. Farther — A divided

by + I, gives — 4-^; and — i divided by — |, gives + 4-|,

or + 1.

QUESTIOXS FOR PRACTICE.

1. Required the product of _- and —

.

^ns. -^^.

« -n -11 1 „ X 4>x _ 10.r . 4a,''

S. Required the product or —, --, and -^y-. Ans. ^'

o. Required the product 01 — and . Ans.
* *^ a a+c a- + ac

4. Required the product of -^ and -j-. Ans. -^j--

2a7 3j.» 3-J.3
5. Required the product of— and ^—

.

Ans. -^'

o. Required the product ot —, — , and -^j-. A7i\. 9ax.

7. Required the product of b \ and —

.

ab + bx
Ans.

8. Required the product of —.— and

x^-b''
Ans.

b"c + bc^
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9. Required the product of .r, , and r-
* ^ a a+o

x" — :i'

Am. -^r-,—i..

a--\-ao

10. Required the quotient of-^ divided by -^. Ans. \~.

^ft 4c
11. Required the quotient of y- divided by -y.

Ans. ---.
2bc

12. Required the quotient of ^ divided by - .

. 5.V- + 6ax + a-

9.x" -W-
Xy>^X X

13. Required the quotient of -z divided by .^ ^ a^^x' •' x+a
^x- + 9,ax

Ans.
3 , ,

.

7.C 12 91a;
14. Required the quotient of-^ divided by ^77. Ans. -^.

15. Required the quotient of-=- divided by 5x. Ans. ^z.

X -\-\ 2,r
16. Required the quotient of .. divided by—

.

. 07-1-1

Ans. —.—-.

4.r

17. Required the quotient of , divided by -jy

.

. X—b
Ans. ri .

bc'x
^4. _ n

18. Required the quotient of -;;;

—

r— ^^ divided by - -
3^" ^ /COX "T" O"

x^-\-bx b-

b2
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CHAP. XI.

O/^^"^''^ Numbers.

115. Tho product of a number, when multiplied by
itself, is called a square ; and, for this reason, the number,
considered in relation to such a product, is called a square
root. For example, when we multiply 12 by 12, the product
144 is a square, of which the root is 12.

The origin of this term is borrowed from geometry, which
teaches us that the contents of a square are found by mul-
tiplying its side by itself.

116. Square numbers are found therefore by multiplica-

tion; that is to say, by multiplying the root by itself: thus,

1 is the square of 1, since 1 multiplied by 1 makes 1 ; like-

wise, 4 is the square of 2; and 9 the square of tJ; 2 also is

the root of 4, and 3 is the root of 9.

We shall begin by considering the squares of natural

numbers ; and for this purpose shall give the following small

Table, on the first line of which several numbers, or roots,

are ranged, and on the second their squares *.

Numbers.

Squares.
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The square of -

3 1 9
I

We have only therefore to divide the square of the

numerator by the square of the denominator, and tb.e

friaction which expresses tliat division will be the square of

the given fraction; thus, ||- is the square of ^; and re-

ciprocally, ^ is the root of |^|^.

119- When the square of a mixed number, or a number
comjKJsed of an integer and a fraction, is required, we have

only to reduce it to a single fraction, and then take tlie

square of that fraction. Let it be required, for example, to

find the square of ^\ ; we first express this mixed number
by i^, and taking the square of that fraction, we have y , or

6i, for the value of the square of 2;. Also to obtain the

square of 3i, we say 3;^ is equal to y ; therefore its square

is equal to ^-^ , or to 10/^. The squares of the numbers
between 3 and 4, supposing them to increase by one fourth,

arc as follow

:

Numbers.
|
3 | .S-|

|
3^ j 3| |

^1 1
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evident that if tlie root have the sign +, that is to say, if it

be a positive number, its square must necessarily be a positive

number also, because + multiplied by + makes + : hence

the square of + a will be + an : but if the root be a negative

number, as — a, the square is still positive, for it is + aa.

We may therefoi-e conclude, that + aa is the square both of

-i- a and of - a, and that consequently every square has two
roots, one positive, and the other negative. The square root

of 25, for example, is both -f- 5 and — 5, because — 5 mul-
tiplied by — 5 gives 25, as well as + 5 by -f 5.

CHAP. XII.

Of Square Roots, and of Irrational Numbers resuitingfrom
them.

\2S. What we have said in the preceding chapter amounts
to this ; that the square root of a given number is that num-
ber whose square is equal to the given number ; and that

we may juit before those roots either the positive, or the

negative sio-n.

121. So that when a square number is given, provided

Ave retain in our memory a sufficient number of square num-
bers, it is easy to find its root. If 196, for example, be the

given nmnber, we know that its square root is 14.

Fractions, likewise, are easily managed in the same way.

It is evident, for example, that ?- is the square root of i|-;

to be convinced of which, we have only to take the square
root of the numerator and that of the denominator.

If the number proposed be a mixed number, as 121, ^ve

reduce it to a single fraction, which, in this case, will be *^ ;

and from this we immediately perceive that ^-, or 3i, must
be the square root of 12|.

125. But when the given number is not a square, as 12,
for example, it is not ])ossible to extract its square root ; or

to find a number, which, multiplied by itself, will give the

product 12. Ave know, however, that "the square root of 12
must be greater than 3, because 3x3 produces only 9;
and less than 4, because 4 x 4 produces 16, which is more
than 12; we know also, that this root is less than 3^, for we
have seen that the square of 3[, or ^, is 12'-; and we may
approach still nearer to this root, by comparing it with 3/. ;

for the square of 3/3, or of ]-],, is Vz°yj t)r 12^^ 5; so that this
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fraction is still greater than tlie root rec[uired, though but very

little so, as the difference of the two squares is only
-^-f 3^.

126. We may suppose that as 3^ and 3^^ are numbers
greater than the root of 12, it might be possible to add to 3
a fraction a little less than ~, and precisely such, that the

square of the sum would be equal to 12.

Let us therefore try with 3^-, since ^'isa little less than ^^y.

Now 3f is equal to y-, the square of which is %^^ , and con-

sequently less by il than 12, which may be expressed by
5_?^. It is, therefore, proved that 3} is less, and that 3/5-

is greater than the root required. Let us then try a num-
ber a little greater than 3^, but yet less than S/^-; for ex-

ample, 3-j^,- ; tills number, which is equal to ~^, has for its

square '^/Z ; and by reducing 12 to this denominator, we
obtain V^rr^ which sheAvs that 3 j^,- is still less than the root of

12, viz. by -rlx^ let us thereibre substitute for ^\- the fraction

-i^y, which is a little greater, and see what will be the result of

the comparison of the square of 3,-3-, with the proposed num-
ber 12. Here the square of 3/3- is \°g^/ ; and 12 reduced to

the same denominator is VeV 5 ^^ ^-'^^^ ^rr ^^ ^^'^^ ^'^^ small,

though only by -y-f-^,
whilst 3,^ has been found too great.

127. It is evident, therefore, that whatever fraction is

joined to 3, the square of that sum must always contain a

fraction, and can never be exactly equal to the integer 12.

Thus, although Ave know that the square root of 12 is greater

than 3 ^^3-, and less than o-^\, yet we are unable to assign an

intermediate fraction between these two, which, at the same
time, if added to 3, would express exactly the square root of

12; but notwithstanding this, we are not to assert that the

square root of 12 is absolutely and in itself indeterminate :

it only follows from what has been said, that this root, though
it necessarily has a determinate magnitude, cannot be ex-

pressed by fractions.

128. There is therefore a sort of numbers, which carmot be

assigned by fractions, but which are nevei'theless determinate

quantities; as, for instance, the square root of 12 : and we
call this new species of numbers, irrational numbers. They
occur whenever we endeavour to find the square root of a

number which is not a square; thus, 2 not being a perfect

square, the square root of 2, or the number which multiplied

by itself would produce 2, is an irrational quantity. These

numbers are also called surd quanUtieSj or incoimnen-

surahles.

129. These irrational quantities, though they cannot be

expressed by fraction;>, are nevertheless magnitudes ol which

we may form an accurate idea ; since, however concealed
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the square root of 12, for example, may appear, we are not

Ignorant that it must be a number, which, when multiphed

by itself, would exactly produce 12; and this property is

sufficient to give us an idea of the number, because it is in

our power to appi'oximate towards its value continually.

130. As we are therefore sufficiently acquainted with

the nature of irrational numbers, under our present con-

sideration, a particular sign has been agreed on to express

the square roots of all numbers that are not perfect squares

;

which sign is written thus ^^5 and is read square root.

Thus, ^/12 represents the square root of 12, or the number
which, multiplied by itself, produces 12 ; and a/2 represents

the square root of 2 ; ^/.S the square root of 3 ; ^/^ that of

J; and, in general, ^^a represents tlie square root of the

number a. AVhenever, therefore, we would expi'ess the

square root of a number, which is not a square, we need
only make use of the mark V by placing it before the

number,
131. The explanation which we have given of irrational

numbers will readily enable us to apply to them the known
methods of calculation. For knowing that the square root

of 2, multiplied by itself, must produce 2 ; we know also,

that the multiplication of ^'2 by V2 must necessarily pro-

duce 2 ; that, in the same manner, the multiplication of v/3
by a/3 must give 3; that v'S by ./5 makes 5; that V^
by \/y makes f; and, in general, that x^a multiplied by Va
produces a.

132. But when it is required to multiply \/ftby ^/Z>, the

product is ^/ab ; for we have already shewn, that if a square
has two or more factors, its root must be composed of the

roots of those factors ; we therefore find the square root of
the product ab, which is ^^ab, by multiplying the square
root of a, or x/«, by the square root of b, or A/b ; &c. It

is evident from this, that if b were equal to a, we should
have ^/aa for the product of a^« by Vb. But ^/aa is

evidently a, since aa is the square of «.

133. In division, if it were recjuired, for example, to

divide \/ a hy ^^b, we obtain A/y; and, in this instance,

the irrationality may vanish in the quotient. Thus, having
to divide VlS by v/8, the quotient is v/'/, which is re-

duced to ^/.^-, and consequently to |-, because ?^ is the square
of|.

131". When the number before which we have pkiccd the

radical sign a/, is itself a s(|uarc, its root is expressed in the
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usual way; thus, -v^4 is the same as 2 ; v9 is the same as

3; a/36 the same as 6; and v/12j, the same as |^, or 3i.

In these instances, the irrationality is only apparent, and
vanishes of course.

J 35. It is easy also to multiply irrational numbers by or-

dinary numbers; thus, for example, 2 multiplied by ^/5

makes 2 x/5; and 3 times v/2 makes 3 \/2. In the second

example, however, as 3 is equal to \/9, we may also express

3 times ^2 by VO multiplied by v'2, orby a/18; also2v/«
is the same as A/4a, and 3 \/a the same as V9a ; and, in

general, b ^/rt has the same value as the square root of 66a,

or \/bba: whence we infer reciprocally, that when the num-
ber which is preceded by the radical sign contains a square,

we may take the root of that square, and put it before the

sign, as we should do in writing bVa instead of ^/bba,

After this, the following reductions will be easily under-

stood :

a/8, or a/(2.4)*1 f2A/2
Vl2, or a/(3.4)

I

2VS
./IS, or a/(2.9) (

is equal to J ^^?.
a/24, or a/(6.4) p^ equal to g ^g
a/32, or a/ (2. 16) |

4 a/2

a/75, or a/(3.25) J {^5 V^
and so on.

136. Division is founded on the same principles ; as \/ii

divided by ^/b eives —r, or v/t-- In the same manner,
•' ^ a/6 6

a/8
~72

a/18

8
a/^, or a/4, or 2

18
-Tq~ } is equal to ^ V-^i or a/9, or 3

Farther,

a/12^"
o

V2
3

12
a/itj or a/^, or 2.

rA/4
/2'

a/9

or a/-^, or a/2,

9
—^ )-is equal to ^ —^, or a/^, or a/3,
x/3

12

V6

v/3

a/144 144
^g— , or ^-g-, or a/24,

or a/(6 X 4), or lastly 2 a/6.
137. There is nothing in particular to be observed in ad-

* The point between 2.4, 3.4, &.c. indicates multiplication.
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(iilion .'iiilI sublracliDn, because we oi)ly connect the nunibeis
by the signs + and — : for example, V2 added to a/8 is

written ^/^ + y^ ; and v^o subtracted from ^5 is written

Vo — v3.
138. We may observe, lastly, that in order to distinguish

the irrational numbers, we call ;)ll other numbers, both in-

tegral and fractional, rational numbers; so that, whenever
we speak of rational numbers, we understand integers, or

fractions.

CHAP. XIII.

O/" Impossible, or Imaginary Quantities, loltich arise from
the same source.

139- We have already seen that the squares of nurhbers,

negative as well as positive, are always positive, or affected

by the sign -|- ; having shewn that — a multiplied by — a
gives + ««, the same as the product of + a by + a : where-
fore, in the preceding chapter, we supposed that all the
numbers, of which it was required to extract the square
roots, were positive.

140. When it is required, therefore, to extract the root of
a negative number, a great difficulty arises ; since there is

no assignable number, the square of which would be a nega-
tive quantity. Suppose, for example, that we wished to

iir^ extract the root of — 4 ; we here require such a number as,

^ when multiplied by itself, would produce —4: now, this

^ number is neither + 2 nor — 2, because the square both of
-}- 2 and of — 2, is + 4, and not — 4.

141. We must therefore conclude, that the square root of
a negative number cannot be either a positive number or a
negative number, since the squares of negative luunbers also

/- take the sign plus : consequently, the root in question must
^1 belong to an entirely distmct species of numbers; since it

cannot be ranked either among positive or negative numbers.
142. Now, we before remarked, that positive numbers

are all greater than nothing, or 0, and that negative numbers
are all less than nothing, or ; so that whatever exceeds

is expressed by positive numbers, and whatever is less than
is expressed by negative numbers. The square roots of

negative numbers, therefore, arc neither greater nor less

than nothing; yet wc cannot say, that they are 0; for



CIIAI'. XIII. OF ALGEUUA. 4{3

iimltiplied by produces 0, and consequently does not give

a negative number.

143. And, since all numbers which it is possible to con-

ceive, are either greater or less than 0, or are itself, it is

evident that wo cannot rank the square root of a negative

number amongst possible numbers, and we must therefore

say that it is an impossible quantity. In this manner we are

led to the idea of numbers, which from their nature are im- ^
possible ; and therefore they are usually called imaginary ) /

quantities, because they exist merely in "the imagination.

144. All such expressions, as a,/— 1, v —2, \/ —o, s/— 4,

&c. are consequently impossible, or imaginary numbers, since

they represent roots of negative quantities ; and of such

numbers we may truly assert that they are neither nothing,

nor greater than noticing, nor less than nothing ; which ne-

cessarily constitutes them imaginary, or impossible.

145. But notwithstanding this, these numbers present

themselves to the mind ; they exist in our imagination, and
we still have a sufficient idea of them ; since we know that

by a/ — 4 is meant a number which, multiplied by itself,

produces — 4 ; for this reason also, nothing prevents us

from making use of these imaginary numbers, and employ-

ing them in calculation.

146. The first idea that occurs on the present subject is,

that the square of ^/— o, for example, or the product of

a/— 3 by A,/
— 3, must be — 3 ; that the product of \/ — 1

by V— l,is ~ 1; and, in general, that by multiplying

a/ — a by .%/ — a, or by taking the square of ^/ — a we ob-

tain — a.

147. Now, as — G is equal to +« multiplied by —1, and
as the square root of a product is found by multiplying to-

gether the roots of its factors, it follows that the root of a
times — 1, or >y— «, is equal to ^Ui multiplied by ^Z — 1

;

hnV A/a is a possible or real number, consequently the whole

impossibility of an imaginary quantity may be always re-

duced to \/ — 1 ; for this reason, -/ — 4 is equal to \/^ mul-

tiplied by a/ —1, or equal to 2 a/ — 1, because a/4 is equal to

2; likewise — 9 is reduced to V^ X V— 1, or 3 a/— 1

;

and a/— 16 is equal to 4^/ — 1.

148. Moreover, as a^^ multiplied by V 6 makes s/ah,wc
shall have v^6 for the value of \/ — 2 multiplied by a./

— 3;
and v/^, or 2, for the value of the product of a/ — 1 by
a/ — 4. Thus we see that two imaginary numbers, mul-
tiplied together, produce a real, or possible one.

But, on the contrary, a possible number, multiplied by an



f

44 ELEMExNTS SECT. I.

impossible mimbor, gives always an imaginary product

:

thus, v/— '3 by ^/ + 5, gives a/ - 15.

149. It is the same with regard to division ; for ^.^a

divided by a/6 making V-j-j it is evident that -v/ — 4 di-

vided by x/ — 1 will make ^/ + 4, or 2 ; that a/ + 3 divided

by \/ — o will give V — 1 ; and that 1 divided by -v'
— 1

gives ^/—r, or ^,/— 1 ; because 1 is equal to ^/ + 1.

150. We have before observed, that the square root of

any number has always two values, one positive and the

other negative; that a/4, for example, is both +2 and —2,
and that, in general, we may take — Va as well as + Vff
for the square root of a. This remark applies also to ima-
ginary numbers ; the square root of — a is both + \/ — a
and — V — a; but we must not confound the signs -j- and
— , which are before the radical sign y- , with the sign which
comes after it.

151. It remains for us to remove any doubt, which may
be entertained concerning the utility of the numbers of
which we have been speaking ; for those numbers being im-

possible, it would not be surprising if they were thought
entirely useless, and the object only of an unfounded specu-

lation. This, however, would be a mistake ; for the cal-

culation of imaginary quantities is of the greatest importance,

as questions frequently arise, of which we cannot imme-
diately say whether they include any thing real and possible,

or not; but when the solution of such a question leads to

imaginary numbers, we are certain that what is required is

impossible.

In order to illustrate what Ave have said by an example,

suppose it were proposed to divide the number 12 into two
such parts, that the product of those parts may be 40. If

we resolve this question by the ordinary rules, we find for

the parts sought 6 + a/— 4 and 6 — \/ —4 ; but these num-
bers being imaginary, we conclude, that it is impossible to

resolve the question.

The difference will be easily perceived, if we suppose tlie

question had been to divide 12 into two parts which nud-
tiplied together would produce 35 ; for it is evident that

those parts must be 7 and 5.

^^-/z^ =--*- ^-^'^ ^/^^-4.*



CHAP. XIV. OF ALCIEBUA. in

CHAP. XIV

Of Cubic Numbers.

15^. Wlien a number has been multiplied twice by itself,

or, which is the same thing, when the square of a number
has been multiplied once more by that number, we obtain

a product which is called a cubcj or a cubic number. Thus,
the cube of a is aaa, since it is the product obtained by
multiplying a by itself, or by a, and that square aa again

by a.

The cubes of the natural numbers, therefore, succeed

each other in the following order *

:

Numbers.

Cubes.
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is y , or Qj- ; also the cube of 1'^, or of the single fraction ^,
is 'eV* or l|l ; and the cube of 3a, or of y , is ^;|.% or

84^4.
156. Since aaa is the cube of a, that of ab will be aaabbb ;

whence we see, that if a number has two or more factors, we
may find its cube by multiplying together the cubes of those

factors. For example, as 12 is equal to 3 x 4, we multiply

the cube of 3, which is 27, by the cube of 4, which is 64,

and we obtain 1728, the cube of 12; and farther, the cube
of 2rt is Saaa, and consequently 8 times greater than the

cube of a : likewise, the cube of 3a is 9!7aaa ; that is to say,

27 times greater than the cube of a.

157. Let us attend here also to the signs -|- and —
. It

is evident that the cube of a positive number +a must also

be positive, that is + ciaa ; but if it be required to cube a

negative number —a, it is found by first taking the square,

which is -jraa, and then multiplying, according to the rule,

this square by —a, which gives for the cube required —aaa.
In this respect, therefore, it is not the same with cubic num-
bers as with squares, since the latter are always positive :

Avhereas the cube of —1 is —1, that of —2 is ~8, that of
— 3 is —27, and so on.

CHAP. XV

Of Cube Roots, and o/" Irrational Numbers resultingft-om

iliem,

158. As we can, in the manner already explained, find

the cube of a given number, so, when a number is proposed,

we may also reciprocally find a number, which, multiplied

twice by itself, will produce that number. The number
here sought is called, with relation to the other, the cube

root; so that the cube root of a given number is the number
whose cube is equal to that given number.

159. It is easy therefore to determine the cube root, when
the number proposed is a real cube ; such as in the examples

in the last chapter ; for we easily perceive that the cube root

of 1 is 1 ; that of 8 is 2 ; that of 27 is 3 ; that of 64 is 4,

and so on. And, in the same manner, the cube root of —27
is —3; and that of —125 is —5.

Farther, if the proposed number be a fraction, as ^^y, the
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cube root of it must be i- ; and that of J-^y is -^, Lastly,

the cube root of a mixed number, such as Si-5. must be ^,

or 14- ; because 2— is equal to f^.
160. But if the proposed number be not a cube, its cube

root cannot be expressed either in integers, or in fractional

numbers. For example, 43 is not a cubic number; there-

fore it is impossible to assign any number, either integer or

fractional, whose cube shall be exactly 43. We may how-
ever affirm, that the cube root of that number is greater

than 3, since the cube of 3 is only 27; and less than 4,

because the cube of 4 is 64 : we know, therefore, that the

cube root required is necessarily contained between the

numbers 3 and 4.

161. Since the cube root of 43 is greater than 3, if we
add a fraction to 3, it is certain that we may approximate

still nearer and nearer to the true value of this root : but we
can never assign the number which expresses the value ex-

actly ; because the cube of a mixed number can never be

perfectly equal to an integer, such as 43. If we were to

suppose, for example, 3i, or -^ to be the cube root required,

the error would be ^; for the cube of ^^ is only ^^^, or

421.

162. This therefore shews, that the cube root of 43 can-

not be expressed in any way, either by integers or by frac-

tions. However, we have a distinct idea of the magnitude
of this root ; and therefore we use, in order to represent it,

the sign i/, which we place before the proposed number,
and which is read cube root, to distinguish it from the square

root, which is often called simply the root ; thus it/43 means
the cube root of 43 ; that is to say, the number whose cube
is 43, or which, multiplied by itself, and then by itself again,

produces 43.

163. Now, it is evident that such expressions cannot

belong to rational quantities, but that they rather form a

particular species of irrational quantities. They have no-

thing in common with square roots, and it is not possible

to express such a cube root by a square root ; as, for ex-

ample, by ^12; for the square of a/ 12 being 12, its cube
will be 12 a/12, consequently still irrational, and therefore it

cannot be equal to 43.

164. If the proposed number be a real cube, our ex-

pressions become rational. Thus, X/\ is equal to 1 ; a/8 is

equal to 2 ; -^27 is equal to 3 ; and, generally, l/aaa is equal
to a,

165. If it were proposed to multiply one cube root, X/a,

by another, l/h^ the product must be y/nh; for we know that
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the cube root of a product ah is found by uuilllplyino; to^

gether the cube roots of the factors. Hence, also, if we

divide X/a by X/h, the quotient will be 1/-t-

166. We farther perceive, that ^i/a is equal to VSfl!,

because 2 is equivalent to ^8 ; that 3^/« is equal to ^/27cf,

hl/a is equal to X/ahbb ; and, reciprocally, if the number
under the radical sign has a factor which is a cube, w^e

may make it disappear by placing its cube root before the

sign ; for example, instead of ^/64« we may write Vi/a ; and
5\/a instead of iyi25« : hence \/\ 6 is equal to 2^/2, because

16 is equal to S x 2.

167. When a number proposed is negative, its cube root

is not subject to the same difficulties that occurred in treating

of square roots ; for, since the cubes of negative numbers
are negative, it follows that the cube roots of negative num-
bers are also negative; thus ^/ — 8 is equal to —2, and

^/ — 27 to — o. It follows also, that ^ — 12 is the same as

— yi2, and thaty/— a maybe expressed by —l/a. Whence
Ave see that the sign — , when it is found after the sign of

the cube root, might also have been placed before it. We
are not therefore led here to impossible, or imaginary num-
bers, which happened in considering the square roots of

negative numbers.

CHAP. XVI.

Of Powers in general.

168. The product which we obtain by multiplying a

number once, or several times by itself, is called a power.

Thus, a square which arises from the multiplication of a

number by itself, and u cube which we obtain by mul-

tiplying a number twice by itself, arc powers. We say

also in the former case, that the number is raised to the

second degree, or to the second power ; and in the latter,

that the number is raised to the third degree, or to the third

power.

169- We distinguish these powers from one another"by
the number of times that the given number has been mul-
tiplied by itself. For example, a square is called the second
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power, because a certain given number has been multiplied

by itself; and if a number has been multiplied twice by
itself we call the product the third power, which therefore

means the same as the cube; also if we multiply a number
three times by itself we obtain its fourth power, or what is

commonly called the h'lquadrate : and thus it will be easy

to understand what is meant by the fifth, sixth, seventh, &c.

power of a number. I shall only add, that powers, after

the fourth degree, cease to have any other but these numeral
distinctions.

170. To illustrate this still better, we may observe, in the

first place, that the powers of 1 remain alwa3's the same

;

because, Avhatever number of times we multiply I by itself,

the product is found to be always 1. We shall therefore

begin by representing the powers of 2 and of 3, which succeed
each other as in the following order

:

Powers.
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powers of any number, a, succeed each other in the fol-

lowing order

:

1st 5d 3d 4th 5th 6th

o, aa, aaa, aaaa^ aaaaa^ aaaaaa, &c.

But we soon feel the inconvenience attending this manner
of writing the powers, which consists in the necessity of re-

peating the same letter very often, to express high powers

;

and the reader also would have no less trouble, if he were

obliged to count all the letters, to know what power is in-

tended to be represented. The hundredth power, for ex-

ample, could not be conveniently written in this manner

;

and it would be equally difficult to read it.

172. To avoid this inconvenience, a much more com-
modious method of expressing such powers has been devised,

which, from its extensive use, deserves to be carefully ex-

plained. Thus, for example, to express the hundredth
power, we simply write the number 100 above the quantity,

whose hundredth power we would express, and a little to-

wards the right-hand; thus, a'"° represents a raised to the

100th power, or the hundredth power of a. It must be

observed, also, that the name exponent is given to the num-
ber written above that whose power, or degree, it represents,

which, in the present instance, is 100.

173. In the same manner, a- signifies a raised to the 2d
power, or the second power of a, which we represent some-

times also by aa, because both these expressions are written

and understood with equal facility ; but to express the cube, or

the third power aaa, we write a^, according to the rule, that

we may occupy less room ; so a* signifies the fourth, a^ the

fifth, and a^ the sixth power of «.

174. In a word, the different powers of a will be re-

presented by a, Or, a^, ft*, «'', d\ a''^ a^, a?, ft'", &c. Hence
we see that in this manner we might very properly have
written ft' instead of a for the first term, to shew the order

of the series more clearly. In fact, «' is no more than a, as

this unit shews that the letter a is to be written only once.

Such a series of powers is called also a geometrical pro-

gression, because each term is greater by one-time, or term,

than the preceding.

175. As in this series of powers each term is found

by multiplying the preceding term by a, which increases

the exponent by 1 ; so when any term is given, we may
also find the preceding term, if we divide by o, because this

diminishes the exponent by 1. This shews that the term

which precedes the first term ft^ must necessarily be
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—, or 1 ; and, if we proceed according to the exponents, we
Of

immediately conclude, that the term which precedes the first

must be a° ; and hence we deduce this remarkable property,

that a° is always equal to 1, however great or small the value

of the number a may be, and even when a is^ nothing; that

is to say, a" is equal to 1.

176. We may also continue our series of powers in a retro-

grade order, and that in two different ways ; first, by dividing

always by a ; and secondly, by diminishing the exponent

by unity ; and it is evident that, whether we follow the one
or the other, the terms are still perfectly equal. This
decreasing series is represented in both forms in the fol-

lowing Table, which must be read backwards, or from right

to left.

1st.

2cl.

177. We are now come to the knowledge of powers

whose exponents are negative, and are enabled to assign

the precise value of those powers. Thus from what has

been said, it appears that

I 1 I
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179- Lastly, we have to consider tlie powers of negative

numbers. Suppose the given number to be ~a; then its

powers will form the following series

:

— a, +«-, —a", +tt\ — «^5 +0,'^, &c.

Where we may observe, that those powers only become

negative, whose exponents are odd numbers, and that, on

the contrary, all the powers, which have an even number
for the exponent, are positive. So that the third, fifth,

seventh, ninth, &c. powers have all the sign — ; and the

second, fourth, sixth, eighth, &c. powers are affected by the

sign +•

CHAP. XVII.

Of the Calculation of Powers.

180. We have nothing particular to observe with regard

to the Addition and Subtraction of powers ; for we only

represent those operations by means of the signs \- and —

,

when the powers are different. For example, a^ + a- is the

sum of the second and third powers of a ; and a' — a* is

what remains when we subtract the fourth power of a from
the fifth ; and neither of these results can be abridged : but

when we have powers of the same kind or degree, it is

evidently' unnecessary to connect them by signs ; as a^ + <3f'

becomes 2fi^, &c.

181. But in the Mtdtiplication of powers, several circum-

stances require attention.

First, when it is required to multiply any power of « by
«, we obtain the succeeding power ; that is to say, the power
whose exponent is greater by an unit. Thus, a^, multiplied

by a, produces a^ ; and a\ multiplied by a, produces «*.

In the same manner, when it is required to multiply by a
the powers of an}' number represented by a, having negative

exponents, we have only to add 1 to the exponent. Thus,
a~' multiplied by a produces a.°, or 1 ; which is made more

evident by considering that a~^ is equal to —, and that the

I . a . .

product of — by a being , it is consequently equal to 1
;

likewise a'"^ multiplied by <?, produces a~^, or — ; and
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«~"^ multiplied by Oy gives a~^, and so on. [See Art. 175,

17(3.]

182. Next, if it be required to multiply any power of «
by a'^, or the second power, I say that the exponent becomes

greater by '2. Thus, the product of a- by a^ is a*; that of

a"^ by ci' is a^\ that of a" by a^ is a^ \ and more generally,

a" multiplied by a- makes a"+-. With regard to negative

exponents, we shall have a^, or a, for the product of a~^ by

«-; for a~^ being equal to — , it is the same as if we had
^ ^ a

divided aa by a; consequently, the product required is

—, or a ; also a~^, multiplied by a-, produces a°, or 1 ; and

a~^, multiplied by a-, produces a~'.

188. It is no less evident, that to multiply any power of

a by «^ we must increase its exponent by three units; con-

sequently, the product of «" by a^ is a"''"^ And whenever
it is required to multiply together two powers of a, the pro-

duct will be also a power of a, and such that its exponent will

be the sum of those of the two given powers. For example,

a* multiplied by a^ will make uP, and d^~ multiplied by a'

will produce a'^, &c.

184. From these considerations we may easily determine

the highest powers. To find, for instance, the twenty-fourth

power of 2, I multiply the twelfth power by the twelfth

power, because 2-* is equal to 2^' x 2'". Now, we have
already seen [Table, p. 49] that 2'- is 4096 ; I say there-

fore that the number 16777216, or the product of 4096 by
4096, expresses the power required, namely, 2'-^.

185. Let us now proceed to division. We shall remark,

in the first place, that to divide a power of a by a, we must
subtract 1 from the exponent, or diminish it by unity ; thus,

a^ divided by a gives a*; and a°, or 1, divided by a, is equal

to a~' or— : also a~^ divided by a, iiives a~*.

186. If we have to divide a given power of a by «% we
must diminish the exponent by 2; and if by a% we must
subtract 3 units from the exponent of the power proposed ;

and, in general, whatever power of a it is required to divide

by any other power of a, the rule is always to subtract the

exponent of the second from the exponent of the first

of those powers: thus a^^ divided by a'' will give a^; «"

divided by a^ will give a"' ; and «-=* divided by «* will

give ar''.

187. From what has been said, it is easy to understand
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the method of finding the powers of powers, this being-

done by nuiltiphcation. When we seek, for example, the

square, or tlie second power of a^, we find a^'; and in the

same manner we find a^- for the third power^ or the cube, of

a*. To obtain the square of a power, we have only to double
its exponent ; for its cube, we must triple the exponent ; and
so on. Thus, the square of a" is a-" ; the cube of «" is a^"

;

the seventh power of a" is a'", &c.
188. The square of a", or the square of the square of fl,

being a*, we see why the fourth power is called the bigua-

drate: also, the square of a? being a^^ the sixth power has
received the name of tlie square-cubed.

Lastly, the cube of a^ being «9, we call the ninth power
the cubo~C7ibe: after this, no other denominations of this

kind have been introduced for powers; and, indeed, the two
last are very little used.

CHAP. XV III.

()/ Hoots, zoith relation to Powers in general.

181). Since the square root of a given number is a num-
ber, whose square is equal to that given number; and since

the cube root of a given number is a number, whose cube is

equal to that given number; it follows that any number
whatever being given, we may always suppose such roots of
it, that the fourth, or the fifth, or any other power of them,
respectively, may be equal to the given number. To distin-

guish these different kinds of roots better, we shall call the

square root, the second root ; and the cube root, the third

root ; because, according to this denomination, we may call

thefourth root^ that whose biquadrate is equal to a given
number; and the fifth root, that whose fifth power is equal
to a given number, &c.

190. As the square, or second root, is marked by the sign

v^, and the cubic, or third root, by the sign ^, so the fourth

root is represented by the sign i/ ; the fifth root by the sign

^/ ; and so on. It is evident that, according to this method
of expression, the sign of the square root ought to be ^:
but as of all roots this occurs most frequently, it has been
agreed, for the sake of brevity, to omit the number 2 as the

sign ol" this root. So that when the radical siau lias no num-
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ber prefixed to it, this always shews that the square ^-oot is

meant.

191. To explain this matter still better, we shall here

exhibit the different roots of the number a, with their re-

spective values

:

i/af
i/a\- is the

i/aj {^6th ) ^fl, and so on.

So that, conversely,

Tlie 2d
The 3d
The 4th V power of -K t/a V is equal to

The 5th

The 6th

192. Whether the number a therefore be great or small,

we know what value to affix to all these roots of different

degrees.

It must be remarked also, that if we substitute unity for a,

all those roots remain constantly 1 ; because all the powers
of 1 have unity for their value. If the number a be greater

than 1 , all its roots will also exceed unity. Lastly, if that

number be less than 1, all its roots will also be less than

unity.

193. When the number a is positive, we know from what
was before said of the square and cube roots, that all the

other roots may also be determined, and will be real and
possible numbers

But if the number a be negative, its second, fourth, sixth,

and all its even roots, become impossible, or imaginary num-
bers ; because all the powers of an even order, whether of

positive or of negative numbers, are affected by the sign -i- :

whereas the third, fifth, seventh, and all its odd roots, become
negative, but rational ; because the odd powers of negative

numbers are also negative.

194. We have here also an inexhaustible source of new
kinds of surds, or irrational quantities; for whenever the

number a is not really such a power, as some one of the

foregoing indices represents, or seems to require, it is im-

possible to express that root either in whole numbers or in

fractions; and, consequently, it must be classed among the

numbers which are called irrational.



56 ELEMENTS SECT. I.

CHAP. XIX.

Of the Method of representing Irrational Numbers by
Fractional Exponents.

195. We have shewn in the preceding chapter, that the

square of any power is found by doubling the exponent of

that power ; or that, in general, tlie square, or the second

power, of o", is or" ; and the converse also follows, viz. that

the square root of the power a-"- is a", whicli is found bv
taking half the exponent of that power, or dividing it

by 2.

196. Thus, the square root of a'^ is a\ or a\ that of «*

is a- ; tliat of c^'' is a^ ; and so on : and, as this is general,

the square root of a^ must necessarily be a^, and that of a^

must be a^; consequently, we shall in the same manner

have a^ for the square root of a'. Whence we see that d^
is equal to ^/«; which new method of representing the

square root demands particular attention.

197. We have also shewn, that, to find the cube of a

power, as «", we must multiply its exponent by 3, and con-

sequently that cube is a^".

Hence, conversely, when it is required to find the third,

or cube root, of the power «^", we have onl}^ to divide that

exponent by 3, and may therefore with certainty conclude,

that the root required is a : consequently a\ or a, is the

cube root of a^; a- is the cube root of a*^; a^of a^; and
so on.

198. There is nothing to prevcr': us from applying the

same reasoning to those cases, in which the exponent is not

divisible by 3, or from concluding that the cube root of a*

is a^, and that the cube root of rt* is a% or a^T; conse-

quently, the third, or cube root of «, or a^, must be a^ :

I >

whence also, it appears, that aJ is the same as v/o. i

199. It is tlie same with roots of a higher degree : ?t'hus,

the fourth root of a will be ci*, which expression has the

same value as^/rt ; the fifth root of a will be a% which is

consequently equivalent to Vrt; and the same observation

may be extended to all roots of a higher degree.
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200. We may 'therefore entirely reject the radical signs at

present made use of, and employ in their stead the fractional

exponents which we have just explained: but as we have

been long accustomed to those signs, and meet with them in

most books of Algebra, it might be wrong to banish them
entirely from calculation ; there is, however, sufficient reason

also to employ, as is now frequently done, the other method
of notation, because it manifestly corresponds with the nature

I

of the thing. In fact, we see immediately that a^ is the
I

square root of a, because we know that the square of a^, that

I I

is to say, a/^ multiplied by a^, is equal to «\ or a.

201. What has been now said is sufficient to shew how
Ave are to understand all other fractional exponents that may

occur. If we have, for example, «% this means, that we
must first take the fourth power of a, and then extract its

4-

cube, or third root ; so that aJ is the same as the et»mmon

expressions/a*. Hence, to find tlie value of flf*^, we must
first take the cube, or the third power of «, which is o^, and

i

.

then extract the fourth root of that power; so that a+ is the
* .

same as Va^y and aJ is equal to s/a'', &c. .'

202. When the fraction which represents the exponent
exceeds unity, we may express the value of the given quan-

tity in another way : for instance, suppose it to be a^ ; this

quantity is equivalent to a-^, which is the product of a" by
i -L . ... i_ .

a"" : now a- being equal to ^/a, it is evident that a^ is

\ '_? I .

equal to a-A/a\'. also a^ , or aV, is equal to a^^/a; and

a *
, that is, a^T, expresses a^y^a^. These examples are suf-

ficient to illustrate the great utility of fractional exponents.

203. Their use extends also to fractional numbers : for if

1

there be given -— , we know that this quantity is equal to

1— ; and we have seen already that a fraction of the Ibrm

1
,

1
-;7- may be expressed by a~" ; so that instead of —;;- wc

may use the expression a ^; and, in the .•aunic man-
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i . _i . . . a^ .

ner, ^—- is equal to a t. Again, if the quantity

proposed; let it be transformed into this, —^, which is the

^_

product of «- by a -^^
; now this product is equivalent to

5
,

rt'+, or to aH, or lastly, to a'X/a. Practice will render similar

reductions easy.

204. We shall observe, in the last place, that each root

may be represented in a variety of ways; for >^ a being the

same as a^, and ~ being transformable into the fractions, |,

-|, *, -E^o> -Ta? ^c- it is evident that >y a\% equal to X/a"^ or to

Va^, or to ^a% and so on. In the same manner, %/a^ which
I

is equal to «^, will be equal to ^/a/^, or to Xfa^^ or to ^^a*.

Hence also we see that the number «, or a\ might be repre-

sented by the following radical expressions

:

Va\ l/a\ Va\ ^«^ &c.

205. Tills property is of great use in multiplication and
division ; for if we have, for example, to multiply 1/a by l/a,

we v%'iite Va^ for ^a, and ^a^ instead of i^a ; so that in this

manner we obtain the same radical sign for both, and the

multiplication being now performed, gives the product y^a^.

The same result is also deduced from a^ ', which is the
-L . . i.

product ofa^ multiplied by a^ ; for | 4- ^ is |, and conse-

1.

quently the product required is a^, or ^a^.

On the contrary, if it were required to divide ^a, or

«^, hy l/a, or d^, we should have for the quotient a* ^,

ova^ ^, that is to say, a^y or ^/a.

UUESTIONS FOR PllACTICE RESPECTING SURDS.

1. lleduce to the form of \/5. Ans. ^/o6.

2. Reduce a ]- b to the form of Vbc.
Ans. \^{aa -\- ^ab -r bb).

y. Reduce 7—— to the form of \^d. Ans. k/tT'
b ^/c• bbc

i. Reduce a- and 6- to the common index \.

Ans. (I 1% and A^P.
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5. Reduce 'v/48 to its simplest form. Ans. ^s/^.
6. Reduce ^/{a^x — a'-x-) to its simplest form.

t Ans. aV{ax — xx^).
- *<

27a^b^
7. Reduce i^pr;

—

tt- to its simplest form.
So—Sa ^

.

' A7is.—'l/- .

^'^
8. Add v/6 to 2v/6; and V8 to ^/50.

^«s. S-v/G; and 7^/2.

9. Add -v/4a and t/a^ together. Ans, {a + 2) v'a.

10. Add—1^ and 4
c I

A
^'+ C=

together. Ans. , , .

11. Subtract ^/4a from t^a^. J/zs. (a — 2) a/a.

"cli. ~^- h- — c'^ 1
12. Subtract -rr from

—
"". J.7zs. —j— V-i-.

o\ c o , be

13. Multiply x^-^ by a/-^. Ans. .

14. Multiply a/c/ by l/ub. Ans. ^(a"'b-d^).

15. Multiply v/(4a - 3a:) by 2a.

^7is. a/(16«^ - 12a=a:).

16. Multiply ^ -/(« — x) by (c — <i) s/ax.

. ac—ad
Ans. —7^7— V(a-x — ax"),

yib

17. Divide a^ by a+ ; and a" by a'".

Ans. a '
^

; and a mn ,

lo. Divide—oX~~ V\C''X — ax-) by ^ \/{ci — x).

Ans. (c — d) \/ax.

19. Divide a- — ad — b + d \/b by a — -^/b.

Ans. a -f ^/b — d.

20. What is the cube of -\/2 ? Ans. a/8.

21. What is the square of 3yZ>c'' ? Ans. 9cl/b-c.

22. What is the fourth power of -^ V 7 .?

•^'"' 4&V-2icTF)-
23. What is the square of 3 + a/5 .? ^7i5. 14+6 ^/5.

3

24. What is the square root of a"' .'' A716. a^ ; or \/a\
25. What is the cube root of x'(a'- — x-)f

Am. ^{a- — a-'-).
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26. What multi|)lier will render a + v^3 rational ?

Ans. a — -v/3.

27. What multiplier will render -v^ff — ^/b rational ?

Ans. v''« + \^b.

28. What multiplier will render the denominator of the

fraction —-;:^ j rational.? Ans. a/7 — \/3.

CHAP. XX.

Of the different Methods of Calculation, and of their mutual
Connexion.

206. Hitherto we have only explained the different me-
thods of calculation : namely, addition, subtraction, mul-

tiplication, and division; the involution of powers, and the

extraction of roots. It will not be improper, therefore, in

this place, to trace back the origin of these different methods,

and to explain the connexion which subsists among them

;

in order that we may satisfy ourselves whether it be possible

or not for other operations of the same kind to exist. This
inquiry will throw new light on the subjects which we have
considered.

In prosecuting this design, we shall make use of a new
character, which may be employed instead of the expression

that has been so often repeated, is equal to ; this sign is =,
which is read is equal to: thus, when I write a = b, this

means that a is equal to b: so, for example, 3x5 = 15.

207. The first mode of calculation that presents itself to

the mind, is undoubtedly addition, by which we add two
numbers together and find their sum : let therefore a and b

be the two given numbers, and let their sum be expressed

by the letter c, then we shall have a + b == c; so that when
we know the two numbers a and b, addition teaches us to

find the number c.

208. Preserving this comparison a -j- 6 = c, let us reverse

the question by asking, how we are to find the number b,

when we know the numbers a and c.

It is here required therefore to know what number must
be added to «, in order that the sum may be the number c:

su))posc, for example, « = 3 and c = 8; so that we must

have o -f 6 = 8; then b will evidently be found by sub-
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tracting 3 from 8 : and, in general, to find Z>, we must sub-

tract a from c, whence arises b — c — a\ for, by adding a to

both sides again, we have 6 + a = c — a + «, that is to say,

— c, as we supposed.

209. Subtraction therefore takes place, when we invert

the question which gives rise to addition. But the number
which it is i-equired to subtract may happen to be greater

than that from which it is to be subtracted ; as, for example,

if it were required to subtract 9 from 5 : this instance there-

fore furnishes us with the idea of a new kind of numbers,

which we call negative numbers, because 5 — 9 = — 4.

210. When several numbers are to be added together,

which are all equal, their sum is found by multiplication, and

is called a product. Thus, ah means the product arising

from the multiplication of a by b, or from the addition of the

number «, h number of times; and if we represent this pro-

duct by the letter c, we shall have ab — c\ thus multiplica-

tion teaches us how to determine the number c, when the

numbers a and h are known.
211. Let us now propose the following question: the

numbers a and c being known, to find the number b. Sup-

pose, for example, a = S, and c = 15., so that Sb = 15,

and let us inquire by what number '^ must be multiplied, in

order that the product may be 1-5 ; for the question pro-

posed is reduced to this. This is a case of division ; and the

number required is found by dividing 15 by 3; and, in

general, the number b is found by dividing c by a ; from

c
which results the equation b = —

.

^ a

212. Now, as it frequently happens that the number c

cannot be really divided by the number a, while the letter b

must however have a determinate value, another new kind

of numbers present themselves, which are called fractions.

For example, suppose a — 4, and c — 3, so that 45 = 3

;

then it is evident that b cannot be an integer, but a fraction,

and that we shall have 6 = ^.

213. We have seen that multiplication arises from ad-

dition ; that is to say, from the addition of several equal

quantities : and if we now proceed farther, we shall perceive

that, from the multiplication of several equal quantities to-

gether, powers are derived ; which powers are represented in

a general manner b}- the expression a''. This signifies that

the number a must be multiplied as many times by itself,

minus 1, as is indicated by the number b. And we know
from wl at has been already said, that, in the present in-
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stance, a is called the root, h the exponent, and d' the

power.

214. Farther, if we represent this power also by the letter

c, we have «'' = c, an equation in which three letters a, Z», c,

are found ; and we have shewn in treating of powers, how
to find the power itself, that is, the letter c, when a root a

and its exponent h are given. Suppose, for example, rt = 5,

and & = 3, so that c = 5^: then it is evident that we must
take the third power of 5, which is 1^5, so that in this case

c = 125.

215. We have now seen how to determine the power c, by
means of the root a and the exponent 6; but if we wish to

reverse the question, we shall find that this may be done in

tv/o Vv'ays, and that there are two different cases to be con-

sidered : for if two of these three numbers a, 6, c, were given,

and it were required to find the third, we should immediately

perceive that this question would admit of three different

suppositions, and consequently of three solutions. We have

considered the case in which a and h were the given num-
bers ; we may therefore suppose farther that c and a, or c

and 6, are known, and that it is required to determine the

third letter. But, before we proceed any farther, let us point

out a very essential distinction between involution and the

two operations which lead to it. When, in addition, we re-

versed the question, it could be done only in one way; it

was a matter of indifference whether we took c and «, or c

and 6, for the given numbers, because we might indifferently

write a \- ^, or 6 + a ; and it was also the same with mul-

tiplication ; we could at pleasure take the letters a and h for

each other, the equation ah — c being exactly the same as

ba = c: but in the calculation of powers, the same thing

does not take place, and we can by no means write b" in-

stead of a'' ; as a single example will be sufficient to il-

lustrate : for let a — 5, and b = 3; then we shall have
«* = 5^ = 125; but Z>'' = 3^ = 243: which are two very

different results.

216. It is evident then, that we may propose two ques-

tions more: one, to find the loot a by means of the given

power c, and the exponent b ; the other, to find the ex-

ponent b, supposing the power c and the root a to be

known.
217. It may be said, indeed, that the former of these

questions has been resolved in the chapter on the extraction

of roots; since if 6 = 2, for example, and a- = c, we know
by this means, that a is a number whose square is equal to

c, and consequently that a = ^/c In the same manner, if
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b = 3 and a^ = c, we know that the cube of a must be equal

to the given number c, and consequently that a = \/c. It

is therefore easy to conclude, generally, from this, how to

determine the letter a by means of the letters c and b ; for

we must necessarily have a = \/c.

218. We have already remarked also the consequence

which follows, when the given number is not a real power

;

a case which very frequently occurs ; nraiiely, that then the

required root, a, can neither be expressed by integers, nor

by fractions ; yet since this root must necessarUy have a de-

terminate value, the same consideration led us to a new kind

of numbers, which, as we observed, are called surds, or ir7-a-

^«or?«/ numbers ; and which we have seen are divisible into

an infinite number of different sorts, on account of the great

variety of roots. Lastly, by the same inquiry, we wejie led

to the knowledge of another particular kind of numbers,

which have been called imagmari/ numbers.

219. It remains now to consider the second question,

which was to determine the exponent, the power c, and the

root a, both being known. On this question, which has not

yet occurred, is founded the important theory of Logarithms,

the use of which is so extensive through the whole compass

of mathematics, that scarcely any long calculation can be

carried on without their assistance ; and we shall find, in

the following chapter, for which we reserve this theory, that

it will lead us to another kind of numbers entirely new, as

they cannot be ranked among the irrational numbers before

mentioned.

CHAP. XXI

Of Logarithms in general.

220. Resuming the equation d' — f, we shall begin by

remarking that, in the doctrine of Logarithms, we assume

for the root a, a certain number taken at pleasure, and sup-

pose this root to preserve invariably its assumed value.

This being laid down, we take the exponent b such, that

the power a!' becomes equal to a given number c ; in

which case this exponent b is said to be the logarithm of the

number c. To express this, v/e shall use the letter L. or

the initial letters log. Thus, by A = L. r, or b = log. c,
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we mean that b is equal to the logarithm of the number r,

or that the logarithm of c is h.

221. We see then, that the value of the root a being

once established, the logarithm of any number, c, is nothing

more than the exponent of that power of «, which is equal

to c : so that c being = a^, b is the logarithm of the power
a^. If, for the present, we suppose 6 = 1, we have 1 for

the logarithm of «', and consequently log. a = 1 ; but if we
suppose b = 2, we have 2 for the logarithm of a- ; that is to

say, log. a- = % and we may, in the same manner, obtain

log. a^ — 3 ; log. «•* = 4 ; log. a-' — 5, and so on.

222. If we make Z> = 0, it is evident that will be the

logarithm of a"; but a° = l; consequently log. 1=0, what-
ever be the value of the root a.

Suppose 6 = — 1, then — 1 will be the logarithm of

1 1

a ' ; but a ^ = — : so that we have log. — = — 1, and in

the same manner, we sliall have lo^. —~ = — 2 ; log. —r

= -3; % ^V= - 4',&c.

223. It is evident, then, how we may represent the loga-

rithms of all the powers of «, and even those of fractions,

which have unity for the numerator, and for the denominator
a power of a. We see also, that in all those cases the loga-

rithms are integers; but it must be observed, that if 6 were

a fraction, it would be the logarithm of an irrational num-
ber : if we suppose, for example, 6 = |, it follows, that k is

the logarithm of «^, or of \/« ; consequently we have also

log. \/a — \ ; and we shall find, in the same manner, that

log. Va = i, log. %/a = i, &c.

224. But if it be required to find the logarithm of another

number c, it will be I'eadily perceived, that it can neither

be an integer, nor a fraction ; yet there must be such an ex-

ponent h, that the power a'' may become equal to the nuni-

ber proposed ; we have therefore b — lo^. c ; and generally,

a' •'• = C-.

225. Let us now consider another number <7, Avhose loga-

rithm has been represented in a similar manner by log. d
;

so that a'"' = d. Here if we multiply this expression by
the preceding one a^" = c, we shall have a^-'-"^^-" = cd

;

hence, the exponent is always the logarithm of the poxaer

;

consequently, log. c + log. d = log. cd. But if, instead of

multiplying, we divide the former expression by the latter,
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C
we shall obtain a' -'"^ ' = -y ; and, consequently, log. c —

log. d = log. —

.

^

226. This leads us to the two principal properties of loga-

rithms, which are contained in the equations log. c + log. d
Q= log. c(/, and log. c — log. d = log. —r. The former of

these equations teaches us, that the logairthm of a product,

as cd, is found by adding together the logarithms of the

factors ; and the latter shews us tliis property, namely, that

the logarithm of a fraction may be determined by sub-

tracting the logarithm of the denominator from that of the

numerator.

327. It also follows from this, that when it is required to

multiply, or divide, two numbers by one another, we have

only to add, or subtract, their logarithms ; and this is what
constitutes the singular utility ot" logarithms in calculation :

for it is evidently much easier to add, or subtract, tlian to

multip]}'^, or divide, particularly when the question involves

large numbers.

228. Logarithms are attended with still greater advan-

tages, in the involution of powers, and in the extraction of

roots ; for if d = c, we have, by the first property, log. c +
log. c = log. cc, or C-; consequently, log. cc =2 log. c ; and,

in the same manner, we obtain log. c^ — 3 log. c; log. c* =
4 log. c; and, generally, log. 0^=- n log. c. If we now sub-

stitute fractional numbers for ??, we shall have, for example,
I

log.c^, that is to say, log. \/c, = ^log. c; and lastly, if we
suppose n to represent negative numbers, we shall have log.

c-\ or log. —, =i — log. c ; log. c~^, or log. —7, = —2 log.

c, and so on ; which follows not only from the equation

log. c'* = n log. c, but also from log. 1 = 0, as we have

already seen.

229. If therefore we had Tables, in which logarithms

were calculated for all numbers, we might certainly derive

from them very great assistance in performing the most

prolix calculations ; such, for instance, as require frequent

multiplications, divisions, involutions, and extractions of

roots : for, in such Tables, we should have not only the

logarithms of all numbers, but also the numbers answering

to all logarithms. If it were required, for example, to find

the square root of the number c, we must first find the loga-

F
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rithm of c, that is, log. c, and next taking the half of that

logarithm, or ^og. c, we should have the logarithm of the

square root required : we have therefore only to look in the

Tables fo)- the number answering to that logarithm, in order

to obtain the root required.

230. We have alreadyseen, that the numbers, 1, 2, 3, 4,

5, 6, &c. that is to say, all positive numbers, are logarithms

of the root a, and of its positive powers; consequently,

logarithms of numbers greater than unity : and, on the con-

trary, that the negative numbers, as —1, —2, &c. are loga-

1 1

nthms of the fractions— ,
—
-, &c. which are less than unity,

a a"

but yet greater than nothing.

Hence, it follows, that, if the logarithm be positive, the

number is always greater than unity : but if the logarithm

be negative, the number is always less than unity, and yet

greater than ; consequently, we cannot express the loga-

rithms ("'"^negative numbers : we must therefore conclude, that

the logarith'ns of negative numbers are impossible, and that

they belong to the class of imaginary quantities.

231. In order to illustrate this moi*e fully, it will be

proper to fix on a determinate number for the root a. Let
us make choice of that, on Avhich the common Logarithmic

Tables are formed, that is, the number 10, which has been

preferrec, because it is the foundation of our Arithmetic.

But it if vident that any other number, provided it wei'e

greater ' . .lan unity, would answer the same purpose : and
the reason why we cannot suppose a = unity, or 1, is

manifest ; because all the powers a^' would then be con-

stantly equal to unity, and could never become equal to

another given number, c.

CHAP. XXII.

Of the Logarithmic Tables now in use.

232. In those Tables, as we have already mentioned, we
begin with the supposition, that the root a is = 10; so that

the logarithm of any number, c, is the exponent to which we
must raise the number 10, in order that the power resulting

from it may be equal to the number c; or if we denote the
logarithm of c by L.c,^.'Ave shall always have lO""' = c.
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233. We liave already observed, that the logarithm of

the number 1 is always 0; and w,e have also 10" = 1 ; con-

sequently, log. 1=0; log. 10 ^^ 1; log. TOO ~ 2; los,.

1000 = 3; log. 10000 -= 4; log. 100000 =^ 5; log. lOOOCOO

= 6. Farther, log. -V = - 1 ; log. -l^ = ~ 2 ; log. -^g-
= - 3; log. j^^^- = - 4; log. too'o^ = - 5; log.

I o o o o o o ^°
_

234. The logarithms of the principal numbers, therefore,

are easily determined ; but it is much more difficult to find

the logarithms of all the other intervening numbers; and

yet they must be inserted in the Tables. This however is

not the place to lay down all the rules that are necessary for

such an inquiry ; we shall therefore at present content our-

selves with a general view only of the subject.

235. First, since log. 1 — 0, and log. 10 = 1, it is evident

that the logarithms of all numbers between 1 and 10 must be

included between and unity ; and, consequently, be greater

than 0, and less than 1. It will therefore be sufirient to

consider the single number 2; the logarithm of which is

certainly greater than 0, but less than unity : and if we repre-

sent this logarithm by the letter x, so that log, 2 — x, the

value of that letter must be such as to give exactly 10 = 2.

We easily perceive, also, that x must be considerably
I

less than i, or which amounts to the same thing, 10^

is greater than 2; for if we square both sides, th-^ square of

10^ = 10, and the square of 2 := 4. Now, thi: 'atter is

much less than the former; and, in the same manner, we
I

see that x is also less than ~; that is to say, 10^ is greater
I

than 2: for the cube of 10^ is 10, and that of 2 is only 8.

But, on the contrary, by makings: = i, we give it too small

a value; because the fourth power of 10"* being 10, and
I

that of 2 being 16, it is evident that 10*^ is less than 2.

Thus, we see that x, or the log. 2, is less than 4-, but greater

than - : and, in the same manner, we may determine, with

respect to every fraction contained between } and |, whether

it be too great or too small.

In making trial, for example, with ~, which is less than |,

and greater than l, 10 , or 10^, ought to be = 2; or the

seventh power of 10^, that is to say, 10', or 100, ovight to

be equal to the seventh power of 2, or 128; which is con-

sequently greater than 100. We see, therefore, that i is

less than log. 2, and that log. 2, which was found less than
i-, is however greater than y.

f2
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Let us try another fraction, which, in consequence of

what we have already found, must be contained between ~
and y. Such a fraction between these hmits is -^ ; and it is

therefore required to find, whether 10'° =2; if this be the

case, the tenth powers of those numbers are also equal : but
3

tlie tenth power of 10' ° is 10''= 1000, and the tenth power

of 2 is 1024; we conclude therefore, that 10'° is less than

2, and, consequently, that ~ is too small a fraction; and
therefore the log". 2, though less than ~, is yet greater

than-,V
236. This discussion serves to prove, that log. 2 has a

determinate value, since we know that it is certainly greater

than -ylj, but less than i- ; we shall not however proceed any
farther in this investigation at present. Being therefore still

ignorant of its true value, we shall represent it by a:, so that

log. 2 = 0); and endeavour to shew how, if it were known,
we could deduce from it the logarithms of an infinity of

other numbers. For this purpose, we shall make use of
the equation already mentioned, namely, log. cd = log. c +
log. d, which comprehends the property, that the logarithm

of a product is found by adding together the logarithms of
the factors.

237. First, as log. 2 = x, and log. 10 = 1, we shall have
log. 20 = X -r 1, log. 200 = a? + 2
log. 2000 =-- cv + 3, log. 20000 ~ x + 4
log. 200000 = a: + 5, log. 2000000 = a; + 6, &c.

238. Farther, as log. c- = 2 log. c, and log. c^ = S log, c,

and log. c"* = 4 log. c, &c. we have

log. 4 = 2^; log. 8 = 3x; log. 16 = 4r ; log. 32 = 5a:

;

log. 64 = 6x, &c. Hence we find also, that

log. 40 = 2a: + 1, log. 400 = 2.r + 2
log. 4000 =2a; + S, log. 40000 =^ 2a: + 4, &c.
log. 80 = 3a: + 1, log. 800 == 3a: + 2
log. 8000 = 3x + 3, log. 80000 = 3a: + 4, &c.
log. 160 = 4,x +1, log. 1600 = 4a: H- 2
log. 16000 = 4a: + 3, log. 160000 = 4a- + 4, &c.

239. Let us resume also the other fundamental equation,

c
fog.

-J-

= log. c — log. d, and let us suppose c = 10, and

d = 2; since log. 10 = 1, and log. 2 — a:, we shall have
log. '^°, or log. 5 = 1 — X, and shall deduce from hence the

following equations :
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log. 50 = 2 - .r, log. 500 = 3 — x-

log. 5000 = 4< - X, log. 50000 = 5 - a; &c.

log. 25 = 2 - Sa-, log. 125 = 8 — 3.r

Zo^. 625 = 4 - 4r, Zo^. 3125 = 5 - 5x, &c.

fo^. 250 = 3 - 2x, Zo^. 2500 = 4 — 2a:

log. 25000 = 5 - 2ar, /o^. 250000 = 6 - 2r, &c.

%. 1250 = 4 - 2x, log. 12500 = 5-30;
Zog. 125000 = 6 - 3a:, /o^. 1250000 = 7 - 3a,-, &c.

log. 6250 = 5 - 4a', Zr^. 62500 = 6 — 4a-

log. 625000 = 7 - 4<r, Zo^. 6250000 = 8 - 4a-, &c.

and so on.

240. If we knew the logarithm of 3, this would be the

means also of determining a number of other logarithms; as

appears from the following examples. Let the log. 3 be

represented by the letter 7/ : then,

log. 30 = y + 1, log. 300 -- ?/ H- 2

log. 3000 = 7/ + 3, log. 30000 = ?/ + 4, &c,

log. 9 = 2?/, log. 27 = 3y/, Zo^. 81 =:^ 4j/, &c. we shall

have also,

log. 6 — X + t/, I'ig. 12 =: 2a: -|- y, log. 18 = .i- -1- 2j/,

Zo^g-. 15 = log. 3 + Zo^. 5 — y + 1 — .r.

241. We have already seen that all numbers arise from

the multiplication of prime numbers. If therefore we only

knew the logarithms of all the prime numbers, we could find

the logarithms of all the other numbers by simple additions.

The number 210, for example, being formed by the factors

2, 3, 5, 7, its logarithm will be l<g. 2 + lo;^. 3 + log. 5 +
log. 7. In the same manner, since 360 = 2 x 2 x 2 x

3 X 3 X 5 = 23 X 3^ X 5, we have log. 360 ^ 3 log. 2 +
2 log. 3 + log. 5. It is evident, tlierefore, that by means

of the logarithms of the prime numbers, we may determine

those of all others; and that we must first apply to the

determination of the former, if we would construct Tables

of Logarithms.

CHAP. XXIII.

Of the Method of expressing Logarithms.

242. We have seen that the logarithm of 2 is greater thaiv

-j^o, and less than ^, and that, consequently, the exponent of

10 must fall between those two fractions, in order that the

power may become 2. Now, although we know this, yet



70 ELEMENTS SECT. I.

whatever fraction we assume on this condition, the power
resulting from it will be always an irrational number, greater

or less than 2 ; and, consequently, the logarithm of 2 cannot

be accurately expressed by such a fraction : therefore we
must content ourselves with determining the value of that

logarithm by such an approximation as may render the

error of little or no importance ; for which purpose, we
employ what are called decimal fractions^ the nature and
properties of which ought to be explained as clearly as

])ossible.

243. It is well known that, in the ordinary way of writing

numbers by means of the ten figures, or characters,

0,1,2,3,4,5,6,7,8,9,
the first figure on the right alone has its natural signification ;

that the figures in the second place have ten times the value

which they would have had in the first ; that the figures in

the third place have a hundred times the value; and those

in the fourth a thousand times, and so on : so that as they

advance towards the left, they acquix'e a value ten times

greater than they had in the preceding rank. Thus, in the

number 1765, the figure 5 is in the first place on the right,

and is just equal to 5 ; in the second place is 6 ; but this

figure, instead of 6, represents 10 X 6, or 60 ; the figure 7

is in the third place, and represents 100 x 7, or 700; and
lastly, the 1, which is in the fourth place, becomes 1000; so

that wc read the given number thus

:

One thousandi seven liundred, and sixty-Jive.

244. As the value of figures becomes always ten times

greater, as we go from the right towards the left, and as it

consequently becomes continually ten times less as we go
from the left tow'ards the right ; we may, in conformity with

this law, advance still farther towards the right, and obtain

figures whose value will continue to become ten times less

than in the preceding place: but it must be observed, that

the place where the figures have their natural value is

marked by a point. So that if we meet, for example, with

the number 36*54892, it is to be understood in this manner

:

the figure 6, in the first place, has its natural value ; and the

figure 3, which is in the second place to the left, means 30.

But the figure 5, which comes after the point, expresses

only-j^; and the 4 is equal only to —5^5 ^^^ figure 8 is

fqual to ToVo; the figure 9 is equal to to-Ioo^; and the

iigure 2 is equal to --^^^-^^. We see then, that the more
those figures advance towards the right, the more their
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values diminish ; and at last, those values become so small,

that they may be considered as nothing *.

245. This is the kind of numbers which we call decimal

fractions, and in this manner logarithms are represented in

the Tables. The logarithm of 2, for example, is expressed

by 0'3010300; in which we see, 1st. That since there is

before the point, this logarithm does not contain an integer

;

My, that its value is ^^^ + -^4^ 4- toW + to4oo +to^o^o
+ Top^oi^ + -TOOwoo^- We might have left out the two
last ciphers, but they serve to shew that the logarithm in

question contains none of those parts, which have 1000000
and 10000000 for the denominator. It is however to be
understood, that, by continuing the series, we might have
found still smaller parts ; but with regard to these, they arc

neglected, on account of their extreme minuteness.

246. The logarithm of 3 is expressed in the Table by
0*4771213; we see, tlierefore, that it contains no integer,

and that it is composed of the following fractions: -to'^-t-oo
JL. 7 _|_ 1 I 2^ I __ I I 3 JJ„t

' looo ' loooo ' looooo ' loodooo ' looocooc* »-'"«'

we must not suppose that the logarithm is thus expressed

with the utmost exactness ; we are only certain that the error

is less than
, o o o'o o-go-

'-> which is certainly so small, that it

may very well be neglected in most calculations.

247. According to this method of expressing logarithms,

that of 1 must be represented by 0*0000000, since it is

really = : the logarithm of 10 is 10000000, where it evi-

dently is exactly = 1 : the logarithm of 100 is 2*0000000,

or 2. And hence we may conclude, that the logarithms of

all numbers, which are included between 10 and 100, and

* The operations of arithmetic are performed with decimal

fractions in the same manner nearly, as with whole numbers;
some precautions only are necessary, after the operation, to

place the point properly, which separates the whole numbers
from the decimals. On this subject, we may consult almost any
of the treatises on arithmetic. In the multiplication of these

fractions, when the multiplicand and multiplier contain a great

number of decimals, the operation would become too long, and

would give the result much more exact than is for the most

part necessary; but it may be simplified by a method, which is

not to be found in many authors, and which is pointed out by

M. Marie in his edition of the mathematical lessons of M. de la

Caille, where he likewise explains a similar method for the

division of decimals. F. T.
The method alluded to in this note is clearly explained in

Bonny castle'a Arithmetic,
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consequently composed of two figures, are comprehended
between 1 and 2, and therefore must be expressed by 1 plus

a decimal fraction, as log. 50 = 1*6989700; its value there-

fore IS unity, plus -^^ -i- .^ +_ --i^.^ + _^|,-,^^ + -r^cfo o o
•.

and it will be also easily perceived, that the logarithms of

numbers, betv/een 100 and 1000, are expressed by the integer

2 with a decimal fraction : those of numbers between 1000
and 10000, by 'd plus a decimal fraction : those of numbers
between 10000 and 100000, by 4 integers plus a decimal

fraction, and so on. Tiius, the log. 800, for example, is

2-90^0900 ; that of 2290 is 3-3598355, Sec.

248. On the other hand, the logarithms of numbers which
are less than 10, or expressed by a single figure, do not con-

tain an integer, and for this reason we find before the

point : so that we have two parts to consider in a logarithm.

First, that which precedes the point, or the integral part

;

and the other, the decimal fractions that are to be added to

the former. The integral part of a logarithm, which is

usually called the characteristic, is easily determined from
what we have said in the preceding article. Thus, it is

0, for all the numbers which have but one figure ; it is 1,

for those which have tzvo ; it is 2, for those which have
three ; and, in general, it is always one less than the number
of figures. If therefore the logarithm of 1766 be required,

we already know that the first part, or that of the integers,

is necessarily 3.

249. So reciprocally, we know at the first sight of the

integer part of a logarithm, how many figures compose the

number answering to that logarithm ; since the number of
those figures always exceed the integer part of the logarithm
by unity. Suppose, for example, the number answering to

the logarithm 6*4771213 were required, we know imme-
diately that that number must have seven figures, and be
greater than 1000000. And in fact this number is 3000000;
for lo's. 3000000 := log. 3 + I g. 1000000. Now I04. 3 =
0-4771213, and log. 160OOOO ^ 6, and the sum of those two
logarithms is 6'477l213.

250. The princijial consideration therefore with respect

to each logarithm is, the decimal fraction which follows the

point, and even that, when once known, serves for several

numbers. In order to prove this, let us consider the loga-

rithm of the number '^G^ ; its first part is undoubtedly 2;
witli respect to the other, or the decimal fraction, let us at

present represent it by the letter cc ; we shall have log. SQ5
= 2 + .r; then multiplying continually by 10, we shall
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have log. 3650 = 3+.r ; log. 36500 =z 4 + ^ ; log. 365000
—

- 5 4- j:", and so on.

But we can also go back, and continually divide by 10;

which will give us log. 36 5 — 1 +^; log- 3*65 = + a;;

log. 0-365 = -\-\-x; log. 00365 = - 2 + a; ; log. 0-00365

=r — 3 + /r, and so on.

S51. All those numbers then which arise from the figures

365, whether preceded, or followed, by ciphers, have always

the same decimal fraction for the second part of the loga-

rithm : and the whole difference lies in the integer before

the point, which, as we have seen, may become negative

;

namely, when the number proposed is less than 1. Now, as

ordinary calculators find a difficulty in managing negative

numbers, it is usual, in those cases, to increase the integers

of the logarithm by 10, that is, to write 10 instead of

before the point ; so that instead of — 1 we have 9 ; instead

of — 2 we have 8 ; instead of —3 we have 7, &c. ; but then

we must remember, that the characteristic has been taken

ten units too great, and by no means suppose that the num-
ber consists of 10, 9, or 8 figures. It is likewise easy to

conceive, that, if in the case we speak of, this characteristic be

less than 10, we must write the figures of the number after

a point, to shew that they are decimals : for example, if the

characteristic be 9, we must begin at the first place after a

point ; if it be 8, we must also place a cipher in the first

row, and not begin to write the figures till the second : thus

9-5622929 would be the logarithm of 0-365, and 8-5622929
the log. of 0*0365. But this manner of writing logarithms

is principally employed in Tables of sines,

252. In the common Tables, the decimals of logarithms

are usually carried to seven places of figures, the last of

which consequently repi'esents the t-o^o'oo-o^ part, and we
are sure that they are never erroneous by the whole of this

part, and that therefore the error cannot be of any import-

ance. There are, however, calculations in which we require

still greater exactness ; and then we employ the large Tables

of Vlacq, where the logarithms are calculated to ten decimal

places*.

* The most valuable set of Tables we are acquainted with are

those published by Dr. Hutton, late Professor of Mathematics
at the Royal Military Academy, Woolwich, under the title of,

" Mathematical Tables ; containing common, hyperbolic, and
logistic logarithms. Also sines, tangents, &c. to which is pre-

fixed a large and original history of discoveries and treatises

relating to those subjects."
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258. As the first part, or characteristic of a logarithm, is

subject to no difficulty, it is seldom expressed in the Tables

;

the second part only is written, or the seven figures of the

decimal fraction. There is a set of English Tables in which
we find the logarithms of all numbers from 1 to 100000,
and even those of greater numbers ; for small additional

Tables shew what is to be added to the logarithms, in pro-

portion to the figures, which the proposed numbers have
more than those in the Tables. We easily find, for ex-

ample, the logarithm of 379456, by means of that of 37945
and the small Tables of which we speak*.

254. From what has been said, it will easily be perceived,

how we are to obtain from the Tables the nunsber corre-

sponding to any logarithm which may occur. Thus, in mul-

tiplying the numbers 343 and 2401 ; since we must add

* The English Tables spoken of in the text are those which
were published by Sherwin in the beginning of the last century,

and have been several times reprinted ; they are likewise to be
found in the tables of Gardener, which are commonly made use

of by astronomers, and which have been reprinted at Avignon.
With respect to these Tables it is proper to remark, that as they

do not carry logarithms farther than seven places, independently

of the characteristic, we cannot use them with perfect exact-

ness except on numbers that do not exceed six digits ; but when
we employ the great Tables of Vlacq, which carry the loga-

rithms as far as ten decimal places, we may, by taking the pro-

portional parts, work, without error, upon numbers that have

as many as nine digits. The reason of what we have said, and
the method of employing these Tables in operations upon still

greater numbers, is well explained in Saunderson's " Elements
of Algebra," Book IX. Part II.

It is farther to be observed, that these Tables only give the

logarithms answering to given numbers, so that when we wish

to get the numbers answering to given logarithms, it is seldom

that we find in the Tables the precise logarithms that are given,

and we are for the most part under the necessity of seeking for

these numbers in an indirect way, by the method of interpola-

tion. In order to supply this defect, another set of Tables was

published at London in 1742, under the title of " The Anti-

logarithmic Canon, &c. by James Dodson." He has arranged

the decimals of logarithms from 0,0001 to 1,0000, and opposite

to them, in order, the corresponding numbers carried as far as

eleven places. He has likewise given the proportional parts

necessary for determining the numbers, which answer to the

intermediate logarithms that arc not to be found in the

Tabic. F. T.
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together the logarithms of those numbers, the calculation

will be as follows

:

log. 343 = 2-5352941 \ .. .

%.2401 = 3-3803922 5^^"^^

5-9156863 their sum
log. 823540 = 5-9156847 nearest tabular log.

16 difference,

which in the Table of Differences answers to 3 ; this there-

fore being used instead of the cipher, gives 823543 for the

product sought : for the sum is the logarithm of the product

required ; and its characteristic 5 shews that the product is

composed of 6 figures ; which are found as above.

^Z^^. But it is in the extraction of roots that logarithms

are of the greatest service ; we shall therefore give an ex-

ample of the manner in which they are used in calculations

of this kind. Suppose, for example, it were required to

extract the square root of 10. Here we have only to divide

the logarithm of 10, which is 1 0000000 by 2; and the

quotient 0-5000000 is the logarithm of the root required.

Now, the number in the Tables which answers to that

logarithm is 3-16228, the square of which is very nearly

equal to 10, being only one hundred thousandth part too

great*.

* In the same manner, we may extract any other root, by
dividing the log. of the number by the denominator of the index
of the root to be extracted; that is, to extract the cube root,

divide the log. by 3, the fourth root by 4, and so on for any
other extraction. For example, if the 5th root of 2 were re-

quired, the log. of 2 is 0-3010300: therefore

5)0-3010300

0-0602060 is the log. of the root, which
by the Tables is found to correspond to 1-1497 ; and hence we
have y2 = 1-1497. When the index, or characteristic of the

log. is negative, and not divisible by the denominator of the

index of the root to be extracted ; then as many vmits must be
borrowed as will make it exactly divisible, carrying those units

to the next figure, as in common division.
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SECTION II.

Of the different Methods of calculating Compound
Quantities.

CHAP. I.

Of the Addition o/"Compound Quantities.

256. When two or more expressions, consisting of several

terms, are to be added together, the operation is frequently-

represented merely by signs, placing each expression be-

tween two parentheses, and connecting it with the rest by
means of the sign -f . Thus, for example, if it be required

to add the expressions a-{-b -\- c and d-{- e -\-f, we repre-

sent the sum by
(^a A- h

-\- c) -^ (d ^ e -^f).
257. It is evident that this is not to perform addition,

but only to represent it. We see, however, at the same
time, that in order to perform it actually, we have only to

leave out the parentheses ; for as the number d -\- e -\-f is

to be added to a \- h -\- c, we know that this is done by
joining to it first -\-d, then +e, and then +y"; which there-

fore gives the sum a -\-b -\-c -\-d -\- €+f; and the same me-
thod is to be observed, if any of the terms are affected by
the sign — ; as they must be connected in the same way,
by means of their proper sign.

258. To make this more evident, we shall consider an
example in pure numbers, proposing to add the expression

15 — 6 to 12 —8. Here, if we begin by adding 15, we
shall have 12 — 8 + 15 ; but this is adding too much, since

weliad only to add 15 — 6, and it is evident that 6 is the

number which we have added too m.uch ; let us therefore

take this 6 away by writing it with the negative sign, and
we shall have the true sum,

12-8 + 15-6;
which shews that the sums are found by writing all the

terms, each with its proper sign.
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259. If it were required therefore to add the expression

d — e —y to a ~ b -}- c, we should express the sum thus;

a — b -r c + d — e —J',
remarking, however, that it is of no consequence in what

order we write these terms; for their places may be changed

at pleasure, provided their signs be preserved; so that this

sUm might have been written thus;

c — e + a —f-\- d — h.

260. It is evident, therefore, that addition is attended

with no difficulty, whatever be the form of the terms to be

added, I'hus, if it were necessary to add together the ex-

pressions 2rt^ + 6 \/h - 4 log-, c and 5^/a — 7c, we should

write them
2a' + 6 ,/b - 4 log. c + 5i/a - Ic,

either in this or in any other order of the terms; for if the

signs are not changed, the sum will always be the same.

261. But it frequently happens that the sums represented

in this manner may be considerably abridged, as is the case

when two or more terms destroy each other ; for example, if

we find in the same sum the terms + a — a, or Sa — 4>a + a;

or when two or more terms may be reduced to one, Scc.

Thus, in the following examples

:

Sa + 2a:=5a, 76-36= +46
-6c + l0c=z+4c, M-2d^2d
5a-8a=-3r^ -7b +b=-Qb

-Sc- 4c -= - 7c, -M- 5d -^ - 8d
2a-5a^a=-2,t, -36-56+26= -66.

Whenever two or more terms, therefore, are entirely the

same with regard to letters, their sum may be abridged;

but those cases must not be confounded with such as these,

2a^+3a, or 26^ — 6% which admit of no abridgment.

262. Let us consider now some other examples of re-

duction, as the following, which will lead us immediately to

an important truth. Suppose it were required to add to-

gether the expressions a + b and a — b ; our rule gives

a + b + a — 6 ; now a + a = 2a, and 6-6 = 0; the sum
therefore is 2a : consequently, if we add together the sum of

two numbers {a + b) and their difference (a— b), we obtain

the double of the greater of those two numbers.

This will be better understood perhaps from the following

examples

:

3a-26-c a^-2a"b+ 2ab-
5b— 6c + a — a'b+2ab"— b^

4a + 36 - 7c a^-Sa% + 4<ab'- -¥
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4a2-36+ 2c a^ + 2ab + b^

Sa"- + 2b- 12c - a*- 2a"-b + Sb^

la'^- 6 + 10c ^2a'b+ 2ab+^b^

CHAP. II.

Of the Subtraction o/'Compound Quantities.

263. If we wish merely to represent subtraction, we en-

close each expression within two parentheses, joining, by the

sign — , the expression which is to be subtracted, to that

from which we have to subtract it.

When we subtract, for example, the expression d — e

+f from the expression a — b-^c, we write the remainder
thus

:

(a-b + c) - {d- e+f);
and this method of representing it sufficiently shews which
of the two expressions is to be subtracted from the other.

264. But if we wish to perform the actual subtraction, we
must observe, first, that when we subtract a positive quantity

+ b from another quantity a, we obtain a—b: and secondly,

when we subtract a negative quantity —b from a, we obtain

rt + 6 ; because to free a person from a debt is the same as

to ffive him something.

2b5. Suppose now it were required to subtract the ex-

pression b — d from a — c. We first take away 6, which
gives a — c — b: but this is taking away too much by the

quantity d, since we had to subtract onl}' b — d ; we must
therefore restore the value of d, and then shall have

a — c — b -\- d;
whence it is evident that the terms of the expression to be

subtracted must change their signs, and then be joined, with

those contrary signs, to the terms of the other expression.

266. Subtraction is therefore easily performed by this

rule, since we have only to write the expression from which

we are to subtract,joining the other to it without any change

beside that of the signs. Thus, in the first example, where

it was required to subtract the expression d — e +f from

a — & 4- c, we obtain a — b+c — d + e —J".
An example in numbers will render this still more clear

;
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for if we subtract 6 — 2 + 4 from 9 — 3 + 2, we evidently

obtain

9_3 + 2- 6 + 2-4=^0;
for 9-3 + 2 = 8; also, 6-2 + 4 = 8; and 8-8=0.

267. Subtraction being therefore subject to no difficulty,

we have only to remark, that if there are found in the re-

mainder two or more terms, which are entirely similar with

regard to the letters, that remainder may be reduced to

an abridged form, by the same rules that we have given in

addition.

268. Suppose we have to subtract a — h from a + 6;

that is, to take the difference of two num])ers from their

sum : we shall then have {a + Z>) — (a — Z>) ; but a — a
— 0, and b -\- b =9.b \ the remainder sought is therefore

2h ; that is to say, the double of the less of the two
quantities.

269. The following examples will supply the place of

further illustrations

:

a2+a6 + ^>2

—a^-\-ab-\-b^

2fl*.

3fl—4i + 5c
2lj+4c—6a

9a— 6b+ c.

a^+3aH+ 3ab^ + b^

6aH+ 2b\

^a+2^b
\/a-3^/h

h^b.

CHAP. III.

Of the Multiplication (9/* Compound Quantities.

270. When it is only required to represent multiplication,

we put each of the expressions, that are to be multiplied

together, within two parentheses, and join them to each

other, sometimes without any sign, and sometimes placing

the sign x between them. Thus, for example, to represent

the product of the two expressions a —b \- c and d— e -\-f,
we write

(a-/>+c) X {(l-e-^f)
or barely, {a—hArc) (d — e+f)
which method of expressing products is much used, because
it immediately exhibits the factors of which they are com-
posed.

271. But in order to shew how multiplication is actually

performed, we may remark, in the first place, that to mul-
tiply a quantity, such as a — ^ + c, by 2, for example.
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each term of it is separately multiplied by that number; so

that the product is

And the like takes place with regard to all other numbers

;

for iff/ were the number by which it was required- to ravd-

tiply the same expression, we should obtain

ad — bd + cd.

272. In the last article, we have supposed d to be a posi-

tive number ; but if the multiplier were a negative number,

as — e, the rule formerly given must be applied ; namely,

that unlike signs multiplied together produce — , and like

signs -|-. Thus we should have
— ae -^ be — ce.

273. Now, in order to shew how a quantity, a, is to be

multipHed by a compound quantity, d —e\ let us first con-

sider an example in numbers, supposing that a is to be mul-

tiplied by 7—3. Here it is evident, that we are required

to take the quadruple of a : for if we first take a seven

times, it will then be necessary to subtract 3a from that

product.

In general, therefore, if it be required to multiply a by

d — e, we multiply the quantity a first by d, and then by ^,

and subtract this last product from the first : whence results

dA — eA.

If we now suppose a= a — b, and that this is the quantity

to be multiplied hy d— e; we shall have

dA = ad — bd
eA = ae — be

whence dA — eA = ad — bd — ae + be is tlie product re-

quired.

274. Since therefore we know accurately the product

{a — b) X {d — e), we shall now exhibit the same example

of multiplication under the following form :

a — b

d — e

ad ~ bd — ae + be.

Which shews, that we must multiply each term of the upper

expression by each term of the lower, and that, with regard

to the signs, we must strictly observe the rule before given

;

a rule which this circumstance would completely confirm, if

it admitted of the least doubt.

275. It will be easy, therefore, according to this method,

to calculate the following example, which is, to multiply

a + bhy a — b;
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a^ + (lb

— ab — b~

Product a^—b^.

276. Now, we may substitute for a and b any numbers
whatever ; so that the above example will furnish the fol-

lowing theorem ; viz. The sum of two numbers, multiplied

by their difference, is equal to the difference of the squares

of those numbers : which theorem may be expressed thus

:

(a+b) X (a-b) = a"-b\
And from this another theorem may be derived ; namely,

The difference of two square numbers is always a product,

and divisible both by the sum and by the difference of the

roots of those two squares ; consequently, the difference of

two squares can never be a prime number*.

271. Let us now calculate some other examples

:

2a-3 4a^-6a + 9
a + 9, 2a +3

2a'' -3a
4a—

6
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a2 + 2a6+2i-

a^ + 2a^b + ^a^¥

a* + 6*

2d'-^ab-W

Ga*~^a?b-\2a^b'-

2a262_3^i3_4^4

Gtt'^ - IStt^^' - 4a-6- + 5aZ»3 -46*

a- + Z»^+ e"— 06— ac— 6c

a +b +c

a^ + ab^ + ac- — a"b— a-c—abc
a'^b + b^ + be" — ab"— abc — b-c

arc + b"c -\-(f —abc—ac^— bc-

a^-Qahc-Vb^^c"

278. When we have more than two quantities to mul-

tiply together, it will easily be understood that, after having

multiplied two of them together, we must then multiply

that product by one of those which remain, and so on :

but it is indifferent what order is observed in those mul-

tiplications.

Let it be proposed, for example, to find the value, or

product, of the four following factors, vis,

I. II. III. IV.

(« + b) («' + a& + 6
')

{a — b) (a- - ab + 6 ).

1st. The product of the fac-

tors I. and II.

a' + ab + b-

a + b

a^ + a~b -T ab"

—fr

a^ + 2a^6 + 2^62+6^

2d. The product of the fac-

tors III. and IV.

a"-ab^-b'^

a — h

a^— a"h-^ab'^

—a"b + ab-—¥

a^-2a''h + 2ab'--P
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It remains now to multiply the first product I. II. by this

second product III. IV.
a^-\-2a"-b + 2a¥ -\-¥

a^-2a"-b + 2ab-^-b^

a''+2a'b-^2a*b"- + aW
—2a^b—4<a*b'—4fa^b^—2a-b*

2a%'+4iu^b^ + 4!a"b*-\-2ab'

— a^b^-2a"-b^-2ab^-b'^

a^-b^

which is the product required.

279. Now let us resume the same example, but change

the order of it, first multiplying the factors I. and III. and
then It. and IV. together.

ai b

a—b
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it remains to ninitiplv the product 1. IV. by that of II.

and III.
^ '

a" + a'i)'

the same result as before.

281. It will be proper to illustrate this example by a

numerical application. For this purpose, let us make a = 3
and 6 — 2, we shall then have a + b = 5, and a — bzzl;
farther, a- — 9, ab = 6, and 6- = 4 : therefore a"^-ab +
b' = \% and ct- — ab + b- = 7 : so that the product re-

quired is that of 5 X 19 X 1 X 7, which is 665.
Now, a^ — 729, and W = 64 ; consequently, the product

required is a^ — //' = Q>^^^ as we have already seeti.

CHAP. IV.

Of the Division o/* Compound Qtiantities.

282. When we wish simply to represent division, we
make use of the usual mark of fractions ; which is, to write

the denominator under the numerator, separating them by a

line ; or to enclose each quantity between parentheses, placing

two points between the divisor and dividend, and a line be-

tween them. Thus, if it were required, for example, to

divide a -\- b by c -|- c?, we should represent the quotient

thus; J, according to the former method ; and thus,

{a -\-b) ^{c + d)
according to the latter, where each expression is read a + h

divided by c -\- d.

283. When it is required to divide a compound quantity

by a simple one, we divide each term separately, as in the

following examples

:

{Qa -U + 4) ^ 2 = 3.'/ - 4^» -r 2c

{a- - 2ah) ^ a = a - 2b
,

(« •
- 2f/ b + ^nb-) -^a -^ a- - ^ah V ?>b-
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(4a- — 6a c + 8abc) -i- 2a = 2a — Sac + 'ibc

{9a^bc — IQabc h 15abc) ~ 3uhc = 3a - 46 + 5c.

284. If it should happen tliat a term of the dividend is

not divisible by the divisor, the quotient is represented by a

fraction, as in the division of a 4 6 by a, which gives 1 +

— . Likewise, (a- — ab + o) -^ a = 1 —
1 -.

In the same manner, if we divide 2a + 6 by 2, we ob-

tain a + — : and here it may be remarked, that we may

write ^b, instead of— , because \ times b is equal to— ; and,

b . 26
in tlie same manner, -^ is the same as \b, and -^ the same

as ^b, &c.

285. But when the divisor is itself a compound quantity,

division becomes more difficult. This frequently occurs

where we least expect it :, and when it cannot be performed,

we must content ourselves with representing the quotient by
a fraction, in the manner already described. At present,

we will begin by considering some cases in which actual

division takes place.

286. Suppose, for example, it were required to divide

ac — be by a — b, the quotient must here be such as, when
multiplied by the divisor a — b, will produce the dividend

ac — be. Now, it is evident, that this quotient must in-

clude c, since without it we could not obtain ac; in order

therefore to try whether c is the whole quotient, we have

only to multiply it by the divisor, and see if that mul-

tiplication produces the whole dividend, or only a part of

it. In the present case, if we multiply a — b hy c, we

have ac — be, which is exactly the dividend ; so that c is

the whole quotient. It is no less evident, that

(a* + ab) ~ {a + b) = a ;•

(3a- - 2ah) -^ (3a -2b) = a;

iQa^- _ ()ab) -^ {2a - 36) = iia, &c.

287. We cannot fail, in this way, to find a part of the

quotient; if, therefore, what we have found, when mul-

tiplied by the divisor, does not exhaust the dividend, we

have only to divide the remainder again by the divisor, in

order to obtain a second part of the quotient ; and to con-

tinue the same method, until we have found the whole.

Let us, as an example, divide a- + Sab + 26" by a + 6=
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It is evident, in the first place, that the quotient will include

the term a, since otherwise we should not obtain cC^. Now,
from the multiplication of the divisor « + 6 by «, arises

a" + ub ; which quantity being subtracted from the dividend,

leaves the remainder, 2ab + 26- ; and this remainder must
also be divided by a -\-b^ v/here it is evident that the quo-

tient of this division must contain the term 2b. Now, 2b,

multiplied hy a -\- b, produces 2ab 4- 2b-; consequently,

a + 26 is the quotient required ; which multiplied by the

divisor « + 6, ought to produce the dividend «- + 3a6 +
2b". See the operation.

a V b)a'' + ^ab -f 2b"{a + 2b

a"+ ab

2ab + 2b"-

2ab-\-^b-

0.

S88. This operation will be considerably facilitated by
choosing one of the terms of the divisor, which contains the

highest power, to be written first ; and then, in arranging the

terms of the dividend, begin with the highest powers of that

first term of the divisor, continuing it according to the

powers of that letter. This term in the preceding example
was a. The following examples vvill render the process

more perspicuous.

a -b)a? - 3« 6 + Qa¥-¥{if-2ab + ¥
a^— a'b
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3a- 2b) iSa" - Sb%6a + 46

lSa'—l2ab

\2ab-8b'
Uab-Sb'

0.

a+b)a'' + b^(a''-ab + b'

a^ + cC'b

-a-b+ b'

— a'b—a¥

ab''-\-b^

ab-+b^

0.

2a- b)Sa^- b^^a^ + 2ab + b''-

8a^—4!a'b

4!a'^b—b^

^a%-2a¥

2a¥-¥
2ab^-P

0.

«2 _„ 2ab+ b'^a'^-^a^b + Ga"-6"- - 4a6^

+

b\a^- 2ab + 6«

-2a36 + 5fl-6^—4a63

-~2a^b-\-^>arb"-2a¥ ,

a-¥-2a¥-\-b'^

a-b'-^ab^+b"

0.
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«= -2ab + 4ib')a* + 4^^^^ + I6b*(a" + 2a6+ 4i«

a*-2a^b +4!a^b'^

2a36_4tt^5^-j-8a6»

4a26«

4a'^6^-- 80534. 166"*

4a%^-8a6Hl66^

0.

fl=- 2ab + 26-)a* + W(a'+ 2a5 + 26^

a*-2a^b + 2a%"'

2a'b-2a''-b^+W
2a^b — 4!a"b"+ 4!ab''

2a'''b'-4>ab^ +W
2a'^b''-4:aP +W

0.

l-^x + x"-)! -5x + 10^'^- - 10^3 + 5a:^ - a;5(l - 3a: + Sx" - x^

1-2X+X'-

-3^+ 9x2-10^'
-3a;+ 6;r"-- Hx^

Sx'-lx' + Sx^

Sx'--6x^-i-Qx*

-.v^~^2x*-x^
—x^+2x*—.r^

0.

CHAP. V.

Of the Resolution o/* Fractions into Infinite Series*.

289. When the dividend is not divisible by the divisor,

* The Theory of Series is one of the most important in all the
mathematics. The series considered in this chapter were dis-
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the quotient is expressed, as we have already observed, by a

fraction : thus, if we have to divide 1 by 1 — a, we obtain

the fraction . This, however, does not prevent us from

attempting the division according to the rules that have been
given, nor from continuing it as far as we please ; and we
shall not fail thus to find the true quotient, though under
different forms.

290. To prove this, let us actually divide the dividend 1

by the divisor I — a, thus

:

l-a)l
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then, 1 -a)a' * (a? + :;

'^
1 —a

a"—a"

and again, 1 —a)a'^ * (a* +
:j

—
a

a* -a'

a^, &c.

291. This shews that the fraction may be exhibited
I—a •'

under all the following forms

:

I. 1 + . II. ] + a +
I -a l-«

III. l+a+a'+ , IV. l+a + a' + a^+ ;

1 —a 1 — a

V. 1 -I- a + a- + ci^ + ft* H , &c.
1 —a

Now, by considering the first of these expressions, which
a

^ , • , . ,
i —

«

IS 1 -j , and remembering that 1 is the same as
,\—a °

1 — o'

we have

a _l—a a 1—a+a 1

1

—

a 1

—

a J

—

a~ I — a I—

a

If we follow the same process, with regard to the second

expression, 1 + a H , that is to say, if we reduce the

integral part 1 + a to the same denominator, 1 — «, we

shall have , to which if we add + , -> we shall have
I —a 1—a

l-a--\-n"
, . 1—

:;
, that IS to say, .

1 — a •'I —a

In the third expression, 1 + a + a- + t^-, the integers

[ _^s
reduced to the denominator I — a make ; and if wc

1 — a

add to that the fraction , we have , as before ; -
I— a'

1— a

therefore all these expressions arc equal in value to yZT '

ihc proposed fraction.
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292. This being the case, we may continue the series as

far as we please, without being under the necessity of per-

forming any more calculations ; and thus we shall have
I a^=1 + « + a"- + a? + «* + a» + fl« + ft' +

;

1

—

a I —a

or we might continue this farther, and still go on without

end ; for which reason it may be said that the proposed

fraction has been resolved into an infinite series, which is,

l-}-a + fl'2+a'-f-fi*+ a^+a^^aT-\-a^+ a^-^a^°+ a^^+a^^, &c.

to infinity : and there are sufficient grounds to maintain,

that the value of this infinite series is the same as that of the

fraction .

1 —a
293. What we have said may at first appear strange;

but the consideration of some particular cases will make it

easily understood. Let us suppose, in the first place, c = 1

;

our series will become 1 + 1+1+1 + 1 + 1+1, &c.

;

and the fraction , to which it must be equal, becomes
I —a n '

j, or ^. Now, we have before remarked, that ^ is a

number infinitely great ; which is therefore here confinned

in a satisfactory manner. See Art. 83 and 84.

Again, if we suppose a = 2, our series becomes 1 -}- 2 -j-

4 + 8 + 16 + 32+64, &c. to infinity, and its value must

be the same as -—-, that is to say—- = — 1 ; which at first

sight will appear absurd. But it must be remarked, that if

we wish to stop at any term of the above series, we cannot do
so without annexing to it the fraction wliich remains. Suppose,
for example, we were to stop at 64, after having written

.1 + 2 + 4 + 8 -f 16 + 32 + 64, we must add the fraction
lOft 128

^j—5, or—r, or —128; we shall therefore have 127— 128,

that is in fact — 1.

Were we to continue the series without intermission, the

fraction would be no longer considered ; but, in that case,

the series would still so on.

294. These are the considerations which are necessary,

when we assume for a numbers greater than unity ; but if

we suppose a less than 1, the whole becomes more intel-

ligible : for example, let a = 4 ; iand we shall then have

-j-^— = YZT'
—~ = ^-> ^vhich will be equal to the following

series 1 + ±' + iT + J. + -,J-^. + -/_ + -^1^ + _;__, &c. to in-
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finity. Now, If we take only two terms of this sei'ics, we

shall have 1 + ij and it wants -^ of being equal to ——- =2.

If we take three terms, it wants I; for the sum is If. If

we take four terms, we have 1|-, and the deficiency is only

f . Therefore, the more terms we take^ the less the difference

becomes; and, consequently, if we continue the series to

infinit}', there will be no difference at all between its sum

and the value of the fraction , or 2.
1 —a

295. Let a — I; and our fraction ; will then be =
1 —a

= A =: li-, which, reduced to an infinite series, be-

comes l+J-+i.-f^-|-^-|- ^i-j, &c. which is conse-

quently equal to .

Here, if we take two terms, we have H, and there wants

~. If vve take three terms, we have 1^, and there will still

be wanting ~. If we take four terms, we shall have ly.,

and the difference will be ~ ; since, therefore, the error

always becomes three times less, it must evidently vanish

at last.

296. Suppose a = ^ ; we shall have y^- = 7~~^ ~ ^»

= 1 + |. + 4
.J,

_8_ ^. ^6 ^ _3^2_^ ^c. to infinity ; and here,

by taking first li, the error is !§ ; taking tiirce terms,

which make 2^, the error is |- ; taking four terms, we have
2i-i-, and the error is iy.

297. If a = I, the fraction is ——; =— =: H ; and the

series becomes 1 + ^ + rV + st + tt6> ^^' "^^^^ ^'"^^ ^^"

terms are equal to 1^, which gives ~ for the error; and

taking one term more, we have 1-p'^, that is to say, only an

error of ^'g-.

298. In the same manner we may i-esolve the fraction

, into an infinite series by actually dividing the nu-
1+a
merator 1 by the denominator 1 + a, as follows *.

* After a certain number of terms have been oblained, the

law by which the following terms are formed will be evident

;

so that the series may be carried to any length without the

trouble of continual division, as is shewn in this example.
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H-«) 1 (l-« + fl!-— a* + «'^

1 + a

—a
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301. Suppose again a = ^, our fraction will then be =
-— J = I, which must be equal to this series 1 — 3 + ^ —

T"T
TT + -sV

~ 2TT + -r-r^-)
^c. continued to infinity. Now,

by considering only two terms, we have ^, which is too small

by -^^ ; three terms make |-, which is too much by -j'^ ; four

terms give ^, which is too small by -y^^, and so on.

302. The fraction -r—,— may also be resolved into an in-
1-f-a

•'

finite series another way ; namely, by dividing 1 by a + 1,

as follows

:

n + 1) I * (y -
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SOS. In the same manner, by resolving the general fraction

into an infinite series, we shall have.
«+6

* i-
c be b"e

a ^h)e *( ^ + —
a a- a^

he

a
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manner. Thus, if the fraction r ;; were proposed, the

infinite series, to which it is equal, will be found as follows:

l-«+a'-) 1 * *(H-«-a3_a4+a6, &c.

1 — a+a-

a — a"

a— a-+a^
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markable, that an infinite series, tJiougli it never ceases, may-

have a determinate value. It should likewise be observed,

that, from this branch of mathematics, inventions of the

utmost importance have been derived ; on which account the

subject deserves to be studied with the greatest attention.

QUESTIONS FOR PRACTICE.

ax . n •

1. Resolve mto an mnnite series.a—x
a?" x^ X*

jins. X ] 1—r H—^, &c.
a a* a^

2. Resolve —;— into an Infinite series.

h ,, X x" xP" „ ^

Ans. — X (1 + — r +, &c.)
a ^ a a- a^ '

, a" . . . .
:'^

3. Resolve -, mto an m finite series,
x + b

Am. — x(l +— ^+, Svc.)
X X X"^ X""

4. Resolve = into an infinite series.
1 —X

Ans. 1 + 2.r + 2x°- + 2x^ + 2x*, &e.

5. Resolve z into an infinite series.
{a+x)'

2x 3x- 4>x^ „
Ans. 1 -\

;;
—r-, &C.

a a- a^

CHAP. VI.

Of the Squares of Compound Quantities.

306. When it is required to find the square of a com-
pound quantity, we have only to multiply it by itself, and

the product will be the square required.

For example, the square of rf + 6 is found in the following

manner

:
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a -\-b

a +b

a^+ab
ab + Z»

'

307. When the root consists of two terms added together,

as « + i, the square comprehends, 1st, the squares of each

term, namely, a- and i- ; and 2dly, twice the product of the

two terms, namely, 2ab : so that the sum a- + 2a6 + b" is

the square of a + b. Let, for example, a — 10, and Z>= 3;
that is to say, let it be required to find the square of 10 + 3,

or 13, and we shall have 100 + 60 + 9, or 169.

308. We may easily find, by means of this formula, the

squares of numbers, however great, if we divide them into

two parts. Thus, for example, the square of 57, if we con-

sider that this number is the same as 50 + 7, will be found
= 2500 + 700 + 49 = 3249.

0O9. Hence it is evident, that the square of a + 1 will be
a- + 2« + 1 : for since the square of a is a", we find the

square of a + 1 by adding to that square 2a + 1 ; and it

must be observed, that this 2a + 1 is the sum of the two
roots a, and a + 1.

Thus, as the square of 10 is 100, that of 11 will be 100
+ 21 : the square of 57 being 3249, that of 58 is 3249 +
115 = 3364 ; the square of 59 = 3364 + 117 = 3481 ; the

square of 60 = 3481 + 119 -^ 3600, &c.

310. The square of a compound quantity, as a + b, is

represented in this manner (« + b)-. We have therefore

(a + by- = a- + 2ab + b", whence we deduce the following

equations

:

(a + l)-= a-+2a + l ; (a + 2)2= «- + 4a+4;
(a + 3)'- =: a^ + 6« + 9 ; (« + 4)

'= a-+ 8a + 16 ; &c.

311. If the root be a — b, the square of it is a- — 2ab-\-

b\ which contains also the squares of the two terms, but in

such a manner, that we must take from their sum twice the

product of those two terms. Let, for example, a —10, and
A = — 1, then the square of 9 will be found equal to 100—
20-1-1 = 81.

312. Since we have the equation (a — b)- = a- — 2ab +
b^y we shall have (a — 1)- = a" — 2a -\- 1. The square of

« — 1 is found, therefore, by subtracting from a" the sum of

the two roots a and a — I, namclv, 2rt — 1. Thus, for



CHAP. VI. OF ALGEBRA. 99

example, if a = 50, we have a^ = 2500, and 2rt — 1 = 99

;

therefore 49- = 2500 — 99 = 2401.

313. What we have said here may be also confirmed and
illustrated by fractions ; for if we take as the root 1 + |. =
1, the square will be, ^ +^+i| = ||=l.

Farther, the square of i — i- = ^ will be i —
-f + -i

I

314. When the root consists of a greater number of terms,

the method of determining the square is the same. Let us

find, for example, the square of « + b -\- c:

a+b + c

a+b-{- c

a--{-ab-^ac

ab-\-b-+bc

ac-{-bc + c^

a"-i-2ab+2ac+ b^+2bc-i-c"-

We see that it contains, first, the square of each term of

the root, and beside that, the double products of those terms

multiplied two by two.

315. To illustrate this by an example, let us divide the

number ^56 into, three parts, 200 + 50 + 6; its square

will then be composed of the following parts

:

2002 = 40000
50^ = 2500
6- = 36

2 (50 X 200) = 20000
2 ( 6 X 200) = 2400
2 ( 6 X 50) = 600

65536 = 256 x 256, or 256-\

316. When some terms of the root are negative, tlie

square is still found by the same rule ; only we must be

careful what signs we prefix to the double products. Tlius,

{a — b — cy = a^ + b' -\- c- — 2ab — 2ac + 2bc ; and if

we represent the number 256 by 300 — 40 — 4, we shall

have,

h2
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Positive Parts. Negative Parts.

300°- = 90000 2(40x300) = 24000
40" = 1600 2( 4 X 300) = 2400

2(40x4)= 320
4'^ =16 - 26400

91936
26400

65536, the square of 256 as before.

CHAP. VII.

Of the Extraction o/" Roots applied to Compound Quantities.

317. In order to give a certain rule for this operation, we
must consider attentively the square of the root a+b, which

is «- 4- 2ab + b-, in order that we may reciprocally find the

root of a given square.

318. We must consider therefore, first, that as the square,

a^ + 2ab + b~y is composed of several terms, it is certain

that the root also will comprise more than one term ; and

that if we write the terms of the square in such a manner,

that the powers of one of the letters, as «, may go on con-

tinually diminishing, the first term will be the square of the

first term of the root; and since, in the present case, the

first term of the square is «^, the first term of the root must

be a.

319. Having therefore found the first term of the root,

that is to say, a, we must consider the rest of the square,

namely, 2ab + b", to see if we can derive from it the second

part of the root, which is b. Now, this remainder, 2ah +
b", may be represented by the product, (2a + b)b; where-

fore the remainder having two factors, (2« + b), and b, it is

evident that we shall find the latter, 6, which is the second

part of tile root, by dividing the remainder, 2ab + b^, by
2a -}- b.

320. So that the quotient, arising from the division of the

above remainder by ^ •? + b, is the second term of the root

required ; and in this division we observe, that 2a is the

double of the first term «, which is already determined : so

that although the second term is yet unknown, and it is

necessary, for the present, to leave its place empty, we may
nevertheless attempt the division, since in it we attend only
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to the first term 2a ; but as soon as the quotient is found,

which in the present case is 6, we must put it in the vacant
place, and thus render the division complete.

S21. The calculation, therefore, by which we find the

root of the square a- + 2ab + 6-, may be represented thus

:

a"-\-2ab+b%a-i-b

a"

2a-\-b)2ab + b'

2ab + b"

0.

322. We may, also, in the same manner, find the square

root of other compound quantities, provided they are squares,

as will appear from the following examples

:

a"~-\-6ab+ 9b" {a+Sb

2a-{-db) 6ab + 9b"-

6ab + 9b"-

0.

4«2— 4rt^>>+6-' {2a -b
4a-

4a

—

b) —^ab + b-

— ^ab + b'

0.

9/?-

6;;+4«7)24/;g-l-16V-
24pg'4-l6g-

0.

25^2_ (50^+36 {Sx—Q
25x-

10^-6) -60a; + 36
-60^+36

0.
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323. When there is a remainder after the division, it is a
proof that the root is composed of more than two terms.

We must in that case consider the two terms already found
as forming the first part, and endeavoxn- to derive the other

from the remainder, in the same manner as we found the

second term of the root from the first. The following ex-

amples will render this operation more clear.

a'^+2ab—2ac'-2bc +b"-i- c"" (a+ b— c

a2

2a+b) 2ab-^ac-2bc+b'^ + c'

2ab + ¥

2a+2b~c) -2ac-2bc + c^

-2ac-2bc + c^

0.

a"^ + 2d' + ^cf -\-2a+\ (^'^ + a-\l
a"

2a"' -\- a-

2ar-\-2a+\) 2a'^ + 2«+ l

2a"-\-2a-\-\

0.

a" - ^d'b+ 8a63+ 4^,4 (^^2_ 2ab -2b'

2a'-2ab) -4!a''b + 8a¥-\-W
— 4>a^b+i'a"b-

2a2_ 4;ab -2b-) - 4>a'b''+ 8a&^ + 46*

—4!a-b"+Sab"'+4!b*

0.
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«6_ 6a^b+ 1 5a^b^- 20a^b^ + Iba^ '— (iwi^+Zi"

— 6a'd+ 9a*b''

2a3—6a^+ 3ab^) 6a*b''-20a'b^-i-\5a'b'

6a'b^-\8a^'+ 9a- b*

2a3~ 6a^b+ 6ab^- b^) - 2aW+6a^b' - 6ab'+ b"

-2a3b^+6a%*-6ab'+ b''

0.

324. We easily deduce from the rule which we have ex-

plained, the method which is taught in books of arithmetic

for the extraction of the square root, as will appear from the

following examples in numbers

:

529 (23
4
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not a square ; and, consequently, that its root cannot be
assigned. In such cases, the radical sign, which we before

employed, is made use of. This is written before the quan-
tity, and the quantity itself is placed between parentheses,

or under a line : thus, the square root of a- + b^ is repre-

sented by \/{a"+ b"), or by V(i- + />-; and V{1 — ^")» or

Vl — X', expresses the square root of 1 — x\ Instead of

this radical sign, we may use the fractional exponent 4,

and represent the square root of a^ + 6", for instance, by

(a- + h')^, or by a- + 6-1 ^

CHAF. VIII.

Of the Calculation of Irrational Quantities.

326. When it is required to add together two or more
irrational quantities, this is to be done, according to the

method before laid down, by writing all the terras in suc-

cession, each with its proper sign : and, with regard to ab-

breviations, we must remark that, instead of ^/a + Vo, for

example, we may write 2 ^^a ; and that \/a — A/a = 0,

because these two terms destroy one another. Thus, the

quantities 3 + V2 and 1 + a/ 2, added together, make
4 + 2 v/2, or 4 + -v/8; the sum of 5 + ^/3 and 4 - v3,
is 9 ; and that of 2 v/3 -}- 3 v^2 and ^73 — V2, is 3 VS +
2 a/2.

327. Subtraction also is very easy, since we have only to

add the proposed numbers, after having changed their signs

;

as will 1)0 readily seen in the following example, by sub-

tracting the lower line from the upper.

4- a/2 + 2 a/3-3 a/5 +4 a/6

1 +2 a/2- 2 a/3 -5 a/5 +6 a/6

3 -3 v/2 -\- 4 a/3+ 2 ,/5 - 2 a/6.

328. In multiplication, we must recollect that a/« mul-
tiplied by \Oi produces a ; and that if the numbers which
follow the sign a/ are different, as a and b, we have ^,/ab for

tlie product of .x/(c multi[)lied by x^b. After this, it will be
easy to calculate the Ibllowing examples:
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1+V2 4+2-V/2
l^-^/2 2- V2

1 + ^2 8 + 4v/2

v2+2 -4^/2-4

l+2v/2 +2=3 +V2. 8-4=4.

329. What we have said applies also to imaginary quan-

tities; we shall only observe farther, that \/— a multiplied

by ^/—a produces —a. If it were required to find the

cube of — 1+ \/— 3, we should take the square of that

number, and then multiply that square by the same number ;

as in the following operation :

-1+A/-3
-1+V/-3

l-v^-3

l-2^/-3-3=-2-2-v/-3
-1+ V-3

S+2^/-3

2^-6=8.

330. In the division of surds, we have only to express the

proposed quantities in the form of a fraction ; which may be
then changed into another expression having a rational de-

nominator ; for if the denominator he a+ V^, for example,
and we multiply both this and the numerator by a— s/h^ the

new denominator will be a- — 6, in which there is no radical

sign. Let it be proposed, for example, to divide 3 -|- 2 a/2

by 1+ v'2 : we shall first have =—
; then multiplying

the two terms of the fraction by 1 — a/2, we shall have for

the numerator

:

3+ 2^/2
1- a/2

3+2V2
-3v/2^4

3- a/2-4 = - v/2-1
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and for the denominator :

1+^/2
l-v/2

1+ a/2
- V2 -2

l-2=-l.
-_v^2—

1

Our new fraction therefore is =— ; and if we again

rauhiply the two terms by —1, we shall have for the nu-
merator ^/2-f-l, and for the denominator +1. Now, it is

easy to shew that ^/2 + 1 is equal to the proposed fraction

3+2 a/2

YT 75 ; for V2 + 1 being multiplied by the divisor

1-f- V2, thus,

l+\/2
1+V2

1 + -V/2

V2+2

we have 1+2a/2+2= 3+ 2^2.
Another example. Let 8- 5 V2 be divided by 3 —2 V2.

This, in the first instance, is x—5-70 ; and multiplying tlie

two terms of this fraction by 3 + 2 a/2, wc have for the

numerator,

8-5V2
3 +2V2

24- 15a/2
16a/2-20

24+-v/2-20 = 4.+ '/2;

and for the denominator,

3-2v/2
3+2^/2

9-6^2
6^/2-8

9-8= 1.
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Consequently, the quotient will be 4 + /v/2. The truth of

this may be proved, as before, by multiplication ; thus,

4+ V2

12+ 3^/2

-8v/2-4

12-5/2-4 = 8-5^2.
331. In the same manner, we may transform irrational

fractions into others, that have rational denominators. If

we have, for example, the fraction -—^—7;, and multiply its

numerator and denominator by 5+2 y'G; we transform it

5-1-2 ^Q
into this, = = 5 + 2 \/6; in like manner, the fraction

2 ,. „ 2 +2v'-3 1+ V -3
assumes this torm, -: = ;-1+ y—

3

, V6+V5 11+2^/30 ^^ ^ ^^
^^^^ ^^~5 = p—= 11+2^30.

332. When the denominator contains several terms, we
may, in the same manner, make the radical signs in it vanish

one by one. Thus, if the fraction ..„ -^ -x be pro-

posed, we first multiply these two terras by a/10 + ^/2

,n J u. • 1- r • ^^10+ a/2+v/3
,+ -v/3, and obtam the fraction ———-„ ; then

5— 2^/0
multiplying its numerator and denominator by 5 +2 -/G, wc
have 5v/10 + lV2+9v3+2\/60.

CHAP. IX.

(y Cubes,, and of the Extraction o/'Cube Roots.

5. To find the cube of « + &, we have only to multiply
its square, a"+ 2ab + 6% again by a + b, thus

;

a- + 2a6 + 6-

a -rb

n^+2a-b+a¥
a"-b + ^ab"+b'^

and the cube will be a^ + 3a'b + Qab"-\-b'



108 ELEMENTS SECT. II.

We see therefore that it contains the cubes of the two
parts of the root, and, beside that, Sa~b + Qab"^ ; which
quantity is equal to (Sab) x {a + b); that is, the triple pro-

duct of the two parts, a and b, multiplied by their sum.
3^4. So that whenever a root is composed of two terms, it

is easy to find its cube by this rule : for example, the num-
ber 5=3+2; its cube is therefore 27+8 + (18x5)=125.
And if 7 + 3 r: 10 be the root ; then the cube will be

343 + 27 + (63 x 10) = 1000.

To find the cube of 36, let us suppose the root 36 = 30
-f 6, and we have for the cube required, 27000 + 216 +
(540 X 36) = 46656.

335. But if, on the other hand, the cube be given, namely,
a^ + 3a"b 4- Sab- -\- b^, and it be required to find its root,

we must premise the following remarks

:

First, when the cube is arranged according to the powers
of one letter, we easily know by the leading term a', the

first term a of the root, since the cube of it is a^ ; if, there-

fore, we subtract that cube from the cube proposed, we ob-

tain the remainder, 3a-Z) + Qab^ + b^, which must furnish

the second term of the root.

336. But as we already know, from Art. 333, that the

second term is -h b, we have principally to discover how it

may be derived from the above remainder. Now, that re-

mainder may be expressed by two factors, thus, (3a'^ + 3a6

+ h"^) X (jb) ; if, therefore, we divide by 3«- + 3«6 + b"-,

we obtain the second part of the root -}- b, which is re-

quired.

337. But as this second term is supposed to be unknown,
the divisor also is unknown ; nevertheless we have the first

term of that divisor, which is sufficient : for it is 3fl-, that is,

thrice the square of the first term already found ; and by
means of this, it is not difficult to find also the other part, b,

and then to complete the divisor before we perform the divi-

sion ; for this purpose, it will be necessary to join to 3a-

thrice the product of the two terms, or ^ab^ and b-, or the

square of tne second term of the root.

338. Let us apply what we have said to two examples of

other given cubes.

a^ + l^a'^.f 48fl + 64 (a + 4
«3

3a^+12a-l-16) 12a + 48a +64
12a-+48« + 6l.

0.
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ft«— Gw^+ lSft"— 20«'+ l5a2— 6« + I(rt2_.2rt+l

— 6«^+ l2«*— 8rt^

3a*— 12a- + I2a^ + 3a^—6a+\) 3a'—\2a'^+\5a^—6a+\

0.

339. The analysis which we have given is the foundation

of the common rule for the extraction of the cube root in

numbers. See the following example of the operation in the

number 2197

:

2197(10 4-3=13
1000

300
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CHAP. X.

Of the higher Powers of Compound Quantities.

340. After squares and cubes, we must consider higher

powers, or powers of a greater number of degrees ; which

are generally represented by exponents in the manner before

explained : we have only to remember, when the root is

compound, to enclose it in a parenthesis: thus, (a + bY
means that a + 6 is raised to the fifth power, and (« — hf
represents the sixth power of a — ^, and so on. We shall

in this chapter explain the nature of these powers.

341. Let a +b he the root, or the first power, and the

higher powers will be found, by multiplication, in the fol-

lowing manner

:

(a-k-bY=a-^b
a + b

a--\-ab

ab + b-

{a-i-b)-=a-+2ab-{-b'
a+b

a^+2a-b+-ab'-

arb+2ab"-~hl>^

(a+by=^d' + Sa^b + 3ab'-i-b^-

a +1)

u* + 3a-'b+Sa-b--i-ab'

a^b+Qct-b'+3aP+ b*

{a + by = a*+ ^a?b + QcC^'^+ ^ab^ + 6*

a +6

«=* 4- 4a*6 + 6«"6«+4a-63 ^ ^b'^

a^b + 4a''6^

+

Qa"-b^ + 4«6'^ + ¥

a^ + 5«'6 + lOa'6^ + iOa~b^ + 5ab^ + b^
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{avhY= a' + Sa^b -^lOa'b"+ Wa"b^ + 5alA +¥
a -\-b

a^ + 5a^b + lOa^b- + lOa^b^+Ba'b'^+a^b

a^b + 5a'b' + \Q)aW + 10a -i^ + 5a¥ +¥

(« J\.by-a^ + Qa^b + 1 5a*fi2 _|. sOa^JJ + 1 5a'-&*

+

Qa¥ + b% &c.

342. The powers of the root a — b are found in the same
manner; and we shall immediately perceive that they do
not differ from the preceding, excepting that the 2d, 4th,

6th, &c. terms are affected by the sign minus,

{a-by= a -b
a —b

—ab+¥

(^a-bY= a"-2ab + b'

a —b

a^—2a'b+ ab"

— a''b+2ab' + b^

{a-bY= a^ + Sa"'b + Sa¥-b'
a —b

- a''b + Sa"b^--^a¥-\-¥

(a - bY^a*—'ka^b+Qa''¥^^ab'' + b^

a ~b

a^ — ^c&b + 6ft^6-— 4a-6-^ + cib^

- a*bi-4<o^b'-6a''¥ + 4ab*—h^

{a—bf=a^~5a'^b + l0a%'-10a"¥^ + 5ab^-b'
a —b

a^~5a'b+ 10aW-10a^b^+ 5a^b^- ab^

- a^b+ 5a^b"'-l0a^b' + l0a"b*-5ab^ + b^

(a- by= a^~ 6a'b + 1 Ba'^t'- ^Oa^b^ + 15a^¥- 6ab' + b% &c.

Here we see that all the odd powers of b have the sign

— , while the even powers retain the sign + . The reason
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of this is evident ; for since — ^ is a term of the root, the

powers of that letter will ascend in the following series, —5,
+ b% —b\ +b*, —h^, +6^, &c. which clearly shews that

the even powers must be affected by the sign + , and the

odd ones by the contrary sign —

.

S^S. An important question occurs in this place ; namely,
how we may find, without being obliged to perform the same
calculation, all the powers either of « + b, or a — b.

We must remark, in the first place, that if we can assign

all the powers of a f b, those o( a — b are also found ;

since we have only to change the signs of the even terms,

that is to say, of the second, the fourth, the sixth, &c. The
business then is to establish a rule, by which any power of
a + b, however high, may be determined without the necessity

of calculating all the preceding powers.

344. Now, if from the powers which we have already de-

termined we take away the numbers that precede each term,

which are called the coefficients, we observe in all the terms

a singular order : first, we see the first term a of the root

raised to the power which is required ; in the following

terms, the powers of a diminish continually by unity, and
the powers of b increase in the same proportion ; so that the

sum of the exponents of a and of b is always the same, and
always equal to the exponent of the power required ; and,

lastly, we find the term b by itself raised to the same power.

If therefore the tenth power of a + 6 were required, we are

certain that the terms, without their coefficients, would suc-

ceed each other in the following order ; ft^", a^b^ a%-, a'b^,

a%\ a^b\ a''U\ a'b^ a^b% ab% b''\

34!5. It remains therefore to shew how we are to de-

termine the coefficients, which belong to those terms, or the

numbers by which tliey are to be multiplied. Now, with

respect to the first term, its coefficient is always unity ; and,

as to the second, its coefficient is constantly the exponent of
the power. With regard to the other terms, it is not so

easy to observe any order in their coefficients ; but, if we
continue those coefficients, we shall not fail to discover the

law by which they are formed; as will appear from the

following Table.
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Powers, Coeflicient-.

1st ----- - 1, 1

2d - 1, 2, 1

3d 1, 3, 3, 1

4th 1, 4, 6, 4, 1

5th - - - - 1, 5, 10, 10, 5, 1

6th - - - 1, 6, 15, 20, 15, 6, 1

7th - - - 1, 7, 21, 35, 35, 21, 7, 1

8th - - 1, 8, 28, 56, 70, 56, 28, 8, 1

9th - - 1,9, 36, 84, 126, 126, 84, 36, 9, 1

10th 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, &c.

We see then that the tenth power of a + b will be a^° +
lOa'^Z* 4- 4>5a%'- -f UOa^b' + 21QaPb' + 252a^b^ + 2l0a*b^> ^-

I20a'b^ + 45a2ft8 ^ iQab^ + b'\

346. Now, with regard to the coefficients, it must be ob-

served, that for each power their sum must be equal to the

number 2 raised to the same power ; for let a = 1 and b =
1, then each term, without the coefficients, will be 1 ; con-

sequently, the value of the power will be simply the sum of

the coefficients. This sum, in the preceding example, is 1024,

and accordingly (1 + 1)'" = 2^° = 1024. It is the same
with respect to all other powers ; thus, we have for the

1st l-i-l=2:=:2S
2d 1+2+1=^4= 22,

3d l-f3+3 + l = 8= 2^
4th l+4 + 6+ 4 + l::rl6 = 2%
5th 1+5 + 10 + 10 + 5 + 1=32 = 2^
6th 1 + 6+15 + 20 + 15 + 6 + 1=64=26,
7th 1+7 + 21+35+35 + 21+7 + 1 = 128=2', &c.

347. Another necessary remark, with regard to the co-

efficients, is, that they increase from the beginning to the

middle, and then decrease in the same order. In the even

powers, the greatest coefficient is exactly in the middle;

but in the odd powers, two coefficients, equal and greater

than the others, are found in the middle, belonging to the

mean terms.

The order of the coefficients likewise deserves particular

attention ; for it is in this order that we discover the means
of determining them for any power whatever, without cal-

culating all the preceding powers, Wc shall here explain

this method, reserving the demonstration however for the

next chapter.

348. In order to find the coefficients of any power pro-

posed, the seventh for example, let us write the following

fractions one after the other :

7 6 S 4 3 2 1

T> T5 T' 4' T' 6> 7*
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In this arrangement, we perceive that the numerators begin

by the exponent of the power required, and that they

diminish successively by unity; while the denominators

follow in the natural order of the numbers, 1, 2, 3, 4, &c.

Now, the first coefficient being always 1, the first fraction

gives the second coefficient; the product of the first two
fractions, multiplied together, represents the third coefficient

;

the product of the three first fractions represents the fourth

coefficient, and so on. Thus, the

1st coefficient is 1 =1
7

2d - - - - y =7
3d ^—

^

^'^ m =^^

^tb
7.6.5. 4.

6th. - - -14^4-? =21

7th

^^^
" '1.2.3.4.5.6.7" ^

349. So that we have, for the second power, the fractions

^i i; whence the first coefficient is 1, the second | = 2, and
the third 2 x | = 1.

The third power furnishes the fractions 1, |., i.; where-
fore the

1st coefficient = 1

;

2d = 1 = 3;
3d = 3.i = 3; and4th = i.^.i.= 1.

We have, for the fourth power, the fractions ^, ^, y, ^,
consequently, the

1st coefficient = 1

;

2d ± = 4; 3d*. 4 =6;
4th t . i . T = 4 ; and 5th +

. 4. . |. . i. = 1.

350. This rule evidently renders it unnecessary to find

the coefficients of the preceding powers, as it enables us to

discover immediately the coefficients which belong to any
one proposed. Thus, for the tenth power, we write the
fractions V% h h h r. h h h h -rVr by means of which we
find the

1

7,
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1st coefficient = 1

;

2d = V° = 10; 7th = 252 .
I-
= 210;

3d = 10. f= 45; 8th = 210 . f = 120;
4th = 45 . 1 = 120; 9th = 120 . | =45;
5th = 120.^ = 210; 10th = 45.

I-
=10;

6th = 210. 1 = 252; and 11th = ]0.-fV=l.
351. We may also write these fractions as they are,

without computing their value; and in this manner it is

easy to express any power of a + b. Thus, {a + 5)'°° =

100 .99 98 . 97
+ —I—2"~3~4

—

^^^^'^ +, &c. * Whence the law of the

succeeding terms may be easily deduced.

CHAP. XI.

Of the Transposition of the Letters, on which the demon-
stration of the preceding Rule isfounded.

352. If we trace back the origin of the coefficients which
we have been considering, we shall find, that each term is

presented as many times as it is possible to transpose the

letters of which that term is composed ; or, to express the

same thing differently, the coefficient of each term is equal to

the number of transpositions which the letters composing
that term admit of. In the second power, for example, the

term ab is taken twice, that is to say, its coefficient is 2;
and in fact we may change the order of the letters which
compose that term twice, since we may write ab and ba.

* Or, which is a more general mode of expression.

^.(n-l).(»-2) ^_,^3. n.jn- \) . (n - 2) . {n

1.2.3 ' 1.2.3.4"
3)

(n-l) . (rt-2) .(n-3) 1

' 1.2.3 4 -n
This elegant theorem for the involution of a compound quantity

of two terms, evidently includes ail powers whatever ; and we
shall afterwards shew how the same may be applied to the ex-
traction of roots.

I 2
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The term aa, on the contrary, is found only once, and here

the order of the letters can undergo no change, or trans-

position. In the third power of a + b, the term aab may
be written in three different ways ; thus, aab, aba, baa ; the

coefficient therefore is 3. In tlie fourth power, the term a^b

or aaab admits of four different arrangements^ aaab, aaba,

abaa, baan ; and consequently the coefficient is 4. The term
aabb admits of six transpositions, aabb, abba, baba, abab,

bbaa, baab, and its coefficient is 6. It is the same in all

other cases.

353. In fact, if we consider that the fourth power, for

example, of any root consisting of more than two terms, as

(a + 6 + c 4- dy, is found by the multiplication of the four

factors, (« + 6 -I- c + d){a + b ^ c + d)(^a -^ b -\- c-\-d)

{a -\- b -\- c + d), we readily see, that each letter of the first

factor must be multiplied by each letter of the second, then

by each letter of the third, and, lastly, by each letter of the

fourth. So that every term is not only composed of four

letters, but it also presents itself, or enters into the sum, as

many times as those letters can be differently arranged with

respect to each other ; and hence arises its coefficient.

354. It is therefore of great importance to know, in ho\y

many different ways a given number of letters may be ar-

ranged ; but, in this inquiry, we must particularly consider,

whether the letters in question are the same, or different

:

for when they are the same, there can be no transposition of

them ; and for this reason the simple powers, as a-, a^, «*,

&c. have all unity for their coefficients.

355. Let us first suppose all the letters different; and,

beginning with tb.c sim})lest case of two letters, or ab, we
immediately discover that two transpositions may take place,

namely, ab and ba.

If wc have three letters, abc, to consider, we observe that

each of the three may take the first place, while the two

others will admit of two transpositions; thus, if a be the first

letter, we have two arrangements abc, acb ; if 6 be in the first

place, we have the arrangements bac, bca; lastly, if c oc-

cupy the first place, we have also two arrangements, namely,

cab, cba ; consequently the whole number of arrangements

is 3 X 2 = 6.

If there be four letters abed, each may occupy the first

place; and in every case the three others may form six

different arrangements, as wc have just seen; therefore the

whole number of transpositions is4x() = 24 = 4x3x
2x1.

If we have five letters, abode, each of the five may be the
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first, and the four others will admit of twenty-four trans-

positions ; so that the whole number of transpositions will

be 5 X 24 = 120 :i= 5 X 4 X 3 X 2 X 1.

356. Consequently, however great the number of letters

may be, it is evident, provided they are all different, that we

may easily determine the number of transpositions, and, for

this purpose, may make use of the following Table :

Number of Letters. Number of Transpositions.

1 - - .-1 = 1.

2 - - - 2.1=2..
3 - - - 3.2.1=6.
4 - - 4 . 3 . 2 . 1 = 24.

5 - - 5.4.3.2.1 = 120.

6 - -6.5.4.3.2.1= 720.

7 - 7.6.5.4.3.2.1= 5040.

8 - 8.7.6.5.4.3.2.1= 40320.

9 - 9.8.7.6.5.4.3.2.1= 862880.

10 -10. 9. 8. 7. 6. 5. 4. 3. 2.1= 3628800.

357. But, as we have intimated, the numbers in this

Table can be made use of only when all the letters are dif-

ferent ; for if two or more of them are alike, the number of

transpositions becomes much less ; and if all the letters are

the same, we have only one arrangement : we shall there-

fore now shew how the numbers in the Table are to be

diminished, according to the number of letters that are

alike.

358. When two letters are given, and those letters are

the same, the two arrangements are reduced to one, and

consequently the number, which we have found above, is

reduced to the half; that is to say, it must be divided by 2.

If we have three letters alike, the six transpositions are re-

duced to one; whence it follows that the numbers in the

Table must be divided by 6 = 3 . 2 . 1 ; and, for the same

reason, if four letters are alike, we must divide the numbers
found by 24, or 4 . 3 . 2 . 1, &c.

It is easy therefore to find how many transpositions the

letters aaabbe, for example, may undergo. They are in

number 6, and consequently, if they were all different, they

would admit of 6.5.4.3.2.1 transpositions ; but since

a is found thrice in those letters, we must divide that num-
ber of transpositions by 3 . 2 . 1 ; and since b occurs twice,

we must again divide it by 2.1: the number of trans-
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6 . 5 . 4 . 3 . '^ . 1
positions required will therefore be —^—-—

z
—

^—r— = 5 .

4 . 3 = 60.

359. We may now readily determine the coefficients of

all the terms of any power ; as for example of the seventh

power, {a + by.

The first term is aJ, which occurs only once ; and as all

the other terms have each seven letters, it follows that the

number of transpositions for each term would be 7 . 6 . 5 .

4 . 3 . 2 . 1, if all the letters were different ; but since in the

second term, a^b, we find six letters alike, we must divide

the above product by 6 . 5 . 4 . 3 . 2 . 1, whence it follows

^. .7.6.5.4.3.2.1 7
that the coetncient is —7^—=—;;;

—

-:—zz—:;— = —-, or /.6.5.4.3.2.1 1

'

In the third term, a^b^, we find the same letter a five

times, and the same letter b twice; we must therefore

divide that number first by 5.4.3.2.1, and then by
, , ^. 7.6.5.4.3.2.1

>i . 1 ; whence results the coemcient -—
-z—5-—

q
—

-,

—

^
—r

1 .2
The fourth term a'*6' contains the letter a four times, and

the letter b thi-ice ; consequently, the whole number of the

transpositions of the seven letters, must be divided, in the

first place, by 4.3.2.1, and secondly, by 3 . 2 . I, and
„. , 7.6.5.4.3.2.1 7.6.5

the coefhcient becomes =
4 3 c^ 1 o o ^ = r~2~3'

7.6.5.4
In the same manner, we find _ ^^ 77—. for the coefficient

1.2.3.4
of the fifth term, and so of the rest ; by which the rule before

given is demonstrated *.

360. Tiiese considerations carry us farther, and shew us

* From the Theory of Combinations, also, are frequently de-

duced the ruies that have just been considered for determining

the coefficients of terms of the power of a binomial ; and this is

perhaps attended with some advantage, as the whole is then re-

duced to a single formula.

In order to perceive the difference between permutations and
combinations, it may be observed, that in the former we inquire

in how many different ways the letters, wliich compose a certain

formula,, may change places ; whereas, in combinations it is

only necessary to know how many times these letters may be
taken or multiplied together, one by one, two by two, three by
three, &c.
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also how to find all the powers of roots composed of more
than two terms *. We shall apply them to the third power
of a -\- b + c; the terms of which must be formed by all

the possible combinations of three letters, each term having
for its coefficient the number of its transpositions, as shewn,
Art. 352.

Here, without performing the multiplication, the third

power of (a + 6 + c) will be, a^ + 3a-b -{- 2a-c + 3a6* +
6abe + Soc^ + b^ -^ ?,¥ + Uc- + c\

Suppose « = 1, 6 = 1, c = 1, the cube of 1 f- 1 + 1, or

of 3, will bel +3+3+3 + 6-(-3 + l +3 + 3+ 1=^27;

Let us take the formula abc ; here we know that the letters

which compose it admit of six permutations, namely, abc, neb, bac,

bca, cab, aba : but as for combinations, it is evident that by taking

these three letters one by one, we have three combinations,

namely, S^. b, and c ; if two by two, we have three combinations,

ab, ac, and be ; lastly, if we take them three by three, we have
only the single combination abc.

Now, in the same manner as we prove that n different things

admit of 1 X 2 x 3 x 4— ?» different permutations, and that if

r of these n things are equal, the number of permutations is

1 X 2 X 3 X 4—n
: so likewise we prove that n things may be taken

Ix2x3x --r'
* "^ ^

rax(«— 1) x(m— 2)

—

(n—r+l) , n i
r bv r, ^ —^ —^^: number of tmies ; or that^ Ix2x3--r
we may take r of these n things in so many different ways.
Hence, if we call n the exponent of the power to which we wish

to raise the binomial a + 6, and r the exponent of the letter b

in any term, the coefficient of that term is always expressed

u ^i f 1 «x(w— 1) X(n— 2)--(n — r+l) .

by the formula ^ ^^——

^

-. Irius, m the^ 1x2x3-—r

example, article 359, where n = 7, we have a^b'^ for the third

term, the exponent r = 2, and consequently the coefficient =
7x6

; for the fourth term we have r = 3, and the coefficient
] x2
_ 7x6x5
" 1x2x3'
the permutations.

For complete and extensive treatises on the theory of com-
binations, we are indebted to Frenicle, De Montmort, James
Bernoulli, &c. The two last have investigated this theory,

with a view to its great utility in the calculation of proba-

bilities. F. T.
* Roots, or quantities, composed of more than two terms, are

called polynomials, in order to distinguish them from binomiah,

or quantities composed of two terms. F T.

, and so on ; which are evidently the same results as
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which result is accurate, and confirms the rule. But if we
had supposed a = 1, b = 1, and c = — 1, we should have
found for the cube of 1 +1 — 1, that is of 1,

l-j-3_3+3_6-l-3 -1-1-3+3-1=1^ which
is a still further confirmation of the rule.

CHAP. XII.

Of the Expression o/" Irrational Powers^?/ Infinite Series.

361. As we have shewn the method of finding any power
of the root a + b, however great the exponent may be, we
are able to express, generally, the power of a +* b, whose
exponent is undetermined ; for it is evident that if we repre-

sent that exponent by n, we shall have by the rule already

given (Art. 348 and the following) :

7 X ^ ,7 71 n—\ , n n—\
{a + by = a" + --a"-^b -{ ---a"-'6- + -—-.

1
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71 n—i w—

2

w—

3

^ n — 4

J- a, 2-4.3 6»4 S'5
~

— A- Then, a" = af = ^/^and a"-^ =
'° ' 6

I 1 1

Sic or we miffht ext
x/fls'

~ a A/a' a\/a'

those powers of a in the following manner: a" = ^/a; a"~'

a/a _ a" y^ _ fi^ Va _^ __ a" _

364. This being laid down, the square root of a + Z» may
be expressed in the following manner

:

V(« + 6) = ^a + |i^ - f . ib'^ + i.i. ib'^

365. If a therefore be a square number, we may assign

the value of v/«, and, consequently, the square root of

a -{- b may be expressed by an infinite series, without any

radical sign.

Let, for example, a = c", we shall have ^a = c; then

b ¥ b'
,

b'

Vic"- + b) = c + ^ .
— - ^ . -^ + nr\ . — -tIt • -7'

&c.

We see, therefore, that there is no number, whose square

root we may not extract in this manner ; since every number
may be resolved into two parts, one of which is a s(juare re-

presented by C-. If, for example, the square root of 6 be

required, we make 6 = 4+2, consequently, c- = 4, c — 2,

6 = 2; whence results

A/6 = 2 + f--J^ + ^- W-T. &c.

If we take only the two leading terms of this series, we
shall have 2t = i-, the square of which, y, is 7 greater

than 6 ; but if we consider three terms, we have 2^-^ = 4^

,

the square of which, VW* is still -^^ too small.

366. Since, in this example, 4 approaches very nearly to

the true value of V6, we shall take for 6 the equivalent

quantity y_ — i; thus c^ ^ y ; c = | , 6 = t> ^""^^ ^^^"

culating only the two leading terms, we find a/6 = i + i •

-~ — \ — I;
. -j- = {- — _'^ = -1-2 ; the square of which
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fraction being ^-^~, it exceeds the square of VG only

by ^4o-
Now, making 6 = ^q? — -^^, so that c = ^ and b =

— ^^ ; and still taking only the two leading terms, we
1 I _

ViavP /R 4 9 4_ JL 4*^° — 4-9 _ i 4-°° — 49 _ i

iiavc V »-» — "ao" i^ a • 49 — "iTo 1*49 "ao i960

= 48^^, the square of which is ^^VoV ' and 6, when re-

duced to the same denominator, is = Vg^^^rroV » the error

therefore is only ^^^.
367. In the same manner, we may express the cube root of

a-{-b by an infinite series ; for since X/{a + b) = [a + b) |, we
shall have in the general formula, w = |, and for the coefficients,

71 n— I n—

2

n—

3

n—

4

1
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CHAP. XIII.

Of the Resolution o^Negative Powers.

370. We have already shewn, that — may be expressed

by a~^ ; we may therefore express r also by (a + b)~^ ;

so that the fraction j may be considered as a power of

a-\-h, namely, that power whose exponent is —1 ; from
which it follows, that the series already found as the value

of (a + b)" extends also to this case.

371. Since, therefore —-7 is the same as (a 4- b)~^, let

us suppose, in the general formula, [Art. 361.] n = —1;

and we shall first have, for the coefficients, — = — 1 ;

n—l , ^i— 2 n—S „ . i ^ ,——- = - 1 ; —r- = — 1 ; —i— = —
] , &c. And. for the

2 3 4

powers of a, we have a" = a~^ = — ; a"'^ = a"^ —

-

111 1—
- ; tt"-^ == -^ ;

«"-= = —3-, &c. : so that (a+ Z/)"' = ——;

1 b b' b' b^ 65
, . , . ,=

s^ + —T — —7-1 ^ — —^» &c. which IS the same

series that we found before by division.

372. Farther, ^ being the same with {a + b)-^, let

any degree whatever by approximation ; where he demonsuaies
this general formula,

Those who have not an opportunity of consulting the Philo-
sophical Transactions, will find the formation and the use of this

formula explained in the new edition of Legons Elenientaiies

de Mathematiques by M. D'Abbe de la Caille, published by
M. L'Abbe Mario. F. T. See al«o Dr. Hutton'a Math. Dic-
tionary.
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US reduce this quantity also to an infinite scries. For this

purpose, we must suppose n = — 2, and we shall first have,

for the coefficients,— = — 3. ;
—-— = — l

;

= — ^;

n—S
= —~, &.C. ; and, for the powers of a, we obtain a" =

1.1 I 1

a- '

a-^ a* a

, ^ ,, 1 1 2.& 2.3.fi2
therefore (a -f 6)

^'^ = r— — —— — -—- + -

—

—
^

' ' (a 1- by- a- 1 .a? 1 . 2 . a*

2.3.4.6'' 2.3.4.5.6* ^, 2.3 ^2.3.4
rcs:^ + LiiiA^^'

^''^' ^"^^' - = =^'
r.2 = ^' r:2:3

, 2.3.4.5 . , ,
1 1 «

= *'
1:2:31

= ^' ^'- '""^ consequently, ^-^^-^, = - -2

A ^ 6'i 6' 6* ,. ¥ ^b^ ,

-T + 3-^-4— +5—--6-^ + 7— , &c.
a^ a* tt^ a^ «^ rt''

373. Let us proceed, and suppose w = — 3, and we shall

have a series expressing the value of -
. ,̂ j, or of (at- b)~^.

71 n — \ n— 9>

Here the coefficients will be -— = — 1. ; —-— = — ^i —it—
I

"2 ^
' 3

1 „_
r: — y, &c. and the powers of a become, «" = — ; a ' =

1 o 1 ,. , .
1 1 3.6—-; a"-2=: —- &c. which mves 7——7-, = -r-— :; -. + -

3.4.6- 3.4.5.6^ 3.4.5.6.6* 1 „6 ,.6^ ,6-* ,^

1.2.a' 1.2.3.a'^ 1.2.3.4.a7 a' a:"^ a' V^
6* ^ b' ¥ ^^-21 —- +28—, &c.
a? a^ a^

'

If now we make 7i = — 4 ; we shall have for the co-

,„ . n n-l n—

2

, n~3
efficients -=-±; _ = _- -^= -- -^ =

-

. ,
1 • 1

{ , &c. And for the powers, a" = — ; n"~^ = —r ; a",n
—2

1 1 ,

«"— =L —-; ^i"-^ =—7;, whence we obtain,,n— 3

a'
'

a"

1 1 46 4.5.//^ 4.5.6.63
;,

1.6
(a 4- 6)*- a* U^ "^

1.2.«« l.S.S.a^'
^^"'"

a*
'" '^'

a"-

"^

'6^ 6' 6* ^ 6^

10— -20— +35 ---56-^ +, &c.
a' a? a^ d^

374. The different cases that have been considered
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enable us to conclude with certainty, that we shall have,

generally, for any negative power of a + />

;

1 I vi.b m.{m-\).h' w.(m — l).(w— 2).Z»3'

&c. And, by means of this formula, we may transform all

such fractions into infinite series, substituting fractions also,

or fractional exponents, for m, in order to express irrational

quantities.

375. The following considerations will illustrate this sub-

ject still farther: for we have seen that,

1 _ 1 h b^ b' b* ¥
a +b~ a a- a^ a* a^ a^ '

If, therefore, we multiply this series by a-j-i, the pro-

duct ought to be = 1 ; and this is found to be true, as will

be seen by performing the multiplication

:

I b b^ b^ b* b^

a a- a^ a* a^ a°

a + 6

b b^ P ¥ b'

a a® a' a* a^

b b^ b^ ¥ ¥
a a" a^ a* a'

where all the terms but the first cancel each other.

376. We have also found that

1 _J _2& 36^_46^ :5^__^' s,

{a^by ~ a^ a"
'^ '^ ~

a' ^ ~lf'~ ^'
And if we multiply this series by {a + i)^, the product

ought also to be equal to 1. Now, {a + b)" — a^ -^ ^ab

+ b-, and

1 2b S¥ _U^ 5¥ 6¥

a" + 2ab + b"

1 -
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which gives 1 for the product, as the nature of the thing

required.

377. If we multiply the series which we found for the

value of r- , hy a + b only, the product ought to an-

swer to the fraction -,, or be equal to the series already

r i ,1 6 ¥ V ¥ ^ , ,. ,

lound, namely, -{—,- t ^—r, &,c. and this the

actual multiplication will confirm.

1 21) S¥ ^¥ 5¥ „

a + b

I 26 36^ 4b' 5¥
+ —r, r- + —T-, &c.

a a" a-" a!* a^
'

b W 36' W ,

I b ¥ ¥ ¥ „ .J.
h —T- r + —r—» etc. as reqmred.

fi n- /y'> n* n^~ *

SECTION III.

/
O/ Ratios and Proportions.

CHAP. I.

(yArithmetical Ratio, or of the Difference between txt'o

Numbers.

378. Two quantities are either equal to one another, or

they are not. In the latter case, where one is greater

than the other, we may consider their inequality under two

different points of view : we may ask, how much one of

the quantities is greater than the other .? Or we may ask,

how many times the one is greater than the other? The
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results which constitute the answers to these two questions

are both called relations, or ratios. We usually call the

former an arithmetical ratio, and the latter a geometrical

ratio, without however these denominations having any con-

nexion with the subject itself. The adoption of these ex-

pressions is entirely arbitrary.

379. It is evident, that the quantities of which we speak

must be of one and the same kind ; otherwise we could not

determine any thing with regard to their equality, or in-

equality : for it would be absurd to ask if two pounds and
three ells are equal quantities. So that in what follows,

quantities of the same kind only are to be considered

;

and as they may always be expressed by numbers, it is of

numbers only that we shall treat, as was mentioned at the

beginning.

380. When of two given numbers, therefore, it is re-

quired how much the one is greater than the other, the

answer to this question determines the arithmetical ratio of

the two numbers ; but since this answer consists in giving

the difference of the two numbers, it follows, that an arith-

metical ratio is nothing but the difference between two
numbers ; and as this appears to be a better expression, we
shall reserve the words ratio and relation to express geo-

metrical ratios.

381. As the difference between two numbers is found by
subtracting the less from the greater, nothing can be easier

than resolving the question how much one is greater than
the other: so that when the numbers are equal, the dif-

ference being nothing, if it be required how much one of the

numbers is greater than the other, we answer, by nothing

;

for example, 6 being equal to 2 x 3, the difference between
6 and 2 X 3 is 0.

382. But when the two numbers are not equal, as 5 and
3, and it is required how much 5 is greater than 3, the

answer is, 2 ; which is obtained by subtracting 3 from 5.

Likewise 15 is greater than 5 by 10; and 20 exceeds 8
by 12.

383. We have therefore three things to consider on this

subject; 1st, the greater of the two numbers; 2d. the less;

and 3d. the difference : and these three quantities are so con-
nected together, that any two of the three being given, we
may always determine the third.

Let the greater number be a, the less b, and the difference

d; then d will be found by subtractafcj b from a, so that

d = a — b; whence we see how to {\nW^cl, when a and b are

siven.

Ci-r^

Vn.
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384. But if the difference and the less of the two num-
bers, that is, iff/ and b were given, we might determine the

greater number by adding together the difference and the

less number, which gives a = b -\- d; for if we take from

b -\- d the less number b, there remains d, which is the

known difference : suppose, for example, the less number
is 12, and the difference 8, then the greater number will

be 20.

385. Lastly, if beside the difference d, the greater num-
ber a be given, the other number b is found by subtracting

the difference from the greater number, which gives b = a
— d; for if the number a — d he taken from the greater

number a, there remains d^ which is the given difference.

286. The connexion, therefore, among the numbers, a,

b, f/, is of such a nature as to give the three following re-

sults: 1st. d = a — b; 2d. a = b -\- d; 3d. b = a — d;

and if one of these three comparisons be just, the others

must necessarily be so also ; therefore, generally, if ;:: = ^ H-

?/, it necessarily follows, that y ~ z — x, and x = z — y.

387. With regard to these arithmetical ratios we must
remark, that if we add to the two numbers a and 6, any
number c, assumed at pleasure, or subtract it from them, the

difference remains the same ; that is, if d is the difference

between a and b, that number d will also be the difference

between a + c and b + c, and between a — c and b — c.

Thus, for example, the difference between the numbers 20
and 12 being 8, that difference will remain the same, what-

ever number we add to, or subtract from, the numbers 20
and 12.

388. The proof of this is evident : for 'i£ a ~ b = d, we
have also (a + c) — {b -l c) = d ; and likewise (a — c)—
{b ~ c) = d.

389. And if we double the two numbers a and b, the dif-

ference will also become double ; thus, when a — b = d, wc
shall have 2a — 2b = 2d ; and, generally, 7ia — nb ~ nd,

whatever value we mve to n.
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CHAP. II.

O/'Aritlimetical Proportion.

S90. When two arithmetical ratios, or relations, are equal,

this equality is called an arithmetical proportion.

Thus, when a — /> = d, and p — q ~ d, so that the dif-.

ference is the same between the numbers j9 and q, as between

the numbers a and b, we say that these four numbers form

an arithmetical proportion ; which we write thus, a ~ b =
p — qt expressing clearly by this, that the difference between

a and b is equal to the difference between p and q.

391. An arithmetical proportion consists therefore of four

terms, which must be such, that if we subtract the second

from the first, the remainder is the same as when we sub-

tract the fourth from the third ; thus, the four numbers 12,

7, 9, 4, form an arithmetical proportion, because 12 —
7 = 9-4.

392. When we have an arithmetical proportion, as a — b

= p — q, we may make the second and third terms change

places, writing a — p = b — q: and this equality will be

no less true ; for, since a — b = p — q, add b to both sides,

and we have a — b + p — q: then subtract p from both

sides, and we have a — p — b — q.

In the same manner, as 12 - 7 = 9 — 4, so also 12 —
9 = 7-4*.

393. We may in every arithmetical proportion put the

second term also in the place of the first, if we make the

same transposition of the third and fourth ; that is, if a —
b = p — q, we have also b ~ a = q — p; iov b — a is

the negative of a — b, and q — p \s also the negative of

p — q; and thus, since 12 — 7 = 9 — 4, we have also,

7 - 12 = 4 - 9.

394. But the most interesting property of every arith-

metical proportion is this, that the sum of the second and

third term is always equal to the sum of the first and fourth.

This property, which we must particularly consider, is ex-

pressed also b}'^ saying that the sum of the means is equal

to the sum. of ihe extremes. Thus, since 12 ~ 7 = 9 — 4,

we have 7 + 9 = 12 -f 4; the sum being in both cases 16.

* To indicate that those numbers form such a proportion,

some authors write them thus: 12 . 7 : : . 4.

K
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395. In order to demonstrate tills principal property, let

a— h=p— q; then if we add to both h + q, we have
a -j- g' — 6 + p ; that is, the sum of the first and fourth

terms is equal to the sum of the second and third : and, in-

versely, if four numbers, a, b, p, q, are such, that the sum
of the second and third is equal to the sum of the first and
fourth ; that is, if 6 -{- p = a -\- q, we conclude, without a

possibility of mistake, that those numbers are in arithmetical

proportion, and that a — h = p — g' ; for, since a -{- q = b

+ p, if we subtract from both sides b + q, we obtain a — b

= p - q.

Thus, the numbers 18, 13, 15, 10, being such, that the

sum of the means (13 + 15 = 28) is equal to the sum of

the extremes (18 + 10 = 28), it is certain that they also

form an arithmetical proportion; and, consequently, that

18 - 13 = 15 - 10.

396. It is easy, by means of this property, to resolve the

following question. The first three terms of an arithmetical

proportion being given, to find the fourth .'' Let «, b,p, be

the first three terms, and let us express the fourth by g-,

which it is required to determine, then a -\- q ^^^ b + p\ by
subtracting a from both sides, we obtain q =i b + p — a.

Thus, the fourth term is found by adding together the

second and third, and subtracting the first from that sum.

Suppose, for example, that 19, 28, 13, are the three first

given terms, the sum of the second and third is 41 ; and
taking from it the first, which is 19, there remains 22 for the

fourth term sought, and the arithmetical proportion will be

represented by 19 - 28 = 13 — 22, or by 28 - 19 = 22
- 13, or, lastly, by 28 - 22 = 19 - 13.

397. When, in an arithmetical proportion, the second term

is equal to the third, we have only three numbers; the pro-

perty of which is this, that the first, minus the second, is

equal to the second, minus the third ; or that the difference

between the first and second number is equal to the dif-

ference between the second and third. The three numbers
19, 15, 11, are of this kind, since 19 — 15 = 15 — 11.

398. Three such numbers are said to form a continued

arithmetical proportion, which is sometimes written thus,

19 : 15 : 11. Such proportions are also called arithmetical

progressions, particularly if a greater number of terras

follow each other according to the same law.

An arithmetical progression may be cither increaMng, or

decreasing. The former distinction is applied when the

terms go on increasing ; that is to say, when the second ex-

ceeds the first, and the third exceeds the second by the
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same quantity; as in the numbers 4, 7, 10; and the de^

cr<?a5m^ progression is that in which the terms go on always

diminishing by the same quantity, such as the numbers

9, 5, 1.

o99. Let us suppose the numbers a, h, c, to be in arith-

metical progression ; then a —b — b — c, whence it, follows,

from the equality between the sum of the extremes and that

of the means, that 2b = a + c; and if we subtract a from
both, we have ^b — a ~ c.

400. So that when the first two terms a, 6, of an arith-

metical progression are given, the third is found by taking

the first from twice the second. Let 1 and 3 be the first

two terms of an arithmetical ]irogression, the third will then

beSx 3 — 1 =5; and these three numbers 1, 3, 5, give

the proportion

1 — 3 :=:: 3 - 5.

401. By following the same method, we may pursue the

arithmetical progression as far as we please ; we have only

to find the fourth tei-m by means of the second and third,

in the same manner as we determined the third by means of

the first and second, and so on. Let a be the first term, and
b the second, the third will be 26 — a, the fourth 46 — ^a
- b = 3b - %i, the fifth 66 - 4a - 2/; -F « = 46 - 3«,

the sixth Sh - 6a — 3b -\- 2a =: 5b — 4«, the seventh 10b
— 8a — 4/> + 3a — 6b — 5a, &c.

CHAP. III.

Of Arithmetical Progressions.

402. We have already remarked, that a series of numbers

composed of any number of terms, which always increase, or

decrease, by the same quantity, is called an arithmetical

progression.

Thus, the natural numbers written in their order, as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, &c. form an arithmetical pro-

gression, because they constantly increase by unity ; and

the series 25, 22, 19, 16, 13, 10, 7, 4, 1, &c. is also such a

progression, since the numbers constantly decrease by 3.

403. The number, or quantity, by which the terms of an

arithmetical progression become greater or less, is called the

k2



132 ELEMENTS ^ SECT. III.

difference; so that when the first term and the difference

are given, we may continue the arithmetical jirogression to

any length.

For example, if the first term be 2, and the difference 3,

we shall have the following increasing progression : 2, 5, 8,

11, 14, 17, 20, 23, 26, 29, &c. in which each term is found

by adding the difference to the preceding term.

404. It is usual to write the natural numbers, 1, 2, 3, 4,

5, &c. above the terms of such an arithmetical progression,

in order that we may immediately perceive the rank which

any term holds in the progression, which numbers, when
written above the terms, are called indices ; thus, the above

example will be written as follows

:

Indices. 12 3 4. 5 6 7 8 9 10

Arith. Prog. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &c.

where we see that 29 is the tenth term.

405. Let a be the first term, and d the difference, the

arithmetical progression will go on in the following order

:

12 3 4 5 6 7

«, a + d, a + 2£Z, « + 3d!, a±^d, a± 5d, a ± Gd, &c.

according as the series is increasing, or decreasing; whence
it appears that any term of the progression might be easily

found, without the necessity of finding all the preceding

ones, by means only of the first term a and the difference d;

thus, for example, the tenth term will be a + 9d, the hun-
dredtli term a + 99^, and, generally, the nth term will be

a + {n — l)d.

406. When we stop at any point of the progression, it is

of importance to attend to the first aiid the last term, since

the index of the last term will represent the number of

terms. If, therefore, the first term be a, the difference d,

and the number of terms n, we shall have for the last term
« + (« — l)d, according as the series is increasing or de-

creasing ; which is consequently found by multiplying the

difference by the number of terms minus one, and adding,

or subtracting, that product from the first term. Suppose,

for example, in an ascending arithmetical progression of a
hundred terms, the first term is 4, and the difference 3; then
the last term will be 99 x 3 + 4 = 301.

407. When we know the first term a, and the last;?, with

the number of terms 7i, we can find the difference d; for,

since the last term z = a + (n —l)d, if we subtract a from
both sides, we obtain z — a = (n — l)d. So that by taking

the difference between the first and last term, we have the

product of the difi'erence multiplied by the number of terms

minus 1 ; we have therefore only to divide ^ — a hy n — 1
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in order to obtain the required value of the difference cZ,

which will be ^^—7. This result furnishes the following

rule : Subtract the first term from the last, divide the re-

mainder by the number of terms minus 1, and the quotient

will be the common difference; by means of which we may
write the whole progression.

408 Suppose, for example, that we have an increasing

arithmetical progression of nine terms, whose first is 2, and
last 26, and that it is required to find the difference. We
must subtract the first term 2 from the last 26, and divide

the remainder, which is 24, by 9 — 1, that is, by 8 ; the quo-

tient 3 will be equal to the difference required, and the

whole progression will be

:

12 3 4 5 6 7 8 9

2, 5, 8, 11, 14, 11, 20,2s, 9.6.

To give another example, let us suppose that the first

term is 1, the last 2, the number of terms 10, and that the

arithmetical progression, answering to these suppositions,

is required ; we shall immediately have for the difference

2— 1
Tj:—r = ~, and thence conclude that the progression is

:

12 3456789 10
1 1l rz 13 14 is 16 17 18 C}) •'-9-5 ^-g) ^-gi 'a* -'•g'J ''gi ''gi ^g'i ~*

Another example. Let the first term be 2i-, the last term
12i-, and the number of terms 7; the difference will be

121^-2- lOi-
—^—T-^ :=: —t^ = ^^ = 1|:1, and consequently the pro-

gression : 12 3 4 5 6 7
91 4,1 K13 fy 5 Qi 1029 lOi
'^T> *T6> ^TT' 'tT' "^g"' ^"3" 6^ J

^'*^*

409. If now the first term a, the last term ^,*and the dif-

ference d, are given, we may from them find the number of

terms ?i; for since z — a = (n — l)d, by dividing both

sides by d, we have . z=. 71 — I ; also n being greater by

1 than n — I, we have n = , + 1 ; consequently, the
ct

number of terms is found by dividing the difference between

the first and the last term, or z—u, by the difference of the

progression, and adding unity to the quotient.

For example, let the first terra be 4, the last 100, and the

JOO _ 4
difference 12, the number of terms will be —^ h 1 = 9

;
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and these nine terms will be,

1 2 .'5 4 5 6 7 8 9

4, 16, 28, 40, 52, 64, 76, 88, 100.

If the first term be 2, the last 6, and the difference ly, the

4
number of terms will be — + 1 — 4; and these four terms

T
will be,

12 3 4

2, S|, 4|, 6.

Again, let the first term be 3j, the last Tf-, and the dif-

7- — 3i
ference 1^, the number of terms will be ^ ^ - +1 = 4;

which are,

3*, 4|, 61, 7f
410. It must be observed, however, that as the number

of terms is necessarily an integer, if we had not obtained

such a number for 7i, in the examples of the preceding

article, the questions would have been absurd.

Whenever we do not obtain an integer number for the

z — a , . .

value of —J— , it will be impossible to resolve the question

;

and consequently, in order that questions of this kind may
be possible, z — a must be divisible by d.

411. From what has been said, it may be concluded, that

w'e have always four quantities, or things, to consider in an

arithmetical progression :

1st. The first term, «; 2d. The last term, z ;

3d. The difference, d; and 4th. The number of terms, w.

The relations of these quantities to each other are such,

that if we know three of them, we are able to determine the

fourth ; for,

1^ If a, d, and n, are known, we have z= a ± in — \)d.

2, If z, J, and w, are known, we have

a — z — {n — \)d.

z— a
3! If a, z, and n, are known, we have d — —r: ; and

4. If rt, z, and J, are known, we have n z=. —^—f- 1.
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CHAP. IV.

Of the Summation q/" Arithmetical Progressions.

412. It is often necessary also to find the sum of an arith-

metical progression. This might be done by adding all the

terms togetlier ; |)ut as the addition would be very tedious,

when the progression consisted of a great number of terms,

a rule has been devised, by which the sum may be more
readily obtained.

413. We shall first consider a particular given progression,

in which the first term is 2, the difference 3, the last term

29, and the number of terms 10 ;

1234 5 67 8 9 10

2, 5, 8, 11, 14, 17, 20, 23, 26, 29.

In this progression, we see that the sum of the first and

last term is 31 ; the sum of the second and the last but one

31 ; the sum of the third and the last but two 31, and so on :

hence we conclude, that the sum of any two terms equally

distant, the one from the first, and the other from the last,

is always equal to the sum of the first and the last term.

414. The reason of this may be easily traced; for if we
suppose the first to be a, the last 2, and the difference rf, the

sum of the first and the last term is a + s ; and the second

term being a + d, and the last but one z — d, the sum of

these two terms is also a + z. Farther, the third term being

a + 2cZ, and the last but two ;s — 2d, it is evident that these

two terms also, when added together, make a +z; and the

demonstration may be easily extended to any other ''two

terms equally distant from the first and last.

415. To determine, therefore, the sum of the progression

proposed, let us write the same progression term by term,

inverted, and add the corresponding terms together, as

follows

:

2+ 5+ 8+11 + 14+17 + 20+ 23 +26+29
29+ 26^-23^-20+17 + 14+ ll+ 8+ 5+ 2

J

31 + 31+31+31+31+31+31+31+31*1-31
This scries of equal terms is evidently equal to twice the

sum of the given progression : now, the number of those
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equal terms is 10, as in the progression, and their sum con-

sequently is equal to 10 x 31 r= 310. Hence, as this sum
is twice the sum of the aritlimetical progression, the sum re-

quired must be 155.

416. If we proceed in the same manner with respect to

any arithmetical progression, the first term of which is a, the

last z, and the number of terms w, writing under the given

progression the same progression inverted, and adding term

to term, we shall have a series of n terms, each of which will

be expressed by a + z ; therefore the sum of this series will

be '}i{a -r x:), which is twice the sum of the proposed arith-

metical progression ; the latter, therefore, will be repre-

n{a + z)
sented by — .

417. This result furnishes an easy method of finding the

sum of any arithmetical progression ; and may be reduced to

the following rule

:

Multiply the sum of the first and the last term by the

number of terms, and half the product will be the sum of
the whole progression. Or, which amounts to the same,

multiply the sum of the first and the last term by half the

number of terms. Or, multiply half the sum of the first and
the last term by the whole number of terms.

418. It will be necessary to illustrate this rule by some
examples.

First, let it be required to find the sum of the progression

of the natural numbers, 1, 2, 3, &c. to 100. This will be,

by the first rule,
^^^^/^^ = -^^ = 5050.

If it were required to tell how many strokes a clock strikes

in twelve hours ; we must add together the numbers 1, 2, 3,

as far as 12 ; now this sum is found immed4ately to be
12x 13—^— = 6 X 13 = 78. If we wished to know the sum of

the same progression continued to 1000, we should find it to

be 500500 ; and the sum of this progression, continued to

10000, would be 50005000.
419. Suppose a person buys a horse, on condition that for

the first nail he shall pay 5 pence, for the second 8 pence, for

the third 1 1 pence, and so on, always increasing 3 pence more
ibr each nail, the whole number of which is o2; required

the purchase of the horse?

In this question it is recjuired to find the sum of an
arithmetical progression, the first term of which is 5, the

difference 3, and the number of terms 32; we must there-
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fore begin by determining the last term ; which is found by
the rule, in Articles 406 and 411, to be 5 + (31 x 3) = 98;

103 X S2
after which the sum required is easily found to be

= 103 X 16 ; whence we conclude that the horse costs 1648
pence, or 61. Us. 4d

420. Generally, let the first term be a, the difference r/,

and the number of terms n; and let it be required to find,

by means of these data, the sum of the whole progression.

As the last term must be a + {n — ] )d, the sum of the first

and the last will be 2a + {n — \)d; and multiplying this

sum by the number of terms 7i, we have 2na + n{n— l)rf;

the sum required therefore will be na + ^ .

Now, this formula, if applied to the preceding example,

or to a = 5, d = 3, and n = '62, gives 5 x 32 +
32 . 31 .3
'
"" = 160 -f 1488 = 1648; the same sum that we

obtained before.

421i If it be required to add together all the natural

numbers from 1 to n, we have, for finding this sum, the first

term I, the last term w, and the number of terms n; there-

e .\
• 1 •

^'+ ^ n{7i + l)
tore the sum required is —5— = —^

— . Ir we make n.

= 1766, the sum of all the numbers, from 1 to 1766, will

be 883, or half the number of terms, multiplied by 1767 =
1560261.

422. Let the progression of uneven numbers be proposed,

such as 1, 3, 5, 7, &c. continued to n terms, and let the sum
of it be required. Here the first term is 1, the difference 2,

the number of terms n; the last term will therefore be 1 +-

(?i — ] ) 2 = 2n — I , and consequently the sum required
= w%

Tiie whole therefore consists in multiplying the number
of terms by itself; so that whatever number of terms of this

progression we add together, the sum will be always a square,

namely, the square of the number of terms ; which we shall

,
exemplify as follows

:

Indicesy 12 3 4 "> 6 7 8 9 10, &c.
Progress. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, &c.

Sum. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, &c.

423. Let the first term be 1, the diff'erence 3, and the

number of terms n ; we shall have the progression 1 , 4, 7,

10, &,c. the last term of which will be 1 +(M-l)3=:37i-2;
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wherefore the sum of the first and the last term is 3;/ — 1,

and consequently the sum of this progression is equal to

)i{Su — l) 2ni-—7i , .„ ^rv ,~ = —-— ; and it we suppose w = 20, the sum

will he 10 X 59"= 590.

424. Again, let the first term he 1, the difference d, and
the number of terms n ; then the last term will be 1 +
{n—\)d', to which adding the first, we have 2 + ('i — ^)d,

and multiplying by the number of terms, we have 9>ii +
)i[n — \)d\ whence we deduce the sum of the progression

niti— I )d
n + —^— .

^

And by making d successively equal to 1, 2, 3, 4, 8vc.,

we obtain the following particular values, as shewn in the

subjoined Table.

W(W— 1) M--1-71
If a = 1, the sum is ?i + —

d^%

d = 3,

d =4,

J =6,

(Z= 8,

d = %

d = 10,

2

- n +

- n-\-

- n +

- « +

- n +

- n +

- n +

- n +

2

Sw(w

—

2

4w(7i -

5n(n-

2

6n(n-

2

7n(n—
2

8n(n-

2

9w(w -

2
10n(n -

2

3?i — n

2

=: 27t--

5m^- -3w

2

= 3w2-2/f

In''— 5)1

= 2

= 4w'-—3w

^ 2

'=5n-— 4/t

QUESTIONS FOR PRACTICE.

' 1. llecjuired the sum of an increasing arithmetical pro-

gression, having 3 for its first term, 2 for the common dif-

ference, and the number of terms 20. Ans. 440.

2. Required the sum of a decreasing arithmetical pro-



CHAP. V. OF ALGEBRA. 139

gression, having 10 for its first term, ~ for the common dif-

ference, and the number of terms 21. Afis. 140.

3. Required the number of all the strokes of a clock in

twelve hours, that is, a complete revolution of the index.

Jns. 78.

4. The clocks of Italy go on to 24 hours ; how many
strokes do they strike in a complete revolution of the index ?

. Ans. 300.

5. One hundred stones being placed on the ground, in a

straight line, at the distance of a yard from each other, how
far will a person travel who shall bring them one by one to

a basket, which is placed one yard from the first stone ?

Ans. 5 miles and 1300 yards.

CHAP. V.

Of Figurate*, or Polygonal Numbers^

425. The summation of arithmetical progressions, which
begin by 1, and the difference of which is 1, 2, 3, or any

* The French translator has justly observed, in his note at

the conclusion of this chapter, that algebraists make a distinc-

tion between figurate and polygonal numbers ; but as he has
not entered far upon this subject, the following illustration may
not be unacceptable.

It will be immediately perceived in the following Table, that

each series is derived immediately from the foregoing one,
being the sum of all its terms from the beginning to that place

;

and hence also the law of continuation, and the general term of
each series, will be readily discovered.

- n general term

n.(n-\- 1)

2

?z.(w + ]).(«+ 2)

2.3

n.(n+ l).(n+ 2).(n+ 3)

And, in general, the figurate number of any order m will be ex-
pressed by the formula,

n.{n+l).{n+ 2) .(n + 3) - - (n+ m—1)
1.2 . 3 . 4 - - tn

Now, one of the principal properties of these numbers, and

Natural 1, 2,
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other integer, leads to the theory of polygonal numbers,

which are formed by at'ding together the terms ot'any such

progression.

426. Suppose the difference to be 1 ; then, since the first

term is 1 also, we shall have the arithmetical progression, 1,

% 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, &c. and if in this pro-

gression we take the sum of one, of two, of three, &c. terms,

the following series of numbers will arise

:

1, f3, 6, 10, 15, 21, 28, 36, 45, 55, 66, &c.

for 1 = 1, 1 +2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 ^ 10, &c.

Which numbers are called triangular, or trigonal num-
bers, because we may always arrange as many points in the

form of a triangle as they contain units, thus

:

13 6 10 15

427. In all these triangles, we see how many points

each side contains. In the first triangle there is only one

point ; in the second there are two ; in the third there are

three ; in the fourth tliere are four, &c. : so that the tri-

angular numbers, or the number of points, which is simply

called the triangle, axe arranged according to the number of

points which the side contains, which number is called the

side; that is, the third triangular number, or the third

triangle, is that whose side has three points; the fourth,

that whose side has four; and so on; which may be repre-

sented thus

:

which Fermat considered as very interesting, (.yee his tiotes on
Diophanlus, page 16), is this: that if from the wth term of any
series the {n— 1) term of the same series be subtracted, the re-

mainder will be the nth term of the preceding series. Thus, in

«.(w-f- 1 ) . {n-\-2)
the third series above given, the ni\\ term is — -— ;

consequently, tlie {n— 1) term, by substituting [n— 1) instead

. (n— 1) . n.(n-\- 1) ,.,.,, , , , ,.

oi n, is .—

^

5 and it the latter be subtracted trom

H.in — 1 ) . .

the former, the remainder is —— , which is the «th term of

the preceding (ndci of numbers. 'I'he same hiw will be observed

between two consecutive terms of any one of these sums.



CHAP. V. OF ALGEBRA. 141

Side . . . ... ....

Triangle (

428. A question therefore presents itself here, which is,

how to determine the triangle when the side is given ? and,

after what has been said, this may be easily resolved.

For if the side be n, the triangle will be 1 + 2 + 3 -|-4 H— n.

Ill _j_ ifi

Now, the sum of this progression is —— ; consequently

the value of the triansle is
2

Thus, if</
'* ~ q' ^ the triangle is

U = 4, 3
and so on : and when n = 100, the triangle will be 5050.

429. This formula —^— is called the general formula of

triangular numbers ; because by it we find the triangular

number, or the triangle, which answers to any side indicated

by n.

n(n + 1

)

This may be transformed into—^
; which serves also

to facilitate the calculation ; since one of the two numbers n^

or 71 + 1, must always be an even number, and consequently

divisible by 2.

12 X 13
So, if w = 12, the triangle ^^——g— = 6x 13— 78; and

15x16
if 7i = 15, the triangle is—

^
— = 15 x 8 — 120, &c.

430. Let us now suppose the difference to be 2, and we
shall have the following arithmetical progression :

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, &c.
the sums of which, taking successively one, two, three, four

terms, &c. form the following series

:

1, 4, 9, 16, 25, SQ, 49, 64, 81, 100, 121, &c.

* M. de Joncourt published at the Hague, in 1/62, a Tabic
of trigonal numbers answering to all the natural numbers from
1 to 20000 ; which Tables are found useful in facilitating a
great number of arithmetical operations, as the author shews in

a very long introduction. F. T.
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the terras of wliich are called (^quadrangular numbers, or
squares; since they represent the squares of the natural
numbers, as we have already seen; and this denomination
is the more suitable from this circumstance, that we can
always form a square with the number of points which those

terms indicate, thus

:

1, 4, 9, 16, 25,

431. We see here, that the side of any square contains

precisely the number of points which the square root in-

dicates. Thus, for example, the side of the square 16 con-
sists of 4 points ; that of the square 25 consists of 5 points

;

and, in general, if the side be n, that is, if the number of the

terms of the progression, 1, f3, 5, 7, &c. which we have
taken, be expressed by ?.', the square, or the quadrangular
number, will be equal to the sum of those terms; that is to

W-, as we have already seen. Article 422; but it is un-
necessary to extend our consideration of square numbers any
farther, having alread}'^ treatixl of them at length.

432. If now we call the difference 3, and take the sums
in the same manner as before, we obtain numbers which are

called pentagons, or pentagonal numbers, though they can-

not be so well represented by points *.

* It is not, however, that we are unable to represent, by
points, polygons of any number of sides; but the rule which I

am going to explain for this purpose, seems to have escaped all

the writers on algebra whom I have consulted.

I begin with drawing a small polygon that has the number of

sides required ; this number remains constant for one and the

same series of polygonal numbers, and it is equal to 2 plus the

difference of the arithmetical progression from which the series

is produced. I then choose one of its angles, in order to draw
from the angular point all the diagonals of this polygon, which,

with the two sides containing the angle that has been taken, are

to be indefinitely produced ; after that, I take these two sides,

and the diagonals of the first polygon on the indefinite lines,

each as often as I choose ; and draw, from the corresponding

points marked hy the compass, lines parallel to the sides of the

first polygon ; and divide them into as many equal parts, or by
as many points :is there aro actually in th.^ diagonals and the

two sides produced. This rule is general, iVom the triangle up
to the polygon of an infinite number of sides: and the division
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Indices, I 2 3 4 5 6 7 S 9, &c.

Arith. Prog. 1, 4, 7, 10, 13, 16, 19, 22, 25, kc.

Pentagon, 1, 5, 12, 22, 35, 51, 70, 92, 117, &c.

the indices shewing the side of each pentagon.

433. It follows from this, that if we make the side n, the

pentagonal number will be —-—- = ^
.

Let, for example, n = 7, the pentagon Avill be 70 ; and if

the pentagon, whose side is 100, be required, we make /t =
100, and obtain 14950 for the number sought.

434. If we suppose the difference to be 4, we arrive at

hexagonal numbers, as we see by the following progressions

:

Indices, 12 3 4-367 8 9, &c.

Arith. Prog. 1, 5, 9, 13, 17, 21, 25, 29, 33, &c.

Hexagon, 1, 6, 15, 28, 45, 66, 91, 120, 153, &c.

where the indices still shew the side of each hexagon.

435. So that when the side is w, the hexagonal number is

%f~ — n — n[2n — i); and we have farther to remark, that

all the hexagonal numbers are also triangular ; since, if we
take of these last the first, the third, the fifth, &c. we have
precisely the series of hexagons.

436. In the same manner, we may find the numbers
which are heptagoual, octagonal, &c. It will be sufficient

therefore to exhibit the following Table of formulae for all

numbers that are comprehended under the general name of

polygonal numbers.

Supposing the side to be represented by n., we have

for the

n"-[-n n{n-\-\)
Triangle

Square -

V-JJOll -

2 2

%i-^Qn = «-.
2

Sn-—7i ??(3;i - 1)

2 2

4«- — 2m
vi-gon - ^— = 27i^ — n = n{2n — I).

571--Sn n(5ii-3)
vii-gon — = .

of these figures into triangles might furnish matter for many
curious considerations, and for elegant transformations of the

general formulae, by which the polygonal numbers are ex-

pressed in this chapter ; but it is unnecessary to dwell on tliem

at present. F. T.
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6n" — 4tn
viir-gon -—-— = 3fi- - 2« = ?i{37i — 2).

ix-gon
7n"'~5n 7i{7n-5)

2

87i"~6n , ^ , ^

xi-gon
2 ~ ' 2

xii-gon = 571- — 4fn = ji{5n — 4).

xx-gon ^ = 9«'- — 8n = n(9n — 8).

23n"—2hi nmn-m
xxv-gon ^ = -^

—

.

w-ffon
(m—2)}i"—{m—4<)n

437. So that the side being w, the m-gonal number will

be represented by ^ ; whence we may de-

duce all the possible polygonal numbers which have the side

n. Thus, for example, if the bigonal numbers were re-

quired, we should have m =2, and consequently the number
sought = n ; that is to say, the bigonal numbers are the

natural numbers, 1, 2, 3, &,c. *

n^ -\-n
If we make in = 3, we have --5— for the triangular num-

ber required.

If we make m = 4, we have the square number w", &c.

438. To illustrate this rule by examples, suppose that

the xxv-gonal number, whose side is 36, were required ; we

* The general expression for the m-gonal number is easily

derived from the summation of an arithmetical progression,

whose first term is I , common difference d, and number oC terms

n; as in the following series ; viz. 1 -f (1 +c^) + (l + 2f/) +, &c.

(1 +(?i— l)-rf), the sum of which is expressed by
'-

;

It

but in all casesrf= »i — 2, therefore substituting this value for dy the

. . 2n+ (H2—n). (m-2) (m-2)w*— (m-4)?2
expression becomes ^^ -^—^ —- ^ —
as in the formula.
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look first in the Table for the xxv-gonal number, whose

•1 • ^- • r J u 23«'-21/A ^. ,.
side IS n, and it is tound to be ;:;

. i nen makino; n

= 36, we find 14526 for the number sought.

439- Qiiestion. A person bought a house, and he is

asked liow much he paid for it. He answers that the 365'^^

gonal number of 12 is the number of crowns which it cost

him.

In order to find this number, we make m = 365, and
11 = 12 ; and substituting these values in the general formula,

we find for the price of the house 239T0 crowns *.

* This chapter is entitled " Of Figurate or Polygonal Num-
bers." It is not however without foundation that some alge-

braists make a distinction between Jigiirate numbers and po/y-

gonal numbers. For the numbers commonly cdWediJigurate are

all derived from a single arithmetical progression, and each
series of numbers is formed from it by adding together the

terms of the series which goes before. On the other hand,

every series o'l joolygonal numbers is produced from a different

arithmetical progression. Hence, in strictness, we cannot speak
of a single series of figurate numbers, as being at the same time

a series of polygonal numbers. This will be made more evident

by the following Tables.

TABLE OF FIGURATE NUMBERS.

Constant numbers - - 1. 1.
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CHAP. VI.

Of Geometrical Ratio.

440. The Geometrical ratio of two numbers is found by
resolving the question, Hoxc many times is one of those

numbers greater than the other? This is done by dividing

the one by the other ; and the quotient will express the ratio

required.

441. We have here three things to consider; 1st, the

first of the two given numbers, which is called the antecedent

;

2dly, the other number, which is called the consequent;

3dly, the ratio of th^ two numbers, or the quotient arising

from the division of the antecedent by the consequent. For
example, if the relation of the numbers 18 and 12 be re-

quired, 18 is the antecedent, 12 is the consequent, and the

ratio will be ^1: = H \ whence we see that the antecedent

contains the consequent once and a half.

442. It is usual to represent geometrical relation by two
points, placed one above the other, between the antecedent

and the consequent. Thus, a : b means the geometrical

relation of these two numbers, or the ratio of « to h.

We have already remarked that this sign is employed to

represent division*, and for this reason we make use of it

here ; because, in order to know the ratio, we must divide

a by 6; the relation expressed by this sign being read
simply, a is to b.

443. Relation therefore is expressed by a fraction, whose
numerator is the antecedent, and whose denominator is the

consequent ; but perspicuity requires that this fraction

should be always I'educed to its lowest terms : which is

done, as we have already shewn, by dividing both the

numerator and denominator by their greatest common di-

visor. Thus, the fraction 44 becomes |-, by dividing both
terms by 6.

The algebraists of the sixteenth and seventeenth centuries paid
great attention to these different kinds of numbers and their

mutu;d connexion, and the}^ discovered in them a variety of
curious propertiei* ; but as their utility is not great, they are now
seldom introduced into the systems of mathematics. F. T.

* It v/ili be observed that we have made use of the symbol -=-

for division, as is now usnaily f\onc in books on tliis subiect.

.>
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444. So that relations only differ according as their ratios

are different; and there are as many different kinds of geo-

metrical relations as we can conceive different ratios.

The first kind is undoid)tedlv that in wiiich thf ratio

becomes unity. Tliis case happens wheit the two nuinbers

are equal, as in 3 : 3 : : 4 : 4 :: a : «; the ratio is here 1,

and for this reason we call it the relation of equality.

Next follow those relations in which the ratio is another

whole number. Thus, 4 : 2 the ratio is 2, and is called

doiihlc ratio; 12 : 4 the ratio is 3, and is called triple ratio

:

24 : 6 the ratio is 4, and is called quachuple ratio, Sec.

We may next consider those relations whose ratios are

expressed by fractions; such as 12 : 9, where the ratio is 4,

or 1| ; and 18 : 27, where the ratio is 4, &c. We may also

distinguish those relations in which the consequent contains

exactly twice, thrice, &c. the antecedent : such are the re-

lations 6 : 12, 5 : 15, &c. the ratio of which some call suh-

duple, siihtriplc, &c. ratios.

Farther, we call that ratio rational which is an expressible

number ; the antecedent and consec{uent being integers, such

as 11 : 7, 8:15, &c. and we call that an irrational or surd

ratio, which can neither be exactly expressed by integers,

nor by fractions, such as \/5 : 8, or 4 : a/3.

445. Let a be the antecedent, b the consequent, and d
the ratio. We know alreadv, that a and h being given, we

find d =
-J-:

if the consequent b were given with the ratio,

we should find the antecedent a — bd, because bd divided

by b gives d: and lastly, when the antecedent a is given, and

the ratio d, we find the consequent b — -,-; for, dividing

the antecedent a by the consequent — , we obtain the quo-

d

d

tient d, that is to sa}'^, the ratio.

446. Every relation a : b remains tiie same, if we mul-

tiply or divide the antecedent and consequent by the same
number, because the ratio is the same : thus, for example,

let d he the ratio of a : b, we have o^ — ~r ; now the ratio
o

of the relation na : )ib is also —- =z d, and that of the relation
nb

a ^ • iM • "^— : — IS likewise —, — d>
n n nb

447. When a ratio has been reduced to its lowest terms,

L 2
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it is easy to perceive and enunciate liie relation. For ex-

ample, when the ratio -j- has been reduced to the fraction

—
•, we say a : b = p : q, or a:b::p:q, which is read, a is

to Z* as p is to q. Thus, the ratio of 6 : 3 being ^, or Ti, we
say 6 : 3 : : 2 : 1. We have likewise 18 : 12 : : 3 : 2, and
24 : 18 : : 4 : 3, and 30 : 45 : : 2 : 3, &c. Bat if the ratio

cannot be abridged, the relation will not become more evi-

dent ; for we do not simplify it by saying 9 : 7 : : 9 : 7.

448. On the other hand, we may sometimes change the

relation of two very great numbers into one that shall be
more simple and evident, by reducing both to their lowest

terms. Thus, for example, we can say. 28844 : 14422 :

:

2:1; or, 10566 : 7044 : : 3 : 2 ; or,' 57600 : 25200 :

:

16 : 7.

449. In order, therefore, to express any relation in the

clearest manner, it is necessary to reduce it to the smallest

possible numbers; which is easily done, b}'^ dividing the two
terms of it by their greatest common divisor. Thvis, to re-

duce the relation 57600 : 25200 to that of 16 : 7, we have
only to perform the single operation of dividing the numbers
57600 and 25200 by 3600, which is their greatest common
divisor.

450. It is important, therefore, to know how to find the

greatest common divisor of two given nutnbers; but this

requires a Rule, which we shall explain in the following

chapter.

CHAP. VII.

Of the Greatest Common Divisor of two given Numbers.

451. There are some numbers which have no other com-
mon divisor than unity ; and when the numerator and
denominator of a fraction are of this nature, it cannot be
reduced to a more convenient form*. The two numbers
48 and 35, for example, have no common divisor, though
each has its own divisors; for which reason, we cannot

express the relation 48 : 35 more simply, because the division

of two numbers by 1 does not diminish them.

* In this case, the two numbers are said to be prime to each

other. See Art. 66.

« •
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452. But when the two numbers have a common divisor,

it is found, and even the greatest which they have, by the

following Rule:

Divide the greater of the two numbers by the less; next,

divide the preceding divisor by the remainder ; what remains

in this second division will afterwards become a divisor for

a third division, in which the remainder of the preceding-

divisor will be the dividend. We must continue this opera-

tion till we arrive at a division that leaves no remainder

;

and this last divisor will be the greatest common divisor of

the two given numbers.

Thus, for the two numbers 576 and 252.

252) 576 (2

504

72) 252 (3
216

36) 72 (2

72

0.

So that, in this instance, the greatest common divisor

is 36.

453. It will be proper to illustrate this rule by some other

examples ; and, for this purpose, let the greatest common
divisor of the numbers 504 and 312 be required.

312) 504 (1

312

192)
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JSo that 24 is the greatest coniuion divisor; and con-

sequently ihe relation 504 : 312 is reduced to the form
21 : 13.

454. Let tiie relation 625 : 52D be given, and the greatest

common divisor of these two numbers be re(juircd.

5,^9) 625 (1 .

529

96)
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a — )ih ; therefore d must also be the greatest common
divisor of a and h.

458. These things being laid down, let us divide, ac-

cording to the rule, the greater number a by the less b ;

and let us suppose the quotient to be n ; then the remainder
will hea — nh*, which must necessarily be less than h; and
this remainder a —nb having the same greatest common
divisor with b, as the given numbers a and 6, we have only

to repeat the division, dividing the preceding divisor b by
the remainder a — nb ; and the new remainder which we
obtain will still have, with the preceding divisor, the same
greatest common divisor, and so on.

459. We proceed, in the same manner, till we arrive at a

division without a remainder ; that is, in which the remainder

is nothing. Let therefore p be the last divisor, contained

exactly a certain number of times in its dividend ; this

dividend will evidently be divisible by p, and will have the

form mp\ so that the numbers p and mj) are both divisible

by p : and it is also evident that they have no greater

common divisor, because no number can actually be di-

vided by a number greater than itself; consequently, this

last divisor is also the greatest common divisor of the given

numbers a and b.

460. We will now give another example of the same rule,

requiring the greatest common divisor of the numbers 17!^8

and 2304. The operation is as follows

:

1728) 2304 (1

1728

576)1728 {S

1728

0.

Hence it follows that 576 is the greatest common divisor,

and that the relation 1728 : 2f>04 is reduced to 3:4; that

is to say, 1728 is to 2304 in the same relation as 3 is to 4.

* Thus, b)a - - (n, the supposed quotient.

nb

a— nb '
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CHAP. VIII.

Of Geometrical Proportions.

-iCl. Two geometrical relations are equal when their

ratios are equal ; and this equality of two relations is called

a geometrical propo7-tion. Thus, for example, we write

n : b = c : d, or a : b : : c : d, to indicate that the relation

a : b is equal to the relation c : d; but this is more simply

expressed by sayinrij a is to 6 as c to d. The following is

such a proportion, 8 : 4 : : 1^ : G ; for the ratio of the re-

lation 8 : 4 is 4, or 2, and this is also the ratio of the re-

lation 12:6.

462. So that a : b :: c : d being a geometrical proportion,

the ratio must be the same on both sides, consequently

a C . n -r 1 r •
" ^

i-,- = -y ; and, reciprocally, it the tractions -y- = —j-, we have

a : b : : c : d.

463. A geometrical proportion consists therefore of four

terms, such, that the first divided by the second gives the

same quotient as the third divided by the fourth ; and hence
we deduce an important property, common to all geometrical

proportions, Avhich is, that the product of the first and the

last term is always equal to the product of the second and
third ; or, more simply, that the product of the extremes is

equal to the product of the means.

464. In order to demonstrate this property, let us take

tlie geometrical proportion a : b : : c : d, so that — = -^ •

Now, if we multiply both these fractions by 6, we obtain

(t =
—J-,

and multiplying both sides farther by d^ we have

ud = bc\ but ad is the product of the extreme terms, and
he is that of the means, which two products are found to be
equal.

465. Reciprocally, if the four numbers, a, b, c, d, are such,

that the product of the two extremes, a and d, is equal to

the product of the two means, b and f, we are certain that

they form a geometrical proportion : for, since ad = be, we
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ad

bd
luivc only to divide both sides by hd^ which gives us y-^ =

or -7- = —r, and consequently a : b : : c : d.
hd'

466. Tiie four terms of a geometrical proportion, as

a : b : : c . d, may be transposed in different ways, without

destroying the proportion ; for the rule being always, that

the product of the extremes is equal to the product of the

means, or ad — he, we may say,

Lst. b : a : : d : c; ^dly. a : c : : b : d;

3dly. d : b : : c : a; 4<thly. d: c : : b : a.

467. Beside the.se four geometrical proportions, we may
deduce some others from the same proportion, a : b : : c : d;

for we may say, a -\- b : a : : c -\- d : c, or the first term,

plus the second, is to the first, as the third, plus the fourth,

is to the third ; that is, a + b : a : : c -\- d : c.

We may farther say, the first, minus the second, is to the

first, as the third, minus the fourth, is to the third, or a —
b : a : : c — d : c. For, if we take the product of the ex-

tremes and the means, we have ac — be =^ ac — ad, which

evidently leads to the equality ad — be.

And, in the same manner, we may demonstrate that a +
b : b : : c + d : d; and that a — b : b : : c — d : d.

468. All the proportions which we have deduced from

a ^ b :'. c '. d may be represented generally as follows

:

ma -r nb : pa + qb : : me + nd : pc + qd.

For the product- of the extreme terms is mpac + npbc -\-

mqad + nqbd; which, since ad = be, becomes inpac -\- npbe

+ mqbc -r nqbd; also the product of the mean terms is

inpac + mqbc + npad + nqbd; or, since ad = be, it is

mpac -\- mqbc + npbc -f- nqbd : so that the two products are

equal.

469. It is evident, therefore, that a geometrical pro-

])ortion being given, for example, 6 : 3 : : 10 : 5, an infinite

number of others may be deduced from it. We shall, hovv-

iiver, give only a few ;

3:6:: 5: 10; 6: 10:: 3: 5; 9: 6:: 15: 10;

3 : 3 : : 5 : 5 ; 9 : 15 : : 3 : 5 ; 9 : 3 : : 15 : 5.

470. Since in every geometrical proportion the product of

the extremes is equal to the product of the means, we iTiay,

when the three first terms are known, find the fourth from

them. Thus, let the three first terms be 24 : 15 : : 40 to

the fourth term : here, as the product of the means is 600,

the fourth term multiplied by the first, that is by 24, must
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also make GOO ; consequently, by dividing' GOO by 24 the

quotient 25 will be the fourth term required, and the whole

proportion will be 24 : 15 : : 40 : 25. In general, there-

fore, if the three first terms are a : b : : c, we })ut d for

the unknown fourth letter; and since ad — he, we divide

he
both sides by «, and have d = — ; so that the fourth term

. be . . ,

is —, which is found by multiplying the second term by the

third, and dividing that product by the first.

471. This is the foundation of the celebrated Rule of
Three in Arithmetic; for in that rule we suppose three

numbers given, and seek a fourth, in geometrical proportion

with those three ; so that the first may be to the second, as

the third is to the fourth.

472. But here it will be necessary to pay attention to some
particular circumstances. First, if in two proportions the

first and the third terms are the same, as in « : b : : c : d,

and a
-.f'.

: c : g, then the two second and the two fourth

terms will also be in geometrical proportion, so that bid::
f:g\ for the first proportion being transformed into this,

a : c : : b : d, and the second into this, a : c : :f '. g\'\i fol-

lows that the relations h : d andjT: g are equal, since each

of them is equal to the relation a : c. Thus, for example,

if 5 : 100 : : 2 : 40, and 5 : 15 : : 2 : 6, we must have 100 :

40 : : 15 : 6.

473. But if the two proportions are such, that the mean
terms are the same in both, I say that the first terms will be
in an inverse proportion to the fourth terms : that is, if

>
, ,a : b : : c : d, and /': b : : c : g, it follows that a : f: : g : d.

" '' "Let the proportions be, for example, 24 : 8 : : 9 : 3, and
S ,6 : 8 : : 9 : 12, we have 24 : 6 : : 12 : 3 ; the reason is evi-

dent ; for the first proportion gives ad = be; and the second

gives^g = be; therefore ad —fg-^ and a : f : : g : d, ov a :

g:tf:d.
474. Two proportions being given, we may always pro-

duce a new one by separately multiplying the first term of

the one by the first term of the other, the second by the

second, and so on with respect to the other terms. Thus,
the proportions a : b : : c : d, and e :/:: g : k will furnish

this, ae : bf : : eg : dh ; for the first giving ad = be, and the

second giving eh =fg, we have also adeJi = hcfg; but now
adeh, is the product of the extremes, and hcfg is the product

of the means in the new proportion : so that the two jlroducts

being equal, the proportion is true.

y'^'A
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475. Let the two proportions be 6 : 4 : : 15 : 10, and 9

:

12 : : 15 : 20, their combination will give the proportion

6 X 9 : 4 X 12 :: 15 X 15 : 10 X 20,

or 54 : 48 : : 225 : 200,

or 9 : 8 : : 9 : 8.

476. We shall oljserve, lastly, that if two products arc

equal, nd = be, we may reciprocally convert this equality

into a geometrical jiioportion ; for we shall always have one

of the factors of the first product in tlie same proportion to

one of the factors of the second product, as the other factor

of the second product is to the other factor of the first pro-

duct : that is, in the present case, a : c : : b : d, ov a : b : :

c : d. Let 3x8 = 4x6, and we may form from it this

proportion, 8 : 4 : : 6 : 3, or this, 3 : 4 : : 6 : 8. Likewise,

if 3 x 5 = 1 X 15, we shall have 3 : 15 : : 1 : 5, or 5 : 1 :

:

15 : 3, or 3 : 1 : : 15 : 5.

CHAP. IX.

Observations on the Rules of Proportion and their Utility.

477- This theory is so useful in the common occurrences

of life, that scarcely any person can do without it. There

is always a proportion between prices and commodities ; and

when different kinds of money are the subject of exchange,

the whole consists in determining their mutual relations.

The examples furnished by these reflections will be very

proper for illustrating the principles of proportion, and

shewing their utility by the application of them.

478. If we wished to know, for example, the relation

between two kinds of money ; tjuppose an old louis d'or and

a ducat: we must first know the value of those pieces when
compared with others of the same kind. Thus, an old

louis being, at Berlin, worth 5 rixdollars and 8 drachms, and

a ducat being worth 3 rixdollars, we may reduce these two

values to one denomination ; either to rixdollars, which

gives the proportion IL : ID : : 5|R : 3R, or : : 16 : 9; or

to drachms, in which case we have IL : ID : : 128 : 72 : :

16:9; which proportions evidently give the true relation of

the old louis to the ducat; for the equality of the products

of the cxtrcnjes and the means gives, in both cases, 9 louis

a ^ iJfct/ *.Ut/€^i^-<J C £^ i^£
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~ 16 ducats; and, by means of tliis coniparison, wc may
change any sum of old louis into ducats, and vice-versa.

Thus, suppose it were required to find how many ducats

there are in 1000 old louis, we have this proportion :

Lou. Lou, Due. Due.
As 9 : 1000 : : 16 : 1777|-, the number sought.

If, on the contrary, it were required to find how many old

louis d'or there are in 1000 ducats, we have the following

proportion :

Due. Due. Lou.

As 16 : 1000 : : 9 : 562^ louis. Ans.

479. At Petersburgh the value of the ducat varies, and
depends on the course of exchange ; which course determines

the value of the ruble in stivers, or Dutch halfpence, 105 of

which make a ducat. So that when the exchange is at 45
stivers per ruble, we have this proportion :

As 45 : 105 :: 3 : 7;

and hence this equality, 7 rubles = 3 ducats.

Hence again we shall find the value of a ducat in rubles;

tor

Du. Du. Ru.

As 3 : 1 : : 7 : 24. rubles

;

that is, 1 ducat is equal to 2y rubles.

But if the exchange were at 50 stivers, the proportion

would be.

As 50 : 105 : : 10 : 21

;

which would give 21 rubles = 10 ducats; whence 1 ducat
= 2-^- rubles. Lastly, when the exchange is at 44 stivers,

we have

As 44 : 105 : : 1 : i^'l rubles ;

which is equal to 2 rubles, S8-^ copecks.

480. It follov/s also from this, that we may compare dif-

ferent kinds of money, which we have frequently occasion to

do in bills of exchange.

Suppose, for example, that a person of Petersburgh has

1000 rubles to be paid to him at Berlin, and that he wishes

to know the value of this sum in ducats at Berlin.

The exchange is at 47| ; that is to say, one ruble makes
47| stivers ; and in Holland, 20 stivers make a florin ; 2|-

Dutch florins make a Dutch dollar : also, the exchange of

Holland with Berlin is at 142 ; that is to say, for 100 Dutch
dollars, 142 dollars are paid at Berlin ; and lastly, the ducat

is worth 3 dollars at Berlin.

481. To resolve the (jueslion proposed, let us juoceed
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Step l)y step. Beginning therefore witli the stivers, since

1 ruble = 47i stivers, or 2 rubles = 95 stivers, we shall

have

Ru. Ru. Stiv.

As 2 : 1000 : : 95 : 47500 stivers;

then again,

Stiv. Stiv. Flor.

As 20 : 47500 : : 1 : 2375 florins.

Also, since 2i- florins — 1 Dutch dollar, or 5 florins = 2
Dutch dollars ; we shall have

Flor. Flor. D.D.
As 5 : 2375 : : 2 : 950 Dutch dollars.

Then, taking the dollars of Berlin, according to the ex-

change, at 142, we shall have

D.D. D.D. Dollars.

As 100 : 950 : : 142 : 1349 dollars of Berlin.

And lastly,

Del. Dol. Du.
As 3 : 1349 : : 1 : 449|^ ducats,

which is the number sought.

482. Now, in order to render these calculations still more
complete, let us suppose that the Berlin banker refuses,

under some pretext or other, to pay this sum, and to accept

the bill of exchange without five per cent, discount ; that is,

paying only 100 instead of 105. In that case, we must
make use of the following proportion :

As 105 : 100 : : 449f : 428i|. ducats;

which is the answer under those conditions.

483. We have shewn that six operations are necessary in

making use of the Rule of Three ; but we can greatly

abridge those calculations by a rule wh.ich is called the llule

of'Reduction, or Double Rule of' Three. To explain which,

we shall first consider the two antecedents of each of the six

preceding operations

:

1st. 2 rubles : 95 stivers.

2d. 20 stivers : 1 Dutch florin.

3d. 5 Dutch flor. : 2 Dutch dollars.

4th. 100 Dutch doll. : 142 dollars.

5th. 3 dollars : 1 ducat.

6th. 105 ducats : 100 ducats.

If we now look over the preceding calculations, we shall

observe, that we have always multiplied the given sum by
the third terms, or second antecedents, and divided the pro-

ducts by the first: it is evident, therefore, that we shall
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arrive at the same results by multiplying at once the sum
proposed by the product of all the third terms, and dividing

by the product of all the first terms : or, which amounts to

the same thing, that we have only to make the following

proportion : As the product of all the first terms, is to the

given number of rubles, so is the product of all the second

terms, to the number of ducats payable at Berlin.

484. This calculation is abridged still more, when
amongst the first terms some are found that have common
divisors with the second or third terms ; for, in this case, we
destroy those terms, and substitute the quotient arising from
the division by that common divisor. The preceding ex-

ample will, in this manner, assume the following form.

As (2.20.5.100.3.105) : 1000 :: (95.2.142.100) :

1000.95.2.142.100
, ^ „. ,

9 90 f^ inr> ^ int^ ^ ^ after cancelhng the common di-

visors in the numerator and denominator, this will become

10.19.142
, , ,—n^ "^ ^

^ST
° "= 4.28i-f- ducats, as before.

485. The method which must be observed in using the

Rule of Reduction is this : we begin with the kind of money
in question, and compare it with another which is to begin

the next relation, in which we compare this second kind

with a third, and so on. Each relation, therefore, begins

Avith the same kind as the preceding relation ended with

;

and the operation is continued till we arrive at the kind of

money which the answer requires ; at the end of which we
must reckon the fractional remainders.

486. Let us give some other examples, in order to facilitate

the practice of this calculation.

If ducats gain at Hamburgh 1 per cent, on two dollars

banco; that is to say, if 50 ducats are worth, not 100, but
101 dollars banco ; and if the exchange between Hamburgh
and Konigsberg is 119 drachms of Poland; that is, if 1

dollar banco is equal to 119 Polish drachms; how many-

Polish florins are equivalent to 1000 ducats?

It being understood that 30 Polish drachms make 1

Polish florin,

Here 1 : 1000 : : 2 dollars banco
100 — 101 dollars banco

1 — 119 Polish drachms
31) — 1 Polish florin

;

lliorcforc
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1000.2.101.119
(100.30) : 1000 : : (2.101.119) : ^qq-^q

=
-;> 101 IIQ

t = 8012^ Polish florins. Ans.

487. We will propose another example, which may still

farther illustrate this method.

Ducats of Amsterdam are brought to Leipsic, having in

the former city the value of 5 flor. 4 stivers current ; that is

to say, 1 ducat is worth 104 stivers, and 5 ducats are worth

26 Dutch florins. If, therefore, the agio of the banlc at

Amsterdam is 5 per cent. ; that is, if 105 currency are equal

to 100 banco ; and if the exchange from Leipsic to Am-
sterdam, in bank money, is 133i per cent. ; that is, if for

100 dollars we pay at Leipsic 133^ dollars; and lastly, 2

Dutch dollars making 5 Dutch florins; it is required to

determine how many dollars we must pay at Leipsic, ac-

cording to these exchanges, for 1000 ducats.-^

By the rule,

5 : 1000 : : 26 flor. Dutch curr.

105 — 100 flor. Dutch banco

400 — 533 doll, of Leipsic

5 — 2 doll, banco ;

therefore,

. As (5.105.400.5) : 1000 : : (26.100.533.2) :

1000.26.100.533.2 4.26.533 ^^,« , , ,i

"^71 05.400.5 ^ ""21 = ^""^^^ ''*'"^''' ^''^ "'"""

ber sought.

CHAP. X.

Of Compound Relations.

488, Compound Relations are obtained by multiplying

the terms of two or moi*e relations, the antecedents by the

antecedents, and the consequents by the consequents; we
then say, that the relation between tliose two products is

compounded of the relations given.

Thus the relations a : h, c : d, e \j\ give the compound
relation ace : bdf*.

* Each of these three ratios is said to be one of the mots of

the compound ratio.
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489. A relation continuing always the same, when we
divide both its terms by the same number, in order to

abridge it, we may greatly facilitate the above composition

by comparing the antecedents and the consequents, for the

purpose of making such reductions as we performed in the

last chapter.

For example, we find the compound relation of the fol-

lowing given relations thus

:

Relations given.

12 : 25, 28 : 33, and 55 : 56.

Which becomes

(12.28.55) : (25.33.56) = 2:5
by cancelling the common divisors.

So that 3 : 5 is the compound relation required.

490. The same operation is to be performed, when it is

required to calculate generally by letters ; and the most re-

markable case is that in which each antecedent is equal to

the consequent of the preceding relation. If the given re-

lations are

a : b

b : c

c : d
d : e

e : a
the compound relation is 1 : 1.

491. The utility of these principles will be perceived

when it is observed, that the relation between two square

fields is compounded of the relations of the lengths and

tlie breadths.

Let the two fields, for example, be A and B ; A having

500 feet in length by 60 feet in breadth ; the length of B
being o60 feet, and its breadth 100 feet; the relation of the

lengths will be 500 : 360, and that of the breadths 60 : 100.

So that we have

(500.60) : (360.100) = 5 : Q.

Wherefore the field A is to the field B, as 5 to 6.

492. Again, let the field A be 720 feet long, 88 feet

broad ; and let the field B be 660 feet long, and 90 feet

broad ; the relations will be compounded in the following

manner

:

Refation of the lengths 720 : 660
Relation of the breadths 88 : 90

and by cancelling, the

Relation of the fields A and W is 16 : 15.
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493. Farther, if it be required to compare two rooms

with respect to the space, or contents, we observe, that that

relation is compounded of three relations; namely, that of

the lengths, breadths, and heights. Let there be, for ex-

ample, a room A, whose length is 36 feet, breadth 16 feet,

and height 14 feet, and a room B, whose length is 42 feet,

breadth 24 feet, and height 10 feet; we shall have these

three relations

:

For the length 36 : 42

For the breadth 16 : 24
For the height 14 : 10

And cancelling the common measures, these become 4 : 5.

So that the contents of the room A, is to the contents of the

room B, as 4 to 5.

494. When the relations which we compound in this

manner are equal, there result multiplicate relations. Namely,
two equal i-eiations give a duplicate ratio, or ratio of the

squares ; three equal relations produce the triplicate ratio^

or ratio of the cubes; and so on. For example, the re-

lations a : b and a : b give the compound relation a- : b";

wherefore we say, that the squares are in the duplicate ratio

of their roots. And the ratio a : b multiplied twice, giving

the ratio a^ : b"', we say that the cubes are in the triplicate

ratio of their roots.

495. Geometry teaches, that two circular spaces are in the

duplicate relation of their diameters ; this means, that they

are to each other as the squares of their diameters.

Let A be such a space, having its diameter 45 feet, and

B another circular space, whose diameter is 30 feet ; the first

space will be to the second as 45 x 45 is to 30 x 30 ; or,

compounding these two equal relations, as 9 : 4. Therefore

the two areas are to each other as 9 to 4.

496. It is also demonstrated, that the solid contents of

spheres are in the ratio of the cubes of their diameters : so

that the diameter of a globe. A, being 1 foot, and the

diameter of a globe, B, being 'i feet, the sohd content of A
will be to that of B, as 1^ : 2^ ; or as 1 to 8. If, therefore,

the spheres are formed of the same substance, the latter will

weigh 8 times as much as the former.

497. It is evident that we may in this manner find the

weight of cannon balls, their diameters, and the weight of

one, being given. For example, let there be the ball A,
whose diameter is 2 inches, and weight 5 pounds ; and if the

weight of another ball be required, whose diameter is 8

inches, we have this proportion,

S"' : S"" : : 5 : 320 pounds,
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which gives the weight of the ball B : and for another ball

C, whose diameter is 15 inches, we should have,

23 :\5' :: 5: 2l09|lb.

a c .

498. When the ratio of two fractions, as -r- : -j-, is re-
b a

quired, we may always express it in integer numbers ; for

we have only to multiply the two fractions by bd, in order

to obtain the ratio ad : 6c, which is equal to the other; and

from hence results the proportion -r- : -5- : : ad : be. If,

therefore, ad and be have common divisors, the ratio may be

reduced to fewer terms. Thus a| ; |_5. ; ; (15.36) : (24.25)

: : 9 : 10.

499. If we wished to know the ratio of the fractions

— and ~r. it is evident that we should have — :-;-:: b :

a b a b

a\ which is expressed by saying, that two fractions, which

have unity for their numerator, are in the reeiprocal, or in-

verse ratio of their denominators: and the same thing is

said of two fractions which have any common numerator ; for

c c— : -7- : : b : a. But if two fractions have their deno-
a b

1
ah. -17../.

mmators equal, as — : — , they are m the direct ratio or

the numerators; namely, as a : b. Thus, |- : ^^^ : : -/^ : ^Ig,

or 6 : 3 : : 2 : 1, and V° : r : = 10 : 15, or 2 : 3.

500. It has been observed, in the free descent of iTodies,

that a body falls about 16 English feet in a second, that in

two seconds of time it falls from the height of 64 feet, and in

three seconds it falls 144 feet. Hence it is concluded, that

the heights are to each other as the squares of the times

;

and, reciprocally, that the times are in the subduplicate ratio

of the heights, or as the square roots of the heights *.

If, therefore, it be required to determine how long a stone

will be in falling from the height of 2304 feet ; we have 16 :

2304 : : 1 : 144, the square of the time; and consequently
the time required is 12 seconds.

501. If it be required to determine how far, or through

* The space, through which a heavy body descends, in the
latitude of London, and in the first second of time, has been
found by experiment to be Ifi-J^ English feet; but in calcula-
tions where great accvn-acy is not required, the fraction may be
omitted.
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what height, a stone will pass by descending for the space of

an hour, or 3600 seconds; we must say,

As 1- : 3600^ : : 16 : 207360000 feet,

the height required.

Which being reduced is found equal to 39272 miles; and

consequently nearly five times greater than the diameter of

the earth.

502. It is the same with regard to the price of precious

stones, which are not sold in the proportion of their weight

;

every body knows that their prices follow a much greater

ratio. The rule for diamonds is, that the price is in the

duplicate ratio of the weight; that is to say, the ratio of

the prices is equal to the square of the ratio of the weights.

The weight of diamonds is expressed in carats, and a carat

is equivalent to 4 grains; if, therefore, a diamond of one

carat is worth 10 livres, a diamond of 100 carats will be

worth as many times 10 livres as the square of 100 contains

1 ; so that we shall have, according to the Rule of Three,

As 1 : 10000 : : 10 : 100000 liv. A7is.

There is a diamond in Portugal which weighs 1680 carats

;

its price will be found, therefore, by making
1"-

: 16802 : : 10 : 28224000 livres.

503. The posts, or mode of travelling, in France, furnish

sufficient examples of compound ratios ; because the price is

regulated by the compound ratio of the number of horses,

and the number of leagues, or posts. Thus, for example,

if one horse cost 20 sous per post, it is required to find how
much must be paid for 28 horses for 4i- posts.

We write first the ratio of the horses - - 1 : 28

Under this ratio we put that of the stages - 2 : 9

And, compounding the two ratios, we have - 2 : 252

Or, by abridging the two terms, 1 : 126 : : 1 liv. to 126 fr.

or 42 crowns.

Again, If I pay a ducat for eight horses for 3 miles, how

much must I pay for thirty horses for four miles? The
calculation is as follows

:

8 : 30
3:4

By compounding these two ratios, and abridging,

1 : 5 : : 1 due. : 5 ducats; the sum required.

504. The same composition occurs when workmen are to

be paid, since those payments generally foUov/ the ratio
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compounded of the number of workmen and that of the days

which they have been employed.

If, for example, 25 sous per day be given to one mason,

and it is required what must be paid to 24 masons who have

worked for 50 days, we state the calculation thus

:

1 :
24'

1 : 50

1 : 1200 : : 25 : 30000 sous, or 1500 francs.

In these examples, five things being given, the rule which

serves to resolve them is called, in books of arithmetic, The
Rule of Five, or Double Rule of Three.

CHAP. XI.

Of Geometrical Progressions.

505. A series of numbers, which are always becoming a

certain number of times greater, or less, is called a geo-

metrical progression, because each term is constantly to the

following one in the same geometrical ratio : and the number
which expresses how many times each term is greater than

the preceding, is called the exponent, or ratio. Thus, when
the first term is 1 and the exponent, or ratio, is 2, the geo-

metrical progression becomes.

Terms 1 2 3 + ,5 6 7 R 9 &c.

Prog. 1, 2, 4, 8, 16, 32, 64, 128, 256, &c.

The numbers 1, 2, 3, &c. always marking the place which
each term holds in the progression.

506. If we suppose, in genei'al, the first term to be a,

and the ratio b, we have the following geometrical pro-

gression :

1, 2, 3, 4, 5, 6, 7, 8 n.

Prog. Oy ah, ab", a¥, ab*, a¥, ab^, ab^ .... ab"~\

So that, when this progression consists of n terms, the

last term is nb"~\ We must, however, remark here, that if

the ratio b be greater than unity, the terms increase con-

tinually ; if 6 = 1, the terms are all equal; lastly, if b be
le.ss than 1, or a fraction, the terms continually decrease.

Thus, when « = 1, and b — ~, we have this geometrical

progresision :
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1 I I I I I I I ^Tf.

507. Here, therefore, we have to consider

:

1. The first term, which we have called a.

2. The expoiient, v/liich we call b.

3. The number of terms, which we have expressed by w.

4. And the last term, which, we have already seen, is

ab"-\

So that, Avhen the first three of these are given, the last term
is found by multiplying the n — 1 power of 6, or 5"~', by
the first term a.

If, therefore, the 50th term of the geometrical progression

1, 2, 4, 8, &c. were required, we should have a = 1, b = 2,

and ?^ = 50; consequently the 50ih term would be 2^^; and
as 2-' — 512, we shall have 2 *' — lOji'4 ; wherefore the square

of 2'°, or 2-", — 1048576, aud the uquare of this number,
which is 1099511627776, = 2^°. Multiplving therefore this

value of 2*° by 2^, or 512, we have 2*9 ^ 56:2049953421312
for the 50th term.

508. One of the {)rincipal questions which occurs on this

subject, is to find the sii7n of all the terms of a geometrical

progression ; we shall therefore explain the method of doing
this. Let there be given, first, the following progression,

consisting of ten terms

:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

the sum of which we shall represent by 5, so that

5^1+2 + 4+8 + 16+32 + 64-1-128 + 256+512;

doubling both sides, we shall have

2s--c:2 + 4 +8 + 16 + 32 + 64 + 1 28 + 256 + 512 + 1024

;

and subtracting from this the progression represented by 5,

there remains s — 1024- —
. 1 = 1023; wherefore the sum

required is 1023.

509. Suppose now, in the same progression, that the

number of terms is undetermined, that is, let them be ge-

nerally represented by n, so that the sum in question, or

s, ^1+2 + 22 + 2^ + 2* ... .
2"-'.

If we multiply by 2, we have

25= 2+ 2- + 2^ + 2^-2^ 2";

then subtracting from this equation the preceding one, we
have s = 2^ — 1 ; or, generally, 5 — 2" — 1, It is evident,

therefore, that the sum required is found, by multiplying the

last term, 2"-\ by the exponent 2, in order to have 2", and
subtracting unity from that product.

510. This is made still more evident by the ibllowing
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examples, in which we substitute successively for ii, the

numbers, 1, 2, 3, 4, &c.

1 = 1;1 +2 = 3; 1 i-2 + 4. = 7;l +2 + 4 + 8=15;
l+2 + 4< + 8 + 16 = 31;l+2+4. + 8 + 16 + 32 =
32 X 2 - 1 = 63.

511. On this subject, the following question is generally

proposed, A man offers to sell his horse on the following

condition ; that is, he demands 1 penny for the first nail, ii

for the second, 4 for the third, 8 for the fourth, and so on,

doubling the pi'ice of each succeeding nail. It is required

to find the price of the horse, the nails being 32 in number ?

This question is evidently reduced to finding the sum of

all the terms of the geometrical progression 1, 2, 4, 8, 16,

Sec. continued to the 32d term. Now, that last term is 9?^
;

and, as we have already found 2°-'^ — 1048576, and a-° =
1024, we shall have 2^'^ x S^" = 2^0 = 1073741824; and
multiplying again by 2, the last term 2^^ — 2147483648;
doubling therefore this number, and subtracting unity from
the product, the sum required becomes 4294967295 pence;

which being reduced, we have 17895697/. l^, 3t/. for the

price of the horse.

512. Let the ratio now be 3, and let it be required to find

the sum of the geometrical progression 1, 3, 9, 27, 81, 243,

729, consisting of 7 terms.

Calling the rum s as before, we have

5 = 1 + 3 + 9 + 27 + 81 + 243 + 729.

And multiplying by 3,

3s = 3 + 9 + 27 + 81 + 243 + 729 + 2187.

Then subtracting the former series from the latter, we have
2s = 2187 — 1 = 2186: so that the double of the sum is

2186, and consequently the sum required is 1093.

513. In the same progression, let the number of terms be
n, and the sum s ; so that

s = 1 + 3 4- 3^ + 3^ + 3* + 3"-'.

If now we multiply by 3, we have

3* = 3 + 3- + 3^ + 3^ + 3".

Then subtracting from this expression the value of s, as

3" —

1

before, we shall have 2s = 3" — 1 ; therefore s = —-— . So

that the sum required is found by multiplying the last term
by 3, subtracting 1 from tiie product, and dividing the re-

mainder by 2; as will appear, also, from the following par-

ticular cases :
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(1x3)-

1

2
= 1

H-. - . - (^f^ = .

. 1+8 + 9 - - - (^1^ = 13

I f 3 + 9 + 27 - - iJ^-^ti = 40

1+3+9 + 27 + 81 Sii^ti = 121. •

514. Let us now suppose, generaily, tlie first term to be

a, the ratio 5, the number of terms n, and their sum s,

so that

s = a + ab + ah' + aP + ab* + . . . . ab"~K

If we multiply by b, we have

bs — ab + ab"- \- aP + ab* + a&^ + . . . . ab%

and taking the difference between this and the above equa-

tion, there remains (b — 1) s = ab'^ — a ; whence we easily

a.lb"' ] \

deduce the sum required s — —7—j— . Consequently, the

sum of any geometrical progression is found, by multiplying

the last term by the ratio, or exponent of the progression,

and dividing the difference between this product and the

first term, by the difference between 1 and the ratio.

515. Let there be a geometrical progression of sev'en

terms, of which the first is 3 ; and let the ratio be 2 : we
shall then have a = (i, b = 9,, and u = 7 ; therefore the last

term is 3 x 9f^, or 3 x 64, = 192 ; and the whole pro-

gression will be

3, 6, 12, 24, 48, 96, 192.

Farther, if we multiply the last term 192 by the ratio 2,

we have 384; subtracting the first term, there remains 381 ;

and dividing this by 6 — 1, or by 1, we have 381 for the

sum of the whole progression.

516. Again, let there be a geometrical progression of six

terms, of which the first is 4 ; and let the ratio be -|- : then

the progression is

4 C> Q i 7 81 14-3
-*, U, ^, -J- , -^ , ^ .

If we multiply the last term by the ratio, we shall have

7_^9 . jj^(i subtracting the first term = 4^1, the remainder is

66_5
; which, divided by 6 - 1 = |, gives \? ' =83^ for

the sum of tlie scries.
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517. When the exponent is less than 1, and, consequently,

when the terms of the progression continually diminish, the

sum of such a decreasing progression, carried on to infinity,

may be accurately expressed.

For example, let the first term be 1, the ratio i, and the

sum s, so that

:

.^ - 1 + 1 + i + 4 + ^ + -3^ + 6V» &C.

ad infinitum.

If we multiply by 2, we have

2s = 2-\-'l + i + ^ + ^-\- ^ + -^^+,8cc.

ad infinitum : and, subtracting the preceding progression,

there remains s = 2 for the sum of the proposed infinite

progression.

518. If the first term be 1, the ratio j, and the sum s;

so that

5 = 1 -(- j + i + ^ + ^^- +, &c. ad infinitum

:

Then multiplying the whole by 3, we have

Qs = S + I + i -}- i-
-f- ^ +, &c. ad infinitum

;

and subtiacting the value of s, there remains 2s=o; where-

fore the sum 5 — H.
519. Let there be a progression whose sum is s, the first

term 2, and the ratio | ; so that

6- = 2 + I + I- + f;- +^ +, &c. ad infinitum.

Multiplying by ^, we have
+s =

I-
+ 2 + A + 9 + |:|. f _8^ +, Sec. ad infinitum

;

and subtracting from this progression 5, there remains is =
S-: wherefore the sum required is 8.

520. If we suppose, in general, the first term to be a, and

the ratio of the progression to be — , so that this fraction

may be less than 1, and consequently c greater than b; the

sum of the progression, carried on ad infinitum, will be

found thus:

,,, ,
ab ab- ab"' ab'^

Make .s - a + h — + -:r + —- + , &c.
c c- C C*

Then multiplying by —, we shall have

b ab ab- ab^ ab* , . , .—5 = 1 --\ r -\—r -l- , &t-- ad infinitum

;

c c c- c^ c'^

and subtracting this equation from the preceding, there re-

b^
mams (1 — —)s = a.



CHAP. XI.



170 ELEMENTS SECT. III.

subtracting this last from 1, there remains -^-^, and, if we
divide the first term by this fraction, we have \ for the sum
of the given progression. So that taking only one term of

the progression, namely, -j^^., the error would be -^.

And taking two terms, -^^- + ..j4o-
= tVo? there would

still be wanting —' ^^ to make the sum, which we have seen

524. Let there now be given the infinite progression,

9.-L94_9i9 i_ 9 I Sj-p

The first term is 9, and the ratio is -ji^. So that 1 minus

9
the ratio is -^-^ ; and — = 10, the sum required : which

To'

series is expressed by a decimal fraction, thus, 9*9999999,
&c.

aUESTlONS FOR PRACTICE.

1. A servant agreed with a master to serve him eleven

years without any other reward for his service than the pro-

duce of one grain of wheat for the first year ; and that product

to be sown the second year, and so on from year to year till

the end of the time, allowing the increase to be only in a ten-

fold proportion. What was the sum of the whole produce ?

Am. 111111111110 grains.

N. B. It is farther required, to reduce this number of

grains to the proper measures of capacity, and then by sup-

posing an average price of wheat to compute the value of the

corns in money.

2. A servant agreed with a gentleman to serve him twelve

months, provided he would give him a farthing for his first

month's service, a penny for the second, and 4d. for the

third, &;c. What did his wages amount to ?

Ans, 58251. 8s. 5^d.

3. One Sc's.m, an Indian, having first invented the game
of chess, shewed it to his prince, who was so delighted with

it, that he promised him any reward he should ask ; upon
which Sessa requested that he might be allowed one grain of

wheat for the first square on the chess board, two for the

second, and so on, doubling continually, to 64, the whole

number of squares. Now, supposing a pint to contain 7680

of those grains, and one quarter to be worth 1/. 7s. 6d., it is

required to compute the value of the whole sum of grains.

Ans. 64481488296/.
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CHAP. XII.

0/" Infinite Decimal Fractions.

525. We have already seen, in logarithmic calculations,

that Decimal Fractions are employed instead of" Vulgar

Fractions : the same are also advantageously employed in

other calculations. It will therefore be very necessary to

shew how a vulgar fraction may be transformed into a de-

cimal fraction ; and, conversely, how we may express the

value of a decimal, by a vulgar fraction.

5^6. Let it be required, in general, to change the fraction

-J-,
into a decimal. As this fraction expresses the quotient

of the division of the numerator a by the denominator 6, let

us vv'rite, instead of a, the quantity o'OOOOOOO, whose value

does not at all differ from that of a, since it contains neither

tenth parts, hundredth parts, nor any other parts whatever.

If we now divide the quantity by the number b, according

to the common rules of division, observing to put the point

in the proper place, v/hich separates the decimal and the in-

tegers, we shall obtain the decimal sought. This is the

whole of the operation, which we shall illustrate by some
examples.

Let there be given first the fraction f, and the division in

decimals will assume this form :

2)1 0000000 _ ^
0-5000000 ~ ^'

Hence it appears, that f is equal to 0-5000000 or to 0*5;

which is sufficiently evident, since this decimal fraction re-

presents ^'o, which is equivalent to |.

527. Let now I be the given fraction, and we shall have,

3)10000000 _
^

0-3333333 ^ "'

This shews, that the decimal fraction, whose value is -j,

cannot, strictly, ever be discontinued, but that it goes on, ad
infinitum, repeating always the number 3 ; Avhich agrees

with what has been already shewn. Art. 5^i ; namely, that

the fractious

TO- + -l-o + -ro^oo + ttjIoo. &c. tid infinitum, ^ -i..
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The decimal Traction which expresses the value of ~, is

also continued ad infinitum ; for we have

3)2-0000000 _ ^

~0W66666 ~ ^'

Which is also evident from what we have just said, because

Y is the double of i-.

528. If i- be the fraction proposed, we have

4 ) ] 0000000 _ ^

0-2500000 ~ ^*

So that i is equal to 0-2500000, or to 0-25 : which is

evidently true, since -;^-, or -^V^ , + -^1^ = -/A = I-
In like manner, we should have for the fraction |,

4)0-0000000

"0-7500000 "" '•

So that J = 0-75 : and in fact

_I -4- _ 5 _ =: J 5 — a
I 6 I I b o I o o *

The fraction A is changed iato a decimal fraction, by
making

4)5-0000000 _ ^

1-2500005 " ^'

Now 1 4- -ii-'.-. = i-.

529. In the same manner, i will be found equal to 02;
1= 0-4; I == 0-6; I = 0-8; I = 1; I = 1-2, &c.
When the denominator is 6, we find i = 0-1666666, &c.

which is equal to 0'666666 — 0-5: but 0-666666 = ^, and
0-5 = i-, wherefore 0-1666666 = | - i-; or * - |- = -^.

We find, also, ~ = 0-333333, &c. = -f; but ^ becomes
0-5000000 = i-; also, ^ =0-833333 ^ 0-333333 -\- 0-5,

that is to say, i- + i. ; or |- + |- = |.

530. When the denominator is 7, the decimal fractions

become more complicated. For example, we find ]
—

0-142857; however it must be observed that these six

figures are continually xepeated. To be convinced, there-

fore, that this decimal fraction precisely expresses the value

of i-, we may transform it into a geometrical progression,

whose first term is .^^%1J-, the ratio being -j-^^^^.^-^- ; and
14^857

consequently, the sum — '
°

°

°-—— = ItHH (by mul-
I o o o o o o

tiplying both terms by 1000000) = 4. [See Art. 520.]

531. We may prove, in a manner still more easy, that

the decimal fraction, which we have found, is exactly equal to

Y ; for, by sub^^lituting for its value the letter s, we have
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s = 0- 14285714285'! 14^'857, &c.

105 = 1- 4^2857142857142857, &c.

100s ^ 14- 2857142857142857, &c.

1000s = 142- 857142857142857, &c.

lOOOO.v -^ 1428- 57142857142857, &c.

1000005 = 14285- 7142857142857, Sec.

lOOOOOOs = 142857- 142857142857, &c.

Subtract s = 0- 142857142857, &c.

9999995 := 142857.

And, dividing by 999999, we have s ::^ -k^^J, = 4-

Wherefore the decimal fraction, which was represented by 5,

JS "= T-
532. In the same manner, y may be transformed into a

decimal fraction, which will be 0-28571428, &c. and this

enables us to find more ea.-.ily the value of the decimal

fraction which we liave represented bys; because 028571428,
&c. must be the double of it, and, consequently, = 25. Now
we have seen that

100* = 14-28571428571, &c.

So that subtracting 2* = 0-28571428571, Sec.

there remains 98* = 1

4

wherefore 5 = if = j.

We also find f = 0-42857142857, &c. which, according

to our supposition, must be equal to 3* ; and we have found

that

10* = 1-42857142857, &c. .

So that subtracting 3.9 = 0-42857142857, &c.

we have 7* = 1, wlierefore s = i.

533. When a proposed fraction, therefore, has the de-

nominator 7, the decimal fraction is infinite, and 6 figures

are continually repeated ; the reason of whjch is easy to

perceive, namely, that when we continue the division, a re-

mainder must return, sooner or later, which we have had
already. Now, in this division, 6 different numbers only

can form the remainder, namely, 1, 2, 3, 4, 5, 6 ; so that,

at least, after the sixth division, the same figures must return

;

but when the denominator is such as to lead to a division

without remainder, these cases do not happen.
534. Suppose now that 8 is the denominator of the

fraction proposed : we shall find the following decimal

fractions

:
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i. = 0-125
; \ - 0-25

; \ = 0-375
; |. =z 0-5

;

I =. 0-625
; I-

= 0-75 ; |- = 0-875, &c.

535. If the denominator be 9, we have
1. = 0-111, &c. i = 0-222, &c. 1- ^ 333, &c.

And if the denorninator be 10, we have Vo == 0'1> ro =
0-2, -j^- = 0-3. This is evident from the nature of decimals,

as also, that ^^ = 0-01; ^„^ ^ 0-S7; ^.V'c =^ 0-256;

^,A,U = 0-0024, &c.

^'^^, If 11 be the denominator of the given fraction, we
shall have -jl- = (Id^O^O^O, &c. Now, suppose it were re-

quired to find the value of this decimal fraction : let us call

it .y, and we shall have

s =- 0-090909,

105 = 00-909090,
1005 = 9-09090.

If, therefore, we subtract from the last the value of 5, we
shall liave 99s = 9, and consequently s — ^ = ^: thus,

also,

A = 0-181818, &c.

-pV = 0-272727, &c.

_/_ = 0-545454, &c.

537. There are a great number of decimal fractions,

therefore, in which one, two, or more figures constantly

recur, and which continue thus to infinity. Such fractions

are curious, and we shall shew how their values ma}^ be

easily found *.

* These recurring decimals furnish many interesting re-

searches ; I had entered upon them, before I saw the present

Algebra, and should perhaps have pi'osecuted my inquiry, had
I not likewise found a Memoir in the Philosophical Trnnsacfions

for 176!), entitled The Theory of Circulating Fractions. I shall

content myseirwith stating here the reasoning with which I

began.

71

Let —- be an-y real fraction irreducible to lower terms. And
d •'

suppose it were required to find how many decimal places we
must reduce it to, before the same terms will return again.

In order to determine this, I begin by supposing that 10«

is greater than d ; if that were not the case, and only I00« or

1000n>rf, it would be necessary to begin with trying to reduce

lOn 100« , , r • "*
—T- or —-—, &c. to less terms, or to a traction —-.

d d «'

This being established, I say that the same period can return

only when the same remainder n returns in the continual division.
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Let us first suppose, that a single figure is constant!}' re-

peated, and let us represent it by a, so that s = O'aaaaaaa.

We have
lOs = a'aaaaaaa

and subtracting: s — O'aaaaaaa

we have 95 = a ; wherefore s = -p-.

9
538. When two figures are repeated, as a6, we liave s =

O'ababab. Therefore 100s = ab'ababab; and if we sub-

tract s from it, there remains 99? — ab ; consequently, .y =:

ab

99'

When three figures, as abc, are found repeated, we have
s =z O'abcabcabc; consequently, lOOOv :;= abcabcabc; and
subtracting s from it, there remains 9995 = abc; where-

abc ^

tore s = ^^, and so on.

Whenever, therefore, a decimal fraction of this kind oc-

Suppose thatwhen this happenswehave added* cyphers, and that

q is the integral part of the quotient : then abstracting from the

?? X 1
0'*

71 71

point, we shall have —-— =:q-\-—-; wherefore q =. — x (10"

— 1). Mow, as q must be an integer number, it is required to

n
determiae the least integer number for*, such that — X (10' —

, ,
10*^1

J.) or only that — may be an integer number.
a

7'his problem requires several cases to be distinguished : the

first is that in which d is a divisor of 10, or of 100, or of 1000,
&c and it is evident that in this case there can be no circulating

fraction. For the second case, we shall take that in which d is

an odd number, and not a factor of any power of 10 ; in this

case, the value of 5 may rise to d — 1, but frequently it is less.

A third case is that in which d is even, and, consequently, with-

out being a factor of any power of 10, has nevertheless a com-
mon divisor with one of those pow'ers : this common divisor can

only be a number of the form 2^ ; so that if, — = e,i say, the pe~

riod will be the same as for the fraction —-, but will not com-
d

mence before the figure represented by c. This case comes to

the same therefore with the second case, on which it is evident

the theory depends. F. T.
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curs, it is easy to find its value. Let there be given, for

example, 0296296 : its value will be ^^^ = -^j-, by dividing

both its terms by o7.

This fraction ought to give again the decimal fraction

proposed; and we may easily be convinced that this is the

real result, by dividing 8 by 9, and then that quotient by 3,

because 27 — 3 x 9: thus, we have

9) 8-000000

S) 0-888888

0-296296, &c.

which is the decimal fraction that w^as proposed.

539. Suppose it were required to reduce the fraction

1

"i—S—T,

—

A—S

—

r
—^~5—K^~r?^^> to a decmial. The

Ix2x:5x4x5xox7x8x9xl0
operation would be as follows :

2) 1 00000000000000

3)
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CHAP. XIII.

Of the Calculation of Interest *.

540. We are accustomed to expi-ess the interest of any
principal by per cents, signifying how much interest is an-

nually paid for the sum of 100 pounds. And it is very

usual to put out the principal sum at 5 per cent ; that is, on
such terms, that we receive 5 pounds interest for every 100
pounds principal. Nothing therefore is more easy than to

calculate the interest for any sum ; for we have only to say,

according to the Rule of Three

:

As 100 is to the principal proposed, so is the rate per
cent to the interest required. Let the principal, for ex-

ample, be 860/., its annual interest is found by this pro-

portion :

As 100 : 5 : : 860 : 43.

Therefore 43/. is the annual interest.

541. We shall not dwell any longer on examples of

Simple Interest, but pass on immediately to the calculation

of Compound Interest ; in which the chief subject of inquiry

is, to what sum does a given principal amount, after a

certain number of years, the interest being annually added
to the principal. In order to resolve this question, we begin

with the consideration, that 100/. placed out at 5 per cent,

becomes, at the end of a year, a principal of 105/. : therefore

let the principal be a ; its amount, at the end of the year,

will be found, by saying ; As 100 is to a, so is 105 to the

answer; which gives

* The theory of the calculation of interest owes its first im-

provements to Leibneitz, who delivered the principal elements

of it in the Acta Eruditorum of Leipsic for 1683. It was after-

wards the subject of several detached dissertations written in a

very interesting manner. It has been most indebted to those

mathematicians who have cultivated political arithmetic j
in

which are combined, in a manner truly useful, the calculation

of interest, and the calculation of probabilities, founded on the^

data furnished by the bills of mortality. We are still in want of

a good elementary treatise of political arithmetic, though this

extensive branch of science has been much attended to in

England, France, and Holland. F. T.

N
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105a _ 21a _ ^

,

_
loo" - 20" ~ ^ ^ "' ~ " "* ^'°^'

542. So that, when we add to the original principal its

twentieth part, we obtain the amount of the principal

at the end of the first year : and adding to this its twentieth

part, we know the amount of the given principal at the end
of two years, and so on. It is easy, therefore, to compute the

successive and annual increases of the principal, and to con-

tinue this calculation to any length.

543. Suppose, for example, that a principal, which is at

present 1000/., is put out at five per cent; that the interest

is added every year to the principal ; and that it were re-

quired to find its amount at any time. As this calculation

must lead to fractions, we shall employ decimals, but with-

out carrying them farther than the thousandth parts of a

pound, since smaller parts do not at present enter into con-

sideration.

The given principal of 1000/. will be worth

after 1 year - - - 1050/.

52-5,

after 2 years - - - 1102*5

55-125,

after 3 years - - - 1157*625
57-881,

after 4 years - - - 1215*506
60*775,

after 5 years - - - 1276*281, &c.

which sums are formed by always adding -^ of the pre-

ceding principal.

544. We may continue the same method, for any number
of years ; but when this number is very great, the calcu-

lation becomes long and tedious; but it may always be
abridged, in the following manner

:

Let the present principal be a, and since a principal of

20/. amounts to 21/. at the end of a year, the principal a will

amount to — . a at the end of a year ; and the same prin-

21-
cipal will amount, the following year, to ^„ . a = (|i)- . a.

Also, this principal of two years will amount to (|4/ • ^j the

year after: which will therefore be the principal of three

years; and still increasing in the same manner, the given
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principal will amount to (^4)* . a at the end of four years

;

to {'^y . a, at the end of five years ; and after a century,

it will amount to (—y^ . « ; so that, in general, (^f)" . a
will be the amount of this principal, after n years ; and this

formula will serve to determine the amount of the principal,

after any number of years.

545. The fraction ~y, which is used in this calculation,

depends on the interest having been reckoned at 5 per cent.,

and on |i being equal to 4-54- ^^'^^ ^^ ^^^^ interest were
estimated at 6 per cent, the principal a would amoimt to

444 • ^9 at the end of a year ; to (4§^^)'^ • «> at the end of

two years ; and to ^-§4" • ^» at the end of n years.

If the interest is only at 4 per cent, the principal a will

amount only to (4§4)" • ^j after n years.

54*6. When the principal a, as well as the number oi

years, is given, it is easy to resolve these formulas l>y loga-

rithms. For if the question be according to our first sup-

position, we shall take the logarithm of (^i)" . a, which is

= log: (4^)" + log. a; because the given formula is the

product of (14)" and a. Also, as (|4)" is a power, we shall

have log. (44)" = ^^ ^^g' 14* ^^ ^^^at the logarithm of the

p.mount required is n log. ~ + log. a; and farther, the

logarithm of the fraction 44 == ^^g. 21 — log. 20.

547. Let now the principal be lOOOZ. and let it be required

to find how much this principal will amount to at the end of

100 years, reckoning the interest at 5 per cent.

Here we have 71 = 100; and, consequently, the logarithm

of the amount required will be 100 log. 44 + ^^&- 1000,

which is calculated thus

:

log. 21 = 1-3222193

subtracting /og. 20 = 1-3010300

log.^
multiplying by 100

100%. 14=2-1189300
adding log. 1000 = 3-0000000

gives 5-1189300 which is tlie loga-

rithm of the principal required.

We perceive, from the characteristic of this logarithm,

that the principal required will be a number consisting of

six figures, and it is found to be 131501/

548. Again, suppose a principal of 3452/. were put out at

6 per cent, what would it amount to at the end of C4

years ?



ISO ELEMENTS SECT. III.

We have here a — 3452, and n — 64. Wherefore the

logarithm of the amount sought is

64 log. ^ + log. 3452, which is calculated thus

:

log. 53 = 1-7242759

subtracting log. 50 = 1-6989700

log, II = 0253059
multiplying by 64

64 log. i± = 1-6195776

log. 3452 = 3-5380708

which gives 5*1576484

And taking the number of this logarithm, we find the

amount required equal to 143763/.

549. When the number of years is very great, as it is re-

quired to multiply this number by the logarithm of a frac-

tion, a considerable error might arise from the logarithms in

the Tables not being calculated beyond 7 figures of decimals

;

for which reason it will be necessary to employ logarithms

carried to a greater number of figures, as in the following

example.

A principal of 1/. being placed at 5 per cent., compound
interest, for 500 years, it is required to find to what sum this

principal will amount, at tlie end of that period.

We have here a = \ and n = 500 ; consequently, the

logarithm of the principal sought is equal to 500 log. |i +
log. 1, which produces this calculation :

log. 21 = 1-322219294733919
subtracting lug. 20 = 1 -301029995663981

log. 1.1, = 0-021189299069938
multiply by 500

500 log. i-L = 10-594649534969000, tlie loga-

rithm of the amount required ; which will be found equal to

39323200000/.
550. If we not only add the interest annually to the prin-

cipal, but also increase it every year by a new sum b, the

original principal, which we call a, would increase each year

in the following manner

:

after 1 year, |ia + 6,

after 2 years, {^)"a + |-i6 + b,

after 3 years, (^)^tf + {U)'^ + U^ + b,
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after 4 years, (UY^i + (|4) '& + (UY^ +Ub + b,

after n years, (^);«+ (|^)''-;Hai)"-^/> + |i6, he.

This amount evidently consists of two parts, of which the

first is (l^)"a; and the other, taken inversely, forms the

series b -\-^-lb + {^Yb + (Ufb + ... . (|' )"-'6; which^

series is evidently a geometrical progression, the ratio of

which is equal to ~, and we shall therefore find its sum, by
first multiplying the last term {irl)"~^b by the exponent |^ .;

which gives (iiy-i. Then, subtracting the first term b, there

remains {^Yb — b; and, lastly, dividing by the exponent

minus 1, that is to say by ^'5-, we shall find the sum required

to be W{\l)"b—20b; therefore the amount sought is,

(UN + 20(-|i)"6-206 = (|i)» X (a + 20b) — Wb.

551. The resolution of this fornuda requires us to cal-

culate, separately, its first term (44)" ^ i" + 20A), which is

u log. 4-^ -r log. {a-r20(')); for the number which answers

to this logarithm in the Tables will be the first term ; and
if from this we subtract ^20b, we shall have the amount
sou<>ht.

552. A person has a principal of 1000/. placed out at

five per cent, compound interest, to which he adds annually

100/. beside the interest : what will be the amount of this

principal at the end of twenty-five years ?

We have here «= 1000 ; 6 ==100; n=^:i5; the operation

is therefore as follows :

/o^.. 4^^0-021189299

Multiplying by 25, we have

25 log. 41- =0-529732 1-750

log. («-F 206) =3-4771213135

And the sum = 4-0068537885.

So that the first part, or the number which answers to this

logarithm, is 10159-1, and if we subtract 206^2000, we
find that the principal in question, after twenty-five years,

will amount to 8159'1/.

553. Since then this })rincipal of 1000/. is always in-

creasing, and after twenty-five years amounts to 8159r'o^-

we may require, in how many years it will amount to

1000000/.

Let « be the number of years required : and, since a =
1000, 6= 100, the principal will be, at the end of « years,

(4^)«.(3000) - 2000, which sum must make 1000000;

Irom it therefore results this equation

;

3000 . (_UY~ 2000 = 1000000;
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And adding 2000 to both sides, We have

3000 . (i^)" ^ 1002000.

Then dividing both sides by 3000, we have (-|-^)" = 334.

Taking the logarithms, n log. |i = log. 334 ; and di-

loo-. 334
viding by log. | ', we obtain n = . ^ ^ ^

-. Now, log. 334

- 2-5237465, and log. ^^ = 0-0211893 ; therefore n =
2*5237465
TT^-TF^r, ; and, lastly, if we multiply the two terms of this
00211893 ' ' -^

'

i^ y

fraction by 10000000, we shall have n = ^:|4|^||, = 119

years, 1 month, 7 days ; and this is the time, in which the

])rincipal of 1000/. will be increased to lOOOOOOZ.

554. But if we supposed that a person, instead of annually

increasing his principal by a certain fixed sum, diminished

it, by spending a certain sum every year, we should have

the following gradations, as the values of that principal «,

year after year, supposing it put out at 5 per cent, com-

pound interest, and representing the sum which is annually

taken from it by Z*

:

after 1 year, it would be ^^a—b,
after 2 years, (Uya-U^^-b,
after S years, (|')Vi-(|i)^6-i^&-6,

after n years, {UYa-iUT-'b-i^r-'b . . .-{^)b-b.
555. This principal consists of two parts, one of which is

{l^)' . (I, and the other, which must be subtracted from it,

taking the terms inversely, forms the following geometrical

progression

:

b + (U)i^ + {iyyb + iuyb + . . . . iUY-'b.
Now we have already found (Art. 550.) that the sum of this

progression is20(^i)"Z»— 206; if, therefore, we subtract this

quantity from (|4)'* • ^h we shall have for the principal rc-

(|uired, after 7i years =
(t^)"-(«-206)4-206.

556. We might have deduced this formula immediately

from that of Art. 550. For, in the same manner as we an-

nually added the sum b, in the former supposition ; so, in

the ])resent, we subtract the same sum b every year. We
l)ave therefore only to put in the former formula, —b every

where, instead of + b. But it must here be particularly re-

marked, that if 206 is greater than o, the first part becomes
negative, and, consequently, the principal will continually

diminish. This will be easily perceived ; for if we annually

take away from the principal more than is addetl to it by tiie

interest, it is evident tiiat this principal must continually be-
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come less, and at last it will be absolutely reduced to

nothing; as will appear from the following example :

557. A person puts out a principal of 100000/. at 5 per
cent interest ; but he spends annually 6000/. ; which is

more than the interest of his principal, the latter being only

5000/. ; consequently, the principal will continually diminish
;

and it is required to determine, in what time it will be all

spent.

Let us suppose the number of years to be ?», and since

a = 100000, and 6= 6000, we know that after n years the

amount of the principal will be — 20000 {^Lf + 120000,
or 120000 - 20000(|i)», where the factor, -20000, is the

result of «-206 ; or 100000 — 120000.

So that the principal will become nothing, when 20000(ii^)"

amounts to 120000; or when 20000(|-i)" = 120000. Now,
dividing both sides by 20000, we have (|4^)" = 6 ; and
taking the logarithm, we have n log. (ii) = log. 6 ; then

dividmg by log. 14? we have n = -j-^——, or w = - - -
log. -jr^

0-7781513 ,
, OP o 1

TTTr^YToQQ' ^"d, consequently, n = ob years, o months,

22 days ; at the end of which time, no part of the principal

will remain.

558. It will here be proper also to shew how, from the

same principles, we may calculate interest for times shorter

than v>'hole years. For this purpose, we make use of the

formula (1^^)". a already found, which expresses the amount
of a principal, at 5 per cent, compound interest, at the end
of n years ; for if the time be less than a year, the exponent

n becomes a fraction, and the calculation is performed by
logarithms as before. If, for example, the amount of a

principal at the end of one day were required, we should

make n = j-iy ; if after two days, n = -j^-^, and so on.

559. Suppose the amount of 100000/. for 8 days were

required, the interest being at 5 per cent.

Here a = 100000, and w = ^|y, consequently, the
8_

amount sought is (14^)^^^ x 100000 ; the logarithm of which

(luantity is log. (|J,)"^^+ log. 100000 = ^1^- log. \% V log.

100000. Now, log. ^ = 0-0211893, which, multiplied by

ylj-, gives 0-0004644, to which adding

log. 100000=50000000

the sum is 5-0004644.
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The natural number of this logarithm is found to be
100107. So that, subtracting the principal, 100000 from
this amount, the interest, for eight days, is 107/.

560. To this subject belongs also the calculation of the

present value of a sum of money, which is payable only after

a term of years. For as 20/., in ready money, amounts to

21/. in a year ; so, i-eciprocally, a sum of 21/., which cannot
be received till the end of one year, is really worth only 20/.

If, therefore, we express, b}^ cr, a sum whose payment is due
at the end of a year, the present value of this sum is ^^a ;

and therefore to find the present worth of a principal a,

payable a year hence, we must multiply it by ~ ; to find its

value two years before the time of payment, we multiply it

by i^^fa ; and in general, its value, n years before the time

of payment, will be expressed by (^^)"«.

561. Suppose, for example, a man has to receive for

five successive years, an annual rent of 100/. and that he
wishes to give it up for ready money, the interest being at

5 per cent ; it is required to find how much he is to receive.

Here the calculations may be made in the following

manner

:

For 100/. due
after 1 year, he receives 95*239
after 2 years - - - 90-704.

after 3 years - - - 86-385
after 4 years - - - 82-272
after 5 years - - - 78-355

Sum of the 5 terms = 43^^55
So that the possessor of the rent can claim, in ready money,
only 432-955/.

562. If such a rent were to last a greater number of

years, the calculation, in the manner we have performed it,

would become very tedious; but in that case it may be
facilitated as follows :

Let the annual rent be a, which commencing at present,

and lasting 7i years, will be actually worth

« t (^^^^-^ + (^.t)'^ + i^y? + (It)'" . . • • +i^)"a.
This is a geometrical progression, and the whole is reduced
to finding its sum. We therefore multiply the last term by
the exponent, the product of which is {ll)"+^a; then, sub-

stracting the first term, there remains (|t)"'^'^"~«; and,

lastly, dividing by the exponent minus 1, that is, by — -^ij-,

or, which amounts to the same, multiplying by — 21, wc
shall have the sum recpiircd,

-21 . (^4)"+' . a + 21«, or, 21«-21 .
(14)""'-' . a ;
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and the value of the second term, which it is required to

subtract, is easily calculated by logarithms.

QUESTIONS FOR PRACTICE.

1. What will 375/. 10^. amount to in 9 years at 6 per

cent, compound interest ? Ans. Q6M, S*.

2. What is the interest of 1/. for one day, at the rate of

5 per cent. ? Ans. 0-0001a69863 parts of a pound.

3. What will 365/. amount to in 875 days, at the rate of

4 per cent. ? Ajis. 400/.

4. What will 2561. lOs. amount to in seven 7 years, at the

rate of 6 per cent, compound interest? Atis. 385/. I3s. lid.

5. What will 563/. amount to in 7 years and 99 days,^ at

tlie rate of 6 per cerit. compound interest ? Ans. 860/.

6. What is the amount of 400/, at the end of 3^ years, at

6 per cent, compound interest ? Ans. 490/. Ws. l\d.

7. What will 320/. 10^. amount to in four years, at 5per

cent, compound interest? Ans. 389/. H*'. ^\d.

8. What will 650/. amount to in 5 years, at 5 per cent.

compound interest? Ans. 829/. Ws. Ihd.

9. What will 550/. 10s. amount to in 3 years and 6

months, at Qper cent, compound interest ? Ans. 615L 6s. 5d.

10. What will 15/. 10.$. amount to in 9 years, at 3| per

cent, compoui^d interest? Ans. 21/. 25. 4>ld.

11. What IS the amount of 550/. at 4 per cent, in seven

months ? Ans. 562/. 16*. 8d.

12. What is the amount of 100/. at 1SI per cent, in nine

years and nine, i^nths ? Ans. 200/.

13. If a principal x be put out at compound interest for x
years, at x per cent, required the time in which it will gain x.

Ans. 8-49824 years.

14. What sum, in ready money, is equivalent to 600/.

due nine months hence, reckoning the interest at 5per cent. P

Ans. 578/. 6s. 3i(/.

15. What sum, in ready money, is equivalent to an an-

nuity of 70/. to commence 6 years hence, and then to continue

for 21 years at 5 per cent, f Ans. 669/. 14s. Oy.
16. A man puts out a sum of money, at 6 per cent., to

continue 40 years ; and then both principal and interest are

to sink. What is that per cent, to continue for ever ?

Ans. 52 per cent.
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SECTION IV.

Of Algebraic Equations, and the Resolution of them.

CHAP. I.

Of the Solution of Problems in general.

^^^. The principal object of Algebra,, as well as of all the

other branches of Mathematics, is to determine the value of

quantities that were before unknown ; and this is obtained

by considering attentively the conditions given, which are

always expressed in known numbers. For this reason,

Algebra has been defined. The science which teaches how to

determine unknown quantities hi^ means of those that are

known.
564. The above definition agrees with all that has been

hitherto laid down : for we have always seen that the know-
ledge of certain quantities leads to that of other quantities,

which before might have been considered as unknown.
Of this, Addition will readily furnish an example ; for, in

order to find the sum of two or more given numbers, we had
to seek for an unknown number, which should be equal to

those known numbers taken together. In Subtraction,

we sought for a number which should be equal to the dif-

ference of two known numbers. A multitude of other ex-

amples are presented by Multiplication, Division, the In-

volution of powers, and the Extraction of roots; the ques-

tion being always reduced to finding, by means of known
quantities, other quantities which are unknown.

665. In the last section, also, different questions were re-

solved, in which it was required to determine a number that

could not be deduced from the knowledge of other given

numbers, except under certain conditions. All those ques-

tions were reduced to finding, by the aid of some given

numbers, a new number, which should liave a certain con-

nexion with tlicm ; and this connexion was determined by
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certain conditions, or properties, which were to agree with

the quantity sought.

566. In Algebra, when we have a question to resolve,

we represent the number sought by one of the last letters of

the alphabet, and then consider in what manner the given

conditions can form an equality between two quantities.

This equality is represented by a kind of formula, called

an equation, which enables us finally to determine the value

of the number sought, and consequently to resolve the

question. Sometimes several numbers are sought ; but they

are found in the same manner by equations.

567. Let us endeavour to explain this farther by an ex-

ample. Suppose the following question, or problem, was

proposed

:

Twenty persons, men and women, dine at a tavern ; the

share of the reckoning for one man is 8 shillings, for one

woman 7 shillings, and the whole reckoning amounts to

7/. 5s. Required the number of men and women sepa-

rately ?

In order to resolve this question, let us suppose that the

number of men is = jr; and, considering this number as

known, we shall proceed in the same manner as if wc wished

to try whether it corresponded with the conditions of the

question. Now, the number of men being — x, and the

men and women making together twenty persons, it is easy

to determine the number of the women, having only to sub-

tract that of the men from 20, that is to say, the number of

women must be 20 — .r.

But each man spends 8 shillings ; therefore x number of

jnen must spend 8x shillings. And since each woman spends

7 shillings, 20— a; women must spend 140 — 7a? shillings.

So that adding together 8x and 140— 7^, we see that the

whole 20 persons must spend 140+^ shilhngs. Now, wc
know already how much they have spent ; namely, 71. 5s,

or 145s ; there must be an equality, therefore, between

140 + X and 145 ; that is to say, we have the equation

140 + a;= 145, and thence we easily deduce x= 5y and con-

sequently 20— a; = 20 — 5= 15; so that the company con-

sisted of 5 men, and 15 women.
568. Again, Suppose twenty persons, men and women,

go to a tavern ; the men spend 24 shillings, and the women
as much : but it is found that the men have spent 1 shilling

each more than the women. Required the number of men
and women separately ?

Let the number of men be represented by x.
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Then the women will he 20— a;.

Now, the X men having spent 24 sliillings, the share of

24
each man is — . The 20 — .r women having also spent 24

.24
shillings, the share of each woman is -pr- .^ 20— a;

But we know that the share of eacli woman is one shJUing

less than that of each man ; if, therefore, we subtract 1 fi'om

the share of a man, we must obtain that of a woman ; and

24 24 .

consequently 1 = ^ . This, therefore, is the equa-

lion, from which we are to deduce the value of x. Tiiis

value is not found with the same ease as in the preceding-

question ; but we shall afterwards see that .r = 8, which
value answers to the equation; for y- — 1 = j-+ includes

the equality 2 =: 2.

569. It is evident therefore how essential it is, in all pro-

blems, to consider the circumstances of the question at-

tentively, in order to deduce from it an equation that shall

express by letters the numbers sought, or unknown. After

that, the whole art consists in resolving those equations, or

deriving from them the values of the unknown numbers;
and this shall be the subject of the present section.

570. We must remark, in the first place, the diversity

which subsists among the questions themselves. In some,

we seek only for one unknown quantity ; in others, we have

to find two, or more ; and, it is to be observed, with regard

to this last case, that, in order to determine them all, we
must deduce from the circumstances, or the conditions of

the problem, as many equations as there Lve unknown
quantities.

571. It must have already been perceived, that an equa-

;tion consists of two parts separated by the sign of equality,

.= , to shew that those two quantities are equal to one an-

other; and we are often obliged to perform a great number
of transformations on those two parts, in order to deduce

from them the value of the unknown quantity : but these

transformations must be all founded on the following prln-

cioles; namely, That two equal quantities remain equal,

whether we add to them, or subtract from them, equal

quantities; whether we multiply them, or divide them, by

the same number ; whether we raise them both to the same

power, or extract their roots of the same degree ; or lastly.



CHAP. II. OF ALGEBRA. 189

whether we take the logarithms of those quantities, as wo
have already done in the preceding section.

572. The equations which are most easily resolved, are

those in which the unknown quantity does not exceed the

first power, after the terms of the equation have been pro-

perly arranged ; and these are called simple equations^ or

equations of the /i7'st degree. But if, after having reduced

an equation, we find in it the square, or the second power,

of the unknown quantity, it is called an equation of the

second degree, which is more difficult to resolve. Equations

ofthe third degree are those which contain the cube of the

unknown quantity, and so on. We shall treat of all these

in the present section.

CHAP. II.

Ofthe Resolution o/" Simple Equations, or Equations of the

Eirst Degree.

573. When the number sought, or the unknown quantit}-,

is represented by the letter x, and the equation we have ob-

tained is such, that one side contains only that x, and the

other simply a known number, as, for example, x = 25, the

value of X is already known. We must always endeavour,

therefore, to arrive at such a form, however complicated the

equation may be when first obtained : and, in the course of

this section, the rules shall be given, and explained, which

serve to facilitate these reductions.

574. Let us begin with the simplest cases, and suppose,

first, that we have arrived at the equation .r -{- 9 = 16.

Here we see immediately that x — 1 : and, in general, if

we have found x -\- a = b, where a and h express any
known numbers, we have only to subtract a from both

sides, to obtain the equation x — h — a, which indicates the

value of X.

575. If we have the equation x — a — b, vie must add
a to both sides, and shall obtain the value o^ x ^= b -\- a.

We must proceed in the same manner, if the equation liave

this form, x — a — a" -{ \ : for we shall immediately find

a; = a- + a + 1.

In the equation x — 8a = 20 — 6a, we find

X = 20~6a -i- Sa, or x = W + 2a.
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And in this, .r + G« = 20 + fin, we have
.T = 20 + 3a - 6a, or x = 9.0 - 8«.

576. If the original equation have this form, x ~ a +
b = c, we may begin by adding a to both sides, which will

give X -{- b = c + a; and then subtracting b from both

sides, we shall find x = c -{ a — b. But we might also

add + a — 6 at once to both sides ; and thus obtain im-

mediately X = c + a — b.

So likewise in the following examples

:

If X — 2a + 3b = 0, we have x = 2a — Sb.

If X —Sa -\- 2b = 25 + a + 2bj we have ^ = 25 + 4«.

If X — 9 -h 6a = 25 + 2a, we have ^ = 34 — 4a.

577. When the given equation has the form ax = b, wc

only divide the two sides by a, to obtain x = — . But if the

equation has the form ax + b — c = d, we must first make
the terms that accompany ax vanish, by adding to both

sides — b + c; and then dividing the new equation ax =

d — b -{- c by a, we shall have x = .
•^ a

The same value of x would have been foun(J by sub-

tracting + b — c from the given equation ; that is, wq
should have had, in the same form,

ax = d — b + c, and x = . Hence,
a

If Sa? -|- 5 = 17, we have 2x = 12, and x = 6.

If 3a? — 8 = 7, we have Sx — 15, and a; = 5.

If 4.r — 5 - 3« = 15 -H 9a, wc have 4aT = 20 + 12rt,

and consequently x = 5 \- 3a.

00

578. When the first equation has the form — = 6, we

multiply both sides by a, in order to have x = ab.

00 00

But if it is \- b — c = d, we must first make — = d
a a

— b + 6- ; after which we find

X ^= {d — b -\- c)a — ad — ab -\- ac.

Let ja; — 3 = 4, then f;r = 7, and x = 14.

Let ix — 1 -\- 2a = 3 + a, then §a; = 4 — a, and x =
12 - 3a.

Let — 1 = a, then = a -\- I, and x =«- — !.
rt — I a— 1

579. When wc have arrived at such an equation as
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-r- = c,we first multiply by b, in order to have ax = be,

be
and then dividing by a, we find x = —

.

If -7 c = cZ, we begin by giving the equation this

form -y- = d + c; after which we obtain the value of

bd + be
ax — bd + bc^ and then that of a? = .

a

Let *^ — 4 = 1, then ^x = 5, and 2a: = 15 ; whence

If 1^7 4- f = 5, we have fa: = 5 — | = f ; whence 3/r=
18, and x — Q.

580. Let us now consider a case, which may frequently

occur ; that is, when two or more terms contain the letter a:,

either on one side of the equation, or on both.

If those terms are all on the same side, as in the equation

X -\- \x \- 5 = 11, we have x 4- |a; = 6 ; or 3a: = 12 ; and
lastly, a; = 4.

Let X ^ \x 4- fa: = 44, be an equation, in which the

value of X is required. If we first multiply by 3, we have

4!X + \x = 132; then multiplying by 2, we have 11a: =
264 ; wherefore x = 24. We might have proceeded in a

more concise manner, by beginning with the reduction of

the three terms which contain x to the single term ^x ; and
then dividing the equation ^x = 44 by 11. This would
have given fa: = 4, and r = 34, as before.

Let |a: — Ja; + fa: = 1. We shall have, by reduction,
_s_a: = 1, 5a: = 12, and x = 2|-.

And, generally, let ax ^ bx + ca* = d; which is the

same as (a — b -\- c)x = d, and, by division, we derive x=-

d

a—b+c
581. When there are terms containing x on both sides of

the equation, we begin by making such terms vanish from

that side from which it is most easily expunged ; that is to

say, in which there are the fewest terms so involved.

If we have, for example, the equation 3a: + 2=ar+10,
we must first subtract x from both sides, which gives 2a: +
2 = 10 ; wherefore 2.r = 8, and a: = 4.

Let X + 4 = 20 — a: ; here it is evident that 2x + 4 =
20; and consequently 2a: = 16, and a: = 8.
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Let X + 8 ~ 3^ — Sx, this gives us Av + 8 == 32 ; or

4>x = 24, whence x =z 6.

Let 15 — X = 20 — 2r, here we shall have

15 + a; = 20, and ^ = 5.

Let 1 + X — 5—^x; this becomes 1 -^ 1.x = 5, or lx=
4; therefore Sx = 8; and lastly, x = ^ = 2^.

If A. — -i-x = i — ^x, we must add i^-, which gives i =
-I. + ~x ; subtracting ~, and transposing the terms, there

remains -^x = ^; then multiplying by 12, we obtain x—2.
If 1^ — fa: r= I + ^x, we add ~x, which gives li; =i +

Ix; then subtracting f, and transposing, we have ^x = If,

whence we deduce .r = 1-^'^ = 44 by multiplying by 6 and

dividing by 7.

582. If we have an equation in which the unknown num-
ber X is a denominator, we must make the fraction vanish by
multiplying the whole equation by that denominator.

Suppose that we have found 8 = 12, then, adding

8, we have —;- = 20 ; and multiplying by x, it becomes

100 = 20a,- ; lastly, dividing by 20, we find x = 5.

5x + 3
Let now —^—r- = 7; here multiplying by ^' — 1, we

have 5^ + 3 — 7^ — 7; and subtracting 5x, there remains

S = 2x — 7 ; then adding 7, we have 2x = 10; whence

X — 5.

583. Sometimes, also, radical signs are found in equations

of the first degree. For example : A number x, below 100,

is required, such, that the squai'e root of 100 — x may be

equal to 8 ; or V(100 — x) = 8. The square of both sides

will give 100 — x = 64, and adding x, we have 100 = 64

+ x; whence we obtain x = 100 — 64 = 36.

Or, since 100 — x = 64j we might have subtracted 100

from both sides ; which would have given — x = — 36 ; or,

multiplying by — 1, x = 36.

584. Lastly, the unknown number x is sometimes found

as an exponent, of which we have already seen some ex-

amples; and, in this case, we must have recourse to lo-

garithms.

Thus, when we have 2' :::^ 512, we take the logarithms of

both sides; whence we obtain x log. ^ = /og. 512; and

„ , log;. 512 m 1 1 1

dividing by log. 2, we find x = °^ ^ . The Tables then
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g-7092700 _ ^^,^^^ _give, X -
Q.3Q1Q300

~ ^°^°^ ,
oi a; - y.

Let 5 X 3=^' — 100 ^ 305; we add 100, which gives 5 x
2i^ = 405; dividing by 5, we have 3^^ = 81 ; and taking

the logarithms, 2a; log. 3 = /o^. 81, and dividing by 'Z log.

log.Sl log.Hl
o, we nave x = 777

—

rr, or a; = — —
; whence

2log.S log. 9

1-9084850 „„ „,„,« — —- 1 9 084-8 5 O --

0-9542425 ^54Z4^5

QUESTIONS FOR PRACTICE.

1. If a- - 4 + 6 = 8, then will x = 6.

2. If 4a: - 8 = 3x + 20, then will a; = 28.

3. If ax = ab — a, then will a: = b — 1

.

4. If 2.r + 4 = 16, then will .r == 6.

3c-
5. If ax + 9.ba = 3c\ then will x = 26.

a

6. If^ = 5 + 3, then will x = 16.

7. Ify - 2 = 6 + 4, then will 2a; - 6 =: 18.

b .
^•

8. If a = c, then will x =

9. If So- - 15 = 2a; + 6, then will a; = 7.

10. If 40 - 6^ - 16 = 120 - 14a;, then will x = 12.

11. If^ -
-J-

+ -^ = 10, then will X = 24.
/w ti T?

12. If^ + ^ = 20 - ^^, then will :r = 23-L.

13. If vfa; + 5 = 7, then will a; = 6.

2a°-

^/(a- + a;^)

15. If Sao: 4- -^r — 3 = 6a; — a, then will x= 7; 777-

16. If v'(12 + x) = 2 + Vx, then will a; = 4.

17. If 3^ + V{a'^ + y')= j-i ^, then will y= 4a V3.

18. If^±1 + ?!+5 = 16 _ 2±^1 then will ,v
= 13.

' O

14. If> + ^/(a2 + o;'^) = — , then will a;= a a/^-.
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19. If <\/x-\- ^{a + ^)= —;
:, then will x = -^.

^/(a+^) o

20. If A/(cra + XX) = X/{b^ + .r*), then will ^ =

21. If y = A/(a2 + ^/{b" + a;-) )
- a, then will a: =

128 '^16

22. If r; ^ -^—7., then will x = 12.

«« ,,. 42a; 35.r ,

23. If ^ = H, then will x = 8.
a; — 2 x — S

*

45 5')'

24. I{- = -, r, then will x = Q.
2x+3 4!X-5

25. If — 7z— = —::— , then will x = 6.
3 4 '

26. If 615a; - Hx^ = ^8x, then will .r = 9.

CHAP. III.

Of the Solution o/* Questions relating to the preceding'

Chapter.

585. Question I. To divide 7 into two such parts that the

greater may exceed the less by 3.

Let the greater part be <r, then the less will be 7 - a? ; so

that .r = 7 — a; + 3, or a- =^ 10 — .r. Adding x, we have

2x = 10 ; and dividing by 2, ^r — 5.

The two parts therefore are 5 and 2.

Question 2. It is required to divide a into two parts, so

that the greater may exceed the less by b.

Let the greater part be x, then the other will he a — x

;

so that X = a — X + b. Adding .r, we have 2x = a + b;

and dividing by 2, .r — ——

.

Another method of solution. Let the greater part = x;
which as it exceeds the less by 6, it is evident that this is less

than the other by b, and therefore must be = x — b. Now,
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these two parts, taken together, ought to make a ; so that

9.x — h =^ a\ adding 6, we have 9.x = a -\- h, wherefore

X = , which is the value of the greater part ; and that

or the less will be —^ 0, or —^ — -^, or —^-

586. Question 3. A father leaves 1600 pounds to be

divided among his three sons in the following manner; viz.

the eldest is to have 200 pounds more than the second, and

the second 100 pounds more than the youngest. Required

the share of each.

Let the share of the third son be ,r

Then the second's will be - - x + 100; and
The first son's share - - - x + 300.

Now, these three sums together make 1600/.; we have,

therefore,

3x + 400 = 1600
3x = 1200

and X — 400

The share of the youngest is 400?.

That of the second is - - 500Z.

That ofthe eldest is - - 700/.

587. Qnestion 4. A father leaves to his four sons 8600Z.

and, according to the will, the share of the eldest is to be

double that of the second, minus 100/. ; the second is to

receive three times as much as the third, minus 200/.; and

the third is to receive four times as much as the fourth, minus

300/. AVhat are the respective portions of these four sons .''

Call the youngest son's share x
Then the third son's is - 4x — 300
The second son's is - - 12.r — 1100
And the eldest's - - - 24.r - 2300

Now, the sum of these four shares must make 8600/. We
have, therefore, 4Lr — 3700 = 8600, or

41.r = 12300, and x = 300.

Therefore the youngest 's share is 300/.

The third son's ----- 900/.

The second's ------ 2500/.

The eldest's ------ 4900/.

588. Questions. A man leaves 11000 crowns to-be

divided between his widow, two sons, and three daughters.

He intends that the mother should receive twice the share

of a son, and that each son should receive twice as much
2
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as a daughter. Required bow much each of them is to

receive.

Suppose the share of each daughter to be x
Then each son's is consequently - - - 2r
And the widow's -------- 4X

The whole inheritance, therefore, is 3x + 4x + 4<xj orll^
= 11000, and, consequently, x — 1000.

Each daughter, therefore, is to receive 1000 crowns
;

So that the three receive in all 3000
Each son receives 2000

;

So that the two sons receive - 4000
And the mother receives - - 4000

Sum 11000 crowns.

589. Question 6. A father intends by his will, that his

three sons should share his property in the following man-
ner: the eldest is to receive 1000 crowns less than half the

whole fortune; the second is to receive 800 crowns less

than the third of the whole ; and the third is to have

600 crowns less than the fourth of the whole. Required

the sum of the whole fortune, and the portion of each

son.

Let the fortimo be expressed by x:
The share of the first son is \x — 1000
That of the second - - - ~x - 800

. That of the third - - - i,x - 600

So that the three sons receive in all \x + ^x + i-x —
2400, and this sum must be equal to x. We have, there-

fore, the equation i|,r — 2400 — .r; and subtracting jr,

there remains ^^^x — 2400 — 0; then adding 2400, we
have ^"^^= 2400; and, lastly, multiplying by 12, we obtain

X = 28800.

The fortune, therefore, consists of 28800 crowns; of which

The eldest son receives 13400 crowns

The second - - - - 8800
And the youngest - - 6600

28800 crowns.

590. Question 7. A father leaves four sons, who share

his property in the following manner: the first takes the

half of the fortune, minus iJOOO/. ; the second takes the

third, minus 1000/.; the third takes exactly the fourth of

the property; and the fourth takes GOO/, and the fifth part

of the property. What was the whole fortune, and how
much did each son receive?
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Let the whole fortune be represented by x :

Then the eldest son will have ^x — 3000
The second |^' - 1000
The third i-x

4-

The youngest - - - - - ijc + 600.

And the four will have received in all ir + i-.r -j- i^' +
^x — 3400, which must be equal to x.

Wlience results the equation ^x — 3400 = x ; then sub-

tracting: .r, we have i-^x — 3400 = ; adding 3400, we ob-

tain ^l~x = 3400; then dividing by 17, we have ~-^x =
200; and multiplying by 60, gives x = 12000.

The fortune therefore consisted of 12000/.

The first son received 3000
The second - - - 3000
The third - - - - 3000
And the fourth - - 3000

591. Question 8. To find a number such, that if we
add to it its half, the sum exceeds 60 by as much as the

number itself is less than 65.

Let the number be represented by x :

Then x + ^x — 60 — 65 — x, or |-jr — 60 — 65 — x.

Now, by adding .r, we have |.r — 60 = 65 ; adding 60, we
have l.r = 125; dividing by 5, gives \x = 'Z5', and mul-
tiplying by 2, we have x = 50.

Consequently, the number sought is 50.

592. Question 9. To divide 32 into two such parts, that

if the less be divided by 6, and the greater by 5, the two
quotients taken together may make 6.

Let the less of the two parts sought be .r; then the

greater will be 32 — x. The first, divided by 6, gives

-^; and the second, divided by 5, gives —z— . Now -^^-

S2~ X—-— = 6 : so that multiplying by o, we have ^x + 32 —
o

.r = 30, or — ^x + 32 = 30 ; adding ^x, we iiave 32 =
30 + -^x ; subtracting 30, there remains 2 — Ax; and lastly,

multiplying by 6, we have x = 12.

So that the less part is 12, and the greater part is 20.

593. QuestioJi 10. To find such a number, that if mul-

tiplied by 5, the product shall be as much less than 40 as

the number itself is less than 12.

Let the number be .r ; which is less than 12 by 12 — ^ ;

then taking the number x five times, we have 5x, which is

^V. -
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less thcin 40 by 40—5^7, and this quantity must be equal to

12 — X.

We htiVL', therefore, 40 — 5.r = 12 — x. Adding 5ar,

we have 40 = 12 + 4a;; and subtracting 12, we obtain

28 — 4.r ; lastly, dividing by 4, we have a; = 7, the number
sought.

594. Question 11. To divide 25 into two such parts,

that the greater may be equal to 49 times the less.

Let the less part be ^, then the greater will be 25 — x ;

and the latter divided by the former ought to give the

25 X
quotient 49: we have therefore —-;— = 49. Multiplying

by X, we have 25 — .r = 49a:'; adding x, we have 25 =
50x ; and dividing by 50, gives x = i.

The less of the two numbers is"?-, and tlie greater is 24^-;

dividing therefore the latter by 4, or multiplying by 2, we
obtain 49-

595. Question 12. To divide 48 into nine parts, so that

every part may be always { greater than the part which

precedes it.

Let the first, or least part be .r, then the second will be

X -r 1-, the third x -\- ], &.c.

Now, these parts form an arithmetical progression, whose
first term is x; therefore the ninth and last term will be
X -\- 4. Adding those two terms together, we have 2ar + 4

;

rnultiplying this quantitv by the number of terms, or by 9,

we have 18a: \- ^6 ; and dividing this product by 2> we
obtain the sum of all the nine parts — Qx + 18 ; which
ought to be equal to 48. We have, therefore, 9^ -f 18 =
48; subtracting 18, tliere remains 9^ = 30; and dividing

by 9, we have x — Sf.
The first part, therefore, is 3j, and the nine parts will

succeed in the foliowinij orcler :

I 12 3 4 5 6 7 K 9

5i + 3^ + 41 + 4^- + 5i- + 5| + 6t + 6|- + If.
Which together make 48.

596. Question 13. To find an arithmetical progression,

whose first term is 5, the last term 10, and the entire

sum 60.

Here we know neither the difference nor the number of

terms; but we know that the first and the last term would
enable us to express the sum of the progression, provided
only the number of terms were given. We shall therefore

suppose this number to be x, and express the suu) of the
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progression by -q— • We know also, that this sum is 60

;

so that -^ — 60 ; or \x = 4, and ^ = 8.

Now, since the number of terms is 8, if we suppose the

difference to be z, we have only to seek for the eighth term
upon this supposition, and to make it equal to 10. The
second term is 5 + ^, the third is 5 + 2^^ and the eighth is

5 + 7z', so that

5 + 7^ == 10

7z = 5
and z =

J- ,

The difference of the progression, therefore, is
-f

, and the

number of terms is 8; consequently, the progression is1234567 8

5 + 5| + 6f + 71 + 71- + 8± + 91- + 10,

the sum of which is 60.

597. Question 14. To find such a number, that if 1 be
subtracted from its double, and the remainder be doubled,

from which if 2 be subtracted, and the remainder divided by
4, the number resulting from these operations shall be 1 less

than the number sought.

Suppose this number to be .r; the double is 2a;; sub-

tracting 1, there remains 2a; — 1 ; doubling this, we have

4a: — 2; subtracting 2, there remains 4a; — 4; dividing by
4, we have a; — 1 ; and this must be 1 less than x; so

that

a; — 1 = a; — 1.

But this is what is called an identical equation ; and
shews that x is indeterminate ; or that any number whatever
may be substituted for it.

598. Question 15. I bought some ells of cloth at the

rate of 7 crowns for 5 ells, which I sold again at the rate of

11 crowns for 7 ells, and I gained 100 crowns by the trans-

action. How much cloth was there ?

Supposing the number of ells to be x, we must first see

how much the cloth cost ; which is found 'by the following

proportion :

7a;
As 5 : a; : : 7 : — tha price of the ells.

This being the expenditure ; let us now see the receipt

:

in order to which, we must make the following proportion

:
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E. C. E.

As 7 : 11 : : ^ : ^x crowns;

and this receipt ought to exceed the expenditure by 100

crowns. We have, therefore, this equation :

Y^ = 7,^ + 100.

Subtracting ^x, there remains ~^x = 1 00 ; therefore 6x =
3500, and x = 583i.

There were, therefore, 5834- ^^^^ bought for 8l6|- crowns,

and sold again for 916|- crowns ; by which means the profit

was 100 crowns.

599. Question 16. A person buys 12 pieces of cloth for

140^. ; of which two are white, three are black, and seven

are blue: also, a piece of the black cloth costs two pounds
more than a piece of the white, and a piece of the blue cloth

costs three pounds more than a piece of the black. Required

the price of each kind.

Let the price of a white piece be x pounds ; then the two
pieces of this kind will cost 2x ; also, a black piece costing

X + 2, the three pieces of this color will cost Sx + 6; and

lastly, as a blue piece costs a: + 5, the seven blue pieces will

cost 7x -\- 35: so that the twelve pieces amount in all to

12x + 41.

Now, the known price of these twelve pieces is 140
pounds; we have, therefore, I2x + 41 = 140, and 12.t' —
99 ; wherefore x = 8i. So that

A piece of white cloth costs 8i/.

A piece of black cloth costs lOi/.

A piece of blue cloth costs 13^/.

600. Question 17. A man having bought some nutmegs,

says that three of them cost as much more than one penny, as

four cost him more than two pence halfpenny. Required
the price of the nutmegs?

Let X be the excess of the price of three nutmegs above

one penny, or four farthings. Now, if three nutmegs cost

ar + 4 farthings, four will cost, by the condition of the

question, a; + 10 farthings ; but the price of three nutmegs
gives that of four in another way, namely, by the Rule of

Three. Thus,

o . .
4.r + 16

3 : ar + 4 : : 4 :
—-—

.

4ir+16
So that

—

-— = 0^^ + 10; or, ^<x -|- 16 = 3a. + 30;

therefore tr + 16 = 30, and iC = 14.
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Three nutmegs, therefore, cost 4it7., and four cost Gd.

:

wherefore each costs l^d.

601. Question 18. A certain person has two silver cups,

and only one cover for both. The first cup weighs 12

ounces; and if the cover be put on it, it weighs twice as

much as the other cup : but when the other cup has the

cover, it weighs three times as much as the first. Required

the weight of the second cup, and that of the cover.

Suppose the weight of the cover to be x ounces ; then the

first cup being covered, it will weigh x4-12; this weight

being double that of the second, the second cup must weigh

:^x + G\ and, with the cover, it will weigh ^ + |.r + 6, or

-|a: + 6 ; which weight ought to be the triple of 12 ; that is,

three times the weight of the first cup. We shall therefore

have the equation \x -{ 6=36, or fa: = 30; so that \x =
10 and .r = 20.

The cover, therefore, weighs 20 ounces, and the second

cup weighs 16 ounces.

602. Question 19. A banker has two kinds of change

:

there must be a pieces of the first to make a crown ; and b

pieces of the second to make the same. Now, a person

wishes to have c pieces for a crown. How many pieces of

each kind must the banker give him ?

Suppose the banker gives x' pieces of the first kind ; it is

evident that he will give c — x pieces of the other kind

;

but the X pieces of the first are worth — crown, by the pro-

portion a : x :: I : — ; and the c —x pieces of the second

c— X
kind are worth —;— crown, because we have b: c — x ::1 :

c-x X c—x
—.— . So that, 1

—

j
— = 1 ;

b a b

bx
or \- c — X = b\ ox bx -\- ac — ax = ab ;

a

or, rather bx — ax = ab — ac,

ab—ac a{b— c)
whence we have x = -7

, or a? = —, ;

b—a b—a
consequently, c — a;, the pieces of the second kind,

bc— ab b{c — d)
must be = -; = —, .

b—a b—a
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The banker must therefore give —, pieces of the first

kind, and ~- pieces of the second kind.

Rema7-Ji. These two numbers are easily found by the

Rule of Three, when it is required to apply the results

which we have obtained. Thus, to find the first we say,

h — a : a :: b — c : —, -•. and the second number is
-a

found thus; h—a : b : : c— a
h{c—a)

b—a
It ought to be observed also, that a is less than b, and that

c is less than b ; but at the same time greater than a, as the

nature of the thing requires.

603. Question 20. A banker has two kinds of change

;

10 pieces of one make a crown, and 20 pieces of the other

make a crown ; and a person wishes to change a crown into

17 pieces of money : how many of each sort must he have?

We have here a - 10, b — 20, and c = 17, which fur-

nishes the following proportions

:

First, 10 : 10 :: 3 : 3, so that the number of pieces of the

first kind is 3.

Secondly, 10 : 20 : : 7 : 14, and the number of the second

kind is 14.

604. Question 21. A father leaves at his death several

children, who share his property in the following manner

:

namely, the first receives a hundred pounds, and the tenth

part of the remainder; the second receives two hundred
pounds, and the tenth part of the remainder; the third

takes three hundred pounds, and the tenth part of what re-

mains ; and the fourth takes four hundred pounds, and the

tenth part of what .then* remains ; and so on. And it is

found that the property has thus been divided equally

among all the children. Required how much it was, how
many children there were, and liow much each received ?

This question is rather of a singular nature, and therefore

deserves particular attention. In order to resolve it more
easily, we shall supj)ose the whole fortune to be a' pounds

;

and since all the children receive the same sum, let the share

of each be x, by which means the number of children will be

expressed by --. Now, this being laid down, wc may pro-

ceed to the solution of the question, as follows

:
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Sum, or

property to

be divided.
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2. A person be'ino- asked wliat his age was, replied that

1^ of his age multiplied by -^ of his age gives a product

equal to his age. \Vhat was his age ? Ans. 16.

o. The sum of 660/. was raised for a particular purpose

by four persons, A, B, C, and D ; B advanced twice as

much as A; C as much as A and B together; and D as

much as B and C. What did each contribute ?

Ans. 60Z., 120/., 180/., and 300/.

4. To find that number whose - part exceeds its i part

by 12. Ans. 144.

5. What sum of money is that whose \ part, i part, and
i- part, added together, shall amount to 94 pounds ?

Ans. 120/.

6. In a mixture of copper, tin, and lead, one half of the

whole — 16/6. was copper; one-third of the whole —12/6.

tin ; and one-fourth of the whole 4-4//>. lead : what quantity

of each was there in the composition?

Ans. VZSlb. of copper, 84/6. of tin, and 76/6. of lead.

7. A bill of 120/. was paid in guineas and moidores, and

the number of pieces of both sorts was just 100; to find

how many there were of each. Ans. 50.

8. To find two numbers in the proportion of 2 to 1, so

that if 4 be added to each, the two sums shall be in the pro-

portion of 3 to 2, Ans. 4 and 8.

9. A trader allows 100/. per annum for the expenses of

his family, and yearly augments that part of his stock which

is not so expended, by a third part of it ; at the end of three

years, his original stock was doubled : what had he at first ^

Ans. 1480/.

10. A fish was caught whose tall weighed 9/6. His head

weighed as much as his tail and f his body ; and his body
weighed as much as his head and tail : what did the whole

fish weigh ? Ans. l^lh.

11. One has a lease for 99 years; and being asked how
much of it was already expired, answered, that two-thirds of

the time past was equal to four-filths of the time to come :

required the time past. Ans. 54 years.

12. It is required to divide the number 48 into two such

parts, that the one part may be three times as much above

20, as the other wants of 20. Ans. 32 and 16.

13. One rents 25 acres of land at 7 pounds 12 shillings

per annum ; this land consisting of two sorts, he rents the

better sort at 8 shillings per acre, and the worse at 5: re-

quired the number of acres of the better sort.

A)is. 9 of the better.

14. A certain cistern, which would be filled in 12 minutes
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by two pipes running into it, would be filled in 20 minutes

by one alone. Required in what time it would be filled by
the other alone. Ans. 30 minutes.

15. Required two numbers, whose sum may be s, and

their proportion as a to o. Ans. —7-7, and ——r.
' ' a-\-o a-\-d

16. A privateer, running at the rate of 10 miles an hour,

discovers a ship 18 miles oflp making way at the rate of 8
miles an hour: it is demanded how many miles the ship

can run before she will be overtaken ? Ans. 72.

17. A gentleman distributing money among some poor

people, found that he wanted 10.9. to be able to give 5.s. to

each ; therefore he gives 45. only, and finds that he has 55.

left : required the number of shillings and of poor people.

^ns. 15 poor, and 65 shillings.

18. There are two numbers whose sum is the 6th part of

their product, and the greater is to the less as S to 2. Re-
quired those numbers. A.ns. 15 and 10.

N. B. This question may be solved by means of one un-

known letter.

19. To find three numbers, so that the first, with half the

other two, the second with one-third of the other two, and
the third with one-fourth of the other two, may be equal ti>

34. Am. 26, 22, and 10.

20. To find a number consisting of three places, whose

digits are in arithmetical progression : if this number be di-

vided by the sum of its digits, the quotients will be 48 ; and
if from the number 198 be subtracted, the digits will be in-

verted. Ans. 432.

21. To find three numbers, so that i the first, f of the

second, and i of the third, shall be equal to 62: ^ of the

first, ~ of the second, and ~ of the third, equal to 47 ; and
i of the first, i of the second, and i- of the third, equal to

38. J?is. 24, 60, 120.

22. If A and B, together, can perform a piece of work in

8 days ; A and C together in 9 days ; and B and C in 10

days ; how many days will it take each person, alone, to per-

form the same work.? Ans. 14i±, 17^, 23/-^.

23. What is that fraction which will become equal to j-, if

an unit be added to the numerator; but on the contrary, if

an unit be added to the denominator, it will be equal to i .''

Ans. -jt-.

24. The dimensions of a certain rectangular floor are

such, that if it had been 2 feet broader, and 3 feet longer, it

would have been 64 square feet larger ; but if it had been 3
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feet broader and 2 feet longer, it would then have been 68
square feet larger : required the length and breadth of the

floor. A71S. Length 14 feet, and breadth 10 feet.

25. A hare is 50 leaps before a greyhound, and takes

4 leaps to the greyhound's 3 ; but two of the greyiiound's

leaps are as much as three of the hare's : how many leaps

must the greyhound take to catch the hare ? Jus. 300.

CHAP. IV.

Of the Resolution of two or more Equations of the First

Degree.

605. It frequently happens that we are obliged to intro-

duce into algebraic calculations two or more unknown quan-
tities, represented by the letters x, y, ^ : and if the question

is determinate, we arc brought to the same number of equa-

tions as there are unknown cjuaiititios ; from which it is then

required to deduce those quantities. As we consider, at

})resent, those equations only, which contain no powers of an

unknown quantity higher than the first, and no products of

two or more unknown quantities, it is evident that all those

equations have the form

az + by -\- ex =^ d.

606. Beginning therefore with two equations, we shall

endeavour to find from them the value of .r and y: and, in

order that we may consider this case in a general manner, let

the two equations be,

ax -\- hy = c:, and Jx + gy = h;

in which, a, 6, c, and J] g\ h, are known numbers. It is

required, therefore, to obtain, from these two equations, the

two unknown quantities x and y.

607. The most natural method of proceeding will readily

present itself to the mind ; which is, to determine, from both

equations, the value of one of the unknown quantities, as for

example x, nrtid to consider the equality of those two values;

for then we sliall have an equation, in which the unknown
quantity y will be found by itself, aiid may be determined

by the rules already given. Then, knowing //, we shall have
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only to substitute its value in one of the quantities that

express x.

608. According to this rule, we obtain from the first

c -by T ^ ,
^^~^y

equation, x = -, and from the second, x = —^—

:

« /
then putting these values equal to each other, we have this

new equation

:

c-by h-gy
«• " / '

multiplying by a, the product \^ c — by = -^— ; and

then by/, the product is^c —fby= ah — agy ; adding agy, wo
have fc —fby + agy = ah; subtracting/c, gives —J hi/ -\-

agy = ah — fc ; or {ag — bf^y = ah — fc\ lastly, dividing

by ag — bf, we have

ah—fc

In order now to substitute this value of «/ in one of the

two values which we have found of x, as in the first, where

c— by
, „ ^ , 7

abh~bcf
X = -, we shall first have — by — rr '> ~ -

a ^ ag-bf

, , abh — bcf acg—bcf—ahh-\-bcf
whence c — by = c r^, = T-p.^ ag-bf ag-bf

acg—abh ,,..,. , c — by cg— bh
= —^—j-;r ; and, dividmg; by a, x — = —

tt.-
ag—bf o J ' ^ (ig_i)j-

609. Question 1. To illustrate this method by examples,

let it be proposed to find two numbers, whose sum may be

15, and difference 7.

Let us call the greater number x^ and the less y : then we
shall have

X + y = 15, and x — y = 7.

The first equation gives

x = 15—3/,
and the second, x = 7 + y;
whence results this equation, 15 —y = 7 -{- y. So that

15 = 7 + 2z/; 2j/ = 8, and j/ = 4; by whicli means we
find a; = 11.

So that the less number is 4, and the greater is 11.

610. Question 2. We may also generalise the preceding
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question, by requiring two numbers, whose sum may be a,

and the difference b.

Let the greater of the two numbers be expressed by x, and

the less by y ; we shall then have x -\-y =^a, and x— y — b.

Here the first equation gives x =z a -- y, and the second

X = b -\- y.

Therefore, a — y — b -{ y\ a = b + 2y\ 2y = a — b;

lastly, y = , and, consequently,

a— b a-\-b

Thus, we find the greater number, or x, is , and

the less, or y, is —— ; or, which comes to the same, x ~

ia + ^b, and y = ^a — ~b. Hence we derive the following-

theorem : When the sum of any two numbers is a, and their

difference is b, the greater of the two numbers will be equal

to half the sum plus half the difference ; and the less of the

two numbers will be equal to half the sum minus half the

difference.

611. We may resolve the same question in the following

manner

:

Since the two equations are,

X -\- y = a, and
X — y =^ b\

if we add the one to the other, we have 2x = a + b.

Therefore x = —-—

.

Lastly, subtracting the same equations from each other,

we have 2y = a — b; and therefore

a— b

612. Question 3. A mule and an ass were carrying

burdens amounting to several hundred weight. The ass

complained of iiis, and said to the mule, I need only one
hundred weight of your load, to make mine twice as heavy
as yours; to which the mule answered, But if you give

me a hundred weight of yours, I shall be loaded three times

as much as you will be. How many hundred weight did

each carry ?
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Suppose the mule''s load to be x hundred weight, and that

of the ass to be y hundred weight. If the mule gives one
hundred weight to the ass, the one will have ?/ + 1, and there

will remain for the other a; — 1 ; and since, in this case,

the ass is loaded twice as much as the mule, we have w +
l=2x -%

Farther, if the ass gives a hundred weight to the mule,
the latter has x + 1, and the ass retains ?/ — 1 ; but the

burden of the former being now three times that of the

latter, we have a; + 1 = 3e/ — 3.

Consequently our two equations will be,

y + 1 = 2a; - 2, and a; + 1 = 3y - 3.

?/ + 3
From the first, jt = —q—, and the second gives a:=3^ —

?/-|-3

4 ; whence we have the new equation — ^y — 4, which

gives y z= ^: this also determines the value of x, which
becomes 21.

The mule therefore carried 21 hundred weight, and the

ass 24- hundred weight.

613. When there are three unknown numbers, and as

many equations ; as, for example,

X + ij — z = 8,

X + z ~ 1/ = 9,

1/ + z — X = 10;

we begin, as before, by deducing a value of x from each,

and have, from the

1st ^ = 8 + ;:• — y ;

'

^d X = 9 + y -z;
3d X = y -^ z — 10.

Comparing the first of these values with the second,

and after that with the third, we have the following

equations

:

8 + s;-y = 9+y-z,
S + ^-y = y + z— 10.

Now, the first gives 2z — %/ = 1, and, by the second,

9,y = 18, or ?/ = 9 ; if therefore we substitute this value of

y in^z - 2t/ = 1, we have 2z — IS = 1, ior 2;r = 19, so

that s = 9f ; it remains, therefore, only to determine .r,

which is easily found = 8|.

Here it happens, that the letter z vanishes in the last

equation, and that the value of j/ is found immediately;

but if this had not been the case, we should have had
F
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two equations between ,^ and //, to be resolved by tlie pre-

ceding rule.

614. Suppose we had found the three following equa-

tions :

3ar + 5z/ - 4.2 - 25,

5x — 2y H- 3 : := 46,

3e/ + 5~ - X '-= 62.

If we deduce from cacli the value of x, we shall have

from the

^25 -By f 4.i

1st a: =

2d X =

3

46 + 2?/ -3:

5

3d a; = 3z/ + 5^ - 62.

Comparing these three values together, and first the third

wifli the first,

25 -5?/+ 4s
we have 3// + 5; - 62 := ^- ;

multiplying by o, gives 92/ + 15s — 186 = 25 — % f 4^;;

so that"pj/ + 15:- = 211 - 5?/ 4 ^z,

and 14// 4- II2; :^ 211.

Comparing also the third with the second,

we l,ave 3. ,- 5= - 62 = ^+3l=±l,
5

or 46 -}- 2«/ - 3^ ^ 15?/ + 25^ - 310,

which, wiien reduced, becomes 356 = 13j/ + 28,-2.

We shall now deduce, from these two new equations, the

value of .,'

:

1st Hy + Uz = 211 ; or i4.v ^211 - 11^,

211-lU'
and 11 — T-. .

^ 14

2d 13// + 28- = 356; or 13// r:^ 356 - 28^,

356 - 28.:-

.nu.// =—^-^^—

.

Thcj-e tvvo values form the new equation

211 -lU- 356-28^ ,

f^7
— =

j^o , whence,

2743 - 143z -: 4984 - 592., or 249s = 2241, and ^ rrr 9-

This value being substituteil in one of the two equations

of y and ~, we find // ~ 8; and, lastly, a similar sub-

stitution in one of the three values of a-, will give v = 7.
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615. If tliere were more than three unknown quantities to

determine, and as many equations to resolve, we should pro-

ceed in the same manner ; but the calculations would often

prove very tedious.

It is proper, therefore, to remark, that, in each particular

case, means may always be discovered of greatly facihtatin^-

the solution ; which consist in introducing into the cal-

culation, beside the principal unknown quantities, a new
unknown quantity arbitrarily assumed, such as, for example,
the sum of all the rest; and when a person is a little ac-

customed to such calculations, he easily perceives what is

most proper to be done *, The following examples may
serve to facilitate the application of these artifices.

616. Question 4. Three persons, a, b, and c, play to-

gether; and, in the first game, a loses to each of the other
two, as much money as each of them has. In the next
game, b loses to each of the other two, as much money as

they then had. Lastly, in the tliird game, a and B gain
each, from c, as much money as they liad before. On
leaving off, they find that each has an equal sum, namely,
24 guineas. Required, with how much money each sat

down to play ?

Suppose that the stake of the first persoii was x, that of
the second y, and that of the third z : also, let us make the

sum of all the stakes, or ^r 4 y -f z^ = s. Now, a losing in

the first game as much money as the other two have, he
loses s — X (for he himself having had x, the two others

must have had s — o") ; therefore there will remain to him
9,x — s\ also B will have 2ij, and c will have 2z.

So that, after the first game, each will have as follows

:

A = 9.x — 5, B == 2?/, and c = 2;:.

In the second game, b, who has now 2y, loses as much
money as the other two have, that is to say, s — 2?/ ; so that

he has left 4^ — s. With regard to the other two, they

^yill each have double what they had ; so that after the

second game, the three persons have as follows : a = 4.v —
9,s^ B — 4>i/ — s, and c -- 4^.

In the third game, c, who has now 4^, is the loser ; h.e

loses to A, 4>x — 2^, and to b, 4?/ — s; consequently, after

this game, they will have :

* M, Cramer has given, at the end of his Introduction to the
Analysis of Curve Lines, a very excellent rule for determining-

immediately, and without the necessit)^ of passin,',' throngh the

ordinary operations, the value of the unknown quiintiti( s oCsuch
equations, to any number. F. T.

p 2
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A = 8.r — i'S, B = 8t/ — 2s, and c = ^^ — i'.

Now, each having at the end of this game 24 guineas, we
have three equations, the first of which immediately gives a-,

the second i/, and the third z ; farther, s is known to be 72,

since the three persons have in all 72 guineas at the end of

the last game ; but it is not necessary to attend to this at

first ; since we have

1st 8j: - 4s = 24, or 8jr = 24 + 4s, or x = 3 + ^s;

2d 87/ - 2s = 24, or 83/ = 24 + 2s, or 1/ = 3 + is;

3d 83 - s = 24, or 8^ ^ 24 + s, or z = 3+ is;

and adding these three values, we have

x + 7/ + ^ — 9 + ls.

So that, since ^ + y + ~ = s, we have 5 = 9 4- |* ; and,

consequently, is = 9, and s — 72.

If wt? now substitute this value of s in the expressions

which we have found for x, y, and 2:, we shall find that,

before they began to play, a had 39 guineas, b 21, and
c 12.

This solution shews, that, by means of an expression for

the sum of the three unknown quantities, we may overcome
the (liiiiculties which occur in the ordinary method.

617. Although the preceding question appears difficult at

first, it may be resolved even without algebra, by proceeding

inversely. For since the players, when they left ofl^, had
each 24 guineas, and, in the third game, A and b doubled
their money, thoy must have had before that last game, as

follows

:

A r= 12, B := IS, and c --= 48.

In the second game, a and c doubled their money ; so

that before that game they had

;

A ^ 6, B
'^

42, and c = 24.

Lastly, in the first game,^ and c gained each as much
mojiey as they began with ; so that at first the three persons

had

:

A = o9, B == 21, c == 12.

The same result as we obtained by the former solution.

618. Question 5. Two persons owe conjointly ^9 pis-

toles ; they have both money, but neither of them enough
to enable Jiim, singly, to discharge this conmion debt : the

fit-st debtor says therefore to tiie second. If you give me l- of

your money, I can immediately pay the debt; and the

second answers, tiiat he also could discharge the debt, if the

other would give him | of his money. Required, how many
pistoles each had ?
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Suppose that the first has x pistoles, and that tlie second

has ?/ pistoles.

Then we shall first have, x -j- ^i/ = 29;
and also, y -f |.jr = 29.

The first equation gives x = 2^ — ^y,

A 1 J 116-%
and the second x = 5— ;

o

, ^^ 116-4?/
so that 29 - |y = o—^.

From which equation, we obtain y = 14{-;

Therefore x = 19j-.

Hence the first person had 19 5 pistoles, and the second
had 14i pistoles.

619. Question 6. Three brothers bought a vineyard for

a hundred guineas. The youngest says, that he could pay
for it alone, if the second gave him half the money which he
had ; the second says, that if the eldest would give him only
the third of his money, he could pay for the vineyard singly ;

lastly, the eldast asks only a fourth part of the money of

the youngest, to pay for the vineyard himself. How much
money had each ?

Suppose the first had x guineas ; the second, y guineas

;

the third, z guineas ; we shall then have the three following

equations

;

X + :Ly = \Q0

2^ + j,s = 100

:

z +i^ = 100

two of which only give the value of ^, namely,

1st ^ = 100 — i^,M X = 400 - 4z.

So that we have the equation,

100 - iy = 400 - 4;, or 4>z - ii/ - 300, which must
be combined with the second, in order to determine y and
z. Now, the second equation was, 7/ -{- iz = 100 : we
therefore deduce from it «/ = 100 — i;^ ; and the equation

found last being 4'Z — fy = 300, wc have ^/ = 8s — 600.

The final equation, therefore, becomes

100 - iz = 8z - 600; so that Sj-z = 700, or yz =
700, and z = 84. Consequently,

2/ = 100 - 28 = 72, and x = 64.

The youngest therefore had 64 guineas, the second had

72 guineas, and the eldest had 84 guineas.
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abcdn—abdn-{-abn—bn n . (abcd — abd^-ah — lA

ahcd— \ abcd— \

abcdn — abcn + ben— en n . {abed— abc + be — c)

abed — 1 abed— 1

abedn— bcdn + cdu — dn n . (abed — bed + cd — d)

abcd—1 aCcd—l

622, Question 7. A captain has three companies, one of

Swiss, another of Swabians, and a third of Saxons. He
wishes to storm with part of these troops, and he promises a

reward of 901 crowns, on the following condition ; namely,
that each soldier of the company, which assaults, shall re-

ceive 1 crown, and that the rest of the money shall be equally

distributed among the two other companies. Now, it is

found, that if the Swiss make the assault, each soldier of the

other companies will receive half-a-crown ; that, if the Swa-
bians assault, each of the others will receive j of a crown

;

and, lastly, if the Saxons make the assault, each of the others

will receive i of a crown. Required the number of men in

each company ?

Let us suppose the number of Swiss to be r, that of

Swabians «/, and that of Saxons z. And let us also make
X + ?/ + z = s, because it is easy to see, that, by this, we
abridge the calculation considerably. If, therefore, the Swiss

make the assault, their number being x, that of the other

will he s — x: now, the former receive 1 crown, and the

latter half-a-crown ; so that we shall have,

X + is — Ix = 901.

In the same manner, if the Swabians make the assault,

we have

3/ + fs - ty = 901.

And, lastly, if the Saxons make the assault, we have

z +is-iz = 901.

Each of these three equations will enable us to determine

one of the unknown quantities, x, j/, and z ;

For the first gives x = 1802 — s,

the second 2«/ = 2703 — s,

the third 35? = S604 - s.

And if we now take the values of 6x, 6j/, and 6s, and

write those values one above the other, we shall have

6x = 10812 - 6s,

Qy = 8109 - 3s,

6z = 7208 - 25,

and, by addition, 6s = 26129 -Us-, or 175 = 26129;
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SO that s = 1537; which is the whole number of soldiers.

By this means we find,

X = 1802 - 1537 = 265

;

% = 2703 - 1537 = 1166, or j/ = 583;

Sx = 3604 - 1537 = 2067, or z = 689-

The company of Swiss therefore has 265 men ; that of

Svvabians 583 ; and that of Saxons 689.

CHAP. V.

Of the Resolution o/*Pure Quadratic Equations.

623. An equation is said to be of the second degi-ee, when
it contains the square, or the second power, of the unknown
quantity, without any of its higher powers; and an equa-

tion, containing likewise the third power of the unknown
quantity, belongs to cubic equations, and its resolution re-

quires particular rules.

624. There are, therefore, only three kinds of terms in

an equation of the second degree :

1. The terms in which the unknown quantity is not

found at all, or which is composed only of known numbers.
2. The terms in which we find only the first power of the

unknown quantity.

3. The terms which contain the square, or the second

power, of the unknown quantity.

So that X representing an unknown quantity, and the

letters a, b, <•, d, &c. the known quantities, the terms of
the first kind will have the form a, the terms of the second

kind will have the form bx, and the terms of the third kind
will have the form cjc^.

625. We have already seen, how two or more terms of
the same kind may be united together, and considered as a
single term.

For example, we may consider the formula
a.v^ — bx" 4- ex- as a single term, representing it thus,

(a — i + c)x- ; since, in fact, {a — 6 -h c) is a known
quantity.

And also, when sucli terms are found on both sides of the

sign =, we have seen how they may be brought to one side.
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and then reduced to a single term. Let us take, for ex-

ample, the equation,

2^2 _ 3^ 4. 4 = 5^c — 8^ + 11

;

we first subtract 2x~, and there remains

-Sx + 4} = Sx"- - 8^ + 11

;

then adding 8^, we obtain,

5-r + 4 = 3x- + 11;

lastly, subtracting 11, there remains Sx- = 5x — 7.

626. We may also bring all the terms to one side of the

sign = , so as to leave zero, or 0, on the other ; but it must
be remembered, that when terms are transposed from one
side to the other, their signs must be changed.

Thus, the above equation will assume this form, 3x^ —
5x + 7 == ; and, for this reason also, the following general

formula represents all equations of the second degree

;

ax^ + bx + c = 0;

in which the sign + is read plus or minus, and indicates,

that such terms as it stands before may be sometimes

positive, and sometimes negative.

627. Whatever therefore be the original form of a qua-

dratic equation, it may always be reduced to this formula of

three terms. If we have, for example, the equation

ax + b ex -rf

cx-\-d gx-\-h

we may, first, destroy the fractions ; multiplying, for this

purpose, by ex + d, which gives

. cex''--\-cfx-\-edx'\rfd , , , , ,

ax -\- b =. i^—
, and then by gx + //, we have

gTOC ~|~ ft

agx^ + bgx + ahx + bh = cex- + cfx + edx +fd,

which is an equation of the second degree, reducible to

the three following terras, which we shall transpose by ar-

ranging them in the usual manner:

\-bg\

ed

We may exhibit this equation also in the following form,

which is still more clear :

{ag — ce)x'^ J^ {hg ^ ah - cf — ed)x + bh -fd = 0.

628. Equations of the second degree, in which all the

three kinds of terms are found, are called complete, and the

resolution of them is attended with greater difficulties; for
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which reason we shall first consider those, in which one of

the terms is wanting.

Now, if the term x" were not found in the equation, it

would not be a quadratic, but would belong to those of

which we have already treated ; and if the term, which con-

tains only known numbers, were wanting, the equation

would have this form, ax" + bx = 0, which being divisible

by X, may be reduced to ax + b = 0, which is likewise a

simple equation, and belongs not to the present class.

629. But when the middle term, which contains the first

power of X, is wanting, the equation assumes this form,

ax" + c = 0, or ax"- = + c ; as the sign of c may be either

positive, or negative.

We shall call such an equation a pure equation of the second

degree, and the resolution of it is attended with no difficulty ;

Tor we have only to divide by a, which gives x- — — ; and

taking the square root of both sides, we find x — V— ; by

which means the equation is resolved.

630. But there are three cases to be considered here. In
Q

the first, when — is a square number (of which we can there-
a ^

fore really assign the root) we obtain for the value of x a
rational number, which may be either integral, or fractional.

For example, the equation x" — 144, gives .r = 12. And
^' "= -re* gives X =z I.

c .

The second case is, when— is not a square, in which case

we must therefore be contented with the sign V . If, for

example, x- = 12, we have x = \/12, the value of which

may be determined by approximation, as we have already

shewn.

c
The third case is that, in which -— becomes a negative

a

number : the value of x is then altogether impossible and
imaginary ; and this result proves that the question, which

leads to such an equation, is in Itself impossible.

631. We shall also observe, before proceeding farther,

that whenever it is required to extract the square root of a

number, that root, as we have already remarked, has always

two values, the one positive and the other negative. Sup-

pose, for example, we have the equation x- = 4*9, the value
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of <r will be not only + 7, but also — *7, which is expressed

by ,%' = ± 7. So that all those questions admit of a double

answer ; but it will be easily perceived that in several cases,

as those which relate to a certain number of men, the ne-

gative value cannot exist.

QS9,. In such equations, also, as ax~ = bx, where the

known quantity c is wanting, there may be two values of x,

though we find only one if we divide by x. In the equation

x^ — Sx, for example, in which it is required to assign such

a value of x^ that x"^ may become equal to Qx, this is done by
supposing X = S, a value which is found by dividing the

equation by x ; but, beside this value, there is also another,

which is equally satisfactory, namely, .r =: 0; for then

X- — 0, and 3x — 0. Equations therefore of the second

degree, in general, admit of two solutions, whilst simple

equations admit only of one.

We shall now illustrate what we have said with regard to

pure equations of the second degree by some examples.

633. Question 1. Required a number, the half of which

multiphed by the third, may produce 24.

Let this number be x; then by the question ^x, mul-

tiplied by j-x, must give 24; we shall therefore have the

equation ~x" = 24.

Multiplying by 6, we have x- — 144; and the extraction

of the root gives x = ± 12. We put ± ; for if a: = + 12,

we have ^x ~ 6, and ia; — 4 : now, the product of these

two numbers is 24; and \f x = — 12, we have ^x = —6,
and i-x = — 4), the product of which is likewise 24.

634. Question 2. Required a number such, that being

increased by 5, and diminished by 5, the product of the sum
by the difference may be 96.

Let this number be x, then x + 5, multiplied by a; — 5,

must give 96; whence results the equation,

x^ - 25 = 96.

Adding 25, we have x- = 121 ; and extracting the root,

we have .r = 11. Thus x + 5 = 16, also x — 5 = 6; and,

lastly, 6 X 16 = 96.

635. Question 3. Required a number such, that by
adding it to 10, and subtracting it from 10, the sum, mul-

tiplied by the difference, will give 51.

Let X be this number; then 10 + or, midtiplied by 10 — a*,

must make 51, so that 100 — .r- = 51. Adding x"^. and
subtracting 51, we have x- — 49, the square root of which
gives X -— 7.

636. Question 4. Three persons, who had been playing,

leave off; the first, with as many times 7 crowns, as the

second has three crowns; and the second, with as many
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times 17 crowns, as the third has 5 crowns. Farther, if we
multiply the money of the first by the money of the second,

and the money of the second by the money of the third,

and, lastly, the money of the third by that of the first, the

sum of these three products will be 3830|. How much
money has each ?

Suppose that the first player has x crowns; and since

he has as many times 7 crowns, as the second has 3 crowns,
we know that his money is to that of the second, in the ratio

of 7: 3.

We shall therefore have 7 : 3 : ; j: : |-a;, the money of the

second player.

Also, as the money of the second player is to that of the

third in the ratio of 17 : 5, we shall have 17 : 5 : : ^a; : ^4^^,
the money of the third player.

Multiplying x, or the money of the first player, by ^x, the

money of the second, we have the product 1-x- : then, ^x, the

money of the second, multiplied by the money of the third,

or by ~gX, gives /xV*^* '> ^"*^j lastly, the money of the third,

or -^—^i multiplied by .r, or the money of the first, gives

~gX-. Now, the sum of these three products is -fa:' +
Yjz^'^ -{- ttV'^"; ^^^ reducing these fractions to the same
denominator, we find their sum ^^x", which must be equal
to the number o830|.
We have therefore, ^°^x- = 3830|.
So that VtV-^" — 11492, and 1521<r- being equal to

9572836, dividing by 1521, we have x'- = 95_7_2_8_36. ^nd
taking its root, we find x = ^§%-'^- This fraction is reducible

to lower terms, if we divide by IS; so that x = ^J-^
=

79j-; and hence we conclude^ that ^ = 34, and ^i^a?= 10.

The first player therefore has 79i crowns, the second has

34 crowns, and the third 10 crowns.

Remark. This calculation may be performed in an easier

manner ; namely, by taking the factors of the numbers which

present themselves, and attending chiefly to the squares of

those factors.

It is evident, that 507 = 3 x 169, and that 169 is the

square of 13; then, that 833 = 7 x 119, and 119 = 7 x

17 : therefore :r^—-^x^ = 3830|-, and if we multiply by 3,

9x169
we have ^s;

—

tkt'' — 11492. Let us resolve this num-
17x49

ber also into its factors; and we readily perceive, that

the first "is 4; that is to say, that 11492 = 4 x 2873.

Farther, 2873 is divisible by 17, so that 2873 = 17 x 169-
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Consequently, our equation will assume the following form,

9 X 169-———^2 = 4 X 17 X 169, which, divided by 169, is re-
17x49 .

-^

9
duced to

Y7y

—

Iq-^"
= 4 x 17; multiplying also by 17 x 49,

^^- •^-
1 Q u " 4x£89x49

. , .
, ,,and dividmg by y, we have x- =

^j
, m which all

the factors are squares; whence we have, without any

2 X 17x7
further calculation, the root x = = ^1.^ = 79y,

as before.

637. Question 5. A company of merchants appoint a

factor at Archangel. Each of them contributes for the

trade, which they have in view, ten times as many crowns

as there are partners ; and the profit of the factor is fixed at

twice as many crowns, per cent, as there are partners. Also,

if -j4o^ part of his total gain be multiplied by 2|^, it will give

the number of partners. That number is required.

Let it be a;; and since, each partner has contributed IOj:,

the whole capital is 10,r-. Now, for every hundred crowns,

the factor gains 2j;, so that with the capital of 10^- his profit

will be yX^. The -^4-5- part of his gain is -^^oc^ ; multiplying

by 21, or by y, we have _|-g^a;\ or ^—^-^ and this must
be equal to the number of partners, or x.

We have, therefore, the equation -^^-^x^ = x, or x^ =
225a; ; which appears, at first, to be of the third degree

;

but as we may divide by x, it is reduced to the quadratic

x- — 225 ; whence x = 15.

So that there are fifteen partners, and each con.tributed 150
crowns.

QUESTIONS FOR PRACTICE.

1. To find a number, to which 20 being added, and

from which 10 being subtracted, the square of the sum,

added to twice the square of the remainder, shall be 17475.

Ans. 75.

2. What two numbers are those, which are to one an-

other in the ratio of 3 to 5, and whose squares, added to-

gether, make 1666? Ans. 21 and 35.

3. The sum 2a, and the sum of the squares 26, of two

numbers being given ; to find the numbers.

Ans. a — ^/(6 — a-), and a + \/{b ~ a'^).
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4. To (Hvide the number 100 into two such parts, that

the sum of their square roots may be 14. A71S. 64, and 36.

5. To find three such numbers, that the sum of" the first

and second multiphed into the thii'd, may be equal to 63;
and the sum of the second and third, multiphed into the

first, may be equal to 28 ; also, that the sum of the first and
third, multiphed into the second, may be equal to 55.

Ans. 2, 5, 9.

6. What two numbers are those, whose sum is to the

greater as 11 to 7; the difference of their squares being

1.3;2? ^n«f. 14, and 8.

CHAP. VI.

Of the Resolution o/^Mixt Equations of the Second Degree.

638. An equation of the second degree is said to be ra'hrt,

or complete, when three terms are found in it ; namely, that

which contains the square of the imknown quantity, as ax"
;

that, in which the unknown quatuity is found only in the

first power, as bx; and, lastly, the term which is composed
of only known quantities. And since we may. unite two or

more terms of the same kind into one, and bring all the

terms to one side of the sign =, the general form of a mixt
equation of the second degree will })e

ax- zh hx ± c = 0.

In this chapter, we shall shew how the value of .r msiy be

derived from such equations : and it will be seen, that there

are two methods of obtaining it.

639. An equation of the kind that we are now considering

may be I'educed, by division, to such a form, that the first

term will contain only the square, a; , of the imknown quan-
tity X. We shall leave the second term on the same side

with X, and transpose the known term to the other side of

the sign - . By these means our equation will assume the

form of x~ -r px — + (/, in which j) and q represent any
known numbers, positive or negative ; and the whole is at

present reduced to determining the true vakie of .r. We shall

begin by remarking, tliat if .r- + px were a rear square, the

resolution would be attended witii no difficulty, because

it would only be required to take the square root of both

sides.
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640. But it is evident that x" + p.v cannot be a square

;

since we have ah'cady seen, (Art. 307.) that if a root con-

sists of two terms, for example, x + 7i, its square always

contains three terms, namely, twice the product of the two
parts, beside the square of each part ; that is to say, the

square of x + n is .r" + 2nx + n". Now, we have already

on one side x- + px; we may, therefore, consider x" as the

square of the first part of the root, and in this case px must
•epresent twice the product of x, the first part of the root,

by the second part : consequently, this second part must be

|j9, and in fact the square of x + |p,-is found to be

x" -r px + ip".

641. Now, x^ + px -f ip^ being a real square, which has
for its root x + ^p, if we resume our equation x- + px =0,
we have only to add ^^ to both sides, which gives us
x^ + px + ip- = q -{- ^p"^^ the first side being actuall}'

a square, and the other containing only known quantities.

If, therefore, we take the square root of both sides, we
find X -{• i-p = \/{^p" + q); subtracting |^, we obtain

X =— Ip + \/{^p- + q) ; and, as every square root may be
taken either affirmatively, or negatively, we shall have for

X two values expressed thus

;

x=—i:p±V{^P" + 9)'

642. This formula contains the rule by which all qua-
dratic equations may be resolved ; and it will be proper to

commit it to memory, that it may not be necessary, every
time, to repeat the whole operation which we have gone
through. We may always arrange the equation in such a
manner, that the pure square x" may be found on one side,

and the above equation have the form x-— — px + q^ where
we see immediately that x == — ^p ± V{^p' + q).

643. The general rule^ therefore, which we deduce from
that, in order to resolve the equation .r- = — px + o, is

founded on this consideration

,

That the unknown quantity x is equal to half the co-
efficient, or multiplier of x on the other side of the equation,
plus or mimes the square root of the square of this number,
and the known quantity which forms the third term of the
equation.

Thus, if we had the equation x" = 6x -\- 7, we should
immediately say, that ^ = 3 + v^(9 + 7) := 3 + 4, whence
we have these two values of x, namely, .r = 7, and x =
— 1

. In the same manner, the equation a;- = 10 1; — 9,
would give a? = 5 + \/(25 - 9) = 5 ± 4, that is to say,

the two values of x are 9 and 1.

644. This rule will be still better understood, by distin-
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guisliing the following cases : 1 . When p is an even number

;

2. When p is an odd number ; and 3. When /j is a frac-

tional number.
1st, Let p be an even number, and the equation such,

that x^ — ^px + g; we shall, in this case, have

X =p ± ^/{p^ + q).

2d, liCt p be an odd number, and the equation x" =
px + 5' ; we shall here have x = ^p ± \^{\V" + 9.)

'•> '^"^

since ^p" + q — —7—, we may extract the square root of

the denominator, and write

X - .p ± 2
-

g

3d, Lastly, if j9 be a fraction, the equation may be re-

solved in the following manner. Let the equation be ax'=
ox c

hx -\- c, or JT^ = — -j and we shall have, by the rule,

b ^ ,b'^ c
X ^T b' c &- + Aac . .

" = ^- ^'fe + it'-
^°'"'

i?^ + T = -fci •

"^''^-

nominator of which is a square ; so that

b ± V{b'^ + 4<ac)
X = —=——

.

2a

645. The other method of resolving mixt quadratic equa--

tions isj to transform them into pure equations ; which is

done by substitution : for example, in the equation x- =
px + q, instead of the unknown quantity x, we may write

another unknown quantity, ?/, such, that x ~ y + \^p ; by
which means, when we have determined y, we may imme-
diately find the value of .r.

If we make this substitution of 3/ \- \;p instead of .r, we
have X- = y" + pij +ip", and px-py^-^jf--^ consequently,

our equation will become

y'' ^vy^ if- = vy + i/>' + ?

;

which is first reduced, by subtracting j^y, to

y- + if = \p" + q '>

and then, by subtracting ^p^, to //- = ^pi" + q. This is

a pure quadratic equation, which immediately gives

y = ±^{ip" + q)-

Now, since x = y -r ip, we have

X = ip ± viijy' + 7),
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as before. It only remains, therefore, to illustrate tins rule

by some examples.

646. Question 1. There are two numbers ; the one exceeds

the other by 6, and their product is 91 : what are those

numbers ?

If the less be x, the other will be x + 6, and their pro-

duct X- -{- 6x = 91. Subtracting 6a?, there remains x'- =
91 — 6a;, and the rule gives

X = -S ± V{d + 91) = - 3 ± 10 ; so that a; = 7, or

£C= - 13.

The question therefore admits of two solutions

;

By the one, the less number a; = '7, and the greater x +
6 = 13.

By the other, the less number a: = — 13, and the greater

^ + 6 = - 7.

647. Question 2. To find a number such, that if 9 be

taken from its square, the remainder may be a number,
as much greater than 100, as the number itself is less

than 23.

Let the number sought be x. We know that .r- — 9 ex-

ceeds 100 by x~ — 109 : and since x is less than 23 by
23 — X, we have this equation

x"- - 109 = 23 - .r.

Therefore x-=^—x + 1 32 ; and, by the rule,

x=- i ±V{i +132)= -4 + ^/( =^9)=- J- + V. So
that .r = 11, or a; = — 12.

Hence, when only a positive number is required, that

number will be 1
1 , the square of which minus 9 is 112, and

consequently greater than 100 by 12, in the same manner
as 11 is less than 23 by \2.

648. Question 3. To find a number such, that if we
multiply its half by its third, and to the product add half

the number required, the result will be 30,

Supposing the number to be .r, its half, multiplied by its

third, will give ^x" ; so that ~x- -\- i^x = 30; and multiply-

ing by 6, we have x- + Sx — 180, or ar- = — 3.r + 180;

which gives x =.-\± ^/{^ + 180) = - | + y

.

Consequently, either x = 12, or x = — 15.

649. Question 4. To find two numbers, the one being

double the other, and such, that if we add their sum to their

product, we may obtain 90.

Let one of the numbers be x, then the other will be 2.r;

their product also will be 2.r=, and if we add to this 3x,

or their sum, the new sum ought to make 90. So that

2a;- + 3a; = 90 ; or 2a7^ = 90 - 3a; ; whence x^ = - {x +
45, and thus we obtain
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^ = -|±'/(r'7r + 45)=-l± y.
Consequently x = 6, oy x — — 1^.

650. Question 5. A horse-dealer bought a horse for a

certain number of crowns, and sold it again for 119 crowns,

by which means his profit was as much per cent as the horse

cost him ; what was his first purchase ?

Suppose the horse cost a; crowns ; then, as the dealer gains

.^' per cent, we have this proportion

:

As 100 : X : : X : ttjt^;

since therefore he has gained r^, and the horse originally

ac-

cost him X crowns, he must have sold it for x + y^rx ',

x"
therefore x + =-t7^ = 119 ; and subtracting x, we have

—
- = — X + 119; then multiplying by 100, we obtain

x'^= — 100a- -f- 11900. Whence, by the rule, we find

a; = - 50 ± V(2500 + 11900) = - 50 + V14400 = -
50 ± 120 = 70.

The horse therefore cost 70 crowns, and since the horse-

dealer gained 70 per cent when he sold it again, the profit

must have been 49 crowns. So that the horse must have

been sold again for 70 + 49, that is to say, for 119 crowns.

651. Question 6. A person buys a certain number of

pieces of cloth : he pays for the first 2 crowns, for the

second 4 crowns, for the third 6 crowns, and in the same
manner always 2 crowns more for each following piece.

Now, all the pieces together cost him 110 crowns : how many
pieces had he?

Let the number sought be x ; then, by the question, the

purchaser paid for the different pieces of cloth in the fol-

lowing manner

:

for the 1, 2, 3, 4, .5 . . . . x pieces

he pays 2, 4, 6, 8, 10 ... . 2x crowns.

It is therefore required to find the sum of the arithmetical

progression 2 + 4 + 6 -j- 8 + 2a:, which consists of

.r terms, that we may deduce from it the price of all the

pieces of cloth taken together. The rule which we have
already given for this operation requires us to add the last

term to the first; and the sum is 2^ -f- 2; which must be

multiplied by the number of terms x, and the product will
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be 2.r* + 2x ; lastly, if we divide by the difference 2, the

quotient will be x~ + x, which is the sum of the progression ;

so that we have x~ + x = 110 ; therefore x^- = — x -f 110,

and a; = - 4 + ./(i + HO) - " 1 + V 7= 10.

And hence the number of pieces of cloth is 10.

652. Question 7- A person bought several pieces of

cloth for 180 crowns ; and if he had received for the same
sum 3 pieces more, he would have paid 3 crowns less for

each piece. How many pieces did he buy ?

Let us represent the number sought by .r; then each

180
piece will have cost him crowns. Now, if the purchaser

had had a; + 3 pieces for 180 crowns, each piece would have

cost ^ crowns ; and, since this price is less than the real

price by three crowns, we have this equation,

180 180

;r + 3 X
3.

Multiplying by ^, we obtain = 180 — 3.r; dividing

by 3, we have —-^ = 60 — j; ; and again, multiplying by
X ~j~<J

a; -f 3, gives 60a; = 180 -1- 51x — x'- ; therefore adding x"^

we shall have^- + 60a; = 180 + 57.r; and subtracting 60^',

we shall have x"^ —— 3.r + 180.

The rule consequently gives,

a;=-| +V{1 +180),ora;=-l -|- V = 1^-

He therefore bought, for 180 crowns, 12 pieces of cloth

at 15 crowns the piece ; and if he had got 3 pieces more,

namely, 15 pieces for 180 crowns, each piece would have

cost only 12 crowns ; that is to say, 3 crowns less.

653. Question 8. Two merchants enter into partnership

with a stock of 100 pounds; one leaves his money in the

partnership for three months, the other leaves his for two

months, and each takes out 99 jjounds of capital and profit.

What proportion of the stock did they separately furnish ?

Suppose the first partner contributed x pounds, the other

will have contributed 100 — x. Now, the former receiving

99/., his profit is 99 —- x, which he has gained in three

months with the principal x ; and since the second receives

also 99/., his profit is .r — 1, which he has gained in two

months with the principal 100 — xi, it is evident also,

that the profit of this second partner would have been

(i2
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—^^-^5 if he had remained three months in the partnership

:

and as the profits gained in the same time are in proportion

to the principals, we have the following proportion,

3x-3
a: .90 -x:: 100 - x: —g—

•

And the equality of the product of the extremes to that of

the means, gives the equation,

il—^ = 9900 - 199^ + x^;
2

then multiplying this by 2, we have

3,r2 _ 3^^. _ 19800 — 398x + 2x"- ; and subtracting 2.r", we
obtain x- — ox = 19800 - 398^. Adding 3;r, gives x" =
19800 — 395^ ; then by the rule,
~ 395 _L //I5602S i_ 79iOO\ — 395 1 485 9©^ — or lA^V + T" T J ^^-a— T
= 45.

The first partner therefore contributed 45/. and the other

55/. The first having gained 54/. in three months, would
have gained in one month 18/. ; and the second having
gained 44/. in two months, would have gained 22/. in one
month : now these profits agree ; for if, with 45/., 18/. are

gained in one month, 22/. will be gained in the same time

with 55/.

654. Question 9. Two girls carry 100 eggs to market

;

the one had more than the other, and yet the sum which they

both received for them was the same. The first says to the

second, If I had had your eggs, I should have received 15
pence. The other answers, If I had had yours, I should

have received 6^ pence How many eggs did each carry to

market :

Suppose the first had x eggs ; then the second must have
had 100 - .r.

Since, therefore, the former would have sold 100—^ eggs
for 15 pence, we have the following proportion

:

1 '^r

(,00-.):lS::.:jg5-.

Also, since the second ,would have sold a; eggs for 6|-

pence, we readily find how much she got for 100 — x eggs,

thus :

,,^^ X .o 2000-20^
As X : (100 - jr) : : y :

3x

Now, both the girls received the same money; we have
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15 A' 2000— 20a.'

consequently the equation, r-^^r ==
^r: > which be-

comes 25^^- = 200000 - 4000.r ; and, lastly,

cc^-=— 160r + 8000

;

whence we obtain

:r =: _ 80 + ^/(6400 + 8000) = - 80 + 120 = 40.

So that the first girl had 40 eggs, the second had 60, and
each received 10 pence.

655. Question 10. Two merchants, sell each a certain

quantity of silk ; the second sells 3 ells more than the first,

and they received together 35 crowns. Now, the first says

to the second, I should have got 24 crowns for your silk :

the other answers, And I should have got for yours 12
crowns and a half. How many ells had each ?

Suppose the first had a: ells ; then the second must have

had .r + cJ ells ; also, since the first would have sold x + S

24;r
ells for 24 crowns, he must have received r, crowns for

his X ells. And, with regard to the second, since he would

have sold X' ells for 12?- crov.ns, he must have sold his

25^7 + 75
x -{- 3 eils for— ; so that the whole sum they rc-

2.r
•'

ceived was

24^ 25a: + 75 ^^
+— = ,J5 crowns.

x+S
This equation becomes x" = 20r — 75; whence we have

x = ^0 ± V(100 - 75) = 10 ± 5.

So that the question admits of two solutions : according

to the first, the first merchant had 15 ells, and the second

had 18; and since the former would have sold 18 ells for

24 crowns, he must have sold his 15 ells for 20 crowns.

The second, who would have sold 15 ells for 12 crowns and
a half, must have sold his 18 ells for 15 crowns ; so that they

actually received 35 crowns for their commodity.

According to the second solution, the first merchant had

5 ells, and the other 8 ells ; and since the first would have

sold 8 ells for 24 crowns, he must have received 15 crowns

for his 5 ells; also, since the second would have sold 5 ells

for 12 crowns and a half, his 8 ells must have produced him

20 crowns ; the sum being, as before, 35 crowns.
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CHAP VII.

Of the Extraction of the Roots of Polygonal Numbers.

Q5Q. We have shewn, in a preceding chapter *, how
polygonal numbers are to be found ; and what we then called

a side, is also called a root. If, therefore, we represent the

root by x, we shall find the following expressions for all

polygonal numbers

:

x" '\~X
the iiigon, or triangle, is

the ivgon, or square, -

the vgon _ - - .

the vigon - - - -

the viigon . - - -

the viiigon - - - -

the ixgon - - - ^ ,

the xgon----- 4^2_ ^^^

2
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^= -
4: + V(i + 182) = - 4 + V(; ^' ) = - A + V = 13 ;

from which we conclude, that the triangular root required is

13; for the triangle of 13, or —^— is 91.

659- But, in general, let a be the given triangular num-
ber, and let its root be required.

Here, if we make it = x, we have —^— = a, or x- +

0? = 2a i therefore, cc"- =— x+2a, and, by the rule for solv-

ing Quadratic Equations [Art. 641.] cr= — 4 + V(i + 2«),

-l+v/(8«+l)
or.'= .

This result gives the following rule : To find a triangular

root, Multiply the given triangular number by 8, add 1 to

the product, extract the root of the sum, subtract 1 from
that root, and lastl^^, divide the remainder by 2.

660. So that all triangular numbers have this property

;

namely, if we multiply them by 8, and add unity to the

product, the sum is always a square ; of which the following

small Table furnishes some examples :

Triangles I, 3, 6, 10, 15, 21, 28, 36, 45, 55, &c.

8 times +1=9, 25, 49, 81, 121, 169, 225, 289, 361, 441, &c.

If the given number a does not answer this condition, we
conclude, that it is not a real triangular number, or that no
rational root of it can be assigned.

661. According to this rule, let the triangnlar root of 210
be required; we shall have a = 210, and 8fl: + 1 = 1681,

the square root of which is 41 ; whence we see, that

the number 210 is really triangular, and that its root is

41-1—-— —20. But if 4 were given as the triangular num-
2 & &

ber, and its root were required, we should find it =
\/33

5— 4r» ^^^^ consequently irrational. However, the tri-

/33
angle of this root, 5~t> ni3,y be found in the following

manner

:

V33-1 , 17- a/33 , ,,.
femce X — , we have X- — , and addmg
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V'33~ 1
X = ^ to it, the sum is x"- + x = '^ = 8. Consc-

quently, the triangle, or the triangular number, —^— =4.

662. The quadrangular numbers being the same as

squares, they occasion no difficulty. For, supposing the

given quadrangular number to be a, and its required

root x^ we shall have x" = a, and consequently, x = ^a ;

so that the square root and the quadrangular root are the

same thing.

66'2>. Let us now proceed to pentagonal numbers.

Let 22 be a number of this kind, and x its root ; then, by
OtXf^ —w

the third formula, we shall have —^—- =22, or 3x^ —x
= 44, or x" = ijr + ""-^ ; from which we obtain,

•^ =i + V(3-V + V), or X = V '^ =^+ '^' ='*''

and consequently 4 is the pentagonal root of the number 22.

664!. Let the following question be now proposed; the

pentagon a being given, to find its root.

Let this root be x, and we have the equation

Sx-—x ^ ^ 2a ,—2^— = a, or Sx" —x = ^a, or x"=:^x + -^ ; by means

2«
of which we find a; =-J + a/CtV "^ "a )' ^'^^^ ^^'

X = ^ --. Therefore, when a is a real pentagon,

24fl + 1 must be a square.

Let 330, for example, be the given pentagon, the root

1+^/(7921) 1 + 89 ,_
will be a; = ^ = —ji— = 10.

665. Again, let a be a given hexagonal number, the root

of which is required.

If we suppose it = x, we shall have 2^'^ — x = a, or

X- = Ix -i- la; and this gives

, l+^(8a + l)
^ = i + ./(tV + 4«) = 5 -•

So that, hi order that a may be really a hexagon, 8a + 1

must become a square ; whence we see, that all hexagonal

numbers are contained in triangular numbers ; but it is not

tile same with the roots.
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For example, let the hexagonal number be 1225, its root

1+ a/9801 1 + 99 ^^
will be X = = —-.— = 25.

4 4

666. Suppose a an heptagonal number, of which the root

is required.

Let this root be <r, then we shall have = a, or

X'- = lx + |a, which gives

_ 3 / 9 z X _ 3+^/(400+9)

therefore the heptagonal numbers have this property, that if

they be multiplied by 40, and 9 be added to the product,

the sum will always be a square.

Let the heptagon, for example, be ^059 ; its root will be

. , 3+^/(82369) 3+287 „^
found =x=

Yq
=

iQ
= ^9-

667. Let us suppose a an octagonal number, of which
the root x is required.

We shall here have Sx"^ — 2x = a, or x'^ = ^x + -a,

. . X l+V(Sa + l)
whence results jr = -i-+ //(i + la) = ^ -.

Consequently, all octagonal numbers are such, that if

multiplied by 3, and unity be added to the product, the sum
is constantly a square.

For example, let 3816 be an octagon; its root will be

1+^11449 1+107 _
* =

JT
=-3—=^^-

668. Lastly, let « be a given w-gonal number, the root of

which it is required to assign ; we shall then, by the last

formula, have this equation

:

i -—^ = a, or {n — 2)^:^ - (n - 4)a; = 2a;

,
(n—4})x 2a

consequently, x^= _q—I—j^; whence,

w—

4

, (n—4>)" 2a ^

x=

2{n-^) ' '^H(w— 2)2 ' n-2^
n-4' (n-4)" 8(/i-2)a

2(w-2) '^
^^4>{n-'2y

"^
Mn~- 2)^ ^'

°^

_:^^-4+ ^/(8(w-2)a + (n-4)0
'^~

2(?e-2)
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This formula contains a general rule for finding all the

possible polygonal roots of given numbers.
For example, let there be given the xxiv-gonal number,

3009 : since a is here' = 3009 and rk = 24, we have
w — /i = 522 and w — 4* — 20 ; wherefore the root, or

a _ 20 + y/(529584 + 400) _ 20 + 728_ ^ ^

CHAP. VIII.

Of the Extraction qf'the Square Roots o/" Binomials.

669. By a binomial* we mean a quantity composed of

two parts, which are either both affected by the sign of the

square root, or of which one, at least, contains that sign.

For this reason 3 + ./5 is a binomial, and likewise

V8 + VS ; and it is indifferent whether the two terms be
joined by the sign + or by the sign — . So that 3 — a/ 5,

and 3 + V5 are both binomials.

670. The reason that these binomials deserve particular

attention is, that in the resolution of quadratic equations we
are always brought to quantities of this form, when the re-

solution cannot be performed. For example, the equation

a:- = 6.r — 4 gives a: = S-\- a/5.

It is evident, therefoi'e, that such quantities must often

occur in algebraic calculations ; for which reason, we have

already carefully shewn how they are to be treated in the

ordinary operations of addition, subtraction, multiplication,

and division : but we have not been able till now to shew

how their square roots are to be extracted ; that is, so far as

that extraction is possible ; for when it is not, we must be
satisfied with affixing to the quantity another radical sign .

Thus, the square root of 3 -|- y/2 is written \/S -\- ^/2 ;

or a/(3+ a/2).

671. It must here be observed, in the first place, that the

* In Algebra we generally give the name binomial to any

quantity composed of two terms ; but Euler has thought proper

to confine this appellation to those expressions, which the French

analysts call quantities parth/ commensurnble, and partly iricom-

mensuruhlc. F. T.
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squares of" such binomials are also binomials of the same

kind ; in which also one of the terms is always rational.

For, if we take the square of a + \/6j we shall obtain

{a-+ b) + 2a \^h. If therefore it were required reciprocally

to take the i*oot of the quantity [a~ -j-i) + 2a ^6, we should

find it to be tt -f- \'^ \ and it is undoubtedly much easier to

form an idea of it in this manner, than if we had only put

the sign V before that quantity. In the same manner, if

we take the square of ^/« + ^/h, we find it (a + 6) +
2 \^ah ; therefore, reciprocally, the square root of (« f 6) +
2Vuh will be V^-fx/S, which is likewise more easily un-

derstood, than if we had been satisfied with putting the sign

a/ before the quantity.

672. It is chiefly required, therefore, to assign a character,

which may, in all cases, point out whether such a square

root exists or not ; for which purpose we shall begin with an

easy quantity, requiring whether we can assign, in the sense

that we have explained, the square root of the binomial

Suppose, therefore, that this root is Vx + \/y\ the

square of it is (,r + y) + 2 ^'xy^ which must be equal to

the quantity 5 + 2 v/6. Consequently, the rational part

X -\- y must be equal to 5, and the irrational part 2 ^,fxy

must be equal to 2 V6 ; which last equality gives ^/xy =
V6. Now, since x + y = 5, we have y =^ 5 — x, and
this value substituted in the equation xy = 6, produces

5x — x^=6, or x^= 5x -6; therefore, jr = |- + V(V ~
^^4) _ |. ^ I = 3, So that x = S, and y = ^; whence we
conclude, that the square root of 5 +2 v6 is v'3 -f a/2.

673. As we have here found the two equations, x + 7/= 5,

and xt/= 6, we shall give a particular method for obtaining

the values of x and i/.

Since x + y = 5, by squaring, x"- + 2xjt/ + y^ = 25 ; and
as we know that x" — 2xy + y"^ is the squ^jje of x — y^ let

us subtract from x'^ + 2xy -r'if- = 25, the equation xy = 6,

taken four times, or ^xy = 24, in order to have x-— 2jr?/+
?/2— 1

. whence by extraction we have x — j/=l; and as

X + y=^ 5i we shall easily find x = S, and ^ = 2 : where-

fore, the square root of 5 +2 ^6 is a/3 + V2.
674. Let us now consider the general binomial «+ a/6,

and supposing its square root to be Vx + Vy, we shall

have the equation {x + i/) + 2 ^xy =: a -\-ybi so that

X + y = a, and 2 ^/ay = Vb, or ^xy = h ; subtracting

this square from the square of the equation x ^-y = tf, that

is, from x"- + 2xy + y- == «-, there remains ^" — 2xy +
y" = «' — h, the square root of v/hich is x — y — v {or—b).
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«-|-a/(«^-6)
Now, X + 1/ = w, we have therefore .r =

2

, a- V{(i"-b) - ,

ancl^ = ^ ; consequently, the square root re-

quired of a + ^/o is a/^ ^ ^ + V^ h •

675. We admit that this expression is more coraphcated

than if we had simply put the radical sign V before the

given binomial a + ^/b, and written it s/{a + ^/h) : but
the above expression may be greatly simplified when the

numbers a and b are such, that a^ — 6 is a square ; since

then the sign a/, which is under the radical, disappears.

We see also, at the same time, that the square root of the

binomial « + Vb cannot be conveniently extracted, exce})t

when a^ — 6 = c"; in this case, the square root required

(Z ~\~ c a ^— c
is V{—^— ) + a/(—^r— ): but if «2 _ (^ be not a perfect

<* /4

square, we cannot express the square root of « + a/Z) more
simply, than by putting the radical sign ^/ before it.

676. The condition, therefore, which is requisite, in order

that we may express the square root of a binomial a + \/b

in a more convenient form, is, that a" — bhe £i square ; and
if we represent that square by c", we shall have for the

a + c^ ,a — c, ,__
square root m question V{—q—) + Vi—5~)- ** e must

farther remark, that the square root of a — a/6 will be

«+ c. a—c „ , . , . -, 1

a/(—^— ) — a/(- q ) ; tor, by squaring this lormula, we get

a^—c"
a — 2 a/C—T—) ; now, since d^ =. a" — b, or «* — c-= b, the

' n ^ r.
b 2Vb

same square is round =a —2^/-r=a a~—^— v "•

677. When it is required, therefore, to extract the square

root of a binomial, as « ± V6, the rule is, Subtract from

the square (a^) of the rational part the square (b) of the ir-

rational part, take the square root of the remainder, and
calling that root c, write for the root required,

678. If the square root of 2 + a/3 were required, we
should have a = 2 and Vb = ^3 ; wherefore a- — b =
«?2 = 4 _ 3 = 1 ; so that, by the formula just given, the
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root sought Will be V—g— T '^~W~ = -v^l- + -/i-

Let it be required to find the square root of the binomial

n + 6 a/2. Here we shall have a = 11, and ^h-^v2\
consequently, 6 r= 36 X 2 = 72, and a" — b = 49, which

gives c = 7 ; and hence we conclude, that the square root

of 11 +6 ^/2 is a/9 + a/2, or 3 + a/ 2.

Required the square root of 11 +2v'30. Here a = 11,

and -v/6 = 2 ^30; consequently, & = 4 x 30 = 120,

a- — 6 = 1, and c = 1 ; therefore the root required is

\/6 + a/5.

679. This rule also applies, even when the binomial con-

tains imaginary, or impossible quantities.

Let there be proposed, for example, the binomial 1 +
^a/— 3. First, we shall have a = I and Vb = 4<^/— 3,

that is to say, 6 =^ — 48, and a- — 6 = 49; therefore

c = 7, and consequently the square root required is a/4 +
^-3 = 2 + v/-3.
Again, let there be given —

4: + 4:\/ — 3. First, we
have a = — i; Vb= ^V— 3, and 6 = i x - 3 = — 1;
whence a'^— b = j; + l. = l, and c = 1 ; and the result

' _3
required is ^~ +^-l = i.-\ ^, or -i + i-A/ - 3.

Another remarkable example is that in which it is required

to find the square root of 2v'— 1- As there is here no

rational part, we shall have a = 0. Now, v'6 = 2 a/ — 1,

and 6 m — 4 ; wherefore a^ — b = 4;, and c = 2; conse-

quently, the square root required is a/1 +\/— 1 = 1 +
a/ — 1 ; and the square of this quantity is found to be

1 + 2v/- 1 - 1 = 2a/- 1.

680. Suppose now we have such an equation as x- =
a + a/6, and that a^ — b = c-; we conclude from this, that

ct -\' c a — c
the value of x = '/{—[^) + '/('"o")? which maybe useful

in many cases.

For example, if .r^ = 17 + 12 a/ 2. we shall have

x~3+ a/8 = 3 + 2 a/2.

681. This case occurs most frequently in the resolution of

equations of the fourth degree, such as x* = 2ax^+d. For,

if we suppose x~ = y, we have x^ = _?/-, which reduces the

given equation to -if-
= Say + d^ and from this we find

if
= a ± \/(a- -f 5), therefore, .r- = a i-v/Ca- + d), and

consequently we have another evolution to perform. Now,
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since v'A = \/ {a" + rf), we have b = a- + d^ and a^ —
h = — d; if, therefore, — (Z is a square, as c-, that is to

say, d =— c^, we may assign the root required.

Suppose, in reality, that d = — c~ ; or that the proposed
equation of the fourth degree is .t*=i2a.r-- c-, we shall then

r. , , ,'^ + c, a—c
find that X = ^(^ +^(_-).

682. We shall illustrate what we have just said by some
examples.

1. Required two numbers, whose product may be 105,

and whose squares may together make 274.

Let us represent those two numbers by x and i/ ; we shall

then have the two equations,

xi/ = 105
x'^ + y- = 274.

105
The first gives y = — , and this value of i/ being sub-

stituted in the second equation, we have

X- + —— = 274.
X-

Wherefore x* + 1052 = 274.r% or x* = 274.^- - 105%
If we now compare this equation with that in the pre-

ceding article, we have 2« = 274, and — c- = — 105";

consequently, c = 105, and a = 137. We therefore find

137 + 105 137-105^ ,, , ,
-' = ^^( o )± V( ^—) = 11 ± 4.

Whence x — 15, or x =7. In the first case, y— l, and in

the second case, i/= l5; whence the two numbers sought are

15 and 7.

683. It is proper, however, to observe, that this calcula-

tion may be performed much more easily in another way.

For, since x^ -h 2x?/ -}- ^- and .r- — 9,xy + y- are squares,

and since the values of x- +?/- and of x?/ are given, we have

only to take the double of this last quantity, and then to add
and subtract it from the first, as follows : x- -j- 9j- = 274

;

to which if we add 2.r?/ = 210, we have

.r- 4 2.1 y + 7/" = 484, which gives x + 3/ = 22.

But subtracting 2^?/, there remains x^ — 2x1/ + ?/" = 64,

whence we find x — ?/ = S.

So that 2.1 = 30, and 2^/ = 14; consequently, x = 15,

and j/ = 7.

The following general question is resolved b}^ the same

method.
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2. Required two numbers, whose product may be in, and
the sum of the squares n.

If those numbers are represented by .r and y, we have the

two following equations

:

xy =^ m
x^ -\- 1/" = n.

Now, 2jn/ = 9,171 being added to ^- + y" =.^i, we have
x~ + 9xy -\- y"^ = n + 9in, and consequently.

But subtracting 9xy, there remains x" — 9xy + y" =i n
— 9,m, whence we get x — y = ^/(w — 2m); we have,

therefore, x — i.^[n + 2m) + \\/{n — 2m); and
^/ = i. ^/{n + 2m) - i ^/(/^ - 2m).

684. 3. Required two numbers, such, that their product
may be 35, and the difference of their squares 24.

Let the greater of the two numbers be x^ and the less y :

then we shall have the two equations

xy = 35,

x" — 3/2 = 24

;

and as we have not the same advantages here, we shall pro-
ceed in the usual manner. Here, the first equation gives

35
y = — , and, substituting this value ofy in the second, we

1225
have x" j^- = 24. Multiplying by a;-, we have

x' - 1225 = 24a;2; or x'' = 24^x'' + 1225, Now, the se-

cond member of this equation being affected by the sign +,
we cannot make use of the formula already given, because
having c" =. — 1225, c would become imaginary.

Let us /therefore make x- = ;i; ; we shall then have
z- = 24s + 1225, whence we obtain

z = 12 ± v/(144 + 1225) or ;^ = 12 ± 37;
consequently, x" ~ 12 ± 37 ; that is to say, either =49, or
= - 25.

If we adopt the first value, we have x = 7, and y — 5.

The second value gives .r == v^ — 25 ; and, since xy=S5,
35 1225wehavey:^-— =^-^=.^-49.

685. We shall conclude this chapter with the following-

question.

4. Required two numbers, such, that their sum, their

product, and the difference of their squares, may be all

equal.
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Let X be the f^ieater of the two numbers, and 7/ the less

;

then the three following expressions must be equal to one

another: namely, the sum, x -\- 1/; the product, ^^; and
the difference of the squares, x- — ?/-. If we compare the

first with the second, we have x + y = xy^ which will give

a value of j:: for y = xy — x = {y ~ 1 }t/ind x — ;

consequently, x +y = -^^ +?/= -^, and xy = -^

;

that is to say, the sum is equal to the product ; and to this

also the difference of the squares ought to be equal. Now,

I
y" —y*+2i/

,we have x- — ifi = -—

—

— ?/- = -~—^—^^—
; so that

^ ?/«-23/ + l "^ 3/--2?/+l'

making this equal to the quantity found -^— , we have

?/'- -y+2j/' V -T , o , 1= ——
; dividmg by ?r, we have = . .

—3g-— ; and multiplying by ?/- - 2y V 1, or {y - l)'\

we have j/ — 1 = — y"- + 2y ; consequently, j/- = j/ + 1 ;

which gives y=i-±^/{i. + l)=i.± ^/^ • or 1/=—^—

'

and since x = , we shall have, bv substitution, and
y — l

using the sign +, x = —p—-.

In order to remove the surd quantity from the denomi-
nator, multiply both terms by ^5 + 1, and we obtain

6+2v/5 34-V/5
•r = = .

4 2

Therefore the greater of the numbers sought, or x,

3 + ^/5 , . . I+./5= —^— ; and the less, y, = —-—

.

Hence their sum x + y = 2 + \/ 5 ; their product xy =

2 + a/5; and smce .2- = —
-, and y- = —-—, we

have also the difference of the squares x- — y- = 2 + ^/S,

being all the same quant^t3^

686. As this solution is very long, it is proper to remark
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that it may be abridged. In order to which, let us begin

with making the sum x-^y equal to the difference of the

squares x-—y"\ we shall then have x -\-y = x'^— if^ \ and
dividing by x-\- y, because X- — y~ = [x -{ y) x {x — y),
we find l = x—y, and x=y + l. Consequently, x->-y
= 9.y + 1, and x" — y^ = ^y -\-\ \ farther, as the product

xy^ ov y"-\-y, must be equal to the same quantity, we have
y""- + ij = 9>y -{- \, or y'^ = y-{-\, which gives, as before,

i + v5
y = -g—

.

687. The preceding question leads also to the solution of

the following.

5. To find two numbers, such, that their sum, their pro-

duct, and the sum of their squares, may be all equal.

Let the numbers sought be represented by x and y;
then there must be an equality between x + y, xi/y and
x"-+y^.

..
,

Comparing the first and second quantities, we have

a: + y =: xy, whence x = —~ ; consequently, xy, and

X + y = —— . Now, the same quantity is equal to x" +y" ;

so that we have

3/2 „ _ y^

Multiplying hy y~ — 2y + 1, the product is

y* - %f f %2 ^ yi _^c^ or / = %^ - 3j/2

;

and dividing by y", we have y'^ = ?yy — 2>\ which gives

3 + ,/_3
«/ = i ± a/(|- — 3) = 2 ; consequently,

1 1+A/-3 ,
1,

3+X/-3
?/ — 1 = , whence results x = t-——-—^; and

multiplying both terms by 1 — 'Z — 3, the result is

6-2s/-3 3- v/-3x= ^ , or ^—

.

3- a/ -3
Therefore the numbers sought are x = -, and

y = ^ , the sum of which is x + y = Q, their

3_3v/-3 -

product xy = Q; and lastly, since x- = , and
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„ 3 + 3.y/ -3 , . , .,.«!,y~ = -^ , the sum oi the squares x~ -V y- = 3, all

the same quantity as requu'ed.

688. We may greatly abridge this calculation by a par-

ticular artifice, which is applicable likewise to other cases

;

and which consists in expressing the numbers sought by the

sum and the difference of two letters, instead of representing

them by distinct letters.

In our last question, let us suppose one of the numbers
sought to be p 4- 5'j ^nd the other /> — §, then their sum
will be 2/?, their product will be p" — q-, and the sum of

their squares will be 2jd- + ^q", which three quantities must
be equal to each other ; therefore making the first equal to

the second, we have 2p = p^ —q-, which gives q- = p" — 2p.

Substituting this value of q- in the third quantity

(2p- + 2g'-), and comparing the result 4<p" — 4p with the

first, we have 2p = 4//'— 4/j, whence p — i.

Consequently, q- = p^ — 2p = — |^, and q = —^
— ;

so that the numbers sought are p + q = o~~~' ^"^

3- V-3 , -

p — q = ^ , as berore.

QUESTIONS FOR PRACTICE.

1. What two numbers are those, whose difference is 15,

and half of their product equal to the cube of the less ?

Ans. 3 and 18.

2. To find two numbers v/hose sum is 100, and product

2059. Ans.'^l and 29.

3. There are three numbers in geometrical progression

:

the sum of the first and second is 10, and the difference of

the second and third is 24. What are thev ?

Ans. 2, 8, and 32.

4. A merchant having laid out a certain sum of money in

goods, sells them again for 24Z. gaining as much per cent as

the goods cost him : required, wht;t they cost him. Ans. 20Z.

5. The sum of two numbers is a, their product b. Re-
quired the numbers.

yf/n*. y ± a/ ( - <^+ -^), and

a ^ , a- ^
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6. The sum of two numbers is a, and the sum of their

squares h. Requu*ed the numbers.

. a ^
26— «2

A71S. — ±v/(—|— ), and

a 2b —a-

7. To divide 36 into three such parts, that the second

may exceed the first by 4, and that the sum of all their

squares may be 464. Ans. 8, 12, 16.

8. A person buying 120 pounds of pepper, and as many
of ginger, finds that for a crown he has one pound more of

ginger than of pepper. Now, the whole price of the pepper
exceeded that of the ginger by six crowns : how many
pounds of each had he for a crown ?

Ans. 4 of pepper, and 5 of ginger.

9- Required three numbers in continual proportion, 60
being the middle term, and the sum of the extremes being

equal to 125. Ans, 45, 60, 80.

10. A person bought a certain number of oxen for 80
guineas : if he had received 4 more for the same money, he
would have paid one guinea less for each head. What was
the number of oxen? Ans. 16.

11. To divide the number 10 into two such parts, that

their product being added to the sum of their squares, may
make 76. Ans. 4 and 6.

12. Two tx'avellers A and B set out from two places, r and
A, and at the same time ; A from T with a design to pass

through A, and B from A to travel the same way : after A
had overtaken B, they found on computing their travels,

that they had both together travelled SO miles ; that A had
passed through A four days before, and that B, at his rate of

travelling, was a journey of nine days distant from T. Re-
quired the distance between the places r and A,

Ans, 6 miles.

r2
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CHAP. IX.

Of the Nature of Equations of the Second Deoree.

689. What we liave already said sufficiently shews, that

equations of the second degree admit of two solutions ; and

this property ought to be examined in every point of view,

because tlie nature of equations of a higher degree will be

very much illustrated by buch an examination. We shall

therefore retrace, with more attention, the reasons which

render an equation of the second degree capable of a double

solution; since they undoubtedly will exhibit an essential

property of those equations.

690. We have already seen, indeed, that this double solu-

tion arises from the circumstance that the square root of any

number may be taken either positively, or negatively; but,

as this principle will not easily apply to equations of higher

degrees, it niav be proper to illustrate it by a distinct

analysis. Taking, therefore, for an example, the quadratic

equation, a-- — 12jr —35, we shall give a new reason for

this equation being resolvible in two ways, by admitting for

X the values 5 and 7, both of which will satisfy the tei'ms of

the equation,

691. For this purpose it is most convenient to begin with

transposing the terms of the equation, so that one of the

sides may become ; the above equation consequently takes

the form

x"-- 12jr + 35 = 0;

and it is now required to find a number such, that, if we
substitute it for x, the quantity x-— 12a: + 35 may be really

equal to nothing ; after which, we, shall have to shew how
this may be done in two different ways.

692. Now, the whole of this consists in clearly shewing,

that a quantity of the form .r- — 12.r + 35 may be con-

sidered as the product of two factors. Thus, in reality, the

quantity of which we speak is composed of the two factors

[x — 5) X (/r — 7); and since the above quantity mu^t
become 0, we must also have the product {x — 5) x (^ — 7)

= 0; but a product, of whatever number of factors it is

composed, becomes equal to 0, only when one of those fa<;-

tors is reduced to 0. This is a fundamental principle, to

which we must pay particular attention, especially when
equations of higher degrees are treated of.

693. It is therefore easily understood, that the pvoduct
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^ ^ (.r — 5) X (.r — 7) may become in two ways : first, wlien

^ j
the first factor a,' — 5 ~ ; and also, when the second factor

<^ix — 7 = 0. In the first case, x ~ 5, in the second a; = 7.

)* ^The reason is therefore very evident, why such an equation
i,v-—12iv + 35 = 0, admits of two solutions ; that is to sav,

j^why we can assign two values of x, both of which equally
^.satisfy the terms of the equation; for it depends upon this

jfundaniental principle, that the quantity x- — 12^^ -f 35
T|may be represented by the product of two factors.

^i 694. The same circumstances are found in all cqua-
^Uions of the second degree: for, after having brought the

^
I
terms to one side, we find an equation of the following form

J^cT"— fl!jr + b — 0, and this formula may be always considered
N , as the product of two factors, which we shall represent by
S«(.r—^) X {x — q), without concerning ourselves what nuni-

J bers the letters j9 and q represent, or whether they be nega-

U tive or positive. Now, as this product must be =0, from

l\ the nature of our equation, it is evident that this may
V J. happen in two cases ; in the first place, when x = p; and in
' \ the second place, when x = q; and these are the two values

^ of .r which satisfy the terms of the equation.

j* 695. Let us here consider the nature of these two factors,

in order that the multiplication of the one by the other may
exactly produce x" — ax -{- b. By actually multiplying

them, we obtain x^ — (/> + 5') •^*
'^PQ'-> which quantity must

be the same as x'^ — ax -\- b, therefore we have evidently

p + q — a, and pq = b. Hence is deduced this very re-

^IJmarkable property; that in every equation of the form
\y\x' — ax -\- b — 0, the two values of a? are such, that their

'I

J
sum is equal to a, and their product equal to b: it therefore

n necessarily follows, that, if we know one of the values, the

H other also is easily found.

1 3 696. We have at present considered the case, in which the

Mtwo values of ^ are positive, and which I'equires the second

i|5^term of the equation to have the sign —, and the third term

\ , to have the sign -|- . Let us also consider the cases, in which

i" either one or both values of ^ become negative. The first

\ f takes place, when the two factors of the equation give a pro-

IL duct of this form, [x —p) x {x -\- q) \ for then the two

^i values of x are x -— p^ and x = — q-^ and the equation

J 5 itself becomes
vj a2 + {q-p) X - pq = (d;

^ \ the second term having the sign + , when q is greater than p^

\ \ and the sign — , when q is less than p ; lastly, the third term

. ^s alwavs negative.
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The second case, in which both values of x are negative,

occurs, when the two factors are

(j; + p) X {x + q);

for we shall then have x = — p, and x = — q\ the equa-

tion itself therefore becomes

X + {p -V q) X + J)q
= 0,

in which both the second and third terms are affected by the

sign +.

697. The signs of the second and the third terms con-

sequently shew us the nature of the roots ofany equation of

the second degree. For let the equation he x- ... .ax ...

.

6 = 0. If the second and third terms have the sign + , the

two values of x are both negative ; if the second term have

the sign — , and the third term +, both values are positive

:

lastly, if the third term also have the sign — , one of the

values in question is positive. But, in all cases whatever, the

second term contains the sum. of the two values, and the

third term contains their product.

698. After what has been said, it will be easy to form
equations of the second degree containing any two given

values. Let there be required, for example, an equation

such, that one of the values of x may be 7, and the other

— 3. We first form the simple equations .r = 7, and
X ^= — 3; whence, a' — 7 = 0, and a; + 3 = ; these give

us the factors of the equation required, which consequently

becomes x- — ^x — 21 = 0. Applying here, also, the above
rule, we find the two given values of a:; for '\^ x~= 4a- + 21,

we have, by compleating the square, &c. x — 9. ±V25 = 2
+ 5 ; that is to say, x = 7, or .r = — 3.

699. The values of a; may also happen to be equal. Sup-
pose, for example, that an equation is required, in which both
values may be 5. Here the two factors will be (.r — 5) X
{x — 5), and the equation sought will be ;r- — lOo; + 25 =0.
In this equation, .r appears to have only one value ; but it is

because x is twice found — 5, as the common method of
resolution shews; for we have x- = \0x— 25; wherefore
X = b ±_ //O = 5 + 0, that is to say, x is in two ways = 5.

TOO. A very remarkalile case sometimes occurs, in which
both values of x become imaginary, or impossible ; and it is

then wholly impossible to assign any value for x, that would
satisfy the terms of the equation. Let it be proposed, for

example, to divide the number 10 into two parts, such that

their product may be 30. If we call one of those parts .r,

the other will be 10 — .r, and their product will be lO.r —
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ir2 = 30 ; wherefore .r- =z IOjt — 30, and x = 5±x/ -5,
which, being an imaginary number, shews that the question

is impossible.

701. It is very important, therefore, to discover some
sign, by means of which we may immediately know whether
an equation of the second degree be possible or not.

Let us resume the general equation a:-— ax +6 = 0. We
shall have x- =: ax — b, and x = j_a ± \/(^a~ — b). This
shews, that if b be greater than ~a", or 46 greater than a",

the two values of x are alwaj^s imaginary, since it would be
required to extract the square root of a negative quantity ;

on the contrary, if b be less than ia-, or even less than 0,

that is to say, if it be a negative number, both values will be

possible or real. But, whether they be real or imaginary, it

is no less true, that they are still expressible, and always
have this property, that their sum is equal to cr, and their

product equal to b. Thus, in the equation a'^— 6:17 + 10=0,
the sum of the two values of :r must be 6, and the product
of these two values must be 10; now, we find, 1. x=
3+ a/— 1, and 2. ,r = 3— %/— 1? quantities whose sum is

6, and the product 10.

702. The expression which we have just found may like-

wise be represented in a manner more general, and so as to

be applied to equations of this form, Jx- + gx -{ h = ;

for this equation gives

ffx h . — K y M' ^' ^x-=^.y-j, and x= + 17^ ± v/(j^ - j), or . .

X = — -^ ; whence we conclude, that the tv/o

values are imaginary, and, consequently, the equation im-

possible, when ^h is greater than ^- ; that is to say, when,

in the equation fx- — gx + 7i = 0, four times the product

of the first and the last tei-m exceeds the square of the second

term : for the product of the first and the last term, taken

four times, is \fhx-, and the square of the middle term is

g"x^ ; now, if '\fhx~ be greater than g-x'^, ^fh is also greater

than ^', and, in that case, the equation is evidently im-

possible ; but in all other cases, the equation is possible, and
two real values of x may be assigned. It is true, they are

often irrational ; but we have already seen, that, in such

cases, we may always find them by approximation : whereas

no approximations can take place with regard to imaginary

expressions, such as ^./— 5•^ for 100 is as far from being the

value of that root, as 1, or any other number.
703. AVc have farther to observe, that any quantity of
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the second degree, x^ + ax + 6, must always be resolvible

into two factors, such as {x ± p) x {x ± g). For, if we
took three factors, such as these, we should come to a

quantity of the third degree; and taking only one such

factor, we should not exceed the first degree. It is therefore

certain, that every equation of the second degree necessarily

contains two values of x, and that it can neither have more
nor less.

704. We have already seen, that when the two factors

are found, the two values of a; are also known, since each
factor gives one of those values, by making it equal to 0.

The converse also is true, vi^s. that when we have found one
value of jr, we know also one of the factors of the equation ;

for if .r=j5 represents one of the values of .r, in any equa-
tion of the second degree, x —p is one of the factors of that

equation ; that is to say, all the terms having been brought
to one side, the equation is divisible by x ~ p\ and farther,

the quotient expresses the other factor.

705. In order to illustrate what we have now said, let

there be given the equation x- + 4a: — 21 = 0, in which
we know that x = ^ is one of the values of x, because

(3 X 3) + (4 X 3) — 21 =0; this shews, that a; — 3 is

one of the factors of the equation, or that ir^ + 4x — 21 is

divisible by j: — 3, which the actual division proves. Thus,
x—2) ^- + 4a'-21 (^ + 7

7;r-21
70.-21

0.

So that the other factor is x + 7, and our equation is re-

presented by the product {x — '6) x {x -\- 7) = 0; whence
the two values of .r immediately follow, the first factor giving

X = 3, and the other .r = — 7.

CHAP. X.

Of Pure Equations of the Third Degree.

706. An equation of the third degree is said to be pure,

when the cube of the unknown quantity is equal to a known
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quantity, and when neither the square of the unknown
quantity, nor the unknown quantity itself, is found in the

equation ; so that

a
x'^ = 125; or, more generally, x^ = a, ^^ = -j-, &c.

are equations of this kind.

707. It is evident how we are to deduce the value of

a; from such an equation, since we have only to extract the

cube root of botli sides. Thus, the equation x^ = 125

gives X = 5, the equation x^ = a gives x — %/a, and the

equation x^ = -r gives x = \/-r, or a; = -y, . To be able,

therefore, to resolve such equations, it is sufficient that we
know how to extract the cube root of a given number.

708. But in this manner, we obtain only one value for x :

but since every equation of the second degree has two

values, there is reason to suppose that an equation of the

third degree has also more than one value. It will be de-

serving our attention to investigate this ; and, if we find that

in such equations x must have several values, it will be neces-

sary to determine those values.

709.- Let us consider, for example, the equation x^ = 8,

with a view of deducing from it all the numbers, whose cubes

are, respectively, 8. As x == 2 is undoubtedly such a num-
ber, what has been said in the last chapter shews that the

quantity x^ — 8 = 0, must be divisible by a; — 2: let us

therefore perform this division.

i- - 2) ^' - 8 [X' + 2^ + 4
^3 O-v.i

-Zx^'
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factor .r — 2 = 0, which gives us j: = 2, but also when the

second factor

x'^ + 9,x + 4 = 0. Let us, therefore, make
a;"^ + 2a: + 4 = 0; then we shall have x^ = — 2:c - 4,

and thence x = — \ +_ ^/ — 3.

711. So that beside the case, in which ^ = 2, which cor-

responds to the equation x^ = 8, we have two other values

of X, the cubes of which are also 8 ; and these are,

x=— l+i/— S, and x = — 1 — a/— 3, as will be

evident, by actually cubing these expressions

;

-1+-V/-3 —i-v-S
-l + ^/-3 _l-^_3

l-v'-3 14-V/-3— ^-3-3 +\/-S-3

-2-2 ^z -3 square -2+2 a/—3
-1+ V-3 -1- v'-3

2 + 2-/ -3 2—2v/-3
-2v/-3 + 6 +2^—3 + 6

8. cube. 8.

It is true, that these values are imaginary, or impossible

;

but yet they deserve attention.

712. What we have said applies in general to every cubic

equation, such as x^ = a; namely, that beside the value

x = l/a^ we shall always find two other values. To abridge

the calculation, let us suppose ^/« = c, so that a = c^, our

equation will then assume this form, x^ — c^ = 0, which

will be divisible by x — c, as the actual division shews

:

X — c) x'^ — c^ {x" + ex 4- c-

x^ — ex"

ex"
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when x^ + ex + c- = 0. Now, this expression contains two
other values of a: ; for it gives

x^ = ~ ex — 6% and x =—— ± V{—. c^), or

-c+^/-3c- , . —c±e^ — 3
X — ^ ; that IS to say, x =

-1+ .v/-3

2

713. Now, as c was substituted for l/a, we condude, that

every equation of the third degree, of the form x^ = a, fur-

nishes three values of x expressed in the following manner

:

1. a? = ^/ttf

2. X = ^ X Va,

3. X = ^ X i/a.

This shews, that every cube root has three different

values ; but that one only is real, or possible, the two others

being impossible. This is the more remarkable, since every

square root has two values, and since we shall afterwards

see, that a biquadratic root has four different values, that a

fifth root has five values, and so on.

In ordinary calculations, indeed, we employ only the first

of those values, because the other two are imaginary ; as we
shall shew by some examples.

714. Question 1. To find a number, Avhose square, mul-
tiplied by its fourth part, may produce 432.

Let X be that number; the product of or'^ multiplied by
^x must be equal to tlie number 432, that is to say, ^x^ =
432, and x^ — 1728; whence, by extracting the cube root,

we have ^ — 12.

The number sought therefore is 12; for its square 144,
multiplied by its fourth part, or by 3, gives 432.

715. Question 2. Required a number such, that if we
divide its fourth power by its half, and add 14i- to the pro-

duct, the sum may be 100.

Calling that number x, its fourth power will be x^;
dividing by the half, or for, we have 2a;' ; and adding to that
14i:, the sum must be 100. We have therefore 2x'^ + 14^
= 100; subtracting 14i, there remains 2x^ = ^^^

; di-

viding by 2, gives .r' = ^*% and extracting the cube root,

we find X ~ l,

716. Question .'3. Some officers being quartered in a
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country, each couunands three times as many horsemen, and
twenty times as many foot-soldiers, as there are officers.

Also a horseman''s monthly pay amounts to as many florins

as there are officers, and each foot-soldier receives half that

pay ; the whole monthly expense is 13000 florins. Required
the number of officers.

If a: be the number required, each officer will have under
him 2x horsemen and 20.r foot-soldiers. So that the whole
number of horsemen is 3x", and that of foot-soldiers is

Now, each horseman receiving x florins per month, and
each foot-soldier receiving ^x florins, the pay of the horse-

men, each month, amounts to Sx\ and that of the foot-

soldiers to lO.r'^; consequently, they all together receive

13^^ florins, and this sum must be equal to 13000 florins :

we have therefore 13^'^ = 13000, or x'-" ^ 1000, and .r= 10,

the number of officers required.

717. Qiiestion 4. Several merchants enter into partner-

ship, and each contributes a hundred times as many sequins

as there are partners; they send a factor to Venice, to

manage their capital, who gains, for every hundred sequins,

twice as many sequins as there are partners, and he re-

turns with !;i66^ sequins profit. Required the number of

partners.

If this number be supposed = x, each of the partners

will have furnished 100^' sequins, and the whole capital

must have been 100.r-; now, the profit being 2a; for 100,

the capital must have produced 2x^ ; so that 2a;^ = 2662,

or x^ = 1331 ; this gives x = 11, which is the number of

partners.

718. Question 5. A country girl exchanges cheeses for

hens, at the rate of two cheeses for three hens; which hens

lay each f as many eggs as there are cheeses. Farther, the

girl sells at market nine eggs for as many sous as each hen

had laid eggs, receiving in all 72 sous ; how many cheeses

did she exchange ?

Let the number of cheeses -- x, then the number of

hens, which the girl received in exchange, will be ^x, and
each hen laying jx eggs, the number of eggs will be = |a:^.

Now, as nine figga sell for jx sous, the money which ix'^

eggs produce is -^'^-a^ and ^'-^^o.^ = 72. Consequently,

.r^ = 24 X 72 = 8 X 3 X 8 X 9 = S X 8 X 27, whence

X =12; that is to say, the girl exchanged twelve cheeses

for eighteen hens.
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CHAP. XI.

Of the Resolution of Complete Equations of the Third
Degree.

719. An equation of the third degree is called complete^

when, beside the cube of the unknown quantity, it contains

that unknown quantity itself, and its square: so that the

general formula for these equations, bringing all the terms

to one side, is

ax^ + hx- + ex -\2 d = Q.

And the purpose of this chapter is to shew how we are to

derive from such equations the values of x, which are also

called the roots of the equation. We suppose, in the first

place, that every such an equation has three roots; since it

has been seen, in the last chapter, that this is true even with

regard to pure equations of the same degree.

720. We shall first consider the equation x^ — Gx" -V

Wx —6 = 0; and, since an equation of the second degree

may be considered as the product of tivo factors, we may
also represent an equation of the third degree by the product

of three factors, which are in the present instance,

(a; - 1) X (.r - 2) x (a- - 3) = ;

since, by actually multiplying them, we obtain the given

equation; for (a; — 1) x (.r — 2) gives x"- — Sx + 2, and
multiplying this by x — 0, we obtain x^ — Qx- -f Wx •— 6,

which are the given quantities, and which must be — 0.

Now, this happens, when the product (a: — 1) x (^ — 2) x
{x — 3) — ; and, as it is sufficient for this purpose, that

one of the factors become =0, three different cases may give

this result, namely, when ^ — 1 = 0, or .r = 1 ; secondly,

when a; - 2 = 0, or ^ = 2 ; and thirdly, when x —2> = 0,

or X — 0.

We see immediately also, tl}at if we substituted for x,

any number whatever beside one of the above three,

none of the three factors would become equal to 0; and,

consequently, the product would no longer be 0: which

proves that our equation can have no other root than tliese

three.

721. If it Avere possible, in every other case, to assign

the three factors of such an equation in the same manner,
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we should immediately have its three roots. Let us, there-

fore, consider, in a more general manner, these three factors,

X — p, X — q, X — r. Now, if we seek their product, the

first, multiplied by the second, gives a^- — (p + q)^ + p^t
and this product, multiplied by x — r, makes

x^ — {p + q -\- r)x" + {pq + pr -\- gr)x — pqr.

Here, if this formula must become =0, it may happen in

three cases : the first is that, in which a; — p = 0, or x=p ;

the second is, when x — q = 0, ov x = q\ the third is,

when X — 7- = 0, ov X ^= r.

722. Let us now represent the quantity found, by the

equation jt^ — ax'^ + hx — c = 0. It is evident, in order

that its three roots may he x = p^ x = q^ x — r, that we
must have,

\. a = p + q -\- r,

2. b = pq-\- pr + qr^ and
3. c = pqr.

We perceive, from this, that the second term of the equa-

tion contains the sum of the three roots : that the third term

contains the sum of the products of the roots taken two by
two; and lastly, that the fourth term consists of the product

of all the three roots multiplied together.

From this last property we may deduce an important

truth, which is, that an equation of the third degree can

have no other rational roots than the divisors of the last

terra ; for, since that term is the product of the three roots,

it must be divisible by each of them : so that when we wish

to find a root by trial, we immediately see what numbers
we are to use *.

For example, let us consider the equation, x^ = .r + 6,

or jr^ — .r — 6 = 0. Now, as this equation can have no

other rational roots than numbers which are factors of the

last term 6, we have only 1, 2, 3, 6, to try with, and the

result of these trials will be as follows

:

li X — 1, we have 1 — 1 — Q =— Q.

If X = '/., we have 8-2-6 = 0.

If /r -. 3, we have 27 - 3 - 6 = 18.

If a: -: 6, we have 216 - 6 - 6 = 204.

Hence we see, that x = 2 is one of the roots of the given

equation ; and, knowing this, it is easy to find the other two

;

* We shall find in the sequel, that this is a general property

of equations of anv dimensions; and as this trial requires us to

know all the divisors of the last term of the equation, we may for

this purpose have recourse to the Table, Art. (>Q.
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for ^ = 2 being one of the roots, ,r — 2 is a factor of the

equation, and we have only to seek the other factor by
means of division as follows :

X- 2) as' - X -6 {a;'- + 2x + 3
x^ - 9.x~

2x'^
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Here, if we divide by 6, we shall have x^ — \'x^ -\-x—4=0;
which equation we may clear of fractions, by the method
just explained.

y
First, by making x = ^, we shall have

.v' _ ]}yz ^ _^ _ . _ A.
216 216 "^ 6 ^-"'

and multiplying by 216, the equation will become
1/^ — 11?/- + 'i6i/ — 36 = 0. But as it would be tedious

to make trial of all the divisors of the number 36, and

as the last term of the original equation is 1, it is better

to suppose, in this equation, ^ — — ; for we shall then

have -J ~ -\—^ — l=zO, which, multiplied by s:\

gives 6 — lis + 6z- — z^ = 0, and transposing all the

terms, z^ — 6z"- + 11;:: — 6 = ; where the roots are;^^: 1,

.~ = 2, ~ = 3; whence it follows that in our equation

725. It has been observed in the preceding articles, that

in order to have all the roots in positive numbers, the signs

plus and m'mus' must succeed each other alternately ; by
means of which the equation takes this form,

x^ — ax- + bx — c =^ 0,

the signs changing as many times as there are positive roots.

If all the three roots had been negative, and we had mul-

tiplied together the three factors x + p, x { g, x + r, all

the terms would have had the sign plus, and the form of

the equation would have been x^ + ax" -\- bx + c = 0,

in which the same signs follow each other three times ; that

is, the number of negative roots.

We may conclude, therefore, that as often as the signs

change, the equation has positive roots ; and that as often as

the same signs follow each other, the equation has negative

roots. This remark is vei*y important, because it teaches us

whether the divisors of the last term are to be taken affirma-

tively or negatively, when we wish to make the trial which

has been mentioned.

726. In order to illustrate what has been said by an ex-

ample, let us consider the equation x^ -\- x- — 34r + 56 =0,
in which the signs are changed twice, and in which the same

sign returns but once. Here we conclude that the equation

has two positive roots, and one negative root; and as these
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roots must be divisors of the last term 56, they must be in-

cluded in the numbers + 1, a, 4, 7, 8, 14, 28, 56.

Let us, therefore, make .r = 2, and we shall have 8 -f

4 — 68 + 56 = ; whence we conclude that x = 2 is a

positive root, and that therefore x — 2 is a divisor of the

equation ; by means of which we easily find the two other

roots : for, actually dividing by a; — 2, we have

a; - ^)x' + a-'-- 34^x + 56 {x" + 3.v — 28
x^ — 2^2

3x"' - 34.f

iix' — 6x

- 28r + 56
- 28.r + 56

0.

And making the quotient x- + 3.r — 28 = 0, we find the

two other roots ; which will be

•i- = - 1 ± Vii + 28) = -l± V ; that is, .r == 4; or

X = — 1; and taking into account the root found before,

namel}^, a; = 2, we clearly perceive that the equation has

two positive, and one negative root. We shall give some

examples to render this still more evident.

727. Question 1. There are two numbers, whose dif-

ference is 12, and whose product multiplied by their sum
makes 14560. What are those numbers?

Let a: be the less of the two numbers, then the greater

will be a: -\- 12, and their product will be ^- + I2x, which

multiplied by the sum 2x -1-12, gives

2a;3 + 36^- + 144^ = 14560;

and dividing by 2, we have

^3 + isx- + 12x ^ 7280.

Now, the last term 7280 is too great for us to make trial

of all its divisors; but as it is divisible by 8, we shall make
X = 2y, because the new equation, 8?/^ -H l^i/'^ -\- 144j/

= 7280, after the substitution, being divided by 8, will be-

come if + 9j/- -h 18y = 910 ; to solve which, we need only

try the divisors 1, 2, 5, 7, 10, 13, &c. of the number 910:

where it is evident, that the three first, 1, 2, 5, are too

small ; beginning therefore with supposing y = 1, we im-

mediately find that number to be one of the roots ; for the

substitution gives 343 + 441 -}- 126 =^ 910. It follows,

therefore, that ,r = 14; and the two other roots will be

found by dividingy -|- 9?/- + 18y — 910 by ^ - 7, thus:

s



258 ELEMENTS SECT. IV.

^ - 7)3/^ + 9y- + 18y - 910 (?/- + 16?/ + 130

«/' - V
I6f' + 18?/

16,?/ - llSy

130j/ - 910
130?/ - 910

0.

Supposing now this quotient ?/- + 16// f 130 = 0, we

shall have y- + iSij =— 130, and thence

y=— 8±Y/-66;a proof that the other two roots are

impossible.

The two numbers sought are therefore 14, and (14 +
IS) = 26 ; the product of which, 364, multiplied by their

sum, 40, gives 14560.

738. Question 2. To find two numbers whose difference

is 18, and such, that their sum multiplied by the difference

of their cubes, may produce 275184.
Let X be the less of the two numbers, then x+ 18 will be

the greater; the cube of the first will be .r\ and the cube of

the second

x^ + 54.1 - -h 972.r + 5832

;

the difference of the cubes

54a;- + 912x -V 5832 = 54(a;'^ + 18.r + 108),

which multiplied by the sum 2.r + 18, or 2(-r + 9), gives

the product

108(.r^ 4- 27a;2 + 270a7 + 972) = 275184.

And, dividing by 108, we have

.r' -f 27^- H- 270^ + 972 ^ 2548, or

x" 4- 27^- 1- 270:c = 1576.

Now, the divisors of 1576 are 1, 2, 4, 8, &c. the two first of
which are too small ; but if we try x = 4>, that number is

found to satisfy the terms of the equation.

It remains, therefore, to divide by x — 4, in order to find

the two other roots ; which division gives the quotient

x^ + Six + 394; making therefore

x"- + ?Ax = - 394, we shall find

X =- V ± .'{"%' - 'V');
that is, two imaginary roots.

Hence the numbers sought are 4, and (4 + 18) = 22.

729. Question il. Required two numbers whose dif-

ference is 720, and such, that if the less be multiplied by the

square loot of the greater, the product may be 20736.
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If the less be represented by a-, the greater will evidently

be cT + 720; and, by the question,

.V ^/{x + 720) = 20736 = 8 . 8 . 4 . 81.

Squaring both sides, we have

cc'-(x + 720) = a:3 + 720^"^ = 8"-
.

8'^
. # . 81^

Let us now make x = S?/; this supposition gives

sy + 720 . sy- = 8^ 82 . 4- . sp;
and dividing by S\ we have ?/ + 90?/* = 8 . 4^ 81 =.

Farther, let us suppose j/ = 22, and we shall have

8^3 + 4 . 90.^^ = 8 . 4- . 81^ ; or, dividing by 8,

z^ + 45.S' = 4= . 81=.

Again, make r: = Qu, in order to have, in this last equa-

tion, 9 u^ -\- 45 . 9-U' = 4r . 9^ because dividing now by 9^,

the equation becomes u^ + 5u- = 4- . 9? or

u" (u ^- 5) = 16 . 9 = 144 ; where it is obvious, that ?^= 4

;

for in this case u^ = 16, and m + 5 = 9 : since, therefore,

M = 4, we have z = 36, y = 72, and x = 576, which is the

less of the two numbers sought ; so that the greater is 1296,

and the square root of this last, or 36, multiplied by the

other number 576, gives 20736.

730. Remarl: This question admits of a simpler solu-

tion ; for since the square root of the greater number, mul-

tiplied by the less, must give a product equal to a given

number, the greater of the two numbers must be a square.

If, therefore, from this consideration, we suppose it to be jr%

the other number will be a;*^ — 720, which being multiplied

by the square root of the greater, or by x, we have

X'- 720jr = 20736 = 64 . 27 . 12.

If we make x = 4<i/, we shall have

64y^-720 . 4y = 64 . 27 . 12, or

y-45«/^27. 12.

Supposing, farther, j/ = 3^, we find

27^-^ - 1352 = 27 . 12; or, dividing by 27, z^ ~ 5z = 12,

or z^ -5z-12 = 0. The divisors of 12 are 1, 2, 3, 4, 6,

12: the first two are too small; but the supposition of

z = S gives exactly 27—15 - 12 = 0. Consequently,

z = 3, 7/ — 9, and x = 36; whence we conclude, that the

greater of the two numbers sought, or x'-, = 1296, and that

the less, or x- — 720, = 576, as before.

731. Question 4}, There are two numbers, whose dif-

ference is 12 ; and the product of this difference by the sum
of their cubes is 102144. What are the numbers .''

Calling the less of the two numbers x, the greater will be

X +12: also the cube of the first is .r% and of the second

s 2
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x^ + 36a:- + 4-32^: + 1728 ; the product also of the sum of

these cubes by the difference 12, is

12 (2x^ + 36^2 4. 432^. + 17^8) = 102144

;

and, dividing successively by 12 and by 2, we have

,^3 ^. 18^2 ^ 216^, + 864 = 4256, or

a:"^ + 18.r^- + 2l6.r =^ 3392 = 8 . 8 . 53.

If now we substitute x = 2i/, and divide by 8, we shall

have 7/ + 9«/2 -j- 54y = 8 . 53 = 424.

Now, the divisors of 424 are 1 , 2, 4, 8, 53, &c. 1 and 2

are evidently too small ; but if we make 3/ = 4, we find

64 + 144 + 216 = 424. So that ^ = 4, and x = 8;
whence we conclude that the two numbers sought are 8, and

(8 + 12) = 20.

732. Question 5. Several persons form a partnership,

and establish a certain capital, to which each contributes ten

times as many pounds as there are persons in company

:

they gain 6 plus the number of partners per cent ; and the

whole profit is 392 pounds. Required how many partners

there are ?

Let X be the number required ; then each partner will

have furnished 10^' pounds, and conjointly lO.r- pounds;
and since they gain x + Q per cent, they will have gained

with the whole capital,—r—— , which is to be made equal

to 392.

We have, therefore, ^' -f Qx^- = 3920; consequently,

making x =. 2y, and dividing by 8, we have

y^ + 3j/- = 490.

Now, the divisors of 490 are 1, 2, 5, 7, 10, &c. the first

three of which are too small ; but if we suppose y rr 7, we
have 343 + 147 — 490; so that ?/ = 7, and x = 14.

There are therefore fourteen partners, and each of them
put 140 pounds into the common stock.

733. Question 6. A company of merchants have a com-
mon stock of 8240 pounds ; and each contributes to it forty

times as many pounds as there are partners; with which
they gain as much per cent as there are partners. Now, on
dividing the profit, it is found, after each has received ten

times as many pounds as there are persons in the company,
that there still remains 224/. Required the number of mer-
chants ?

If cr be made to represent the number, each will have con-

tributed 40a: to the stock ; consequently, all together will

Iiavc contributed 40.r-, which makes the stock
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= 40j7H8240. Now, with this sum they gain x per cent;

so that the whole gain is

100 + 100 -"^^"^ ^ ^^ -3-^ + T ^•

From which sum each receives lO.r, and consequently they

all together receive 10^", leaving a remainder of 224; the

profit must therefore have been IOj;- + 224, and we have

the equation

2x^ 412jr ,^ „—- + --— = 10^2 I- 224.
5 5

Multiplying by 5 and dividing by 2, we have ^ + 206^::=

2ox' + 560, or x' - 25x"' + 20Gr - 560 = : the first

however, will be more convenient for trial. Here the divisors

of the last term are 1, 2, 4, 5, 7, 8, 10, 14, 16, &c. and they

must be taken positively ; because in the second form of the

equation the signs vary three times, which shews that all the

three roots are positive.

Here, if we first try ^ = 1, and ^ = 2, it is evident that

the first side will become less than the second. We shall

therefore make trial of other divisors.

When X — 4, we have 64 f 824 = 400 + 560, which

does not satisfy the terms of the equation.

Ux = 5, we have 125 ^ 1030 = 625 + 560, which like-

wise does not succeed.

But if .r = 7, we have 343 + 1442 = 1225 + 560,

which answers to the equation ; so that x = 7 is a root of

it. Let us now seek for the other two, by dividing the

second form of our equation by x — 7.

^ _ 7) ^3 _ 25x" + 260a.' - 560 (x^ - 18jr + 80

x"' — Ix"

— 18^^ + 206^
- 18a;- + 126a;

80a; - 560
80a; - 560

0.

Now, making this quotient equal to nothing, we have

x"- - \8x + 80 = 0, or x' - 18a? = - 80; which gives

a; = 9 ± 1, so that the two other roots are a- = 8; or

X = 10.

This question therefore admits of three answers. Accord-

ing to the first, the number of merchants is 7 j according to
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the second, it is 8 ; and, according to the third, it is 10. The
following statement shews, that all these will answer the

conditions of the question :

Number of merchants - - - -

Each contributes 40^ _ _ - _

In all they contribute 40.r'- - -

The original stock was - - - -

The whole stock is ^Ox" + 8240 -

With this capital they gain asl
much per cent as there are >

partners ______ J

Each takes from it - - - - -

So that they all together take lO.r-

There remains therefore - - _

7
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735. As in those fractions the roots of" the equation are

neither integer numbers, nor fractions, they are irrational,

and, as it often happens, imaginary. The manner, tliere-

fore, of expressing them, and of determining the radical

signs which affect them, forms a very important point, and
deserves to be carefully explained. This method, called Car-
danh Rule, is ascribed to Cardan, or more properly to Scipio

Ferreo, both of whom lived some centuries since*.

736. In order to understand this rule, we must fli'st at-

tentively consider the nature of a cube, whose root is a

binomial.

Let a -\- h he that root; then the cube of it will be

a"' + 3a°6 + 3a6- -{- b^, and we see that it is composed of

the cubes of the two terms of the binomial, and beside that,

of the two middle terms, 3a'-6 \- Sab% which have the com-
mon factor Sab, multiplying the other factor, a + b; that is

to say, the two terms contain thrice the product of the two
terms of the binomial, multiplied by the sum of those terms.

737. Let us now suppose x ~ a + b ; taking the cube of

each side, we have .^"' = a^ + ^^ + oab (a + b) : and, since

a + b = a;, we shall have the equation, j:^ = a^-{-b^ -\-3abx,

or x^ = iiabx + a^ + b^, one of the roots of which we know
to be iv = a + b. Whenever, therefoi'e, such an equation

occurs, we may assign one of its roots.

For example, let a — 2 and b — 3; we shall then have

the equation .r^ = \8jc-+ 35, which we know with certainty

to have x = 5 for one of its roots.

738. Farther, let us now suppose a^ =^p, and b^^ = q; we
shall then have a = y/p and b = l/q, consequently, ab —l/pq ;

therefore, whenever we meet with an equation, of the form

x^ — oxi/pq \- p •\- q, we know that one of the roots is

Vp + X^'q-

Now, we can determine p and q, in such a manner, that

both S'^pq and p + q may be quantities equal to deter-

minate numbers ; so that we can always resolve an equation

of the third degree, of the kind which we speak of.

739. Let, in general, the equation x^ ~f^ + ^ be pro-

posed. Here, it will be necessary to comparey with Q^/pq,
and ff with p + q\ that is, we must determine p and q in

* This rule when first discovered by Scipio Ferreo was onl}''

for particular forms of cubics, but it was afterwards generalised

by Tartalea and Cardan, See Montucla's Hist. Matli. ;
also Dr.

Hutton's Dictionary, article Algebra ; and Professor Bonny-

castle's Introduction to his Treatise on Algebra, Vol. 1. p.
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such a manner, that 'oX/pq may become equal to f, and

p + 5 =^; foi' we then know that one of the roots of our

equation will be ^ = l/p + s/q.

740. We have therefore to resolve these two equations,

p ^q=g.
f PThe first gives V/jj = -3 ; or Pq--^ = tV/^ ^nd

4pq = -^f^- The second equation, being squared, gives

p^ + '^pq + q^ = ^- ; if we subtract from it 4/;^ = -^rf^i
we have j)^ — "iipq f g'- = g" — ^rf^i ^^tl taking the

square root of both sides, we have

p-q= V [g' - ^\r%
Now, since p -r q = g, we have, by adding p + q to one
side of the equation, and its equal, g, to the other, 2p =
§"+ V ig" — -irf^) 5 ^"dj ^y subtracting j9

— q from p -i-q,

we have Sg' = ^ — a/(*^" — t?/^) '> consequently,

J,
= g±^ir-^/'), and ,=g--^<g:--i£>.

741. In a cubic equation, therefore, of the form x^ =
J a: + g, whatever be the numbers /"and g^ we have always

for one of the roots

that is, an irrational quantity, containing not only the sign

of the square root, but also the sign of the cube root ; and
this is the formula which is called the Rule of Cardan.

742. Let us apply it to some examples, in order that its

use may be better understood.

Let .r^ = 6a; + 9. First, we shall havey — 6, and^=9;
so that^'^ = 81,/^ == 216, -,\/3 -r 32 ; then
g"- - _4„j3 ^ 49^ an(j ^/(^2 --^\p) = 7. Therefore, one
of the roots of the given equation is

^ = '^(^) + "^^'Y^)
= ^ V' + sV| = V8 + VI = . .

2 + 1 =3.
743. Let there be proposed the equation x'^ = 3.r + 2.

Here, we shall havey= 3 and g =2\ and consequently,

g^ = 4,/-* = 21, and -^V/^ = ^ ' which gives

V(5"- — -xff^)
~ 0; whence it follows, that one of the

2+0 , 2-0
roots IS a: = v^i-g") ^- A"^) =1 +1=2.
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744. It often happens, however, that though such an
equation has a rational root, that root cannot be found by
the rule which we are now considering.

Let there be given the equation x^ = 6x + 40, in which
.r = 4 is one of the roots. We have herey*= 6 and g = 40

;

farther, g"- = 1600, and ^V/' =32; so that

S'-^\f' = 1568, and ^ig"- - 4^P) = ,/1568 =
^(4 . 4 . 49 . 2) = 28 ^/2 ; consequently one of the roots

will be

^ .40+28^2^ , ,40-28^/2
^ = Vi 2 ^+^^ 2

^
°''

X = y(20 f 14 v/2) + V(20- 14 V2) ;

which quantity is really = 4, although, upon inspection, we
should not suppose it. In fact, the cube of 2 + '\/2 being

20 + 14 v/2, we have, reciprocally, the cube root of 20 -\-

14^/2 equal to 2 + ^,''2 ; in the same manner, v/(20
—

14 .v/2) = 2 — a/2; wherefore our root ^r = 2 + V2 +
2- V2 = 4*.

745. To this rule it might be objected, that it does not
extend to all equations of the third degree, because the

square of x does not occur in it ; that is to say, the second

term of the equation is wanting. But we may remark, that

every complete equation may be transformed into another,

in which the second term is wanting, which will therefore

enable us to apply the rule.

To prove this, let us take the complete equation x' —
6x"^ + II4J; — 6 = : where, if we take the third of the

coefficient 6 of the second term, and make x — 2 = 1/, we
shall have

X = 7/ + 2, or- = «/- + 4y + 4, and

Consequently, — 6x- = — 6?/'^ — 24?/ — 24
liar = II7/ + 22
-6= -6

or, x^ — 6x- + llvT — 6 = y-^ * _ y *

We have, therefore, the equation y^ — 1/ = 0, the resolu-

* We have no general rules for extracting the cube root, of
these binomials, as we have for the square root ; those that have
been given by various authors, all lead to a mixt equation of the
third degree similar to the one proposed. However, when the
extraction of the cube root is possible, the sum of the two
radicals which represent the root of the equation, always be-
comes rational ; so that we may find it immediate))' by the

method explained, Ait. 722. F. T.
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tion of which it is evident, since we immediately perceive

that it is the product of the factors

.yif - 1) - y (^ + 1) X (^/ - 1) - 0.

If we now make each of these factors = 0, we have

-.5^+0, ,,f y := - 1, yy z:. 1,

'^^•:-2, -lx= 1, ''^r = 3,

that is to say, the three roots which we have ah-eady found.

746. Let there now be given the general equation of the

third degree, x^ + ax- }- br + c = 0, of which it is re-

quired to destroy the second term.

For this purpose, we must add to x the third of the co-

efficient of the second term, preserving the same sign, and
then write for this sum a new letter, as for example i/, so

that we shall have x + ^a = t/, and oc — y — |« ; whence

results the following calculation :

X — y — \a, X" = y"- — |«y + !-«*,

and x^ — y^ — ay- + \a?y — ^d^
;

Consequently,

iC-» = y — ay' + \a^y — 27
ax" = ay- — ^a^y + -^^

bx = by — \ab

c = c

oy,f — (f«.— *).y + -^f^V- iab -i- c = 0,

an equation in which the second term is wanting.

747. We are enabled, by means of diis transformation, to

find the roots of all equations of the third degree, as the fol-

lowing example will shew.

Let it be proposed to resolve the equation

X' - 6x'- + I3x - 12 ^ 0.

Here it is first necessary to destroy the second term ; for

which purpose, let us make x — 2 ~ y, and then we shall

have X =y +2, x- = y- -\- 4<f/ + 4, and a' = y^ + %'^ +
I2y -}- 8; therefore,

ys z= y^ + 6if -V \2y + 8
-6a;2 ^ - 6y- - 24>j ~ 24
13^ =

'

13^ + 26
- 12 rn - 12

which gives V/' + y — 2 = 0; ov y^ = — y + 2.

And if we compare this equation with the formula, (Art.

741) x^ =fx -\- g, we have /=i — 1, and g — 2; where-

fore, g"- = 4, and /^/3 ^ - /, ; also, g' - ^V/' =
4^/21

'1' + ^V = •^^ and Ag' - ^\r) = ^ V/ = -9-'

consequently.
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^ = (^') Hi=-"). or

, ,, 2^/21 , ,, 2^/21
3/ =e/(l + -^) + y(l - ^), or

27+6 x/21 27-6^21.
^ "" ^^ 27 ^

"^ ^^ 27 ^
°^

2/ = il/(27 -f 6 v/21) (+ §y(27 - 6 v/21)

;

and it remains to substitute this value m a: = i/ + S,.

748. In the solution of this example, we have been
brought to a quantity doubly irrational ; but we must not

immediately conclude that the root is irrational : because the

binomials 27 + 6^/21 might happen to be real cubes ; and
this is the case here ; for the cube of

3+ a/21, . 216 + 48^/21 ^ ^ , . .„—— bemg ^ = 27 + b^21, it follows that

the cube root of 27 + 6\/21 is , and that the cube

o- v^21
root of 27 — 6^/21 is — . Hence the value which we

found for j/ becomes

Now, since y = 1, we have x = S for one of the roots of the

equation proposed, and the other two will be found by
dividing the equation by .r — 3.

X - S)x^ - (W- + 13.r - 12 {.x'~ - 3a: + 4
1 O o

- 3x- + 1307

— 3x" + 9x

4a; - 12

4<x - 12

0.

Also making the quotient x- — ox + 4 = 0, we have

X- = 3jr — 4 ; and
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'^^ = 1 ± Ai-'^") - I- ± ^-^=^=-2—

'

which are the other two roots, but they are imaginary.

749. It was, however, by chance, as we have remarked,
tliat we were able, in the preceding example, to extract the

cube root of the binomials that we obtained, which is tlje

case only when the equation has a rational root ; con-

sequentl}'^, the rules of the preceding chapter are more easily

employed for finding that root. But when there is no
rational root, it is, on the other hand, impossible to express

the root which we obtain in any other way, than according

to the rule of Cardan ; so that it is then impossible to apply

reductions. For example, in the equation x^ = 6a: + 4, we
have / = 6 and g = 4<; so that .r = l/{2 + 2 v^ — 1) +
^(2 — 2\/ — 1), which cannot be otherwise expressed *.

* In this example, we have o\y^' less than g'^, which is the

well-known iy-i-educiblc case ; a case which is so much the more
remarkable, as the three roots are then always real. We cannot
here make use of" Cardan's formula, except by applying the

methods of approximation, such as transforming it into an infinite

scries. In the work spoken of in the Note, Art. 40, Lambert has

given particular Tables, by which we may easily find the nu-
merical values of the,roots of cubic equations, in the irreducible,

as well as the other cases. For this purpose we may also em-
ploy the ordinary Tables of Sines. See the Spherical Astro-

nomy of Mauduit, printed at Paris in 1765.

In the present work of Euler, we are not to look for all that

might have been said on the direct and approximate resolutions

of equations. He had too many curious and important objects,

to dwell long upon this 5 but by consuUing VHistoire des Ma-
tliciiiatiquex, I'Algebre dc M. Clairant, le Coins de Mathentati(pies

dc M. Bezant, and the latter volumes of the Academical Me-
moirs of Paris and Berlin, the reader will obtain all that is known
at |)resent concerning the resolution of Equations. F. T.

For a clear and explicit investigation of the method of solving

Cubic Equations, by the Tables of Sines, 8zc. the reader is also

referred to Bonnycastle's Trigonometry ; from which the fol-

lowing formula; for the solution of the different cases of cubic

equations arc extracted.

1. x^ -\- px — q — 0.

Put ^ (— )- = tan. ::, and V(tan. (4.0" - U)) = tan. u;
2 p

p
Then .v = 2 ^~ X cot. 2 u. Or, putting

Log. y + 10 - ^ '^'S-V = log- tan. z, and
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QUESTIONS FOR PRACTICE.

1. Given y' + 30?/ = 117, to determine i/. Ans. y =o.
2. Given i/^ — 36z/ = 91, to find the value of </.

Ans. y =. 7.

} (log. tan. (45° — -^z) + 20) = log. tan. n,

4«
Then log. w = \ log. — + log. cot. 2 u — 10.

2. x^ -\- fx -\- q = 0.

Put -^(— )- = tan. z, and ^(tan. (45*^ — JL-)
) = tan. ?<,

Then <r = — 2 s/^ X cot. 2 z/. Or, putting

Log. -^4-10 — I log. ^ = log. tan. z, and

J- (log. tan. (45"— -1^2) + 20) - log. tan. m,

4»
Then log. .r = 10— ^V log. -^ log. cot. 2 ?/.

3. ct' — p.r — gi = 0.

2 » —
This form has 2 cases, according as — ( q )

" is less, or greater
q 6

than 1.

In the 1st case, put — \^) " = cos. z.

q 3

And 4/ (tan. (45° — ^s) ) = tan. u;

p
Then a; = 2 v'— x cosec. 2 ii. Or, putting

o

10 + I log. — log. -^ = log. cos. z, and

A (log. tan. (45° — -}.z) + 20) = log. tan. u ;

4o
Then log. .« = 10 •}- log. -~ log. sin. 2 n.

O

In the 2d case, put —(—)" = cos. z, and .r will have the
2 p

3 following values

:

X = + 2v/-o- X cos. —

.r = -2v/|- xcos. (60"-^)
%

X =- 2 V^'- X cos. (60° + ~) or.
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3. Given y^ + 24y = 250, to find the value of ?/.

Ans. y = 5*05.

4. Given ?/ — 3j/* - 2y- - 8 = 0, to find y. Ans. y = 2.

4/7 Z
Log. X = ^ log. -^ + log. COS. — —10,

4b 2
Log. X = i- log. -'- + log. cos. (60°— —)— 10,

Log. ,r = Llog. ^ + log. cos.(60«+ 4-)— 10,* o o

Taking the value of .v, answering to log. .r, positively in the first

equation, and negatively in the two latter.

4. 1^ — px + q = 0.

This form, like the former, has also two cases, according

as — {-—) - is less, or greater than 1

.

2 « 4
In the 1st case, put— (~) '•' = cos. z,

? -^

And ,y (tan. (45° — U) ) - tan. it, as before;

Then x = —2 ^/-^ cosec. 2 u. Or, putting

10 + 4 log. ~— log'-^ = ^og- ^^^- -5 '"^'l

ijlog. (tan. 450—4;:) + 20} = log. tan. u

;

4w
Then, — log. x = 10 + log. -~— log. sin- 2 u.

In the 2d case, put -~-{—) ~ = cos. ;;, and x will have the 3
* " p

following values

:

p z
,r = — 2^ ~ xcos.—

.r = + 2 v/ 4^ X COS. (60°- ~)

x= + 2 V |- X COS. (60°+ ^). Or,

4o z
Log. X = -\ log. -~ + log. COS. -o"

— 10,

Log. x = i log. -| + log. COS. (60°- -J)
-10,

Log. .r = 1 log. ^ + log. COS. (60°+ |-)-10,
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5. Given y^ \ 3?/- + 9?/ = 13, to determine y.
Ana. y =.\.

6. Given x^ — Qx = — 9, to find the value of x.

Ans. or = — 3.

7. Given x^ — 6V- + lOr — 8, to find x. Am. x = 4,.

8. Given;?' - '?-^p = 'iA°, to find p. Jus. p = 81.

9. Given x^ — ^-^x = 2-?., to find x. Ans. x = 2|.

10. Given a- — 91a = — 330, to find a. Ans. a = 5.

11. Given j/^ — 19^ = 30, what is the value of y ?

Ans. y = 5.

Taking the value of a-, answering to log. x, negatively in the

first equation, and positively in the two latter.

As an example of this mode of solution, in what is usually

called the Irreducible Case of Cubic Equations,

Let X* — 3x = 1, to find its 3 roots.

Here -|- (—)- = |(|)- = J = .5 = cos. 60° = z, hence

X = 2v/-^ X COS. ~ = 2 COS. 20° = 1.8793852

.r = - 2 ^-^ X cos.(60o _ — ) = - 2 cos. iO'' = - 1 .5320888

X = —2 v4-xcos.(6Co + 4-) =- 2 COS. 80° =— 0.3472964.
o 3

Also, let a:^ — 3cr = — 1, to find its three roots.

q 3 4
Here, as before,-^ (—)- = .5 = cos. 60° = z, hence

X = - 2 -v/^ X cos. -^- =— 2 cos. 20° =— 1.8793852

X = — 2 v/-^ X cos. (60° — ^) = 2 cos. 40« = 1.5320888

X- —2 ^/^ X cos, (60° + ^) = 2 COS. 8O0 = 0.3472964.
o o

Where the roots are the negatives of those of the first case.

For the mode of investigating these kinds of formulae, see,

in addition to the references already given, Cagnoli, Traite de
Trigon. and Article Irreducible Case, in the Supplement to Dr.
Hutton's Mathematical Dictionary.
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CHAP. XIII.

Of the Resolution of Equations of the Fourth Degree.

750. When the highest power of the quantity x rises to

the fourth degree, we have equations of thefourth degree

;

the general form of which is

0--* + ax^ + bx'^ -i- ex -{ d = 0.

We shall, in tlie first place, consider jjw-e equations of

the fourth degree; the expression for which is simply x*=f\
the root of which is immediately found by extracting the

biquadrate root of both sides, since we obtain .r = X.^f
751. As X* is the square jg^ x", the calculation is greatly

facilitated by beginning with the extraction of the square

root; for we shall then have .r- = '//; and, taking the

square root again, we have .r = X/f'-> so that s/fis nothing

but the square root of the square root ofy.

For example, if we had the equation ,^'''= 2401, we should

immediately have x- — 49, and then x = 7.

752. It is true this is only one root ; and since there are

always three roots in an equation of the third degree, so also

there are four roots in an equation of the fourth degree

:

but the method which we have explained will actually give

those four roots. For, in the above example, we have not

only X- = 49j but also .r-= — 49 ; now, the first value gives

the two roots x = 1, and x = — 7, and the second value

gives X = ,/_ 49, =: 7 v/ — 1, and x = — V— 49 =
— 7 A,/

— 1 ; which are the four biquadrate roots of 2401.

The same also is true with respect to other numbers.

753. Next to these pure equations, we shall consider

others, in which the second and fourth terms are wanting,

and which have the form .r* -{-fx' -\- gz^O. These may be
resolved by tlic rule for equations of the second degree ; for

if we make x- = ?/, we liave^^ +,/y + & — ^j or

7/* =. —jy — gi whence we deduce

^=-if± V{^r- - g) =^-l^^—^.
—/ + ^(/'2-4o-

Now, X- = y; so that x = ± V{——-—~ ~), in

Avhich llu' double signs ± indicate all the four roots.
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754. But whenever the equation contains all the terms, it

may be considered as the product of four factors. In fact,

if we multiply these four factors together, (.r — p) x
{x — g) X {j: — r) X (a; — s), we get the product x* —
{p + q + r + s)x'^ + (pq + x>r + ps •\- qr + qs \- rs)x'^

— {pqr + pqs + prs + qrs)x + pqrs ; and this quantity

cannot be equal to 0, except when one of these four factors

is = 0. Now, that may happen in four ways

;

1. when X =i p\ 2. when x — q-^

3. when x =. r; and 4. when x = s.

Consequently, these are the four roots of the equation.

755. If we consider this formula with attention, we ob-
serve, in the second term, the sum of the four roots multi-

plied by — a;' ; in the third term, the sum of all the possible

products of two roots, multiplied by x" ; in the fourth term,

the sum of the products of the roots combined three by
three, multiplied by — .r ; lastjy, in the fifth term, the pro-

duct of all the four roots multiplied together.

756. As the last term contains the product of all the roots,

it is evident that such an equation of the fourth degree can
have no rational root, which is not a divisor of the last term.

This principle, therefore, furnishes an easy method of de-

termining all the rational roots, when there are any ; since

we have only to substitute successively for x all the divisors

of the last term, till we find one which satisfies the terms of
the equation : and having found such a root (for example,

X = p), we have only to divide the equation by x — p, after

having brought all the terms to one side, and then suppose
the quotient = 0. We thus obtain an equation of the third

degree, which may be resolved by the rules already given.

757. Now, for this purpose, it is absolutely necessary

that all the terms should consist of integers, and that the
first should have only unity for the coefl^cient; whenever,
therefore, any terms contain fractions, we must begin by de-
stroying those fractions; and this may always be done by
substituting, instead of ^r, the quantity 3/, divided by a num-
ber which contains all the denominators of those fractions.

For example, if we have the equation

X "^X -J- iX~ '^X -p -j-g- ^^ U,

as we find here fractions which have for denominators 52, 3,

and multiples of these numbers, let us suppose x = ^, and

we shall then have

64 63 + 6-
""

C + T^^ - "»
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an equation, which, multiphed by 6*, becomes

y" - St/^ + 12j/2 _ I62j/ + 72 = 0.

If we now wish to know Tihether this equation has rational

roots, we must write, instead of" y, the divisors of 72 suc-

cessively, in order to see in what cases the formula would
really be reduced to 0.

758. But as the roots may as well be positive as negative,

we must make two trials with each divisor ; one, supposing

that divisor positive, the other, considering it as negative.

However, the following Rule will frequently enable us to

dispense with this *.

Whenever the signs + and — succeed each other regu-

larly, the equation has as many positive roots as there are

changes in the signs ; and as many times as the same sign

recurs without the other intervening, so many negative roots

belong to the equation.

Now, our example contains four changes of the signs, and

no succession ; so that all the roots are positive : and we have

no need to take any of the divisors of the last term negatively.

759. Let there be given the equation

^4 4. 2x^ — lx"~ - 8a; + 12 = 0.

We see here two changes of signs, and also two successions

;

whence Ave conclude, with certainty, that this equation con-

tains two positive, and as many negative roots, which must
all be divisors of the number 12. Now, its divisors being

1, 2, 3, 4, 6, 12, let us first try a; = -j- 1, which actually

produces ; therefore one of the roots is a; = 1.

If we next make ^' = — 1, we find +1—2—7 + 84-
12 = 21 — 9 = 12 : so that a; = — 1 is not one of the roots

of the equation. Let us now make a? = 2, and we again

find the quantity = ; consequently, another of the i-oots is

X — 9>\ but X =^ — 2, on the contrary, is found not to be a

root. If we suppose a; = 3, we have 81 + 54 — 63 — 24

-f- 12 = 60, so that the supposition does not answer ; but

a: = - 3, giving 81 - 54 - 63 + 24 + 12 = 0, this is

evidently one of the roots sought. Lastly, when we try

a; = — 4, we likewise see the equation reduced to nothing

;

so that all the four roots are rational, and have the following

values : x = \, x = % x — — ^A, and a; = — 4; and, ac-

* This Rule is general for equations of all dimensions, provided

there are no imaginary roots. The French ascribe it to Des-

cartes, the English to Harriot ; but the general demonstration

of it was first given by M. I'Abbe de Gua. See the Memoires

dc TAcadeniic des Sciences de Paris, for 1741. F. T.
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cording to the Rule given above, two of these roots are

positive, and the two others are negative.

760. But as no root could be determined by this method,
when the roots are all irrational, it was necessary to devise

other expedients for expressing the roots whenever this case

occurs ; and two different methods have been discovered for

finding such roots, whatever be the nature of the equation of

the fourth degree.

• But before we explain those general methods, it will be
proper to give the solution of some particular cases, which
may frequently be applied with great advantage.

761. When the equation is such, that the coefficients of

the terms succeed in the same manner, both in the direct and
in the inverse order of the terms, as happens in the following

equation *
;

X* + mx^ 4- nx" + mx + 1=0;
or in this other equation, which is more general

:

jr* + max^ + na"x- + mo'x + a* = ;

we may always consider such a formula as the product of

two factors, which are of the second degree, and are easily

resolved. In fact, if we represent this last equation by the

product

{x- + pax + a-) X {x~ + qax + «-) = 0,

in which it is required to determine p and q in such a man-
ner, that the above equation may be obtained, we shall find,

by performing the multiplication,

oc* -{ (p + q)ax^ + {pq + 2)a*x- + (p + q)a^x + «*=• 0;

and, in order that this equation may be the same as the

former, we must have,

1. p + q = m,
9,. pq + ^ = n,

and, consequently, pq = n — 2.

* These equations may be called reciprocal, for they are not

at all changed by substituting — for x. From this property it

follows, that if a, for instance, be one of the roots, — will be one

likewise ; for which reason such equations may be reduced to

others of a dimension one half less. De Moivre has givenj in

his Miscellanea Analytica, page 71, general formulae for the re-
^,

duction of such equations, whatever be their dimension. F. T.

See also Wood's Algebra, the Complement des Elemens

d'Algebra, by Lacroix, and Waring's Medit. Algeb. chap. 3.

T 2
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Now, squaring the first of tliose equations, we have
p" + 9,'pq + q" :=-- m-; and if from this we subtract the

second, taken four times, or ^pq = 47? — 8, there remains

p" — ^pq -\- q'^ = m- — 4<7i + 8 ; and taking the square root,

we find p — q z= v'(?«- — 4« + 8) ; also, p -^ q r= in\ we
shall therefore have, by addition, ^p=ivi-\- ^y {in- — A'li -\- 8),

m-\- x/(m^-4w+8)
or p = ^ ; and, by subtraction,

. . ^. ?n— A/(m- — 4« + 8)
2^^ = w — a/(w- — 4n + 8), or q — .

Having therefore found j) and 9, we have only to suppose

each factor = 0, in order to determine the value of x. The
first gives x^- + pax + a- = 0, or a-- = — pax — a\ whence

we obtam x = — "^ + V{—t- — a),

or ^ = — -Q ± ia \/{p' — 4).

The second factor gives x = — ^ + ^a ^/(q- — 4)

;

and these are the four roots of the given equation.

762. To render this more clear, let there be given the

equation x* — 4jr^ — Sx- — 4ir + 1 = 0. We have here

« = 1, ??i =— 4, « = — 3; consequently, m^— 47z + 8=36,
and the square root of this quantity is =6; therefore

—4+6 —4—6
p = —^— = 1, and q = —^— = — 5 ; whence result

the four roots,

1st and 2d, a: = - 4 ± ^x/ - 3 = =^^

—

^; and

3d and 4th, a: = | ± i -/SI = ^ ; that is, the

four roots of the given equation are

:

1 ^ _ zi±v^i:^ a ^ _ -i-y_-:3

5+^/21 _5-v/21
d. a: — ^ , 4. a: —

g

The first two of these roots are imaginary, or impossible

;

but the last two are possible; since we may express \/21 to

any degree of exactness, by means of decimal fractions. In

fact, 21 being the same with 21*00000000, we have only to

extract the square root, which gives -/SI = 4-5825.



CHAP. XIII. OF ALGEBRA. 277

Since, therefore, v/Sl = 45825, the third root is very

nearly x = 4*7912, and the fourth, a; = 0-2087. It would
have been easy to have determined these roots with still

more precision : for we observe that the fourth root is very

nearly -j%, or i, which value will answer the equation with

sufficient exactness. In fact, if we make x =
-f,

we find

^4t - tIj - aV - f + 1. = -cVr- .

We ought however to

have obtained 0, but the diiference is evidently not great.

763. The second case in which such a resolution takes

place, is the same as the first with regard to the coefficients,

but differs from it in the signs, for we shall suppose that the

second and the fourth terms have different signs ; such, for

example, as the equation

x*'<^ max^ + na-x- — ma^x + a* = 0,

which may be "represented by the product,

{x- 4- pax — a") X (x" + qax — a-) = 0.

For the actual multiplication of these factors gives

oc* + {p + q) ax^ + {pq — 2)a-J7- - (;j + q)a?x + ft*,

a quantity equal to that which was given, if we suppose,

in the first place, p \- q =i 7n, and in the second place,

pq — % = n,oT pq ^= n -{- 9.; because in this manner the

fourth terms become equal of themselves. If now we square

the first equation, as before, (Art. 761.) we shall have
p" + ^pq + q- = m-; and if from this we subtract the

second, taken four times, or 4<pq = 4w + 8, there will re-

main p^ — 9.pq + q- = m- — 4w — 8; the square root of

which isp — g = Vim- — 4)71 — 8), and thence, by adding

P^ + gf = w^, we obtain

m+ Vim- — 4)11-8)
, , ,

p = ^ ; and, by subtractmg p + q, . . .

7}i—x/(m-— 4/1-8) TT • 1 r /. 1 1

q — ^ . Havmg therefore found ^ and q^

we shall obtain from the first factor (as in Art. 761.) the

two roots X = —Ipa ± \a Vip' + 4), and from the second

factor the two roots x = —iqa ± |a ^/{q~ -j- 4) ; that is, we
have the four roots of the equation proposed.

764. Let there be given the equation

^* - 3 . 2^^ + 3 • 8j,' + 16 = 0.

Here we have a = 2, ?« = — 3, and n = 0; so that

.\/{m" — 471 — 8) = 1, = p — q; and, consequently,

-3+1
, ,

-3-1 „

P = —2— = -l,and q = —^— = - 2.

Therefore the first two roots iirc x = I ± \/ 5, and the

\
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last, two are x — ^ ± vS ; so that the four roots sought

will be,

1. .r = 1 + V5, ^. X = I - V5,
S. X = 2 + ^/8, 4!. X = 2 — VS.

Consequently, the four factors of our equation will be

(^' - 1 - V5) X (x - I + a/5) X {.V - 2 - a/8) X

(a? — 2 4- v'8), and their actual multiplication produces

the given equation ; for the first two being multiplied to-

gether, give x^ — 2a; — 4, and the other two give x^—4!X—4 :

now, these products multiplied together, make x* — 6x^ +
24<x -\- 16, which is the same equation that was proposed.

CHAP. XIV.

Of the Rule oj' Bombelli ybr reducing the Resolution of
Equations of the Fourth Degree to that of Equations of
the Third Degree.

765. We have already shewn how equations of the third

degree are resolved by the rule of Cardan ; so that the prin-

cipal object, with regard to equations of the fourth degree,

is to reduce them to equations of the third degree. For it

is impossible to resolve, generally, equations of the fourth

degree, without the aid of those of the third ; since, when
we have determined one of the roots, the others always
depend on an equation of the third degree. And hence
we may conclude, that the resolution of equations of higher

dimensions presupposes the resolutionof all equations oflower

degrees.

766. It is now some centuries since Bombelli, an Italian,

gave a rule for this purpose, which we shall explain in this

chapter*.

Let there be given the general equation of the fourth

degree, a;* + ax^ + bx'^ -\- ex + d = 0, in which the letters

a, b, c, d, represent any possible numbers ; and let us
suppose that this equation is the same as

{x- -\- lax + p)~ — {^x + i-y- = ;

in which it is required to determine the letters p, 5', and r,

* This rule rather belongs to Louis Ferrari. It is improperly
called the Rule of Bombelli, in the same manner as the rule dis-

covered by Scipio Ferreo has been ascribed to Cardan. F. T,
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in order that we may obtain the equation proposed. By
squaring, and ordering this new equation, we shall have

x^ + ax + ^a"x^' + apx +p'^

^px- — ^qrx— r-

— q-x".

Now, the first two terms are already the same here as in

the given equation; the third term requires us to make
~a^ + 2p — q- = b, which gives q^ = i-a- + 2p — 6 ; the

fourth term shews that we must make ap — 2qr = c, or

9,qr = ap — c; and, lastly, we have for the last term
p'i — r- = d, or r-=p"-— d. We have therefore three

equations which will give the values of p, q, and r.

767. The easiest method of deriving those values from
them is the following : if we take the first equation four

times, we shall have 42^* = a^ _|- g/? — 46; which equation,

multiplied by the last, /•- = p- — d, gives

4!q"-r^ = 8/33 ^ (a2 _ 4^,)p2 _ sdp — £?(«-— 4i).

Farther, if we square the second equation, we have
4y*r- = a^p^ — 2acp + c". So that we have two values of

4g^r*, which, being made equal, will furnish the equation

8p^ + (a2 — 46)p' — 8dp— d{a"- — 46) = a-p- — 2acp + f -

;

or, bringing all the terms to one side, and arranging,

8^3 _ 4^,p2 + ^Ofl5c — 8d)p — a"d + ^hd - c- = 0,

an equation of the third degree, which will always give the

value ofp by the rules already explained.

768. Having therefore determined three values of p by
the given quantities «, h, c, d, Avhen it was required to find

only one of those values, we shall also have the values of

the two other letters q and r ; for the first equation will

ap — c
give q = a/(^- + 2p — b), and the second gives r = —-—

.

Now, these three values being determined for each given

case, the four roots of the proposed equation may be tbund
in the following manner

:

This equation having been reduced to the form
{x- + lax + p)~ — {qx -\- r)" = 0, we shall have

(^2 + lax + pf^iqx + r)2,

and, extracting the root, a- + \ax + p — qx + r, or

x'^ + \ax + p = — qx — 7\ The first equation gives

X' = {q — fa).r — p -f- r, from which we may find two

roots ; and the second equation, to which we may give

the form x- = — (q + ^a)x — p — r, will furnish the two

other roots.
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769- Let us illustrate this rule by an example, and sup-

pose that the equation

x"- - 10:r3 + 35^:^ ^ BOx + 24> =
was given. If we compare it with our general formula (at

the end of Art. 767.), we have « = — 10, 6 = 35, c = - 50,
fZ = 24; and, consequently, the equation which must give

tlie value of/? is

Sp3 - 140p'^ + S08p - 1540 = 0, or

%)3 - 35p- + 202p - 385 = 0.

The divisors of the last term are 1, 5, 7, 11, Sec; the

first of which does not answer ; but making p = 5, we get

S50 - 875 + 1010 - 385 = 0, so that p = 5; and if we
farther suppose p = '7, we get 686 — 1715 + 1414 —
385 = 0, a proof that p — 7 is the second root. It remains
now to find the third root ; let us therefore divide the equa-
tion by 2, in order to have p^ — ^Jp" + lOlp — ^1^ =0,
and let us consider that the coefficient of the second term, or

y, being the sum of all the three roots, and the first two
making together 12,^ the third must necessarily be y

.

We consequently know the three roots required. But it

may be observed that one would have been sufficient ; be-

cause each gives the same four roots for our equation of the

fourth degree.

770. To prove this, let p = 5 ; we shall then have, by
the formula, A/(^a'- +2p-b),q= ^/{25 + 10 - 35) = 0,

,
- -50+50 ^, ,. , . 1

and r = = .°. Now, nothmg bemg determined

by this, let us take the third equation,

ri= p^- -d = 25 — 24f= 1,

so that ; = 1 ; our two equations of the second degree will

then be

:

1. x" = 5^ — 4, 2. X- = 5x — 6.

The first gives the two roots

, _L. O 5±3
or =

-I-
± V|, or X = -^,

that is to say, x = 4, and x = 1.

The second equation gives

5±1
2 '

that is to say, a; = 3, and x = 2.

But suppose now^; = 7, we shall have .,
,
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q = v'(25 + 14 - 35) = 2, and r = ~^^J"
— = - 5,

whence result the two equations of the second degree,

1. X"- =1x— 12, 2. x'^ = Sx -2;

^. n ' , 7 + 1
the nrst gives ^ = |- ± a/|^, or ^ = ^ ,

SO that X = 4, and <r i= 3 ; the second furnishes the root

3 + 1
3:±Vi =

2 '

and, consequently, x = % and ar = 1 ; therefore, by this

second supposition, the same four roots are found as by the

first.

Lastly, the same roots are found, by the third value ofp,
= y ; for, in this case, we have

— 55 + 50
q = v/(25 + 11 - 35) = 1, and r = —— = - |;

so that the two equations of the second degree become,

1. x" = 6x- 8, 2. x^=4>x- 3.

Whence we obtain from the first, x = S + v'l, that is to

say, .V = 4, and a? = 2 ; and from the second, x =2 ± vl,
that is to say, x = S, and x = 1, which are the same roots

that we originally obtained.

771. Let there now be proposed the equation

X* — 16a; - 12 = 0,

in which a = 0, b = 0, c = — 16, d = — 12; and our
equation of the third degree will be

3p3 ^ QQp _ 25g ^ 0, orp^ + Up - 32 = 0,

and we may make this equation still more simple, by writing

p = 2f; for we have then

8^^ + 24^ - 32 = 0, or i53 + 3^ - 4 = 0.

The divisors of the last term are 1, 2, 4; whence one of
the roots is found to be t = 1; therefore p = 2, q =
V4i = 2, and r = ^-^ = 4. Consequently, the two equa-
tions of the second degree are

x'^ = 2x + 2, and x- = — 2^ — 6

;

which give the roots

a; = 1 ± ^/3, and x =:-l± v' — 5.

772. We shall endeavour to render this resolution stiil

more familiar, by a repetition of it in the following example.
Suppose there were given the equation
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X* — 6x"' + l^x"' - 12a? + 4 = 0,

which must be contained in the formula

{x^ -Sx + p)" - {qx + r)2 = 0,

in the former part of which we have put — 3.r, because —3
is half the coefficient, — 6, of the given equation. This
formula being expanded, gives

^4— 6^3 + (2p + 9 — q")x'^ — {6p + Qqr)x +p" -r~ = 0;
which, compared with our equation, there will result from

that comparison the following equations

:

1. 2/? + 9 - q'- = 12,

2. 6p + ^qr = 12,

3. p2_ r~=:4!.

The first gives q" = ^p — 3;
the second, ^qr = 12 — 6p, or qr =: 6 —3p;
the third, r" = p° — 4.

Multiplying r"- by q"^ and ^j- — 4 by 2p — 3, we have

grV = 2p3 — 3p2 _ 8p + 12

;

and if we square qr, and its value, 6 — 3/?, we have

5^2 = 36 — 36p + 9p- ;

so that we have the equation

2p3 _ 3^2 _ 8;? + 12 = 9p- - 36p + 36, or
2^"^ - 12/7"- + 28;j - 24 = 0, or
pS _ 6p2 + i4p - 12 = 0,

one of the roots of which is p = 2; and it follows that

^'^ = 1, q = If and qr — r = 0. Therefore our equation

will be {x~ — Sx + 2)- = x"-, and its square root will be

X- — 2x + 2 = + X. If we take the upper sign, we have

X- = 4jr — 2 ; and taking the lower sign, we obtain

x^ = 2^7—2, whence we derive the four roots x = 2 + v/2,
and a; = 1 + a/— 1.

CHAP. XV.

Of a new Method of resolving- Equations qftJie Fourth
Degree.

773. The rule of Bombelli, as we have seen, resolves

equations of the fourth degree by means of an equation of

the third degree ; but since the invention of that Rule,
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another method has beert <iiscovered of performing the same

resolution : and, as it is altogether different from the first, it

deserves to be separately explained*.

774. We will suppose that the root of an equation of the

fourth degree has the form, x = Vp -{ s/q + V^', in which

the letters p^ g, r, express the roots of an equation of the

third degree, such as, z^ — /s^ + ^^ — /i = 0; so that

;? -H S'
+ r =/; pq -^^ pr -\- qr = g\ and jpqr = h. This

being laid down, we square the assumed formula, - - -

X = Vp + Vq + v'^j and we obtain

x^=p+q-{-r + 2 Vpq + 2 Vpr + 2 Vqr ;

and, since j9 + 5- -f r =y, Ave have

a;« -/= 2 Vpq + 2 ^/pr + 2 ^/^7^

We again take the squares, and find

X*— 2/r-+/2- 4pq+ ^pr+ ^r-\-Ss/p"qr+^^p(fr-\-Q >/pqr^»

Now, ^pq -H ^pr + 4:qr = % ; so that the equation becomes

a;* — 2fx- +/- — 4^ = S\/'pqr x {Vp+ Vq + ^r) ; but

a//> + -v/;? + v'r = a:, and ^gr = 7*, or A^pgr = a/A ;

wherefore we arrive at this equation of the fourth degree,

a;* — 2/a;- — 8<r ^//^ +y^ — 4g = 0, one of the roots of

which is a: r= ^fp + a/^ + ^/r ; and in which p, g^, and r,

are the roots of the equation of the third degree,

s3 __yv2 + ^2 - A = 0.

775. The equation of the fourth degree, at which we
have ai-rived, may be considered as general, although the

second term x^^j is wanting ; for we shall afterwards shew,

that every complete equation may be transformed into an-

other, from which the second term has been taken away.

Let there be proposed the equation a;*— ax'- — bx — c^O^
in order to determine one of its roots. We will first com-

pare it with the formula, in order to obtain the values of

f, g, and h ; and we shall have,

a
1. 2/" = a, and, consequently,/ = —

;

2. 8 a/A = b, so that h = j^;

3./2 - % = -c, or — - 4^ + c = 0,

or ia2 ^_ g __ 4,^ . consequently, g = -^a- + i-c.

* This method was the invention of Euler himself. He has
explained it in the sixteenth volume of the Ancient Commen-
taries of Petersburg. F. T.
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776. Since, therefore, the equation

x* — ax^ — bx — c = 0,

gives the values of the letters Jl g, and /t, so that

f=2a,g = tV^" + ic, and h = ^J)\ or Vh = ^b,

we form from these values the equation of the third degree

%^ —Jk'^ -f gsf — /i = 0, in order to obtain its roots by
the known rule. And if we suppose those roots, 1 . ^ = p,
% s = q, S. z = r^ one of the roots of our equation of the

fourth degree must be, by the supposition. Art. 774,

X = a/p + Vq + Vr.

777. This method appears at first to furnish only one

root of the given equation ; but if we consider that every

sign V niay be taken negatively, as well as positively, we
shall immediately perceive that this formula contains all the

four roots.

Farther, if we chose to admit all the possible changes

of the signs, we should have eight different values of x,

and yet four only can exist. But it is to be observed, that

the product of those three terms, or Vpqr^ must be equal to

^h = i6, and that if -^b he positive, the product of the

terms Vjp, VQ^ Vr, must likewise be positive ; so that all

the variations that can be admitted are reduced to the

four following

:

1. X = Vp •{ Vq + Vr,
2. X = Vp — Vq — Vr,
3. 07 = — v/p + Vq — Vr,
4). X = — Vp — Vq + Vr.

In the same manner, when i6 is negative, we have only

the four following values of .r

:

1. X = Vp + Vq — Vr,
2. X = ^p — Vq + Vr,
S. X =z ~ ^p + Vq + Vr,
4:. X =— Vp — Vq — Vr.

This circumstance enables us to determine the four roots

in all cases ; as may be seen in the following example.

778. Let there be proposed the equation of the fourth

degree, x"^ — 25x- + 60.r = 36 = 0, in which the second

term is wanting. Now, if we compare this with the general

formula, we have a = 25, b = - 60, and c = ii6; and

after that,

/= \\g = \y + 9 = ^A% and h=^l';
by which means our c(iuation of the third degree becomes,



CHAP. XV. OF ALGEBRA. 285

First, to remove the fractions, let us make z — -r-; and we

shall have
g^
— "g^- +

"gl 4" = 0, and multiplying

by the greatest denominator, we obtain

tr - BOu"- + *769u - 3600 = 0.

We have now to determine the three roots of this equation ;

which are all three found to be positive ; one of them being

u — 9' then dividing the equation by tc — 9, we find the

new equation u'^ — 41w + 400 = 0, or u" = 41w — 400,

which gives

41 +9

so that the three roots are m = 9, w = 16, and u = 25.

Consequently, as ,;: = -7- the roots are

I. 2 = ^, 2. z = 4^,S. z= V-
These, therefore, are the values of the letters p, q, and r

;

that is to say, p = ^, ^ = 4, and r = y . Now, if we con-

sider that v^p^r = v^A = — y , and that therefore this value

= -I6 is negative, we must, agreeably to what has been said

with regard to the signs of the roots \/p, \/q, and ^h\ take

all those three roots negatively, or take only one of them
negatively; and consequently, as //p = |, v^Q' = 2? and

j^r = 4, the four roots of the given equation are found

to be:

1.^= 1+2-1,= 1,

2. ^= 4-S+|. = 2,

3. a;=-|. + 2 + i = 3,

4. a;=-i--2-A=-6.
From these roots are formed the four factors,

(;r - 1) X (^ - 2) X (.^ - 3) X (^ + 6) = 0.

The first two, multiplied together, give x'^ — ^x -\-9^%

the product of the last two is x" -\- %x — 18 ; again multi-

plying these two products together, we obtain exactly the

equation proposed.

779. It remains now to shew how. an equation of tlie

fourth degree, in which the second term is found, may be

transformed into another, in which that term is wanting :
for

which we shall give the following Rule *.

* An investigation of this rule may be seen in Maclaurin's

Algebra, Part 11. chap, 3.
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Let there be proposed the general equation y* + aif" +
%' -r q/ + (Z = 0. If we add to y the fourth part of the

coefficient of the second term, or ia, and write, instead of
the sum, a new letter a;, so that y -Y ^a = x^ and conse-

quently y — X — ^a: we shall have

y~ =X"' - Lax -^ _I_a2, y3 ;= ^3 _ ^^: _,_ _3_a^^ _ ^I_a3^

and, lastly, as follows

:

hy" = ^iT^ — ^^abx -f

cy =^ ex —
d =

Or, a:* + — la'^x'- + -|^'a^ -

ex — = 0.

We have now an equation from which the second term is

taken away, and to which nothing prevents us from applying

the rule before given for determinino^ its four roots. After

the values of x are found, those of y will easily be deter-

mined, since y = x — ic.

780. This is the greatest length to which we have yet

arrived in the resolution of algebraic equations. All the

pains that have been taken in order to resolve equations of

the fifth degree, and those of higher dimensions, in the same
manner, or, at least, to reduce them to inferior degrees,

have been unsuccessful : so that we cannot give any general

rules for finding the roots of equations, which exceed the

fourth degree.

The only success that has attended these attempts has

been the resolution of some particular cases ; the chief of
which is that, in which a rational root takes place ; for this is

easily found by the method of divisors, because we know
that such a root must be always a factor of the last term.

The operation, in other respects, is the same as that we have
explained for equations of the third and fourth degree.

781. It will be necessary, however, to apply the rule of

Bombelli to an equation which has no rational roots.

Let there be given the equation y* — 8y^ + 14?/- +
4?/ — 8 = 0. Here we must begin with destroying the

second term, by adding the fourth of its coefficient to y, sup-

posing 3/
— 2 = a:, and substituting in the equation, instead

of y, its new value x + 2, instead of y\ its value x~+4-x + 4>;

and doing the same with regard to y^ and y*, we shall have.
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But we have already seen, (Art. 675. and G16.), that the
square root of « + V^, when '/{a'^ — b) = c, is expressed

by ^/(a ± ^/h) = Vic~o~) ± ^(~"^7~) • so that, as in the

present case, a = 8, and \/b = 2 -v/15; and consequently,
o = 60, and c = V(a^ — 6) = 2, we have

^(8, + 2 v/15) = v/5 + V3, and V{S - 2 ^15) ....

= a/5 — \/3. Hence, we have ^p = 1, '\/q = ^ »

and v^^' = o ; wherefore, since we also know that

the product of these quantities is positive, the four values of
X will be :

1. x= Vp+ Vq+ Vr= l +

=l+V5,
a / , , 1 -a/5- a/3- a/5+ v'3

= 1+ V5,

Q / , , . -. a/5 + v/3-v/5+ a/3

= - 1 + a/3,

A 1 , , , , 1 ,

- a/5 -a/3 + a/5 -a/3
4. x=-l^p^ V'?+ ^r= -1 + g—

= -l-V3.
Lastly, as we have 7/ = x + 2, the four roots of the

given equation are

:

1. j, = 3+v/5, 2.3^=3-^5,
3. ^ = 1 + V3, 4. 3/ = 1 — v3.

QUESTIONS FOR PUACTICE.

1. Given ;^* - 4>z^ - Sz + 32 = 0, to find the values

of z. Ans. 4, 2, -1+^-3, - 1 - a/ - 3.

2. Given 7/ — ^if — Sy"^ _ 4?/ ^- 1 = 0, to find the

1 f A -l±v'-3 ,5+^/21
values or y, Ans. , andJ 2 2

3. Given x* — 3a?- — 4a' = 3, to find the values of x.

\± a/13 , -1+ V-3
y/w*. — ^—, and •
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CHAP. XVI.

Of the Resolution q/" Equations hy Approximation,

784. When the roots of an equation are not rational, and
can only be expressed by radical quantities, or when we
have not even that resource, as is the case with equations

which exceed the fourth degree, we must be satisfied with

determining their values by approximation; that is to say,

by methods which are continually bringing us nearer to the

true value, till at last the error being very small, it may be

neglected. Different methods of this kind have been pro-

posed, the chief of which we shall explain.

785. The first method which we shall mention, supposes
that we have already determined, with tolerable exactness,

the value of one root * ; that we know, for example, that

such a value exceeds 4, and that it is less than 5. In this

case, if we suppose this value = 4 + p, we are certain that

p expresses a fraction. Now, as p is a fraction, and con-

sequently less than unity, the square ofp, its cube, and, in

general, all the higher powers of^, will be much less with re-

spect to unity ; and, for this reason, since we require only an
approximation, they may be neglected in the calculation,

When we have, therefore, nearly determined the fraction y;,

we shall know more exactly the root 4 + /> ; from that we
proceed to determine a new value still more exact, and con-

tinue the same process till we come as near the truth as we
desire.

786. We shall illustrate this method first by an easy ex-

ample, requiring by approximation the root of the equation

Here we perceive, that x is greater than 4, and less than

5; making, therefore, x =^ 4i + jh ^^^ shall have x- =16 +
Sp -\- p- ~ 20 ; but as p^ must be very small, we shall neg-

lect it, in order that we may have only the equation 16 +

* This is the method given by Sir Is. Newton at the beginning

of his Method of Fluxions. When investigated, it is found sub-

ject to different imperfections; for which reason we may with

advantage substitute the method given by M. de la Grange^ in

the Memoirs of Berhn for 1767 and 1768. F. T.

This method has since been published by De la Grange, in a

separate Treatise, where the subject is discussed in the usual

masterly style of this author.

A u
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Sj) = 20, or 8/> = 4. This gives p = f, and .r = 4^,

which already approaches nearer the true root. If, there-

fore, we now suppose x zr: 4f + ^' ; we are sure that^' ex-

presses a fraction much smaller than before, and that we
may neglect p'- with greater propriety. We have, there-

fore, X- = 201 + 9/?' = 20, or 9p' ~ — i ; and consequently,

p' =- jj--> therefore .r :=: 4| -- ^ = 4f^.
And if we wished to approximate still nearer to the true

value, we must make x = iii + p', and should thus have

.r^ = 20Wp^ + 814p" = 20; so that 8^4/ = - ^Va.
322y'=~^^=-^,and

1 _
P -'~

36 X 322 ~ ~ "^^^

therefore x = 4|-1 — -j-rla-a = ^-rrr-^z^ ^ value which is so

near the truth, that we may consider the error as of no im-

portance.

787. Now, in order to generalise what we have here laid

down, let us suppose the given equation to be ^- = a, and
that we previously know x to be greater than ?^, but less

than n + 1' If we now make x = n + p, p must be a

fraction, and p" may be neglected as a very small quantity,

so tiiat we shall have x'^ = 7i- -j- 2np = a; or 2iip = a — n-,

a— n- a — n^ ifi + a
and p ~ —-r— ; consequently, x — n ^—7:— = -—z—

.

Now, if ?^ approximated towards the true value, this new

value —^r— will approximate much nearer ; and, by sub-

stituting it for n, we shall find the result much nearer the

truth ; that is, we shall obtain a new value, which may again

be substituted, in order to approach still nearer ; and the

same operation may be continued as long as we please.

For example, let x'^ = 2 ; that is to say, let the square

root of 2 be required ; and as we already know a value suf-

ficiently near, which is expressed by ii, we shall have a still

W- + 2
nearer value of the root expressed by —— . Let, therefore,

1. n — 1, and we shall have a: = -1,

2. n = A, and we shall have x = ±^,
3. n = 4lrj '''"<^' ^'''G shall have x = |-^.^.

This last value approaches so near ^^2, that its square

t4|-K4 differs from the number 2 only by the small quantity

TerV^T' ^y ^^'"^^^ ^^ exceeds it,

788. We may proceed in the same manner, when it is
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required to find by approximation cube roots, biquadrate

roots, &c.

Let there be given the equation of the third degree,

,r^ = a; or let it be proposed to find the value ofX/a.

Knowing that it is nearly Ji, we shall suppose x = n + p;
neglecting p" and p^, we shall have x^ = ?i^ -f Sn'-p = a; so

that on-p = a — n^, and p = -q—r ' whence

If, therefore, n is nearly == ^/a, the quantity which we have

now found will be much nearer it. But for still greater

exactness, we may again substitute this new value for n, and
so on.

For example, let j;^ = a = 2 ; and let it be required to

determine V2. Here, if n is nearly the value of the number

sought, the formula
^

will express that number still

more nearly ; let us therefore make
1. w = 1, and we shall have a; = |^,

2. n = 1; and we shall have x — |4>
3. n = 14, and we shall have.r = -i4|^|.^«.

789. This method of approximation may be employed,

with the same success, in finding the roots of all equations.

To shew this, suppose we have the general equation of

the third degree, x^ + ax- -{- bx + c = 0, m which n is

very nearly the value of one of the roots. Let us make
X = n —p; and, since p will be a fraction, neglecting the

powers of this letter, v/hich are higher than the first degree,

we shall have x- — n- .— 2np, and x^ = n^ — Sn^p ; whence

we have the equation ri? — Sn-p 4- an- — 2a7ip -r bn —
bp + c = 0, or n^ + a?i'^ + bn + c —3n-p + 2a7ip + bp

.'n'^ + an' + b7iArC
= i^n^ + 2an -^ b)p ;

so that /> ^
Sn"--^2an + b

'
^"^

n^+a}i-+ bn+c 2n -r an^ — c „, . ,

^ Qn" + 2a7i + b 3w- + 2an -r b

which is more exact than the first, being substituted for n,

will furnish a new value still more accurate.

790. In order to apply this operation to an example, let

^^ -[_ 2x" + 3x - 50 -'
0, in which « = 2, 6 = 3, and

c = — 50. If 71 is supposed to be nearly the value of one

of the roots, X — -TT——-,
—-^, will be a value still nearer

the truth.
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Now, the assumed value o^ x = 3 not being far from the

true one, we shall suppose ?i = 3, which gives us a: = |4;
and if we were to substitute this new vahae instead of n, we
should find another still more exact.

791. We shall give only the following example, for equa-

tions of higher dimensions than the third.

Let x^ = 6x + 10, or x^— 6^^ — 10=^0, where we readily

perceive that 1 is too small, and that 2 is too great. Now,
if a: = 71 be a value not far from the true one, and we
make x = n •}- p, we shall have x^ = u^ + 5A<*p; and, con-

sequently,

n'' + 5n'^p = 6ii + 6p -»- 10 ; or

p(5n* — 6) = 6w + 10 — w\

Wherefore p =
g^,__g

', and x{= n + p) = -^^Zq-
14

If we suppose n = 1, we shall have x — —r = — 14; this

value is altogether inapplicable, a circumstance which arises

from the approximated value of n having been taken by
much too small. We shall therefore make n — 2, and shall

thus obtain x = '^y = ~^, a value which is much nearer the

truth. And if we were now to substitute for n, the fraction

|-|-, we should obtain a still more exact value of the root x.

792. Such is the most usual method of finding the roots

of an equation by approximation, and it applies successfully

to all cases.

We shall however explain another method *, which de-

serves attention, on account of the facility of the calculation.

The foundation of this method consists in determining for

each equation a series of numbers, as a, b, c, &c. such, that

each term of the series, divided by the preceding one, may
express the value of the root with so much the more ex-

actness, according as this series of numbers is carried to a

greater length.

Suppose we have already got the terms p, q, r, s, t, 8cc.

* The theory of approximation here given, is founded on the
theory of what are called recurr'mg- series, invented by M. de
Moivre. This method was given by Daniel Bernoulli, in vol. iii.

of the Ancient (Jonnnentaries of Petersburg. Eut Euler has
here pre-ented it in rather a different point of view. Those
who wish to investigate these matters, may consult chapters 13

and 17 of vol. i. of our author's Introd. in Anal. Infin. ; an ex-

cellent work, in which several subjects treated of in this first

Part, beside others equally connected with pure mathematics,
are profoundly analysed and clearly explained. F, T.
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— must express the root x with tolerable exactness ; that is

to say, we have — = x nearly. We shall have also

r— — .r *, and the multiplication of the two values will

T S
ffive — = X-. Farther as — = x, we shall also have
° j» r

s ' t t— = .r
' ; then, since— = x^ we shall have — = a.'"*, and

p
^

s P
so on.

793. For the better explanation of this method, we shall

begin with an equation of the second degree, x- =^ x {• I,

and shall suppose that in the above series we have found

a V
the terms/), q, r, s, t, &c. Now, as ^- = x, and — =a:',

we shall have the equation — = -^ + 1 , or (/ + p == ?•.

And as we find, in the same manner, that s = r + q, and
t ~ s -\- r', we conclude that each term of our series is the

sum of the two preceding terms ; so that having the first

two terms, we can easily continue the series to any length.

With regard to the first two terms, they may be taken at

pleasure : if we therefore suppose them to be 0, 1, our series

will be 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, &c. and

such, that if we divide any term by that which immediately

precedes it, we shall have a value of x so much nearer the

true one, according as we have chosen a term more distant.

The error, indeed, is very great at first, but it diminishes as

we advance. The series of those values of x^ in the order in

which they are always approximating towards the true one,

is as follows :

„ — I I 2 3 5 8 ij 21 34- 55 89 I4-+ S;-p
•^ — o-J T5 T> "25 TJ T' 8" > TT> "2T"> T4^> "sT' T9" '

If, for example, we make x = ~, we have 4^5- = rr +
1 = 4:4_2^ ii^ which the error is only -^-i-^-. Any of the suc-

ceeding terms will render it still less.

794. Let us also consider the equation x- = ^x -{- 1

;

Q T
and since, in all cases, r = —, and x^ = —, we shall have

P P

* It must only be undersiood heie that — is nearly equal iox.

1
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r 2^— = — + 1, or } = 2q + p; whence we infer that the

double of each term, added to the preceding term, will give

the succeeding one. If, therefore, we begin again with 0,

1, we shall have the series,

0, 1, 2, 5, 12, 29, 70, 169, 408, &c.

Whence it follows, that the value of j; will be expressed
still more accurately by the following fractions

:

r — »_^ 5 11 29 70 i69 408 Sjf,
OJ T5 ^5 T » TT> IT' To ' T^9"J "'•'"'

which, consequently, will always approximate nearer and
nearer the true value of a; = 1 + vS; so that if we take

unity from these fractions, the value of a/2 will be expressed
more and more exactly by the succeeding fractions

:

1 J_ 3 7 17 41 99 239 Srn
oJ I ? a? 5> -Tz-J Ta' "ro5 TfilT' ^*

For example, |4 ^^^s for its square |:|-§4, which differs

only by xg-W ^^'o™ the number 2.

795. This method is no less applicable to equations, which
have a greater number of dimensions. If, for example, we
have the equation of the third degree x^ = a;'^ -{ 2x -{ ly

we must make x = ^-, x- — —, and .r^ = — ; we shall

p p p
then have ,y = ?• -j- 2gi + p ; which shews how, by means of
the three terms ^, y, and r, we are to determine the suc-

ceeding one, s ; and, as the beginning is always arbitrary,

we may form the following series

:

0, 0, 1, 1, 3, 6, 13, 28, 60, 129, Sec.

from which result the following fractions for the approximate
values of X

:

-V. — O I I 3 6 ,3 28 60 izy 0^
•* 0} > If T> T' C" ' T3 ' i'S ' C'Q f ^^'

The first of these values would be very far from the truth ;

but if we substitute in the equation |-°-, or y, instead of ^,
we obtain

33 7_5 225 130 I 1 3388
3 43 4^ T^ 7- -r A — T4T '

in which the error is only j'-^-V.

796. It must be observed, however, that all equations are

not of such a nature as to admit the application of this

method ; and, particularly, when the second term is wanting,

it cannot be made use of. For example, let .i'^ ::= 2 ; if we

q V
wished to make .r = -^, and x- = —, wc should have

P P
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QQ5

T— = 2, or r — 2/7, that is to say, r := O^' + 2p, whence

would result the series

1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, &c.

from which we can draw no conclusion, because each term,

divided by the preceding, gives alvva3's .r = 1, or x — 2.

But we may obviate this inconvenience, by making x =y— 1

;

for by these means we have y'^ — 2?/ + 1 — 2 ; and if we

now make y = — , and ?y- = — , we sliall obtain the same^ p "' p

approximation that has been already given.

797. It would be the same with the equation x"' ~ 2. Tins
method would not furnish such a series of numbers as would
express the value of 1/2. But we have only to suppose x = i/

— 1, in order to have the equation y^ — 3z/- + 3?/ — 1 =2,

or y^ = 3?/' — 3j/ + 3 ; and then making j/ — •— , t/-— —

,

and 7/^ = — , we have s = 3r — Qq -^- 3/?, by means of

which we see how three given terms determine the succeed-

ing one.

Assuming then any three terms for the first, for example

0, 0, Ij we have the following series

:

0, 0, 1, 3, 6, 12, 27, 63, 144, 324, &c.

The last two terms of this series give y = \-^^±, and a* — |.

This fraction approaches sufficiently near the cube root of 2

;

for the cube of |. is '^y, and 2 = ~-/ ; the difference,

therefore, is only ^.
798. We must farther observe, with regard to this

method, that when the equation has a rational root, and the

beginning of the period is chosen such, that this root may
result from it, each term of the series, divided by the pre-

ceding term, will give the root with equal accuracy.

To shew this, let there be given the equation a.'^= x + 2,

one of the roots of which is x = 2; as we have here, for

the series, the formula 7- = q -[- gp, if we take 1, 2, for the

first two terms, we have the series 1, 2, 4, 8, 16, 32, 64, &c.

a geometrical progression, v/hose exponent = 2. The same
property is proved by the equation of the third degree,

x^ = X- -{- Sx f 9, which has x = 3 for one of the roots.

If we suppose the leading terms to be 1, 3, 9, wc shall find,

by the formula, s = r + 3q + 9p, and the series 1, 3, 9, 27,.

81, 243, Sec. which is likewise a geometrical progression.
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799. But if the beginning of the series exceed the root,

we shall not approximate towards that root at all; for

when the equation has more than one root, the series gives

by a})proximation only the greatest : and we do not find one
of the less roots, unless the first terms have been properly

chosen for that purpose. This will be illustrated by the

following example.

Let there be given the equation x~ = 4!cC — Q, whose two
roots are ^ = 1, and x — 3. The formula for the series is

7- — 4:q -^ 3p, and if we take 1, 1, for the first two terms of

the series, which consequently expresses the least root, we
have for the whole series, 1, 1, 1, 1, 1, 1, 1, 1, &c. but as-

suming for the leading terms the numbers 1, 3, which con-

tain the greatest root, we have the series, 1, 3, 9, 27, 81,

243, 729, &c. in which all the terms express precisely the

root 3. Lastly, if we assume any other beginning, provided

it be such that the least term is not comprised in it, the

scries will continually approximate towards the greatest

root 3 ; which may be seen by the following series

:

Beginning,

0, 1, 4, 13, 40, 121, 364, &c. '

1, 2, 5, 14, 41, 122, 365, &c.

2, 3, 6, 15, 42, 123, 366, 1095, &c.

2, 1,-2,-11,-38,-118,-362,-1091,-3278, &c.

in Avhich the quotients of the division of the last terms by
the preceding always approximate towards the greater root

3, and never towards the less.

800. We may even apply this method to equations

which go on to infinity. The following will furnish an
example

:

x"^ = ,r°°-' + ^°^-2 4- ^=°-3 + .r^-^ -I-, &c.

The series for this equation must be such, that each term
may be equal to the sum of all the preceding; that is, we
must have

1, 1, 2, 4, 8, 16, 32, 64, 128, &c.

whence we see that the greater root of the given equation is

exactly or = 2 ; and this may be shewn in the following

manner. If we divide the equation by ^*', we shall have1111,
1 = — +—- + —+ — +' ^^"^

I

a geometrical progression, whose sum is found =
^-1
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that 1 = -—T ; multiplying therefore by x = 1, we have

a; — 1 = 1 , and cc = ^.

801. Beside these methods of determining the roots of an
equation by approximation, some others have been invented,

but they are all either too tedious, or not sufficiently general*.

The method which deserves the preference to all others, is

* This remark does not apply to the method of finding the

roots of equations of all degrees, and however aflPected, by The
Rule of Double Position. In order, therefore, that this chapter

might be more complete, we shall explain this method as briefly

as possible.

Substitute in the given equation two numbers, as near the

true root as possible, and observe the separate results. Then,
as the difference of these results is to the difference of the two
numbers ; so is the difference between the true result, and
either of the former, to the respective correction of each. This
being added to the number, when too small, or subtracted from
it, wlien too great, will give the true root nearly.

The number thus found, with any other that may be sup-
posed to approach still nearer to the true root, may be assumed
for another operation, which may be repeated, till the root shall

be determined to any degree of exactness that may be re-

quired,

Ea'ample. Given x'^ { aP- -\- o) = 100.

Having ascertained by a few trials, or by inspecting a Table
of roots and powers, that x is more than 4, and less than 5, let

us substitute these two numbers in the given equation, and cal-

culate the results.

By the first r'*g~,^ By the secondJ „~ .i-

supposition t 3 _g^ supposition i ^,3 ^ 125

84 . . . Results 155

155 5 100 true result.

84 4 84

Differences 71 I 16

Then, As 71 : 1 :: 16 : 2253 +
Therefore 4 + "2253, or 4"2253 approximates nearly to tlie

true root.

If now 4-2, and 4'3, be taken as the assumed numbers, and
substituted in the given equation, we shall obtain the value of
.*' = 4*264 very nearly, the error being only -027552256.
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that which we explained first ; for it apphes successfully to

all kinds of equations : whereas the other often requires the

equation to be prepared in a certain manner, without which
it cannot be employed ; and of this we have seen a proof in

different examples.

QUESTIONS FOR PRACTICE.

1. Given x^ + 2x' — <i3x — 70 = 0, to find x.

Ans. X = 5-13450.

% Given x^ - ISx- + 6Sx - 50 = 0, to find jr.

Jns. X = 1-028039.

3. Given x^ - ^x" — 75x = 10000, to find x.

Ans. X = 10-2615.

4. Given x' + Qx* + Sx^ + 4.r'- -f 5.r = 54321, to find

X. Ans. X = 8*4144.

5. Let \9,0x^ + 3657^^2 _ 38059a: = 8007115, to find x.

Ans. X = 34-6532.

END OF PART I.
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ALGEBRA

PART II,

Containing the Analysis o/" Indeterminate Quantities.

CHAP. I.

Of the Resolution of Equations of the First Degree, which
contain more than one unknown Quantity.

ARTICLE I.

It has been shewn, in the First Part of these Elements,
how one unknown quantity is determined by a single equa-
tion, and how we may determine two unknown quantities

by means of two equations, three unknown quantities by
three equations, and so on ; so that there must always be as

many equations as there are unknown quantities to deter-

mine, at least when the question itself is determinate.

When a question, therefore, does not furnish as many
equations as there are unknown quantities to be determined,

some of these must remain undetermined, and depend on
our will ; for which reason, such questions are said to be in-

determinate ; forming the subject of a particular branch of

algebra, which is called Indeterminate Analysis.

2. As in those cases we may assume any numbers for one,

or more unknown quantities, they also admit of several

solutions : but, on the other hand, as there is usually an-

nexed the condition, that the numbers sought are to be in-

teger and positive, or at least rational, the number of all the

possible solutions of those questions is greatly limited : so

that often there are very few of them possible; at other
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times, there may be an infinite number, but such as are not
readily obtained ; and sometimes, also, none of them are

possible. Hence it happens, that this part of analysis fre-

quently requires artifices entirely appropriate to it, which are

of great service in exercising the judgment of beginners, and
giving them dexterity in calculation.

3. To begin with one of the easiest questions. Let it be
required to find two positive, integer numbers, the sum of
which shall be equal to 10.

Let us represent those members^ by ^ and 7/ ; then we have
X + ^ = 10; and .r = 10 —J/, where ij is so far only de-

termined, that this letter must represent §in integer and positive

number. We may therefore substitute for it all integer

numbers from 1 to infinity : but since x must likewise be a
positive number, it follows^ that i/ cannot be taken greater

than 10, for otherwise a: would become negative; and if

we also reject the value of ^ = 0, we cannot make j/ greater

than 9; so that only the following solutions can take

place

:

If2/=1, 2,3, 4,5, 6, 7, 8,9,
then a: = 9, 8, 7, 6, 5, 4, 8, 2, 1.

But, the last four of these nine solutions being the same as

the first four, it is evident, that the question really admits

only of five different solutions.

If thi'ee numbers were required, the sum of which might
make 10, we should have only to divide one of the numbers
already found into two parts, by which means we should

obtain a greater number of solutions.

4. As we have found no difficulty in this question, we
will proceed to others, which require different considera-

tions.

Question 1. Let it be required to divide 25 into two parts,

the one of which may be divisible by 2, and the other by 3.

Let one of the parts sought be 2,r, and the other

Si/; we shall then have ^x + 3^ = 25; consequently,

2^7 = 25 — 3t/; and, dividing by 2, we obtain

25 — 3w
.r = —^— ; whence we conclude, in the first place, that

3ymust be less than 25, and, consequently, that 2/ is less thanS.

Also, if, from this value of x, we take out as many integers

as we possibly can, that is to say, if we divide by the de-

It-y
nominator 2, we shall have a; = 12 — ?/ + —^ ; whence

it follows, that 1 — y, or rather y — 1, must be divisible
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by 2. Let us, therefore, make y — 1 — 2: ; and we shall

have y = 2;s + 1, so that

a = 12 — 22 — 1 - 2 = 11 - 3z.

And, since y cannot be greater than 8, we must not sub-

stitute any numbers for z which would render 2^+1 greater

than 8 ; consequently, z must be less than 4, that is to say,

z cannot be taken greater than 3, for which reasons we have

the following answers

:

If we make ;:; =
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6. Question 3. To divide 100 into two such parts, that

dividing the first by 5, there may remain 2 ; and dividing

the second by 7, the remainder may be 4.

Since the first part, divided by 5, leaves the remainder

2, let us suppose it to be 5x + 2 ; and, for a similar reason,

we may represent the second part by 7?/ + 4 : we thus have

5a^ + 7y + 6 = 100, or 5^7 = 94 -7?/ = 90 + 4-5y-%;

whence we obtain x = \S — y ^ —p-^. Hence it follows,
o

that 4 — 2y, or Sj/ — 4, or the half z/ — 2, must be divisible

by 5. For this reason, let us make y — ^ — 5z, or

y = 5z-\-2^ and, as 5x + 7?/ == 94, we shall have ^=16 — 7^;
whence we conclude, that Iz must be less than 16, and z less

than "/, that is to say, z cannot exceed 2. The question

proposed, therefore, admits of three answers

:

1. ;s = gives X = 16, and ?/ = 2 ; whence the two
parts are 82 + 18.

2. ;^ = 1 gives x = 9, and j/ = 7 ; and the two parts

are 47 + 53.

3. ;2f = 2 gives x = 2, and ?/ = 12 ; and the two parts

are 12 + 88.

7. Question 4. Two women have together 100 eggs : one
says to the other; ' When I count my eggs by eights,

there is an overplus of 7."' The second rephes :
* If I count

mine by tens, I find the same overplus of 7.** Plow many
eggs had each ?

As the number of eggs belonging to the first woman,
divided by 8, leaves the remainder 7 ; and the number of

eggs belonging to the second, divided by 10, gives the same
remainder 7; we may express the first number by 8r + 7,

and the second by 10?/ + 7 ; so that 8x + lOij + 14 = 100,
or 8^ — 86 — 1 Ot/, or 4.r = 43 — 5?/ = 40 + 3 — 43/ - 7/.

Consequently, if we make y — S = \z, so that ?/ = 4^ -f 3,

we shall have .r = 10 — 4^ — 3 — ;s = 7 — 5.i ; whence it

follows, that 5z must be less than 7, or z less than 2 ; that

is to say, we have the two following answers:

1, ;y = gives x — 1, and ?/ = 3 ; so that the first woman
had 6a eggs, and the second 37.

2. z ~ I gives a: = 2, and y = 7 ; therefore the first

woman had 23 eggs, and the second had 77.

8. Question 5. A company of men and women spent
' 1000 sous at a tavern. The men paid each 19 sous, and each

woman 13. How many men and women were there .''
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Let the number of men be a', and that of the women y,
we shall then have the equation, 19^ + 18j/ = 1000; or

13j/ = 1000 - 19^ = 988 + 12 - V6x - ^x; and

2/ = 76 - .r + —^- ;

whence it follows, that 12 — 6.r, or 6.r - 12, or a; — 2, the

sixth part of that number must be divisible by 13. If,

therefore, we make x— % — ISs, we shall have x = ISz + 2,

and 3/ = 76 - IS^ - 2 - 6^, or ?/ = 74 - 19^;

which shews that z must be less than ^, and, consequently,

less than 4 ; so that the four following answers are possible

:

1. z == gives X = 2, and y = 74: in which case there

were 2 men and 74 women ; the former paid 38 sous, and
the latter 962 sous.

2. « = 1 gives the number of men x — 15, and that of

women y =z 55 ; so that the former spent 285 sous, and the

latter 715 sous.

3. ^ = 2 gives the number of men x = 28, and that of

the women y = 36 ; therefore the former spent 532 sous,

and the latter 468 sous.

4. ^ = 3 gives X ~ 41, and y = 17; so that the men
spent 779 sous, and the women 221 sous.

9. Question 6. A farmer lays out the sum of 1770
crowns in purchasing horses and oxen ; he pays 31 crowns

for each horse, and 21 crowns for each ox. How many
horses and oxen did he buy ?

Let the number of horses be x, and that of oxen y ;

we shall then have 31a? + 21?/ = 1770, or

21?/ =: 1770 - 31.r = 1764 + 6 - 21a; - 10^; or

6-10,r
y — 84 — .r -I

— . Therefore lOo: — 6, and likewise

its half 5.r — 3, must be divisible by 21. If we now sup-

pose 5x — 3 = 21^, Ave shall have 5x — '^Iz +3, and
hence y — S^ — x — ^^- But, since

213 + 3 ; ^+3
, , ^ ^we must also make s; -f- o = 5?^;

- 3, X := Qlu - 12, and

-h 12 - 10m +6 = 102 - 31w;

hence it follows, that ti must be greater than 0, and yet less

than 4, which furnishes the following answers

:
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1. u =1 gives the number of horses x = 9, and that of

oxen 2/ = 71 ; wherefore the former cost 279 crowns, and the

latter 1491 ; in all 1770 crowns.

2. w = 2 gives x — 30, and ^y = 4tO ; so that the horses

cost 930 crowns, and the oxen 840 crowns, which together

make 1770 crowns.

3. u = 3 gives the number of the horses x — 51, and that

of the oxen ?/ = 9 ; the former cost 1581 crowns, and the

latter 189 crowns; which together make 1770 crowns.

10. The questions which we have hitherto considered

lead all to an equation of the form ax \- hy = c, in which

a^ b, and c, represent integer and positive numbers, and
in which the values of x and y must likewise be integer

and positive. Now, if b is negative, and the equation

has the form- ax — by =^ c, we have questions of quite

a different kind, admitting of an infinite number of an-

swers, which we shall treat of before we conclude the present

chapter.

The simplest questions of this sort are such as the fol-

lowing. Required two numbers, whose difference may be

6. If, in this case, we make the less number .r, and the

greater y, we must have 7/ — x =i 6, and «/ == 6 + x. Now,
nothing prevents us from substituting, instead of x, all the

integer numbers possible, and whatever number we assume,

y will always be greater by 6. Let us, for example, make
X — 100, we have ?/ = 106 ; it is evident, therefore, that au
infinite number of ansuers are possible.

11. Next follow questions, in which e = 0, that is to say,

in which ax must simply be equal to bt/. Let there be re-

quired, for example, a number divisible both by 5 and by 7.

If we write N for that number, we shall first have n ^ Sx,

since n must be divisible by 5 ; and farther, we shall have

N = ly, because the number must also be divisible by 7. We
7?/

shall therefore have ^x = 7//, and x = -4-. Now, since 7^ b

cannot be divided by 5, y must be divisible by 5 : let us

therefore make y = 5^, and we have w = 72 ; so that the

number sought (n) will be — o5z ; and as we may take for

z, any integer number whatever, it is evident that we can

assign for x an infinite number of values ; such as

35, 70, 105, 140, 175, 210, &c.

If, beside the above condition, it were also required that the

number n be divisible by 9, we should first have n — 35.r,

as before, and sfiould farther make n — 9?/. In this man-
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ner, 35s = du, and u = -^ ; where it is evident that .::r

must be divisible by 9; therefore let 2 = 9*; and we shall

then have u = S5s, and n the number sought = 3155.

12. We find more difficulty, when c is not = 0. For

example, when 5x — ly + 3, the equation to which we are

led, and which requires us to seek a number N such, that

it may be divisible by 5, and if divided by 7, may leave the

remainder 3: for we must then have n = 5x, and also

N = 7z/ + 3, whence results the equation 5x = ly + ^\

and, consequently,

_ ly^-S _ 5^ + 2^ + 3 _ %+3x-—^- 5 -y-t ^

2?/ +3
If we make 2«/ -|- 3 = 5z, or z = -^—, we have x = y -V ~.

Now, because 2y + 3 = 5zy or 9,y = 5z — 3, we have

5^-3 ^ ^-3
y ^ —^-, or y = ^z + -^-.

If, therefore, we farther suppose ^ — 3 = 9.u, we have

z =2u •{ 3, and y = 5u + 6, and

X =y + z = {5u + 6) + (2w + 3) = 7m + 9.

Hence, the number sought n = 35m 4- 45, in which equa-

tion we may substitute for u not only all positive integer

numbers, but also negative numbers ; for, as it is sufficient

that N be positive, we may make u = —1, which gives

N = 10; the other values are obtained by continually add-

ing 35 ; that is to say, the numbers sought are 10, 45, 80,

115, 150, 185, 220, &c.

13. The solution of questions of this sort depends on the

relation of the two numbers by which we are to divide ; that

is, they become more or less tedious, according to the nature

of those divisors. The following question, for example,

admits of a very short solution :

Required a number which, divided by 6, leaves the re-

mainder 2; and divided by 13, leaves the remainder 3.

Let this number be n. First, k = 6a^ + 2^ and then

N = 13y + 3 ; consequently, 6x -^ 9, =^ ISy -\- 3, and

6x = \2y + 1 ; hence,

. = l!^ = 2, + ^+-\

and if we make y + \ = 6z, or y = 6z — I, we obtain

,T = 2// 4- --r = ISa' — 2 ; whence we have for the number
X
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sought N — 78.^ — 10 ; therefore, the question admits of the

following values of n ; viz.

N - 68, 146, 224, y02, 380, &c.

vvhicli numbers form an arithmetical progression, whose

difference is 78 =; 6 x 13. So that if we know one of the

values, we may easily find all the rest ; for we liave only to

add 78 continually, or to subtract that number, as long as it

is possible, when we seek for smaller numbers.
14. The following question furnishes an example of a

longer and more tedious solution.

Question 8. To find a number x, which, when divided

by 39, leaves the remainder 16; and such also, that if it be

divided by 56, the remainder may be 27.

In the first place, we liave n = 39p + 16 ; and in the

second, n = 56^' + 27; so that

S9p + 16 = 56q + 27, or S9p = 56*7 + 11, and

56*7 + 11 17^ + 11
,

,.

P = —gc)— = 1+—39— =9+^'> ^y makmg

r= ^\^^\ So that 39r = 17^ + 11, and

39r-n
^, 5r-ll ^

, ,.
q = —— = 2r +

^^
= 2r + s, by makmg

5r^l
17

s = —^—, or 175 = 5?- — 11 ; whence we get

17s +11 ,, 2s + ll ^
r = = 3s -\ -z

—- = Ds + t, by making
o o

25 + 1 1

t = , or 5^ = 25 + 11; whence we find
5

s =
5t-n ^ t-ii „ , ,.—-— = 2^ H ^— =2t -{- Uy by makmg

i5-ll

2
whence ^ = 2m + 11.

Having now no longer any fractions, we may take u

at pleasure, and then we have only to trace back the fol-

lowing values :

t = ^u + 11,

s ='it + u= 5m + 22,

r =Qs + t = I7u + 77,

q =2r + s =39u + 176,

p = q { r = 56u + 253,
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and, lastly, n = 39 x 5Gu + 9883*. And the least pos-

sible value of N is found by making ti = — 4<; for by this

supposition, we have n = 1147 : and if we make 7* = a;— 4,

we find

N = 2184:r - 8736 + 9883 ; or n = 2184^ + 1147

;

which numbers form an arithmetical progression, whose
first term is 1147, and whose common difference is 2184;
the following being some of its leading terms

:

1147, 3331, 5515, 7699, 9883, &c.

15. We shall subjoin some other questions by way of

practice.

Question 9. A company of men and women club to-

gether for the payment of a reckoning : each man pays 25
livres, and each woman 16 livres; and it is found that all

the women together have paid 1 livre more than the men.
How many men and women were there ?

Let the number of women be p, and that of men q ; then

the women will have expended 16p, and the men 252' 5 ^°

that 16^ = ^i5q + 1, and

25<7 + l 97+1
" - ^ =q + —^ = q-\-r, or 16r z= 9<7 + 1,

7r—

1

= r -\ Q— = r + *, or 9^ = 7r — 1,

— - 2* + l ^ ^ , ,
r =—-^— = s -i

— = * + ^, or 7^ =25 + 1,

s = '"
' =St-\ — = St-{-u, or 9,u = t - 1.

We shall therefore obtain, by tracing back our substitutions,

^ = 2m + 1,

5 = 3^ + M = 7m 4- 3,

r — s + ^ = 9?^ + 4,

q:=. r •\- s = \Gu + 7,

jrj = g 4- r = 25m + 11-

So that the number of women was 25m + 11, and that of

men was 16m + 7 ; and in these formulae we may substitute

* As the numbers 176 and 253 ought, respectively, to be

divisible by 39 and 56; and as the former ought, by the

question, to leave the remainder 1 6, and the latter 27, the sum
9883 is formed by multiplying 176 by 56, and adding the re-

mainder 27 to the product: or by multiplying 253 by 39, and

adding the remainder 16 to the product. Thus,

(176 X 56) + 27 = 9883 ; and (253 x 39) + 16 = 9883.
,

x2

~ 16
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for u any integer numbers whatever. The least results,

therefore, will be as follow :

Number of women, 11, 36, 61, 86, 111, &c.

» of men, 7, 23, 39, 55, 71, 8vC.

According to the first answer, or that which contains the

least numbers, the women expended 176 livres, and the men
175 livres; that is, one livre less than the women.

16. Question 10. A person buys some horses and oxen :

he pays 31 crowns per horse, and 20 crowns for each ox

;

and he finds that the oxen cost him 7 crowns more than the

horses. How many oxen and horses did he buy ?

If we suppose p to be the number of the oxen, and q the

number of the horses, we shall have the following equation :

3]g+7 _ ^ ,

11^+7
20

20r -7

P = -|o~ = ^ + ~%^^ = '7 + ^ or 20r = 11^ + 7,

11

9

-r
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Let
and we shall

find

p = Aq {- r

q - Br + s

r = Cs + t

\s = Dt ^u
\

t =z Eu + V

] u = Fv ± n.

may immediately determine p and q by the succeeding let-

ters, as follows

:

a = Ab + c

b = Be + d
c = Cd + e

^d = De+f\
e=Ef+g\
f=Fg + ol

^

We have only to observe farther, that in the last equation,

the sign + must be prefixed to n, when the number of

equations is odd ; and that, on the contrary, we must take
— n, when the number is even : by these means, the ques-

tions which form the subject of the present chapter may be
readily answered, of which we shall give some examples.

9,0. Question 11. Required a number, which, being di-

vided by 11, leaves the remainder 3; but being divided by
19, leaves the remainder 5.

Call this nuiiiber n ; then, in the first place, we have
N = lip + 3, and in the second, n = 19q + 5; therefore,

we have the equation 11;; = 19</ + 2, which furnishes the

following Table

:

\

p= q
q = r

r = 2s

s = t

t =2u

19 = 1 X 11 + 8
11 = 1 X 8 + 3
8 = 2 X 3 + 2
3= 1 X 2+1
2 = 2 X 1 +

where we may assign any value to u,

the preceding letters successively. We find,

t = 2m +
5= t + u = 3m-|-

r = 2s -\- t = 8u +
qz= r + s = 11m +
p z= q + r = 19m + 14;

whence, taking u = 11, we obtain the number sought
n = 11;o + 3=11(19m + 14) + 3=:209« + 157; therefore 157
is the least number that can express n, or satisfy the terms
of the question *'.

21. Question 12. To find a number n such, that if we
divide it by 11, there remains 3, and if we divide it by 19,
there remains 5 ; and farther, if we divide it by 29, there
remains 10.

The last condition requires that n = 29/? -f 10; and as

we have already performed the calculation (in the last

+ r

+ s

+ t

+ u
+ 2,

and determine by it

Because, in this case, u = 0.



i r = s + t,

(s ^5i - 147.

wherefore • ^ '
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question) for the two others, we must, in consequence of that

result, have n = 209/< + 157, instead of which we shall

write X = 20dq + 157; so that

29/^ + 10 = 209(/ + 157, or 29/? = 209y + 147

;

whence we have the following Table

;

209 -7 X S9 + 6; (P=='7q \ r,

29 = 4 X 6 + 5

;

6 = 1 X 5 + 1;
5 = 5 X 1+0;

And, if we now retrace these steps, we have

s = 5t - 147,

r = s + t= 6f - 147,

q = 4<r + s = 29^ - 735,

p='7q + r = mdt - 5292.

So that N = 6061^ — 153458 *
: and the lea^it number is

found by making t = 26, which supjjosition gives N = 4128.

22. It is necessary, however, to observe, in order that an

equation of the form bp = aq -\- u may be resolvibb, that

the two numbers a and b must have no connnon divisor;

for, otherwise, the question would be impossible, unless the

number ii, had the same common divisor also.

If it were required, for example, to have Qp = 15^ + 2;

since 9 and 15 have a common divisor 3, and which is not a

divisor of 2, it is impossible to resolve the question, because

9/^ — 15^' being always divisible by 3, can never become
= 2. But if in this example n = 3, or n = 6, &c. the

question woidd be possible : for it would be sufficient first

to divide by 3 ; since we should obtain Sp = 5q -{- 1, an

equation easily resolvible by the rule already given. It is

evident, therefore, that the numbers a, b, ought to have no

common divisor, and that our rule cannot apply in any other

case.

23. To prove this still more satisfactorily, we shall con-

sider the equation 9p — I5q + ^ according to the usual

method. Here we find

15<7+ 2 6a + 2
p = —^— =q + --g— = <7 + r; so that

9r = 6g + 2, or 6(7 = 9/- - 2 ; or -^

9r-2 3/ -2
. , ,, o /•

a = —-— = r -\ yi— = r -f- 6 ; so tiiat or — ^ =^ Oa',

o o

* That is, - .5292 x 29 = — 153168; to which if tlie rv-

rnainder + 10 required by I'le question be added, the sum is

- 153458.
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65 + 2
or 3;- = 6s + 2 : consequently, r = —— = 25 + f

.

Now, it is evident, that this can never become an integer

number, because 5 is necessarily an integer ; wliich shews

the impossibility of such questions *.

CHAP. II.

Of the Rule wldcli is called Regula Caeci, for determhiing

by means of tzoo Equations, three or more Unknown
Quantities.

24. In the preceding chapter, we have seen how, by means
of a single equation, two unknown quantities may be deter-

mined, so far as to express them in integer and positive

numbers. If, therefore, we had two equations, in order that

the question may be indeterminate, those equations must
contain more than two unknown quantities. Questions of
this kind occur in the common books of arithmetic , and are

resolved by the rule called Regula Cccci, Position, or The
Rule of False ; the foundation of which we shall now ex-

plain, beginning with the following example

:

25. Question 1. Thirty persons, men, women, and chil-

dren, spend 50 crowns in a tavern ; the share of a man is 3
crowns, that of a woman 2 crowns, and that of a child is 1

crown ; how many persons were there of each class ?

If the number of men be p, of women q, and of children r,

we shall have the two following equations

;

1. p -\- g- 4- r = 30, and
2. 3p -I- 2^ + r = 50,

from which it is required to find the value of the three

letters p, q, and r, in integer and positive numbers. The
first equation gives r = 2>0 — p — q ; whence we imme-
diately conclude that;? + q must be less than 30 ; and, sub-

stituting this value of ;• in the second equation, we have

2/? + y + 30 = 50 ; so that «y = 20 — 2p, and p + q =

* See the Appendix to this chapter, at Art. 3. of the Additions
by De la Grange.
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20 — Pi which evidently is also less than 30. Now, as we
may, in this equation, assume all numbers for p which do
not exceed 10, we shall have the following eleven answers:

the number of men p, of women q^ and of children r, being

as follow :

p= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10:

^=3 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0:

r = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20;

and, if we omit the first and the last, there will remain 9.

26. Question 2, A certain person buys hogs, goats, and
sheep, to the number of 100, for 100 crowns ; the hogs cost

him 34 crowns apiece; the goats, ly crown ; and the sheep,

,^- a crown. How many had he of each ?

Let the number of hogs he p, that of the goats q^ and of
the sheep r, then we shall have the two following equations

:

1. p -T q+ r = 100,

2. Sip + liq + \r = 100

;

the latter of which being multiplied by 6, in order to remove
tlie fractions, becomes, 21p + Sq + 3r = 600. Now, the

first gives r = 100 — P ~ ^
'^

3,nd if we substitute this

value of r in the second, we have 18p + 5q = 300, or

18»
5q = 300 — 18/?, and ^ = 60 — -=- : consequently, 18p

must be divisible by 5, and therefore, as 18 is not divisible

by 5, p must contain 5 as a factor. If we therefore make
p =z 5s, we obtain q = 60 — 18s, and r = 13s + 40; in

which we may assume for the value of s any integer number
whatever, provided it be such, that q does not become ne-

gative : but this condition limits the value of s to 3 ; so that

if we also exclude 0, there can only be three answers to the

question ; which are as follow :

When s = 1, 2, 3,

fp- 5, 10, 15,

We have -{ ^ ^ 42, 24, 6,

(r =53, 66, 79.

27. In forming such examples for practice, we must take

particular care that they may be possible ; in order to which,

we must observe the following particulars :

Let us represent the two equations, to which we were just

now brought, by

1. X + y -\r X = a, and

, \ . ^

2. /r + -y + hx = h,

in which/, gj and A, as well as a and 6, are given numbers.



314 ELEMENTS PART II.

Now, if we suppose that among the numbers y, g, and 7i,

the^first, f, is the greatest, and h the least, since we have

fx -\-fy -\-f^i or (a; + y -\-z)f—fa^ (because x+3/+,':r = a)

it is evident, that^a^ -\-fy -\-J'z is greater than_/a; +^;j/+^~ '•>

consequently, jTa must be greater than b, or b must be less

thanyiz. Farther, since /?.rj + hy -\- hz, or {x -\-y + z)h= ha,

and hx + hy + A^ is undoubtedly less than /i; + ^?/ + ^~j

^a must be less than b, or i must be greater than ha. Hence
it follows, that if b be not less than^a, and also greater than

ha, the question will be impossible : which condition is also

expressed, by saying that b must be contained between the

limitsy'a and Aa; and care must also be taken that it may
not approach either limit too nearly, as that would render it

impossible to determine the other letters.

In the preceding example, in which a — 100,^= 3{, and
A = 1., the limits were 350 and 50. Now, if we suppose

6 = 51, instead of 100, the equations will become

X + y + z = 100, and 3ijr + l^y + 1^ = 51;

or, removing the fractions, 21.r + 8?/ + 33 = 30G; and if

the first be multiplied by 3, we have 3a; + 3y -f 3.cr = 300.

Now, subtracting this equation from the other, there re-

mains 18r -\- 5y = Q; which is evidently impossible, because

X and y must be integer and positive numbers *.

28. Goldsmiths and coiners make great use of this rule,

when they propose to make, from three or more kinds of

metal, a mixture of a given value, as the following example
will shew.

Question S. A coiner has three kinds of silver, the first

of 7 ounces, the second of 5i- ounces, the third of 4i ounces,

fine per marc
-f-

; and he wishes to form a mixture of the

weight of 30 marcs, at 6 ounces : how many marcs of each

sort must he take ?

If he take x marcs of the first kind, y marcs of the second,

and s: marcs of the third, he will have x -{- i/ + z = 30,

which is the first equation.

Then, since a marc of the first sort contains 7 ounces of

fine silver, the x marcs of this sort will contain 7^' ounces of

such silver. Also, the y marcs of the second sort will con-

tain 5'^y ounces, and the z marcs of the third sort will con-

tain 4f^z ounces, of fine silver; so that the whole mass will

contain 7x -H 5iy + 4t{z ounces of fine silver. As this

mixture is to weigh 30 marcs, and each of these marcs must
contain 6 ounces of fine silver, it follows that the whole mass

* Vide Article 22.

f A man: is eight ouncci-.
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will contain 180 ounces of line silver; and thence results the

second equation, Ix + 5ij/ + 4|2 = 180, or 14,r + 11/y -f-

9^ = 360. If we now subtract from tliis e(iuation nine

times the first, or 9.r + 9?/ + 92 = 270, there remains Bx +
gy = 90, an equation which must give the values of x and

y in integer numbers; and with regard to the value of ^, we
may derive it from the first etjuation z — ^iiO — x — tj.

Now, the former equation gives ^ — 90 — 5x, and

^ = 45 — -^ ; therefore, if a; = 2m, we shall have y = 45

-- 5?/, and z = ^u — 15; which shews that u, must be

greater than 4, and yet less than 10. Consequently, the

question admits of the following solutions:

If « = 5, 6, 7, 8, 9,

\x = lQ, 12, 14, 16, IS,

Then Vy = 20, 15, 10, 5, 0,

J ;^ = 0, 3, C, 9, 12.

29- Questions sometimes occur, containing more than three

unknown quantities; but they are also resolved in the same
manner, as the following example will shew.

Question 4. A person buys 100 head of cattle for 100
pounds; viz. oxen at 10 pounds each, cows at 5 pounds,

calves at 2 pounds, and sheep at 10 shillings each. How
many oxen, cows, calves, and sheep, did he buy ?

Let the number of oxen be p, that of the cows q^ of calves

r, and of sheep s. Then we have the following equations

:

1. /? + <7 + r + 5 = 100;
2. 10;? + 55^ + 2r + [5 = 100;

or, removing the fractions, 20/? + lOiy + 4r 4- s = 200:
then subtracting the first equation from this, there remains

19/? + 9<7 + 3r = 100; whence

3r = 100 - \%p - 9<7, and
r = 33 + 4- - 6/; - |/> - 5?

; or

r= 33- 6^-3/7 + ^;
whence 1 — j», or/? — 1, must be divisible by 3; therefore

if we make
p — \ = St, we have

1

p = ^t -\- \

(J =q
r =9n -\9l - Sq
6- = 72 + 2y + 16/;
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we obtain y = 124 : so tliat z must be divisible by
o

5. If therefore we make z = 5u, we shall have ?/ =
124 — 14m ; which values of 3/ and ;r being substituted in the

first equation, we have 3a: — 35/^ + 620 = 560 ; or Qx =
Sou

35u — 60, and x = —- 20; therefore we shall make
o

u = St, from which we obtain the following answer,

a; = S5t — 20, 1/ = 124 — 42if, and ^ = lot, in which we
must substitute for t an integer number greater than and
less than 3: so that we are limited to the two followino;

answers

:

j^}t = ly , Ix = 15, ij = 8^, :^ =^ 15.
"C* a we have > ^p/ '^ .^ on}t = /i, yx = 50, 7/ = 40, s = bO.

CHAP. III.

Of Compound Indeterminate Equations, in which one of the

Unknown Quantities does not exceed tlie First Degree.

31. We shall now proceed to indeterminate equations, in

which it is required to find two unknown quantities, one of

them being multiplied by the other, or raised to a power
higher than the first, whilst the other is found only in the

first degree. It is evident that equations of this kind may
be represented by the following general expression

:

a -{-hx + cij •\- dx" + exy -{-fx^ +gx'^y + hx"^ + Tix^y + , &c. =0.
As in this equation y does not exceed the first degree, that

letter is easily determined ; but here, as before, the values

both of 07 and of?/ must be assigned in integer numbers.
We shall consider some of those cases, beginning with the

easiest.

32. Question 1 . To find two such numbers, that their

product added to their sum may be 79.

Call the numbers sought x and y: then we must have
^?/ -f a; + j/ = 79 ; so that xy -\- y = 1% — x, and

79 - a; 80 , , ,. . .

y = ^ , = — 1 -{ -, by actual division, from which
X -J- I X -\- X

we see that .r + 1 must be a divisor of 80. Now, 80 having
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several divisors, we shall also have several values of a;, as the

following Table will shew :

The divisors of 80 are 1 2 4 5 8 10 16 20 40 80

therefore a: = 1 3 4 7 9 15 19 39 79
and y := 79 39 19 15 9 7 4 3 1

But as the answers in the bottom line are the same as

those in the first, inverted, we have, in reality, only the five

following; viz.

^ = 0, 1, 3, 4, 7, and

y = 79, 39, 19, 15, 9.

33. In the same manner, we may also resolve the general

equation a^j/ -{- ax + bi/ = c ; for we shall have xit/ + bi/ =

c — ax, and j/ = j- , or, dividing c — ax hy x -\- b.

y = — a +
ab-\- c

x+b

; that is to say, x + b must be a divisor of
X + b

the known number ab-\-c; so that each divisor of this num-
ber gives a value of x. If we therefore make ab + c =Jgi
we have

7/ = J
— a ; and supposing x + b =f, or x rry — b, it

is evident that y =. g — a\ and, consequently, that we have

also two answers for every method of representing the num-
ber a6 -|- c by a product, such as^y^. Of these two answers,

one is x=^f—b, and j/r=g — a; and the other is ob-

tained by making x •\- b = g, in which case x =^ g — Z»,

and y —f — a.

If, therefore, the equation xy + 2x + Si/ = 4i2 were pro-

posed, we should have a = 2, b = 3, and c = 42 ; con-

48
sequently, 7/

= ^ — 2. Now, the number 48 may be

represented in several ways by two factors, as fg : and in

each of those cases we shall always have either x =f— 3,

and 1/ = g — ^', or else x = g — S, and j/ =y— 2. The
analysis of this example is as follows

:

Factors
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given numbers, and it is required to find integers for x and
?/ that are not known.

If we first separate «/, we shall hav e j/
= 7- ; and re-

moving X from the numerator, by multiplying both sides by
m, we have

max -\- mc mc + ab v • •

mu = — = a-\ r? by division.
•^ mx — VLX — •'

We have here a fraction whose numerator is a known num-
ber, and whose denominator must be a divisor of that num-
ber; let us therefore represent the numerator by a product

of two factors, as^ (which may often be done in several

ways) and see if one of these factors may be compared with

mx — b, so that mx — h —f. Now, for this purpose, since

X =
, f -{-b must be divisible by w; and hence it fol-

lows, that out of the factors of mc + «6, we can employ only

those v/hich are of such a nature, that, by adding b to them,
the sums will be divisible by m. We shall illustrate this by
an example.

Let the equation be 5xi/ = 2x + 83/ + 18. Here, we
have

'2x+18 , ^ lO.r + 90 ^ 96
•^ = 5^^1-3' ""^ ^^ = -5^^r^ = ^ + 5^=S '

it is therefore required to find those divisors of 96 which,

added to 3, will give sums divisible by 5. Now, if we con-

sider all the divisors of 96, which are 1, 2, 3, 4, 6, 8, 12, 16,

24, 32, 48, 96, it is evident that only these three of them,
viz. 2, 12, 32, will answer this condition.

Therefore,

1. If 5^ —
• 3 = 2, we obtain 5i/ = 50, and

consequently x = 1, andj/ =10.
2. If 5a; — 3 = 12, we obtain 3y = 10, and

consequently x = S, and y =.%
3. If bx — ?) — 32, we obtain 5j/ = 5, and

consequently a? = 7, and 3/ = 1.

35. As in this general solution we have
mc + ab

my — c = r-,
mx — b

it will be proper to observe, that if a number, contained in

the formula mc + ab, have a divisor of the form mx — i, the

quotient in that case must necessarily be contained in the

formula my —a: we may therefore express the number
mc -\- ab by a product, such as (jnx — b) x {my — a). For
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example, let m = 12, a — 5, 6 = 7, and c — 15, and we

have, for my— a = i-, ISw — 5 = 77; -.^ mx — b ^ 12a;' —

7

Now, the divisors of 215 are 1, 5, 43, 215; and we must
select from these such as are contained in the formula

12ar— 7; or such as, by adding 7 to them, the sum may be

divisible by 12; but 5 is the only divisor that satisfies this

condition; so that 12.r —7=5, and \9,y — 5 = 43. In
the same manner, as the first of these equations gives x = I,

we also find 3/, in integer numbers, from the other, namely,

3/ = 4. This property is of the greatest importance with

regard to the theory of numbers, and therefore deserves

particular attention.

36. Let us now consider also an equation of this kind,

a7j/ + ^- = 2^ + 3j/ + 29. First, it gives us

2^-.r- + 29 , V . ,26
.3/
= 733— ' o^' "y division, 3/ = — ^ - 1 +J—Q ; and

26
y -\-a; +1 = -—^ : so that x — 3 must be a divisor of 26

;

•^ X —

o

.and, in this case, the divisors of 26 being 1, 2, 13, 26, we
obtain the three following answers :

1. X — S = 1, or X = 4! ; so that

7/ {- X + 1 = 1/ -\- 5 =^ 26, and 3/ = 21 ;

2. X — S = 2, or X = 5; so that

y + X + 1 = 7/ + 6 = 13, and 3/ = 7

;

3. ;r — 3 = 13, or a; = 16; so that, if

1/ + X + \ = y -{- 17 = 2, 3/ must be = — 15.

This last value, being negative, must be omitted ; and,

for the same reason, we cannot include the last case,

a; _ 3 = 26.

37. It would be unnecessary to analyse any more of these

formulae, in which we find only the first power of j/, and
higher powers of x ; for these cases occur but seldom, and,

besides, they may always be resolved by the method which

we have explained. But when i/ also is raised to the second

power, or to a degree still higher, and we wish to determine

its value by the above rules, we obtain radical signs, which

contain the second, or higher powers of x ; and it is then

necessary to find such values of .r, as will destroy the radical

signs, or the irrationality. Now, the great art of Indeter-

minate Analysis consists in rendering those surd, or incom-

mensurable formulae rational: the methods of performing

which will be explained in the following chapters*.

* See the Appendix to this chapter, at Art. 4, of the Ad-
tlitions by De la Grange.
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QUESTIONS FOR PRACTICE.

1. Given 24x = 13j/ -f 16, to find x and y in whole
numbers. Ans. x — 5, and y = 8.

a. Given 87x + 256]/ = 15410, to find the least value of

Xf and the greatest of_y, in whole positive numbers.

Ans. X = 30, and i/ = 12800.
3. What is the number of all the possible values of .r, y,

and z, in whole numbers, in the equation 5x -\- ly -\-

112 = 224? Ans.m.
4. How many old guineas at 2l5. 6d. ; and pistoles at 17^.

will pay 100/. ? and in how many ways can it be done ?

Ans. Three different ways ; that is,

19, 62, 105 pistoles, and 78, 44, 10 guineas.

5. A man bought 20 birds for 20 pence ; consisting of

geese at 4 pence, quails at hd. and larks at i-rf. each ; how
many had he of each ?

Ans. Three geese, 15 quails, and 2 larks.

6. A, B, and C, and their wives P, Q, and R, went to

market to buy hogs ; each man and woman bought as many
hogs, as they gave shillings for each ; A bought 25 hogs
more than Q, and B bought 11 more than P. Also each
man laid out three guineas more than his wife. Which two
persons were, respectively, man and wife ?

Ans. B and Q, C and P, A and R.
7. To determine whether it be possible to pay lOOZ. in

guineas and moidores only ? Ans. It is not possible.

8. I owe my friend a shilling, and have nothing about me
but guineas, and he has nothing but louis d'ors, valued at

175. each ; how must I acquit myself of the debt?
Ans. I must pay him 13 guineas, and he must give me

16 louis d'ors.

9. In how many ways is it possible to pay lOOOA with

crowns, guineas, and moidores only ? Ans. 70734.
10. To find the least whole number, which being divided

by the nine whole digits respectively, shall leave no re-

mainders. Ans. 2520,
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CHAP. IV.

On the Method of rendering Surd Quantities qftheform
^{a \- hx -\- cx'^) Rational.

38. It is required in the present case to determine the

values, which are to be adopted for a:, in order that the

formula a -\- bx -{- cx~ may become a real square ; and,

consequently, that a rational root of it may be assigned.

Now, the letters a, b, and c, represent given numbers ; and
the determination of the unknown quantity depends chiefly

on the nature of these numbers ; there being many cases in

which the solution becomes impossible. But even when it is

possible, we must content ourselves at first with being able to

assign rational values for the letter x^ without requiring those

values also to be integer numbers ; as this latter condition

produces researches altogether peculiar.

39. We suppose here that the formula extends no farther

than the second power of x ; the higher dimensions require

different methods, which will be explained in their proper

places.

We shall observe first, that if the second power were not

in the formula, and c were = 0, the problem would be at-

tended with no difficulty ; for if ^/{a + bx) were the given

formula, and it were required to determine .r, so that a -{- bx
might be a square, we should only have to make a + bx = j/-,

whence we should immediately obtain x — '^—— . Now,

whatever number we substitute here for y, the value of x
would always be such, that a + bx would be a square, and
consequently, ^/(a + bx) would be a rational quantity.

40. We shall therefore begin with the formula V(l -i- j;^)
;

that is to say, we are to find such values of or, that, by add-

ing unity to their squares, the sums may likewise be squares

;

and as it is evident that those values of x cannot be integers,

we must be satisfied with finding the fractions which express

them.

41. If we supposed \ -^ x~ — y", since 1 + x" must be a

square, we should have x" = y'^ — \, and x = \^{y" ~ 1) >

so that in order to find x we should have to seek numbers
for y, whose squares, diminished by unity, would also leave

squares ; and, consequently, we should be led to a question as

difficuk as the former, without advancing a single step.
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It is certain, however, that there are real fractions, which,

being substituted for <r, will make 1 + x- a square; of

which we may be satisfied from the following cases

:

1. If .r =
I;,

we have 1 + .r- = ^|; and consequently

V(l + ^=) =
I:.

2. 1 + x- becomes a square likewise, if x = 4^, which
gives V{1 + ^v-) = 4.

3. If we make x rr ^'^, we obtain 1 + x- = 44t, the

square root of which is if.

But it is required to shew how to find these values of x,

and even all possible numbers of this kind.

4-2. There are two methods of doing this. The first re-

quires us to make ^/(l + x") = x + p; from which sup-

position we have 1 + x- = x- + 2px + p", where the square

X- destroys itself; so that we may express x without a

radical sign. For, cancelling x- on both sides of the equa-

1 —«2

tion, we obtain 2px -r p" = 1; whence we find x =

;

a quantity in which we m^ty substitute for p any number
m

whatever less than unity. Let us therefore suppose p = — ;

then we have x — — '> ^"^5 ^^ ^e multiply both terms

n

. 1 11 /» 1 n- —m"
of this fraction by n\ we shall find x = —r .

•^ 2m7i

43. In order, therefore, that 1 + x- may become a square,

we may take for m and Ji all possible integer numbers, and
in this manner find an infinite number of values for x.

Also, if we make, in general, x = —^ , we find, by

n* — 2,m-n- + m*
,

squanng, 1 + a;^ = 1 + ^^- ; or, by putting

4wi2 . 71* + 27n"n" + m^
I = -.— in the numerator, \ 4- x"^ = -.

—-—
; a

-, . . . , . n- + mr
fraction which is a square, and gives ^/(l +^-) = -^ .

We shall exhibit, according to this solution, some of the

least values of x.

If « = 2, 3, S, 4, 4, 5, 5, 5, 5.

and 7n = 1, 1, 2, 1, 3, 1, 2, 3, 4,

y2
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vvc ridve a: — _, ^, -j-^, — , -^-^, ^ , -^^j -j-^-, -^-^ .

44. We have, therefore, In general, [Art. 42, 43.]

"*
{'2mny-

"^
(2mw)2

"

'

and, if we multiply this equation by (^mn)~, we find

SO that we know, in a general manner, two squares, whose

sum gives a new square. This remark will lead to the

solution of the following question

:

To find two square numbers, whose sum is likewise a

square number.

We must have p~ -^ q^ = r^ ; we have therefore only to

make p = 2mn, and q = n^ — m-, then we shall have

r = H^ + m'^.

Farther, as (w* + m")- — (9,mny = {n" — w^)', we may
also resolve the following question

:

To find two squares, whose difference may also be a square

number.

Here, since p^ — q"^ — r-, we have only to suppose

^ = w- + wi-, and q = 9.mn, and we obtain r ^= rf- — m-.

We might also make p = it- -\- m", and q = n- — m\
from which we should find r = 2mn.

45. We spoke of two methods of giving the form of a

square to the formula 1 + x^. The other is as follows

:

7/ZiV

If we suppose \/{l + x") = 1 -\ , we shall have

1 + a:^ = 1 H J.
—— ; subtracting 1 from both sides,

71 n"

x''- — 1 —. This equation being divided by x, we

, %m , m^x . ^ ,

have iC =— a , or n"x = %mn + m^x^ whence
n n-

X — — -. Having found this value of x, we have

* Thus, if n =: 3, and rw = 2, we have, by the last equation,

32 I 22 13 132 132

132 25 5
Then .t= v^(t— — 1) ; that is, a? = \/j^ = Tg' as above.
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14-a!- = 1 + -^—TTT". 1 = ~i—rr^";; k> the square

of -5 ;. Now, as we obtain from that, the equation
n —m^

(2mny (n'^-^my
, ,, , , .

1 -+ -T— ^ = TT— -f^, we shall have, as berore,

(n^ —m^y 4- (2mw)- = {n^ + m-)^;

that is, the same two squares, whose sum is also a square.

46. The case which we have just analysed furnishes two

methods of transforming the general formula a + bx + cx'^

into a square. The first of these applies to all cases in which

c is a square ; and the second to those in which a is a square.

We shall consider both these suppositions.

First, let us suppose that c is a square, or that the given

formula is a -{ bx -\- f-x\ Since this must be a square,

HI
we shall make a/(« -{- bx-\-f-x") —fx ^, , and shall thus

have a + bx + f^x" = f"x- + —-—
\ r, in which the

•^ •' n n"

terms containing x^- destroy each other, so that

a + bx = —=^ -\ . If we multiply by n-, we obtain
n n'^

tiir'— n'^a
n-a + U'bx=2vififx + m"', hence we find .r = -^i

—
^
—7; and,

substituting this value for x, we shall have

V(a + bx +f'x^) = -fr-dT^ + — = i^TT^
—

T^-

47. As we have got a fraction for x, namely,

m-—n'^a .
^ P ^ « „ •

r, Jet us make x = — , then p = m- — n^a, and
7t'b — %mnf '

q
bp f'P" .

q = n"b — 2mnf: so that the formula a + -^ + -—-- is a
^ ,

f
,

square ; and as it continues a square, though it be multi-

plied by the square if, it follows, that the formula

a(f 4- bpq -^f-p^ is also a square, by making p = ri)r — n"a,

and q = n"b — ^mrif. Hence it is evident, that an infinite

number of answers, in integer numbers, may result from

this expression, because the values of the letters m, and n are

arbitrary.

48. The second case which we have to consider, is that in
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which tt, or the first term, is a square. Let there be pro-

posed, for example, the formula /'- + bx + ex", which it is

required to make a square. Here, let us suppose

'^{f' + ^J: -^ ex") ~f + — , and we shall have

9.fmx m'^x^ . . . .

r 2 + hx 4- cx~ = f^ + 1 , m which equation
•^ -^ n 71-

the terras f^ destroying each other, we may divide the re-

maining terms by x, so that

b + ex = —- -\ , or n^b + n^cx = ^nmf + m^x, or
n 71-

2mnf— fi^b

x{7i-c — )n-) = 9^m7]f — 7i"b; or, lastly, x = —-^7—

—

—.

If we now substitute this value instead of x, we have

, ^ , . ^ %7i"f—mnb if-cf4-771-f-mnb
V(/^ + 6^ + ex"-) = / + —^ = -^

„ ^
,

;

and making x = — , we may, in the same manner as before,

transform the expression /"q"- + bpq + cp-, into a square,

by making p = ^Tntif— n"b, and q — 7i"c—m-.

49. Here we have chiefly to distinguish the case in which
a = 0, that is to say, in which it is required to make a

square of the formula bx + ex" ; for we have only to

THX
suppose \^{bx + CX-) = — , from which we have the equa-

tion bx + ex- = ; which, divided by x, and multiplied
71-

by w^, mves bn" + C7i-x = 7n^^x ; and, x = —- -.

If we seek, for example, all the triangular numbers
that are at the same time squares, it will be necessary that

x° -\- X . ,—^— , which is the form of triangular numbers, must be

a square ; and, consequently, 9,x" + ^Zx must also be a

square. Let us, therefore, suppose —~ to be that square,

2/i-
and we shall have 2n"x + Sw*^ = m'^Xi and x = ——p—

; ; in

which value we may substitute, instead of m and n, all pos-
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sible numbers ; but we shall generally find a fraction for x,

though sometimes we may obtain an integer number. For
example, if ?»— 3, and n = 2, we find ^ := 8, the triangular

number of which, or 36, is also a square.

We may also make m = 7, and w = 5 ; in this case,

X = — 50, the triangle of which, 1225, is at the same time

the triangle of + 49, and tlie square of 35. We should

have obtained the same result by making n~7 and in= 10;
for, in that case, we should also have found x = 49-

In the same manner, if 7n = 17 and n — 12, we obtain

X = 288, its triangular number is

which is a square, whose root is 12 x 17 = 204.

50. We may remark, with regard to this last case, that

we have been able to transform the formula bx + ex- into a

square from its having a known factor, x. This observation

leads to other cases, in which the formula a + bx -{- cx-

may likewise become a square, even when neither a nor c

is a square.

Tliese cases occur when a + bx + cx^ may be resolved

into two factors; and this happens when b' — 4flc is a

square: to prove which, we may remark, that the factors

depend always on the roots of an equation ; and that,

therefore, we must suppose a + hx + ex- = 0. This

being laid down, we have ex" — — bx — a, or

X' = , whence, by compleating the square, &c.,

we find

b b' a b ^/(J)-—'^ac)
^' = -Yc ± ^^^i - T)'

"•• '^' = - 2^ ± --fc ', .,

and, it is evident, that if 6- - 4ac be a square, tins quantity

becomes rational.

Therefore let 6^ — ^ac = cl-\ then the roots will be

—b-Yd . . —b±d . . .—
, that IS to say, x = —^— ; and, consequently, the

divisors of the formula a + bx + ex- are x {- -~— , and

t
I

7

X H—^— . If we multiply these factors together, we shall be

brought to the same formula again, except that it is divided

by c ; for the product is^-H ^ Tl ~
T^''>

^"^ ^^"^^

d~ = h- — 4ac', we have
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bx b^ ¥ Aiac „ bx a , • , i •

•^' + T + 4?-4?+4? = ^= + T+T' "hich being

multiplied by c, gives ex- + bx + a. We have, therefore,

only to multiply one of the factors by c, and we obtain the

formula in question expressed by the product,

b d^ , b d^

and it is evident that this solution must be applicable when-

ever b^ — 4ac is a square.

51. From this results the third case, in which the formula

a + bx + ex- may be transformed into a square ; which we

shall add to the other two.

52. This case, as we have already observed, takes place,

when the formula may be represented by a product, such

as (/ + gx) X {h + kx). Now, in order to make a square

of this quantity, let us suppose its root, or

,^___^_______^___^

.

77ii /-\- 0"^)

V{f-^gv) X {k -^ kx) = —^—^—
; and we shall then

7)i~( fA-srx^^
have (/ + gx) X (/t + kx) = —^^ ^^ ^

; and, dividing

iit'^'if+gx)
this equation by^' + gx, we have h + kx = ; ; or

hn" + kn-x =J'm- + gnfx ;

-
, fm'^—hn"

and, consequently, x = 7—;
;,.

* '' kvr—gm-

To ilkistrate this, let the following questions be pro-

posed.

Question 1. To find all the numbers, x, such, that if 2
be subtracted from twice their square, the remainder may be
a square.

Since 2^;^ — 2 is the quantity which is to be a square, we
must observe, that this quantity is expressed by the factors,

2{x + 1) X (<r — 1). If, therefore, we suppose its root

= ^ \ we have 2{x + 1) x {x - 1) = —^-^—^
;

dividing by .r + 1 , and multiplying by w", we obtain

2nx — 2n- = m^x + m", and x — -—: .

dn^— m-

If, therefore, we make m = 1, and n = 1, we find x = 3,

and 2j;^ - 2 = 16 = 4'.

If m = 3 and 7i = 2, wc have x = — 17. Now, as x is
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only found in the second power, it is indifferent whether we
take X = — 17, or T = + 17; either supposition equally
gives 2x-^ - 2 = 576 = 242.

53. Question 2. Let the formula 6 { I3x + 6x'^ be pro-

posed to be transformed into a square. Here, we nave
a = 6, b = 13, and c = 6, in which neither a nor c is a
square. If, therefore, we try whether A^ — 4^^ becomes a
square, we obtain 25 ; so that we are sure the formula may
be represented by two factors ; and those factors are

{2 + Sx)x(S + 2x). If^— is their root, we have
n

n~

which becomes Sn^ + 2n"x ~ 2m- + ^m'^Xy whence we find

2^2-3^2 3n2_2w2
^ = §^^^3^2 = 8^^?i:2^-

Now, m order that the nume-

rator of this fraction may become positive, Sii- must be
greater than 2m" \ and, consequently, 2m* less than 3w*:

Tit'

that is to say, —^ must be less than |. With regard to the

denominator, if it must be positive, it is evident that 3?»-

must exceed 2n^', and, consequently, — must be greater

than ~. If, therefore, we would have the positive values

of X, we must assume such numbers for m and //, that

— may be less than \, and yet greater than |.

For example, let m = 6, and n = 5\ we shall then have

vi"
—^ = 4f ) which is less than |^, and evidently greater than

I, whence x = -^.

54. This third case leads us to consider also a fourth,

which occurs whenever the formula a + bx + ex- may be
resolved into two such parts, that the first is a square, and
the second the product of two factors : that is to say, in this

case, the formula must be represented by a quantity of the
form p'^ + qr, in which the letters p, q, and r express quan-
tities of the form/ + gx. It is evident that the rule for this

case will be to make \/{p- -t- qr) =/> + —; for we shall
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, , , 2nipq oii'q^ . , • , ,

thus obtain o^ + qr = p' A ^-^ + —7-, in which the terms
^ -' ^ n w

p" vanish ; after which we may divide by q, so that we find

2mp m°q
, „ „ r ^

r = 1 —, or n-1- — 2nmp + m-q, an equation irom

which X is easily determined. This, therefore, is the fourth

case in which our formula may be transformed into a square

;

the application of which is easy, and we shall illustrate it by
a few examples.

55. Question 3. Required a number, x, such, that double

its square, shall exceed some other square by unity ; that is,

if we subtract unity from this double square, the remainder

may be a square.

For instance, the case applies to the number 5, whose

square 25, taken twice, gives the number 50, which is

greater by 1 than the square 49.

According to this enunciation, 2x-— 1 must be a square;

and as we have, by the formula, a = —1, b = 0, and c = 2,

it is evident that neither a nor c is a square ; and farther,

that the given quantity cannot be resolved into two factors,

since b~ — 4ac = 8 which is not a square; so that none of

the first three cases will apply. But, according to the fourth,

this formula may be represented by

X- + {x" — 1) = ^^ -f (x — 1) X {x + 1).

T,. 1 ^ • m{x + l)
Li, therefore, we suppose its root = x + , we

sball have

/
'

-.X , -.v o 2mx(x+l) ni-{x+l)"
x" + {x t- 1) X (x-\) = x"' + ^^ + —^—^—-.

This equation, after having expunged the terms x", and
divided the. other terms by a; -f 1, gives

n-x — 71- = 2?nnx + m-x + m- ; whence we find

X = ——
7z z ; and, since in our formula, 2x" — 1, the

square x" alone is found, it is indifferent whether we take

positive or negative values for x. We may at first even

write — m, instead of + in, in order to have

yf-\-2mn — /n*

If we make ;« = 1, and n = 1, we find a; = 1, and
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2x° —1=1; or if we make m = 1, and n = 2, we find

a: =
-f

, and 2x~ — 1 = ^; lastly, if we suppose m = 1,

and w= —2, we find x=z —5, or a:= +5, and 2.r'- — 1=49.
56. Question 4. To find numbers whose squares doubled

and increased by 2, may likewise be squares.

Such a number, for instance, is 7, since the double of

its square is 98, and if we add 2 to it, we have the square

100.

We must, therefore, have 2x^ -|- 2 a square; and as

a = 2, 6 = 0, and c = 2, so that neither a nor c, nor

b^ — ^ac, (the last being = — 16), are squares, we must,

therefore, have recourse to the fourth rule.

Let us suppose the first part to be 4, then the second

will be 2x- — 2 = 2(ji' + 1) X (a; — 1), which presents

the quantity proposed in the form

4 + (a; + 1) X {x - 1).

Now, let 2 H be its root, and we shall have
n

the equation

4 + 2(a; + 1 ) X (a: - 1) = 4 + —^^ H , , in^ ' n n-

which the squares 4, are destroyed ; so that after having di-

vided the other terms by a; + 1 , we have

2n"x — 2n- = ^inn -\- m-x + m- ; and, consequently,

4!mn+ m' + 2n-
X =

2n- — m"

If, in this value, we make 7n = 1, and w = 1, we find

X = 7, and 2x- + 2 = 100. But if m - 0, and n -\, we
have A' = 1, and 2a;- + 2=4.

57. It frequently happens, also, when none of the first

three rules applies, that we are still able to resolve the

formula into such parts as the fourth rule requires, though
not so readily as in the foregoing examples.

Thus, if the question comprises the formula 7 + 15a?

+ 13ic-, the resolution we speak of is possible, but the

method of performing it does not readily occur to the mind.
It requires us to suppose the first part to be ( 1 — .r)- or

1 — 2^7 + x-^ so that the other may be 6 + 17a; + 12^;^

:

and we perceive that this part has two factors, because
17- — (4 X 6 X 12), = 1, is a square. The two factors

therefore are (2 + 3a;) x (3 + 4a;) ; so that the formula
becomes (1 — x)- + (2 + 3a:) X (3 + 4a:), which we may
now resolve by the fourth rule.
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But, as we have observed, it cannot be said that this

analysis is easily found ; and therefore we shall explain a

general method for discovering, beforehand, whether the re-

solution of any such formula be possible or not ; for there is

an infinite number of them which cannot be resolved at all :

such, for instance, as the formula Sx- + 2, which can in no
case whatever become a square. On the other hand, it is

sufficient to know a single case, in which a formula is pos-

sible, to enable us to find all its answers ; and this we shall

explain at some length.

58. From what has been said, it may be observed, that all

the advantage that can be expected on these occasions, is

to determine, or suppose, any case in which such a formula
as a + bx + cx^, may be transformed into a square ; and
the method which naturally occurs for this, is to substitute

small numbers successively for j:, until we meet with a case

which gives a square.

Now, as a; may be a fraction, let us begin with substituting

for X the general fraction — ; and, if the formula" u
ht ct^

fi ^ -i which results from it, be a square, it will be
21 U- ^

SO also after having been multiplied by u^ ; so that it only

remains to try to find such integer values for t and m, as will

make the formula au" + htu -}- ct^ a square; and it is

evident, that after this, the supposition of a: =— cannot fail

to give the formula a \- hx •\- ex" equal to a square.

But if, whatever we do, we cannot arrive at any satisfac-

tory case, we have every reason to suppose that it is altogether

impossible to transform the formula into a square ; which, as

we have already said, very frequently happens.

59. We shall now shew, on the other hand, that Avhen one

satisfactory case is determined, it will be easy to find all the

other cases which likewise give a square ; and it will be per-

ceived, at the same time, that the number of those solutions

is always infinitely great.

Let us first consider the formula 2 + 7a:-, in which a = 2,

b = 0, and c = 7. This evidently becomes a square, if we
suppose X — \. Let us therefore make x = 1 + ?/; then,

by substitution, we shall have x" = 1 + 2^ + y\ and our

formula becomes 9 + 1% + 7j/', in which the first term is

a square; so that we shall suppose, conformably to the

second rule, the stjuarc root of the new formula to be
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3 H -, and we shall thus obtain the equation
n

^ , . m, ^ ^ 6wiy vry" . ...
9 + 14j/ + 7^^ = 9 H — H ^, in which we may ex-

punge 9 from both sides, and divide by ^ : which being

done, we shall have 1 4n- + 7n^t/ = 6mn + vri-y ; whence

Qtmn— 14n^ Qtmn— In^— m^*
V = ~i^r^ r-; and, consequentlv, x = ;z—

,

:;
»

in which we may substitute any values we please for m and n.

If we make m = 1, and w = 1, we have x = — ~; or,

since the second power of x stands alone, a; = + -i-, where-

fore 2 + 7x'' = y.
If m = 3, and w = 1, we have x = — l,or;r =+ 1.

But if 7n = 3, and n = — 1, we have a; = 17; which

gives 2 + 7^- = 2025, the square of 45.

If m = 8, and n = 3, we shall then have, in the same
manner, x = — 17, or /r = + 17.

But, by making m = 8, and w = — 3, we find x = 271

;

so that 2 4- 7;r^ = 514089 = 717'.

60. Let us now examine the formula 5x- + Sr + 7, which

becomes a square by the supposition of ;r = — 1. Here, if

we make x = j/
— 1, our formula will be changed into this

:

5^2 _ 102/ + 5

+ %-3
+ 7

5^. _ 73^ + 9,

nil/

the square root of which we will suppose to be 3 ; by

which means we have 5ifi—7y + 9=9 1 ~-y or
•^ "^ n n^

5n^y — 7w^ =— 6/»w + mry ; whence,

In^—Gmn 2n'^— 67nn-\-m^
y — ~'k~o T '•> 3'""j lastly, X = ^—. .

* Because x was made = I •}- y ; and 1 is here added to the

- ^. , 6mn— 14n2
tractional expression, r—

.

7n — ?»*
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If m = 2, and « = 1 , we have x — —Q^ and, consequently,
5^2 + 3^ 4. 7 = 169 = 13%

But if m = — 2, and n = 1, we find jr = 18, and S-r^ +
3^ + 7 = 1681 = 41^.

61. Let us now consider the formula, 1x~ + 15^ + 13, in

t
which we must begin with the supposition oi x z=. — . Hav-

ing substituted and multiplied w'-, we obtain

7^- + 15^?/ + Vou"^ which must be a square. Let us there-

fore try to adopt some small numbers as the values of t

and u.

If/ = l,andw= 1, ^1 ^= %^

,
~

o' ,
~~ ' T > the formula will becomes ~

-n
/ = 2, and u — —\^i

J
= 11

^ = 3, andM=l, j C = ]^l.

Now, 121 being a square, it is proof that the value of

X — Ki answers the required condition ; let us therefore sup-

pose ^ = y 4- 3, and we shall have, by substituting this

value in the formula,

72/2 + 42^ + 63 + 15?/ + 45 + 13, or

7//2 + my + 121.

7712/

Therefore let the root be represented by 11 H , and we

shall have lif 4- 57?/ + ]21 = 121 + ^^ + ^', or

In^y + 57w2 = 22»^« -h tnry ; whence

57w2— 22m7i - S6n"~i2mn + Sm"
y = ;;—p^"T~j and x = „ „ .

Suppose, for example, m — 3, and n — 1-, we shall tlien

find ar = — |-, and the formula becomes

1X" + 15a; + 13 r= y = (|.)2.

If 7?« = 1, and w = 1, we find x =— '/ ; if w = 3, and
w = — 1, we have a: = '|^', and the formula

Ix- -\- \5x + \S= '^°/°^ = {^±->Y.

62. But frequently it is only lost labour to endeavour to

find a case, in which the proposed formula may become a

square. We have ah-eady said that 3.r- + 2 is one of those

unmanageable formulae; and, by giving it, ^according to this

rule, the form 3<* + 2m-, we shall perceive that, whatever

values we give to t and u, this quantity never becomes a

square number. , As the formula? of this kind are very
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numerous, it will be worth while to fix on some characters,

by which their impossibility may be perceived, in order that
we may be often saved the trouble of useless trials ; which
shall form the subject of the following chapter*.

CHAP. V.

Of the Cases in which the Formula a + hr + ex" can never

become a Square.

63. As our general formula is composed of three terms,

we shall observe, in the first place, that it may always be
transformed into another, in which the middle term is want-

•
. y — b

ing. This is done by supposing x = '^— ; which substi-

tution changes the formula into

bu — b' y"' — 9J)y-\-b" 'iac — b'+y- . . ,.
a + —;;

\
7^ — ; or -. ; and since this

2c 4c 4c

must be a square, let us make it equal to -r-, we shall then

4cz^
have 4«c — b^ + 7/~ = -7—, = cz^ ; and, consequently,

jf~
= ex- + b- — 4<ac. Whenever, therefore, our formula is

a square, this last cz- + b'^ — ^ac will be so likewise ; and
reciprocally, if this be a square, the proposed formula will

be a square also. If therefore we write t, instead of &- — 4ac,

the whole will be reduced to determining whether a quantity

of the form ct^ + t can become a square or not. And as

this formula consists only of two terms, it is certainly much
easier to judge from that whether it be possible or not ; but

in any further inquiry we must be guided by the nature of

the given numbers c and t.

64. It is evident that if ^ = 0, the formula cz~ can become
a square only when c is a square ; for the quotient arising

from the division of a square by another square being like-

wise a square, the quantity cs- cannot be a square, unless

* See the Appendix, Ch. V. p. 537, of the Additions by De
la Grange.
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—^, that is to say, c, be one. So that when c is not a square,

the formula cz- can by no means become a square ; and on
the contrary, if c be itself a square, cz- will also be a square,

whatever number be assumed for z,

65. If we wish to consider other cases, we must have re-

course to what has been already said on the subject of dif-

ferent kinds of numbers, considered with relation to their

division by other numbers.

We have seen, for example, that the divisor 3 produces

three different kinds of numbers. The first comprehends
the numbers which are divisible by 3, and may be expressed

by the formula 3?i.

The second kind comprehends the numbers which, being

divided by 3, leave the remainder 1, and are contained in

the formula Sn + 1.

To the third class belong numbers which, being divided

by 3, leave 2 for the remainder, and which may be repre-

sented by the general expression Qn -f- 2.

Now, since all numbers are comprehended in these three

formulas, let us therefore consider their squares. First, if

the question relate to a number included in the formula 3n,

we see that the square of this quantity being 9^^, it is divisible

not only by 3, but also by 9.

If the given number be included in the formula Sn + 1,

we have the square 9«^ + 6n + 1, which, divided by 3,

gives 371^ + 2w, with the remainder 1 ; and which, con-

sequently, belongs to the second class, 3« 4- 1. Lastly, if

the number in question be included in the formula 3w + 2,

we have to consider the square 9n" + 12n + 4 ; and if we
divide it by 3, we obtain Sn- + 4w + 1, and the remainder

1 ; so that this square belongs, as well as the former, to the

class 3w + 1.

Hence it is obvious, that square numbers are only of two
kinds with relation to the number 3 ; for they are either

divisible by 3, and in this case are necessarily divisible also

by 9 ; or they are not divisible by 3, in which case the re-

mainder is always 1, and never 2; for which reason, no
number contained in the formula 3w +- 2 can be a square.

66. It is easy, from what has just been said, to shew, that

the formula ox^ + 2 can never become a square, whatever

integer, or fractional number, we choose to substitute for a:

For, if X be an integer number, and we divide the formula

3a" -f- 2 by 3, there remains 2 ; therefore it cannot be a
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square. Next, if a: be a fraction, let us express it by

t . .—, supposing it already reduced to its lowest terms, and

that t and u have no common divisor. In order, therefore,

that ~ + 2 may be a square, we must obtain, after multi-

plying by if\ 2>t" + 2//^ also a square. Now, this is im-

possible ; for the number u is either divisible by 3, or it is

not : if it be, t will not be so, for t and n have no common

divisor, since the fraction— is in its lowest terms. Therc-
u

fore, if we make u = 3/", as the formula becomes 3^^ + 18/"*,

it is evident that it can be divided by 3 only once, and not

twice, as it must necessarily be if it were a square; in fact,

if we divide by 3, we obtain t- + 6/"-- Now, though one
part, Gf\ is divisible by 3, yet the other, t^, being divided

by 3, leaves 1 for a remainder.

Let us now suppose that u is not divisible by 3, and see

what results from that supposition. Since the first term is

divisible by 3, we have only to learn what remainder the

second term, 2w-, gives. Now, ?/.- being divided by 3,

leaves the remainder 1, that is to say, it is a number of the

class 3w + 1 ; so that 9,u" is a number of the class G/* + 2

;

and dividing it by 3, the remainder is 2 ; consequently, the

formula Qt- + %i", if divided by 3, leaves the remainder 2,

and is certainly not a square number.
67. We may, in the same manner, demonstrate, that the

formula ^6t- + Bii^, likewise can never become a square, nor

any one of the following

:

St'- + 8«2, U'- + ] \u\ 3^2 ^ 14^'j^ gj^c^

in which the numbers 5, 8, 11, 14, &c. divided by 3, leave

2 for a remainder. For, if we suppose that n is divisible by
3, and, consequently, that t is not so, and if we make u= 3n,

we shall always be brought to formulae divisible by 3, but
not divisible by 9 : and if u were not divisible by 3, and,
consequently, ic- a number of the kind Sn + 1, we should
have the first term, 3^-, divisible by 3, while the second
terms, 5u", Su-, 1 1 k ', &c. would have the forms 1 5)i -f 5,

9An + 8, 33^^ + 11, &c. and, wlien dividecVby 3, would
constantly leave the remainder 2.

68. It is evident that this remark extends also to the ge-

neral formula, 3^' + {Sn + 2) x u-, which can never be-

come a square, even by taking negative numbers for ji. If,

for example, we should make n = — 1, I say, it is im-
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possible for the formula 3/^ — iC^ to become a square. This
is evident, if u be divisible by 3 : and if it be not, then u^

is a number of the kind 3w + 1, and our formula becomes
3/- — 3« — 1, which, being divided by 3, gives the re-

mainder — 1, or +2; and in general, if w be = — m, we
obtain the formula 3^- — (37« — 2)«-, which can never be-

come a square.

69. So far, therefore, are we led by considering the di-

visor 3 ; if we now consider 4 also as a divisor, we see that

every number may be comprised In one of the four following-

formulae :

4», 4« + 1, 4w -h % 4m -I- 3.

The square of the first of these classes of numbers is 16«'^

;

and, consequently, it is divisible by 16.

That of the second class, 4?z -{- 1, is l6w- + 8« -f 1 ;

which, if divided by 8, the remainder is 1 ; so that it belongs

to the formula 8/z + 1.

The square of the third class, 4w + 2, is 16;i-+ \Qn +4;
which, if we divide by 16, there remains 4; therefore this

square is included in the formula \Qn + 4.

Lastly, the square of the fourth class, 4w -}- 3, being

16w^ + 24w 4- 9, it is evident that dividing by 8 there re-

mains 1.

70. This teaches us, in the first place, that all the even

square numbers are either of the form \Qn, or \6n + 4;
and, consequently, that all the other even formulae, namely,

l6w-t-2, 16m + 6, 16/i-f 8, I6w+10, I6w+12, 16w+14,

can never become square numbers.

Secondly, that all the odd squares are contained in the

formula 8n + 1 ; that is to say, if we divide them by 8,

they leave a remainder of 1. And hence it follows, that all

the other odd numbers, which have the form either of

Sn -{ 3, or of Sn + 5, or of 8/; + *T, can never be squares.

71. These principles furnish a new proof, that the formula
3^' -H 2m- cannot be a square. For, either the two numbers
t and u are both odd, or the one is even and the other odd.

They cannot be both even, because in that case they

would, at least, have the common divisor 2. In the first

case, therefore, in which both t- and ^i- are contained in the

formula 8/i + 1, the first term 3^", being divided by 8,

would leave the remainder 3, and the other term 2u" would
leave the remainder 2 ; so ti)at the whole remainder would
be 5 : consequently, the formula in question cannot be a

square. But, if the second case be supposed, and t be even,

and u odd, the first term 3^- will be divisible by 4, and the
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second term 2w^, if ilividecl by 4, will leave the remainder 2

;

so that the two terms together, when divided by 4, leave a

remainder of 2, and therefore cannot form a square. Lastly,

if we were to suppose u an even number, as 2,9, and t odd,

so that t- is of the form 8w + 1 , our formula would be changed

into this, 24w + 3 + 8^-; which, divided by 8, leaves 3,

and therefore cannot be a square.

Thisdemonstration extends to the formula 3/-+ (8«+2)m-;
also to this, (8m + 3)^' + 2«-, and even to this,

(8m + S)P + {8?i + 2)u-; in which we may substitute for

771 and ?? all integer numbers, whether positive or negative.

72. But let us proceed farther, and consider the divisor 5,

with respect to which all numbers may be ranged under the

five following classes

:

5?i, 5n -{- I, 5}i + 2, 5n + 3, 5n + 4.

We remark, in the first place, that if a number be of the

first class, its square will have the form 25?^- ; and will con-

sequently be divisible not only by 5, but also by 25.

Every number of the second class will have a square of

the form 25n" + IO71 + 1 ; and as dividing by 5 gives the

remainder 1, this square will be contained in the formula

5;? 4-1-

The numbers of the third class will have for their square

25w'- + 20?^ + 4 ; which, divided by 5, gives 4 for the re-

mainder.

The square of a number of the fourth class is 25n- +
30n + 9; and if it be divided by 5, there remains 4.

Lastly, the square of a number of the fifth class is

25n- + 40w + 16 ; and if we divide this square by 5, there

will remain 1.

When a square number therefore cannot be divided by 5,

the remainder after division will always be 1, or 4, and never

2, or 3 : hence it follov/s, that no square number can be con-

tained in the formula 5n + 2, or 5;i + 3.

73. From this it may be proved, that neither the formula

5f- 4- 2u-, nor 5t- -\- 3m-, can be a square. For, either u is

divisible by 5, or it is not : in the first case, these formulae

will be divisible by 5, but not by 25 ; therefore they cannot

be squares. On the other hand, if u be not divisible by 5,

?/2 will either be of the form 5n -f 1, or 5n + 4. In the

first of these cases, the formula 5^- + 2u- becomes 5t' +
lOn 4- 2; which, divided by 5, leaves a remainder of 2;

and the formula 5t- + 3m- becomes 5t^ + 15n + 3 ; which,

being divided by 5, gives a remainder of 3 ; so that neither

the one nor the other can be a square. With regard to the

case of u^ = Sn+ 4, the first formula becomes 5t- + lOn + 8

;

z 2
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which, divided by 5, leaves 3 ; and the otlier becomes

5i^ + 15n + 12, which, divided by 5, leaves 2; so that in

this case also, neither of the two formulae can be a square.

For a similar reason, we may remark, that neither the

formula 5t- + (57i + 2)?^-, nor 5t' + {5n + 3)«-, can be-

come a square, since they leave the same remainders that we
have just found. We might even in the first term write

5mt^, instead of 5t-, provided m be not divisible by 5.

74. Since all the even squares are contained in the formula

4w, and all the odd squares in the formula 4n + 1 ; and,

consequently, since neither 4?i + 2, nor 4n + 3, can become

a square, it follows that the general formula (4m + 3)t" +
(4w--f 3)u- can never be a square. For if/ be even, t- will

be divisible by 4, and the other term, being divided by 4,

will give 3 for a remainder; and, if we suppose the two

numbers t and u odd, the remainders of f^ and of w" will be

1 ; consequently, the remainder of the whole formula will be

2 : now^, there is no square number, which, when divided by

4, leaves a remainder of 2.

We shall remark, also, that both m and w may be taken

negatively, or = 0, and still the formulae 3t' + 3u-, and
St~ — u^i cannot be transformed into squares.

75. In the same manner as we have found for a few di-

visors, that some kinds of numbers can never become squares,

we might determine similar kinds of numbers for all other

divisors.

If we take the divisor 7, we shall have to distinguish

seven different kinds of numbers, the squares of which we
shall also examine.

Kinds of numbers.

1.
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by 7w — 1 ; that, in the same manner, the fornnila In + 5
is the same as In — 2, antl In + 4 the same as tn — ?j.

This being the case, it is evident, that tlie squares of the

two classes of numbers, 7n + 1, and In — 1, if divided by

7, will give the same remainder 1 ; and that the squares of

the two classes, In -f 2, and 7w — 2, ought to resemble

each other in the same respect, each leaving the remainder 4.

77- In general^ therefore, let the divisor be any number
whatever, which we shall represent by the letter d, the dif-

ferent classes of numbers which result from it will be

dn

;

dn + 1, (Zn + 2, dn \- 3, &c.

dn — 1, dn — 2, dn — 3, &c.

in which the squares of dn + 1, and dyi — 1, have this in

common, that, when divided by d, thev leave the remainder

1, so that they belong to the same formula, dn + 1 ; in the

same manner, the squares of the two classes dn + 2, and
dn — 2, belong to the same formula d?i + 4. So that we
may conclude, generally, that the squares of the two kinds,

dn + flj and dn — a, when divided by d, give a common
remainder a", or that which remains in dividing a- by d.

78. These observations are sufficient to point out an in-

finite number of formulae, such as at- + hit-, which cannot

by any means become squares. Thus, by considering the

divisor 7, it is easy to perceive, that none of these three

formula?, 7i* + Sii^., It" + 5u\ It- 4- 6w'^, can ever become
a square ; because the division of u" by 7 only gives the re-

mainders 1, 2, or 4; and, in the first of these formulae,

there remains either 3, 6, or 5 ; in the second, 5, 3, or 6

;

and in the third, 6, 5, or 3 ; which cannot take place in

square numbers. Whenever, therefore, we meet with such
formulae, we are certain that it is useless to attempt discover-

ing any case, in which they can become squares : and, for

this reason, the considerations, into which we have just

entered, are of some importance.

If, on the other hand, the formula proposed is not of this

nature, we have seen in the last chapter, that it is sufficient

to find a single case, in which it becomes a square, to enable
us to deduce from it an infinite number of similar cases.

The given formula. Art. 63, was properly ax'^ + b;
and, as we usually obtain fractions for .r, we supposed

t
X ~ — , so that the problem, in reality, is to transform

€il~ + bu- into a square.
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But there is frequently an infinite number of cases, in

vhich X may be assigned even in integer numbers ; and the

determination of those cases shall form the subject of the

following chapter.

CHAP. VI.

Of the Cases in Integer Numbers, in which the Formula
a/r- + h becomes a Square.

79. We have already shewn [Art. 63], how such formulae

as a + fij? + ex", are to be transformed, in order that the

second term may be destroyed; we shall therefore confine

our present inquiries to the formula ax- + b, in which it is

required to find for x only integer numbers, which may
transform that formula into a square. Now, first of all,

such a formula must be possible; for, if it be not, we shall

not o^en obtain fractional values of or, far less integer ones.

80. Let us suppose then ax- + b = 7/^; a and b being

integer numbers, as well as x andj/.

Now, here it is absolutely necessary for us to know, or to

have already found a case in integer numbers ; otherwise it

would be lost labour to seek for other similar cases, as the

formula might happen to be impossible.

W^ sliall, therefore, luppose that this formula becomes a

square, by making x =J, and we shall represent that square

by g-, so that af- + b — g'\ wherey and^ are known num-
bers Then we hove onl}^ to deduce from this case other

similar cases; and this intiuiry is so much the more im-

portant, as it is subject to considerable difficulties; which,

however, we shall be able to surr.)ount by particular artifices.

8i. Since wc have already found qf'^ -r b = g^, and like-

wise, by hypothesis, a.v- -\- b = y", let us subtract the first

equation from the second, and we shall obtain a new one,

ax"^ — r//- = /y '

-- ^•-, which may be represented by factors

in the ibllowing manner; a{x
-\- f) x {x ~f) = {>J+g)'X

{y — g), and which, by multiplying both sides by pq, be-

comes aj)q{x +/) X {x -/) = pg{y + g) x (y - g). If

we now decompound this equation, by making ap{x+J') =
!7(y + g), antl fM' -f) --= pi!/ - g% ^vc jnay derive from
these two c(}uations values of the two letters x and //. The
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Till • <^'^P-^ + "/i^ 1 1

nrst, aivided by q, gives ?/ + ^> = — —
; and the se-

cond, divided byp, gives j/ — g = —• Subtracting this

ironi the former, ^s = -~ ~—— - ^ '
:/

>>^
^j.

^^
^gpq = (op^ — <^-).r + {ap"- + g")f; therefore

J^' = —: :
;;

-, from which, (by substituting this
ap-—q- ap'-— q- -' °

vahie of 0.", in the equation, 3/ — g = ~)i we obtain

^=^ + -^_(^^:+?M_i/. In this latter va-
aj)--q' [ap--q')p j)

luc, as the first two terms, both containing the letter g,
p'{ap^ \- q'^)^

may be put into the form „
—^-^1 ''tnd as tne other two,

•' ^ ap-—q-
^(ifpq

containing the lettery, may be expressed by —-„
7,, all the

terms will be reduced to the same denomination, and we

shall haveV = SifT+jlrM.?.
^ ap---q-

82. This operation seems not, at first, to answer our pur-

pose ; since having to find integer values of x and j/, we are

brought to fractional results ; and it would be required to

solve this new question,—What numbers are we to substitute

lor p and q, in order that the fraction may disappear ? A
question apparently still more difficult than our original one

:

but here we maj' employ a particular artifice, which will

readily bring us to our object, and which is as follows

:

As every thing must be expressed in integer numbers, let

us make ^=—

—

^— = m, and ——-— = w, ni order that we
ap~ — q^ ap-— q-

may have x = ng — mf, and ij = mg — naf.

Now, we cannot here assume m and n at pleasure, since

these letters must be such as will answer to what has been
already determined : therefore, for this purpose, let us con-

sider their squares, and we shall find

* For g =
g^^^°'~g') = g^p--gt . ^^^ '^gf

^
^SJ^PjZMt

ap^— fj^ (ip~ — q^ ' ftp'— q- ap'^— fj^
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'>^' = -ri—TT^-T-^—^> and n^ = —~r—-r-V:^ 1 ;
hence,

^I'T?*— 2ap"q~ + q* a^p^— '^ap-q^ {- §*

83. We see, therefore, that the two numbers m and n
must be such, that vi- - an- + 1 . So that, as a is a known
number, we must begin by considering the means of de-

termining such an integer number for n, as will make
art^ + 1 a square ; for then m will be the root of that square ;

and when we have likewise determined the numbery so,

that aj'"- + h may become a square, namely ^^, we shall ob-

tain for X and y the following values in integer numbers;
X = ng — mf, y — n/g — no/'; and thence, lastly, ax" -f

84. It is evident, that having once determined vi and tiy,

we may write instead of them — m and — w, because the

square j,~ still remains the same.

But we have already shewn that, in order to find x and j/

in integer numbers, so that ax" + b = y", we must first

know a case, such that af" + b may be equal to g^ ; when
we have therefore found such a case, we must also endeavour
to know, beside the number a, the values of w and n, which
will give an- + 1 = ni'^: the method for which shall be de-

scribed in the sequel, and when this is done, we shall have a
new case, namely, x = ng -j- ntf, and «/ = mg- + naj", also

aa.'^ + b = y".

Putting this new case instead of the preceding one, which
was considered as known ; that is to say, writing )/g -j- nif
for

J",
and mg' + naf for g^ we shall have new values of x

and y, from which, if they be again substituted for x and y,
we may find as many other new values as v/e please : so

that, by means of a single case known at first, we may after-

wards determine an infinite number of others.

85. The maimer in which we have arrived at this solution

has been very embarrassed, and seemed at first to lead us
from our object, since it brought us to complicated fractions,

which an accidental circumstance only enabled us to reduce :

it will be pro})cr, tlierefore, to explain a shorter method,
which leads to the same solution.

8(). Since we must have ax" -\- b =: t/\ and have already

found af- + b = g", the first equation gives us b = y- — a.v',

and the second gives b = g" — af- ; consequently, also,^

9/^ — ax!^- = g'^ — af-, and the whole is reduced to de-

termining the unknown quantities x and 1/, by means of the

known quantities^/'and ^. It is evident, that for this pur-^
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pose we need only make a: =f, and y — g; but it is also

evident, that this supposition would not furnish a new case

in addition to that already known. We shall, therefore,

suppose that we have already found such a number for n,

that an'^ + 1 is a square, or that an" + 1 = m- ; which be-

ing laid down, we have m- — ait"- = 1 ; and multiplying by
this equation the one we had last, we find also y^ — ax" ==

(^- — af~) X {m- — an") — gm" — af-m" — ag"n^ + a"f"n".

Let us now suppose y = gm f a/n, and we shall have

g"nf- + 9.afgmn -i- a'^f-n" — ax" =
• ^-m'2 — af'^m" — ag"n- + a"f-n",

in which the terms g-'.vi- and arf"m- are destroyed ; so that

there remains ax- = af"iu^ + ag-7i'^ + 2af^mJi, or x^ =
f-m- -\- ^fgmn + g"n-. Now, this formula is evidently a
square, and gives x =fm + gn. Hence we have obtained
the same formulas for x and y as before.

87. It will be necessary to render this solution more
evident, by applying it to some examples.

Question 1. To find all the integer values of x^ that

will make ^x- — 1, a square, or give 9.x" ~ 1 = t/^.

Here, we have « = 2 and h = —\\ and a satisfactory

case immediately presents itself, namely, that in which j;=:l,

and y = '[
: which gives us f =z\, and ^ = 1. Now, it is

farther required to detei'mine such a value of w, as will give
9.n" + 1 = m- ; and we see immediately, that this obtains

Avhen n = % and consequently rn = 3 ; so that every case,

which is known for f and g, giving us these new cases

X = 3/" + %, and y — 3^- + 4/i we derive from the first

solution, (/= 1, and g = 1,) the following new solutions :

If7/-1, Then^^ = ^' ~9, 169,

U=l, ^^'
Sl/ = ^ 41, 239, &c.

88. Question 2. To find all the triangular numbers,
that are at the same time squares.

^1 _|- 2
Let ;:? be the triangular root ; then —^— is the triangle,

which is to be also a square ; and if we call x the root of this

square, we have ~
^ ~ = x- : multiplying by 8, wc have

4z2 + 4^ = 8x-; and also adding 1 to each side, we
have

4-2 + 4~ + 1 = (^2z +1)" = 8.r2 + 1.

Hence the question is to make Sx" + 1 become a square;
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for, if we find 8x- -[- 1 = y^, we shall have // = 2z + l,

and, consequently, the triangular root required will be

2 ' -

Now, we have a — 8, and b = 1, and a satisfactory case

immediately occurs, namely, / = and g =1- It is farther

evident, that 8w- + 1 = m-, if we make n = 1, and m = S;
therefore x = of + g, and i/ = 3g + 8f; and since

v-l
z = , we shall have the following solutions

:

a^=f
y =g
.. y =

1
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It is here required to Iiave 7^'^ + 2 = y-, or a — 7, and
& = J2; and the known case immediately occurs, that is to

say, a: = ] ; so that x =J'=^ 1, and 9/ zn g s^ 3. If we
next consider the equation In^ f 1 = m', we easily find

also that n = 3, and rn = 8 ; whence x = 8f + Sg", and

1^ = Sg -\- 2\f. We shall therefore have the following-

results :

A' =/= 1
j
17 m

y=^ = 3!45 717, &c.

91. Question 5. To find all the triangular numbers, that

are at the same time pentagons.

Let the root of the triangle be /;, and that of the pentagon

then we must have
jf+p Qq'-q

, or ^q-—q=p^-\-p;

and, in endeavouring to find q, we shall first have

9- = 47+^'+ -̂. and

? = i ± v/(A + ^V^)'
«r q = e

—

-—--

Consequently, it is required to make \9,p" + 12;? + I be-

come a square, and that in integer numbers. Now, as

there is here a middle term 12p, we shall begin with making

oc — 1

p = --^r— , by which means we shall have 12jo-= 3.^?-— 6.r + 3,

/

and 1%) = 6^ — 6 ; consequently, 12p- + 12p + 1 = 3^- —2

;

and it is this last quantity, which at present we are required

to transform into a square.

If, therefore, we make 3.x;^ — 2 = ?/-, we shall have
cc """ 1 1 "4* ?/

p = —^—5 and q ~ —^ ; so that all depends on the formula

3^'- — 2 = ?/- ; and here we have « — 3, and b= —2. Farther,

we have a known case, .v =/— 1, and ^ = g = 1 ; lastly,

in the equation m~ — 3n^ + 1. we have // = 1, and m = ^;
therefore we find the following values both for x and i/, and
for p and q :

First, x = 9;f -\- g, and 1/ = Qg + 3/; then,

or

/-I
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92. Hitherto, wlien the given formula contained a second

term, we were obhged to expunge it, but the method we
have now given may be applied, without taking away that

second term, in the foUowinjy uianncr.

Let ax" -\- hx ^r c be the given formula, which must be a

square, «/-, and let us suppose that we already know the case

ap + bf + C:^ g\
Now, if we subtract this equation from the first, we shall

have a{x'^ — y^) + b{a: —f) = y'^ — g% which may be ex-

pressed by factors in this manner

:

and if we multiply both sides by pq, we shall have

which equation may be resolved into these two,

1. p{x -f) = q{y -g),
S. q{ax + af+b)=p(,y^g).

Now, multiplying the first by p, and the second by q, and
subtracting the first product from the second, we obtain

(a<?2 _ ^1)^ + ^acf + p)f + hq~ = Qgpq,

... .
2op(7 {aq- + p-)f hq~

which gives x = ^^^
^-~r-~r- •

aq- —p ' aq- —p^ aq- — p'^

But the first equation '\s 2j(x — f) = q{// — g) =

p(
—

:, :,
; ; so that

iiq'~p- aq^ — iv" aq" — p-

9gp- ^"fpq bpq
,

11 — g = —:

;;
7^ r ; consequently,

•^ '^ aq' — p~ aq- — ^/- aq- — p~ ^ •'

aq-—p- aq-—p- aq-— p-

Now, in order to remove the fractions, let us make, as

before, —3
• — m, and — -- — = n ; and we shall have

(iq —p- aq^— p"

^aq"
(f-

m^\
in + 1 = —r—— , and — = —^— ; therefore

aq^—p' aq' — p'- 2a

X = ng - mf ^—' ; and J/
= mg - naf- ^bn ;

in which the letters m and n must be such, that, as before,

wz^ = an- + 1.

93. The formulas which we have obtained for x and y,
are still mixed with fractions, since some of their terms con-

tain the letter b ; for which reason they do not answer our
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purpose. But if from those values we pass to the succeeding

ones, we constantly obtain integer numbers ; which, indeed,

we should have obtained much more easily by means of the

numbers p and q, that were introduced at the beginning.

In fact, if we take^ and q, so that p" = a(f- + 1, we shall

have aq- — p- = —I, and the fractions will disappear. For
then a; = ~ 2gpq -^-fiaq' -j- p) + bq-, and y = —g{aq~+P')
+ ^qfpq + bpq ; but as in the known case, af'^ + bf + c

= g', we find only the second power of^, it is of no conse-

quence what sign we give that letter; if, therefore, we
write —g, instead of +g, we shall have the formulae

X = ^ffpq +y^(»5'- + p) + l>(fi and

y = g(aq- + p) -^'^afpq + bpq,

and we shall thus be certain, at the same time, that

ace- + bx + c = y-.

Let it be required, as an example, to find the hexagonal

numbers that are also squares.

We must have %v- — x ^=^ y\ or a = 2, 6 = — 1, and
c = 0, and the known case will evidently be x =^f— \, and
3/=^. = 1.

Farther, in order that we may have p" =
'^(f'

+ 1, we
must have g' — 2, and p — «>; so that we shall have
X = \2g + 17/*— 4, and ?/ = 17^- + 24/ - 6; whence re-

sult the followina: values

:

X =f=\
y =^=1

25
35

841

1189, &c.

94. Let us also consider our first formula, in which the

second term was wanting, and examine the cases which make
the formula ax^ + fi a square in integer numbers.

Let aj7- + b =y-, and it will be required to fulfil two
conditions

:

1. We must know a case in which this equation exists;

and we shall suppose that case to be expressed by the equa-

tion a/*'^ -{- ^ = g"^.

2. We must know such values of ni and n, that

nf- — an"- -\- 1 ; the method of finding which will be taught

in the next chapter.

From that results a new case, namely, x = ng -\- mj\

and y — mg + anf-^ this, also, will lead us to other similar

cases, which we shall represent in the following manner

:

x=f
y =g

C I D
R S

E

T, Sec. In which,

A^^ng -\-mf Ib =np +ota|c =na -\-ms Id=mr -j-mc JE=ws +wd
P—mg-\-anf\ci=mv-\-anA\vi—mci-\-a7iJs\s —mn-\-anc\T —ms-^-anTi, &c.
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and these two series of numbers may be easily continued to

any length.

95. It will be observed, however, that here we can-

not continue the upper series for .r, without having the

under one in view; but it is easy to remove this incon-

venience, and to give a rule, not only for finding the upper
series, without knowing the other, but also for determining

the latter without the former.

The numbers which may be substituted for x succeed

each other in a certain progression, such that each term (as,

for example, e), may be determined by the two preceding

terms c and d, without having recourse to the terms of the

second series r and s. In fact, since

E = ??s + mn — 7i(?wR + anc) -r m{nR + mc) =
2mnR + a/fc + ra-c, and nn = t> — mc,

we therefore find

E = 2mB — ?n-c + an"c, or

E = 2w2D — (m- — an")c ; or lastly,

E = 2»zD — c, because nt- = an" + 1,

and m" — an" — 1 ; from v*'hich it is evident, how each term
is determined by the two which precede it.

It is the same with respect to the second series ; for, since

T = 7^^s + i/wD, and d = wr 4- wc, we have
T = OTS f a;/-R + amnc. Farther, s = wzr + a;;c, so

that atiQ. = s — mR ; and if we substitute this value of a//c,

we have T — 2ms — n, which proves that the second pro-
gression follows the same law, or the same rule, as the first.

Let it be required, as an example, to find all the integer

numbers, x, such, that 2^' — 1 =y--
We shall first have/ = 1, and g=^. Then m- = 2to- + 1

,

if w = 2, and 7n = 3; therefore, since a = iig- + mf = 5,
the first two terms will be 1 and 5 ; and all the succeeding
ones will be found by the formula E =: 6d — c : that is to

say, each term taken six times and diminished by the pre-
ceding term, gives the next. So that the numbers x which
we require, will form the following series

:

1, 5, 29, 169, 985, 5741, &c.

This progression we may continue to any length ; and if

we choose to admit fractional terms also, we might find an
infinite number of them by the method which has been
already explained*.

* See the Appendix to this chapter in the additions by De
la Grange, p. 550, et seq.
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CHAP. VII.

Of a particular Methocl, by which the Formula an- + 1

becomes a Square in Integers.

96. That whicli has been taught in the last chapter, can-

not be completely performed, unless we are able to assign for

any number a, a number ?«, such, that cm" + 1 may become
a square ; or that we may have //i- = an" -j- 1.

This equation would be easy to resolve, if we were satis-

fled with fractional numbers, since we should have only to

np
make m = I -I-

-^ ; for, by this supposition, we have

Qi/p n-p'^ , . ... .

m- = 1 + 1

—

~ = an- -f- 1 ; ni which equation, we

may expunge 1 from both sides, and divide the other terms

by Ji : then multiplying by q-, we obtain ^pq-^-np- = anq-
;

and this equation, giving n = —7^-
:, would furnish an

infinite number of values for 71 : but as n must be an integer

number, this method will be of no use ; and therefore very

different means must be employed in order to accomplish

our object.

97. We must begin with observing, that if we wished

to have an" + 1 a square, in integer numbers, (whatever be

the value of a), the thing required would not be possible.

For, in the first place, it is necessary to exclude all the

cases, in which a would be negative; next, we must exclude

those also, in which a would be itself a square; because

then an" would be a square, and no square can become a

square, in integer numbers, by being increased by unity. We
are obliged, therefore, to restrict our formula to the con-

dition, that a be neither negative, nor a square ; but when-

ever a is a positive number, without being a square, it is

possible to assign such an integer value of n, that a7i^ -r 1

may become a square : and when one such value has been

found, it will be easy to deduce from it an infinite number
of others, as was taught in the last chapter : but, for our

purpose, it is sufficient to know a single one, even the least

;
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I

and this, Pell, an English writer, has taught us to find by
an ingenious method, which we shall here explain.

98. This method is not such as may be employed ge-

nerally, for any number a whatever ; it is applicable only to

each particular case.

We shall therefore begin with the easiest cases, and shall

first seek such a value of w, that 2ft- + 1 may be a square,

or that a/(2«' + 1) may become rational.

We immediately see that this square root becomes greater

than n, and less than 2/i. If, therefore, we express this root

by n + p, it is obvious that j9 must be less than n ;' and we
shall have a/(~w" -f 1) = n +p; then, by squaring,

^71"- 4- 1 = 71- + 2np + p- ; or nP' + 2pw -J- p- ; therefore,

by compleating the square, &c.

jt^ = 2pn + p- — 1, and )i = p -\- ,\/{2p' — !)•

The whole is reduced, therefore, to the condition of Sp-—

1

being a square; now, this is the case i^ p = I, which gives

71 = 2, and V{2n'' -|- 1) = 3.

If this case had not been immediately obvious, we should

have gone farther ; and since \/{2p-— I) 7 p*, and, con-

sequently, n 7 2p, we should have made n = 2p + q; and
should thus have had

2p + q = p -{- ^(2p'i _ 1), or p + gr = ^/(2p^' - 1),

and, squaring, p- + 2pq + q"^ = 2/7- — 1 , whence
^

^"- = ^pq + f + 1,

which would have given p = q + ^/(2q- +1); so that it

would have been necessary to have 2q- 4- 1 a square ; and
as this is the case, if we make q = 0, we shall have p == 1,

and w = 2, as before. This example is sufficient to give an

idea of the method ; but it will be rendered more clear and
distinct from what follows.

99. Let a = 3, that is to say, let it be required to trans-

form the formula 3/^'- + 1 into a square. Here we shall

make ^/{Qn- -{- I) = n + p, which gives

Qn- -\- I = H' -f- 2np + p% and 2/i'- = 2;/p + p- — 1

;

',
. . p+V(3p'-2)

whence we obtain w = ^ . Now, since

V(Pp- — 2) exceeds p^ and, consequently, 11 is greater

* This sign, y, placed between two quantities, signifies that

the former is greater than the latter ; and when the angular

point is turned the contrary way, as Z, it signifies that the

former is less than the latter.
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than
-J-,

or than p, let us suppose 7i = p -f- </, and we

I, 111, f .K .•
p-hV{Sp^—2)

shall have, irom the equation, u — ^ ,

2p + Og' = 2? + v/ (3p - 2), or

then, by squaring, p"^ + 4tpq + 4q^ = Qp"- —2; so that

2^2 = 4,pq _}_ 4^2 + 2, or ^2 — 2^^ -|- o^q ^ i^ and

P = g +\/{2g^ + 1).

Now, this formula being similar to the one proposed, we
may make q — 0, and shall thus obtain p = 1, and n = 1;
whence \/{2n'^ + 1) = 2.

100. Let a = 5, that we may have to make a square of

the formula 5n- + 1, the root of which is greater than 2n.

We shall therefore suppose

k/{5?i~ + 1) =: 2,n + p, or Sn^ + 1 = 471^ + 4wp + p"^
;

whence we obtain

n^ = 4!/ip + p^ —1, and n = 2p + x/{5p^ — 1).

Now, \/{5p'^ — 1)7 2^; whence it follows that nv^p', for

which reason, we shall make n = 4>p -i- q, which gives

2p + q =y^(5p2 — 1), or 4p2 + 4pq 4- 92 — 5^2 — i, and
p^ = 4<pq + q" {- I ; so that J9 = 2q + \/{5q- + 1) ; and as

q —- satisfies the terms of this equation, we shall have

p = \i and n — 4*; therefore \/(5n'^ + 1) = 9.

101. Let us now suppose a — 6^ that we may have to

consider the formula 6ifi + 1, whose root is likewise con-

tained between 2w and 27i. We shall, therefore, make
a/(6w" + 1) = ^n -{- p, and shall have

6n^ + 1 = 4n^ + 4np + p^, or 9,rfi — 4np -\- p'^ — 1 -^

and, thence, n = jy ] -^ , or w = f ;

so that n 7 9,p.

If, therefore, we make n = 2p -{- q, we shall have

4p + 2q - 9.p -I- /(6/}2 _ 2), or

2p -^9.q^ ^/{6p"~ - 2)

;

the squares of which are 4*p- + 8pq + 4q" ~ 6/;^ — 2; so

that 2p2 — %pq + 4^2 ^ 2, and if- — 4pq f 25- + 1. Lastly,

p = 2g^ + ^(6^2 -I- 1), Now, this formula resembling the

first, we have g- = 0; wherefore p = \, w — 2, and

-v/(6/.^ + 1) -- 5.

102. Let us proceed farther, and take a — 7, and
771^ + 1 =m^; here we see that mv^n; let us therefore

make //i = 2re -f p, and we shall have
A A
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7w2 + 1 = 4»- + 4np + y, or 3h^ = ^np + j.^ — 1

;

which gives w = — ^ -. At present, since n7*p,

and, consequently, greater than p, let us make n = p + q^
and we shall have p + Sq = V{lp^ — 3) ; then, squaring

both sides, f- + Qpq + 95" = Ip'^ — 3, so that

6p^ = 6pq + 9g^ + 3, or 2/)2 — g^^ ^ 3^2 .j. 1 ^ whence

wegetj9 = ^ . Now, we have here pv-^y

and, consequently, p7q; so that making j9 = 5' + r, we
shall have q + 2r = \/{lq^ + 2); the squares of which are

^2 + -ij'r -t- 4/2 = 7^2 -{- 2 ; thetj 6g^^ = ^qr + 4r2 — 2,

or Sj^ = S^r + 2r2 - 1 ; and, lastly, q = ^ ^ ^^ ~ \

Since now q7ry let us suppose g = r + 5, and we shall

have

2r + 3s = ^/(7r2 - 3) ; then

4; 2 -1- 12r5 + 9s2 = 7;- - 3, or
3^2 = 12rs + 952 + 3, or
y2 =: 4^5 _^ 352 -I- 1^ and
r = 25+ V(752 + 1).

Now, this formula is like the first ; so that making s = 0,

we shall obtain r = l, q = \, p = 2, and 71 ~ 3, or

m =^8.

But this calculation may be considerably abridged in

the following manner, which may be adopted also in other

cases.

Since '7n^ + 1 = mr, it follows that m^Sn.
If, therefore, we suppose 7n = 3n — />, we shall have
7w2 + 1 = 9^2 - 6np -\- p'^, or ^n- = 6np — p"- + i ;

whence we obtain n = ~-
; so that w Z 3/? ; for

this reason we shall write n = Sp — 2q; and, squaring, we
shall have 9p^ — \9,pq + 4^2 — 7^2 4. 2; „r

2/)2 -^ \9pq - 4^2 + 2, and p^ = 6/>y - Sg^ + 1

;

whence results p = Sy + \/('7j2 +1). Here, we can at

once make 7 = 0, which gives ^ =?: 1, n = 3, and m — S^

as before.

103. Let a = 8, so that Sn^ + 1 = m"^, and ?« z 3w.

Here, we must make m — Qn — p, and shall have

8w» + 1 = 9n^ — Gnp + p^, or n^ — 6//p — p^ -i- I;

whence n = 3p 4- \/(8p'' + 1)> and this formula being al-
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ready similar to the one proposed, we may make p = 0,

which gives w = 1 , and m = 3.

104. We may proceed, in the same manner, for every

other number, a, provided it be positive and not a square,

and we shall always be led, at last, to a radical quantity,

such as x^(at- + 1), similar to the first, or given formula,

and then we have only to suppose ^ = 0; for the irra-

tionality will disappear, and by tracing back the steps, we
shall necessarily find such a value of w, as will make awM-

1

a square.

Sometimes we quickly obtain our end ; but, frequently

also, we are obliged to go through a great number of

operations. This depends on the nature of the number
a; but we have no principles, by which we can foresee

the number of operations that it will be necessary to per-

form. The process is not very long for numbers below 13,

but when a = 13, the calculation becomes much more
prolix ; and, for this reason, it will be proper here to resolve

that case.

105. Let therefore a = 13, and let it be required to

find 13n- + 1 = jn"^. Here, as m- 7 9w-, and, consequently,

mvSn, let us suppose m = 3n + p; we shall then have
13n- + 1 = 9n" + 6np + p", or 4re- = 6i<p + p- — I, and

3p+^/{13p^-4!) , . , , , , , ,,n = ~ j-i -, which shews that n 7 |p, and there-

fore much greater than p. If, therefore, we make n=p-\-q,

we shall have p-}-4!q= a/(13jp^ — 4) ; and, taking the squares,

I3p'i - 4, =: p2 + Spq + 16f;
so that 12p' = Spq + l6q* + 4, or 3p"' = 2pq -f-

4^^ + I,

. ^+v/(13f+ 3) q+3q
and p = ~

. Here, p 7 —3— , or /) 7 ^ ; we

shall proceed, therefore, by making p = q + r, and shall

thus obtain 2q + 3r = \/{l3q^ + 3) ; then

13^^ + 3 = 4q"- + I2qr + 9r-, or

9q"- = Uqr + Qr^ - 3, or

3q"- = 4qr: + Sr^ - 1

;

,., . ^r+vk3r--3)
which gives q = .

Again, since q 7 —^— j or q -7 r, we shall make
o

q = r + s, and we shall thus have r + Ss = -/(ISr- — 3)

;

or I3r2 -3^7.^ + 6rs + 9i", or 12r^ = 67-5 + 9?- + 3, or

4r2 z= 9,rs + 3s- + 1 ; whence we obtain

A A 2
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s+ V(13*2+4) ^ ,
5+ 35 ,

r = 7 . But hereby —-t-~, or ry s; where-

fore let r = s + i, and we shall have 3* + 4!t= .v/(135-+ 4),

and 135"- + 4 ^ 9*2 + 245!! + 16/-

;

so that 45- = 245^ + 16/!-— 4, and 5- = 6is + 4i!2 — 1

;

therefore s = 3/ + v'(13/- — 1). Here we have

5 7 3/ + 3^, or 5 7 6/

;

we must therefore make s = 6t + ui whence
St + u = v'(13/- — 1), and 13t" - 1 = 9i!- + 6tu + U';

then 4:1- = 6tu + m- + 1 ; and, lastly,

3m+V(13w2 + 4) 6u
t = 7" -, or t 7 -Ti and 7 u.

If, therefore, we make t = u -{- v, we shall have

2/ + 4i; = v'(13m- + 4), and iSu- + 4! = -ii^ + 8uv + \6v-;

therefore 12m- = 82^:; + 16v^ — 4, or Su~ = ^uv + 4i)'-— I

;

, ,
V.+ V{lSv"--S) 4<v

lastly, u = —
, or ic 7 -^, or u 7 v.

Let us, therefore, make ii = v -\- x, and we shall have

2d + 3^ =x/(l3v"- - 3), and
I2v' —S= 4u' + ISt'.r 4- 9^' ; or

Qv- = 12t;x + 9x' + 3, or 3v^ — 4w + 3/r- + I, and

2a;+v^(13^"- + 3) ,, , 3 .

V = 7^
; so tliat V 7 3-^, and 7 ^.

Let us now suppose v = a: +7/, and we shall have

X + St/ — ^(13^:- + 3), and
13a;2 + 3 = x" -{- 6xy + 9fj% or

\2x- = 6ii/ + 9y — 3, and
4a:'^ = 2^^ + Qy" — 1 ;. whence

_ y+ v'(13?/--4)
^ ~

4 '

and, consequently, x 7 y. We shall, therefore, make
.r = j/ + ;:•, which gives

3y +4-2= -/{IS//- - 4), and
13yi _ 4 ^ 9ij^ + 242// + I62-, or

4y2 = 242y 4- 16 ;2 _|_ 4 ; therefore

y2 — gy>; -(- 4 -2 _|_ 1^ and

y = 3;s + a/(132^ + 1).

This formula being at length similar to the first, we may
take 5f = 0, and go back as follows

:
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X = 1/ + s: = I,

V — X \- y — %

q = r -\- s = 71,

p = q +r = 109,
71 = p ^ q — 180,

m = 3?* + p = 649.

u = V \ X = 3,

^ = 7/ -f- t; = 5.

,? =6^ + 26 = 33',

r = * + ^ =38,

So th^t 180 is the least number, after 0, which we can

substitute for n, in order that 13w- + 1 may become a

square.

106. This example sufficiently shews how prolix these

calculations may be in particular ca«es; and when the num-
bers in question are greater, we are often obliged to go
through ten times as many operations as we had to perform

for the number 13.

As we cannot foresee the numbers that will require such

tedious calculations, we may with propriety avail ourselves

of the trouble which others have taken ; and, for this pur-

pose, a Table is subjoined to the present chapter, in which

the values of vi and n are calculated for all numbers, a, be-

tween 2 and 100 ; so that in the cases which present them-

selves, we may take from it the values of m and w, which

answer to the given number a.

107. It is proper, however, to remark, that, for certain

numbers, the letters tti and n may be determined generally.

This is the case when a is greater, or less than a square, by
1 or 2; it will be proper, therefore, to enter into a particular

analysis of these cases.

108. In order to this, let a = e- — 9.% and since we must
have (e- — 2)//- + 1 = »?% it is clear that m L en ; therefore

we shall make m = en ^ p^ from which we have

{e"^ - 9.)n- +\ = e'^n'^ - 2enp + p"^, or

2w- = 2efip — p" + 1; therefore

ep+ ^/i^-p-—2p"-+ ^) , . . ., ,

n = — ~: -; and it is evident that it we

make p = I, this quantity becomes rational, and we have

n = e, and m = e"- — \.

For example, let a = 23, so that e = 5; we shall then

have 9lSn^ + 1 = m-^ if n = 5, and vi = 24*. The reason

of which is evident from another consideration; for if, in

the case of a = e- — 2, we make n = e, we shall have

an* -[- 1 = e* — 2e2 -|- 1 ; which is the square o^ e" — 1.

109. Let a =^ e- — 1, or less than a square by unity.

First, we must have (e^ — \)n" + 1 = m--, then, because,

as before, m Z en, we shall make m = en — p ; and this

being done, we have

(e^— 1 )«« -j- 1 =: c'tf- - 2cnp + p", or n- = 9.enp — /j^ + 1

;
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wherefore n= ep-\- ^/(e^p'^—p'^ + l). Now, the irrationality

disappeared by supposing p = 1; so that n — 2e, and
7)1 = 2e- — 1. This also is evident ; for, since a = e- — 1,

and 71 = ^e, we find

aw- + 1 = 4e* — 4e- + 1,

or equal to the square of 2^- — 1. For example, let a= 24,

or e = 5, we shall have w = 10, and

24;i2 + 1 ::= 2401 = (49)2 *.

110. Let us now suppose a = e^ -{- 1, or a greater than

a square by unity. Here we must have

(e- + l)Ai« + 1 = 7n2,

and 7it will evidently be greater than en. Let us, therefore,

write 7n = 671 + p, and we shall have

(e^ + l)n^ + I ~ e-7i'~ + 2e?ip + p^, or n^= ^enp+p^ — l;

whence n = ep + ^ (e-p^ + p'^ — 1). Now, we may make
p = 1, and shall then have n=S,e; therefore w- = 2e- + I ;

Avhich is what ought to be the result from the consideration,

that a = e- + 1 , and 7i = ^e, which gives

aTi^ 4- 1 = 4e* + 4e^ 4- 1, the square of 2^- + 1. For ex-

ample, let a = 17, so that e = 4, and we shall have

17w^ +1=7??-; by making n = 8, and m = 33.

111. Lastly, let a = e" + % or greater than a square by
2. Here, we have {e* + 2)n2 4- 1 = m-, and, as before,

m 7 CTi; therefore we shall suppose m = en •{- p, and shall

thus have

e^n^ + 2;i^ + 1 = e-ji" + ^enp + p'^, or

2n^ = 2epn + jp* — 1, which gives

ep-hViey-\-2p'—9.)
n = — .

2

Let J3
= 1, we shall find 7i = e, and ?» = e'^ + 1 ; and, in

fact, sincea= e^ + 2, and n= e, we have an^ + l = e'^-\-2e^+l,

which is the square of ^^ + 1.

For example, let a = 11, so that ^ = 3 ; we shall find

Ihi^ + 1 = 7/1-, by making w = 3, and m = 10. If we

* In this case, likewise, the radical sign vanishes, if we make
j3 = : and this supposition incontestably gives the least possible

numbers for m and n, namely, n = I, and m = e ; that is to say,

if e = 5, the formula 24w^ + 1 becomes a square by making
n = I J and the root of this square will he tn = e = 5. F. T.
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supposed a = 83, we should have e = 9, and

83w* + 1 = m\ where w = 9, and m = 82 *.
*

* Our author might have added here another very obvious

2
case, wliich is when a is of the form e^^f^

—e ; for then by mak-

ing }i = c, our formula nn'^ + ]j becomes eV i 2ce + 1 =
(ec i 1)''. I was led to the consideration of the above form,

from having observed that the square roots of all numbers in-

cluded in this formula are readily obtained by the method of
continued fractions, the quotient figures, from which the fractions

are derived, following a certain determined law, of two terms,

readily observed, and that whenever this is the case, the method
given above is also applied with great facility. And as a great

many numbers are included in the above form, I have been in-

duced to place it here, as a means of abridging the operations

in those particular cases.

The reader is indebted to Mr. P. Barlow of the Royal Aca-
demy, Woolwich, for the above note ; and also for a few more
in this Second Part, which are distinguished by the signature, B.
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Table, shewing for each value of a the least numbers m and v,

that will give m- •= an'^ + 1'^
j or that vvill render an^ -\- I

a square.

n
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CHAP. VIII.

Of the Method of rendering the Irrational Formula,
a/(a + &J7 + cx^ + dx^) Rational.

112. We shall now proceed to a formula, in which x rises

to the third power ; after which we shall consider also the

fourth power of x, although these two cases are treated in

the same manner.
Let it be required, therefore, to transform into a square

the formula a -'t bx + ex- + dx^, and to find proper values

of X for this purpose, expressed in rational numbers. As
this investigation is attended with much greater difficulties

than any of the preceding cases, more artifice is requisite to

find even fractional values of x; and with such we must be
satisfied, without pretending to find values in integer num-
bers.

It must here be pi'eviously remarked also, that a general

solution cannot be given, as in the preceding cases; and
that, instead of the number here employed leading to an
infinite number of solutions, each operation will exhibit but
one value of a;.

113. As in considering the formula a + bx + cx'^, we
observed an infinite number of cases, in which the solution

becomes altogether impossible, we may readily imagine that

this will be much oftener the case with respect to the present

formula, which, besides, constantly requires that we already

know, or have found, a solution. So that here we can only

give rules for those cases, in which we set out from one
known solution, in order to find a new one; by means of

which, we may then find a third, and proceed, successively

in the same manner, to others.

It does not, however, always happen, that, by means of a

known solution, we can find another: on the contrary,

there are many cases, in which only one solution can take

place; and this circumstance is the more remarkable, as in

the analyses which we have before made, a single solution

led to an infinite number of other new ones.

114. We just now observed, that in order to trans-

form the formula, a -\- bx -\- cx^ +dx^, into a square, a

case must be presupposed, in which that solution is pos-

sible. Now, such a case is clearly perceived, when the
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first term is itself a square already, and the formula may be

expressed thus, f--\-bx-\- ex- + dx^ ; for it evidently be-

comes a square, if a: = 0.

We shall therefore enter upon the subject, by considering

this formula ; and shall endeavour to see how, by setting

out from the known case j; = 0, we may arrive at some
other value of x. For this purpose, we shall employ two
different methods, which will be separately explained : in

order to which, it will be proper to begin with particular

cases.

115. Let, therefore, the formula \ -\- 9^x — x° -\- x^ be
proposed, which ought to become a square. Here, as the

first term is a square, we shall adopt for the root required

such a quantity as will make the first two terms vanish.

For which purpose, let 1 + a: be the root, whose square is

to be equal to our formula; and this will give 1 + 2a? —
X- -T x^ =^ \ •{- 9.x -\- X-, of which equation the first two
terms destroy each other ; so that we have a;- = — a;'- + a:',

or .r^ = 2a?-, which, being divided by ar-, gives a; = 2 ; so

that the formula becomes 1 +4 — 4+8 = 9.

Likewise, in order to make a square of the formula,

4 -f Ga:" — 5x- -\- Sx^, we shall first suppose its root to be

2 + nx, and seek such a value of « as will make the first

two terms disappear ; hence,

4: + 6x — 5x- + 3a?3 = 4 + i^ix + n"x^ ;

therefore we must have 4n. = 6, and w = ^ ; whence re-

sults the equation — Sx' + ^x^ = n-x^ =^x''-, or Sx^ = ^^a:-,

which gives x = ^•, and this is the value which will make
a square of the proposed formula, whose root will be

2 + la; = y.
116. The second method consists in giving the root three

terms, asf-\- gx + lix-, such, that the first three terms in

the equation may vanish.

Let there be proposed, for example, the formula 1 — 4a; +
6a:- — 5x^, the root of which we will suppose to be
\ — 2x -\- hx-, and we shall thus have

1 — 4a: + 6 r- - 5x^ := 1 — 4a: -+- 4x- — 4:/ix^ + h^x* + 2hx"'.

The first two terms, as we see, are immediately destroyed on
both sides ; and, in order to remove the third, we must make
2/i + 4 = 6 ; consequently, A = 1 ; by these means, and
transposing Q,hx-=- Sa:", we obtain — 5x^ = — 4a.'' + a?*,

or — 5 =^ —4 + a;, so that x =; — 1.

117. These two methods, therefore, may be employed,

when the first term a is a square. The first is founded on
expressing the root by two terms, as y+ px, in which f is
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the square root of the first term, and p is taken such, that

the second term must likewise disappear; so that there re-

mains only to compare p^x- with the third and fourth term
of the formula, namely ex- + dx^ ; for then that equation,

being divisible by x"^, gives a new value of x, which is

p- — c

^ = -r-
In the second method, three terms are given to the root

;

that is to say, if the first term a '=/-, we express the root

byy + px + qx° ; after which, p and q are determined such,

that the first three terms of the formula may vanish, which
is done in the following manner. Since

jT^+6x + ex-+ dx^ =y '^

+

2pfx+ ilfqx- -{-p-x- + ^pqx^ -\- q^af^,

we must have h = 2/5?; and, consequently, p=^\ farther,

c = 2fq +p- ; or q = jT ; after this, there remains the

equation dx^ = ^j)qx^ + q'^x'^-, and, as it is divisible by x^,

1 • r • d— 2pq
we obtam from it a? — -^-^.

118. It may frequently happen, however, even when
a =y-, that neither of these methods will give a new value

of ^ ; as will appear, by considering the formula J"- + dx^,

in which the second and third terms are wanting.

For if, according to the first method, we suppose the root

to bey + px, that is,

/^ + da^ =f^ + ^fpx +p^x'-,

we shall have 9fp = 0, and p = ; so that dx^ = ; and
therefore .r = 0, which is not a new value of x.

If, according to the second method, we were to make the

rooty+ px + qx\ or

f"- + dx^ =p + 2fpx 4- p°x'^ + S/grjp^ + ^pqx^ + q-^x*,

we should find 9fp = 0, ;?2 + ^^q — q^ and ^' = ; whence
dx^ = 0, and also x = 0.

1 19. In this case, we have no other expedient, than to en-

deavour to find such a value of ^, as will make the formula

a square ; if we succeed, this value will then enable us to

find new values, by means of our two methods : and this

will apply even to the cases in which the first term is not a

square.

If, for example, the formula 3 + .r^ must become a square

;

as this takes place when a; = 1, let a: = 1 + ^, and we shall

thus have 4 + S^/ -I- 3//- -f y, the first term of which is a
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square. If, therefore, we suppose, according to the first

method, the root to be 2 + py, we shall have

4 + 3j/ + 3j/^ 4- i/3 = 4 + 4p^ + ;/;//-.

In order that the second term may disappear, we must

make 4p = 3 ; and, consequently, p = | ; whence 3 -\-y='p-^

—39 —23
and ^ = ^^ — 3 = T?^

- 41 = —^ ; therefore x = -y^,

which is a new value of x.

If, again, according to the second method, we represent

the root by 2 + p?/ + gi/", we shall have

4 + 3?/ + Sf+y = 4 + 4/??/+ 45'?/'- + p^'- + ^pgi/ + q'^t/,

fioni which the second term will be removed, by making

4,p z= Q, or p = ^; and the fourth, by making 4g' + p- = 3,

3 — o-
or (/ = —7^ =11:? so that 1 == 2pg + q^y ; whence we

1 —2m
, ,

obtain t/ = ^— , or^r = -1/^ ; and, consequently,

120. In genera], if we have the formula

a -\- bx + ex- + dx^,

and know also that it becomes a square when x —f, or that

a + f)f + cf" -f df^ = g'^, we may make x =f^2/, and
shall hence obtain the following new formula

:

+ ¥ +h
+ cp + 9.cfy 4- cf-

+ dp+^dr-ij+'3dff--^df

g"- + (6 + 2c/ + Sdp)y +{cf Mf)y- + df.
In this formula, the first term is a square; so that the

two methods above given may be applied with success, as

they will furnish new values of y, and consequently of x
also, since x =zf -\- y.

121. But often, also, it is of no avail even to have found

a value of a;. This is the case with the formula 1 + a;%

which becomes a square when x =2. For if, in consequence

of this, we make x — 9> -\- y, we shall get the formula 9 +
12y + Gy" + y^i which ought also to become a square.

Now, by the first rule, let the root be 2>-\-py, and we shall

have 9 + 127 + 6j/- +?/' — 9 + (ipy + />'?/', in which we must
have 6/j =12, and y; = 2; therefore 6 -f y = p- =: 4, and

^ = — 2, which, since we made a: =: 2 + y, this gives

a: =: ; that is to say, a value from which we can derive

nothing more.
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Let us also try the second method, and represent the root

by 3 + pj/ -r qy" ; this gives

9 + 1% 4- 6^ - -\-y^= 9 + 6/>j/ + Q>qy~ + p"}f + ^^pqtf + cfrf,

in which we must first have Qp = 12, and p = ^, then

6q + p- = 6q- + 4f = 6, and ^ = ^; farther,

1 = Qpq +q'!/ = ^ + pJi
hence i/= —3, and, consequently, x ~ — 1 , and l-\-a:^ = 0;
from which we can draw no further conclusion, because, if

we ^vished to make x = — 1 +^, we should find the formula,

3.S — 3^- + 2\ the first term of which vanishes ; so that we
cannot make use of either method.
We have therefore sufficient grounds to suppose, after

what has been attempted, that the formula 1 +^3 can never

become a square, except in these three cases ; namely, when

1. ^ = 0, 2. ^ = - 1, and 3. x = 2.

But of this we may satisfy ourselves from other reasons.

] 22. Let us consider, for the sake of practice, the formula

1 + 3^% which becomes a square in the following cases;

when
L ar = 0, 2. X = — I, and 3. x = 2,

and let us see whether we shall arrive at other similar

values.

Since x — I is one of the satisfactory values, let us sup-

pose X = 1 -f- y, and we shall thus have

1 + 3a- = 4 + 9// + 9j/" -f 3j/^

Now, let the root of this new formula be 2 + p^, so that

4 + 9y + %- + 3i/^ = 4> + 4/?j/ -f j^ y"- We must have
9 := 4ip, and p — |, and the other terms will give 9 + 3y =
p- = ~, and y = — ii ; consequently, x = — -^-^, and
1 + 3x^ becomes a square, namely, — -^r^^i the root of which
is — ^i-, or + 14^: and, if we chose to proceed, by making
X = — -^ + ^, we should not fail to find new values.

Let us also apply the second method to the same formula,

and suppose the root to be 2 + p?/ + gv/- ; which supposition

gives

4 4-
9i/ + 9y^ + 3^^ = ^

4 + 4^^/+ 4ryj.^+ 2p^3/3+ qY;
|

therefore, we must have 4p = 9, or p = ^^ and 45- + p- =
9 = 4g' + ~, or q = ^: and the other terms will give

3 = 2p^ + 9^ = 441- + q""!/, or 567 + I28q-y = 384, or

128^-y = —183; that is to say,

632
128 X GU)^y - - 183, or ^y = - 183.

So that y = — 44lrT5 ^"ti X = — 4t^ '> ^^^^ these values
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will furnish new ones, by following the methods which have

been pointed out.

123. It must be remarked, however, that if we gave our-

selves the trouble of deducing new values from the two,

which the known case of a: = 1 has furnished, we should

arrive at fractions extremely prolix ; and we have reason to

be surprised that the case, a; = 1, has not rather led us to

the other, x = 2, which is no less evident. This, indeed,

is an imperfection of the present method, which is the only

mode of proceeding hitherto known.

We may, in the same manner, set out from the case

X = % in order to find other values. Let us, for this pur-

pose, make cc — 2 + y, and it will be required to make a

square of the formula, 25 H- 36?/ + 18y' + oy^. Here, if

we suppose its root, according to the first method, to be

5 + pi/, we shall have

25 + 3% + 18f- + 3/ = 25 + lOpi/ + pY;
and, consequently, lOp = 36, or p = '^ : then expunging

the terms which destroy each other, and dividing the others

by 1/", there results 18-1- Si/ = p- = —^ ; consequently,

y = — 44> ^^^ ^ — ^t'i whence it follows, that 1 4- 3a?^ is

a square, whose root is 5 -\- py = — W\, or -\- \W.
In the second method, it would be necessary to suppose

the root = 5 -f py -1- qy", and we should then have

the second and third terms would disappear by making

lOp = 36, orp = V"' a"d lOq +jo- = 18, or

10^ = 18 - ^-^ = Vt ) oi' 9 = T^^ and then the other

terms, divided by j/^ would give 9.pq + q"y = 3, or

q-y = 3 — 9,pq =• - 114 ; that is, j/ = - \-^L^, and
^ — 629

124. This calculation does not become less tedious and
difficult, even in the cases where, setting out differently, we
can give a general solution; as, for example, when the

formula proposed is 1 ~ x — x^ -^ x^, in which we may
make, generally, x — n^ — 1, by giving any value whatever

to n : for, let n = 2\ we have then x = Q>, and the formula

becomes 1 — 3 — 9 + 27 = 16. Let n = 3, we have then

X = 8, and the formula becomes 1 — 8 — 64 + 512 = 441,

and so on.

But it should be observed, that it is to a very peculiar

circumstance we owe a solution so easy, and this circum-

stance is readily perceived by analysing our formula into

factors; for we immediately see, that it is divisible by
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1 ~ X, that the quotient will be 1 — a;-, that tliis quotient

is composed of the factors (1 + ^) x (1 — x); and, lastly,

that our formula,

l-j:-x^-\-ar'=(i-x)x{l+x)x{l-x) = {'l-xy-x(l+x).

Now, as it must be a a [square^, and as a n , when divisible

bya D, gives a n for the quotient*, we must also have
1 -\-<v = O ; and, conversely, if 1 + ^r be a D, it is certain

that (1 — x)' X (1 + a?) will be a square ; we have therefore

only to make 1 + x = «-, and we immediately obtain

X = n^ — 1.

If this circumstance had escaped us, it would have been
difficult even to have determined only five or six values of

X by the preceding methods.

125. Hence we conclude, that it is proper to resolve every

formula proposed into factors, when it can be done ; and we
have already shewn howthis is to bo done, by making thegiven

formula equal to 0, and then seeking the root of this equa-
tion; for each root, as x =J^, will give a factor/'— x; and
this inquiry is so much the easier, as here we seek only

rational roots, which are always divisors of the known term,

or the term which does not contain x.

126. This circumstance takes place also in our general

formula, a + bx -\- ex- + dx"\ when the first two terms dis-

appear, and it is consequently the quantity ex" + dx^ that

must be a square ; for it is evident, in this case, that by di-

viding by the square x-, we must also have c + dx a square ;

and we have therefore only to make c + dx = n-, in order

n"—c
to have x =—;— , a value which contains an infinite num-

a

ber of answers, and even all the possible answers.

127. In the application of the first of the two preceding

methods, if we do not choose to determine the letter p, for

the sake of removing the second term, we shall arrive at

another irrational formula, which it will be required to make
rational.

For example, let f- + bx -{ ex- + dx^ be the formula

proposed, and let its root =y* 4- pv. Here we shall have

f~\-bx-^ ex- + dx^ = f- 4- ^fpx + p-^'i from which the

first terms vanish ; dividing, therefore by x, we obtain

* The mathematical student, who may wish to acquire an
extensive knowledge of the many curious properties of num-
bers, is referred, once for ail, to the second edition of Legen-
dre's celebrated Essai sur la Thcorie des Nombres; or to Mr.
Barlow's Elementary Investigation of the same subject.
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b -\- cx -\- (Iv- — 2fp + p-z-, an equation of the second de-

gree, which gives

_p'^-c+ V{p*- 2cp" + Sdfp + c- - 4^bd)

So that the question is now reduced to finding such values

ofp, as will make the formula^/ — 2cp- + ^(Ifp -\- c- — ^bd
become a square. But as it is the fourth power of the re-

quired number p which occurs here, this case belongs to the

follow ing chapter.

CHAP. IX.

Of the Method of rendering Rational the incommensurable
Formula \/{a + bi + cx- + dx^ + ex'').

128. We are now come to formulae, in which the indeter-

minate number, .r, rises to the fourth power ; and this must
be the limit of our researches on quantities affected by the

sign of the square root ; since the subject has not yet been pro-

secuted far enough to enable us to transform into squares

any formulae, in which higher powers of x are found.

Our new formula furnishes three cases : the first, when
the first term, a, is a square; the second, when the last

term, ex'^, is a square; and the third, Avhen both the first

term and the last are squares. We shall consider each of

these cases separately.

129. 1st. Resolution of the formula

a/(/* + 6-r + cx" + dx^ -{ ex^).

As the first term of this is a square, we might, by the first

method, suppose the root to be y + px, and determine p in

such a manner, that the first two terms would disappear,

and the others be divisible by ^-; but we should not fail

still to find X- in the equation, and the determination of x
would depend on a new radical sign. We shall therefore

have recourse to the second method ; and represent the root

byy + px + qx- ; and then determine ;; and q, so as to re-

move the first three terms, and then dividing by x'^, we shall

arrive at a sim})le equation of the first degree, which will

give X without any radical signs.
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130. Ifj therefore, the root hef+ px -f go:-, and for that
reason

/- + bx + ex- + dx'^ + ea;* =
/" + ^px + p'^x'^ + 2/yj7- 4- %?yj?^ + q'^x'^,

the first terms disappear of themselves; with regard to

the second, we shall remove them by making b = ^fp, or

j» = pV ; and, for the third, we must make c = 2/^ + p^~,

or ?= Of This being done, the other terms will be di-

visible by x^^ and will give the equation d + ex = 2pq ^q'^x^

from which we find

d — 2pq 2pq - d
X — ^-i, or a: = -^^ .

q" — e e — q-

131. Now, it is easy to see that this method leads to no-
thing, when the second and third terms are wanting in our
formula ; that is to say, when 6 = 0, and c — ; for then

p = 0, and q =0, consequently, x = , from which

we can commonly draw no conclusion, because this case

evidently gives dx^ + ex'^ = ; and, therefore, our formula

becomes equal to the square f". But it is chiefly with re-

spect to such formulae asy"'- + ex'*, that this method is of no
advantage, since in this case we have d= 0, which gives

X = 0, and this leads no farther. It is the' same, when
6 = 0, and d — 0\ that is to say, the second and fourth

terms are wanting, in which case the formula is

Q

f- + cvr- + ex^; for, then p = 0, and q — ^t whence

^ = 0, as we may immediately perceive, from which no
further advantage can result.

132. 2d. Resolution of the formula

^{a + 6.r -H cj?2 + dx^ + g-x'^).

We might reduce this formula to the preceding case, by

supposing X = — ; for, as the formula

h c d £•-

y yy y^

must then be a square, and remain a square if multiplied by
the square ^*, we have only to perform this multiplication,

order to obtain the formula
B B
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«/ + &i/' + ct + ^i/ + g%
which is quite similar to the former, only inverted.

But it is not necessary to go through this process ; we

have only to suppose the root to be gx"- + px + y, or, m-

versely, g* + /jo; + ^.r'-, and we shall thus have

a \-hx -\- ex'- + dx^ + g°x^ =

Now, the fifth and sixth terms destroying each other, we

shall first determine p so, that the fourth terms may also

destroy each other ; which happens when d — 2op, or

'P
— — ; we shall then likewise determine g, in. order to re-

move the third terms, making for this purpose

which done, the first two terms will furnish the equation

a + bx = q- + ^pgx ; whence we obtain

a— a" q"--a
or .r =

iHpq - Z>

'

b — 2pq

133. Here, again, we find the same miperfection that was

before remarked, in the case where the second and fourth

terms are wanting ; that is to say, ^ = 0, and d = 0; be-

cause we then find /; = 0, and q = g~> therefore

now, this value being infinite, leads no farther

than the value, x = 0, in the first case ; whence it follows,

that this method cannot be at all employed with respect to

expressions of the form a + ex- -t g'X*.

134. 3d. Resolution of the formula

-v/(/- + bx + cx' + dx^ + g"x*).

It is evident that we may employ for this formula both

the methods that have been made use of; for, in the first

place, since the first term is a square, we may assume

f -\- px + qx^ for the root, and make the first three terms

vanish ; then, as the last term is likewise a square, we may
also make the rout q + px + g.i'*, and remove the last three

terms; by which means we shall find even two values of :r.

But this formula may be resolved also by two other

methods, which are peculiarly adapted to it.

In the first, we suppose the root to be/ + p.v + gx'-, and
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/> is determined such, that the second terms destroy each

other ; that is to say,

f- 4- hx + ex- \- dx^ + g-x*^ =
/' + 2fpX + y'gx'- + f-X' + 9gpx^ -'r g-'x*.

Tlien, making b — 2fp, or p — —; and since by these

means both the second terms, and the first and last, are

destroyed, we may divide the others by x^, and shall have
the equation c -{- dx = 2fg -r p" -\- ^gyx, from which we

, . c—2fp-—p^ P'-\-'^fg — c ,^
obtani X - - ^ ^

. , or .r = '^—7—tt • Here, it ought
2gp—d ' d—2gp ^

to be particularly observed, that as g is found in the

formula only in the second power, the root of this square, or

g, may be taken negatively as well as positively ; and, for

this reason, we may obtain also another value of x ; namely,

, _ ci-2fg~ p"- _ p'-2fg-c
~ -2gp-d' ^''~

^2gp+d •

135. There is, as we observed, another method of resolving

this formula ; Avhich consists in first supposing the root, as

before, to be^+ ^.r -|- gx-, and then determining p in such

a manner, that the fourth terms may destroy each other

;

which is done by supposing in the fundamental equation,

d = ^gp, or p — ^; for, since the first and the last terms

disappear likewise, we may divide the other by x, and there

will result the equation b + ex = ^fp + '^fgx + ^-.r, which

gives X — ,-77:
—— . We may farther remark, that as^ yg^p'-e ^

the square f- is found alone in the formula, we may sup-

pose its root to be —J\ from which we shall have

b'V^fp
X = --^ • So that this method also furnishes two

new values of x\ and, consequently, the methods we have

employed give, in all, six new values.

136. But here again the inconvenient circumstance occurs,

that, when the second and the fourth terms are wanting, or

when 6 = 0, and d = 0, we cannot Hnd any value of x
which answers our purpose; so that we are unable to re-

solve the formula /- + cx^ -r gx*. For, if 6 = 0, and
B B 2
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d = 0, we have, by both metJiods, p = 0; the formier

giving X = —?i ) and the other giving x = 0; neither of

which are proper for furnishing any further conclusions.

137. These then are the three formulae, to which the

methods hitherto explained may be applied ; and, if in the

formula proposed neither term be a square, no success can

be expected, until we have found one such value of ^ as will

make the formula a square.

Let us suppose, therefore, that our formula becomes a

square in the case of a: = 7i, or that

a + bh + ch^ + dh^ + ek^ = Jc''
;

if we make x = h + i/, we shall have a new formula, the

first term of which will be k- ; that is to say, a square, which
will, consequently, fall under the first case : and we may also

use this transformation, after having determined by the pre-

ceding methods one value of x, for instance, x = h; for

we have then only to make a: = h + j/, in order to obtain a
new equation, with which we may proceed in the same
manner. And the values of x, that may thus be found,

will furnish new ones ; which will also lead to others, and
so on.

138. But it is to be particularly remarked, that we can in

no way hope to resolve those formulae in which the second

and fourth terms are wanting, until we have found one solu-

tion ; and, with regard to the process that must be followed

after that, we shall explain it by applying it to the formula

a + ex^, which is one of those that most frequently occur.

Suppose, therefore, we have found such a value of x = h,

that a + eh"* — A;' ; then if we would find, from this, other

vahies of x, we must make x = h + j/, and the following

formula, a -\- eh? + ^eh^y + ^eh"y- -}- ^ehy^ + ey'^, must
be a square. Now, this formula being reducible to

/:- + ^eh^y + Geky -\- ^ehy^ -\- ey*, it therefore belongs to

the first of our three cases; so that we shall represent its

square root by Ic + py ^- qy' ; and, consequently, the

formula itself will be equal to the square

Tc- + 9]cpy + p-y"- -\- 9.kqy"- -f 9,pqy^ + q'^y*
;

from which we must first remove the second term by de-

termining p, and consequently q ; that is to say, by making

9>eh^
^eJr' = 2^/», or p — —r- ; and Qeh- — Qkq + p"^, or
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6eh- -p' 3e/i-k^ - 2e'h^* eh'(^iTc^ - ^eh*)

1 =
2/fc k} k^

or, lastly, q = j-^
—

, because e/r = k- — a ; alter

which, the remaining terms, 4;ehy'^ + ej/*, being divided by
^', will give 4}eh + e^ — ^pq -r q"y, whence we find

4<eh — 2pq r ^ r
y = —^

; and the numerator of this fraction may be

thrown into the form ^^ +,

or, because e/t* = k~ — a^ into this,

Aehk*—Aeh(Jfi^a) x (A2+ 2a) _ 4g//(— g/^+^2r<^) _ 4«g/i(2a— A°-)

T*
~

k^
~

A*

With regard to the denominator q- ^ e^ since

eh%k'+^a) , -^ ^„ . ,

q = —^-—
J -^ and eir = k— a, it becomes

K

e{k'—a) X (k^ + 'Zaf-ek^ _ e{3ak*-4>a^) _ gQ(3A;^-4a")

k-^

~
fcs

~
yte '

so that the value sought will be

_ iaeh{2a-k') k^

•^
- F X

ae{Sk^ - 4^0'
"'^'

4<hk"(2a-k")
y ^

3/^4_ 4^
—

' «"^' consequently,

;i(8aA;^ - ^* - 4a^)

^ = 3^ + ^=-—3F::-4ai— '"^

^-
4a'^-3/:* *

* By multiplying Qeh'^— p'^ by Ji^, and substituting for k^p^ its

equal, 2eA'.

t For since k^ — a -{ eh*, therefore ^k^ — 2eA* = 3a + e/i*

= ^2 + 2«.

^ „ ^ , 4eM* , eh\k'^+2a) . 2eh'

X Here ^eh = —r^^ also q = -r^ , and p - —^,

, , ^ 4e2AHA*+ 2a)
, ^,

therefore 2/?o = \- , and, consequently,

\eh — 2pq = j~ -. B.
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If, therefore, we substitute this value of x in the formula

a + ex^, it becomes a square ; and its root, which we have

supposed iohe Ti + py + qy"^, will have this form,

2gA^ ehik"-\-^a)
because, as we have seen, p = "tT"' 5 ~ Jl

'

y - 3A:4_4«.
,ancle/i -K a .

139. Let us continue the investigation of the formula

a + ex* ; and, since the case a + eh'^ = F- is known, let

us consider it as furnishing two different cas6s; because

X — + h, and x = — h; for which reason we may trans-

form our formula into anothei* of the third class, in which

the first term and the last are squares. This trans-

formation is made by an artifice, which is often of great

utility, and which consists in making or = -i—— : by which

means the formula becomes
"^

k-+ 4>{k"^-2a)y + 6kY' + ^k"^- ^a)y^ + k"Y

Now, let us suppose the root of this formula, according to the

1-1 1
k+py—ku"'

thu'd case, to be —r^ r-r~ '•> so that the numerator or our

formula must be equal to the square

k- + 2kpy + />y - 2%"- - ^kpf + %*

;

and, removing the second terms, by making

4A;2 — 8a = ?lkp, or p = j
—

; and dividing the

* Thus,
_2eh^ Uk"'(2a—k^) _8e¥k{2a—k"-) _8kik^—a) x (2a— k^)

also,?!/ _ ^3 X
(.3^,4_4«2). -

(3Fir4ft^^)i

= 5^

{W-^i^ '^ substitutmg e/i^ = k^-a.

B.
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other terms by i/^, we shall have

6A2 4- 4y(^2-2«) = - ^Jc^ + p"-~ 2kpi/, or

i/(4!k'-8a + 2kp) = p^ — 8k^; or
o^'2_ 4a

p = ^^—7 , and pk = 2k- — 4« ; so that

j/(8/c- — 16a) = — -, and

_ -~Jc*—4iak--\-4!a-

If we now wish to find x, we have, first,

^"^y - ~k(2k^-~^ '

and, in the second place,

ok*~4a-
^ ~ V= J ,/r.7";—T~^ ;

so that

l~\-j/ k^-8ak^+4^a'

r^ ^
Qk^-4<a'^

~~
' '

consequently,

_ h{k*~8ak^+4a-)
'^~

3k*-4!a"-'~'

but this is just the same value that we found before, with

regard to the even powers of x.

140. In order to apply this result to an example, let it be
required to make the formula 2a:* — I a square. Here,
we have a = — 1, and e — 2; and the known case when
the formula becomes a square, is that in which a; = 1 ; so

that A = 1, and k^ ~l ; that is, ^ = 1 ; therefore, we shall

have the new value, .r = —
:^,

^— = — 13 ; and since the
o— 4"

fourth power of x is found alone, we may also write

x= + \S, whence 2^* - 1 = 571.^il = (239)%
If we now consider this as the known case, we have

h — 13, and k = 239; and shall obtain a new value of ar,

namely,

13 X (239^+^8x239^ + 4) _ 42422452969

3x239^*^ ~ "97884259 1

9'

141. We shall consider, in the same manner, a formula
rather more general, a + ex- + ex'\ and shall take for the

known case, in which it becomes a square, x = h; so that

a + ch- + eh^ = k\
And, in order to find other values from this, let us
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suppose X = h -\- y^ and our formula will assume the fol-

lowing form

:

a
ch^-\-2chy +cy2
eh* + 4!eh^i/ + 6eh'^i/' + ^ehy^ + ey*

k^ + (2ck +^eh?)y+ (c+ Qeh'^y'^ +4% ' + ey\

The first term being a square, we shall suppose the root

of this formula to be A; + j92/ + qy" ; and the formula itself

will necessarily be equal to the square,

k' + ^kpy + ^'j/^ -1- ^kqy"^ + 9,pqy^ + ?>*;
then determining p and q^ in order to expunge the second
and third terms, we shall have for this purpose

^cn + 4f^3 = 2kp ; ov p = —
' ^"^

fC

^ , ^, c ^6eh-—p-
c + 6eh' = 2kg +p- ; ov q ^ ^-^

.

Now, the last two terms of the general equation being
divisible by 3/^, they are reduced to

4e7t + ey = 9,pq + (fy\

which gives 3/ =—TIT^'' ^"^' consequently, the value also
q e

oi X — h \- y. If we now consider this new case as the
given one, we shall find another new case, and may proceed,
in the same manner, as far as we please.

14!?. Let us illustrate the preceding article, by applying
it to the formula 1 — ^r- + ^*, in which a = \, c — — 1,

and e —\. The known case is evidently x = \\ and, there-
fore, h = 1, and A = 1. If we make x ~\ -\- y, and
the square root of our formula 1 + pj/ + qy", we must first

havep = = l,and then q = g^—^ = ±=2.

These values give
J/
= 0, and x—\. Now, this is the

known case, and we have not arrived at a new one; but it

is because we may prove, from other considerations, that the
proposed formula can never become a square, except in the
cases of a; = 0, and or = + 1

.

143. Let there be given, also, for an example, the
formula 2 — 3a;- + 2.r*; in which a — % c = — 3, and
e — % The known case is readily found ; that is, x = \\
so that /i = 1, and k — \: if, therefore, we make x — \ -\-y,

and the root =1 -^ py + qy\ wc shall have p = 1, and
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gr = 4 ; whence J/ = 0, and J7 = 1 ; which, as before, leads

to nothing new.

144. Again, let the formula be I + Sx- + a?* ; in which

fl = 1, c = 8j and e = I. Here a slight consideration is

sufficient to point out the satisfactory case, namely, x = 2;
for, by supposing h — !^, we find A; = 7 ; so that making
X = 2 + y, and representing the root by 7 + joj/ + qy\ we
shall havej9 = y^, and g = y^ri whence

«/ = 7 4414, and ;r = - ^44-j-

;

and we may omit the sign minus in these values. But we
may observe, farther, in this example, that, since the last

term is already a square, and must therefore remain a square
also in the new formula, we may here apply the method
which has been already taught for cases of the third class.

Therefore, as before, let x = 2 + 1/, and we shall have

1

32 + 32</ + 8y"-

16 + 32j/ + 24j/"- + 8j/3 -f y
49 + 647/ + 32j/2 + 8/ + y,

an expression which we may now transform Into a square in

several ways. For, in the first place, we may suppose the

root to be 7 + pj/ + y"-
; and, consequently, the formula

equal to the square

49 + 14pj/ + fy^ 4- \^y- + 2py + y*;

but then, after destroying 8if, and %?2/^, by supposing

%? = 8, or j3 = 4, dividing the other terms by y^ and de-

riving from the equation,

64 + 3%/ = 14p 4- 1% + f-y = 56 + SOy,

the value of y = — 4, and of jr = — 2, or ^ = + S, we come
only to the case that is already known.

Farther, if we seek to determine such a value for », that

the second terms may vanish, we shall have 14p = o4, and
-p =. ^rf \ and the other terms, when divided by y-, form
the equation 14 -h p^ {- 9,py = 32 + 8j/, or

»|i° + 6^ y = Q2 + 83/, whence we find ^ = — -^i. ; and,

consequently, x = — 44? or .r = +1-^; and this value trans-

forms our formula into a square, whose root is '^^'•

Farther, as —y- is no less the root of the last term than

4- y^, we may suppose the root of the formula to be

7 + py — y-, or the formula itself equal to

49 + 14>py + p'-y"- — 14«/'- - 9,py^ +- y*. And here we shall

destroy the last terms but one, by making — 2/? = 8, or

p = — 4 ; then, dividing the other terms by y, we shall have
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64 + 3% = 14;^ - Up +p"-i/ =1-56 + %,
which gives 3/ = — 4 ; that is, the known case again. If

we chose to destroy the second terms, we should have

64 = 14;?, and p = y ; and, consequently, dividing the

other terms by 7/^, we should obtain

32 + 8j/ = - 14 + ^* — ^pi/, oi-

32 + 8y =: y^« - Vy ; whence

?J
=- ih and ^ :=: - 41-

;

that is to say, the same values that we found before.

145. We may proceed, in the same manner, with respect

to the general formula,

a -{- bx + ex- + dx^ + ex'*,

when we know one case, as x = h, in which it becomes a

square, kr. The constant rnetliod is to suppose x = h ~r y.
from this, we obtain a formula of as many terms as the

other, the first of them being /i*. If, after that, we express

the root by k + py + qy- ; and determine p and q so, that

the second and third terms may disappear ; the last two,

being divisible by ?/^, will be reduced to a simple equation

of the first degree, from which we may easily obtain the

value oi' y, and, consequently, that of a: also.

Still, however, we shall be obliged, as before, to exclude

a great number of cases in the application of this method

;

those, for instance, in which the value found for x is no
other than x = h, which was given, and in which, con-

sequently, we could not advance one step. Such cases

shew either that the formula is impossible in itself, or that

we have yet to find some other case in which it becomes

a square.

146. And this is the utmost length to which mathe-

maticians have yet advanced, in the resolution of formulae,

that are affected by the sign of the square root. No dis-

covery has hitherto been made for those, in which the quan-

tities under the sign exceed the fourth degree ; and
when formulae occur which contain the fifth, or a higher

power of X, the artifices which we have explained are not

sufficient to resolve them, even although a case be given.

That the truth of what is now said may be more evident,

we shall consider the formula

]c^ + bx + ex- + dx^ + ex* +./'^'^

the first term of which is already a square. If, as be-

fore, we suppose the root of this formula to be k -\-px + qx",

and determine p and q, so as to make the second and third

terras disappear, there will still remain thnc terms, which,
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when divided by x^, form an equation of the second degree
;

and a evidently cannot be expressed, except by a new irra-

tional quantity. But if we were to suppose the root to be

k + px + qx^ + '''^^ its square would rise to the sixth

power ; and, consequently, though we should even de-

termine^, q, and r, so as to remove the second, third, and
fourth terms, thei'e would still remain the fourth, the fifth,

and the sixth powers ; and, dividing by ^, we should again

have an equation of the second degree, which we could not

resolve without a radical sign. This seems to indicate that

we have really exhausted the subject of transforming formula
into squares : we may now, therefore, proceed to quantities

affected by the sign of the cube root.

CHAP. X.

Of the Method of rendering rational the irrational Formula
v/(a + 6jr + ex'- + dx^).

147. It is hei'e required to find such values of .r, that the

formula a + l)x V- ex"- -\- dx^ may become a cube, and that

we may be able to extract its cube root. We see imme-
diately that no such solution could be expected, if the for-

mula exceeded the third degree ; and we shall add, tliat if

it were only of the second degree, that is to say, if the term

dx^ disappeared, the solution would not be easier. With
regard to the case in which the last tAvo terms disappear,

and in which it would be required to reduce the formula

a + hx to a cube, it is evidently attended with no diffi-

culty ; for we have only to make a -\- bx — jf, to find at

p^— a
once X — —X—

.

148. Before we proceed farther on this subject, we must
again remark, that when neither the first nor the last term
is a cube, we must not think of resolving the formula,
ucless we already know a case in which it becomes a cube,

whether that case readily occurs, or whether we are obliged
to find it out by trial.

So that we have three kinds of formulas to consider.

One is, when the first term is a cube; and as then the
formula is expressed by f^ -\- bx -}- ex"- + dx^, we imme-
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diately perceive the known case to be that of :r = 0. The
second class comprehends the formula a -\- bx -\- cx^ + g^x^

;

that is to say, the case in which the last term is a cube.

The third class is composed of the two former, and com-
prehends the cases in which both the first term and the last

are cubes.

149. Case I. Let/^ -{- bx + cx^ + dx^ be the proposed

formula, which is to be transformed into a cube.

Suppose its root to be / -i- p^ ; and, consequently, that

the formula itself is equal to the cube,

f^ + 2fyx + Sfp^x' + p^x'- ;

as the first terms disappear of themselves, we shall de-

termine p, so as to make the second terms disappear also

;

b
namely, by making b = Sf^p^ or p = ^-^^ ; then the remain-

ing terms being divided by x-, give c + dx = Sfp^ -\-p^x;

or X = —X

—

Y-p^—d

If the last term, dx^, had not been in the formula, we
might have simply supposed the cube root to be f^ and

should have then hady'^ =f^ + bx + cx% or 6 + ex = 0,

and X = ; but this value would not have served to
c

find others.

150. Case 2. If, in the second place, the proposed

expression have this form, a f ba: + cji^ + g'^x^, we may
represent its cube root by p + gx, the cube of which is

y + Sp'gx + 3gp-x- + ff^x^; so that the last terms destroy

each other. Let us now determine p, so that the last terms

but one may hkewise disappear; which will be done by

supposing c = 2g"-p, or p = -^— , and the other terms will

then give a + bx = p^ + Sgp-x; whence we find

a—p^
3gp^^b

If the first term, a, had been wanting, we should have

contented ourselves with expressing the cube root by gx,

and should have had

^,..ij,3 _ ^(; .j_ <j;'
j g-^jc^^ or b + ex = 0,
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whence x =i ; but this is of no use for finding other

values.

151. Case 3. Lastly, let the formula be,

f^ + bx + cx^ + g'^x^^

in which the first and the last terms are both cubes. It is

evident that we may consider this as belonging to either of

the two preceding cases ; and, consequently, that we may
obtain two values of x.

But beside this, we may also represent the root byy +gXy
and then make the formula equal to the cube,

/' + ¥'8^ + ^fg^x" + g^x^l

and likewise, as the first and last terms destroy each other,

the others being divisible by x, we arrive at the equation

b + ex = ^f^g + Q/g'^> which gives

¥g'-c
152. On the contrary, when the given formula belongs

not to any of the above three cases, we have no other re-

source than to try to find sucli a value for x as will change

it into a cube ; then, having found such a value, for ex-

ample, X = h, so that a + bh + ch^ + dh^ = k^, we sup-

pose X = h -{ y, and find, by substitution,

a
bh + by

ch^ -\- 9>chy + cy-

dh^ + ^dk-y + Qdhy"- + dy^

fc? + (6 + 2ch + 3rfA'-)«/ + {c -Y Mh)y"- + df-

This new formula belonging to the first case, we know
how to determine y, and therefore shall find a new value of

Xf which may then be employed for finding other values.

153. Let us endeavour to illustrate this method by some
examples.

Suppose it were required to transform into a cube the

formula 1 -i- x + x^, which belongs to the first case. We
might at once make the cube root 1, and should find

X -}- jT^ = 0, that is, xQ + x) = 0, and, consequently, either

X = 0, or ^ = — 1 ; but from this we can draw no con-

clusion. Let us therefore represent the cube root by
1 + px; and as its cube is 1 + 3px + Sp-ar + p~x^, we
shall have 3p = 1, or p = ^ ; by which means the other
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terms, being divided by a,-, give Qp- + p^x = 1} or

1 _ 3 »2 1.

X = jp-. Now, p = ^-, so that x — ^ =18, and our
F zT

formula becomes 1 +18 + 324 = 343, and the cube root

1 + jjx — 7- If" now we proceed, by making x =^ IS + j/,

our formula will assume the form 343 + 37^/ + j/®, and by
the first rule we must suppose its cube root to be 7 + py '-,

comparing it then with the cube,

343 + 147/Jj/ + 21/^2^"- + py,
it is evident we must make 147p = 37, or p = ~j-; the

other terms give the equation 2lp- -\- p'^y = 1, whence we
obtain the value of

1-21«- 147 X (147^ -21x37'^)
y ^3 ':j'73 5 o 6 5 T »

which may lead, in the same manner, to new values.

154. Let it now be required to make tiie formula 2 + ic^

equal to a cube. Here, as we easily get the case x = 5, we
shall immediately make ^ = 5 + z/, and shall have

27+ lOj/ + y- = 2 + ^^ ; supposing now its cube root to be

3 +py, so that the formula itself may be 27 + 27pi/ + ^p^y^

+/)^j/^, we shall have to make 27^ = 10, or p = \^; there-

fore 1 = ^p- + p^y, and

l-9/> 27 X (27^-9x10-) ^^ , ^
y - ^3 - 1000 "" ^^°'

X — -T-ii-o ; therefore our formula becomes 2 + ^-= 44^44l^»
the cube root of which must be 3 +/3^ = 44-6 •

155. Let us also see whether the formula, 1 + -a^^ can

become a cube in any other cases beside the evident ones of

.r = 0, and ^r — — 1. We may here remark first, that

though this formula belongs to the third class, yet the root

1 + a; is of no use to us, because its cube, 1 + oo; + 3.r^ + x',

beingequal to the formula, gives 3.r + 3.1^ = 0, or 3a;(l +^)= 0,

that is, again, a; = 0, or .r^ — 1.

If we made x — — \ -V y-, we should have to transform

into a cube the formula 3?/ — 3^ + y", which belongs to

the second case ; so that, supposing its cube root to be

p + y^ or the formula itself equal to the cube,
p"^ + 2tpy + 3/?//- -I- j/^, we should have 3/? = — 3, or

^ = — 1, and thence the equation %y—p' -{^p'^jj— —1 +3y,
which gives y—^, or infinity; so that we obtain nothing

more from this second supposition. In fact, it is in vain to

seek for other values of x ; for it may be demonstrated,

that the sum of two cubes, as P + x^, can never become
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a cube*; so that, by making ^ = 1, it follows that tlie

formula, a^ + 1, can never become a cube, except in the

cases already mentioned.

156. In the same manner, we shall find that the formula,

jT^ + 2, can only become a cube in the case of x = — 1.

This formula belongs to the second case ; but the rule there

given cannot be applied to it, because the middle terms are

wanting. It is by supposing a: = — 1 +3/, which gives

1 + 3j/ — 3?/^ + j/^, that the formula may be managed ac-

cording to all the three cases, and that the truth of what we
have advanced may be demonstrated. If, in the first case,

we make the root = 1 +]/, whose cube is 1 +3j/ — S^" + j/^,

we have — St/" = Si/-, which can only be true when ?/ = :

and if, according to the second case, the root be — 1 + y,
or the formula equal to — 1 + % — 3?/- + 3/^, we have
1 + 3y = — 1 + 3^/, and y = |^, or an infinite value;

lastly, the third case requires us to suppose the root to be

1+3/, which has already been done for the first case.

157. Let the formula 2x^ + 3 be also required to be

transformed into a cube. This may be done, in the first

place, if a; = — 1 ; but from that we can conclude nothing

:

then also, when x —2; and if, in this second case, we sup-

pose X = 2 + 1/, we shall have the formula 21 + 36y +
I83/- + Sz/^ ; and as this belongs to the first case, we shall

represent its root by 3 + Pj/j the cube of which is

27 + ^Ipj/ + 9p-y~ + p^j/^ ; then, by comparison, we find

^7p — 36, or p = y ; and thence results the equation,

18 + 3«/ = 9p- + phj = 16 + Ify;

which gives y— —r—, and, consequently, x :=. —--—
: there-

fore our formula 3 '+ Sx^ — — ^f|y, and irs cube root

3 + pi/ = if ; which solution would furnish new values, if

we chose to proceed.

158. Let us also consider the formula 4 + x\ which be-

comes a cube in two cases that may be considered as known

;

namely, x = 2, and jr — IL If now we first make x = 2 +1/,
the formula 8 + 4?/ + y- will be required to become a cube,
having for its root 2 + y?/, and this cubed being 8 + 4^ +
|y- + ^i/\ we find 1 = |. + _L.«/ ; therefore ^ = 9, and
r r: 11 ; which is the second given case.

If we here suppose a? = 1 1 -i- 7/, we shall have 4 + x- =
125 + 2^2/ 4- y- ; which, being made equal to the cube of
5 +pi/, or to 125 + 75p7/ + I5p^// +P'«/^ gives p =z ^;

* See Article 24/ of this Part.
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and thence \5p" + p^i/ = 1, or p^i/ = 1 — ISp"^ — — |f|

;

consequently, ?/ = - '/om% and ^ = - t^Wt-
Now, since x may either be negative or positive, x^ being

found alone in the given formula, let us suppose

2 + 2v , ^ , .„ , 8 + 8^2 ,. ,X = -,
, and our formula will become 71 rt, which

must be a cube ; let us therefore multiply both terms by
1 — ^, in order that the denominator may become a cube

;

8—8y+ 8«2_ Sy^
and this will give ~ —^ — : then we shall only

have the numerator 8 — 8?/ + 8y'^ — Sy^, or if we divide by
8, only the formula 1 — y f 3/* — ^', to transform into a

cube; which formula belongs to all the three cases. Let us,

according to the first, take for the root \ — \y; the cube of

which is \ — y -\- ^y" — ~y^ ; so that we have 1 — ?/ =
\ — ^y, or 27 — 27y = 9 — ?/ ; therefore y — ^-^ also,

\ -\- y — y|, and 1 — y = -^^\ whence x = 11, as before.

We should have exactly the same result, if we con-

sidered the formula as coming under the second case.

Lastly, if we apply the third, and take 1 — y for the root,

the cube of which is 1 — 3y -|- Sy° — y^, we shall have
— 1 + y = — 3 + Sy, and ^ = 1 ; so that or = i, or in-

finity ; and, consequently, a result which is of no use.

159. But since we already know the two cases, a; = 2, and

2 -\- lly
a: = 11, we may also make x = —=

; for, by these

means, if 3/ = 0, we have x = 2; and if j/ ::= 00, or infinity,

we have x = 11.

Therefore, let x = —r—— , and our formula becomes
l+y

, 4 + 44«/ + 12L/« 8 + 52v + 125y ,, , .
, ^ ,

4 + -^—^ r^, or 7T^-<^-^-- Multiply both
1 + 2^+y (\+yy ^^

terms by \ + y, in order that the denominator may be-

come a cube, and we shall only have the numerator,

8 + 60y + 177y- + 125y\ to transform into a cube. And
if, for this purpose, we suppose the root to be 2 + 5y, we
shall not only have the first terms disappear, but also the

last. We may, therefore, refer our formula to the second

case, taking p {- 5y for the root, the cube of which is

p^ + I5p^y + 15py- + 125j/^; so that we must make

75p = 177, or p = |^ ; and there will result 8 -|- 60j/ =
f + I5p% or - VW.y = Hm, and y = ^V^^^, whence

we might obtain a value of x.
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2 + 11?/
But we may also suppose j: = _— ; and, in this case,

our formula becomes

^.-^ l-% + 2/^
~ (1-2/)^

'

so that multiplying both terms by 1— «/, we have 8 + 28^ +
8%- — 125j/^ to transform into" a cube. If we therefore

suppose, according to the first case, the root to be ^ + |-y,

the cube of Avhich is 8 + 28^/ + ^Jy" + ^-^Vj ^^^ ^'^^^

89 - 125?/ =3 V + W^/' OJ" '^'.i/ = 't' ; and, conse-

quently, j/ = 4-|4t = ^ ; whence we get x = }!; that is,

one of the values already known.
But let us rather consider our formula with reference to the

third case, and suppose its root to be 2 — 5?/ ; the cube of

this binomial being 8 — 6O3/ + 150j;- — 125j/^ we shall

have 28 + 89j/ = — 60 4-150?/ ; therefore 3/ = ^, whence
we get x=z— '|^° ; so that our formula becomes ' 'yif ^,

or the cube of '^^.

160, The foregoing are the methods at present known
for reducing such formulae as we have considered, either to

squares, or to cubes, provided the highest power of the un-

known quantity do not exceed the fourth power in the

former case, nor the third in the latter.

We might also add the problem for transforming a given

formula into a biquadrate, in the case of the unknown
quantity not exceeding the second degree. But it will be

perceived, that, if such a formula as a -{ bx + ex- were

proposed to be transformed into a biquadrate, it must in

the first place be a square; after which it will only remain

to transform the root of that square into a new square, by
the rules already given.

If x" -\- 7, for example, is to be made a biquadrate, we
first make it a square, by supposing

_ 7p'-g- _ g'-lp-

^

the formula then becomes equal to the square,

y* -X^q'f' + 49;>* „ _ff-^ 14^y- + 49p*

lyz-g'*

~
4/j=j-

'

the root of which, —y,
——^ must likewise be transformed into

'Z'pq

a square ; for this purpose, let us multiply the two terms by

2pg, in order that the denominator becoming a square, we
may have only to consider the numerator ^p(j(7p" -+ q").

Now, we cannot make a square of this formula, without

c c
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having previously found a satisfactory case ; so that sup-

posing q — pz, we must have the formula,

^p"-z(7f + py-) = 2p%(7 -1- ;^2),

and, consequently, if we divide by p*, the formula 2^(7 +2")

must become a square. The known case is here ^ = 1, for

which reason we shall make z = 1 -\- 1/, and we shall thus

have

(2 + %) X (8 + % + y^) =16 + 20// + 6//2 + %',

the root of which we shall suppose to be 4 + |y; then its

square will be 16 + Wt/ -\- yj/', which, being made equal

to the formula, gives 6 -i- 2j/ = y ; therefore
J/
= 4-j ^"d

z = .|. Also, z = — ; so that q = 9, and p — 8, which

makes x = ^^, and the formula 7 4-^"= y-^-rrV- ^^ ^^'^

now extract the square root of this fraction, we find 4-^

;

and taking the square root of this also, we find 41 ; con-

sequently, the given formula is the biquadrate of 44-

161. Before we conclude this chapter, we must observe,

that there are some formulas, which may be transformed into

cubes in a general manner ; for example, if cx"^ must be a

cube, we have only to make its root = px, and we find

cx'^ = p^x^, or c — p^r, that is, x = — , or x = cq^, if we

. 1 .

^
write— instead of p.

The reason of this evidently is, that the formula contains

a square, on which accoant, all such formulae, as a(b + cx)%
or ab~ + ^abcx + ac"x\ may very easily be transformed

into cubes. In fact, if we suppose its cube root to be

h + cx
, ,, , , . ,, . x„ (* + cxY

, we shall have the equation a\b + ex)- = ,

which, divided by {b + ex)-, gives a = —-— , whence we

aq^ —b . . . .

get X = , a value in which q is arbitrary.

This .shews how useful it is to resolve the given formulae
into their factors, whenever it is possible : on this subject,

therefore, we think it will be proper to dwell at some length
in the following chapter.



CHAP. xr. OF ALGEBRA. 387

CHAP. XI.

Of the Resolution of the Formula ax^ + hxy + cy- into its

Factors.

162. The letters x and y shall, in the present formula,

represent only integer numbers ; for it has been sufficiently

seen, from what has been already said, that, even when we
were confined to fractional results, the question may always
be reduced to integer numbers. For example, if the number

t

sought, X, be a fraction, by making x = —, we may always

assign t and ii in integer numbers; and as this fraction may
be reduced to its lowest terms, we shall consider the numbers
t and ^^ as having no common divisor.

Let us suppose, therefore, in the present formula, that x
and 7/ are only integer numbers, and endeavour to determine
what values must be given to these letters, in order that the

formula may have two or more factors. This preliminary

inquiry is very necessary, before we can shew how to trans-

form this formula into a square, a cube, or any higher

power.

163. There are three cases to be considered here. The
first, when the formula is really decomposed into two rational

factors; which happens, as we have ali'eady seen, when
h- — 4ac becomes a square.

The second case is that in which those two factors are

equal ; and in which, consequently, the formula is a square.

The third case is, when the formula has only irrational

factors, whetfier they be simply irrational, or at the same
time imaginary. They will be simply irrational, when
h' — 4'ac is a positive number without being a .square; and
they will be imaginary, if ^- — 4«c be negative.

164. If, in order to begin with the first case, we suppose
that the formula is resolvible into two rational factors, we
may give it this form, {fx + gij) x {/ix + ki/), which already

contains tvvo factors. If we then wish it to contain, in a ge-

neral manner, a greater number of factors, we have only to

makefx -\- gy = pq, and hx + A,7/ — rs ; our formula will

then become equal to the product pqrs ; and will thus neces-

sarily contain four factors, and we may increase this number
at pleasure. Now, from these two equations we obtain a

double value for x, namely, x = ..^ , and x=i -^t—-,

c c 2
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which gives hpq — hgy =Jrs — fhy\ consequently,

frs — hpq ^Pf]~^^^ :^ 1 -r- 1 1

ti = -tt;—7—, and X= —-.^—;— *
: but it we choose to have

^ J1^-hg J^-hg
X and y expressed in integer numbers, we must give such

values to the letters, p^ </, ;•, and 5, that the numerator may
be really divisible by the denominator; which happens

either when p and r, or q and s, are divisible by that de-

nominator.

165. To render this more clear, let there be given the

formula x'^ — y\ composed of the factors {x-{- y) x {x —y).
Now, if this must be resolved into a greater number of

factors, we may make x -\- y = pq, and x — y = rs ; we
pq-\-rs pq — rs

shall then have x = -^—, and y = —-x ; but, m order
/il til

that these values may become integer numbers, the two pro-

ducts, pq and r^, must be either both even, or both odd.

For example, let p = 7, q == 5, r = S, and s — \, we
shall have pq = 35, and rs = 3 ; therefore, x = 19, and

2/ = 16; and thence x- —if- =i 105, which is composed of

the factors 7x5x3x1; so that this case is attended

with no difficulty.

166. The second is attended with still less; namely, that

in which the formula, containing two equal factors, may be
represented thus: {fx + g"!/)', that is, by a square, which

can have no other factors than those which arise from the

rooty^ + gy ; for if we make fx + gy = pqr, the formula

becomes p"q'r', and may consequently have as many factors

as we choose. We must farther remai'k, that one only of the

two numbers x and y is determined, and the other may be
pq?' — gy

taken at pleasure ; for x = ^
—'-

; and it is easy to give

i/ such a value as will remove the fraction.

The easiest formula to manage of this kind, is x- ; if we
make x = pqr, the square .r- will contain three square fac-

tors, namely p\ q% and r\

167. Several difficulties occur in considering the third

case, which is that in which our formula cannot be resolved

* For, since f-t^ + gy = pg> and hx + ky =: rs, we have

j}Q — fx , rs — hx . PQ — fx rs — hx
y —^-^ ^, and y = ; then ——^^— = ; ;^

g
-^ k g k

whence, fkx — hgx = kpq — grs, and, consequently,

_ kpq — ^rs
"'- fic-hg

•
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into two rational factors ; and here particular artifices are

necessary, in order to find such values for x and j/, that the

formula may contain two, or more factors.

We shall, however, render this inquiry less difficult by
observing, that our formula may be easily transformed into

another, in which the middle term is wanting ; for we have

only to suppose x — —-— , in order to have the following for-

so that, neglecting the middle term, we shall consider the

formula ax- + cy-, and shall seek what values we must give

to X and y, in order that this formula may be resolved into

factors. Here it will be easily perceived, that this depends

on the nature of the numbers a and c ; so that v/e shall

begin with some determinate formulae of this kind.

168. Let us, therefore, first propose the formula x- 4- y^,

which comprehends all the numbers that are the sum of two

squares, the least of which we shall set down ; namely, those

between 1 and 50

:

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32,

34, '^Q, 37, 40, 41, 45, 49, 50.

Among these numbers there are evidently some prime

numbers which have no divisors, namely, the following

:

2, 5, lo, 17, 29, 37, 41 : but the rest have divisors, and il-

lustrate this question, namely, ' What values are we to

adopt for x and y, in order that the formula x'^ -r y" may
have divisors, or factors, and that it may have any number
of factors .'*

' We shall observe, farther, that we may neglect

the cases in which x and y have a common divisor, because

then A'- + y'^ would be divisible by the same divisor, and
even by its square. For example, if x = Ip and y = Iq,

the sum of the squares, or

49p"- + 499= = 49 (p- + q),
will be divisible not only by 7, but also by 49 : for which

reason, we shall extend the question no farther than the

formulae, in which x and y are prime to each other.

We now easily see where the difficulty lies : for though it

is evident, when the two numbers x and y are odd, that the

formula x'^ + 3/" becomes an even number, and, consequently,

divisible by 2 ;
yet it is often difficult to discover whether

the formula have divisors or not, when one of the numbers is

even and the other odd, because the formula itself, in that case,

is also odd. We do not mention the case in which x and y
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are both even, because we have already said, that these num-
bers must not have a common divisor.

169. The two numbers .r and y must therefore be prime

to each other, and yet the formula a.*- -\- }f~ must contain

two or more factors. The preceding method does not J^pply

here, because the formula is not resolvible into two rational

factors ; but the irrational factors, which compose the formula,

and which may be represented by the product

(.r +?/./-!) X {x~y^/-\),
will answer the same purpose. In fact, we are certain, if the

formula x" -f if have real factors, that these irrational factors

must be composed of other factors ; because, if they had not

divisors, their product could not have any. Now, as these

factors are not only irrational, but imaginary ; and farther,

as the numbers x and y have no common divisor, and there-

fore cannot contain rational factors; the factors of these

quantities must also'be irrational, and even imaginary.

170. If, therefore, we wish the formula ^r- + J/-
to have

two rational factors, we must resolve each of the two irra-

tional factors into two other factors ; for which reason, let us

first suppose

X + tj ^/ — \ = {p ^- qV ~\) X (r + 5^/ — 1);

and since a/ — 1 may be taken minus, as well as phis, we
shall also have

X — y ^^ -1 =:(p — q y''-l) X {r — s x/- 1).

Let us now take the product of these two quantities, and we
shall find our formula x~ \- y"~ — (p- -j- q"^ x (r^ + 5^) ;

that is, it contains the two rational factors p- + g-, and
r- + S-.

It remains, therefore, to determine the values of x and y
which must likewise be rational. Now, the supposition we
have made, gives

X + y ^ — 1 = pr — qs + ps \/ — I + qr ^/—l ; and
X — y x/ — ^ = pr — qs — ps a/ — 1 — qr ^Z— 1.

If we add these formulae together, we shall hdL\ex=pr—qs
;

if we subtract them from each other, we find

% V'— 1 = ^ps v^ ~ 1 + ^qr a/— 1, or y = ps + qr.

Hence it follows, if we make x — pr—qs, and y = ps + qr,

that our formula x- -f y- must have two factors, since wo
find X- + y- ~'(p- -h q-) x (r- + s^). If, after this, a

greater number of factors be required, we have only to as-

sign, in the same manner, such values to ;; and q, that

j)^ + q- may have two factors; wc shall then have three
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factors in all, and the number might be augmented by this

method to any length.

171. As in this solution we have found only the second

powers of p, q, r, and s, we may also take these letters minus.

If 2', for example, be negative, we shall have x =^ -pr + qs,

and 7/ = ps — qr ; but the sum of the squares will be the

same as before; which shews, that when a number is equal

to a product, such as {p- + q) x (r^ + s-), we may resolve

it into two squares in two ways; for we have first found

X = pr — qs, and if = ps -r qr, and then also

X = pr + qs, and y =z ps — qr.

For example, let p = 3, q = 'Z, r =: 9., and * = 1 : then

we shall have the product 13 x 5 = 65 — a;- + .V" > in

which X = 4, and j/ = 7 ; or a; = 8, and 2/ = I ; since in

both cases x- + y- = 60. If we multiply several numbers
of this class, we shall also have a product, which may be the

sum of two squares in a greater number of ways. For ex-

ample, if we multiply together 2^ + 1" — 5, 3- + 2- = 13,

and 4- + 1- = 17, we shall find 1105, which may be re-

solved into two squares in four ways, as follows

:

1. 33'^
-f- 4-, 2. 32^ + 9-,

3. 31^ -f 12 , 4. 24^ + 23'-'.

172. So that among the numbers that are contained in

the formula x- -)- i/\ are found, in the first place, those

which are, by m-ultiplication, the product of two or more
numbers, prime to each other ; and, secondly, those of a

different class. We shall call the latter simplefactors of the

formula iT- -t y-, and the former compound factors ; then

the simple factors will be such numbers as the following:

1, 2, 5, 9, 13, 17, 29, 37, 41, 49, &c.

and in this series we shall dlstinfruish two kinds of numbers

;

one are prime numbers, as J^, 5, 13, 17, 2jy, 37, 41, which

have no divisor, and are all (except the number 2), such,

that if we subtract 1 from them, the remainder will be di-

visible by 4; so that all these numbers are contained in the

expression ^n + 1. The second kind comprehends the

square numbers 9, 49, &c. and it may be observed, that the

roots of these squares, namely, 3, 7, &c. are not found in

the series, and that their roots are contained in the formulae

47i — 1. It is also evident, that no number of the form
4/1 — 1 can be the sum of two squares ; for since all num-
bers of this form are odd, one of the two squares must be

even, and the other odd. Now, we have already seen, that

all even squares are divisible by 4, and that the odd squares

are contained in the formula 4?i + 1 : if we therefore add
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together an even and an odd square, the sum will always

have the form of 4HI + 1, and never of 4w — 1. Farther,

every prime number, which belongs to the formula 4<?i -\- 1,

is the sum of two squares ; this is undoubtedly true, but it

is not easy to demonstrate it*.

173. Let us proceed farther, and consider the formula

x- + 2y-, that we may see what values we must give to

.V and </, in order that it may have factors. As this formula

is expressed by the imaginary factors (a: + ?/ -v/—2) x
{x — y y — 2), it is evident, as before, that, if it have di-

visors, these imaginary factors must likewise have divisors.

Suppose, therefore,

00 + yV-^= {p + q V~^) X (r -f s v/ - 2),

whence it immediately follows, that

X —y ^/-2 = {p - q^/-9) X (r - .s ^/ - 2),

and we shall have

.r- 'V 2f = (p'' + 2^«) X (r" + 2^2);

so that this formula has two factors, both of which have the

same form. But it remains to determine the values of x and
J/, which produce this transformation. For this purpose, we
shall consider that, since

^+y\/ — 2=pr — 2qs 4- qr ^' — 2 ^- ps \^— 2, and
X — y V—2 = pr — 2qs ~ qr ^Z - 2 — ps^ — 2,

we have the sum 2.r = 2;jr — 4<(js ; and, consequently,

X = pr — 2qs : also the difference

2y aZ - 2 = ggrr ^/ -2 + %j* a/ - 2;

so that y = qr + ps. When, therefore, our formula jr-+~J/'^

has factors, they will always be numbers of the same kind
as the formula; that is to say, one will have the form
p"-\-9.q", and the other the form r~+ 2s^-\ and, in order that

this may be the case, x and y may also be determined in two
different ways, because q may be either positive or negative

;

for we shall first have x = pr — ^qs, and y = ps + qr;
and, in the second place, x = pr + ^qs, and y = ps — qr.

174. This formula x- + 2y" comprehends therefore all the

numbers wiiich result from adding together a square and
twice another square. The following is an enumeration of
these numbers as far as 50

;

1, 2, 3, 4, (>, 8, 9, 11, 12, 16, 17, IS, 19, 22, 24, 25,

27, 32, SS, ;]4, S6, i^S, 41, 43, 44, 49, 50.

* The curious reader may see it demonstrated by Gauss, in

his " Disquisitioncs Aritlimcticac ;" and by De la (irange, in the

Memoirs ol" Berlin, 1/68.
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We shall divide these numbers, as before, into simple

and compound; the simple, or those which are not com-

pounded of the preceding numbers, are these : 1, 2, 3, 11,

17, 19, 25, 41, 43, 49, all which, except the squares 25
and 49, are prime numbers; and we may remark, in ge-

neral, that, if a number is prime, and is not found in this

series, we are sure to find its square in it. It may be ob-

served, also, that all prime numbers contained in our

formula, either belong to the expression 8n + 1, or 8n + S;

while all the other prime numbers, namely, those wliich are

contained in the expressions 8n + 5, and Sn + 7, can never

form the sum of a square and twice a square : it is farther

certain, that all the prime numbers which are contained in

one of the other formulae, Sn -{- I, and Sn -J- 3, are always

resolvible into a square added to twice a square.

175. Let us proceed to the examination of the general

formula x- + cy-, and consider by what values of x and y
we may transform it into a product of factors.

We shall proceed as before ; that is, we shall represent

the formula by the product

{x '\- y ^/ — c) X (.r — 3/ \/ — c),

and shall likewise express each of these factors by two fac-

tors of the same kind ; tliat is, we shall make

a; + ?/ a/— c = (p + g' v' — c) X (r -}- A' a/— c), and
X — y ^/ — c = {p — <[ \/ — c) X (r — * \/ — c) ; whence
X-+ cy° = (p2 _|_ Q(^^^ X Cr" + ca'-).

We see, therefore, that the factors are again of the same
kind with the formula. With regard to the values of ^r and

y, we shall readily find x ^= fr \ cqs, and y = qr — ps ; or

X = pr — cqs, and y = ps + qr; and it is easy to perceive

how the formula may be resolved into a greater number of

factors.

176. It will not now be difficult to obtain factors for

the formula x" — cy^ ; for, in the first place, we have only

to write — c, instead of + <? ; but, farther, we may find

them immediately in the following manner. As our for-

mula is equal to the product

{x -\- y ^f c) X {x — y ^/c),

let us make x -{ y ^/c = (^p + q ^c) x {rs + \/c), and
X — y \/c — {^p — q v/e) x (r — * ^/c), and we

shall immediately have x" — cy" = {p^ — cq-) x {r- — cs") ;

so that this formula, as well as the preceding, is equal to a
product whose factors resemble it in form. With regard to
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the values of .rand ?/, they will likewise be found to be
double ; that is to say, we shall have

cc = pr + cqs, and y = qr + ps ; we shall also have
X = pr — cqs, and t/ = ps — qr. If we chose to make

trial, and see whether we obtain fj-om these values the pro-

duct already found, we should have, by trying the first,

x"^ = p-7-~
-jr 9.cpqrs + ccfs", and

y" — p-s- -\- 2pqrs + q'^r~, or

ctj^ = cp~s- -}- 2cpqrs + cq-?~- ; so that

x'^ — cy^ = p"r" — cp-s" -r c"q^s- — cq-r", which is just

the product already found, (/>- — c§'-) x (r- — cs~).

177. Hitherto we have considered the first term as with-

out a coefficient ; bu^ we shall now suppose that term to be
multiplied also by another letter, and shall seek what factors

the formula ax- -\- ci/- may contain.

Here it is evident that our formula is equal to the product

(xx/a + 7/^ — c) X {.V ^a — y ^,/ — c), and, consequently,

that it is required to give factors also to these two factors.

Now, in this a difficulty occurs; for if, according to the

second method, we make
X ^/a + y ^— c ~ {p ^/a -h q \/ — c) x (r ^/a -\- s v' ~c) =
apr — cqs -\- ps \/ — ac + qr V — ac^ and
X ^/a — y ^/— c = {p \/a —q x^— c) x {r x/a — s ^/—c) —
apr — cqs •— ps V — ac — qr \/ — ac, v/e shall have

2x a/a = ^apr — %cqs^ and

^y V — c = 9.ps s,/ — ac -f 9,qr s/ — ac\ that is to say, we
have found both for x and lor' 7/ irrational values, which

cannot here be admitted.

178. But this difficulty may be removed thus: let us

make
X Va -{ y xf — c = {p Va + q V—c) x (;- + s^/ — ac) =
pr Va — cqs \/a + qr s/ — c + aps ^/ — c, and
X \/a —i/x/ — c= {p^'/a — q ^/ — c) x (r — s s^ — ac) =
pr x/a — cqs Va — qr \/ —c — aps sf — c. This supposition

will give the following values for .rand z/; namely, x=pr— cqs,

and y = qr + aps; and our formula, ax" + cy", will have

the factors (ap- + cq-) x (r^ + acs-), one of which only

is of the same form with the formula, the other being

different.

179. There is still, however, a great affinity between

these two formula^, or factors; since all the numbers con-

tained in the first, if multiplied by a number contained in

the second, revert again to the first. . We have already

seen, that two numbers of the second form x"^ + acj/", which
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returns to the formula .v^ + ci/-, and which we have already

considered, if multiplied together, will produce a number of
the same form.

It only remains, therefore, to examine to what formula we
are to refer the product of two numbers of the first kind, or

of the form ax- -J- cj/^.

For this purpose, let us multiply the two formulae

{ap- + cq") X (ar- + cs-), which are of the first kind. It

is easy to see that this product may be represented in the

following manner : (api' + cqs)- \- ac{ps — qr)-. If, there-

fore, we suppose

apr -T cqs = x, and ps — qr — y,
we shall have the formula x"^ + acy-, which is of the last

kind. Whence it follows, that if two numbers of the first

kind, ax- + cy-, be multiplied together, the product will be
a number of the second kind. If we represent the numbers
of the first kind by I, and those of the second by II, we
may represent the conclusion to which we have been led,

abridged as follows

:

I X I gives II ; i x ii gives i ; ii X ii gives ii.

And this shews much better what the result ought to

be, if we multiply together more than two of these num-
bers ; namely, that i x i x i gives i ; that i x i x ii

gives II ; that i x ii x ii gives i ; and lastly, that ii x ii x ii

gives II.

180. In order to illustrate the preceding Article, let

a — 2, and c = o; there will result two kinds of numbers,
one contained in the formula 9.x'^ H- S^iy", the other contained

in the formula x- + Qy". Now, the numbers of the first kind,

as far as 50, are

1st, 2, 3, 5, 8, 11, 12, 14, 18, £0, 21, 27,

29, 30, 32, 35, 44, 45, 48, 50;
and the numbers of the second kind, as far as 50, are

2d, 1, 4, 6, 7, 9, 10, 15, 16, 22, 24, 25,

28, 31, 33, 36, 40, 42, 49.

If, therefore, we multiply a number of the first kind, for

example, 35, by a number of the second, suppose 31, the

product 1085 will undoubtedly be contained in the formula
^x" -f 32/- ; that is, we may find such a number for y, that

1085 — 3j/- may be the double of a square, or = 9,x" : now,
this happens, first, when «/ = 3, in which case a? = 23 ; in

the second place, when y = 11, so that a; = 19; in the

third place, when y = 13, which gives a; = 17; and, in the

fourth place, when j/ = 19, whence x = \.

We may divide these two kinds of numbers, like the

others, into simple and compound numbers : we shall apply
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this latter term to such as are composed of two or more of

the smallest numbers of either kind ; so that the simple

numbers of the first kind will be 2, 3, 5, 11, 29; and the

compound numbers of the same class will be 8, 12, 14, 18,

20, 27, 30, 32, 35, 40, 45, 48, 50, &c.

The simple numbers of the second class will be 1, 7, 31 ;

and all the rest of this class will be compound numbers

;

namely, 4, 6, 9, 10, 15, 16, 22, 24, 25, 28, 33, 36, 40,

42, 49.

CHAP. XII.

Of the Transformation of the Formula ax- + cy- into

Squares, and higher Powers.

181. We have seen that it is frequently impossible to re-

duce numbers of the form ax^ -f cy^ to squares ; but when-
ever it is possible, we may transform this formula into an-

other, in which a = 1.

For example, the formula 2/?- — q'^ may become a square

;

for, as it may be represented by

{2p + qY - 2(p + qy,

we have only to make 9,p + q=z x, and p -\- q = y, and we
shall get the formula x- — 2ij-, in which « — 1, and c = 2.

A similar transformation always takes place, whenever such

formuloe can be made squares. Thus, when it is required

to transform the formula ax"^ -\- cij- into a square, or into a

higher power, (provided it be even) we may, without

hesitation, suppose a = \, and consider the other cases as

impossible.

182. Let, therefore, the formula x" f cj/* be proposed,

and let it be required to make it a square. As it is com-
posed of the factors (.r+j/v/— c) x {x —y^—c^^ these

factors must eitiier be squares, or squares multiplied by the

same number. For, if the product of two numbers, for

example, pq, must be a square, we must have p = r-, and

q =s-; that is to say, each factor is of itself a square; or

p = mr^, and q = ms- ; and therefore these factors are

squares multiplied both by the same number. For which

reason, let us make x + y <,/ — c = m {p + q ^,/ — c)" ; it will

follow that X — y ^/—c = m{p— q^/— c)-, and
we shall have x- + cy"^ = m^(p- + cq'-y, which is a square.
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Farther, in order to determine x and j/, we have the equa-
tions X -^y ^/ — c = mp- + ^mpq V — c — mcq^, and

X—y ^ — c = mp' — 2mpq x/ — c — mcq" ; in which
X is necessarily equal to the rational part, and yV — c to

the irrational part ; so that x = mp'^— mcq", and
«/ \/— c = ^nipq a/ — c, or y = 2mpq ; and these are the

values of x and y that will transform the expression

x'^ + cy^ into a square, m"(p" + cq'^y, the root of which is

mp- -|- mcq".

183. If the numbers x and z/ have not a common divisor,

we must make m =1. Then, in order that x- + cy'^ may
become a square, it will be sufficient to make x = p" — cq",

and y = 2pq, which will render the formula equal to the

square (p" + cq-)-.

Or, instead of making x = p- — cq^, we may also suppose
X = cq" — p\ since the square a;- is still left the same.

Besides, the same formulEe having been already found
by methods altogether different, there can be no doubt
with regard to the accuracy of the method which we have
now employed. In fact, if we wish to make x- + cy^

a square, we suppose, by the former method, the root to be

X +^-^, and find x"- + cif - x"- -\- -^^ +^^-
q

^
q t

Expunge the ^-, divide the other terms by j/, multiply by
q"j and we shall have

C(fy = 2pgx + p'^y ; or cq"y — p'^y = 2pqx.

Lastly, dividing by 2pq, and also by y, there results

— = -^ . Now, as x and _y, as well as p and y, are to

have no common divisor, we must make x equal to the

numerator, and y equal to the denominator, and hence we
shall obtain the same results as we have already found,

namely, x = cq' — ^-, and y = ^pq-

184). This solution will hold good, whether the number c

be positive or negative ; but, farther, if this number itself

had factors, as, for instance, the formula x''- + acy', we
should not only have the preceding solution, which
gives X = aco^- — ^', and y = 2pq, but this also, namely,

X = cq-— ap^, and
J/
= 2pq ; for, in this last case, we have,

as in the other,

x^ ^- acq^ = c^q* + 2acp"q^ + a'^p'^ = (cjs + ap^y ;

which takes place also when we make x = ap"- — cq'^, be-

cause the square x^ remains the same.
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This new solution is also obtained from the last method,

in the following manner

:

If we make x + y x^ — ac = (^p \/a + q\/ — c)-, and
X — y a/ — ac ~ {p \/a ~ q y — c)'\ we

shall have x"- \- acif — {ap- H- c^'-)-,

and, consequentl}^, equal to a square. Farther, because,

X + y \/ — ac = ap" + 9.pq y— ac — cq", and
X — y \/ — ac — op- — 9,pq y — ac — c^-,

we find x — ap"- — cq", and y — 2/?g.

It is farther evident, that if the number ac be resolvible

into two factors, in a greater number of ways, we may also

find a greater number of solutions.

185. Let us illustrate this by means of some determinate

formulae; and, first, if the formula x- -j-y* must become a

square, we have ac = 1 ; so that x—p"^ — <f, and y = 9,pq ;

whence it follows that x'^ -\- y~ =
( jo- + g'-^)^.

If we would have x'- — j/- = D ; we have «c ^ — 1 ; so

that we shall take x — p'^ + g'^ and y = Spg*, and there will

result .r- — if- = (^p- — 5-2)2 — . '

If we would have the formula ;r- + 2y- = D, we have
ac = 2', let us therefore take x = p'^ —^'j or a; = 2p^— 5-,

and y = 2pq, and we shall have
^2 .j- 2^2 — (p2 ^ qiy2^ or x" + ^y^ = (Sp^ + ^2)2.

If, in the fourth place, we would have x" — 2j/- z=. D,
in which ac = — 2, we shall have x = p" + iiq% and

2/ = 2pq ; therefore x- — 2j/- = (p- — ^q")".

Lastly, let us make x- -f 6^- = D . Here we shall have

ac = 6', and, consequently, either a = 1, and c = 6, or

a — 2, and c = 2. In the first case, x — p- — Qq", and

y = ^pq; so that a;' + 6t/- = {p^ + 6q-)" ; in the second,

a; = 2/j- — 3q", and 7/ = 9pq ; whence

:r^ + 6tf =: {2p'' + ^?-)-.

186. But let the formula ax- + cy- be proposed to be
transformed into a square. We know beforehand, that this

cannot be done, except we already know a case, in which
this formula really becomes a square; but we shall find

this given case to be, when x —J", and y ^= g\ so that

af- -\- eg' = h'; and we may observe, that this formula

can be transformed into another of the form f^ + acu^,

by making

afx-hcg?/ - px — fy ^ .„
t =1 -^

j^
H and u = ^

J

''^
; for if

a^/2a:2 + ^acfgxy+ c^y" ,
s'= r-; , and
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„, = g'.^'-2/CT+/y „, have

a"f^x"' + d^^-y"- + acg'-x"^ 4- acf^y"' _
t^ + «c?i =

^^
—

ax'(af- + eg") + C7/"{af^ + cg^)

also, since qf^ + eg" = h'^, we have t- + acu- = ax" + ey".

Thus, we have given easy rules for transforming the ex-

pression t' + acu~ into a square, to which we have now re-

duced the formula proposed, ax" + cy".

187. Let us proceed farther, and see how the formula

ax^- 4- cy", in which x and y are supposed to have no com-
mon divisor, may be reduced to a cube. The rules already

given are by no means sufficient for this ; but the method
Avhich we have last explained applies here with the greatest

success : and what is particularly worthy of observation, is,

that the formula may be transformed into a cube, whatever

numbers a and e are; which could not take place with

regard to squares, unless we already knew a case, and which
does not take place with regard to any of the other even
powers; but, on the contrary, the solution is always pos-

sible for the odd powers, such as the third, the fifth, the

seventh, &c.

188. Whenever, therefore, it is required to reduce the

formula ax" + cy~ to a cube, we may suppose, according to

the method which we have already employed, that

X \^a -\- y \/ — c -— (j5 ^,/a -^^ q V — c)', and
X \/a — y ,/ — c = {p s^a — q >J — c)^

'-,

the product {ap^ + cifY, which is a cube, will be equal to

the formula ax- + ey". But it is required, also, to deter-

mine rational values for x and y^ and fortunately we suc-

ceed. If we Sctually take the two cubes that have been
pointed out, we have the two equations

Xi^/a-\-y\/ —cz=:apl/ a+ Zajfiqn/— c—^cpqX/ a—cqty -c, and
x^a—ys/ — c = ap'^a—Sap^q V'

—

c— 3cpq^ a + cq^ — c
;

from which it evidently follows, that

X = op^ — Scpq^, and y ~ Qap"q — eq^.

For example, let two squares x'^, and ?/% be required,

whose sum, .r- -{- y-, may make a cube. Here, since a = 1,

and c r: 1, we shall have x = p^ — Qpq'^, and y — Sp-q — q^,

which gives .r" -f- t/^ =
(
p- + q^y. Now, if p = ^, and

§1=1, we find X = 2, and y = 11 ; wherefore

x".\-y"'= 125 = 53.
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189. Let US also consider the formula x- + Si/^, for the

purpose of making it equal to a cube. As we have, in this

case, a = 1, and c = 3, we find

0.' = p^ — 9pq-, and t/ = Sp-q — 2q^,

whence x- + 3?/- = {p- + 3q-}^- This formula occurs very

frequently ; for which reason we shall here give a Table of
the easiest cases.

p
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longer exist ; because tjie two factors, wliich would then be

jc -\- y, and x — y, might have common divisors, even when
,r and y had none ; as would be the case, for example, if

both these letters expressed odd numbers.

Thus, when x' — «/- must become a cube, it is not neces-

sary that both X + y, and x — y, should of themselves be

cubes; but we may suppose x -{ y =^ 2p\ and x—y = 4!q^;

and the formula x"^ — y- will undoubtedly become a cube,

since we shall find it to be Sp^q^y the cube root of which is

2pq. We shall farther have x= p^-\- 2q^, andy — p^— 2q^.

On the contrary, when the formula ax'^ + cy- is not re-

solvible into two rational factors, we cannot find any other

solutions beside those which have been already given.

192. We shall illustrate the preceding investigations by
some curious examples.

Question 1. Required a square, .r-, in integer numbers,

and such, that, by adding 4 to it, the sum may be a cube.

The condition is answered when x- = 121 ; but we wish to

know if there are other similar cases.

As 4 is a square, we shall first seek the cases in which

X- -j- y- becomes a cube. Now, we have found one case,

namely, if x = p^ — Spq"^, and y = Sp'^q — g': therefore,

since y~ = 4, we have y = + 2, and, consequently, either

3p-q — q^ = + 2, or Sp-q — q^ = — 2. In the first case,

we have §'(3p'^ — q-) = 2, so that g' is a divisor of 2.

This being laid down, let us first suppose q = 1, and we
shall have 3p~ —1=2; therefore p = 1 -, whence x = Q,

and x" = 4.

If, in the second place, we suppose q — 2, we have

6//- — 8 = ±2; admitting the sign +, we find 6p- =10,
and p2 _ 5 . whence we should get an irrational value of /j,

which could not apply here ; but if we consider the sign —

,

we have 6p- = 6, and p = 1 ; therefore x = 11 : and these

are the only possible cases ; so that 4, and 121, are the only

two squares, which, added to 4, give cubes.

193. Question 2. Required, in integer numbers, other

squares, beside 25, which, added to 2, give cubes.

Since x~ + 2 must become a cube, and since 2 is the

double of a square, let us first determine the cases in which

x~ + 2y- becomes a cube ; for which purpose we have, by
Article 188, in which a = I, and c = 2, x = p"' — 6pq',

and j/ = 3p"q — 2§'-; therefore, since y = +1, we must
have Zp"q ~ q^^ or q{op- — 2g'^) = +1 ; and, consequently,

q must be a divisor of 1.

Therefore let g^ = 1, and we shall have 2>p- — 2 = ±1.
D D
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If we take the upper sign, we find 3p^ = 3, and p = I
;

whence x = 5 : and if we adopt the other sign, we get a

value of p, which being irrational, is of no use; it follows,

therefore, that there is no square, except 25, which has the

property required.

194^. Question J3. Required squares, which, multiplied

by 5, and added to 7, may produce cubes ; or it is required

that 5x" + 7 should be a cube.

Let us first seek the cases in which 5x- + ly" becomes a

cube. By Article 188, a being equal to 5, and c equal 7,

we shall find that we must have x — 5p"' ~ 21j5ry^ and

2/ = 15p^q — Iq' ; so that in our example y being = + 1,

we have \5p"q — Iq^ = q{\5p^ — 7^-) = ± 1 ; therefore q
must be a divisor of 1 ; that is to say, 7 = ± 1 ; conse-

quently, we shall have \5p- — 7 = ± 1 ; from which, in

both cases, we get irrational values for p : but from which

we must not, however, conclude that the question is im-

possible, since p and q might be svich fractions, that y = 1,

and that x would become an integer ; and this is what

really happens; for if p = i, and q = i, wc find ?/ = 1,

and X = 2; but there are no other fractions which render

the solution possible.

195. Question 4. Required squares in integer numbers,

the double of which, diminished by 5, may be a cube ; or

it is requii'ed that 2x" — 5 may be a cube.

If we begin by seeking the satisfactory cases for the

formula 9,x- — Sj/^, we have, in the 188th Article, a = 9,,

and c=—5; whence x — %)^ + ^5pq', and y— 6p"q + 5q^

:

so that, in this case, we must have ?/ = + 1 ; consequently,

6p^g + 5y ' = q{6p' + Sq"^) =±l;
and as this cannot be, either in integer numbers, or even in

fractions, the case becomes very remarkable, because there

is, notwithstanding, a satisfactory value of x; namely,

a; = 4 ; which gives ^x" — 5 = 27, or equal to the cube

of 3. It will be of importance to investigate the cause of

this peculiarity.

196. It is not only possible, as we see, for the formula

2x^ — 5y- to be a cube ; but, what is more, the root of this

cube has the form %> — 5q-, as we may perceive by making

X = 4}, 2/ = 1, ]J = 2, and q = 1 ; so that we know a case

in which 2x" — 5i/- = {2p'^— 5q")\ although the two factors

of ^x" — 5?/-, namely, x ^2 + y ^^5, and x ^/S — y x/5,

which, according to our method, ought to be the cubes of

p ^/2 + q \/5, and of p ^^2 — q ^/5, are not cubes; for, in

our case, x V^ -\- y Vo = 4 ^^2 + v/5 ; whereas
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(py2 + q^5y = (2 v/S + ^/5y = 46 ^/2 + 29 ^5,
which is by no means the same as 4<\/2 + \/5.

But it must be remarked, that the formula r- — 10,9- may
become 1, or — 1, in an infinite number of cases; for ex-

ample, if r = 3, and s = 1, or if r = 19, and .s =6: and
this formula, multiplied by 2p" — 5f;^, reproduces a number
of th.is last form.

Therefore, lety ^ — 10.^'- = 1 ; and, instead of supposing,

as we have hitherto done, 2x- — ot/" — (2p- — Bq-^^ we may
suppose, in a more general manner,

2x^- - 5j/"- = (/' - 10^^-) X (2^.^ - Sq^-y

;

so that, taking the factors, we shall have

x^/2 ±2/v5 = {f±g^/10) X (/?/2 ±qV5y.
Now, (p V2 ± q ^5y= (2p^ + IBpq'^) y/ 2 + {Qp^ + 5q^) ^/ 5

;

and if, in order to abridge, we write Ay/ 2 + 3^/5 instead

of this quantity, and multiply by y + «* a/10, we shall

have hf \/2 + b/*a/5 + 2ao- ^/5 + 5b^ -^2 to make equal

to X ^2 -{- y a/5; whence results x =^ hf -r Bsg, and

J/
z^ b/' + 2a^. Now, since we must have y = ±: 1, it is

not absolutely necessary that Gp-q -\- 5q^ — 1 ; on the con-

trary, it is sufficient that the formula 8/*+ 2a^, that is to

say, thatf{6p'q -{- 5q^) 4- 2g(2p^ -\- I5pq'^) becomes == ±1

;

so that^and^ may have several values. For example, let

/=3, and ^ = 1, the formula ISp-q -{ I5q^ + 4p"' -f SOpq"

must become + 1 ; that is,

4p^ + ISp^-q + SOpq^ -{-I5q^ = ±1.
197. The difficulty, however, of determining all the pos-

sible cases of this kind, exists only in the formula ax^ + c?j%

when the number c is negative ; and the reason is, that this

formula, namely, Jt^ — acy'^, which depends on it, may then

become 1 ; which never happens when c is a positive num-
ber, because, x- + cj/% or x- + acy", always gives greater

numbers, the greater the values we assign to x and y. For
which reason, the method we have explained cannot be suc-

cessfully employed, except in those cases in which the two
numbers a and c have positive values.

198. Let us now proceed to the fourth degree. Here
we shall begin by observing, that if the formula ax~ + ci/- is

to be changed into a biquadrate, we must have a = 1 ; for

it would not be possible even to transform the formula into

a square (Art. 181); and, if this were possible, we might
also give it the form t- + «c'^' ; for which reason we shall

extend the question only to this last formula, which may be
reduced to the former, x- -J- cy^, by supposing « = 1. This

D D 2
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being laid down, we have to consider what must be the

nature of the values of x and 3/, in order that the formula

x'^ + c?/' may become a biquadratc. Now, it is composed

of the two factors {x { 1^ \/ — c)x {x — ?/ V ~ c) ; and each

of these factors must also be a biquadrate of the same kind ;

therefore we must make x -{- 1/^ — c — {p -\- q \/ — 1)% and

X — y s/'
— c= {p — q \f — c)*, whence it follows, that the

formula proposed becomes equal to the biquadrate (p- -\-cq^y-

With regard to the values of x and ?/, they are easily de-

termined by the following analysis:

X -\-y\/' —c =p* + 4p^q ^/ — c — 6cp"q- + c"q*— ^cpq^ ^f — c,

X —y ^/ -c=p^— 4p3q ^/ — c - 6cp^q- + c^q* + ^cpq- s' — c,

whence, x =/; ' — Gcjfiq" + cq* ; and y — ^pi^q — ^cpq^.

199. So that when x"^ + //- is a biquadrate, because

c = Ij we have

X = p* — 6p"-q"- + q* ; and y = ^p"q — 4pq^ ;

so that X- + ?/2 = {p- + q°-y.

Suppose, for example, p =: 9,, and q = 1; we shall then

find X = 7, and 3/ = 24 ; whence x'^ + j/" = 625 = 5'.

Ifp = 3, and 5 = 2, we obtain x = 119, and ?/ = 120,

Avhich gives .i^ + y^ = IS"*.

200. Whatever be the even power into which it is re-

quired to transform the formula ax" -f- cy", it is absolutely

necessary that this formula be always reducible to a square ;

and for this purpose, it is sufficient that we already know
one case in which it happens ; for we may then transform

the formula, as has been seen, into a quantity of the form

/2 -f acu", in which the first term i- is multiplied only by

1 ; so that we may consider it as contained in the expression

x^ + Cj/- ; and in a similar manner, we may always give to

this last expression the form of a sixth power, or of any
higher even power.

201. This condition is not requisite for the odd powers;

and whatever numbers a and c be, we may always transform

the formula ax" + cy" into any odd power. Let the fifth,

for instance, be demanded ; we have only to make

X y/a -\- y x' — c •=. {p v/a + q \/— cY, and
X \/a — y^ — c — {p \/a - q^^ — cf,

and we shall evidently obtain ax" + cy'^ — (ap^ + cq"y.

Farther, as the fifth power of p^/«-^-9^/ — c is —o"]i''\/'a +
5a^p*q V - c — lOacp^q^ Va - I0acp"-q^ ^ - c -\- ^c'^pc^

^a -f cf^q^ V — c, we shall, with the same facilit}', find

X = a'^p^ — lOacp^"^ + 5t2/?9^ and

y = Ba'^p'^q - \Oacp'^q^ -\- c"q\

If it is required, therefore, that the sum of two squares.
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such as X'' + J/*, may be also a fifth power, we shall have
« = 1, and c = 1; therefore, x — jr' — \0p g- + 5pq*

;

and
J/
= 5p*(j — 10/;"</^ -|- y^; and, farther, making yj = 2,

and <7 = 1, wc shah find x = 38, and §> = 41 ; consequently,

X" + if = 3125 = 5-\

CHAr. XIII.

Of some Expressions of the Form aa-* + /{y*, which are not

reducible to Squares.

202. Much labour has been formerly employed by some
n)athematicians to find two biquadrates, whose sum or dif-

ference might be a square, but in vain ; and at length it has

been demonstrated, that neither the formula x* -f- y% nor

the formula .r* — y*, can become a square, except in these

evident cases; first, when x = 0, or j/ = 0, and, secondly,

when^ = X. This circumstance is the more remarkable,

because it has been seen, that Ave can find an infinite

number of answers, when the question involves only simple

squares.

203. We shall give the demonstration to which we have
just alluded; and, in order to proceed regularly, we shall

previously observe, that the two numbers x and i/ may be

considered as prime to each other : for, if these numbers had
a common divisor, so that we could make x = dp, and

y =z dq, our formulae would become d^p* -r d^q*^, and
d'^p* — d*q*: which formulte, if they were squares, would
remain squares after being divided by t/* ; therefore, the

formulae p* -{- q^, and // — q*, also, in which p and q have

no longer any common divisor, would be squares ; con-

sequently, it will be sufficient to prove, that our formuke
cannot become squares in the case of x and ?/ being prime

to each other, and our demonstration will, consequently,

extend to all the cases, in which x and i/ have common
divisors.

204. Wc shall begin, therefore, with the sum of two

biquadrates-, that is, with the forn)ula x* + j/*, considering

X and y as numbers that are prime to each other : and we
have U) prove, that this formula becomes a square only in

the cases cibove-meiuioned ; in order to which, we shall enter
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upon the analysis and deductions v/liich this demonstration

requires.

If any one denied the proposition, it would be maintain-

ing that there may be such values of .r and ?/, as will make
x^ +«/"*» square, in great numbers, notwithstanding there

are none in small numbers.
But it will be seen, that if x and i/ had satisfactory values,

we should be able, however great those values might be, to

deduce from them less values equally satisfactory, and from
these, others still less, and so on. Since, therefore, we are

acquainted with no value in small numbers, except the two
cases already mentioned, which do not carry us any farther^

we may conclude, with certainty, from the following de-

monstration, that there are no such values of x and j/ as we
require, not even among the greatest numbers. The pro-

position shall afterwards be demonstrated, with respect to

the difference of two biquadrates, oe'^ — j/% on the same
principle.

205. The following consideration, however, must be at-

tended to at present, in order to be convinced that ::e* + y*
can only become a square in the self evident cases which have
been mentioned.

1. Since we suppose x and y prime to each other, that isy

having no common divisor, they must either both be odd,
or one must be even, and the other odd.

% But they cannot both be odd, because the sum of two
odd squares can never be a square ; for an odd square is

always contained in the formula 4« + 1 ; and, consequently,
the sum of two odd squares will have the form 4in + %
which being divisible by 2, but not by 4, cannot be a square.

Now, this must be understood also of two odd biquadrate
numbers.

8. If, therefore, x'' + y^ must be a square, one of the
terms must be even and the other odd ; and we have already

seen, that, in order to have the sum of two squares a square,

the root of one must be expressible by p" — 5^, and that of
the other by 9>pq ; therefore, x'^ = pP' — 5-, and y" = ^pq ;

and we should have x^ + ?/* — {p~ + q^y.
4. Consequently, y would be even, and x odd ; but since

x^ = p^—q^, the numbers p and q must also be the one even,

and the other odd. Now, the first, p, cannot be even ; for

if it were, p* — 9* would be a number of the form 4w — 1,

or 4tn + 3, and could not become a square : therefore p
must be odd, and q even, in which case it is evident, that

these numbers will be prime to each other.

5. In order that p- — <?' may become a square, or
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^y3 — q'i =: x% we must have, as we have already seen,

p = i'^ + s\ and q = 2rs; for then x"^ = (/•- — s'^}-, and
.r = 7'^ — 5*.

6. Now, ?/- must likcAvise be a square; and since we had
y" z= ^pq, we shall now have j/- = 47-s(;-- ^- 5") ; so that this

formula must be a square ; therefore rs{r- + s^) must also

be a square : and let it be observed, that r and s are num-
bers prime to each other ; so that the three factors of this

formula, namely, r, s, and r^ + s", have no common divisor.

7. Again, when a product of several factors, that have no
common divisor, must be a square, each factor must itself be
a square ; so that making r = ^*, and s = ti-, we must have

f^ + U* = D.
If, therefore, .r* + ?/* were a D , our formula t* + u*,

which is, in like manner, the sum of two biquadrates, would
also be a D . And it is proper to observe here, that since

^•2 = t^ — u*, and y'^ = 4!t-u^{t* + ?«*) the numbers t and u
will evidently be much smaller than .r and y, since .r and 1/

are even determined by the fourth powers of t and ti, and
must therefore become much greater than these numbers.

8. It follows, therefore, that if we could assign, in num-
bers however great, two biquadrates, such as a:** and 3/*,

whose sum might be a square, we could deduce from it a

luuuber, formed by the sum of two much less biquadrates,

which would also be a square ; and this new sum would en-

able us to find another of the same nature, still less, and so

on, till we arrived at very small numbers. Now, such a sum
not being possible in very small numbers, it evidently fol-

lows, that there is not one which we can express by very

great numbers.

9. It might indeed be objected, that such a sum does

exist in very small numbers ; namely, in the case which we
have mentioned, when one of the two biquadrates becomes
nothing : but we ansvver, that we shall never arrive at this

case, by coming back from very great numbers to the least,

according to the method which has been explained ; for if in

the small sum, or the reduced sum, t* — ii*, we had ^ = 0,

or a = 0, we should necessarily have y" = m the great

sum ; but this is a case which does not here enter into con-

sideration.

206. Let us proceed to the second proposition, and prove

also that the difference of two biquadrates, or x* — i/\ can

never become a square, except in the cases of ?/ — 0, and

1/ = X.

1. We may consider the numbers x and y as prime to

each other, and conse(juently, as being either both odd, or
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the one even and the other odd : and as in both cases the dif-

ference of two squares may become a square, we must con-

sider these two cases separately.

2. Let us, therefore, first begin by supposing both the

numbers x and y odd, and that x = p + q, and y = p —q;
then one of the two numbers p and q must necessarily be
even, and the otlier odd. We have also x'^ — y-= 4<pq, and
X- + 7j^ — 2p- + Sg--; therefore our formula ^* — t/* ==

4<pq(2p- + 2q) ; and as this must be a square, its fourth

part, pq{2p- + 2q) = 2pq(p" + cf), must also be a square.

Also, since the factors of this formula have no common di-

visor (because if jt? is even, q must be odd), each of these fac-

tors, 2p, q, and p- -h q", must be a square. In order, there-

fore, that the first two may become squares, let us suppose

2p — 4r -, or p — 2r-, and q =z f--^ in which s must be odd,

and the third factor, 4r* -f- i^, must likewise be a square.

3. Now, since ,9* -f 4r^ is the sum of two squares, the

first of which, i% is odd, and the other, 4r*, is even, let us

make the root of the first s'- — t- ~ w-, in which let t be odd,

and u even; and the root of the second, 2r- = 2tu^ or

r* z= tu, where t and u are prime to each other.

4. Since tu ~ ? - must be a square, both t and u must be
squares also. If, therefore, we suppose t — vi% and u = w-,

(representing an odd number by m, and an even number by
w), we shall liave *- — m* — n^; so that here also, it is re-

quired to make the difference of two biquadrates, namely,
m^ — Ji\ a square. Now, it is obvious, that these numbers
would be nnich less than .v and ?/, since they are less than
r and s, which are themselves evidently less than x and //.

If a solution, therefore, were possible in great numbers, and
x^i —

J/* were a square, there must also be one possible for

numbers much less; and this last would lead us to another
solution for numbers still less, and so on.

5. Now, the least numbers for which such a square can be
found, are in the case v/here one of the biquadrates is 0, or
where it is equal to the other biquadrate. In the first case,

we must have 71 = ; therefore n — 0, and also ;• ~ 0,

p = 0, and, lastly, x\— ^f = 0, or x^ — if \ which is a case
that does not belong to the present question ; if w = w, we
shall find t — w, then 5 =z 0, 9 rr: 0, and, lastly, also a; =3^,
which does not here enter into consideration.

207. It might be objected, that since m is odd, and «
even, the last difference is no longer similar to the first ; and
that, therefore, we can form no^analogous conclusions from
it with respect to smaller numbers. But it is sufficient that

the first difference has led us to the second ; and we shall
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shew, that x* — y* can no longer become a square, when one

of the biquadrates is even, and the other odd.

1. We may observe, if the first terra, .r*, were even, and

3/* odd, the impossibihty of the thing would be self-evident,

since we should have a number of the form 4w + 3 ; which

cannot be a square : therefore, let x be odd, and y even

;

then ^- — p- + q'\ and y ~ 9.pq ; whence ^* — 3/* = p* —
2^^5-2 -\- ^ = [p^ — q"y^ where one of the two numbers p
and q must be even, and the other odd.

2. Now, as p^- ->- q- = x^ must be a square, we have

p = ?•• — S-, and q = 2rs ; whence ^ = r- + s- : but from

that results y- = 2(r^ — s^) x ^rSy or y^ = 4<rs x (r- — s-),

and as this must be a square, its fourth part, rs{r^ — *-),

whose factors are prime to each other, must likewise be a

square.

3. Let us, therefore, make r = t', and s — ?*-, and we
shall have the third factor ?•- — s"^ = i* — u*, which must
also be a square. Now, as this factor is equal to the dif-

ference of two biquadrates, which are much less than the

first, the preceding demonstration is fully confirmed ; and it

is evident, that, if the difference of two biquadrates could

become equal to the square of a number (however great we
may suppose it), we could, by means of this known case,

arrive at differences less and less, which would also be re-

ducible to squares, without our being led back to the two

evident cases mentioned at first. It is impossible, therefore,

for the thing to take place even with respect to the greatest

numbers.

208. The first part of the preceding demonstration,

namely, where x and y are supposed odd, may be abridged

as follows : i^ af^ — y* were a square, we must have x" =
p'^ + q", and 3/^ = p- — q^, representing by p and q numbers,

the one of which is even and the other odd ; and by these

means we should obtain x"^!/- = // — q"*; and, consequently,

p* — q"^ must be a square. Now, this is a difference of two
biquadrates, the one of which is even and the other odd ; and
it has been proved, in the second part of the demonstration,

that such a difference cannot become a square.

209- We have therefore proved these two principal pro-

positions; that neither the sum, nor the difference, of two

biquadrates, can become a square number, except in a very

few self-evident cases.

Whatever formulae, therefore, we wish to transform into

squares, if those formulae require us to reduce the sura, or

the difference of two biquadrates to a square, it may be pro-

nounced that the given formulse are likewise impossible;
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Avliich happens with regard to those that we shall now point

out.

1. It is not possible for the formula x'*' + 4i/* to become
a square; for since this formula is the sum of two squares,

we must have x- = p- — q-, and 2y" — ^pq, or i/- =^ pq

;

now p and q being numbers prime to each other, each of

them must be a n . If we therefore make j^ — ''''> ^^^

q = S', we shall have x- = ? * — s* ; that is to say, the dif-

ference of two biquadrates must be a square, which is im-
gossible.

2. Nor is it possible for the formula a;"* — 4?/* to become
a square ; for in this case we must make x- = p- + q-, and
2?/" = 2pq, that we may have x* — ^ij'* = {p- — q)-; but,

in order that y~ = pq^ both p and q must be squares : and
if we therefore make p = r-, and q = s', we have a'^ = /+**;
that is to say, the sura of two biquadrates must be reducible

to a square, which is impossible.

3. It is impossible also for the formula 4^* — i/'^ to be-

come a square, because in this case y must necessarily be an
even number. Now, if we make ij ~ Sz, we conclude that

4a* — 16^*, and consequently, also, its fourth part, .r*— 4.^^,

must be reducible to a square; which we have just seen is

impossible.

4. The formula 9^x* -f %* cannot be transformed into a

square ; for since that square Avould necessarily be even, and
consequently, Sa* + 2y =4,'^', we should have a*+i/* = 9,z-,

or 9,z- + 9,x y- = x* + 9.x-y- + ?/* = D ; or, in like man-
ner, 22,-2 — 2.r"y- = x^ — 2j;-z/'' + ?/^ = a , So that, as

both 9,z- + ^x'y\ and 2;:^'- — 2^'?/-, would become squares,

their product, 4^'* — 4a*^*, as well as the fourth of that pro-

duct, or ;2* — x'^y^, must be a square. But this last is the

difference of two biquadratics; and is therefore impossible.

5. Lastly, I say also that the formula S^i'* — 2?/* cannot

be a square ; for the two numbers x and y cannot both be
even, since, if they were, they would have a common di-

visor; nor can they be the one even and the other odd, be-

cause then one part of the formula would be divisible by 4,

and the other only by 2 ; and thus the whole formula would
only be divisible by 2 ; therefore these numbers x and ij must
both be odd. Now, if we make .r=p + q, and j/ =p—q, one
of the numbers p and q will be even and the other will be

odd; and, since 2x* — 2y* == 2{x- •}- y") x {x- — y-), and
X- -I-

?/'^ = 2/?- + 2q- = 2(j5- + q'), and x- — y" — 4tpq, our

formula will be expressed by I6pq{p- + q-), the sixteenth

part of which, or pq{p° + q')^ must likewise be a square.

But these factors are prime to each other, so that each of
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them must be a square. Let us, therefore, make the first

two p = 1-% and q = s°, and the third will become r* + **,

which cannot be a square, therefore the given formula can-

not become a square.

210. We may likewise demonstrate, that the formula

x^ H- 2?/* can never become a square : the rationale of this

demonstration being as follows

:

1. The number x cannot be even, because in that case «/

must be odd ; and the formula would only be divisible by
2, and not by 4 ; so that x must be odd.

2. If, therefore, we suppose the square root of our formula

to be X- + -^^-^i in order that it may become odd, we shall

have X* -f 2y^ = a;* + -\- -^-^^ in which the terms
^ q^

X* are destroyed ; so that if we divide the other terms by «/'-,

and multiply by q-^ we find 4fpqx- + 4>p-i/^ = ^(/-y', or

4<pqx- = 2q^2/- — 4/>~y-, whence we obtain —^ = —^ ;

that is, x~ = q- — 2p-, and y- = Qpq'^, which are the same
formulas that have been already given.

3. So that q- — 2p- must be a square, which cannot hap-

pen, unless we make q = r'^ + 2.<-, and p = 2rs, in order to

have x'^= {r^— 2s-)-; now, this will give us 4rs(r-+2s")= ?y'^;

and its fourth part, rs{r~+ 2s'^) must also be a square: con-

sequently r and s must respectively be each a square. If,

therefore, we suppose r ~ t-, and s = u", we shall find the

third factor r- -i- 25- = i* + 2^"*, which ought to be a

square.

4. Consequently, if a:* -f- 2^/* were a square, f^ -f- 2?i*

must also be a square ; and as the numbers t and u would
be much less than x and i/, we should always come, in the

same manner, to numbers successively less : but as it is easy

from trials to be convinced, that the given formula is not a

square in any small number; it cannot therefore be the

square of a very great number.

211. On the contrary, with regard to the formula x* — 2?/%

it is impossible to prove that it cannot become a square

;

and, by a process of reasoning similar to the foregoing, we
even find that there are an infinite number of cases in which
this formula really becomes a square.

In fact, if X* — 2«/'* must become a square. Me shall see

* Because x and y are prime to each other.
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that, by making i'^ = p- + ^q~, and i/^ — 2pg, we find

J?* — ^i/* = {p- — 2q^y-. Now, p' + ^q- must in that case

evidently become a square ; and this happens when

p = r" — ^i"^, and q = 2}^s ; since we have, in this case,

X- =. (r^ + 25-)-; and farther, it is to be observed, that,

for the same purpose, we may take js— 2s- — z'^, and q=.9>rs.

We shall therefore consider each case separately.

1. First, let p = r- — 2s', and q = 2rs; we shall then

have X = r^ -i- 2s2 ; and, since y- — 2pq, we shall thus have
?/2 — ^rs{f^ — 25-) ; so that r and s must be squares

:

making, therefore, r — t", and 5 — u\ we shall find j/- =
U-U'{i^— 2ii*). So that 3/ = 2ht ^'{t^— 2//), and x = f+ 2m* ;

therefore, when i"^ — 2u* is a square, we shall also find

.1* — 2j/* = D ; but although t and w are numbers less than

X and I/, we cannot conclude that it is impossible for .z'*— 2^/'*

to become a square, from our arriving at a similar formula

in smaller numbers ; since a,* — 9ly* may become a square,

without our being brought to the formula i* — 2y'^, as will

be seen by considering the second case.

2. For this purpose, let p = 2,9- — r", and q = 2rs. Here,

indeed, as before, we shall have ^ == r- + 25-; but then we
shall find t/^ = 2pq = 4'rs{2s" — r) : and if we suppose

r = t-, and s = m", we obtain y" = Mu''-{2u^ — /*) ; con-

sequently, y = 2iu ^/{2u^-t*), and x = t* + 2u*, by which

means it is evident that our formula a'* — 2y* may also be-

come a square, when the formula 2re* — f^ becomes a square.

Now, this is evidently the case, when ^ = 1, and 7t = 1;
and we from that obtain x — S, ?/ = 2, and, lastly,

x' - 2y' = 81 - (2 X 16) = 49.

3. We have also seen, Art. 140, that 2ii* — i* becomes a

square, when ^= 13, and t=l ; since then ^/{2u* — /*) = 239.

If we substitute these values instead of t and u, we find a
new case for our formula; namely, x = l+2x lo'' = 57123,
and ?/ = 2 X 13 X 239 = 6214.

4. Farther, since we have found values of x and y, we
may substitute them for t and u in the foregoing formulae,

and shall obtain by these means new values of x and i/.

Now, we have just found x = 3, and y = 2; let us,

therefore, in the formulae, (No. 1.) make t = S, and u = 2;
so that \/{i'* — 2u*) = 7, and we shall have the following

new values ; a? = 81 + (2 x 16) = 113, and ?/ = 2 x 3 x
2 X 7 = 84; so that x" = 12769, and x* = 163047361.

Farther, y' = 7056, and 7/ = 49787136; therefore

X* — 2?/* = 63473089 : tJie square root of which number is

7967, and it agrees perfectly with the formula which was
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adopted at first, p- — 2q-\ for since t — 3., and n — 2, we
have r = 9, and 5 = 4; whereibre p = 81 — 32 = 49, and

? = 72; whence p^ - ?.q" = 2401 - 10368 = - 7967.

CHAP. XIV.

Solution of some Questions that belong to this part of
Algebra.

212. We have hitherto explained such artifices as occur

in this part of Algebra, and such as are necessary for re-

solving any question belonging to it : it remains to make
them still more clear, by adding here some of those questions

with their solutions.

213. Question 1. To find such a number, that if we add
unity to it, or subtract unity from it, we may obtain in both

cases a square number.
Let the number sought be a; ; then both a: + 1, and .r — 1

must be squares. Let us suppose for the first case x-^-l ='p",

we shall have x =^ p" — 1, and .r — 1 = p" — 2, which

must likewise be a square. Let its root, therefore, be re-

presented by p — q; and we shall have j)- — 2 = p'- —
q^- + 2

2pq + q-, consequently, p =

5M-4
X =

2q
Hence we obtain

. „ , in which we may give q any value whatever,

even a fractional one.

r r^ + 46*
If we therefore make q = —, so that x= —r——— , we shall

have the following values for some small numbers

:

Ifr = l,

and 5=1,
we have a? = ^,

214. Question 2. To find such a number x, that if we
add to it any two numbers, for example, 4 and 7, we obtain

in both cases a square.

According to this enunciation, the two formuLT, x + 4

and X -\-7, must become squares. Let us therefore suppose

the first X + 4> — p-, which gives us .r = p" — 4, and t])e

2,
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second will become x + '7 = p"^ + S; and, as this last

formula must also be a square, let its root be represented by

P + q, and we shall have p- + Q = p^ -\- 2pq -f q- ; whence

o-q- ,
,

9-22q^-^q'
we obtam p = —^-^^> and, consequently, x = 7-, »

and if we also take a fraction— for 5, we ^nd

9s* — 22 r-S' + t'*

X = Tl~< ' ^" which we may substitute for r and

s any integer numbers whatever.

If we make r = 1, and 5 = 1, we find ^ --= — 3 ; there-

fore .V -\- 4> =: 1, and a? + 7 = 4.

If ^ were required to be a positive number, we might
make s = 2, and r = 1 ; we should then have x = 4-|»

whence a; + 4 = Vg-S and x \-l = '-^.

If we make s = 3, and r = 1, we have x = '^^ ; whence
^ + 4 = '1-9, and X + 7 = '1^.

In order that the last term of the formula, which ex-

presses X, may exceed the middle term, let us make r = 5,

and 5=^1, and we shall have ^=|-i; consequently a; +4= ~,
and X + 1 = ^^.

215. Question 3. Required such a fractional value of a^,

that if added to 1, or subtracted from 1, it may give in both

cases a square.

Since the two formulas 1 •\- x, and \ — x, must become
squares, let us suppose the first 1 + .r = p"^, and we shall

have X — p'^ — \i also, the second formula will then be
1 — ^ = 2 — p-. As this last formula must become a

square, and neither the first nor the last term is a square,

we must endeavour to find a case, in which the formula does

become a D , and we soon perceive one, namely, when /?= 1

.

If we therefore make p = 1 — 5, so that x = q"' — 2q, we
have 2 — p" =. \ -{- 2q — q- \ and supposing its root to be
1 — qr, we shall have 1 + 2^ — 5'- = 1 — 2qr + §'-r- ; so

27- + 2
that 2 — q = — 2r + qr-, and q = -;;

—

:j- ; whence results
r- -f-

1

and since r is a fraction, if we make r = —

,

11

' — "TT^n—^rrj" = TTT-,
—

-TT"? where it is evi-

dent that u must be greater than f.

Let therefore u ~ 2, and t = l, and wc shall find x = If.

X =
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Let u = 3, and t = 2 ; we shall then have x = -^^ ; and
the formulaB 1 +x— 4|-|-, and I — x = -^Va-j

will both be
squares.

216. Question 4. To find sucli numbers x, that whether

they be added to 10, or subtracted from 10, the sum and
the difference may be squares.

It is required, therei'ore, to transform into squares the

formulae 10 + x, and 10 — x, which might be done by the

method that has just been employed; but let us explain

another mode of proceeding. It will be immediately per-

ceived, that the product of these two formulae, or 100 — x-,

must likewise become a square. Now, its first term being

already a square, we may suppose its root to be 10 — px,
by which means we shall have 100— a;-=100— 20pa;+p'.2^';

20p
therefore p^-x-\-x = 20p, and x — ^ , . Now, from this itr I } p-+l
is only the product of the two formulae which becomes a

square, and not each of them separately : but provided one
becomes a square, the other will necessarily be also a square.

10;;^ + 20p + 10 10(yy^ + 2p + 1)
Now 10 + X = —~- = ' —

;

, and
;j- + l p-+l '

since p" + 2p -{- 1 is already a square, the whole is reduced

,. , . . 10 lOp' + lO
to makuig the traction r, or —7—-3-—, a square also.^ p'-rl (F + 1)'

For this purpose we have only to make lOp" + 10 a square,

and here it is necessary to find a case in which that takes

place. It will be perceived that j9 — 3 is sucli a case;

for which reason we shall make p =: Q -\. q^ and shall have
100 + 60g + 10.72. Let the root of this be 10 + qt, and
we shall have the final equation,

100 + 60q H- IO5- = 100 + 20qt + qH%

which gives q = ——r^, by which means we shall deter-

20»
mine p = 8 + a, and x = ——:r,^ ^

j^^ +

1

Let ^ = 3, we shall then find g' = 0, and p ~ S; there-

fore x = 6, and our formulae 10 -h ^ = 16, and 10 — .r = 4.

But if ^ = 1, we have q = — ^^°, and p = — y , so that

X = — ^-J^ ; now it is of no consequence if we also makea S

X = + y/ ; therefore 10 + x = \^-^, and 10 — .r = -^|,

which quantities are both squares.

217. Remark. If we wished to generalise this question,
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by demanding such numbers, x, for any number, «, that

both a + x, and a — x may be squares, the solution would

frequently become impossible ; namely, in all cases in which

a was not the sum of two squares. Now, we have already

seen, that, between 1 and 50, there are only the following

numbers that are the sums of two squares, or that are con-

tained in the formula x- + y"

:

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32,

34, 36, 37, 40, 41, 45, 49, 50.

So that the other numbers, comprised between 1 and 50,

which are,

3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30,

31, 33, '35, 38, 39, 42, 43, 44, 46, 47, 48, cannot be re-

solved into two squares ; consequently, whenever a is one of

these last numbers, the question will be impossible ; which

may be thus demonstrated : Let a + x = p-, and a — x= q-^

then the addition of the two formulas will give 2a =zp^--\-q'
;

therefore 2a must be the sum of two squares. Now, if 2a

be such a sum, a will be so likewise* ; consequently, when
a is not the sum of two squares, it will always be impossible

for a + X, and a — x, X.o be each squares at the same time.

218. As 3 is not the sum of two squares, it follows,

from what has been said, that, if a == 3, the question is im-

possible. ]t might, however, be objected, that there are,

perhaps, two fractional squares whose sum is 3 ; but we

answer that this also is impossible : for if --- +— = 3, and

if we were to multiply by q^'s'^^ we should have

35-25^ = p"s" + q^r- ; and the second side of this equation,

which is the sum of two squares, would be divisible by 3

;

but we have already seen (Art. 170) that the sum of two

squares, that are prime to each other, can have no divisors,

except numbers, which are themselves sums of two squares.

The numbers 9 and 45, it is true, are divisible by 3, but

they are also divisible by 9, and even each of the two

squares that compose both the one and the other, is divisible

by 9, since 9 = 3- + 0'-, and 45 = 6^ + 3" ; which is

therefore a different case, and does not enter into con-

sideration here. We may rest assured, therefore, of this

conclusion ; that if a number, a, be not the sum of two

squares in integer numbers, it Avill not be so in fractions.

* For, let x'^ -^ i/^ =z 2a ; and put a- = 5 + d, and 3/ = s — rf;

then(s4-rf)2+(*-r/)*=2.vH2r/2:thati?,a2+/=2A'^+ 2(,'2=2a,

or .s2 4-(/2=rt. I>.
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On the contrary, when the number a is the sum of two
squares in fractional numbers, it is also the sum of two
squares in integer numbers an infinite number of ways:
and this we shall illustrate.

219- Qucstton 5. To resolve, in as many ways as we
please, a number, which is the sum of two squares, into

another, that shall also be the sum of two squares.

Let f- + ^^ be the given number, and let two other

squares, ^r- and y-, be required, whose sum .v- + y- may be
equal to the numbery- -{- g~. Here it is evident, that if ar

is either greater or less than f, y, on the other hand, must
be either less or greater than g : if, therefore, we make
X =J' + pz^ and y zz. g — qt, we shall have

/2 + 2fpz + p"~z^ + g-^ - 2gqz + (fz"- =/^ + gS
where the two terms J" and g- are destroyed ; after which
there remain only terms divisible by ;:. So that we shall

have yp + f-z— 2gq + (fz = 0, or pH + q^z — 2gq-2fp ;

therefore ;:? = —\ 7-^, whence we get the following values

2pt)q -\- flo'^ Ti'^

for X and y, namely, x = -^—^—
r~^^-,— } and

^fPQ + ^(p" — q-) . ,., , . „
y = 2 "^— » ^^ which we may substitute all pos-

sible numbers for j9 and q.

If 2, for example, be the number proposed, so that

jT = 1, and ^ = 1, we shall have x- -\-i/- = 2; and because

^pq+q'-p- , 2pq + p'''-q'-

X = „ , , and y = '—r-^ , if we make p = 2,
p'+q^ ' ^ ^2 + g,2 ' r »

and ^ = 1, we shall find x = \, and 3/ = ^-.

220. Question 6. If a be the sum of two squares, to

find such a number, ^r, that a -\- x, and a — x, may become
squares.

Let a = 13 =: 9 + 4, and let us make 13 -\- x = p\
and 13 — x = q-. Then we shall first have, by addition,

26 = J9- + (/- ; and, by subtraction, 2x = p"^ — q~ ; con-

sequently, the values of ^ and q must be such, that j9- + q"^

may become equal to the number 26, Avhich is also the sum
of two squares, namely, of 25 + 1. Now, since the ques-

tion in reality is to resolve 26 into two squares, the greater

of which may be expressed by p-, and the less by 9-, we
shall immediately have p = 5, and q = 1; so that x = 12.

But we may resolve the number 26 into two squares in an
£ £
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infinite number of other ways : ior, since p = 5, and //
— 1,

if we write t and n, instead ofp and q, and p and q, instead

of X and y, in the formulae of the foregoing example,

we shall find

2tu + 5Cii--t') - lOifw + r--?/-

P "=
ITTTT^ ' ^^"^ 1

Here we may now substitute any numbers for t and it, and
by those means determine p and q, and, consequently, also

the value of ;r = ———

.

For example, let t = 2, and m = 1 ; we shall then have

p =: y, and fj = y ; wherefore p- — q" — %^y and
„ 4 04
** — 2T •

2J21. But, in order to resolve this question generally, let

a = c" \- d^-, and put z for the unknown quantity ; that is

to say, the formulae, tt + ^, and a — z, must become squares.

Let us therefore make a f ^ =.- x'^, and a ~ z — y"-, and
we shall thus have first 2a — 2(c'- + dr) = x" + 7/', then

2z = x"- — y-. Therefore the squares x- and _?/- must be
such, that x^- + ?/" = 2(c- + f/-) ; where 2(c- + rf^) is really

the sum of two squares, namely, {c + cVf + (c — J)-; and,

in order to abbreviate, let us suppose c ^ d — J\ and
c — d — g- ; then we must have x- + y'^=f~ + g" ; find this

will happen, according to what has been already said, when

from which we obtain a very easy solution, by maliino-

2^
p = I, and (7

= 1; for we find x = ~ = g- = c — d, and

y =f = c -\r d\ consequently, z — 2cd; and it is evident
that a + z — c"- -{- 2cd + d- = {c ,+ d)"-, and

a — z — C" — 2cd + d' = {c — d)\

Let us attempt another solution, by makino- « — 2, and

1 1 u .1 I
^~'^^

J 7c-i-d
q z= 1 ; we snail then have x ——-— , and 7/ = ,

where c and d, as well as x and y, may be taken mimis,
because we have only to consider their squares. Now, since

X must be greater than y, let us make d negative, and we

.
,, ,

c + ld Ic -d /shall have x — —-— , and y = —~— : hence
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.^ =.' -;:

—

^
; and this value being added to

""^ $
Q% j^ 14'cc? + 49''/-

= c- + £?-, gives -r^ , the square root of which

is —-— . If we then subtract z from «, there remains
5

—
, which IS the square ot —

; the former

of these two square roots being x^ and the latter y.

^22. Question 7. Required such a number, x, that

whether we add unity to itself, or to its square, the result

may be a square.

It is here required to transform the two formulae x -\-l,

and X- + I, into squares. Let vis therefore suppose the

first X + 1 =p"; and, because x = p" — 1, the second,

x" + 1 = p* — Qp- + 2, must be a square : which last

formula is of such a nature as not to admit of a solution,

unless we already know a satisfactory case ; but such a case

readily occurs, namely, that ofp= l : therefore ]etp= l+qf
and we shall have .r-4- 1 = 1 + 4(^2 f 45'^ + q*, which may
become a square in several ways.

1. If we suppose its root to be 1 + (j-, we shall have

1 + 4^q" + 4>(j' + q* = 1 + ^q- + 7*; so that 45- + 4^"= %,
or 4 + 4// = Q, and q — — 1^; therefore v — 4, and
^- - - i-

2. Let the root be 1 — q-, and we shall find

1 4- 4^- + q^ -{- q"^ =: I — 9.q~ + q'^
; consequently, q = — -|^

and p = — I., which gives x = — ^, as before.

3. If we represent the root by 1 + 2q + q-, in order to

destroy the first, and the last two terms, we have

1 + 4q- + 4^2 + 5* = 1 + 4^ + 6q' + ^^ + q*,

whence we get q =: — 9., and p = — 1 ; and therefore

4. We may also adopt 1 — ^ — q" for the root, and in

this case we shall have

1 -f ^- + 4(^3 + qi = 1 ^ 4,q ^ 2q^ J- 4<q^ + q\
but we find, as before, q — — %

5. We may, if we choose, destroy the first two terms,

by making the root equal to 1 + Sg- ; for we shall then

have 1 -I- 42'- + 4g3 + 9* = 1 + ^'^ + 4^^ ; also, ? = |,

and/)=:|-; consequently, x= '^-^ \ lastly, ^ + 1 = V=(t)">
and jT- -f 1 = '14' = (Y)^

E e2
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A greater number of values will be found for cj, by

making use of those which we have already determined.

Thus, having found q = — \'-> let now y = — i + ?-, and

we shall have j^ z= i. + r ; also, p" = ^ + r -V ?•-, and

jy* = ^_ -f i-r -f- Ir- + 2r' + 7* ; whence the expression

^* - 2p^ + 2 = 41- - |r - ir^ + 2;-^ + r\

to which our formula, x"^ 4-\, is reduced, must be a square,

and it must also be so when multiplied by 16 ; in which case,

we have 25 — 24r — 8r^ + 32r^ + 16r* to be a square.

For which reason, let us now represent

1

.

The root by 5 + fr ± 4r' ; so that

25 - 24r - 8r^ + SSr^ + l6r* =
25 + lO/r ± 40r^ +/-r2 ± S/r^ + ]6r*.

The first and the last terms destroy each other ; and we may
destroy the second also, if we make 10/'= — 24, and, con-

sequently, f =^ — y ; then dividing the remaining terms

by r% we have - 8 + 32r = + 40 +/2 + 8/r; and, ad-

48 4-/2
mitting the upper sign, we find r — ———^. Now, be-

cause f = —
V^, we have r = ^ ; therefore p = |4, and

X = |,|i; so that X + 1 = {U-)\ and .r^ + 1 = {lUT'-
2. If we adopt the lower sign, we have

_ 8 + 32/- = - 40 -I- f' - 8fr,

f- - 32
whence r = ^q H>; ^"^ since f — — •=?, we have

r = — %^\ therefore p = ^, which leads to the preceding

equation.

3. Let 4r- + 4r ± 5 be the root ; so that

16r* + 32r3 - 8)-' - 24r + 25 =
16/+ + 32r3 ^ 40r= + 16r- ± 40r -|- 25

:

and as on both sides the first two terms and the last destroy

each other, we shall have

- 8r - 24 = ± 40r + 16r ± 40, or

- 24r - 24 = ± 40r ± 40.

Here, if we admit the upper sign, we shall have

- 24r - 24 = 40r -|- 40, or = 64r -f 64, or

= r + 1, that is, r = — 1, and p = — i; but this is a

case already known to us, and we should not have found a

different one by making use of the other sign.

4. Let now the root be 5 +Jr + gr-, and let us deter-

mine f and g so, that the first three terms may vanish :

then, since
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£5 — 24rjM8/-- + S2r^ + 16r* =

we shall first have 10/" =— 24, so thaty^ - '-
; then

-8-r- -344 -172

When, therefore, we have substituted and divided the re-

maining terms by r', Ave shall have

32 -I- 16r =% + g-r, and ;•

2^-32

Now, the numerator 9fg — 32 becomes here

24x172-32x625 -32x496 -16x32x31
and

5x125 ~ 625 Q^Zo

the denominator

so that r= — y^ ; and hence wc conclude that^— — i-l||,

by means of which we obtain a new value of x, because

X = jf — '[.

223. Question 8. To find a number, x, which, added to

each of the given numbers, a, b, c, produces a square.

Since here the three formulae x + a, x + h, and x + c,

must be squares, let us make the first x + a — z", and we
shall have x = z- — a, and the two other formulae will, by
substitution, be changed into ;s~ + b — a, and z- + c — a.

It is now required for each of these to be a square ; but
this does not admit of a general solution : the problem is

iVequently impossible, and its possibility entirely depends on
the nature of the numbers b — a, and c — a. For example,

if Z» — a = 1, and c — a = — 1, that is to say, if b = a + 1,

and 6" = a — 1, it would be required to make z- + 1, and
2- — 1 squares, and, consequently, that z should be a frac-

tion ; so that we should make ^ = — . It would be farther

necessary that the two formulae, p- + q\ and />- — 7", should

be squares, and, consequently, that their product also,

/>* — */*, should be a square. !No\v, we have already shewn
(Art. 202) that this is impossible.

Were we to make b — a = 2, and c — « = — 2 ; that is,

b = a-\-'il, and c = a — 2 ; and also, i? z = — , we should

have the two formulae, p" -{- 2//-, and p^- —
%f-^ to transform

into squares; consequently, it would also be necessary for
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their product,^/ — 4</+, to become a square; but tliis we
have likewise shewn to be impossible. (Art. 209-)

In eeneral, lei b — a = 7ft, c — a = n. and z = — : then» '

q

the formulae p- + mq-, and p- + nq", must become squares

;

but we have seen that this is impossible, both when ?«= +1,
and 7« — — 1, and when ?« — + 2, and n = ~ 2.

It is also impossible, when iji -- /"', and n = — /'
; for,

in that case, we should have two formulas, whose product

would be — //* — f'^q^, that is to say, the difference of two
biquadrates ; and we know that such a difference can never

become a square.

Likewise, when vi = 2/", and 7i =— 2/ -, we have the

two formulae p- + '^f"q\ and p" — 2/"-.'/', which cannot

both become squares, because their product jf — 4/ *</* must
become a square. Now, if we makefq z=i r, this product is

changed into p* — 4r*, a formula, the impossibility of which

has been already demonstrated.

If we suppose jn — 1, and n = 2, so tliat it is required to

reduce to squares the formulae p- + g", and p- + 2q-, we
shall make p"^ -\- q~ = r^, and p^ + 217- = ifi; the first

equation will give p"^ = r- — q'^, and the second will give

r- + 5-- = 5- ; and therefore both r- — q", and r" + q-,

must be squares : but the impossibility of this is proved,

since the product of these formulfp, or r* — 5-*, cannot be-

come a square.

These examples are sufficient to shew, that it is not easy

to choose such numbers for m and n as will render the solu-

tion possible. The only means of finding such values of m
and ??, is to imagine them, or to determine them by the fol-

lowing method.

Let us makey- + mg- — h-, andy- + iig^ = ^'; then

we have, by the former equation, m — —~, and, by the
S~

latter, ?i = —-—
; this being done, we have only to take

i'orf, g, Ii, and k, any numbers at pleasure, and we shall

have values of ?w and n that will render the solution possible.

For example, let h = 3, Jc = 5, f = 1, and g ~ 2, wc
shall have m = 2, and u = 6; and we may now be certain

that it is possible to reduce the formulae p- + 2g^ and
p° + 6q^ to squares, since it takes place when ;; = 1,

and q = 2. But the former formula generally becomes a

square, if/) = r- — 2.s-, and q = 2?s; for then p- + ~7^ —
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(r- + 2i*)'% The latter formula also becomes p- + 6q'' —
A"* + 20r*«* + 4j*; and we know a case in which it becomes

a square, namely, when p = 1, and q = 2, which gives

/• = 1 , and * = 1 ; or, generally, r = * ; so that the formula

is 255*. Knowing this case, therefore, let us make r = s-rti

and we shall then have r- — s'- + 2st + t-, or r** = s* +
4ts^t + 6sH'- + 45^^ + t* ; so that our formula will become
^5s^ + 446^/ 4- 26sH" + 4^/^ + f^ : and, supposing its root

to be 5s- +Jst+t-, we shall make it equal to the square

255* + 10/5"^ +/-V-f* + lOsH-^ + ysV + ^, by which

means the first and last terms will be destroj^ed. Let us

likewise make 2/"== 4, oTf=- 2, in order to remove the last

terms but one, and we shall obtain the equation

44s + ^Qt = lO/s + 10^; +fH = 205 + Ut, or Ss=— t,

and -— =z —1-; therefore s = ~ 1, and t = % or t = —2s;

and, consequently, r = — s, also ?- — 6^, which is nothing

more than the case already known.
Let us rather, therefore, determine /' in such a manner,

that the second terms may vanish. We must make 10J'= 44,

or f = y- ; and then dividing the other terms by at', wc
shall have 26s + 4iJ = Ws +/-s + 2//, that is, — ^s= y*i;-

r
which gives t= — -j^oS» ^"d i'=s-\-t=-/^s, or —= -i% » so that

r=3, and .9= 10; by which means we find p=2s-— r"= 191,

and q = 2rs = 60, and our formulae will be

;j2 ^ 2(7^ = 43681 = (209)' and
p~ + 6g- = 58081 = (241)'.

224. RcmarJc. In the same manner, other numbers may
be found for m and w, that will make our formulde squares;

and it is proper to observe, that the ratio of vt to n is

arbitrary.

Let this ratio be as a to b, and let ni ~ az, and 7i — bz;

it will be required to know how .:: is to be determined, in

order that the two formulae j?- + azg", and p' + bzq-, may
be transformed into squares ; the metliod of doing which we
bhall explain in the solution of the follovi'ing problem.

225. Question 9- Two numbers, a and b, being given, to

find the number ,*; such, that the two formulae, p' + a^*?*,

and j9- + bzq-, may become squares; and, at the same time,

to determine the least possible values of p and q.

Here, if we make p- + azq- = /•-, and p- + b.iq- = *'^,

and multiply the first equation by «, and the second by b,

the difference of the two products will furnish the eq\iation
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(J)—a)p'^— br'^ - as", and, consequently, ji°= —^ ; which

formula must be a square : now, this happens when r = &.

Let us, therefore, in order to remove the fractions, suppose
/• = 5 + (b—a)t, and we shall have

^ _ br"-as'- _bs-+2b(b—a)st + b{b-a)-t-— a.i^ _~ b—a ~ b—a
{b-a)s^-\-2b{b-a)st-{-b{b-a)"t^ _

b — a

s- + 2bst + bib — a)t-.

X
Let us now make p =: s \- —t, and we shall have

y

p' = 6-2 4- —St ^ -t- = ifi + 2bst + b{b — a)t',

y y'

in which the terms s" destroy each other ; so that the other

terms being divided by ^, and multiplied by ?/-, give

2sxy + tx" = 2bsy" + b{b — a)ti/- ; whence

2sxy —2&bif- t 2xy—2by"

b{b — a)y'^ — x'^ s b{b — a)y' — x '

So that t = 2xy — 2by'^, and s = 6(6— a)y" — x". Farther,
r = 2{b — a^xy — b{b — rt)y* — x-\ and, consequently,

X
p = s -] 1 = b(b— a)y- + x^ — 2bxy = {x — byY — abif.

y
Having therefore found «, r, and 5, it remains to determine

z ; and, for this purpose, let us subtract the first equation,

p- + aT'^cf- = ?•-, from the second, p- + bzq- = s- ; the re-

mainder will be zq-{b — a) = s- — r- = {a + r) x {s — r).

Now, s +r = 2{b — a)xy — 2x'^, and
s — r = 2b{b — a)y- —2{b—a)xy, or

s + r z= 2x{{b — a)y — x), and
5 — r = 2(6— «) X {bj/—x)y; so that

(6 — a)zq- = ^x({b— a)y-~x) x 2(6— a) x (by— x)y, or

z(j^ = 2x({b—a)y— x) x {by — x)2y, or

zq'^ = 4<xy({b — a)y—x) x (by — x)

;

consequently, . = to/((i'-«).y-^r) x (iy - x)

We must therefore take the greatest square for q\ that

will divide the numerator ; but let us observe, that we have
already found^ = b{b—a)y"-\-x- — 2bxy r= {x — bi/)-—aby-;

and therefore we may simplify, by making x = v + by, or
X — hy = v; for then p =: v'^ — oby'^ and
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4(t; + by) xvy x{v + aij), _ 4!vy(v+ ay) x {v + ^^)

By these means we may take any numbers for v and t/, and
assuming for 9®' the greatest square contained in the nu-

merator, we shall easily determine the value of s ; after

which, we may return to the equations m = az, 7t = b.z,

and p = XI- — aby^, and shall obtain the formulae required.

1. ^'- + a^q'^ = {v"^ — ahy")- + 4:avy{v -\- ay) x {v + by),

which is a square, whose root is r = — v- — 9,avij — aby-.

2. The second formula becomes

p" + bzq^ = (v- — ahy-y- + 4fbvy{v + ay) x (u + by),

which is also a square, whose root is * = —v'^—9,bvy—aby",
and the values both of r and s may be taken positive.

It may be proper to analyse these results in some ex-

amples.

226. Example 7. Let a —— \, and /> ^ + 1, and let us

endeavour to seek such a number for z, that the two formulne

p^ — zq^, and p" + zq\ may become squares ; namely, the

first )•-, and the second s".

We have therefore p = v'^ -\- //- ; and, in order to find .::,

we have only to consider the formula

^vy{v — y)x{v-^y)
i , • • ,.«.

1

^ = ———-^ —
; and, by givmg diiierent values to

V and y, we shall see those that result for s.
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namely, by making p = I'S, and </ =: ^; for the first be-

comes 169 - 120 = 49, and the second 169 + 120 =. 289-

3. Likewise the two tbrmula?j5'- — 15^-, and p- + 15q';

for if we make p = 17, and q — i, we have, ibr the first,

^^89 - 240 = 49, and for the second 5289 + 240 = 529.

4. The two formulae p- — 5q", and p" + 5q'^, become
likewise squares: namely, when p — 41, and (y r; 12; for

then ^2 - 5^2 ^ 1681 _ 700 --= 961 =. 31% and
;/- + 5q"- = 1681 + 720 := 2401 = 49^

5. The two formulfK p'^—7q-, and p" -\- 7q-, are squares,

lip = 3o7, and q — 120 ; for the first is then

113569 - 100800 = 12769 = 113', and the second is

113569 + 100800 = 214369 = 463^.

6. The formulae p"~\4^€[-, and p'^ + l^q", become squares

in the case of p = 65, and q — 19,-, for then

p2 _ 14^|j - 4225 - 2016 ^ 2209 = 47'-, and
p"' + Uq- = 4225 -|- 2016 = 6241 =^ 79-.

227. Example 2. When the two numbers 771 and w arc

in the ratio of 1 to 2 ; that is to say, when a =^ I, and

6 = 2, and therefore 7)i = z, and n = 2s, to find such

values for z, that the formulas p- + zq- and />- + 2.15^ may
be transformed into squares.

Here it would be superfluous to make use of the genei'al

formulae already given, since this example may be imme-
diately reduced to the preceding. In fact, if /;- -\- zq^ = r",

and p- + 2zq" = 5% we have, from the first equation,
pi — y-2 _ ^qi . which being substituted in the second, gives

r" 4- zq" = S-; so that the question only requires, that the

two formulae, r- — zq", and ?•* + nq-, may become squares

;

and this is evidently the case of the preceding example. We
shall consequently liave for z the following values : 6, 30,

15, 5, 7, 14, &c.

We may also make a similar transformation in a general

manner. For, supposing that the two formulae p~ + mq-^

vin(\ p' + 7iq\ may become squares, let us make ^- + mq-= r-,

and p- -\- oiq- = S-; the first equation gives p- = r- — i)iq-;

the second will become
5'i = r- — ?7iq'^ + 7iq'^, or r- + (« — W2) q- = s": if, therefore,

the first formulae are possible, these last ?^ — tTiq", and

r- -f {ii — m)(f, will be so likewise ; and as m and n may
be substituted for each other, the formulae r'^ — nq\ and

r- + (m — 7i)q-, will also be possible: on the contrary, if

the first are impossible, the others will be so likewise.

228. Exa7nple 3. Let 7« be to « as 1 to 3, or let a = 1,

and h — 3, so that in — z, and 11 — 3^, and let it be re-

(luired to transform into squares the formula* //-' + z(f, and

p- + ozq .
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Since a = 1, and 6 = 3, the question will be possible in

all the cases in which -rry^ = 4!V?j{v -h //) x (v + Sj/), and

p = V- — 3?/*. Let us therefoi-e adopt the following values

for V and 7/

:

V
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only be divisible by 3, and not by 9; consequently, also,

jf' + 37- could only be divisible by 3, and not by 9, and

therefore could not be a square ; so that p cannot be di-

visible by 3, and p^ will be a number of the class Sn + 1.

5. Since p is not divisible by 3, q must be so; for other-

wise q" would be a number of the class 3?z + 1, and con-

sequently p- -}- ^* a number of the class 3// + 2, which can-

not be a square : therefore q must be divisible by 3.

6. Nor is p divisible by 5 ; for if that were the case, q

would not be so, and q^ would be a number of the class

5n + 1, or 5w + 4 ; consequently, 3§''^ would be of the class

5;z + 3, or 5w 4- 2 ; and as p" + 3y^ would belong to the

same classes, this formula therefore could not in that case

become a square; consequently p must not be divisible by

5, and p- must be a number of the class 611 ^ 1, or of the

class 5n + 4.

7. But since p is not divisible by 5, let us see whether q is

divisible by 5, or not ; since if q were not divisible by 5, q^

must be of the class 5n + 2, or 5n + 3, as we have already

seen; and since p- is of the class 5n +1? or 5w + 4,

/;- + 3(7" must be the same ; namely, 5w + 1, or 5/< + 4 ; and

therefore, of one of the forms 57i + 3, or 5n + 2. Let us

consider these cases separately.

If we suppose p-{v)5n + 1 *, then we must have (f (j)

5n + 4, because otherwise p^ + q'^ could not be a square

;

but we should then have 3q"-{F)5n + 2 andp^ + Hrf (r)

5n + 3, which cannot be a square.

In the second place, let p^{F)5n + 4 ; in this case we
must have q'{F)5n + 1, in order that p'^ + q"^ may be a

square, and Sq" {F)5n + 3; therefore p" + 3q^ {f) 5n + 2,

which cannot be a square. It follows, therefore, that q^

must be divisible by 5.

8. Now, q being divisible first by 4, then by 3, and

in the third place by 5, it must be such a number as

4 X 3 X 5nt,, or q = 60m ; so that our formulae would be-

come ;/ + 3600m- = 1% and p" + 10800,7i^ = s^: this

being established, the first, subtracted from the second, will

give 7200/yi ' = ^^ _ ^ _ ^^ _l_ ^^ x (5 — r) ; so that s + r

and s — r must be factors of 7200wi^, and at the same time

* In the former editions of this work, the sign = is used to

express the words, " qfihefonn.'' This was adopted in order

to save the repetition of these words j but as it may occasionally

produce ambiguity, or confusion, it was thought proper to sub-

stitute (f) instead of =, which is to be read th^s: ;;-(f).0» + 15

of ihcform Pin -{• 1.
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it should be observed, that s and r must be odd numbers,

and also .prime to each other *.

9. Fartiier, let '79,00m- ~ ^fg, or let its factors be 2/*and

%' supposing s + r = 2f, and s — r = ^g, we shall have

s =/ + g, and ? -f~g; /and g, also, must be prime

to each other, and the one must be odd and the other even.

Now, asy^' = 1800;«-, we may resolve 1800m- into two fac-

tors, the one being even and the other odd, and having at

the same time no common divisor.

10. It is to be farther remarked, that since r- = p- + §%-

and since r is a divisor of ;>- -|- q~, r —f — g must likewise

be the sum of two squares (Art. 170) ; and as this number
is odd, it must be contained in the formula 4?i + 1.

11. If we now begin with supposing in — 1, we shall have

fg — 1800 = 8 X 9 X 25, and hence the following results:

/= 1800, and ^ = 1, or/= 200, and g = 9, or/ = 72,

and g = 25, orf = 9,^5, and g ^ 8.

The 1st) rr =f- g = 1799(F)4;i + S;

2df. )r=f-g= 191(f)4w + 3;
8d (^'^'^^)r =f-g= 47(f)4// + 3;

4th) Ir =f -g = 217(F)4/i -I- I;

So that the first three must be excluded, and there remains

only the fourth : from which we may conclude, generally,

that the greater factor must be odd, and the less even ; but

even the value, r = 217, cannot be admitted here, because

that number is divisible by 7, which is not the sum of two

squares
-f.

12. If w = 2, we shall have^ = 7200 = 32 X 225; for

which reason we shall make/= 225, and g = 32, so that

r =/— g = 193; and this number being the sum of two

squares, it will be worth while to try it. Now, as q =z 120,

and r = 193, andp^ = 7-^ —
(f - {r + q) X {r — q), we

shall have r -\- q = 313, and r — g^ = 73; but since these

factors are not squares, it is evident that^- does not become
a square. In the same manner, it would be in vain to sub-

stitute any other numbers for w, as we shall now shew.

230. Theorem. It is impossible for the two formula

jf)- + q^, and p^ -{- 3^^, to be both squares at the same time;

so that in the cases where one of them is a square, it is cer-

tain that the other is not.

* Because p is odd and q is even ; therefore /j^ + <f-
= >"-, and

^e + 3q^ = a2, must be both odd. B.

f Because the sum of two squares, prime to each other, can

only be divided by nunibers of the same form. B.
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Demonstration. We have seen that p is odd, and q
even, because /r- -f f]"^ cannot be a square, except when

q = 2rs, and p = r- — s- ; and p- -f 3^- cannot be a square,

except when q — 2tu, and p — t- — Su-, or p = Su- — t".

Now, as in both cases ry must be a double product, let us

si'.ppose for both, </ = 2ahcd; and, for the first formula, let

us make r = ab, and s =. cd; for the second, let t = ac^

and u = bd. We shall have for the former p == a-b-—C'd-y

and for the latter j^ = o"'C' — Sh"d-, or p = Sb'^d- — a°-d^,

and these two values must be equal ; so that we have either

a^b'^ — c-d" = a-c- — Sb-d-, or a'b'^ — c-d" = Sb"d- — a'c-

;

and it will be peixeived that the numbers «, 6, c, and d, are

each less than p and g. We must, however, consider each

case separately : the first gives a"b- + Sb'^d- = c-d- + aV,

or b-{a^ + 3c?-) = c^fa^ -f. d-), whence — =
„ ,

„ ,„ a

fraction that must be a square.

Now, the numerator and denominator can here have no
other common divisor than 2, because their difference is

2d'. If, therefore, 2 were a common divisor, both

a-~+d^ flf2 + 3rt2
, 1 u—-—J and — , must be a square ; but the numbers a

and d are in this case both odd, so that their squares have

the form 8n + 1, and the formula —^— is contained in

the expression 4« + 2, and cannot be a square ; wherefore

2 cannot be a common divisor; the numerator oP- + d^, and
the denominator a" + SfZ- are therefore prime to each other,

and each of them must of itself be a square.

But these formula are similar to the former, and if the

last were squares, similar formula2, though composed of the

smallest numbers, would have also been squares ; so that we
conclude, reciprocally, from our not having found squares in

small numbers, that there are none in great.

This conclusion, however, is not admissible, unless the

second case, arh- — c"d~ = '^If-d" — ft-c^, furnishes a similar

one. Now, this equation gives a^C- + «-6" = %b-d- + c-tZ-,

or cirib^ + c-) = d^i^b"- -j- C-); and, consequently,

«- &-+C- C-+6-
, ,. - .

, ,

-T-= rv-; 1,
= 7rr^\ so that as this traction ought to be a

square, the foregoing conclusion is fully confirmed ; for, if in

great numbers there were cases in which p^ + y -, and p''- +3^-,

were squares, such cases must have also existed with regard

to smaller numbers: but this is not the fact.
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*231. Question 10. To determine thi-ee numbers, x, y,
and z, such, tha|, muliiplying them together two and two,

and adding 1 to" the product, we may obtain a square each

time; that is, to transform into squares the three following

formula?

:

xy + 1, .r.-j 4- 1, and ?/.^ + 1.

Let us suppose one of the last two, as ccz -{• 1, =p%
and the other j/c + 1 = §'^, and we ^hall have

w = -——
, and 7/ = ^—^— . The first formula is now trans-

formed to — — \- 1 ; which must consequently

be a square, and will be no less so, if multiplied by 2^ ; so

that (p- — 1) X (q" — 1) + z"^) must be a square, which it

is easy to form. For, let its root be z + r, and we shall have

ip" — 1) X {q^ — 1) = 2rz + r-, and

(p'-l)x (9- -l)-r"- . , .
, ,

,z = ~
, in which any numbers may be

substituted for p, 9, and r.

For example, if r = {pq + 1), we shall have

r- = p^q'^ + 2qp + 1 , and z = —^ %.— ; wherefore
'^ ^ ^ icpq + 2

_(p'--l)x{^pq + 2) '2(pq+l)xip'-l)

y =

P' + ^pg-^g- {p-^qy
^{pq^rl)xiq"--l)

and

{p+qr
But if whole numbers be required, we must make the

first formula 0:1/ + 1 = p", and suppose z = a; -{ y + q

;

then the second formula becomes
a,"- + xij + xq -\- 1 = ;c" -f qx + p^-, and the third will be
xy \- y- + qy + 1=2/'- + qy + V"' Now, these evidently

become squares, if we make qz=. + 2p; since in that case

the second is x"^ + 9.px + ^®, the root of which is x + p^
and the third is z/'- + 9,py + p", the root of which is ?/ + p.

We have consequently this very elegant solution : xy-{-l =p'\
or xy = p-^ — i, which applies easily to any value of /;

;

and from this the third number also is found, in two ways,
since we have either z = x -\- y + ^p, or ;^ — x ->,- y — 9.p.

Let us illustrate these results by some examples.

1. Let p = 3, and we shall have p- — 1 = 8 ; if we
make x — % and 7/ z=. 4, we shall have either s = 12, or

z =^0; so that the three numbers sought are 2, 4, and 12.
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Q. Ifp = 4, we shall have p" — 1= 15, Kow, if .r = 5,

and 2/ = 3, we find z = 16, or ^ = 0; vfhetefore the three

numbers sought are 3, 5, and 16.

3. l^ p = 5, we shall have p- — 1 = 24 ; and if we
farther make j: = 3, and ?/ = 8, we find 2 = 21, or ;? = 1

;

whence the following numbers result; 1, 3, and 8 ; or 3, 8,

and 21.

2S2. Qiiestion 11. Required three whole numbers x, y,
and ;^, such, that if we add a given number, a, to each pro-

duct of these numbers, multiplied two and two, we may
obtain a square each time.

Here we must make squares ofthe three following formulae,

xy + a, xz -\- a, and yz + a.

Let us therefore suppose the first xy \- a — jf-, and make
;^ = a; + V + (?

; then we shall have, for the second formula,

x'^ + xy '-\- xq -\- a = x" -\- xq \- p^-, and, for the third,

xy -\- y- -\- yq -\- a =^ y" + qy -\- p~ ; and these both be-

come squares by making q = ± 2p : so that z = x+y + 2p;
that is to say, we may find two different values for z.

233. Question 12. Required four whole numbers, x, y.,

z^ and x\ such, that if Ave add a given number, a, to the pro-

ducts of these numbers, multiplied two by two, each of the

sums may be a square.

Here, the six following formulae must become squares:

1. xy -|- ttj 2. xs -\- a, 3. ?/r- + a,

4. XV -j- «, 5. yv + ft, 6. zv -j- a.

If we begin by supposing the first xy \- a = p)'^* ^"^

take z = X + y '\- 2p, the second and third formulae will

become squares. If we farther suppose v =^ x + y — 2/:>,

the fourth and fifth formulae will likewise become squares

;

there remains therefore only the sixth formula, which will

be x" + 2x1/ +3/- — 4p' + a, and which must also become

a square. Now, as p- = xy + a, this last form.ula becomes

X — 2xy + y- — 3a ; and, consequently, it is required to

transform into squares the two following formulas

:

xy -^ a = p-, and (x — y)'- — 3ft.

If the root of the last be {x — y) — q, we shall have

{x — y)- — 3a = {x — y}- — 2q{x — y) -\- q"\ so that

(f + 3ft
— 3a = —2q{x — y) + (/-, and x — y = —r

, or
dq

7- + 3« , „ ft- -f 3a ,

X = y + ^—^ ; consequently, p- = y- + y + a.

Ifp = y 4 r, M'e shall have
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—of'J + ^' °^

(j- + 3a)2/ 4- ^«?, or

= {q~ + Sa)2/ — 45'rj/, and

9.qr"—9.aq

where q and ?• may have any values, provided x and j' be-

come whole numbers; for since p = y -\- r, the numbers,
.•: and v, will likewise be Integers. The whole depends
therefore chiefly on the nature of the number a, and it is

true that the condition which requires integer numbers
might cause some difficulties ; but it must be remarked,

that the solution is already much restricted on the other

side, because we have given the letters, z and ^', the values

a; + ?/ + 9.p, notwithstanding they might evidently have a

great number of other values. The following observations,

however, on this question, may be useful also in other

cases.

1. When xy -\- a must be a square, or xy = p^ — a, the

numbers x and y must always have the form r^ — as^-

(Art. 176); if, therefore, we suppose

X = b- — ac-, and 1/ = d^ — ac'^,

we find xy = {hd — ace)- — a(he — cdy.
U be — cd =± ly we shall have xi/ = (jbd — ace)"- — r/,

and, consequently, xy + a = {bd — ace)-.

2. If we farther suppose ;:" =y~ — og\ and give such

values toy and g; that bg—cf= ± 1, and also dg~ef= 4-1,

the formulae xz + «, and yz + a, will likewise become
squares. So that the whole consists in giving such values

to b, c, d, and e, and also to^* and g, that the property which
we have supposed may take place.

3. Let us represent these three couples of letters by the

fractions —,
—

-, and — ; now, they ought to be such, that

the difference of any two of them may be expressed by a

fraction, whose numerator is 1. For since

b d be-dc ..
,= , this numerator, as we have seen, must

c e ce ^

he equal to + 1. Besides, one of these fractions is ar-

bitrary; and it is easy to find another, in order that the

given condition may take place. For example, let the first

F r
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= I, the second — must be nearly equal to it ; if, there-

fore, we make — = -*-, we shall liave the difference z = ^.
e

We may also determine this second fraction by means of the

first, generally ; for since \ —
d 3e-^d

we must have

3e — 2d = 1, and, consequently, 2d = 3e — l^ and

d = e
e-l

So that making: = m, or e = 2m + 1,
2 ' ^ 2

we shall have d = 3m + 1, and our second fraction will be

d _ Sm + l

T ~ 2m-\-y

second fraction for any first v/hatever, as in the following

Table of examples

:

r. In the same manner, we may determine the

c '
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let us take — = K, md — = |^, we shall then have
( •'

e

f^ = 'y ; '.vlieucc X = 25 — 9a, // = 49 — 16a, and

sr = 144 — 'I'iJa ; by wliich means we have

1. xj/ + a = 1225 - 840a + 144«"- = (35 - 12a)^;

2. o:^ + a = 3600 - 2520a + 441a- = (60 - 21a)"-;

2. ijz + a = 7056 - 4704a + 784a"- = (84 - 28a)^

234. In order now to determine, according to our ques-

tion, four letters, x, y, z, and v, we must add a fourth

fraction to the three preceding : therefore let the first three

be —, — , — =
, and let us suppose the fourth frac-

c eg e+ c ^^

h b + d M+b , .
, , .

tion ^- = = -r , so that it may have the given
7c e+g 2e+ c* ^ ^

relation with the third and second ; if after this we make
X = b- — ad^, y =1 (p — ae"f z ^=f" — ag-y and w= A^

—

ak'y

we shall have already fulfilled the following conditions

:

xy -\- a = n^ x% -V a = \2y yz + a = D,
yv + a — D, sy + a = O

.

It therefoi'e only remains to make xv + a become a square,

which does not result from the preceding conditions, because

the first fraction has not the necessary relation with the

fourth. This obliges us to preserve the indeterminate

number m in the three first fractions ; by means of which,

and by determining m, we shall be able also to transform the

formula xv + a into a square.

6. If we therefore take the first case from our small

Table, and make ^- = -I and — = ; we shall have
c " e 2m+l

f 3ot+4 ^ h 6m+5 ^ ^ ,— = ^, and -7- = -;——r, whence ^ = 9 — 4a, and
g 2m +S h 4^1+4 '

V = {6m + 5)- — a{4!m + 4)- ;

so that XV ' a- ^ ^^^'^ + ^)' " ^^ ^^'^ + ^^'
so tnat XV r- a -

^ _Qa{4m + 4)^ + 4a2(4m + 4)-

or xv + a- i
9(6;;^ + 5)- + ^a"-(4>m + 4)^

01 XV -j- a - ^ -a(288m2 + 52Sm + 244),

which we can easily transform into a square, since 'nt^- will

be found to be multiplied by a square ; but on this we shall

not dwell.

7. The fractions, which have been found to be neces-

F F 2
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sary, may also be represented in a more general manner

;

/..b ft d n^-l
, ,-,

tor II — = ^r-, -— = , we shall have
c 1 e n

^^ = — , and ~- — —7 z— . It m tiiis last frac-

g 7i + i h ^n+1
'

• •„ ,
/3w-2

tion we suppose %« 4- 1 =^ m, it will become ; con-
^^- m

sequently, the first gives a; = /3- — a, and tlie last furnishes

V = (/3m — 2)" — am-. The only question therefore is,

to make xv + a a. square. Now, because

fi = (|3' — a)ni- — 4|S7W + 4, we have •

xv + a = (B- — a)"m- — 4(/3- — a)^m + 4^- — 3a; and

since this must be a square, let us suppose its root to be

(|3- — a)ni — p ; the square of which quantity being

(j3- — a)-W' — 2(/3- — a)mp + p", we shall have
— 4(|32 - a)^m + 4/3^ - 3a = - 2(/32— a)jnp ^-j)" ; wherefore

m = TFT—^-7^—=T^- If p = 2^ + ^, we shall find
(/3^-a)x(%?-4/3) ^ ^

4/35' + g'= + 3a . , . , , .,m = ^\ nt. r- ; in which we may substitute any nura-
2q{l3"--a)

'

bers whatever for /3 and q.

For example, if a = 1, let us make ^ = 9,: we shall then

have m = „ ; and making n = 1, we shall find
bq

tnp; farther, in == 2n + 1; but without dweUing any
longer on this question, let us proceed to another.

235. Question 12. Required three such numbers, x, y,
and s, that the sums and differences of these numbers, taken

two by two, may be squares.

The question requiring us to transform the six following

formulae into squares, r?^.

X + y, X ^r z, y \ s,

X - y, X —z, y - z,

let us begin with the last three, and suppose x — y = p",

X — z = q-, and t/ — z = r"; the last two will furnish

x= q- + z, and 7/=r'-f ;?; so that we shall have q''-=p"+r-,

because x — y ^ q"^ — 7-2=^3'; hence, p^ + r-, or the sum
of two squares, must be equal to a square (f- ; now, this hap-

pens, when p — 2ab, and /• = a- — &^, since then q= a"--\-t^.

But let us still preserve the letters p, q^ and r, and consider

also the first three formulee. We shall have,



CHAP. XlV..,Jtg^ OF ALGEBRA. 437

S|# + ?/ = ?- + r'^ + 2^

;

?.'W + z = q"^ + ^z

;

'3. ?/ -h z = r- + ^Z,

Let the firstg^^^r^+Sz, = ^-, by which means 2-~= < - — g'- — ?•-

;

we must also have t-— r- = n, and t' — q'—D; that is

to say, t' — (a- — /;-)- = D, and t- — {a" -{- b )- = n ; we
shall have to consider the two formulae i- — a* — b* + 2a"b-,

and t~ — fl* - 6* — ^a'^b'. Now, as both c- + cP + 2cd,

and c- + d- — 2cd, are squares, it is evident that we shall

obtain what we want by comparing t° — a"* — b*, with

c^ + d-, and 2a 6- with 2cd. With this view, let us suppose

cd = a^b- zzf'-g^-h'Jx;-, and take c =J''g-, and d = h'k-;

a" =f^h", and b- =:g-k-, or a =fh, and b =-gJi; the

first equation f- — a* — 6* = c^ -j- d'^, will assume the form

t- —f-^'/'*
— ^*A;* —f'^g'^ + /t^A*; whence

^e ^y4a^ +/Vi^ -gUi + A*^S or ^^ - (/^ + A;*) x (g' +h*) ;

consequently, this product must be a square ; but as the re-

solution of it would be difficult, let us consider the subject

under a different point of view.

If from the first three equations x — i/ — />-, x — z = q''-,

y — z = ?•-, we determine the letters y and z, we shall find

y = X — p-, and z = X — q^^', whence it follows that

q" = p* -|- r". Our first formulae now become x +y = ^x— p"^,

.r + z = Sa; — q", and ?/ + s = 2a? — p- — q. Let us

make this last 9,x—2f'— q-= t-, so that 2a: = ^-+^- + 5', and
there will only remain the formulae t^ + ^/", and t" + p-, to

transform into squares. But since we must have q" = p- +7--,

let q = a" -\- b-, and p — a" — b"- ; and we shall then

have r = 9.ab ; consequently, our formulae will be

:

1. r- + {a- + 6-)"- = ^2 _}_ fl4 + J* + 0^:5: =
;

2. ^2 + («2 — ^2)2 = p _|. ^4 ^ ft4 _ '^a-b"^ = D

.

In order to accomplish our purpose, we have only to

compare again t- + a'^ + b'^ with c- + d", and 2a-6^ with

2cd. Therefore, as before, let c = f-g'^, d = Ti'^k-, a =fh^
and b =: gk ; we shall then have cd = a"b^, and we must
again have

t" +f*h* + g*h = c"- + d'^ =f*g^ + h*k*; whence
i' =yr -f'^^' + ^^'^' - g'^' = if - ^') X (^ - /n.
So that the whole is reduced to finding the differences of
two pair of biquadrates, namely, /* — A;*, and g^—h*, which,
multiplied together, may produce a square.

For this purpose, let us consider the formula w* — 7i* ;

let us see what numbers it furnishes, if we substitute given
numbers for m and w, and attend to the squares that will be
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found among Lhosc numbers ; the property of

vi"^ — «* := (wi'2 + n-) X (w/^ — «-), will enable us to con-

struct for our purpose the following T|

A Table of Numbers contained in the Formula ?«* — ?i^.

m^
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.= 4346*57

= 420968
= 150568

we have x -\- 7/ = 855625 = (925)-

X + z = 585225 = (765)-

and y + a? = 571536 = (756)^

also, X -y- 13689 = (117)"

X - z =^ 284089 = (533)-

and ^/ - ^ = 270400 = (520)^.

The Table which has been given, would enable us to find

other numbers also, by supposing f^ = 9, and Ti- = 4,

g2 = 121, and h^ =1 4; for then ^2 = 13 x 5 x 5 x 13 x

9 X 25 = 9 X 25 X 25 X 169, and

15 = 3x5x5x13 = 975.

Now, as / = 3, ^ = 11, ^ = 2, and h = 2, we have

a =-fh = 6, and b = gJc = 22; consequently,

p=a^ — h^= — 448, q=a^ + b'- = 520, and r= 2«6= 264

;

whence 2x = t' + p"- -{- q~ = 950625 + 200704 + 270400 =
1421729, and ^=» + ^i-7^9. wherefore tj — x — p^ =
loaosii^andz =x — q"= 88o_9a9.

Now, it is to be observed, that if these numbers have the

property required, they will preserve it by whatever square

they are multiplied. If, therefore, we take them four times

greater, the following numbers must be equally satisfactory:

X = 2843458, j/ = 2040642, and .^ = 1761858; and as

these numbers are greater than the former, w^e may con-

sider the former as the least that the question admits of.

236. Question 14. Required three such squares, that the

difference of every two of them may be a square.

The preceding solution will serve to resolve the present

question. In fact, if x, y, and z, are such numbers that the

following formulos, namely,

a;+3/=n, .r— 3/=n, x -^ z — n,

07 -^ = , «/ + ^ = D,
^

y-z^n,
may become squares ; it is evident, likewise, that the pro-

duct x" — y- of the first and second, the product x- — ^- of

the third and fourth, and the product y- — z"^ of the fifth

and sixth, will be squares ; and, consequently, x", y~, and s",

will be three such squares as are sought. But these num-
bers would be very great, and there are, doubtless, less

numbers that will satisfy the question ; since, in order that

x"^ — j/2 may become a square, it is not necessary that x + //,

and .r— y, should be squares : for example, 25 —9 is a square,
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although neither 5 -1- 3, nor 5 — «>, are sql^res. Let us,

therefore, resolve the question independently of this con-

sideration, and remark, in the lirst place, that we may take

1 for one of the squares sought : the reason for which is, that

if the formulas x- — -if-, x- — z-, and ?/- — ;:;-, are squares,

they will continue so, though divided by ,;" ; consequently,

we may suppose that the question is to transform

[z^i— '~Z^ h [^ ~ h ^
V^ " -^

J
''^^'^ squares, and it

then refers only to the two fractions — , and -^.

It we now suppose — = ——- and -^ = —,—:r, the last
^ ^ p^— 1 ^ 5 1

two conditions will be satisfied ; for we shall then have

— - 1 = . , ,
-, and ^ - 1 = —-X—_. It only rc-

mains, therefore, to consider the first formula

Now, the first factor here is -, ^ , ,
-

; the second
0>'-l) X (y--l)

IS ,-——7-—7——:: -, and the product of these tv/o factors is

=: ~7—;—r^^—7—r—rr— . It is evident that the denominator
(7r^-i)x(^--l)2

of this product is already a square, and that the numerator
contains the square 4 ; therefore it is only required to trans-

form into a square the formula (p 5'" — 1) x {(f
— p-)j t>i*

( V q^ — 1 ) X (-^ — 1 ) ; and this is done by making

/- + g- a h- -{- k' .
, , ,.

pii = —nl-— 5 and — = ,„ ,—, because then each lactor

separately becomes a square. We may also be convinced of

tins, by remarking thatp/7 x -- = 0'^ — —in- X en '

'>

and, consequently, the product of these two fractions must
be a square; as it must also be when multiplied by
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^f^g- X hk ., by which means it becomes equal to

JkKf^ + 5*") X hliiji^ + il"-)- Lastly, this formula becomes
precisely the same as that before found, if we make/— a+i,
g = a ^b^ h = c + d, ^nd k = c — d; since we have then

2(«4 _ //) X 2(c* - d*) = 4 X (a* - 6-^) X (c* - (Z*).

which takes place, as we have seen, when a" — 9, 0- = 4,

t- = 81, and d- =: 49 ; or a = 3, 6 = 2, c =9, and d = 7.

Thus, J = 5, g = 1, h = 16, and k = % whence ^g' = '-/

,

and — = —° = 44 ' ^^^ product of these two equations

65x13 13x13 , ^ J . ,.

,

gives q = —
p ^ = —^^^— ; wherefore q = y , and it fol-

lows that p = ^, by which means we have

— =V-T = - V> and — = ^-— - -Lf-f ; therefore,
.s /;-— 1

^
^i- gr 2_ 1 ' 5 3

41.^ ^ 185^ . ^ 1 • u ,
since .r = rr-, and v = ., _„ , in order to obtain whole

9 153

numbers, let us make z = 153, and we shall have a: = — 697,

and 1/ = 185.

Consequently, the three square numbers sought are,

o:^ = 485809 ) ia:^- - «/- = 451584 = (672)=

^2 = 34^225 k and <^ ?/- - z'' = 10816 = (104)^
^2 = 23409 ) tx"- -z'^=: 462400 = (680)^.

It is farther evident, that these squares are much less than

those which we should have found, by squaring the three

numbers x, y, and z of the preceding solution.

237. Without doubt it will here be objected, that this

solution has been found merely by trial, since we have made
use of the Table in Article 235. But in reality we have

only made use of this, to get the least possible numbers ; for

if we were indifferent with regard to brevity in the calcula-

tion, it would be easy, by means of the rules above given, to

find an infinite number of solutions ; because, having found

X 0-4-1 , y q" + 1
,

- , ,— = ——^, and — = —;—=-, we have reduced the question
z p^-— 1 z q^—1 ^

to that of transforming the product (p^q'^ — l) x {^— 1)

into a square. If we therefore make — = m, or q — mp,

our formula will become {in"p^ — 1) x (/;/- — 1), which is

evidently a square, when i?
= 1 ; but we shall farther see,
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that this value will lead us to others, if we write p = 1 + s;

in consequence of which supposition, we have to transform

the formula

(m- — 1) X [m" — 1 + 4<ms''- + 6m"s''- + ^m^s^ + 7/iV)

into a square ; it will be no less a square, if we divide it by
(m- — 1)^; this division gives vis

4wi"5 6m"s^ 4w-5^ m-s*

m^ — 1 m- — 1 m- — I mr — 1

and if to abridffe we make -——r = a. we shall have to re-

duce the formula 1 -|- 4^5 + Qas'^ + 4as^ + ai>'^ to a square.

Let its root he\ -\-fs •{ gs-, the square of which is

1 + ys + 2gs^ + f-s'^ + 2fgs^ + gh*, and let us deter-

mine Jf and g in such a manner, that the first three terras

may vanish ; namely, by making 2/ = 4a, or f = 2a, and

6a = 2g +/% or g = —p^ = 3a - 2a% the last two

terms will furnish the equation 4a + as = 9fg + g's
;

4a-2^ 4a -12a +Sa^
whence s — —-—=^-2- = ——

—

——-—— =
g"—a 4a^— 12a-' + 9fl^ - a

4-12a + 8a'^ v -v , . 4(2a-'l)
r~^

—

^a o , n T '> oi"* dividmg by a— 1, s — 7——^7- —z

.

This value is already sufficient to give us an infinite nvunber

of answers, because the number m, in the value of a,

= —^—:;-, may be taken at pleasure. It will be proper to

illustrate this by some examples.

1. Let m = 2, we shall have a = | ; so that

s = 4 X ~j = -1^; whence p = -|^, and q = - {4;
9

lastlv — = 2-4^ and — = ^°°1

2. If w = i, we shall have a = |-, and

U
5 = 4 X -3^ = — \^° ; consequently, p =1 — l*^ , and

q = —
''4i J ^y which means we may determine the fractions

—, and —

.

% z

There is here a particular case tliat deserves to be at-
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tended to ; which is that in which a is a square, and takes

place, for example, when ;?; == i ; since then a = ^^. If

here again, in order to abridge, Ave make a = b-, so that our

formula may be 1 + 46-s 4- 6b"s" + '^bY' + b"&^, we may
compare it with the square of 1 + 9,b-s + fo% that is to say,

with 1 + 4Z>-5 + 9.bs"- + 45*s2 -f Ws^ + 5's* ; and ex-

punging on both sides the first two terms and the last, and

dividing the rest by s-, v^e shall have 66- + 46-s = 26 +

46* + 46X whence s = ^^.3_4^e = o^^-gT"^
^"^

this fraction being still divisible by 6 — i, we shall, at last,

1-26-262 , 1-262
^'^''^ '

=
26 ' ^"^^= -26--

We might also have taken 1 -{- 26<s + b.f^ for the root of
our formula ; the square of this trinomial being

1 + 46s + 2652 -[- 46-52 _|_ 4j:^.3 _}_ ^2^.4^ y^Q should have de-

stroyed the first, and the last two terms ; and dividing the

rest by 5, we should have been brought to the equation
46- + "66-5 = 46 + 26.9 + 46^*. But as 6^ = i^, and 6 = |-,

this equation would have given us s = — 2, and ^ = — 1

;

consequently, p" — 1 = 0, from which we could not have
drawn any conclusion, since we should have had z = 0.

To return then to the former solution, which gave

p = —^jT— ; as 6 =
I:,

it shews us that if m = ^, we have

p = 4rJ, and q = mp = ^l; consequently, — = |-|4> ^^^^

— ^33
14-3*

a:

238. Question 15. Required three square numbers such,

that the sum of every two of them may be a square.

Since it is required to transform the three formulae

x'^ + 3/-, x" + z~, and y- + z- into squares, let us divide

them by s% in order to have the three following,

*JC^ fly- /y^'i oj^

z^ z^

X 2?^ — 1

The last two are answered, by making — = —^— , and

— = —p,— , which also changes the first formula into this,
2? 25-

°

(p2_l)a (7^-- 1)2
, ,

,^
+ . , , which ought also to contmue a square
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after being multiplied by ^pq-; that is, we must have

q^i^jf-— !) + p"{g- — 1)- = . Now, this can scarcely be

obtained, unless we previously know a case in which this

formula becomes a square : and as it is also difficult to find

such a case, we must have recoui'se to other artifices, some

of which we sliall now explain.

1. As the formula in question may be expressed thus,

q%p + 1)"- X {p - 1)- + p'{q + \Y X [q - 1)- = D , let

us make it divisible by the square (p + 1)- ; which may be

done by making q — I = p + 1, or q = p + ^; for then

q + 1 ~ p + S, and the formula becomes

ip+^y'x{pi-iyx(p-ir+f-{p-\-3yx {p+iy-^a;
so that dividing by (p + l)", we have {p + 2)" x [p— if +
«- {p -f 3)', which must be a square, and to which we may
give the 'form 9,p -\- Hp^ + Gj)" — 4/? + 4. Now, the last

term here being a square, let us suppose the root of the

formula to he 2 +fp + gp\ or gp'^ ^-fp -\- % the square

of which is g"p'^ + 9,fgp^ + ^gp- -f f-p^ + 4//? + 4, and

we shall destroy the last three terms, by making 4/"= — 4,

or/— —1, and 4^ + 1 = 6, or g = i. Also the first terms

being divided by /j^, will give 2p + 8 = g"p + 9.fg
—Wp — |

;

or p = — 24, and g' = — 22 ; whence — =^^-g—= ~W '•>

rtr r — 5 7 5 ^ nnrl ^ — - — 483 nr 7J — 483o-oi x — — ^^ z, ana ^ — g — tt ?
"'^ 3/ — + + ~"

Let us now make z = 16 x 3 X 11 ; we shall then have

a; = 515 X 11, and j/ = 483 x 12; consequently, the roots

of the three squares sought will be

:

X = 6325 = 11 X 23 X 25

;

jj r=5796 = 12 X ^1 X 23;

and^ = 528 ::= 3 x 11 x 16;

for from these result,

x'~ + f- = 23^(275- + 252-) = 23"- x 373^
x^- + ;s'- = ll'-'(575- + 48^) = 11'^ x 577^;

and 7f + z"- = 122(483^ + 44^ = 12^ x 485\

2. We may also make our formula divisible by a square,

in an infinite number of ways ; for example, if we suppose

(^ -1- 1)2 = 4(^ 4- l)i, ov q + 1 = ^{p -\- 1), that is to say,

q = 2p + 1, and q — 1 = 2p, the formula will become

{2p+iy- X (i> + l)- X (;?-l}"+p- x 4(^+ 1)- X 4p2= D ;

which may be divided by (;^4-l)', by which means we have

(2p + 1)- X {p - 1)- + 16f/ = D, or
oQ^4 _ 4p3 _ 3^2 _^Op ^ I — . but from this we derive

nothing.
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3. Let us then rather make (q — 1)'- = 4(p 4- I)", or

q — 1 =z 2(p + 1) ; we shall then have q = )ip + S, and

q -{• 1 = ^p -r 4), or q + 1 = 2(p + 2), and after having

divided our formula by {p + 1)-, we shall obtain the fol-

lowing; (2p + 3)"- X {p — 1)- + I6p^-(p -r 2)-, or

9 - 6p + 5Sp"' + 68p' + 20/?^ Let its root heS-p+gp%
the square of which is 9 — 6/? -|- Ggp- -{ p" — 2,gp^ + g P^',

the first two terms vanish, and we may destroy the third by
making 6^ + 1 = 53, or ^ =; \^; so that the other terms

are divisible by p, and give 20/? + 68 = g'^p — 2g\ or
''l.^p = ^|6

; therefore p = ±^, ar\d q — VV? by which
means we obtain a new solution.

4. If we make q — \ = ±(p — 1), we have g = yp — y,
and <7 + l = rP + t — ri^P + ^)' ^^^ ^^^^ formula, after

being divided by (p — 1)'-, becomes

( 9~) ^^P '^ ^^' "^ Up"<^P + 1)'5 multiplying by 81,

we have 9{ip - 1)- x (;? -f 1)" + 64;;-(2p + 1)^ =
400/?^ + 47%;3 + 73/9-' - 54/? + 9,

in which the first and last terms are both squares. If,

therefore, we suppose the root to be 20/?- — 9/? + 3, the

square of which is 400/?* - 3G0/?^ + ISO/?^ + 81/^^-54/? I- 9,

we shall have 472/? + 73 = — 360p + 201 ; wherefore

p = _3_, and 9 = TT - 3- = - tV-
We might likewise have taken for the root 20/?^+9jP — 3,

the square of which is 400/?^ -1-360/.'— iJ^iO/?" + 81p'-54/? + 9;

but comparing this square with our formula, we should have
found 472/? + 73 — 360/? — 39, and consequently /? = —!,
a value which can be of no use to us.

5. We may also make our formula divisible by the two
'squares, (p + 1)^, and (/? - 1)-, at the same time. For

7?^ -|- 1
this purpose, let us make q = —'—

; so that

pi+p-irt + l _{p+l)x{t-bl)
^^

1 ^

p + t p + t

pt-p-t+ 1 (p-l)x(i-l)

p+t p+t
This formula will be divisible by {p + l)- x {p — 1)-, and

•UT, J J i'pt+1)-' (t+iyx(t-iy „ ,„
will be reduced to ^ -+- + r^

—
"Vi

—

- x /?-. If we
ip+ty {p+ty >-

multiply by (/? -f ty, the formula, as before, must be trans-

formable into a square, and we shall have

{pt + 1)'^ X (/J -1- ty + p^'it + \f X {t — Ir, or
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in which the first and the last terms are squares. Let us
~ therefore take for the root tp" + {t- -\- V)p —t^ the square of

which is

t'-p^ + 2t{f' + l)p3 - 2t^f + (r- + l)2j32 _ 2t{P +l)/?4-r-,

and we shall have, by comparing,

2t-p + (r- + l)-p + 2t{t' + 1) + {r- - 1)'^ =
— 2t-p 4- [t" -{ Ifp — 2t{t- + I) ; or, by subtraction,

4it"p + 4^(^2 + 1) 4- [p — \Yp — 0, or

(^2 + lyy * + 4^(f. + 1) = 0,

that is to say, ^^ -j- i — ; whence p — —-—^
; conse-^

p ^ t"-\-\

quently, ^^iJ + 1 = /TTT' ^"^ p + ^ = , j lastly,

— 3^- + l
g- = —7^—jj-, where the value of the letter t is arbitrary.

and q = ^ ; so that -^ = ^^-^^ = + |-g, and

For example, let t = 2; we shall then have p =

— 11 . X ?)- —

1

y ?^--l .., 3x13 . 9x13— = —^— = vV , or a; = ;;

—

-—-z. and y — -.—q-7^.
z % ^* ' 4x4x5 ' -^4x11
Farther, if a? = 8 x 11 x 13, we have

2/ = 4x 5x 9x13, and
^ = 4 X 4 X 5x11,

and the roots of the three squares sought are

A' ^ 3 X 11 X 13 = 429,

«/ = 4x 5x 9x13^ 2340, and
;? = 4 X 4 X 5 x 11 == 880

:

where it is evident that these are still less than those found
above, from which we derive

X''- + 3/2 = 32 X 13^(121 + 3600) = 3- x 13'^ x 61%
x'' + z:- = 112 X (1521 + 6400) ^ 11^ x 89°-,

y" + z"- = m~ X (13689 + 1936) = 20^ x 125-.

6. The last remark we shall make on this question is, that

each answer easily furnishes a new one ; for when we have

* Thus, (t^ — l)^ =i^ — 2i^ + 1, which multiplied byp be-

comes pi^ — 2pi^ -f p.
Then adding, Api'^

We Iiave pt* + 2pl^ + ;; —{f- + l)^^, as above.
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found three values, x ^= a, y ^= b, and ^j = c, so that

Or- + h" = D , a2 _j_ c2 = , and Z>- + c- = D , the three

following values will likewise be satisfactory, namely, x— ah,

y = be, and z = ac. Then we must have

x- + ss^ = a-b' + a"c^ — a-(b- + c") = O ,

y~ + z^ = a"c- + b'C^ = C'{a^ + b') = D.

Now, as we have just found

^ = a = 3 X 11 X 13,

y = b = 4} X 5 X 9x13, and
z = c = 4> X 4x 5x11,

we have, therefore, according to the new solution,

^ = tt& = 3 X 4 X 5 X 9 X 11 X 13 X 13,

j/=5c = 4x4x4x5x 5 X 9x11x13,
^=ac=3x4x4x5xllxllxl3.

And all these three values being divisible by

3 x 4 X 5 X 11 X 13,

are reducible to the following,

a; = 9 X 13, 3/ = 3 X 4 x 4 X 5, and 2; = 4 x 11; or

a: = 117, y = 240, and 2 = 44,

which are still less than those which the preceding solution

gave, and from them we deduce

x^ + If = 71289 = 267%
X"' + -- ^ 15625 = 125%

7f + z'- = 59536 = 2442.

239. Question 16. Required two such numbers, a: and

7j, that each being added to the square of the other, may
make a square ; that is, that x- + y = O, and y" + ^ = D

.

If we begin with supposing x- + 7/ = p\ and from that

deduce
J/
= p" — x-, we shall have for the other formula

p* — 2p^X' + x'^ + X = D , which it would be difficult to

resolve.

Let us, therefore, suppose one of the formulae

X 4- y = ip — ^y = P' — ^px + x" ; and, at the same
time, the other j/^ + x = (q — y)- = q" — Qqy + y^, and
we shall thus obtain the two following equations,

y + 9/px = p% and x + 2py = q%

from which we easily deduce

<^np'^—qi ^pq'^-q"
X = -r f-, and ^^ = ~ ~

;

4fpq-l '^ A<pq—\

in which p and q are indeterminate. Let us, therefore,

suppose, for example, p = 2, and y = 3, then we shall have
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for the two numbers sought oc = Ij, and 7/
= 1|, by which

means .r'~ + y = f|i- -\-
H = ^-L = (|i)^ and

and q = S, we should have a; = — ~, and y — 44? ^^^

answer which is inadmissible, since one of the numbers
sought is negative.

But let ;? = 1, and 9 = 4, we shall then have x = ~^t
and y = 4c > vvhence we derive

^' + 2^ = tIo + 4^ =m = (il-)% and
7/2 J. 'r — 4-9 J 3 — 6 4 — C 8 \2
y T^ '* — T-o-o" I To- — -ro-Q — VTo-/ •

StO. Question 17. To find two numbers, whose sum
may be a square, and whose squares added together may
make a biquad rate.

Let us call these numbers x and y ; and since x- -\- if^

must become a biquadrate, let us begin with making it a

square : in order to which, let us suppose jr = p- — 9®, and

y = 2pq, by which means, x'^ + y" = {p^ + q-)\ But, in

order that this square may become a biquadrate, p- + q"

must be a square; let us therefore make^j = r- — s^, and

q = 2rs, in order that p" -{- q"^ = {r" + 5-)- ; and we
immediately have x~ + j/" = (r- + s')*, which is a biqua-

drate. Now, according to these suppositions, we have
.r = r* — Qr"S' -f s*, and y = 4<r-s — 4rs^ ; it therefore

remains to transform into a square the formula

.r -)- 3/ = r* -}- 4r^s -- Gr-s" — 4rs'' + s*.

Supposing its root to be r" + 2j'S -f s-, or the formuila

equal to the square of this, r* + 4>r'^s + 6/",i'- + 4rs^ + -s*,

we may expunge from both the fir^t two terras and also s*,

and divide the rest by rs", so that we shall have

Qr + 4>s =— Gr — 4^, or 12r + Ss = 0; or

s = ^ = — ~r. We might also suppose the root to be

r- — 2?-5 -f i'-, and make the formula equal to its square
7.4 _ 4,r^s + 6r~s- — 4rs^ + s*; the first and the last two
terms being thus destroyed on both sides, we should have,

by dividing the other terms by r'^s, 4.r — 6s =— 4;- + 6s,

or 8r — l^s; consequently, r = As; so that by this second

supposition, if r = 3, and 5 — 2, we shall find x =— 119,

or a negative value.

But let us make r = ^s -j- t, and we shall have for our

formula,

r"^ = 9.5^ + 3.?/ + f ; r^ = y s^ H- ^s'^t + \st^ + t\
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Therefore r* = ^s* ^ %'sH + ys-P + 6sP + i*

+ 4ir^s - ys" + TisH -f- ISsH'' + 4ist^

-6r^s^= - ys^ - \Si>H - QsH'
— 4r53 ^ - Qs^ - 4!sH

+ 5* = + s*; and, consequently, the formula will

, 1 37, 51
16** "^ ¥ *" V'^' "^ -^^^^^ "^ ^*-

This formula ought also to be a square, if multiplied by
16, by which means it becomes

5+ + '296sH + ^08s-f- + IGOsf + I6t*.

Let us make this equal to the square of s"- + 1485^ — 4^\
that is, to s* + 29653^ + 9.1896s"-t- — U8isf + 16/*; the

first two terms, and the last, are destroyed on both sides,

and we thus obtain the equation,

21896^,- 1184/ = 4085 + 160/, which gives

Therefore, since s = 84, and / = 1343, we shall have
'" = 45 + / = 1469, and, consequently,

X = r* - 6f^s- + s* = 4565486027761, and

y = 4r^5 - 4rs^ = 1061652293520.

CHAP. XV.

Solutions of some Questions, in xvhich Cubes are 7-equired-

241. In the preceding chapter, we have considered some
questions, in which it was required to transform Certain

formulae into squares, and they afforded an opportunity of

explaining several artifices requisite in the application of the

rules which have been given. It now remains to consider

questions, which relate to the transformation of certain

formulae into cubes ; and the following solutions will throw
some light on the rules, which have been already explained

for transformations of this kind.

242. Question 1. It is required to find two cubes, .r^,

and ?/', whose sum may be a cube.

Since a?' + 3/' must be a cube, if we divide this formula

by if, the quotient ought likewise to be a cube, or

—
- + 1 = c. If, therefore, — = ^ — 1, we shall have'

G G
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z^ — 3:2 + Sz — h = c. If we should here, according to

the rules already given, suppose the ciibe root to be z— u,anS,

by comparing the formula with the cube x,'^ ~S2iz'- + Su-z— u^,

determine u so, that the second term may also vanish, we
should have m = 1 ; and the other terms forming the equa-

tion 3z = Su^z — M^ = S^ — 1, we should find ^^=00,
from which we can draw no conclusion. Let us therefore

rather leave ti undetermined, and deduce z from the qua-

dratic equation — 3^- + 3z = — Suz- + Su-z — v}, or

2,uz"- -^t'^^u^z -3z -u\ov 2>iii-\)z"- ==:Q{u'' -\)z -u\ov
u

z'^ = lu -\- \)z — -pr, r; ; from this we shall find
^ 3(m — 1)

z^~^± ./( -^ ^^^
u + \ _ ,—u^+ Su"-- ?m - 3

or z = -—r— + \/( zr-r-.
—"

) ; SO that theoues-
2 12(u — l) ^ ^

tion is reduced to transforming the fraction under the radical

sign into a square. For this purpose, let us first multiply

the two terms by S{u—1), in order that the denominator
becoming a square, namely, 36{u — 1)^, we may only have
to consider the numerator — Su'*' + I2ti^ — 18«- + 9 : and,

as the last term is a square, we shall suppose the formula,

according to the rule, equal to the square of gic- + fu + 3,

that is, to g-u'' + ^fgy? +f-u" + ^gu- + Ofa + 9. We
may make the last three terms disappear, by putting Qf=0,
or y= 0, and Qg +/• = — 18, or g = — 3 ; and the

remaining equation, namely, '

- Szi + 12 = g^u + 2/m = 9m,

will give u = 1. But from this value we learn nothing; so

that we shall proceed by writing u := 1 + t. Now, as our
formula becomes in this case — l^t — 3^*, which cannot be
a square, unless t be negative, let us at once make t z=. — s;

by these means we have the formula 12s — 3**, which be-

comes a square in the case of s =: 1. But here we are

stopped again; for when s zz I, we have t zz — 1, and
u = 0, from which we can draw no conclusion, except that

in whatever manner we set about it, we shall never find

a value that will bring us to the end proposed; and hence
we may already infer, with some degree of certainty, that

it is impossible to find two cubes whose sum is a cube.

But we shall be fully convinced of this from the following

demonstration.

243. Theorem. It is impossible to find any two cubes,

whose sum, or difference, is a cube.
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We shall begin by observing, that if this impossibility

applies to the sum, it applies also to the difference, of two
cubes. In fact, if it be impossible for x"' -{- y^ = z^, it is

also impossible for 2' — y^ — ^3^ Now, z'^ ~ if' is the dif-

ference of two cubes ; therefore, if the one be possible, the

other is so likewise. This being laid down, it will be suf-

ficient, if we demonstrate the impossibility either in the case

of the sum, or difference ; which demonstration requires the

following chain of reasoning,

1. We may consider the numbers x and y as prime to

each other ; for if they had a common divisor, the cubes

would also be divisible by the cube of that divisor. For
example, let x = wza, and y = mh, we shall then have
oc^ -\- y'^ = m^a^ + m^b^ ; now if this formula be a cube,

a^ + />^ is a cube also.

2. Since, therefore, x and y have no common factor, these

two numbers are either both odd, or the one is even and the

other odd. In the first case, z would be even, and in the

other that number would be odd. Consequently, of these

three numbers x, y, and z, there is always one which is

even, and two that are odd ; and it will therefore be suf-

ficient for our demonstration to consider the case in which x
and y are both odd : because we may prove the impossibility

in question either for the sum, or for the difference ; and
the sum only happens to become the difference, when one of

the roots is negative.

3. If therefore x and y are odd, it is evident that both
their sum and their difference will be an even number.

Therefore let = p^ and = q^ and we shall have

X = p ->r q^ and y = p — q\ whence it follows, that one of

the two numbers, p and q, must be even, and the other odd.

Now, we have, by adding {p -\- qy = x^, to {p — qy ~ 7/^,

x^ -\- ^^ =1 2p^ + 6pq' = 2p{p" + Sq') ; so that it is required

to prove that this product 2p[p'^ -\- 3q-) cannot become a

cube ; and if the demonstration were applied to the dif-

ference, we should have x^ —y^ = 6p"q + 2q^ = 2q(q^- + 3/?-),

a formula precisely the same as the former, if we substitute

p and q for each other. Consequently, it is sufficient for

our purpose to demonstrate the impossibility of the formula

2p{p- + 3(/'-), since it will necessarily follow, that neither

the sum nor the difference of two cubes can become a
cube.

4. If therefore 2yt?(/)- + Sq"^) vvere a cube, that cube
would be even, and, consequently, divisible by 8 : con-

G G 2
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sequently, the eighth part of our formula, or Ipip"- + Sg'-),

would necessarily be a whole number, and also a cube.

Now, we know that one of the numbers p and q is even,

and the other odd ; so that
f/- + ^^f must be an odd

number, which not being divisible by 4, f must be so, or

—r must be a whole number.
4

5. But in order that the product ip{p^ + Sq-) may be a

cube, each of these factors, unless they have a common
divisor, must separately be a cube ; for if a product of two

factors, that are prime to each other, be a cube, each of itself

must necessarily be a cube ; and if these factors have a

common divisor, the case is different, and requires a par-

ticular consideration. So that the question here is, to know
if the factors p, and p- -^^q", might not have a common
divisor. To determine this, it must be considered, that if

these factors have a common divisor, the numbers p-, and
jy- + o<7'-, will have the same divisor; that the difference

also of these numbers, which is 3^', will have the same com-
mon divisor with p"^

; and that, since /) and q are prime to

each other, these numbers p", and ?>q", can have no other

common divisor than 3, M^hich is the case when p is divisible

by 3.

6. We have consequently two cases to examine : the one is,

that in which the factors p, and p- + 3^'-, have no common
divisor, which happens always, when p is not divisible by 3

;

the other case is, when these factors have a common divisor,

and that is when ^^ may be divided by 3 ; because then the

two numbers are divisible by 3. We must carefully distin-

guish these two cases from each other, because each requires

a particular demonstration.

7. Case 1. Suppose that p is not divisible by 3^ and,

P
consequently, that our two factors -^, and ^- + 3y-, are

prime to each other ; so that each must separately be a cube.

Now, in order that p- -\- ^q- may become a cube, we have
only, as we have seen before, to suppose

p+ q V -^-{t-^u^ -^f, anA p-q V -Q-{t-u^ Sf,
which gives ;;- -|- i^q" =. (t- + 3u-)^, which is a cube, and
gives us^ = t^ — diu^ = t{t"—9u"), also

q = StHi — Su^ r= 3u{t^ — u-). Since therefore q is an odd
number, ti must also be odd ; and, consequently, t must be
even, because otherwise i° — u~ would be even.

8. Having transformed jd" + 3q" into a cube, and having
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found p = t{t^ - 9^2) z= t{t + ou) X {t - 3m), it is also

P
required that ^, and consequently 2/), be a cube; or,

which comes to the same, that the formula
^t{t + 3m) X (^ — 3;/) be a cube. But here it must be ob-

served that t is an even number, and not divisible by 3

;

since otherwise p would be divisible by 3, which we have
expressly supposed not to be the case : so that the three

factors, 2/, t + Su, and t — Su, are prime to each other;

and each of them must separately be a cube. If, therefore,

we make t + 3u =f^, and t — fiu = g^, we shall have
2^ =y^ + g^. So that, it 2t is a cube, we shall have two
cubes y^, and g"^, whose sum would be a cube, and which
would evidently be much less than the cubes x^ and j/^ as-

sumed at first; for as we first made x=p + q, and i/—p—Q,
and have now determined p and g by the letters t and u, the

numbers x and 3/ must necessarily be much greater than

i and u.

9. If, therefore, there could be found in gi-eat numbers
two such cubes as we require, we should also be able to

assign in less numbers two cubes whose sum would make a

cube, and in the same manner we should be led to cubes

always less. Now, as it is very certain that there are no

such cubes amons: small numbers, it follows that there are

not any among the greater numbers. This conclusion is

confirmed by that which the second case furnishes, and which

will be seen to be the same.

10. Case 2. Let us now suppose, that 2^ is divisible by

3, and that q is not so, and let us make p =z Sr; our formula

3r
will then become -^ x (9r- + 3q^), or |r(3r^ + q") ; and

these two factors are prime to each other, since 3r- + q^- is

neither divisible by 2 nor by 3, and r must be even as well

as p ; therefore each of these two factors must separately be

a cube.

11. Now, by transforming the second factor Sr^ + q'y or

q'~ + 3r'^, we find, in the same manner as before,

q = t{f' — ^u"), and r = Su{t~ — m*) ; and it must be ob-

served, that since q was odd, t must be here likewise an odd

number, and u must be even.

12. But -J- must also be a cube ; or multiplying by the

%•
cube /^ , we must have -^, or

o •
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2u{f — U-) = 2u{t -V u) X [t — u) a cube ; and as these

three factors are prime to each other, each must of itself be

a cube. Suppose therefore t -\- u —
f^-, and t — u — g^,

we shall have 2ti —f"^ — g^ ; that is to say, if 2m were a

cube, ^3 — ^ would be a cube. We should consequently

have two cubes, f^ and g^, much smaller than the first,

whose difference would be a cube, and that would enable us

also to find two cubes whose sum would be a cube ; since

we should only have to makey^ — i>^ — /r^, in order to have

f^ = h^ -f- g^, or a cube equal to the sum of two cubes.

Thus, the foregoing conclusion is fully confirmed ; for as we
cannot assign, in great numbers, two cubes whose sum or

difference is a cube, it follows from what has been before

observed, that no such cubes are to be found among small

numbers.
244. Since it is impossible, therefore, to find two cubes,

whose sum or difference is a cube, our first question falls to

the ground : and, indeed, it is more usual to enter on this

subject with the question of determining three cubes, whose
sum may make a cube ; supposing, however, two of those

cubes to be arbitrary, so that it is only required to find

the third. We shall therefore proceed immediately to this

question.

245. Question 2. Two cubes a^, and b^, being given, re-

quired a third cube, such, that the three cubes added to-

gether may make a cube.

It is here required to transform into a cube the formula
a^+b^ + x^; which cannot be done unless we already

know a satisfactory case ; but such a case occurs imme-
diately ; namely, that of ^ = — a. If therefore we make
X — 7j — a^ we shall have x^ = y^ — 2>ay" + Qa^y — d^

;

and, consequentlyj it is the formula i/ - I5m/^ -f ^a-y + b^

that must become a cube. Now, the first and the last terra

here being cubes, we immediately find two solutions.

1. The first requires us to represent the root of the
formula by ij ^- b, the cube of which is y^-^-Sby- + 2>by-\-b' .;

and we thus obtain — Say -j- oa- — 36^/ 4- 6b^; and, con-

«-— 6-
sequently, y = = a — b; hut x = — b, so that this

solution is of no use.

2. But we may also represent the root by fy + b, the

cube of which is f^^ + 3bf-i/- + ob-fi/ + b^, and then de-

termine / in such a manner, that the third terms may be

destroyed, namely, by making 3a^ = Sb'^', or f = -r^; for
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we thus arrive at the equation

7/ -Sa =pj/ + Sbf' "^ "66 + TT' ^^ich multiplied by b^,

becomes b^^ — Sab'' = a^y + 3tt*6^. This gives

y = —J6~^r~^ b^~ aP '^W^''
and, consequently,

X = y — a = -75 — = a X -75 j. 00 that the twoa b^-d"'

cubes a^ and b^ being given, we know also the root of the

third cube sought ; and if we would have that root positive,

we have only to suppose J' to be greater than a". Let us

apply this to some examples.

1. Let 1 and 8 be the two given cubes, so that a = 1,

and b = 2; the formula 9 + x^ will become a cube, if

X = y ; for we shall have 9 + x^ = '^V = (V°)''-

2, Let the given cubes be 8 and 27, so that a = 2,

and b = 3; the formula 35 + x^ will be a cube, when

19*

3. If 27 and 64 be the given cubes, that is, if a = 3,

and 6 = 4, the formula 91 + x^ will become a cube, if

^ — 46 S
•* — TT •

And, generally, in order to determine third cubes for

any two given cubes, we must proceed by substituting

2ab^ + a*
—rz z h z instead of x. in the formula d^ -^ b^ -\- x^

;

b^—d
for by these means we shall arrive at a formula like the pre-

ceding, which would then furnish new values of z ; but

it is evident that this would lead to very prolix cal-

culations.

246. In this question, there likewise occurs a remarkable

case ; namely, that in which the two given cubes are equal,

or a = 6 ; for then we have x — — = 00 ; that is, we have

no solution ; and this is the reason why we are not able to

resolve the problem of transforming into a cube the formula

2a^ -h x^. For example, let a — \, or let this formula be

2 + x^, we shall find that whatever forms we give it, it will

always be to no purpose, and we shall seek in vain for a

satisfactory value of x. Hence, we may conclude with

sufficient certainty, that it is impossible to find a cube equal

to the sum of a cube, and of a double cube ; or that the

equation 2d + .r^ = 7/ is impossible. As this equation
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gives 2a^ z^ if-
— x-'^ it is likewise impossible to find two

cubes having their difference equal to the double of another

cube; and the same impossibility extends to the sum of

two cubes, as is evident from the following demonstration.

247. Theorem. Neither the sum nor the difference of

two cubes can become equal to the double of another cube

;

or, in other words, the formula j;^ ± ?/^ = 2s^ is always

impossible, except in the evident case of j/ = a?.

We may here also consider x and y as prime to each

other ; for if these numbers had a common divisor, it would

be necessary for z to have the same divisor; and, con-

sequently, for the whole equation to be divisible by the cube

of that divisor. This being laid down, as :r^ + 'if must be

an even number, the numbers x and y must both be odd, in

consequence of which both their sum and their difference

nQ-i-qj QQ—fi
must be even. Making, therefore, —~ = p, and r= g,

we shall have x z=. p •{- q and y = p — q'-, and of the two
numbers p and q, the one must be even and the other odd.

Now, from this, we obtain

x^ ^y^ = V + ^Pf = ^P(P- + ^9%
and x^ — y' = 6/;"<7 -f %' = ^q{Sp- + q-),

which are two formulae perfectly similar. It will therefore

be sufficient to prove that the formula 2p( p" -j- iiq-) cannot

become the double of a cube, or that p{p^ + 3<7-) cannot

become a cube : which may be demonstrated in the follow-

ing manner.

1. Two different cases again present themselves to our
consideration: the one, in which the two factors p, and
p- + Qq-, have no common divisor, and must separately be
a cube ; the other in which these factors have a common
divisor, which divisor, however, as we have seen (Art. 243),

can be no other than 3.

2. Case 1. Supposing, therefore, that p is not divisible by
3, and tiiat thus the two factors are prime to each other, we
shall first reduce p-+ Qq- to a cube by making p = t{t- — 9^*''),

and q = Zu{t" — 9«-) ; by which means it will only be far-

ther necessary for p to become a cube. Now, t not being
divisible by 3, since otherwise p would also be divisible by 3,

the two factors t, and t" — 9//-, are prime to one another,

and, consequently, each must separately be a cube.

3. But the last factor has also two factors, namely ^ + 3«/,

and t — 3m, v/hich are prime to each other, first because t is

not divisible by 3, and, in the second place, because one of
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the numbers ^ or m is even, and the other odd ; for if these

numbers were both odd, not only p, but also q, must be odd,

which cannot be : therefore, each of these two factors, t + Su,

and t — 'Su, must separately be a cube.

4. Therefore let t + Su =f^, and t — Su = g^, and we

shall then have 2t =f^-{.g^. Now, t must be a cube,

which we shall denote by h', by which means we must have

^3 _j_ ^3 _ 2A' ; consequently, we should have two cubes

much smaller, namely,/^ and g^, whose sum would be the

double of a cube.

5. Case 2. Let us now suppose p divisible by 3, and,

consequently, that q is not so.

If we make p = Sr, our formula becomes

37-(9r- + 3^^) — 9r{Sr- + q"), and these factors being now
numbers prime to one another, each must separately be a

cube.

6. In order therefore to transform the second q^ + S?-,

into a cube, we shall make q = t{t-—9u"-), and r— on{t- —u") ;

and again one of the numbers t and u must be odd, and the

other even, since otherwise the two numbers q and ;• would

be even. Now, from this we obtain the first factor

9r = ^'7u{f — u^) ; and as it must be a cube, let us divide

it by 27, and the formula u{t" — u'^), or u(t + u) x {t —u),
must be a cube.

7. But these three factors being prime to each other, they

must all be cubes of themselves. Let us therefore suppose

for the last two t -]- tc =jf\ and ^ ~ m = ^^, we shall then

have 2m =J'^ — g^; but as u must be a cube, we should in

this way have two cubes, in much smaller numbers, whose
difference would be equal to the double of another cube.

8. Since therefore we cannot assign, in small numbers,
any cubes, v/hose sum or difference is the double of a cube,

it is evident that there are no such cubes, even among the

greatest numbers.

9. It will perhaps be objected, that our conclusion might
lead to error ; because there does exist a satisfactory case

among these small numbers ; namely, that ofy = g. But
it must be considered that when f= g, we have, in the first

case, t -\- Su = t — 3m, and therefore u = 0-, consequently,

also 5' = ; and, as we have supposed x = p + q, and

y = p — q, the first two cubes, x^ and y^, must have already

been equal to one another, which case was expressly ex-

cepted. Likewise, in the second case, ify=^? we must
have t + u = t — Uf and also u = 0: therefore r = 0, and

p = 0; so that the first two cubes, x^ and v/\ would again
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become equal, which does not enter into the subject of the

problem.

248. Question 3. Required in general three cubes, <r^, y^,

and r^^, whose sum may be equal to a cube.

We have seen that two of these cubes may be supposed to

be known, and that from them we may determine the third,

provided the two are not equal ; but the preceding method
furnishes in each case only one value for the third cube, and

it would be difficult to deduce from it any new ones.

We shall now, therefore, consider the three cubes as un-

known ; and, in order to give a general solution, let us make
^3 j^ yz ^ ^z— ^3^ Here, by transposing one of the terms,

we have x'^ -\- y^ =:^ v'^ — z'^, the conditions of which equa-

tion we may satisfy in the following manner.

1

.

Let X = p + q, and i/ = p — q, and we shall have, as

before, x^ + i/'"^ = 2j)(p^ 4- 3^^^. Also, let v = r + s, and

z = r — Sy which gives v^ — ^ = 2s(s- + Sr") ; therefore

we must have 2jp(p" + 3q~) = 2s(s- + 3r"), or

p{j)" -f- 39^) = s{s- + 3r2).

2. We have already seen (Art. 176), that a number, such

as^*^ + 3^'-, can have no divisors except numbers of the

same form. Since, therefore, these two formulae, p"^ + ^q",

and s- 4- 3r-, must necessarily have a common divisor, let

that divisor be t- + 3?^-.

3. And let us, therefore, make
p^ + 39'^ = (/2 + 3^2) X {^2 _j. 3^/2)^ and
s« + 3r2 = (/i'i + 3/;'^), x \t" + 3m"-),

and we shall have pt =.ft + 3gu, and q = gt —fu\ con-

sequently, /?'- =J'H- 4- Qfgtu + Qg-vP', and
^2 — g-ifi _ 2fgtu +f"u^; whence,
p2 + 3ry2 = (/2 + 3^2)^^ + (3^2 + 9^^.)^:. or

p^ 4- 3^2 = (/2 4- 3g^) X {P + 3ti'-).

4. In the same manner, we may deduce from the other

formula, s = /it + 3A;w, and r = Jet — /lu; whence results

the equation,

{ft + Sgu) X if' 4- Sg-) X it' + 3^0 =
{ht 4- 3ku) X (A- + 3A;-) x [P 4- 3^i-),

which being divided by t- + 3//-, and reduced, gives

Mf + 3r) + Sgu{f^ + 3f) =
ht{h^ 4- 3A,-') -h 3Am(A- 4- 3P), or

ft{f~ 4- S^") - ht{h" 4- 3^'-) ==

3Jcu{h^ 4- 3k-) - Sgu{f- 4- 8^2)^

.... ^ 3m^^SJc"')-3g{r' + iig"-)

by which means t = ^, ^. ,
^-.
—^

—

/

"

.
/"

, m-s ^-
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5. Let us now remove the fractions, by making

U =/(/" + 3°-) - h(h" + 3k"~) ; then

t = 3kih^ + Sh) - Sg{f~ + 3g%
where we may give any values whatever to the lettersy, g;
h, and k.

6. When therefore we have determined, from these four

numbers, the values of t and u, we shall have

p =ft + 3gu, q = gt -fit,
r =. ht — hu, s = ht + 3Jcti ;

whence we shall at last arrive at the solution of the question,

X = p + q, y = p — q^ z = r — s, and v =: r + s ; and
this solution is general, so far as to comprehend all the

possible cases, since in the whole calculation we have ad-

mitted no arbitrary limitation. The whole artifice con-

sisted in rendering our equation divisible by t" + 3u"; for

we have thus been able to determine the letters / and u by
an equation of the first degree ; and innumerable applica-

tions may be made of these formulae, some of which we shall

give for the sake of example.

1. Let 7c = 0, and h — 1, we shall have

t =z - 3g{f" + 3g''), and w =/(/" + 3g'^) - 1 ; so that

P = - ¥g{f' + '^g') + ¥gif' + %0 - 2g, or p =-3g;
q = - (p + 3g"-y +/; s =-3g{f^^ + 3g^) ;

r = —J\f~ + 3g") + 1 ; consequently,

^ = -Sg + (/' + 3g^y -/,

lastly, V = - (3^ +/) x (/^ + 3^=) + L
If we also supposey= — 1, and g = + 1, we shall have

£c = — 20, 2/ — 14, ;^ == 17, and v = — 7; and thence re-

sults the final equation, — 20^ + 14' + 17' = — T, or
14^ + 17^ + 7» = 203.

2. Lety= ^> g — Ij and consequently/" + 3^'- = 7;
farther, h = 0, and ^ = 1 ; so that k" + Qk" = 3 ; we shall

then have t = — 12, and w = 14; so that

p = 2t + &U = 18, q = t - 2u =- 40,

r = ^ = - 12, and s = Su = 42.

From this will result

X = p + q =— 22, y =: p — q = 5S,

z = r — s = — 54, and v — r + s = 30

;

therefore, 30^ = 22' + 58^ - 54"', or
58-^ = 30^ -h 54' + 22-=

;

and as all these roots are divisible by 2, we shall also have
29^ = 15^-1-273 + 11'.
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3. Let f = S, ^^ =z I, h = 1, and ^ = 1 ; so that

fi + Sg"~'= 12, k- + SJc"- = 4 ; also t = -
'24!, and u = '32.

Here, these two values being divisible by 8, and as we con-

sider only their ratios, we may make t = — 3, and w = 4.

Whence we obtain

p =3t -\- 3u =+ 3, q = t - 3u = ~ 15,

r — t — u =—1, and s = t -[- 3u = -\- 9;

consequently, x = — 12, and ^ = 18,

2 = — 16, and V = 2,

whence - 12^ + 18^ - 16^ = 2', or 18^ = 16^ + 12^+ 2\
or, dividing by the cube of 2, 9^ = 8' + 6^ + 1^.

4. Let us also suppose ^ = 0, and k = h, by which

means we leave y" and li undetermined. We shall thus have

p + 3g- =f-, and h- + 3A;'' = 4A" ; so that t = 127i^ and
u =/3 - 4/z^ also, p = St = \2fh\ q= -p + ^fh\
r = 12^4 _ hp + W = 16A* - />/% and s ^ 3hf^; lastly,

x=p^q = 16/A^ -f\ y=.p-q = Sfh' +f\
IS = r - s = 16/i* - Uf^ andv = r + s = 16/i* +^hf\

If we now make/= A ==1, we have x = 15, y = 9, ^= 12,

and r = 18; or, dividing all by 3, x = 5, y = 3, z = 4,

and u = 6; so that 3' + 4^ + 5' = 6^ The progression

of these three roots, 3, 4, 5, increasing by unity, is worthy

of attention ; for which reason, we shall investigate whether

there are not others of the same kind.

249. Question 4. Required three numbers, whose dif-

ference is 1, and forming such an arithmetical progression,

that their cubes added together may make a cube.

Let X be the middle number, or term, then x— 1 will be

the least, and j; + 1 the greatest ; the sum of the cubes of

these three numbers is 3x^ -\- Qx = 3x{x- + 2), which must

be a cube. Here, we must previously have a case, in which

this property exists, and we find, after some trials, that that

case is ^ = 4.

So that, according to the rules already given, we may
make a; — 4 + ?/ ; whence ^'=16 4-8// + ?/-, and
j;^ = 64 4- 48z/ + 12?/- + y^, and by these means our

formula becomes 216 + 150// + 3Qy- -{- 3y^, in which the

first term is a cube, but the last is not.

Let us, therefore, suppose the root to be 6 + fy, or the

formula to be 216 + 108/y + 18/y- +/y, and destroy

the two second terms, by writing 108/"= 150, orJ'= 4|;
the other terms, divided by y", will give

^

25- 25^
36 I 3y = 18/' +f'y = ^ + ^^, or



CHAP. XV. OF ALGEBRA. 461

18=* X 36 + 18' X 3^/ = 18^ x 25- + 25'^, or

18' X 36 - 18^ X 25- =25'^- 18=^ x 3j/; therefore

_ 18^ X 36 - 18- X 25- 18^ x (18 x 36-25^)

^ - ^~- 3 X 18^ ~ 25^ - 3 X 18^ '

^

-324x23 -7452
IS, 1/ = —Y^^

=
-^g^^

; and, consequently, x=-^^-,.

As it might be difficult to pursue this reduction in cubes,

it is proper to observe, that the question may always be re-

duced to squares. In fact, since Sx(x^ -r- 2) must be a

cube, let us suppose 3x{£C- + 2) == a;^j/» ; dividing by .r, we
shall have Ss- + 6 — x-y^ ; and, consequently,

x'^ = -;—2, = TT-^—T7,. Now, the numerator of this frac-
'if^—3 6y'-\8

tion being already a square, it is only necessary to transform

the denominator, 6y^ — 18, into a square, which also re-

quires that we have already found a case. For this purpose,

let us consider that 18 is divisible by 9, but 6 only by 3,

and that y therefore may be divided by 3 ; if we make
y =' Sz, our denominator will become 16223 — 18, which

being divided by 9, and becoming 182^ — 2, must still be a

square. Now, this is evidently true of the case ^ = 1. So
that we shall make 2 = 1 -f u, and we must have

16 + 54u + 5^v- + 18tj3 = D . Let its root be 4 + y r,

the square of which is 16 + 54u -f VV^"' ^^^ ^'^ must have

54 + ISu = Vg^ ; or 18i; = - '^y, or 2t; = - 44; and,

consequently, u = — f|^ ; which produces 2; — 1 -\- v = 44'
and then y = ~\.

Let us now resume the denominator

6y - 18 = 162^^ - 18 = 9(182=^ - 2)

;

and since the square root of the factor, 18c^ — 2, is

4 -{- y z; = -L£-|., that of the whole denominator is 44t • ^^^

the root of the numerator is 6 ; therefore x = j^T = t-It> a

value quite different from that which we found before. It

follows, therefore, that the roots of our three cubes sought
are a; - 1 = 4.44, x = ^^-, x -{- 1 = l±l : and the sum of

the cubes of these three numbers will be a cube, whose root,

^> 107 31 3+1+, 107''

250. We shall here finish this Treatise on the Indeter-

minate Analysis, having had sufficient occasion, in the ques-

tions which we have resolved, to explain the chief artifices

that have hitherto been devised in this branch of Algebra.
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QUESTIONS FOR PRACTICE.

1. To divide a square number (16) into two squares.

Ans. Vt » and VV-
2. To find two square numbers, whose difference (60) is

given. Ans. 72|, and 132|.

3. From a number x to take two given numbers 6 and 7,

so that both remainders may be square numbers.

Ans. cc = '-j^'.

4. To find two numbers in proportion as 8 is to 15, and
such, that the sum of their squares shall make a square

number. Ans. 576, and 1080.

5. To find four numbers such, that if the square number
100 be added to the product of every two of them, the sum
shall be all squares. Ans. 12, 32, 88, and 168.

6. To find two numbers, whose difference shall be equal

to the difference of their squares, and the sum of their squares

a square number. Ans. ^, and ^.

7. To find two numbers, whose product being added to

the sum of their squares, shall make a square number.
Ans. 5 and 3, 8 and 7, 16 and 5, &c.

8. To find two such numbers, that not only each number,
but also their sum and their difference, being increased by
unity, shall be square numbers. Ans. 3024, and 5624.

9. To find three square numbers such, that the sum of

their squares shall be a square number.
A)7s.9, 16, and »^.

10. To divide the cube number 8 into three other cube
numbers. A/is. |i, Vr ? ^^d 1.

11. Two cube numbers, 8 and 1, being given, to find two
other cube numbers, whose difference shall be equal to the

sum of the given cubes. Ayis. VVt' ^^^ tVt •

12. To find three such cube numbers, that if 1 be sub-

tracted from every one of them, the sum of the remainders

shall be a square. Ans. ^fff, Vttt* ^"^ ^•

IS. To find two numbers, whose sum shall be equal to

the sum of their cubes. Ans. ^, and |-.

14. To find three such cube numbers, that the sum of

them may be both a square and a cube.
Avk: 1 2084383 i5152992



ADDITIONS

M. DE LA GRANGE.

ADVERTISEMENT.

The geometricians of the last century paid great attention

to the Indeterminate Analysis, or what is commonly called

the Diophant'me Algebra ; but Bachet and Fermat alone can

properly be said to have added any thing to what Diophantus
himself has left us on that subject.

To the former, we particularly owe a complete method
of resolving, in integer numbers, all indeterminate problems

of the first degree * : the latter is the author of some methods
for the resolution of indeterminate equations, which exceed

the second degree f ; of the singular method, by which we
demonstrate that it is impossible for the sum, or the dif-

ference of two biquadrates to be a square \ ; of the solution of

a great number of very difficult problems ; and of several

admirable theorems respecting integer numbers, which he
left without demonstration, but of which the greater part has

since been demonstrated by M. Euler in the Petersburg

Commentaries
||.

* See Chap. 3, in these Additions. I do not here men-
tion his Commentary on Diophantus, because that work, pro-

perly speaking, though excellent in its wa}', contains no dis-

covery.

f These are explained in the 8th, 9th, and 10th chapters of
the preceding Treatise. Pere Billi has collected them from dif-

ferent writings of M. Fermat, and has added them to the new
edition of Diophantus, published by M, Ferrnat, junior.

X This method is explained in the 13th chapter of the pre-
ceding Treatise ; the principles of it are to be found in the i?e-

marks of M. Fermat, on: the XXVIth Question of the Vlth Book
of Diophantus.

:j: The problems and theorems, to which we allude, are
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In the present century, this branch of analysis has been

ahnost entirely neglected ; and, except M. Euler, I know no

person who has applied to it : but the beautiful and nu-

merous discoveries, which that great mathematician has

made in it, sufficiently compensate for the indifference

which mathematical authors appear to have hitherto enter-

tained for such researches. The Commentaries of Peters-

burg are full of the labours of M. Euler on this subject,

and the preceding Work is a new service, v^hich he has ren-

dered to the admirers of the Diophantine Algebra. Before

the publication of it, there was no work in which this science

was treated methodically, and which enumerated and ex-

plained the principal rules hithei'to known for the solution

of indeterminate problems. The preceding Treatise unites

both these advantages : but in order to make it still more
complete, I have thought it necessary to make several Ad-
ditions to it, of which I shall now give a short account.

The theory of Continued Fractions is one of the most

useful in arithmetic, as it serves to resolve problems with

facility, which, without its aid, would be almost unmanage-

able; but it is of still greater utility in the solution of inde-

terminate problems, when integer numbers only are sought.

This consideration has induced me to explain the theory of

them, at sufficient length to make it understood. As it is

not to be found in the chief works on arithmetic and algebra,

it must be little known to mathematicians ; and I shall be

happy, if I can contribute to render it more familiar to them.

At the end of this theory, which occupies the first Chapter,

follow several curious and entirely new problems, depending

on the truth of the same theory ; but which I have thought

proper to treat in a distinct manner, in order that the solu-

tion of them may become more interesting. Among these

will particularly be remarked a very simple and easy method

of reducing the roots of equations of the second degree to

Continued Fractions, and a rigid demonstration, that those

fractions must necessarily be always periodical.

The other Additions chiefly relate to the resolution of in-

scattered through the Remarks of M. Fermat on the Questions

of Diophantus ; and through his Letters printed in the Opera

Mathemalica, &c. and in the second volume of the works of

Wallis.

There are also to be found, in the Memoirs of the Academy
of Berlin, for the year 1770, & seq. the demonstrations of some

of this author's theorems, which had not been demonstrated

before.
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determinate equations of the first and second degree; for

these I give new and general methods, both for the case in

which the numbers are only required to be rational, and for

that in which the numbers sought are required to be integer

;

and I consider some other important matters relating to the

same subject.

The last Chapter contains researches on the functions *,

which have this property, that the product of two or more
similar functions is always a similar function. I give a general

method for finding such functions, and shew their use in the

resolution of different indeterminate problems, to which the

usual methods could not be applied.

Such are the principal objects of these Additions, which
might have been made much more extensive, had it not been
for exceeding proper bounds ; I hope, however, that the sub-

jects here treated will merit the attention of mathematicians,

and revive a taste for this branch of algebra, which appears

to me very worthy of exercising their skill

CHAPTER I.

• CONTINUED FRACTIONS.

1. As the subject of Continued Fractions is not found in

the common books of arithmetic and algebra, and for this

reason is but little known to mathematicians, it will be pro-

per to begin these Additions by a short explanation of their

theory, which we shall have frequent opportunities to apply

in Avhat follows.

In general, we call every expression of this form, a con-

tinuedfractiorii

h

y +^ + , &c.

* A term used in algebra for any expression containing a
certain letter, denoting an unknown quantity, however mixed
and compounded with other known quantities or numbers.

Thus, ax^yx; 2.r-rtv/(*^^^'); 3a:y + v^(
^"^^'^'

), are all

functions of .r.

H H
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in which the quantities a, jS, y, S, kc. and b, c, d, Sec. are

integer numbers positive or negative ; but at present we shall

consider those Continued Fractions only, whose numerators

b, c, d, &c. are unity ; that is to say, fractions of this form,

7 +—+, &c.

a, j3, y, J, &c. being any integer numbers positive or nega-

tive ; for these are, properly speaking, the only numbers,

which are of great utility in analysis, the others being scarcely

any thing more than objects of curiosity.

2. Lord Brouncker, I believe, was the first who thought

of Continued Fractions ; we know that the continued frac-

tion, which he devised to express the ratio of the circum-

scribed square to the area of the circle was this

:

1+4,9
' ^ +, &C.

but we are ignorant of the means which led him to it. We
only find in the Arithmetica InJioiUorum some researches on

this subject, in which Wallis demonstrates, in an indirect,

though ingenious manner, the identity of Brouncker's ex-

,. ,. , . 3x3x5x5x7, &c. ^^ ,

pression to his, which is, -—7—7

—

r
—W^' there

/iX t?Xt?XOX O5 cxC« ^

also gives the general method of reducing all sorts of con-

tinued fractions to vulgar fractions ; but it does not appear

that either of those great mathematicians knew the principal

properties and singular advantages of continued fractions

;

and we shall afterwards see, that the discovery of them is

chiefly due to Huygens.

3. Continued fractions naturally present themselves, when-

ever it is required to express fractional, or imaginarj^ quan-

tities in numbers. In fact, suppose we have to assign the

value of any given quantity «, which is not expressible by

an integer number ; the simplest way is, to begin by seeking

the integer number, which will be nearest to the value of a,

and which will differ from it only by a fraction less than

unity. Let this number be a, and we shall have a— a, equal

to a fraction less than unity ; so that will, on the

contrary, be a number greater than unity: therefore let

— b ; and, as 6 must be a number greater than unity,
a — a.
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we may also seek for the integer number, which shall be

nearest the value of b ; and this number being called /3, we
shall again have 6-/3 equal to a fraction less than unity

;

and, consequently, t—- will be equal to a quantity greater
P

than unity, which we may represent by c ; so that, to assign

the value of c, we have only to seek, in the same manner,
for the integer number nearest to c, which being represented

by y, we shall have c — y equal to a quantity less than

unity ; and, consequently, will be equal to a quantity,

d, greater than unity, and so on. From which it is evident,

that we may gradually exhaust the value of «, and that in

the simplest and readiest manner ; since we only employ
integer numbers, each of which approximates, as nearly as

possible, to the value sought.

Now, since = 6, we have a — a = -r-, anda—

a

h

1 Tl •
• 1 1

a = a + -T- ; hkewise, smce r—;5=c, we have h= ^^ ;

o— p C

and, since = d, we have, in the same manner,

c = y + — , &c. ; so that by successively substituting these

values, we shall have

I

c

1
=a+—- I ,

1

and, in general, "~^"^"a'4__ lP +
.^ +_+, &c.

It is proper to remark here, that the numbers a, /3, y, &c.

which represent, as we have shewn, the approximate integer

values of the quantities a, b, c, &c. may be taken each m
two different ways; since we may with equal propriety

take, for the approximate integer value of a given quantity,

either of the two integer numbers between which that quan-

H H 2
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tity lies. There is, however, an essential difference between
these two methods of taking the approximate values, with

respect to the continued fraction which results from it : for

if we always take the approximate values less than the true

ones, the denominators /3, y, 5, &c. will be all positive

;

whereas they will be all negative, if we take all the ap-

proximate values greater than the true ones; and they

will be partly positive and partly negative, if the approximate
values are taken sometimes too small, and sometimes too

great.

In fact, if a be less than a, a — a. will be a positive quan-
tity ; wherefore b will be positive, and /3 will be so likewise

:

on the contrary, a— a, will be negative, if a be greater than

a ; then b will be negative, and /3 will be so likewise. In

the same manner, if /3 be less than b, b — ^ will always be

a positive quantity; therefore c will be positive also, and
consequently, also y ; but if p be greater than b, b — io will

be a negative quantity ; so that c, and consequently also 7,

will be negative, and so on.

Farther, when negative quantities are considered, I un-

derstand by less quantities those which, taken positively,

would be greater. We shall have occasion, however, some-

times to compare quantities simply in respect of their ab-

solute magnitude; but I shall then take care to premise,

that we must pay no attention to the signs.

It must be remarked, also, that if, among the quantities

b, c, d, &c. one is found equal to an integer number, then

the continued fraction will be terminated ; because we shall

be able to preserve that quantity in it : for example, if c

be an integer number, the continued fraction, which gives

the value of a, will be

^ c

It is evident, indeed, that we must take y = c, which

1
gives d = —— = i = X ; and, consequently, d = 00 ;

c y

so that we shall have

1 ,

I

>' + oo'

the following terms vanishing in comparison with the infinite
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quantity oo. Now, — = 0, wherefore we shall only have
00

a + 1 1

This case will happen whenever the quantity a is com-

mensurable ; that is to say, expressed by a rational fraction ;

but when a is an irrational, or transcendental quantity, then

the continued fraction will necessarily go on to infinity.

4. Suppose the quantity « to be a vulgar fraction,

— , A and B being given integer numbers; it is evident,

that the integer number, a, approaching nearest to —, will

be the quotient of the division of a by b ; so that supposing

the division performed in the usual manner, and calling

a, the quotient, and c the remainder, we shall have

— — a =— ; whence b = — . Also, in order to have
B B c

the approximate integer value /3 of the fraction —, we have

only to divide B by c, and take /3 for the quotient of this

division ; then calling the remainder d, we shall have

D C
b — 3 = —, and c r= — . We shall therefore continue'^

C D

to divide c by d, and the quotient will be the value of the

number y, and so on ; whence results the following very

simple Rule for reducing Vulgar Fractions to Continued
Fractions.

Rule. First, divide the numerator of the given fraction

by its denominator, and call the quotient a; then divide the

denominator by the remainder, and call the quotient /3 ;

then divide the first remainder by the second remainder,

and let the quotient be y. Continue thus, always dividing

the last divisor by the last remainder, till you arrive at a
division that is performed without any remainder, which must
necessarily happen, when the remainders are all integer

numbers that continually diminish ; you will then have the

continued fraction,
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1 1

which will be equal to the given fraction.

5. Let it be proposed, for example, to reduce "gig?/ to a

continued fraction.

First, Ave divide 1103 by 887, which gives the quotient 1,

and the remainder 216; 887 divided by 216, gives the

quotient 4, and the remainder 23 ; 216 divided by 23, gives

the quotient 9, and the remainder 9 ; also dividing 23 by 9,

we obtain the quotient 2, and the remainder 5 ; then 9 by

5, gives the quotient 1, and the remainder 4 ; 5 by 4, gives

the quotient 1, and the remainder 1 ; lastly, dividing 4 by 1,

we obtain the quotient 4, and no remainder ; so that the

operation is finished : and, collecting all the quotients in

order, we have this series 1, 4, 9, 2, 1, 1, 4, whence we
form the continued fraction

I i_oj — 1 4- i.Ts 7 " + 1 i_

6. As, in the above division, we took for the quotient the

integer number which was equal to, or less than, the fraction

proposed, it follows that we shall only obtain from that

method continued fractions, of which all the denominators

will be positive numbers.
But we may also assume for the quotient the integer

number, which is immediately greater than the value of the

fraction, when that fraction is not reducible to an integer,

and, for this purpose, we have only to increase the value of

the quotient found by unity in the usual manner ; then the

remainder will be negative, and the next quotient will ne-

cessarily be negative. So that we may, at pleasure, make the

terms of the continued fraction positive, or negative.

In the preceding example, instead of taking 1 for the

quotient of 1103 divided by 887, we may take 2 ; in which
case we have the negative i-emainder —671, by which we
must now divide 887; we therefore divide 887 by —671,
and obtain either the quotient — 1, and the remainder 216,

or the quotient —2, and the remainder —455. Let us take

the greater quotient —1 : then divide the remainder — 671

by 216; whence we obtain either the quotient —3, and the

remainder — 23, or the quotient — 4, and the remainder

193. Continuing the division by adopting the greater

quotient —3, we have to divide the remainder 216 by the
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remainder — 23, Avhich gives either the quotient — 9, and
the remainder 9, or the quotient — 10, and the remainder
— 14, and so on.

In this way, we obtain

in which we see that all the denominators are negative.

7. We may also make each negative denominator po-

sitive by changing the sign of the numerator ; but we must
then also change the sign of the succeeding numerator; for

it is evident that

{<^ + ^, +l + ,&e.} ={^-T-i + .&e.}

Then we may also, if we choose, remove all the signs — in

the continued fraction, and reduce it to another, in which all

the terms shall be positive ; for we have, in general,

{f' + :^+,&e.} ={f'-i+T+^+,&c.}

as we may easily be convinced of by reducing those two

quantities to vulgar fractions*.

We may also, by similar means, introduce negative terms

instead of positive ; for we have

'^+7 + ,&c. ='^ + 1-1 +^4^ + , &c.

whence we see, that, by such transformations, we may always

simplify a continued fraction, and reduce it to fewer terms

:

which will take place, whenever there are denominators equal

to unity, positive, or negative.

In general, it is evident, that, in order to have the con-

tinued fraction approximating as nearly as possible to the

1 V .

* Thus, the mixed number, 1 -\ =
; therefore

V— 1 v— l

1 1 7_v-i

and, consequently.

V«,~l-u-L 1 7 , v-1 I

B.
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value of the given quantity, we must always take a, (3, y,

&.C. the integer numbers which are nearest the quantities

a, b, c, &c. whether they be less, or greater than those quan-

tities. Now, it is easy to perceive that if, for example, we
do not take for a the integer number which is nearest to a,

cither above or below it, the following number /3 will neces-

sarily be equal to unity ; in fact, the difference between a
and a will then be greater than f, consequently, we shall

have b — less than 2 ; therefore 3 must be equal to

unity.

So that whenever we find the denominators in a con-

tinued fraction equal to unity, this will be a proof that we
have not taken the preceding denominators as near as we
might have done; and, consequently, that the fraction

may be simplified by increasing, or diminishing those de-

nominators by unity, which may be done by the preceding

formulae, without the necessity of going through the whole

calculation.

8. The method in Art. 4 may also serve for reducing

every irrational, or transcendental quantity to a continued

fraction, provided it be expressed before in decimals ; but as

the value in decimals can only be approximate, by aug-

menting the last figure by unity, we procui-e two limits,

between which the true value of the given quantity must
lie; and, in order that we may not pass those limits, we
must perform the same calculation with both the fractions

in question, and then admit into the continued fraction

those quotients only which shall equally result from both

operations.

Let it be proposed, for example, to express by a con-

tinued fraction the ratio of the circumference of the circle to

the diameter.

This ratio expressed in decimals is, by the calculation of

Vieta, as 3,1415926535 is to 1 ; so that we have to reduce

. „ . 3, 1415926535 . , , . , ,the traction
-^^q^q^^^^^^

to a continued fraction by the

method above explained. Now, if we take only the fraction

3,14159 ^. T , .

1 00000 ' ^^ " quotients 3, 7, 15, 1, &;c. and if we

, , ^ . 3,14160 , , ,

take the greater fraction —TTyATTTTTj* we find the quotients 3,

7, 16, &c. so that the third quotient remains doubtful;
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whence we see, that, in order to extend the continued frac-

tion only beyond three terms, we must adopt a value of the

circumference, which has more than six figures.

If we take the value given by Ludolph to thirty-five

decimal places, which is 3,14159, 26535, 89793, 23846,

26433, 83279, 50288 ; and if we work on with this fraction,

as it is, and also with its last figure 8 increased by unity, we
shall find the following series of quotients, 3, 7, 15, 1, 292,

1, 1, 1, 2, 1, 3, 1, 14, % 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15,

3, 13, 1, 4, 2, 6, 6, 1 ; so that we shall have

Circumference = 3-}-i
Diameter ^ "i"'iV_i_ i

"Ti _]_ I

+^ + i-}-, &c.
2 9 2.

And as there are here denominators equal to unity, we may
simplify the fraction, by introducing negative terms, ac-

cording to the formulse of Art. 7, and shall find

Circumference•^

-3+fDiameter '' +
2T+ I

3-4- + , &c.

Circumference 1

Diameter ~ 7 +-77 ,
1 1

1^
+1:294 + -^,J_"*'^"^-3 + , &c.

9. We have elsewhere shewn how the theory of continued

fractions may be applied to the numerical resolution of

equations, for which other methods are imperfect and in-

sufficient*. The whole difficulty consists in finding in any
equation the nearest integer value, either above, or below
the root sought ; and for this I first gave some general rules,

by which we may not only perceive how many real roots,

positive or negative, equal or unequal, the proposed equation

contains, but also easily find the limits of each of those roots,

and even the limits of the real quantities which compose the

imaginary roots. Supposing, therefore, that .r is the un-
known quantity of the equation proposed, we seek first for

the integer number which is nearest to the root sought^ and
calling that number a, we have only, as in -\rt. 3, to make

* See the Memoirs of the Academy of Berlin, for the years

17G7 and 1768; and Le Gendrc's Essai sur la Theorie des

Nombres, page 133, first edition.
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1
a: = a -\ ; x, 7/, ^, &c, representing here what was de-

noted in that article by a, b, c, &c. and substituting this

value instead of x^ we shall have, after removing the frac-

tions, an equation of the same degree in j/, which must have

at least one positive, or negative root greater than unity.

After seeking therefore for the approximate integer value

of the root, and calling that value /3, we shall then make

1 . . .

?/ = /3 -| , which will give an equation in ;:, having like-

wise a root greater than unity, whose approximate integer

value we must next seek, and so on. In this manner, the

root required will be found expressed by the continued

fraction

'^ "^
J +, &c.

which will be terminated, if the root is commensurable;
but will necessarily go on ad infinitum, if it be incom-

mensurable.

In the Memoirs just referred to, there will be found all

the principles and details necessary to render this method
and its application easy, and even different means of abridg-

ing many of the operations which it requires. I believe

that 1 have scarcely left any thing farther to be said on this

important subject. With regard to the roots of equations

of the second degree, we shall afterwards give (Art. 33 et

seq.) a particular and very simple method of changing them
into continued fractions.

10. After having thus explained the genesis of continued

fractions, we shall proceed to shew their application, and
their principal properties.

It is evident, that the more terms we take in a continued

fraction, the nearer we approximate to the true value of the

quantity which we have expressed by that fraction ; so that

if we successively stop at each term of the fraction, we
shall have a series of quantities converging towards the given

quantity.

Thus, having reduced the value of a to the continued

fraction,

a + "TT 1 1

P H— , i_
_

^
"" r+,&c.

wc shall have the quantities,
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or, by reduction,

a/3+1 a/3y-fa+y

which approach nearer and nearer to the value of a.

In order to judge better of the law, and of the con-

vergence of these quantities, it must be remarked, that, by
the formulae of Art. 3, we have

Whence we immediately perceive, that a is the first ap-

pi'oximate value of «i that then, if we take the exact value

of rt, which is—;— , and, in this, substitute for b its ap-
o

proximate value /S, we shall have this more approximate

value —-— ; that we shall, in the same manner, have a

third more approximate value of a, by substituting for b its

1
/3C4-1 ... . (a/3+ l)c + a . ,

exact value , which gives a = ;=
=

, and then

taking for c the approximate value y; by these means
the new approximate value of a will be

(a/3 + l)y + a

Continuing the same reasoning, we may approximate nearer,

by substituting, in the above expression of a, instead of c,

its exact value, —
j
—, which will give

_ ((a/3+I)y + a)^ + «/3 + l"-
(/3y+lM + /3

and then taking for d its approximate value J, we shall have,

for the fourth approximation, the quantity

((a/3 + l)y + a)5+a/3 + l ,

l^TTW+^ ' ' ''
'"•

Hence it is easy to perceive, that, if by means of the

numbers a, /3, y, S, &c. we form the following expressions,

* See note, p. 471.
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A = a a' = 1

B = /3a + 1 b' = /3

C IT 7B + A C' = yB' + a'

D = JC + B d' = Sd + n'

E — £D + C e' n cd' + C'

&.C. &C.

we shall have this series of fractions converging towards the

A B C D E F ^

quantity a, —j — r ~T ~T ~T^ ^c.^ -^ a' b' c' d' e' f
If the quantity a be rational, and represented by any

V . . .

fraction —j-, it is evident that this fraction will always be tlie

last in the preceding series ; since then the continued frac-

tion will be terminated, and the last IVaction of the above
series must always be equal to the whole continued fraction.

But if the quantity a be irrational, or transcendental, then

the continued fraction necessarily going on ad hifinitum, we
may also continue ad inJiniUim the series of converging
fractions.

11. Let us now examine the nature of these fractions.

1st, It is evident that the numbers a, b, c, &c. must con-
tinually increase, as well as the numbers a', b'', d, &c. for

1st, if the numbers a, /3, y, &c. are all positive, the numbers
a, b, c, &c. a', b', c', &c. will also be positive, and we shall

evidently have b 7 a, c 7 b, d 7 ('5 &c. and b' zr , or 7 a',

c' 7 b', d' 7 c', &c.

2dly, If the numbers a, /S, 7, &c. are all, or partly ne-

gative, then amongst the numbers, a, b, c, &c. and, a', b', c',

there will be some positive, and some negative ; but in that

case we must consider that we have, by the preceding

formulse,B^lC AD B„— = /S + —, — = 7 ^- — ,
—

- = 5 + —, &c.
A a B ' B C C

whence we immediately see, that, if the numbers a, /S, 7, &c.

are different from unity, whatever their signs be, we shall

necessarily have, neglecting the signs, — 7 1 ; and there-
A

A C
fore — •^ 1 ; consequently, — 7 1, and so on: therefore

B 7 A, C 7 B, &C.

There is no exception to this but when some of the num-
bers a, /S, 7, &c. are equal to unity. Suppose, for example,

that the number 7 is the first which is equal to + 1 ; we



CHAP. I. ADDITIONS. 477

shall then have b y a, but c z b, if it happens that the frac-

tion — has a different sign from y ; which is evident from

C A A
the equation — = y -\ ; because, in that case, y -\^ B B ' B

will be a number less than unity. Now, I say, in this case, we
must have d 7 b ; for since 7 ~ +1, we shall have (Art. 10),

c = + 1 H—Ti and c r = + 1 ; but as c and d are~ a d ~
quantities greater than unity (Art. 3), it is evident, that

this equation cannot subsist, unless c and d have the same
signs ; therefore, since 7 and J are the approximate integer

values of c and d, these numbers 7 and J must also have the

C A
same sign. Farther, the fraction — r= 7 + — must have

B B

the same sign as 7, because 7 is an integer number, and

A C— a fraction less than unity ; therefore — , and i5, will be

^c .

quantities of the same sign ; consequently, — will be a po-
B

D B - ,

sitive quantity. Now, we have — = J H ; and hence,
c c

multiplying by — , we shall have — = [- 1 ; so that

— being a positive quantity, it is evident that — will be

greater than unity ; and therefore d 7 b.

Hence we see, that, if in the series a, b, c, &c. there be
one term less than the preceding, the following will ne-

cessarily be greater ; so that putting aside those less terms,

the series will always go on increasing.

Besides, if we choose, we may always avoid this incon-

venience, either by taking the numbers a, /3, 7, 8cc. positive,

or by taking them different from unity, which may always
be done.

The same reasonings apply to the series a', b', c', &c. in

which we have likewise

b' . c' a' d' . b'

^ =^¥ = ''+1?' ? = * + ?•*"=•

whence we may form conclusions similar to the preceding.
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IS. If we now multiply cross-ways the terms of the con-

p • -1 -ABC
secutive fractions, m the series —7, -t? —t^ Sjc. we shall

a' b' c'

find ba' — ab' = 1, cb' - Bc' = ab' — ba',

DC' — CD' — BC' — cb', &C.

whence we conclude, in general, that

ba' — ab' = 1

cb' — bc' = — 1

do' — cd' = 1

ed' — de' = — 1, &c.

This property is very remarkable, and leads to several

important consequences.

ABC
First, we see that the fractions -7, —r, —r, &c. must be

b' b' c'

already in their lowest terms ; for if, for example, c and c'

had any common divisor, the integer numbers cb' — bc'

would also be divisible by that same divisor, which cannot

be, since cb' — bc' = — 1,

Next, if we put the preceding equations into this form,

B a 1

C B _ 1

c' b'
~"

c'b'

D C 1

J>' c'
~

c'd'ED 1

E' D D'E,'t.P
&C.

it is easy to perceive, that the differences between the ad-

joining fractions of the series —, —, —j-, are continually

diminishing, so that this is necessarily converging.

Now, I say, that the difference between two consecutive

fractions is as small as it is possible for it to be; so that

there can be no other fraction whatever between those two
fractions, unless it have a dfenominator greater than the de-

nominators of them.

C D
Let us take, for example, the two fractions -r, and —:, the

difference of which is -;py-, and let us suppose, if possible,
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7)1/

that there is another fraction, —, whose value falls between
n

the values of those two fractions, and whose denominator n

is less than c', or less than d'. Now, since— is between
n

c D m tC md— nc
-J, and -7, the diiierence ot — , and —r, which is -;— , or
a d' n d nd

nc — md
, , ,

1 , vm ,
^

;— , must be Jess than —r-r, the dmerence between —,
7ld CD' d'

Q
and —7 ; but it is evident that the former cannot be less than

c'

—
;

; and therefore ifw Z d', it will necessarily be greater than

-r-,. Also, as the difference between — , and —r cannot be less
c'd' « d'

1 . . . 1 .

than—,, it will necessarily be greater than -r—r, if w a c',
UD' •' °

c'd'

whereas it must be less.

13. Let us now see how each fraction of the series

A B— , — , &c. will approximate towards the value of the

quantity a. For this purpose, it may be observed that the

formulas of Article 10 give

_ a6 4-1 _ cd+ B
~

a'6
~ dd + b'

Bc+a D^+ C

b'c + a' T>'e + d
and so on.

c
Hence, if we would know how nearly the fraction -y, for

example, approaches to the given quantity, we seek for the

c
difference between —|- and a ; taking for a the quantity

-j-r-,—;, we shall have
c'a+ij'

c cd + B c Bc'— cb' 1

a

d dd+B' d d{dd+B') didd + B'Y

because bc' — cb' = 1, (Art. 12). Now, as we suppose J the
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approximate value of cZ, so that the difference between d
and ^ is less than unity (Art. 3), it is evident that the value

of d will lie between the two numbers J and <5' + 1, (the

upper sign being for the case, in which the approximate

value ^ is less than the true one d, and the lower sign for the

case, in which 5 is greater than d), and, consequently, that

the value of c'd + b', will also be contained between these

two, c'<5 + b', and c'(J + 1) + b'; that is to say, between d'

and d' + c' ; therefore the difference a y will be contained

between these two limits -r-r, —rr-, r: ; whence we may
CD'' c'(d' + c')

judge of the degree of approximation of the fraction —

.

14. In general, we shall have,

A 1

a' a'o

b'(b'c + a')

c 1

C'(c'd+B')

Now, if we suppose that the approximate values, a, /3, y,

&c. are always taken less than the real values, these numbers
will all be positive, aswell as thequantities b, c, d, &,c. (Art.o.)

and, consequently, the numbers a', b', c', &c. will be likewise

all positive ; whence it follows, that the differences between

ABC
the quantity a, and the fractions —, — , —, &e. will be

alternately positive and negative ; that is to say, those frac-

tions will be alternately less and greater than the quantity a.

Farther, as Z> 7 |3, c y y, tZ 7 J, &c. by hypothesis, we
have b 7 b', (b'c + a') 7 (B'7 + a'), and also 7 c'*,

{c'd + b') 7 (c'lJ + b'), and therefore 7 d', &c. and as

6 Z (/3 + 1), c I {y + 1), fZ Z {S + 1), we have 6 Zl (b' + 1),

* For since cv y, therefore b'v 7 By j and, consequently,

(b'c + a') 7 (By + a'), which is 7 0', because n'y -f a' = c',

page 476. And it is exactly the same with the other quan-

tities. B.
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(b'c + a') z (B'(y + 1) + a') /I (c' + b'), also

{c'd + b') z (c'(J + 1) + b') z (d' + c'), &;c. so that the

. ABC
errors m taking; the fractions —r, —r, —r, &c. for the value^ a'' b'' c'

of a, would be respectively less than —fjy ~T7» "TT' ^^* ^^^
A B B C CD

greater than „ ,
—r, ,,

, ,

—rr, -rr-r r-, &c. which shews^
a'(b' + a') b'(c' + b') c(d' + c')

how small those errors are, and how they go on diminishing

from one fraction to another.

But farther, since the fractions —r, —r,
—
t» &c. are al-

a' b' c'

ternately less and greater than the quantity a, it is evident,

that the value of that quantity will always be found between
any two consecutive fractions. Now, we have already seen

(Art. 12), that it is impossible to find, between two such
fractions, any other fraction whatever, Avhich has a denomi-
nator less than one of the denominators of those two frac-

tions ; whence we may conclude, that each of the fractions

in question, express the quantity a more exactly than any
other fraction can, whose denominator is less than that of the

c
succeeding fraction ; that is to say, the fraction —, for ex-

ample, will express the value of a more exactly than any

other fraction — , in which n would be less than d'.
n

15. If the approximate values a, |3, y, &c. are all, or

partly, greater than the real values, then some of those num-
bers will necessarily be negative (Art. 3), which will also

render negative some terms of the series a, b, c. Sic. a', b', c',

&c. consequently, the differences between the fractionsABC—, -J,
— , &c. and the quantity a, will no longer be al-ABC

ternately positive and negative, as in the case of the pre-

ceding articles : so that those fractions will no longer have
the advantage of giving the limits in plus and minus of the

quantity a ; an advantage which appears to me of very great

importance, and which must therefore in practice make us
always prefer those continued fractions, in which the de-

nominators are all positive. Hence, in what follows, we
shall only attempt an investigation of fractions of this kind.

I I
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16. Let US, therefore, consider the series —r, —r, —r, —r,
a' b' c' d'

&c. in which the fractions are aUernately less and greater

than the quantity «, and which, it is evident, we may divide

into these two series

:

^- _^ A X.

a" c" e"

- - - &c
b' d' f'

of which the first will be composed of fractions all less than

a, and which go on increasing towards the quantity a; the

second will, be composed of fractions all greater than «, but
which go on diminishing towards that same quantity. Let
us therefore examine each of those two series separately. In
thelirst, we liave (Art. fO, and 12),

&c.
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B+A Sb + A 3b + A

b' +a" 2b' + a" 3b' + a'*

Now, it is evident, that the denominators of these fractions

form an increasing arithmetical series fronj^'to c'; and we
shall see that the fractions themselves also increase cori-

A C
"

tinually from -y to — ; so that it w6uld now Ije impossible

to insert in the series

A B + A 2b + A 3e+a 4b + a c

"V' V+7" 2F+7" W+a" WVI" °'" V'
any fraction, whose value would fall between the values of
two consecutive fractions, and whose denominator also would
be found between the denominators of the same fractions

:

for, if we take the differences of the above fractions, since

ba' — ab' = 1, we have, "
,

' ^
B+A ^ „ ^

b'+a' ~ Z ~
a'(b' + a')

2b + A B + A 1

2b' + a' b' + a'
~

(b' + a') X (2b' + a')

3b + A 2b + a 1

3b' + a' 2b' + a'
~ (2b' + a') X (8b' + a')

c 3b + a _ 1

c^ ~ 3b^-"a'
~

(3b' + a')c'
'

whence we immediately perceive, that the fractions

—-, -7 ,, &c. continually increase, since their differences
a' b' + a'

are all positive ; then, as those differences are equal to unity, if

divided by the product of the two denominators, we may
prove, by a reasoning analogous to that which we employed

(Art. 12), that it is impossible for any fraction, — , to fall be-

tween two consecutive fractions of the preceding series, if

the denominator n fall between the denominators of those

fractions ; or, in general, if it be less than the greater of the

two denominators.

Farther, as the fractions of which we speak are all greater

than the real value of a, and the fraction —r is less than it, it

b'

is evident that each of those fractions will approximate to-

wards the value of the quantity a, so that the difference

I I 2
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will be less than that of the same fraction and the fraction

—7; now, we find

A B 1

"V
~

B^
^ A^'

B+A B 1

b'+a' b' (b' + a')b'

2b + A B 1

Sb'Ta' ~'b! ~ (2b' + aV
3b+a b 1

3b' + a' b' (3b' + a')b'

(' B 1

c' b'
"~

c'b'
*

Therefore, since these differences are also equal to unity

divided by the product of the denominators, we may apply

to them the reasoning of Article 12, to prove that no fraction,

fit—, can fall between any one of the fractions
n -^

A b + a 2b+ a „ , , /^ • ^ -r- 1 J
—., —. ;, zr-, i, &c. and the traction -7, it the denomi-
a' b'+ a" 2b' + a'' b''

nator n be less than that of the same fraction ; whence it

follows, that each of those fractions approximates towards

the quantity a nearer than any other fraction less than a, and
having a less denominator; that is to say, expressed in

simpler terms.

18. In the preceding Article, we have only considered the

A C
intermediate fractions between - ,, and — ; but the same will

be found true of the intermediate fractions between -7, and
c'

—j, between — and —
;
, &c. if s, ij, &c. are numbers greater

than unity.

We may also apply what we have just said with respect to

,- .AC- ,, .BDF„
the hrst series —r, —r, &c. to the other series —7, —r, —7, &c.

A' C' b' d' F'

SO that if the numbers, J, ^, are greater than unity, we may

nsert between the fractions —r and —r, -r and —r, &c. dif-
b' d' d' f'
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ferent intermediate fractions, all greater than a, but which
will continually diminish, and will be such as to express the

quantity a more exactly than could be done by any other

fraction greater than a, and expressed in simpler terms.

Farther, if /3 is also a number greater than unity, we may

likewise place before the fractions —r the fractions
'^

b'

A+1 2a + 1 .Sa+1
, . /3a + 1 ,, . b

,—
-^i—,

—
7z—,
—

T,— , &c. as tar as —^— , that is —, and12 3 /3 ' b'

these fractions will have the same properties as the other in-

termediate fractions.

In this manner, we have these two complete series of

fractions converging towards the quantity a.

Fractions increasing and less than a.

A B+A 2b+a 3b+a yB+ A
"^' Thm/' 2b' + a" STTT" yB' + A"

C D+C 2d + C 3d-1-C - £D+C
Arp

c" d'+c" 2d' + c" 3d' + c" bd' + c'

E F + E 2f + E 3f + E

¥' ?T^" 2f' + e" 3f' + e"
•

Fractions decreasing and greater than a.

A+1 2a+1 3a + 1 /3a+1

1 '
~¥~' 3~'

/3 '

B C + B 2c + B - Jc + B
-, &C.

b" c' + b" 2c' + b" Jc' + b"

D E + D 2e+ D 3e + 1)

1^' e"'T^' 2e' + d'' 3e' + d"
If the quantity « be irrational, or transcendental, the two

preceding series will go on to infinity, since the series ofABC
fractions —r, —r, —r, &c. which in future we shall call

a" b' c

^rmcipaZ fractions, to distinguish them from the intermediate

fractions, goes on of itself to infinity. (Art. 10.)

But if the quantity a be rational, and equal to any fraction,

-J, we have seen in that article, that the series in question

will terminate, and that the last fraction of that scries will be
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V
the I'raction —r itself: therefore, this fraction must also ter-

minate one of the above two series, but the other series will

go on to infinity.

In fact, suppose that S is the last denominator of the

continued fraction ; then — will be the last of the principal

fractions, and the series of fractions greater than a will be

terminated by this same fraction —r. Now, the other series
•^

d'

of fractions less than a, will naturally stop at the fraction

C . D—, which precedes — ; but to continue it, we have only

to consider that the denominator e, which must follow the

last denominator $, will be = oc (Art. 3); so that the

E . D .

fraction -^, which would follow —j in the series of principal
C D

fractions, would be r -; = —r*; now, by the law of in-X d' + c' d'
-^

termediate fractions, it is evident that, since £ = x , we

C E
might insert between the fractions —f and —^, an infinite

C E

number of intei-mediate fractions, which would be

i)-|-c 2d+c 3d + c

B^c'' 2d' + c ' WTc"^^'

So that in this case, after the fraction —r, in the first series of
c'

fractions, we may also place the intermediate fractions we
speak of, and continue them to infinity.

19- Problem. A fraction expressed by a great number
of figures being given, to find all the fractions, in less terms,

which approach so near the truth, that it is impossible to

approach nearer without employing greater ones.

* Because an infinite quantity cannot be increased by ad-
dition ; and til ere fore go n + c = x d, and oo d' + c' = od d' ;

consequently,

GOD-f-C_0CU D

X d' + c'
""

oc d' d'
'
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This problem will be easily resolved by the theory which
we have explained.

We shall begin by reducing the fraction proposed to a
continued fraction after the method of Art. 4, observing to

take all the approximate values less than the real ones, in

order that the numbers /3, 7, S, &c. may be ali positive;

then, by the assistance of the numbers found, a, /3, y, &ec.

we form, according to the formulae of Art. 10, the fractionsABC
—r, —r, —7» &c. the last of which will necessarily be the
a' b' c'

-^

same as the fraction proposed : because in that case the con-

tinued fraction terminates. Those fractions will alternately

be less and greater than the given fraction, and will be suc-

cessively expressed in greater terms ; and farther, they will be

such, that each of those fractions will be nearer the given

fraction than any other fraction can be, which is expressed

in terms less simple. So that by these means we shall

have all the fractions, that will satisfy the conditions of

the problem, expressed in lower terms than the fraction

proposed.

If we wish to consider separately the fractions which are

less, and those which are greater, than the given fraction, we
may insert between the above fractions as many intermediate

fractions as we can, and form from them two series of con-

verging fractions, the one all less, and the other all greater

than the fraction proposed (Art. 16, 17, and 18) ; each of

which series will have separately the same properties, as the

series of principal fractions — , —,
—

-, &c. for the frac-

tions in each series will be successively expressed in greater

terms, and each of them will approximate nearer to the

value of the fraction proposed , than could be done by any
other fraction whether less, or greater, than the given frac-

tion, but expressed in simpler terms.

It may also happen, that one of the intermediate fractions

of one series does not approximate towards the given fraction

so nearly, as one of the fractions of the other series, although

expressed in terms less simple than the former; for this

reason, it is not proper to emplov intermediate fractions, ex-

cept when we wish to have the fractions sought either all

less, or all greater, than the given fraction.

20. Example 1. According to M. de la Caille, the solar

year is o65'i. 5 '. 48'. 49'', and, consequently, longer by 5'>.

48'. 49'' than the common year of 365'. If this tlifference
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were exactly 6 hours, it would make one day at the end of

four common years : but if we wish to know, exactly, at the

end of how many years this difference will produce a certain

number of days, we must seek the ratio between 24^^, and

5\ 48'. 49", which we find to be m^^|-; so that at the end

of 86400 common years, we must intercalate 209^9 days, in

order to reduce them to tropical years.

Now, as the ratio of 86400 to 20929 is expressed in very

high terms, let it be required to find ratios, in lower terms,

as near this as possible.

For this purpose, we must reduce the fraction l-^^-?"! ^^ *

continued fraction, by the rule given in Art. 4, which is

the same as that by which the greatest common divisor of

two given numbers is found. This will give us

20929)86400(4 ^ a

83716

2684)20929(7 = p
18788

2141)2684(1
2141

543)2141(3 = S

1629

512)543(1 = B

512

31)512(16 = ?

496

16)31(1 =r;

16

15)16(1=6
15

1)15(15 = ,

15

0.

Now, as we know all the quotients a, /3, y, &c. we easily

iorm Ironi them the series — , -j, &c. m the following
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manner

:

4, 7, i, 3, 1, 16, 1, 1, 15.

4 1 g 3 3 I 2^8 '_Sj ^ 7 04 ^8_6_5 1_L^ 2. 8 6 4 Oo
TJ 7"? 8"' 3»' 39' 655' 694* 134-9' a09a9'

the last fraction being the same as the one proposed.

In order to facilitate the formation of these fractions, we
first write, as is here done, the series of quotients 4, 7, 1, &c.

and place under these coefficients the fractions 4, */, y,&c.
which result from them.

The first fraction will have for its numerator the number
which is above it, and for its denominator unity.

The second will have for its numerator the product of

the number which is above it by the numerator of the first,

plus unity, and for its denominator the number itself which

IS above it.

The third will have for its numerator the product of

the number which is above it by the numerator of the

second, plus that of the first ; and, in the same manner,
for its denominator, the product of the number which is

above it by the denominator of the second, plus that of the

first.

And, in general, each fraction will have for its numerator
the product of the number which is above it by the nu-
merator of the preceding fraction, plus that of the second

preceding one ; and for its denominator the product of the

same number by the denominator of the preceding fraction,

plus that of the second preceding one.

So that 29 = 7 X 4 -f- 1, 7 .= 7; 33 =: 1 x 29 -1- 4,

8 =.: 1 X 7 + 1 ; 1J28 =. .') x 33 + 29, 31 r= 3 x 8 + 7,

and so on ; which agrees with the formulae of Art. 10.

Now, we see from the fractions 4, \^, y, &c. that the

simplest intercalation is that of one day in four common
years, which is the foundation of the Julian Calendar ; but
that we should approximate with more exactness by inter-

calating only 7 days in the space of 29 connnon years, or

eight in tiie space of 33 years, and so on.

It appears farther, that as the fractions *, Y, y , &,c. are

alternately less and greater than the fraction |^4^||^, or

^h 40/ AM ' "^^ mtercalation of one day in four years would

be too much, that of seven days in twenty-nine years too

litde, that of eight days in thirty-tluee years too much, and
so on ; but each of these intercalations will be the most
exact that it is ])ossible to make in the same space of time.

Now, if we arrange in two separate scries the fractions
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that are less, and those that are greater than the given

fraction, we may also insert different secondary fractions

to complete the series ; and, for this purpose, we shall follow

the same process as before, but taking successively, instead

of each number of the upper series, all the integer numbers
less than that number, when there are any.

So that, considering first the increasing fractions,

1, 1. 1, 15.

4 3 3 I 6 I ^8_6 S 86400
i» 3"' 395 694' 1 o 9"i 9 >

we see that, since unity is above the second, the third, and
the fourth, we cannot place any intermediate fraction, either

between the first and the second, or between the second and
the third, or between the third and the fourth ; but as the

last fraction stands below the number 15, we may place,

between that fraction and the preceding, fourteen inte)'-

mediate fractions, the numerators * of which will form the

arithmetical progression 2865 + 5569, 2865 + 2 x 5569,
2865 + 3 X 5569, &c. their denominators will also form
the arithmetical progression 694 + 1349, 694 + 2 x 1349,

694 + 3 X 1349, &c.

So that the complete series of increasing fractions will be

iL 3_3 1_6_I agSS 8414 i 4° O 3 19 5 7 2, a 5 i 4 I

I'tii' 39' 694» 10 43) TsTl' 4 7 41' 60 9^ }

3 07 1 ° 3_6_2_7 9 ±±^±3 474 1 7^ SX986 S85SS
7439» S788> 10137' 11486' 12835' T4TT4

»

641 2. 4 6 9693 2.i_^^^ 8 o 8 3 J^ 86400
15533' 1688 a' I8131' I9 5"8"OJ jTo 9 z 9 •

And, as the last fraction is the same as the given fraction, it

is evident that this series cannot be carried farther. Hence,
if we choose to admit those intercalations only in which the
error is too much, the simplest and most exact will be those
of one day in four years, or of eight days in thirty-three

years, or of thirty-nine in a hundred and sixty-one years,

and so on.

Let us now consider the decreasing fractions,

7, 3, 16, 1.

zp i_2_s 270+ 5 ; 6 9
7 ' 3 1' 6TT ' TT+g"'

And first, on account of the number 7, which is above the
first fraction, we may place six others before it, the nume-
rators of which will form the arithmetical progression,

4 + 1, 2 X 4 1- 1, 3 X 4 + 1, &c.

and the denominators of which will form the progression

* Because f f-2§ is tlie principal traction between %^c^^, and

loM^' as is found in tiic foregoing series. Sec page 48.0. B.
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1, 2, 3, &c.* ; also, an account of the number 3, we may
place two intermediate fractions between the first and the

second; and between the second and the third we may
place fifteen, on account of the number 16 which is above the

third ; but between this and the last we cannot insert any,

because the number above it is unity.

Farther, we must remark, that, as the preceding series is

not terminated by the given fi'action, we may continue it as

far as we please, as we have shewn. Art, 18. So that we
shall have this series of decreasing fractions,

S 9 13 17 ai as 2.9 6^ 9 5 12 8
T>1> T » > 5» 'S > T> »S» 2.3> TT >

2 8 9 4-5 O 6 1 I 77 4^ 9 3 3 I 09 4 'JLU '41 6
70> I09' I 4-T' I87> 2,2 6 5 265> 304J T4 3 '

1 S 7 7 1 7 3 8 I 8_9_9 2 O 6 O ^J^' 2382 2_S_4_3

382> 421J 460> 499» 538> "5 77> 6 i 6 >

* 7_2* 5 5 6 9 9 19 6 9 17 8 3 6 9 ^M-JIA? 3_5J|_1_6 9
6TT ' I 3 4'9> 2 2 2 7y i 43207* 64'36» 85065 »

4 3 7 5 6 9 Sjc
I O T9 9*4^ ^^'

which are all less than the fraction proposed, and approach
nearer to it than any other fractions expressed in simpler

terms.

Hence we may conclude, that if we only attend to the

intercalations, in which the error is too small, the simplest

and most exact are those of one day in five years, or of two
days in nine years, or of three days in thirteen years, &c.

In the Gregorian calendar, only ninety-seven days are in-

tercalated in four hundred years; but it is evident, from
the preceding series, that it would be much more exact, to

intercalate a hundred and nine days in four hundred and
fifty years.

But it must be observed, that in the Gregorian reforma-

tion, the determination of the year given by Copernicus was
made use of. which is 365 K 5'\ 49 . 20" : and substituting

this, instead of the fraction ^t^^l-} ^v<^ shall have |||-|-^, or

rather -fj r '> whence we may find, by the preceding method,
the quotients 4, 8, 5, 3, and from them the principal

fractions,

4, 8, 5, 3.

_4 3 3 169 5 4^

which, except the first two, are quite different from the

fractions found before. However, we do not perceive

among them the fraction "tPy" adopted in the Gregorian

calendar; and this fraction cannot even be found among
the intermediate fractions, which may be inserted in

* Sec pigc 4S.T.
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the two series 4, 'Z^?, and y , i-±~ for it is evident, that it

could fall only between those last fractions, between which,

on account of the number 3, which is above the fraction -f-y®,

there may be inserted two intermediate fractions, which will

be ~^, and y^' ; whence it appears, that it would have

been more exact, if in the Gregorian reformation they had
only intercalated ninety days in the space of three hundred
and seventy-one years.

If we reduce the fraction *~^, so as to have for its nu-
merator the number 86400, it will become H^^^, which
estimates the tropical year at 265'^. 5^\ 49'. 12".

In this case, the Gregorian intercalation would be quite

exact ; but as observations make the year to be shorter

by more than 20
', it is evident that, at the end of a certain

period of time, we must introduce a new intercalation.

If we keep to the determination of M. de la Caille, as

the denominator 97 of the fraction y^ lies between the de-

nominators of the fifth and sixth principal fractions already

found, it follows, from what we have demonstrated (Art. 14),
that the fraction '/^' will be nearer the truth than the frac-

tion 'tPy?
; but as astronomers are still divided with regard

to the real length of the year, we shall refrain from giving a

decisive opinion on this subject; our only object in the

above detail is to facilitate the means of understanding con-

tinued fractions and their application : with this view, we
shall also add the following example.

21. Example 2. We have already given, in Art. 8, the

continued fraction, which expresses the ratio of the circum-
ference of the circle to the diameter, as it results from the

fraction of Ludolph; so that we have only to calculate,

according to the manner taught in the preceding example,
the series of fractions, converging towards that ratio, which
will be

'i, 7, 15, I, 202, 1, 1,

.? 1 - 3 3 3 3 5
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2,
•

1,

5 3 7 I I 5 19 9^734
17 9 "6^ O 7 7 9 4r S 3'

3587785776103
1 i4-10a7682.07S

8 958 9 377689 3 7 1 3 9 7 5 5 2 I 8 5 167 8 9
285I718 + 6I55"S'» 4 4 4 S 5 TS' 7 7 "O z S 5' 3 '

3, 13,
4.18 a 145 9 3 3 49 3 04 57066 749 3 10677 4'
I36TOSI1I5 7 "OT 1 7> iTTe 4 9 I o 4 S i i 4 3T+'

6 I 348 995 1 S4I7045 30146173033 7 3 5 9 2 1T^ 5 1 7 9 9 1 6 9 6 8 449 i> 9617687^1685 1TsT >

2, 6,

<5661744 559188 8'887 4300 1094659 1069143
2 I 10 8 174 6 13 3 8 9 1 6T> 13 6 8 7 6 7 3 5 467 TTTTTo'

6, 1,

* 6 4-6693115139304 34 S 3076 704071 7J O 3 7 3 5 8 8

T4^14 6 85S74165I3 lOT' 9793453li"S"9 17 o o 5 4. 7 •

These fractions will therefore be alternately less and
greater than the real ratio of the circumference to the

diameter; that is to say, the first 4- will be less, the second
y^ greater, and so on ; and each of them will approach
nearer the truth than can be done by any other fraction ex-

pressed in simpler terms; or, in general, having a deno-

minator less than that of the succeeding fraction : so that we
may be assured that the fraction ^ approaches nearer the

truth than any other fraction whose denominator is less than

7; also the fraction ^ approaches nearer the truth than
any other fraction whose denominator is less than 106 ; and
so of others.

With regard to the error of each fraction, it will always

be less than unity divided by the product of the deno-

minator of that fraction, by the denominator of the following

fraction. Thus, the error of the fraction ^ will be less than

i, that of the fraction V will be less than zz
—

^tt?;, and so
^ ^ 7 X 106

on. But, at the same time, the error of each fraction will

be greater than unity divided by the product of the de-

nominator of that fraction, into the sum of this denominator,

and of the denominator of the succeeding fraction; so

that the error of the fraction 4- will be greater than |^,

that of the fraction y* greater than =—ry^, and so on

(Art. 14).

If we now wish to separate the fractions that are less than

the ratio of the circumference to the diameter, from those

which are greater, by inserting the proper intermediate

fractions, we may form two series of fractions, the one in-
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creasing, and the other decreasing, towards the true ratio ir

question ; in this manner we shall have

Fractions less than the ratio of the circumference to the

diameter.

3 as 4J^ 6 9 9_i_ 1I3 i_3S I57 l73
T> 8> 15> aa' a9' '3 6> 43> T'S' ' ST >

a o I 223 24S a67 189 311 3 3 3 6 8 8
6^ > 7 I > 7 "S" ' "ST ' g"! > 9^ ' I o 6' TTg"*
1O43 1398 1753 a I 08 4463 Sj-p
TTT > 4 4T » TTT > "rTT" > TTT »

^^^*

Fractions greater than the ratio of the circumference to the

diameter.

4 7 10 13 16 19 2.a 35s 1 0434 S
T'lT' T' T' T' 6» 7'TI3' T3 2iT»
3 12 6 8 9 I I 46 40 8 S 4 I 9 3 5 I 8556 32 08 l_6 5 7 O 7 06J '

'5"^5 32' 364913 ' I725033> 27235615? S 2746197 '

41 15 S 7 9 8 7 14805 2 4883 fop1T1O029T6' 471 265707 '
"''^»

Each fraction of the first series approaches nearer the

truth than any other fraction whatever, expressed in simpler

terms, and the error of which consists in being too small

;

and each fraction of the second series likewise approaches

nearer the truth than any other fraction, which is expressed

in simpler terms, and the error of which consists in its being

too large.

These series would become very long, if we were to con-

tinue them as far as we have done that of the principal

fractions before given. The limits of this work do not

permit us to insert them at full length ; but they may be
found, if wanted, in Chap. XI. of Wallis's Algebra. {Oper.

Mathemat.)

SCHOLIUM.

22. The first solution of this problem was given by Wallis

in a small treatise, which he added to the posthumous works
of Horrox, and it is to be found in his Algebra as quoted
above ; but the method of this author is indirect, and very

laborious. That which we have given belongs to Huygens,
and is to be considered as one of the principal discoveries of
that great mathematician. The construction of his plane-

tary automaton appears to have led him to it : for, it is

evident, that, in order to represent the motions and periods

of the planets exactly, we should employ wheels, in which
the teeth are precisely in the same ratios, with respect to

number, as the periods in question ; but as teeth cannot be
multiplied beyond a certain limit, depending on the size of



CHAP. II. ADDITIONS. 4-95

the wheel, and, besides, as the periods of the planets are in-

commensurable, or, at least, cannot be represented, with any
exactness, but by very large numbers, we must content our-

selves with an approximation ; and the difficulty is reduced

to finding ratios expressed in smaller numbers, which ap-

proach the truth as nearly as possible, and nearer than

any other ratios can, that are not expressed in greater

numbers.
Huygens resolves this question by means of continued

fractions as we have done ; and explains the manner of

forming those fractions by continual divisions, and then

demonstrates the principal properties of the converging

fractions, which result from them, without forgetting even

the intermediate fractions. See, in his Opera Fosthuma, the

Treatise entitled Descriptio Automatl Planetarii.

Other celebrated mathematicians have since considered

continued fractions in a more' general manner. We find

particularly in the Commentaries of Petersburgh (Vol. IX.

and XI. of the old, and Vol. IX. and XI. of the new),

Memoirs by M. Euler, full of the most profound and inge-

nious researches on this subject; but the theory of these

fractions, considered in an arithmetical view, which is the

most curious, has not yet, I think, been cultivated so much
as it deserves ; which was my inducement for composing this

small Treatise, in order to render it more familiar to mathe-

maticians. See, also, the Memoirs of Berlin for the years

1767, and 1768.

I have only to observe farther, that this theory has a

most extensive application through the whole of arithmetic

;

and there are few problems in that science, at least among
those for which the common rules are insufficient, which do

not, dii-ectly or indirectly, depend on it.

John Bernoulli has made a happy and useful application

of it in a new species of calculation, which he devised for

facilitating the construction of Tables of proportional parts.

See Vol. I. of his Recueil pour les Astronomes.

CHAP. II.

Solution of some curious and new Arithmetical Problems.

Although the problems, which we are now to consider, are

immediately connected with the preceding, and depend on
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the same principles, it will be proper to treat of them in a

direct manner, without supposing any thing of what has been

before demonstrated : by which means we shall have the

satisfaction of seeing how necessarily these subjects lead

to the theory of Continued Fractions. Besides, this theory

will be rendered much more evident, and receive from it a

greater degree of perfection.

23. Problem 1. A positive quantity a, whether rational or

not, being given, to find two integer positive numbers, p and

q, prime to each other ; such, thatp — aq (abstracting from

the sign), may be less than it would be, if we assigned to p
and q any less values whatever.

In order to resolve this problem directly, we shall begin

by supposing that we have already found values of p and q,

which have the requisite conditions ; wherefore, assuming for

r and s, any integer positive numbers less than p and q, the

value of^ — aq must be less than that of r — as, abstract-

ing from the signs of these two quantities ; that is to say,

taking them both positive : now, if the numbers r and s be

such, that ps — qr = ±1, (the upper sign applying when

p — aq IS a positive number, and the under, when p — aq

is a negative number) we may conclude, in general,

that the value of the expression y — «s will always be

greater (abstracting from the sign) than that of p — aq^ as

long as we give to z and y only integer values, less than

those of p and q, we may hence draw the following con-

clusion.

First, it is evident, that we may suppose, in general,

y = pt -{ ru, and ^ rz ^^ + ru, t and u being two unknown
quantities. Now, by the resolution of these equations, we

,
sy—rz , qy—pz.

have t = —
, and u =. ^^—^— : then, since

ps — qr qr — ps

ps — qr = ± I, t = ± {sy — rz), and w = + {qy — p^) ;

it is evident, that t and ^t will always be integer numbers,

since p, q, r, s, y, and z are supposed to be integers.

Therefore, since t and u are integer numbers, and p, q, r, s

integer positive numbers, it is evident, in order that the values

of 2/ and z may be less than those of/) and q, that the num-
bers t and u must necessarily have different signs.

Now, I say, that the value of r — as will also have a dif-

ferent sign from that ofp — aq ; for, making p — aq z=: p^

J) P 7* R
and r — a5 = R, we shall have - — a+ -, ~ = a -|— ;

q q s s

. p r 1

but the equation, ps — qr = ± 1, gives = + —

;
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P K 1
wherefore = H ; and, since we suppose the douht-

q^ s —qs ^^

ful sign to be taken conformably to that of the quantity

P R.

p—aq, or p, the quantity must be positive, if r be

positive ; and negative, if p be negative : now, as s /. q, and

R P
R 7 P i%p-), it is evident that — 7— ,

(abstracting from
s q

P R,

the sign); therefore, the quantity will always have
q s

its sign different from that of— ; that is to say, from that

of R, since s is positive ; and, consequently, p and R will ne-

cessarily have different signs.

This being laid down, we shall have, by substituting the

above values ofy and z,

y -^ a% = {p — aq)i + (r ~ as)u = p^ + rw.

Now t and u having different signs, as well as p and r, it is

evident, that Ft and Ric will be quantities of like signs

;

therefore, since if and u are integer numbers, it is clear that

the value of y — az will always be greater than p ; that is

to say, than the value ofp — aq, abstracting from the signs.

But it remains to know whether, when the numbers jd and

g are given, we can always find numbers r and s less than

those, and such that^s — ^r^ +1, the doubtful signs being

arbitrary; now, this follows evidently from the theory of

continued fractions ; but it may be demonstrated directly,

and independently of that theory. For the difficulty is re-

duced to proving, that there necessarily exists an integer and

positive number less than p, which being assumed for r,

will make qr ±1 divisible hy p. Now, suppose we suc-

cessively substitute for r the natural numbers 1, 2, 3, &,c. as

far as /?, and that we divide the numbers q ±1, ^q + 'i-i

Sy ± 1, &c. pq ±. Ihy p, we shall then have p remainders

less than p, which will necessarily be all different from one

another; since, for example, if Twg' + 1, and w^ + 1 {m and

n being distinct integer numbers not exceeding js), when di-

vided hy p, give the same remainder, it is evident that their

difference (m — n)g, must be divisible by p ; now, this is im-

possible, because q is prime to p, and tn — n is a number

less than p.

Therefore, since all the remainders in question are integer,

positive numbers less than 77, and different from each other,

K K
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and are p in number, it is evident that must be among
those remainders, and, consequently, that there is one of the

numbers q + ^,^g +'i, 3q ± 1, kc. pq ± 1, which is di-

visible by p. Now, it is evident that this cannot be the last ; so

that there is certainly a valae of r less than p, which will

make rg ± 1 divisible by p ; and it is evident, at the same
time, that the quotient will be less than q ; therefore there

will always be an integer and positive value of r less than p,

and another similar value of 5, and less than q, which will

satisfy the equation s = , or ps — q?' =± I.

24, The question is therefore now reduced to this; to find

four positive whole numbers, p, q, r, s, the last two of which
may be less than the first two ; that is, r^p, and s/Lq, and
such, that ps — qr= ±1 ; farther, that the quantities^— a^,
and r — as, may have different signs, and, at the same time,

that 1
— as may be a quantity greater than p—aq, abstract-

ing from the signs.

In order to simplify, let us denote r by p', and s by q'f so

that we have pq' — qp' = +1; and as q 7 q {hyp.), let jw, be
the quotient that would be produced by the division of q by
g^, and let the remainder be ^", which will consequently be
Z q' ; also, let /x' be the quotient of the division of q' by g'',

and q"' the remainder, which will be Z q' ; in like manner,
let /x" be the quotient of the division of g" by ^'", and g''" the

remainder z. 9'", and so on, till there is no remainder ; in

this way, we shall have

S'
= f^?' + q"

^ = fj^Y + f
/'=

f/,"'5''^4- q% &c.

where the numbers |U,, /x', ft", &c. will all be integer and
positive, and the numbers p, y', ^", ^"', &c. will also be in-

teger and positive, and will form a series decreasing to

nothing.

In like manner, let us suppose

p =
lj.p'
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Now, as we must have -pcf — qf^ = ± 1, we shall also

have, by substituting the preceding values of p and ^, and
effacing what is destroyed, yy — <^'jp^ =±1. Again, sub-

stituting in this equation the values of p' and <?', there will re-

sult j^'Y" ~ S""/?'"
= — 1> ^iid so on; so that we shall have,

generally,

P^ — ^y = ± 1

pq^ — ^p" = + 1

ff - qy" = + 1

So that, if 5'", for example, were = 0, we should have
— q"p<" = + 1 ; also, q" = 1, and p'" ==; q: 1 : but if q'" were
= 0, we should have — q'^'p^"' = lip 1 ; therefore q'" = 1, and
ja"" = + 1 ; so that, in general, if q§ = 0, we shall have
q§~^ = 1 ; and then pg = + 1, if

f
is even, and p§ = + 1,

if p is odd.

Now, as we do not previously know whether the upper, or

the under sign is to take place, we must successively sup-

pose p§ = I, and = — 1 : but I say that one of these cases

may at all times be reduced to the other ; and, for this pur-

pose, it is evidently sufficient to prove, that we can always

make the p of the term q§, which must be nothing, either

even, or odd, at pleasure.

For example, let us suppose that y"' = 0, we shall then

have ^" = 1, and q'' -7 1, that is, g'" = 2, or 7 2, because

the numbers g, §'', §'", &c. naturally form a decreasing series

;

therefore, since y" = ju-"g'"' -|- c^^ ; we shall have 9" = \j1\ so

that yJ'= or 7 2 ; thus, if we choose, we may diminish [J' by
unity,without thatnumber being reduced to nothing, and then
q^'', which was 0, will become 1, and q^'= 0; for putting [/J'— 1,

instead of [J', we shall have q" = {[tJ' — l)g''" + 5"'; but
gr" = /x", ^" = 1 ; wherefore, q" z=\-, then having

g/" =
fj"q^'-' + q^^ that is, 1 = jw-'" -\- q", we shall necessarily

have ju,'" = 1, and q^ = 0.

Hence we may conclude, in general, that if q§ = 0, we
shall have q^~^ = 1, and p§ = ± 1, the doubtful sign being

arbitrary.

Now, if we substitute the values of p and q, given by the

preceding formulae, in^ — aq, those of p' and q', inp'— aq',

and so of others, we shall have

p — aq = [/. (p' — aq' ) + p" — aq"

jj - a^ = yj If ~ aq') +f - af
f - a^" = /x" (pW - af) -i-

p'-" — aq"^
pill _ a^ii — ju,"/(^iv_ ^^iv)

_f.
pv _ aq''-, &c.

whence we find

K K 2
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aq" — p" p — aq

p'

—

aq' p' —aq'

I

aq^"—p'" p' — a(^

^ - f-aq" '^ p"-^
,,
_ aq^^-p'--' f-aq"

l^ ~ fi-aq'"'^p"'-aq"'

^ p'^— aq'^'p'^'-aq''''

Now, as by hypothesis the quantities p —aq, and p'—aq',

are of different signs ; and farther, as p' — aq' (abstracting

from the signs) must be greater than p — aq, it follows

that ^——I, will be a negative quantity, and less than unity.

Therefore, in order that jw^ may be an integer, positive num-

aq" — /?"

bar (as it must), it is evident, that -r ^ must be a po-
^ p'—aq' ^

sitive quantity greater than unity ; and it is obvious, at the

same time, that /x can only be the integer number, that is

aq"— p"
immediately less than -j p ; that is to say, contained be-

, ,. . aq"—p" , aq' —p"
tween the hmits -~ -7. and -^—^ — 1 ; for since

p—aq p—aq
p—aq aq" —jjf'

J
: 7 0, and Z. 1, we shall have /^ ^ —,——, and

p—aq' p'— ap

acf—p"

p— aq

aq"—p"
Also, since we have seen, that —, S- must be a positivep—aq *^

7j'— aa'
quantity greater than unity, it follows that —

j,
will be

a negative quantity less than unity, (I say less than unity,

abstracting from the sign). Wherefore, in order that ju,' may

be an integer, positive number, -—^—— must be a positive

quantity greater than unity, and consequently the number |U,'

can only be the integer number, which will be immediately

^ , ^ • af-f
below the quantity —^—~J-

In the same manner, and from the consideration, that /x"
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must be an integer, positive number, we may prove, that the

quantity ~
jjf

will necessarily be positive, and greater

than unity, and that y," can only be the integer number im-

mediately below the same quantity ; and so on.

It follows, 1st, that the quantities p — aq, p' — aq'^

p" — aq'', &c. will successively have different signs ; that is,

alternately positive and negative, and will form a series con-

tinually inc'reasing. 2dly, that if we denote by the sign Z

the integer number, which is immediately less than the value

of the quantity placed after that sign, we shall have, for the

determination of the numbers /x, p<', yJ', &c.

aq"~p"

1-'

.It

p' — aq'

af-f
p"— aq''

aq'-'—p'

^ p'"-af'
Now, we have already seen, that the series q, q', y", &c.

must terminate in ; and that then the preceding term will

be 1, and the term corresponding to in the other series

p, p\ p'', &c. will be = ± 1 at pleasure.

For example, let us suppose that q^^ = 0, we shall then

have q^" = 1, and p" = 1 ; therefore

p'" — aq'" = p'" — a, and

'^therefore p'" - a must be a negative quantity, and less than

1, abstracting from the sign ; that is, a — p'" must be 7 0,

and Z 1 ; so that p'" must be the integer number im-

mediately below a ; we shall therefore know the values of

these four terras,

^i^ =1 j'^ =
p"> La q'" =1

by means of which, going back through the former formulas,

we may find all the preceding terms. We shall first have

the value of jw-", then we shall have p'' and q\ by the formulae,

p" = ijiJ'p'" + p'\ and
q" = IJ.'Y + q'-;

from which we shall get /*', and then p' and q ; and so of the

rest.

In general, let q§ = 0, then we shall have q§~^, and

/?f
= 1 ; and shall prove, as before, that p§~^ can only be the
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integer number immediately below a ; so that we shall have

these four terras,

^p = 1 ?F =
j)o-^ Z a qr^ = 1

;

we shall then have

-2 , «gp-Pg ,
1

1^2 ^-l—nnn—l /y_»i«—

1

-2 ^ .,,—2/,i„—

1

-3 . «?? -i^F

P2 —O'qk

pr^ = M'^pr^ +i^F~S qr^ - i^r^qr"" + qr\
and so on.

In this manner, therefore, we may go back to the first

terms, p and q ; but it must be observed, that all the suc-

ceeding terms, p', q\ p", g'", &c. possess the same properties,

and serve equally to resolve the problem proposed. For it

is evident, in the preceding formulae, that the numbers

p, p\ jo", &c. and q, q'i q", &c. are all integer and positive,

and form two series continually decreasing; the first of
which is terminated by unity, and the second by 0.

Farther, we have seen that these numbers are such, that

pq' — qp' = ± 1, p'q'' — q'p" = + 1, &c. and that the quan-
ties p — aq, p' — a<^, p" — aq", &c. are alternately positive

and negative, and at the same time form a series continually

increasing. Whence it follows, that the same conditions

which exist among the four numbers p, q, r, s, or p, g, />', §'',

and on which, as we have seen, the solution of the problem
depends, equally exist among the numbers p', q\ p", q", and
among these, p", §'", ^"', 2'"', and so on.

Therefore, beginning with the last terms p§ and q§, and
going back always by the formulae we have just found, we
shall successively have all the values o?p and q that can re-

solve the question proposed.

25. As the values of the terms ps,p§'^i &c. qo, 5'p""% &c.
are independent of the exponent, §, we may abstract from it,

and denote the terms of these two increasing series thus,

/>», p', p", p'", p'\ &c. q^, q', q\ q'", f, &c.

so that we shall have the following results,

p° = 1 gO =
p' = ^ q' = I

f = fj ^ +1 ^' =
ijj

p"'= [x."p" + p' f= ^iq'l
-I- 5'

p''= ix,"'p"' + p" ^y'^= {jJ"q"'-i- q"

&C. &C.



503CHAP. II. ADDITIONS.

Then

,

/'-< 1
a! L —I r L
^ aq—p a—[f^

^ p"-aq'<

^ af-f
,aiv z -^ ^, &C.

Where the sign Z. denotes the integer number imme-

diately less than the value of the quantity placed after that

sign.

Thus, we shall successively find all the values ofp and q
that can satisfy the problem ; these values being only the

correspondent terms of the two series />°, />', ^", Jo'", &c. and

q% q', /, ^"', &c.

26. Corollary \. If we make

o — I I

aq'— p
a^ — p'

p" —a^'

we shall have, as it is easy to perceive,

a—[h

1
c =

J = ;:, &C.
C — p

and u^L a, [fJ lb, fjJ' L c, jt>t"' z f?, &c. therefore the num-

bers p, ((>o', |u.", &c. will be no other than those which we have

denoted by a, /3, 7, &c. in Art. 3; that is to say, these

numbers will be the terms of the continued fraction, which

represents the value of a ; so that we shall have here

^ 1

jU. + ,; -r ?
^^'

Consequently, the numbers //, p", f\ &c. will be the nu-



504 AUDITIONS. CHAP. II.

nierators, and g-', q\ (/\ &c. the denominators of the fractions

converging to a, fractions which we have already denoted by
A B c „

7r» y» -^. &c. (Art. 10).

So that the whole is reduced to converting the value of a
into a continued fraction, having all its terms positive;

which may be done by the methods already explained, pro-

vided we are always careful to take the approximated values

too small ; then we shall only have to form the series of
principal fractions converging towards a, and the terms of

each of these fractions will give the values of ^ and q,

which will resolve the problem proposed ; so that — can

only be one of these fractions.

ST. Corollary 2. Hence results a new property of the

fractions we speak of; calling — one of the principal frac-

tions converging towards a, (provided they are deduced
from a continued fraction, all the terms of which are positive),

the quantity p — aq will always have a less value (abstract-

ing from the sign), than it would have, were we to substitute

in the room of ^ and q any other smaller numbers.
28. Problem % The quantity

Ap™ -j- B/j"'-^g + cp'^-^'q^ +^ &c. -f v^"',

being proposed, in which a, b, c, &c. are given integers,

positive or negative, and p and q unknown numbers, which
must be integer and positive; it is required to determine
what values we must give to p and q^ in order that the

quantity proposed may become the least possible.

Let a, /3, y, &c. be the real roots, and jU' + v V— 1,
ir + F v^ "~ 1> &c. the imaginary roots of the equation

A)i™ + B?c'"-i + CK"'-=* +, &C. + V = 0,

then we shall have, by the theory of equations,

hp^ + ^p^-^q + cp'''-^q^ +, &c. + vj" =
h{p - aq) X (p - (3q) X (p -yq) x

(i?
- (/^ + " ^/-l)y) X (p- {y. -y ^/-l)q) X

(p- (tt + p ^/-l)9) X {p - {^ -
^ V-l)q)....=

A{p -aq) X (p-^q) X (p -yq) X
dp- M)' + ''Y) X ((/> - nq)"- + fY) * • ••

* Because (p - (/x+ v ^— 1)^) x (/>— (f^
— vv/— l)y)

= p2 __ 2pjj,g -f /x^fji-
-f-

y^q^^ =
(
j9 — y.q)^ + v^q^, and the same

with the others. B.
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Therefore the question is reduced to making the product

of the quantities jo — aq, p — f5g, p — yq, &,c. and

(p - i^qy + "Vj (p — *?)^ + ?¥» ^c.

the least possible, when p and q are integer, positive numbers.

Suppose we have found the values of p and q which

answer to the minimum ; and if we substitute other smaller

numbers for p and q, the product in question must acquire

a greater value. It will therefore be necessary for each of

the factors to increase in value. Now, it is evident, that if

a, for example, were negative, the factor p — aq would

always diminish, when p and q decreased ; the same thing

would happen to the factor {p — [j.q)- + y"q-, if /x were

negative, and so of the others; whence it follows, that

among the simple real factors none but those where the roots

are positive, can increase in value ; and among the double

imaginary factors, those only, in which the real part of the

imaginary root is positive, can increase. Farther, it must
be remarked, with regard to these last, that in order that

ip — m)' + ^^^9^ niay increase, whilst p and q diminish, the

part (p—y-qY must necessarily increase, because the other

term y^q- necessarily diminishes ; so that the increase of this

factor will depend on the quantity p — i^qi and so of the

others.

Therefore, the values of p and q, which answer to the

minimum, must be such, that the quantity p — aq may in-

crease, by giving less values to p and q, and taking for a one

of the real positive roots of the equation,

AH™ + B>t"'-1 + CX"^-2 + , &C. + V = 0,

or one of the real positive parts of the imaginary roots of the

same equation, if there be any.

Let r and s be two integer, positive numbers less than p
and q ; then r — as must be 7 {p — aq\ abstracting from

the sign of the two quantities. Let us therefore suppose, as

in Art. 23, that these numbers are such, xhaips — ^r = + 1,

the upper sign taking place, when p — aq \?, positive ; and

the under, when p — aq\s negative ; so that the two quan-

tities p — aq, and r — as, become of different signs, and we
shall exactly have the case to which we reduced the pre-

ceding problem, Art. 24, and of which we have already

given the solution.

Hence, by Art. 26, the values ofp and q will necessarily

be found among the terms of the principal fractions t^pn-

verging towards a ; that is, towards any one of the quantities,

which we have said may be taken for a. So that we must

reduce all these quantities to continued fractions; which
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may easily be done by the methods elsewhere taught, and
then deduce the converging fractions required : after which,

we must successively make p equal to all the numerators of
these fractions, and q equal to the corresponding denomina-
tors, and of these suppositions, that which shall give the least

value of the proposed function will necessarily answer like-

wise to the minimum required.

29. Scholium 1. We have supposed that the numbers p
and q must both be positive ; it is evident that if we were to

take them both negative, no change would result in the

absolute value of the formula proposed ; it would only

change its sign in the case of the exponent m being odd ; and
it would remain quite the same, in the case of the exponent
m being even : so that it is of no consequence what signs we
give the numbers p and q, when we suppose them both of

the same kind.

But it will not be the same, if we give different signs top
and q; for then the alternate terms of the equation proposed
will change their signs, which will also change the signs of

the roots a, /3, y, &c. (j^ ± v ^/— 1, 7z'±p^/ — 1, &c. so

that those of the quantities a, /3, y, &c. /x, tt, &c. which
were negative, and consequently useless in the first case, will

become positive in this, and must be employed instead of the

other.

Hence, I conclude, generally, that when we investigate the

minimum of the proposed formula, without any other re-

striction, than that of p and q being whole numbers, we
must successively take for a all the real roots a, /3, y, &c.

and all the real parts /x, ir, &c. of the imaginary roots of the

equation ax"* + bx'"-^ + CJi'"-^ + , &.c. + v = ; abstract-

ing from the signs of these quantities ; but then we must
give the same signs, or different signs, top and q, according

as the quantity we have taken for a, had originally the

positive, or the negative sign.

30. Scliolimn 2. When among the real roots a, /3, y, &c.

there are some commensurable, then it is evident that the

p
quantity proposed will become nothing, by making-^ equal

to one of these roots ; so that in this case, properly speaking,

there will be no minimiim. In all the other cases, it will be

impossible for the quantity in question to become 0, whilst

p and q are whole numbers. i*^ow, as the coefficients a,

B, c, &c. are also whole numbers, by hypothesis, this quan-

tity will always be equal to a whole number ; and, con-

sequently, it can never be less than unity.
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If we had, therefore, to resolve the equation

Ap"" + Bp'^-^q + cp'"-^q'^ +, &c. + v^"* = rp 1,

in whole numbers, we must seek for the values of^ and q by
the method of the preceding problem, except in the case

where the equation

A»"* + Bjc"-' + cx"'-^ +, &c. + y = 0,

had roots, or any divisors commensurable; for then, it is

evident, that the quantity

Ap"' + Bp'"-^q + cp''-^q" +, &c.

might be decomposed into two or more similar quantities of

less degrees ; so that it would be necessary for each of these

partial formulas to be separately equal to unity, which would

give at least two equations that would serve to determinep
and q.

We have elsewhere given a solution of this last problem

{Memoires pour VAcademie de Berlin pour VAnnee 1768) ;

but the one we are going to explain is much more simple and

direct, although both depend on the same theory of con-

tinued fractions *.

31. Problem 3. Required the values of p and q, which

will render the quantity a/j^ + Bpq + c^'- the least possible,

supposing that whole numbers only are admitted for p and q.

This problem evidently is only a particular case of the

preceding ; but it may be proper to consider it separately,

because it is capable of a very simple and elegant solution

;

and, besides, we shall have occasion afterwards to make use

of it, in resolving quadratic equations for two unknown
quantities in whole numbers.

According to the general method, we must begin, there-

fore, by seeking the roots of the equation Ax^ H- bx + C = 0,

... , ,
— b±^/(b^ — 4ac)

which we know to be, ^ -.
2a

1st, If B- — 4ac be a square number, the two roots will

be commensurable, and there will properly be no minimum^
because the quantity Ap'^ + ^pq + cq" will become 0.

2d, If B- — 4ac be not a square, then the two roots will

be irrational, or imaginary, according as B- — 4ac will be

7 , or z 0, which makes two cases that must be considered

separately ; we shall begin with the latter, which it is most
easy to resolve.

First case, when b^ — 4ac z 0.

32. The two roots being in this case imaginary, we shall

* See also Le Gendre's Essai sur la Theorie des Norabres,

page 169.
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have-^ for the whole real part ofthese roots, which must con-

sequently be taken for a. So that we shall only have to reduce

the fraction -^ , abstracting from the sign it may have, to a

continued fraction, by the method of Art. 4, and then deduce
from it the series of converging fractions (Art. lOJ, which
will necessarily terminate. This being done, we shall suc-

cessively try for /> the numerators of these fractions, and the

corresponding denominators for q^ taking care to give j> and

q the same, or different signs, according as -^ is a positive,

or negative number. In this manner, we shall find the

values ofp and g^, that may render the formula proposed a

minimum.

Example. Let there be proposed, for example, the quantity

49p^ - 238p5r + 2909^-.

Here, we shall have a = 49, b = - 238, c = 290

;

wherefore b- — 4ac = — 196, and -^— = y^/ = '-/. Work-

ing with this fraction according to the method of Art. 4, we
shall find the quotients 2, 2, 3 ; by means of which, we shall

form these fractions (see Art. 20),

2, 2, 3.
I 2 S 17
tJ> T> "15 T • *

So that the numbers to try with will be 1, 2, 5, 17, for jt?,

and 0, 1, 2, 7, for q. Now, denoting the quantity proposed

by r, we shall have

p q F

1 49
2 1 10
5 2 5

17 7 49;

whence we perceive, that the least value of p is 5, which

results from these suppositions p = 5, and q = 2; so that

we may conclude, in general, that the given formula can

never become less than 5, while j9 and q are whole numbers;

so that the minimum will take place, when p = 5, and

q = 2.

Second case, when b^ — 4ac 7 0.

SS. As, in the present case, the equation ax^ + bx + c = 0,
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has two real irrational roots, they must both be reduced to con-

tinued fractions. This operation may be performed with the

greatest ease by a method which we have elsewhere explained,

and which it may be proper to repeat here, since it is na-

turally deduced from the formulae of Art. 25, and likewise

contains all the principles necessary for the complete and ge-

neral solution of the problem proposed.

Let us, therefore, denote the root which is to be thrown
into a continued fraction by a, which we shall suppose to be
always positive ; at the same time, let b be the other root,

E C
and we shall evidently have a -\- h = — -—, and ab z= — ;

whence a — b =. ; or, for the sake of abrido;-
A ^

ment, making b'^— 4ac = e, a — b = — , where the ra-

dical \/E may be positive, or negative : it will be positive,

when the root a is the greater of the two, and negative, when
that root is the less ; therefore

—B+ Ve —b— v'e

^ = 2a ' * = 2a
'

Now, if we preserve the denominations of Art. 25, we shall

only have to substitute for a the preceding value, and the

difficulty will only consist in determining the integer, ap-

proximate values, /a', ju.", ju,'", &c.

To facilitate thes^determinations, I multiply the numerator
and the denominator of the fractions,

«°— «g° aq'—p' p" — oq" . i ,

^fZ^> /3^' <3p' &^- respectively by

A{bq' - p'), a(/ - b^'), A{bq"'-p% &c.

and as we have

A{p°— aq°) X {p° — bq°)=A
I I

A{aq' —p) X {bq' —p') = a^- - A{a + b)pfq' -{- Aobq^ =

Ap'^ + B^y -1- Cq%

A(p<'-aq") X (/- bq'') = Af- -A{a + b)p"^' + Aabf =
// //

Ap^ + ^p"q" + cq-y &c.

Aipo — aq") X {bq' -pi) = - iW.A~ fc - 5 -/E,
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— Ap'p" + Aflp'Y -r Ajp'g'' — Attbq'g" =
-Ap'f - cq'q"-Mpy' + q'p") + i VE{p"q'- q"p%

Aip" -o.^') X {bq">'-p"') =
-Aff + Aap'Y + Ahff - Aabq"f =

-Apy>-cq"q>" - MpY' + qY') + f -v/E (/>'"/- /'/),

and so on. Now, in order to abridge, let us make

P«= A

I I

P' = Ap^ + BJ9' g' -f C^*

// //

p" = Ap2 + B^Y + Cq^

III III

f'" z= Ap^ -f Bpf"q"' + cq\ &c.
qo = |b
q' = Af* + |b

ft" = Apf + iB(yg'" + 5'p") + cgry
q"'= Aff + |B(py + ^y") + Cq!'f, &.C.

Because
y"^' _ ^'p' = 1, p'Y - ^y = - i,piy' — ^iy = i, &c.

we shall have the following values,

-ftO +iVE

f-'

pO
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it will become j«,-p" + ^yJ'o," + p', and so on ; so that we
shall have

p" = /X2p' + Sjt*' q' + PO

p'" = ^2p7 _|_ 2^// qII ^ pf

///

p.v ^ ^op7, ^ 2|«,"'a"' + p'', &c.

By means of these formulae, therefore, we may continue the

several series of numbers, ju., ju,', fx." ; oP, q', q.", and 1'°, p', p",

&c. to any length, which, as we see, mutually depend on
each other, without its being necessary, at the same time, to

calculate the numbers p°^ p', p", &c. and q°, ^, q", &c.

We may also find the values of p', p", p"', &c. by more
simple formulae than the preceding, observing that we have

/ / /

Qi _ p' =
(^fjjj^

^ 1.b)2 __ A(,a-A + jU,B + C) = ^-b" — AC,

^i - p'p" = (jot'p' + q!Y - p'(fl2p' + 2pt'a' + a) = a^ - ap',

and so on ; that is to say,

I

q2 _ pOp' = 1e

/;

q2 _ -pipti — 1e

Whence we get

Q« — P"P"' = ±E, &C.

* " n

II

Q-— i-E
p-< = Z ±1t>W —

///

Q- —

E

viii — - ±- &c.*^ — p" '

The numbers p, (jJ, /x", &c. having thus been found, we
have (Art. 26), the continued fraction,

and, in order to find the minimum of the formula



512 ADDITIONS- CHAP. 11.

AJ9* + T^pq 4 C(^^i we shall only have to calculate the num-
bers yjo^ pi^ pii^ p<\ &c. and q^, ^', 9", q", &c. (Art. 25), and

then to try them instead o\' p and q-^ but this operation may
likewise be dispensed with, if we consider, that the quantities

p°, p', p", &c. are nothing but the values of the formula in

question, when we successively make p z=. p°, p', p", &c. and

q z=. q", q\ q'', &;c. We have, therefore, only to consider

which is the least term of the series p°, p', p', Sec. which we
calculate at the same time with the series, jw., ij^',

[j^'', &c. and

that will be the minimum required ; we shall then find the

corresponding values of p and q by means of the formulae

above quoted.

34. Now I say, that continuing the series, p°, p', p'', &c.

we must necessarily arrive at two consecutive terms with dif-

ferent signs; and that then the succeeding terms, also, will

all have different signs two by two. For, by the preceding

Article, we have
po z= a(p" — aq'>) X (jtjo - bq'>),

p' = a(p' — a^) X (/)' — bq), kc.

And, from what we demonstrated in Problem 2, it follows,

that the quantities p'^ — aq'^, p' — aq', p'' — aq", kc. must
have alternate signs, and go on diminishing; therefore, 1st,

if 6 is a negative quantity, the quantities j?' — /;q\ p' — bq',

&c. will all be positive ; consequently, the numbers p', p', p'',

will all have alternate signs ; 2dly, if 6 is a positive quantity,

as the quantities p' — aq', p" — aq'', kc. and much more the

. . p' p"
. . .

quantities ^^j— «> v
~ ^> form a series, decreasing to in-

finity, we shall necessarily arrive at one of these last quan-

. .
p'"

. .

titles, as 5/7 — ^f which will be z (a — 6), abstracting from

p^ p^
the sign, and then all the following, ^. — a, — — a, will

be so likewise ; so that all the quantities

a—b +^— a,a — bn—- — a, &c. will necessarily have

the same sign as the quantity a — b; consequently, the
pill pW

quantities^ — b, —^ — 6, &c. and these p'" — bq'",

p'"' — bq^", kc. to infinity, will all have the same sign ; there-

fore, all the numbers p'", p'", will have alternate signs.

Suppose now, in general, that we have arrived at terms,

with alternate signs, in the series p', p", p'", &c. and that
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V^ is the first of those terms, so that all the terms p^, r'^+',

p'^+a, &c. to infinity, are alternately positive and negative

;

I say that none of those terms can be greater than e. If, for

example, p'", p'^', p', &c. have all alternate signs, it is evident

that the products, tv/o by two, p'"p''^, p'^P', &c. will neces-

sarily be negative ; but (by the preceding Article), we have

Q-— p"'p"' = E, Q- — P'^p' = E, &c. wherefore the positive

numbers, — p"'p''', — p"p', will all be less than E,-or at least

not greater than e ; so that, as the numbers p', p'', p'", &c.

must be integers, the numbers p'", p", &c. and, in general,

the numbers p-*-, p'^+i, &c. abstracting from their signs, can

never exceed the number e.

Hence it follows, also, that the terms q"'^, q}', &c. and, in

general, q'^+i, 0,^+2, &c. can never be greater than ^e.

Whence it is easy to conclude, that the two series p'^,

p'^+i, p'^+s, &c. and a'^+i, ci^+^, &c. though carried to in-

finity, can never be composed but of a certain number of

different terms, those terms being, for the first, only the na-

tural nunibers as far as e, taken positively, or negatively

;

and for the second, the natural numbers as far as ^E, with

the intermediate fractions i, 4, 4» &c. likewise taken posi-

tively, or negatively ; for it is evident, from the formulae of

the preceding Article, that the numbers q', a", q!\ &c. will

always be integer, when b is even ; but that they will each

contain the fraction 4> when b is odd.

Therefore, continuing the two series P*, p", p'", &c. and
q', q", q '', &c. it will necessarily happen, that two correspond-

ing terms, as P'^ and a"", will return after a certain interval

of terms, the number of which may always be supposed

even; for, as the same terms, p^ and a^, must return to-

gether an infinite number of times, because the number of

different terms in both series is limited, and consequently

also the number of their different combinations, it is evident,

that if these two terms always returned, after the interval of

an odd number of terms, we should only have to consider

their returns alternately, and then the intervals would all be

composed of an even number of terms.

Denoting, therefore, the number of intermediate terms by

2f,
we shall have p^+ac = r^, and ft^+25 = q-^, and then all

the terms p,r, p^+', ^+2, &.c. dn, a'^+i, Q'^+a, and ij.rr,

ju,'^+i, /x'r+2, &c. will also return at the end of each interval

of 2§ terms. For it is evident, from the formulae given in

the preceding Article, for the determination of the numbers,

.a', [J^\ fx,'", &c. q', q", q"', &c. and p', p", p"', &c. that, since we
shall have p'r+-s = v, and Q."'+2i = Q'^, we shall also have

L L
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ju.7!"+2j = jw.'T^ then QTr+sj+i = q,t+i^ and v"+^i+i = p^+i;

whence, also, jti^+af+i = ^^+1°^ and so on.

So that, if n is any number equal, or greater than t, and
m denotes any integer positive number, we shall have, in

general,

therefore, by knowing the tt + 2^ leading terms of each of

tlie three series, we shall likewise know all the succeeding,

which will be only the 2f last terms repeated, in the same
order, to infinity. '

From all this it follows, that, in order to find the least

value of p = Ap' + ^pq + cq", it is sufficient to continue

the series f°, p', p'', &c. and a°, a', Q'', &c. until two cor-

responding terms, as P'^ and q'^ appear again together, after

an even number of intermediate terms, so that we may have
p7r+2g — pn-j and Q'^+se = q't

; then the least term of the

series po, p', p'', &c. p^^+ae will be the minimum required.

35. Corollary 1 . If the least term of the series p°, p', p",

&c. v^+H is not found before the term p^, then that term
will be repeated an infinite number of times in the same
series infiinitely prolonged ; so that we shall then have an
infinite number of values of p and q answering to the mini-
mum, and all discoverable by the formulae of Art. £5, by
continuing the series of the numbers ifJ, yj', fjJ", &c. beyond
the term jw,"e+'r by the repetition of the same terms j«.'^+i,

(x'^+2, as we have already said.

In this case we may likewise have general formulae repre-

senting all the values of p and q in question ; but an ex-
planation of the method for arriving at this, would carry me
too far ; for the present, I shall only refer to the Memoires
de Berlin already quoted, ann. 1768, page 123, &c. where
will be found a general and new theor}^ of periodical con-
tinued fractions.

30. Corollary 2. We have demonstrated (Art. 84), that,

by continuing the series p', p", p'", &c. we ought to find con-
secutive terms with different signs. Let us suppose, there-

fore, for example, that p'" and p'^ are the first two terms, with
this property. AVe shall necessarily have the two quantities

;y" —Iff, and p'' — bq^', with the same signs, because the
quantities //" — aq'", and p'" — ar/', have from their nature
different signs. Now, by putting in the quantities jt>' — 65%
p^'^ — bf\ &c. the values of 7;% j5^', &c. q\ q'-'\ Kc. (Art.

25}, we shall have

p^ - hq-" = [J^'{ p'^ - /,'<7>>
) + p<" - bg'ii
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Whence, because |u-i*', jj/^ &c. are positive numbers, it is

evident that all the quantities p' — bq"", p"'^ — h([''\ &c. to in-

finity, will have the same signs as the quantities p^" — bff\

and jt?'^' — hep"- ; consequently, all the terms p"', pi^, p'^ &c.

to infinity, will alternately have the %\gxi%plus and minus.

From the preceding equations, we shall now have

^ "~
p^-bq" p^ - bq^

p^-b<p- f-bf ^^
^ p'-'^—bq''^ p'^^ — bq^'^'^

• • /' -W" p^'-bq^'^ . .„ . „
where the quantities, —. r^, rV, &c. will be all^ ' p^'' - bq^' p^— bq^^

positive.

Wherefore, since the numbers
l)^'•', i^'^\ K^ &c. must be all

p'—bq^
positive integers, by hypothesis, the quantity •^_ ,

-r
. must

be positive, and 7 1 ; so also must the quantities

^. '——.—7^, &c. ; wherefore the quantities
p^'-bq"' p^-^— bq'^'

^

^ 7^, —.—-7^., &c. will be positive, and less than unity

;

so that the numbers K, p'', &c. can only be the integer

numbers, which are immediately less than the values of

E-Z.1— P ~ ^. &c. As to the number [J^'', it will

P'
— hq'- p\-\—J)qM'

also be equal to the integer number, which is immediately

less than the value of —. r— , whenever we have

p'"—bq<" ,^ 7-^ z 1.

Thus, we shall have

p'^ — 65-'^ p^^ — bq^'

p'-'^—bq'''^

L L 2
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the sign Z placed after the numbers //', («-•% /x'', &c. de-

noting as before, the integer numbers which are immediately
under the quantities which follow that same sign.

Now, by reductions similar to those of Art. 33, it is easy

to transform the quantities -: j—r, — , &c. into

these, ^ , ^ , &c. Farther, the condition of
plV ' pV -" '

pqi'i-bq'"
.

-p'" aq"'-p"'
-jt;—r-T- z. 1 may be reduced to this, —-.— z -r-, r ;p'v — bq^^ ^ p'^ pi^ — aq^^

which, because —^ ^yl, will certainly take place, whenpw—dw J r '

_p'"
—;-— = or z 1 ; wherefore we shall have
plV '

qv+|.^e _p'«
i«-'^z ^

, if —r- = or / 1.

/^^

Combining now these formulae with those of Art. 33,
which contain the law of the series p', p", p'", &c. and u', q",

q'", &c. we shall easily see, that, if two corresponding terms
of these two series be supposed to be given, the rank of
which is higher than 3, we may go back to the preceding
terms, as far as p'^' and a^', and even to the terms p'" and q'"",

— p'"

if the condition of —.— = or z 1 takes place ; so that all
piv r '

these terms will be absolutely determined by those which we
have supposed to be given.

For example, knowing p^', and q}''\ we shall immediately

know p'' from the equation q^ - p^p" = i-E ; then, having
Q^' and p% we shall find the value of y^" ; by means of which
we shall next find the value of a" from the equation

a^'i =: /x^ pv + Q-.. Now, the equation Q.'^ — p'^p^' = i^E, will

— -pill

give P'^ ; and if we previously know, that —— must be = or

Z. 1, we shall find ^'^ ; after which, we shall have a'' from
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the equation q} = ju,''p'^ + a"', and then p'" from this,

Whence it is easy to draw this general conclusion, that, if

v^ and p'^+i are the leading terms of the series p', p", p'", &c.

which are successively found with different signs, the term
p'^+i, and the following, will all return, after a certain number
of intermediate terms, and it will be the same with the

±P
term p?., if we have —t— = or z. 1

.

For let us imagine, as in Art. 34, that we have found
p'r+2f = pTTj and a'^+as = q,^^ and suppose that * is 7 A,

that is to say, tt = A + v ; wherefore we may go back, on
the one hand, from the term P'^ to the term p'^+i, or p% and
on the other, from the term p^+ag to the term p'^+aj+i, or

p^+i^ ; and, as the terms from which we set out are equal

on both sides, all the terms derived from them will likewise

be respectively equal; so that we shall have p>^+2f+i = p>^+i,

+ P^
or even p^+C = p\ if — = or ^1.

' p^+i

We may, therefore, judge beforehand of the beginning of

the periods in the series p°, p', p", p'", &c. and consequently

in the other series also, q*^, q', q", q"', &c. fx,, yj, yj', jjj", &c.

but as to the length of the periods, that depends on the

nature of the number e, and entirely on the value of that

number, as I could demonstrate, were I not afraid of being

led into too long a detail.

37. Corollary/ 3. What we have demonstrated in the

preceding corollary, may serve to prove the following theo-

rem : Every equation of theform p^ — Kq- = 1, {in which

K is a positive integer number, but not a square, and p
and q two indeterminate numbers) is resolvible in integer

numbers.

For, by comparing the formula /?- — Kg-^ with the general

formula, Ap^ _{- ^pq -j- cq% we have a=:1,b = 0, c= — k;

wherefore e = b^ — 4ac ~ 4k, and \ a/e = v/k (Art. 33).

Wherefore, p*' = 1, q," = 0; likewise y./_ a/k, q' = ^u,, and
p' = jx'z — K ; whence we see first, that p' is negative, and

consequently has a different sign from p°; secondly, that

— p' is = or 7 1, because k and i^ are integer numbers;

pO

so that we shall have—-,
= or z. 1 ; whence we shall find,

— F

from the preceding Article,

A = 0, and p-e = p" = 1

;



518 ADDITIONS. CHAP. II.

SO that by continuing the series p", p', i*", &c. the term,
po = Ij will necessarily return after a certain interval of

terms ; consequently, we may always find an infinite num-
bei" of values for p and y, which will render the formula

f" — Kg*- equal to unity.

38. Corollary 4. We may likewise demonstrate this

theorem: If the equation p^ — Kq- = ± h 6^ resolvibJe in

integer numbers, by supposing k a positive number, not

square, and h a positive number, less than a/k, the numbers

p and q must be such, that — may be one of the principal

Ji-actions converging to the value of V^-
Let us suppose that the upper sign must take place, so

that JO**
— Viq" = h ; wherefore, we shall have

H , p "
p — q \/k = , and ^,/K=

P + QV^^ q ^^(-^+VK)

Now, let us seek two integer positive numbers, r and s, less

than p and q, and such, that^s — qr — I, which is always

possible, as we have demonstrated (Art. 23), and we shall

f) r \
have— =— ; subtracting this equation from the pre-

ceding, we shall have

r H 1
, ,

^,/K r= ; so that we have
s

, p ^ (fs

p - qV^ =

!7(Y+s/k)

1 , *H
r - s a/k = — ( — 1).

^ 5(-|-+a/k)

Now, as — 7 v/ K, and h z a/k, it is evident, that

will be z 1 ; whence p — q\^K will be z ^r-

;

^+./k ^^

1
su

wherefore, will much more be Z 4, since s z 5;

so that r — s s/k will be a negative quantity, which taken
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..." 1 -SH

positively, will be 7 q-j because 1 7 i'

So that we shall have the two quantities, p — q V'K, and
r — s ^/K ; or rather, making a — V'K, p — aq^ and r — as:

which will be subject to the same conditions as we have
supposed in Art. 24, and from which we shall draw
similar conclusions : therefore, &c. (Art. 26), if we had
p" — K^'- = — H, then it would be necessary to seek the

numbers r and s such, that j05 — qr =. — 1, and we should

have these two equations,

qVK - p =
9( a/k + |-)

1 ^ 5H nv
S v/K — r = ( 1).

As H ^ x/K, and s /. q, it is evident, that

will be Z 1 ; so that the quantity s ^/k — ?• will be negative.

Now, I say that this quantity, taken positively, .will be
greater than q v/k — ^ ; to prove which, it must be demon-

strated, that— (1 ) 7 ,

H(l+-)
or rather, that 1 7

; that is to say,

9

Vk+ — 7HH ; but HZ ^/Kf/tz/w.); it is therefore
q q

^ ^r I

sufficient to prove, that

—

-7 , or that 'pi s a/k ; which is

evident, because the quantity s ^/k — r being negative,

we must have r 7 s /k, and much more pj s a/k, since

pyr.
Thus, the two quantities, p — 9' v/k, and r — ^^/k, will

have different signs, and the second will be greater than the
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first (abstracting from the signs), as in the preceding case

;

therefore, &c.

So that when we have to resolve, in integer numbers, an
equation, of the form, ;>'^ — Kq" = + h, where n z x/k, we
have only to follow the same process as in Art. (33, making
A = 1, B = 0, and c — — k; and, if in the scries r°, p',

p'', p'', &c. P't+af, we find a term = + h, we shall have the

solution required; if not, we may be certain that the given

equation admits of no solution in integer numbers.

39. Scholium. We have considered (Art. 33) only one
root of the equation A"- -f b'^ + c = 0, which we have sup-

posed positive ; if this equation have both its roots positive,

we must take them successively for «, and perform the same
operation with both ; but if one of the two roots, or both,

were negative, then we should first change them into positive,

by only changing the sign of «, and should proceed as be-

fore: but then we should take the values of p and q with

contrary signs ; that is to say, the one positive, and the other

negative (Art. 29).

In general, therefore, we shall give the ambiguous sign

± to the value of b, as well as to v'E ; that is to say, wo
shall make a' = q: 'b, and let us j)ut + bef()re ^/E, and
we must take these signs, so that the root

a -- —=—=

A

may be positive, which may always be done in two different

ways : the upper sign of b will indicate a positive root ; in

which case, we must take both p and q with the same signs

;

on the contrary, the lower sign of b will indicate a negative

root ; in which case, the values oi'j) and q must be taken

with contrary signs.

40. Example. Required what integer numbers must be
taken for p and q, in order that the quantity,

9p^ - U8pq + 378^'^

may become the least possible.

Comparing this quantity with the general formula of

Problem 3, we shall have a = 9, b = - 118, c = 378;
wherefore, ii- — 4ac = 316 ; whence we see that this case

belongs to that of Art. 33. We shall therefore make
E — 316, and {- \/e -- v/79, where we at once observe, that

a/797 8, and Z 9 ; so that in the formula? of which we shall

only have to find the approximate integer value, we may
immediately take, instead of v'79,the number 8, or 9, accord-

ing as that radical shall be added, or subtracted, from tho

other numbers of the same formula.
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Wc shall now give the ambiguous sign + to n, as well as

to -v/E, and shall then take these signs sueh, that

±59+ x/79
a =

may be a positive quantity (Art. 39) ; whence wc see, that

we nuist always take the upper sign (or the number 59 ; and,

that for the radical \/79, we may cither take the U])per, or

the under. So that we shall always make a" = — ^ii, and

v/E may be taken, successively, plus and minus.

First, thereibre, if ;- ^/E — a/ 79 with the positive sign,

we shall make (Art. 33), the following calculation

:



5^2 ADDITIONS. CliAP. II.

^>vii _ p»^ gj-jj ^[j^j. jijg dift'erence between the two indices,

1 and 7, is even ; whence it follows, that all the succeeding

terms will likewise be the same as the preceding ; so that we
shall have q^'" = 4, a^'i" = - 3, q}^ = 7, &c. p^'" = — 7,
p^"' = 10, &c. so that, if we choose, we may continue the

above series to infinity, only by repeating the same terms.

Secondly, let us take the radical 'v/79 with a negative

sign, and the calculation will be as follows

:
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Now, if we consider the values of the terms p°, p', p'', p'",

&c. found in the two cases, we shall perceive that the least

of these terms is equal to - 3 ; in the first case, it is the

term p'", to which the values p'" and q'" answer; and, in the

second case, it is the term p'^', to which the values p^""' and 9''

answer.

Whence it follows, that the least value, which the given

quantity can receive, is — 3 ; and, in order to have the values

ofp and q, which answer to it, we shall take, in the first

case, the numbers jw., pJ, /x", namely, 7, 1, and 1, and shall

form with them the principal converging fractions 4? t-> V ;

pin

the third fraction will, therefore, be^, so that we shall have

p'" = 15, and q'" = 2 ; that is to say, the values required

will be p — 15, and g — 2. In the second case, we shall

take the numbers jw,, ft', /x", [jJ", namely, 5, 1, 1, 3, which v/ill

give these fractions, 4, 4, V , V' ; so that we shall have
p'"" = 89, and 9'^ = 7 ; therefore p = 39, and q='7.

The values which we have just found forp and q, in the

case of the minimum, are also the least possible ; but if we
choose, we may likewise successively find others greater : for

it is evident, that the same term, — 3, will always return at

the end of every interval of six terms ; so that, in the first

case, we shall have p'" = — 3, jM = — 3, p^^' = — 3,

Sec. and, in the second, p>^= — 3, p^ = - 3, p^^' = -3, &c.

Therefore, in the first case, the satisfactory values ofj?

and q will be these ; p'\ q"', p'"", q'"", p""", q""^, &c, ; and, in

the second case, p'^, q'"^, p^, q^, p"""', q^^'\ &c. Now, the

values of /x, /x', /x", &c. are in the first case 7, 1, 1, 5, 3, 2, 1

;

1, 1,5, 3, 2, 1 ; 1, 1, 5, 3, &c. to infinity, because p-^"=
f*',

and
ij^''''

= fjJ', &c. so that we shall only have to form, by

the method of Art. 20, the fractions,

7, 1, I, 5, 3, 2, I, 1, 1, 5,

7 8 IS 83 a64 611 8 7 5 i486 2J^^ Li-i?— &C
T> "TJ iT > XT* 3 T ' Tj" J I I 6' 197' 3i3' I762»

And we may take for p the numerators of the third,

ninth, &c. and for q the corresponding denominators : we

shall therefore have p = 15,q = 2, or p = 2361, q = 313,

&c.

'

In the second case, the values of jx', |U-", /^"', &c. will

be 5, 1, 1, 6, 5, 1, 1, 1, 2; 3, 5, 1, 1, 1, 2, &c. be-

cause iJ^'\ |x"', |w,x = |xi% &c. We shall, therefore, form these

fractions,

5, 1, 1, 3, 5, 1, 1, 1, 2, 3,

5 6 II 39 106 Z4S 451 696 I_S4_3 6 ^^ 5 gr(.
T5 T» a 5 T ' TT > T 4 ' TT ' I'zs' 3Ti' iiis' ^^
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And the fourth fraction, the tenth, &c. will give the

values of p and q ; which will therefore be

p = 39, <7 = 7, or p = 62^5, q = 1118, &c.

In this manner, therefore, we may regularly find all the

values ofjD and q, that will make the given formula = — 3,

the least value it can receive. We might even have a ge-

neral value, which would comprehend all these values of p
and q. Any person who has the curiosity may find it by a

method which we have elsewhere explained, and which has
been already noticed (Art. S5).

We have just found, that the minimum of the quantity

proposed is —3, and consequently negative; now, it might
be proposed to find the least positive value, that the same
quantity can receive : we should then only have to examine
the series p°, p', p", p'", &c. in the two cases, and we should
see that the least positive term is 5 in both cases ; and as in

the first case it is p'^', and in the second p'", which is 5, the

values of^ and q, that will give the least positive value of

the quantity proposed, will be^'% q^", orp"", (7", or &c. in the

first case, and p", q", or p-^, q^\ &c. in the second ; so that

we shall have, from the above fractions, p = 83, ^ = 11 ; or

p = 13291, q = 1762, &c. or p= 11, r/ = 2 ; p = 1843,

«7 == 331, &c.

We must not forget to observe, that the numbers, /x, w/,

ju,", &c. found in the above two cases, are no other tlian the

terms of the continued fractions, which represent the two
roots of the equation Qk"^ — I18>c + 378 = 0.

So that these roots will be,

'+-^+ ^ + ,&c.

5 + 4-4..

+^ + -i- + , &C.

expressions which we might continue to infinity merely by
repeating the same numbers.

Thus, we perceive how we are to set about reducing to

continued fractions the roots of every equation of the second
degree.

41. Scholium. In volume XI. of the New Commen-
taries of Petersburg, M. Euler has given a method similar

to the preceding; but deduced from principles somewhat
different, for reducing to a continued fraction the root of any
integer number, not a square, and has added a Table, in

which the continued fnutions are calculated for all the
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natural numbers, that are not squares, as far as 100.

This Table being useful on various occasions, and par-

ticularly for the solution of indeterminate numbers of the

second degree, as we shall afterwards find (Chap. 7), we
shall here present it to our readers. It will be observed,

that there are two series of integers answering to each

radical number ; the upper is that of the numbers p°, — p',

p''j — p'", &c. and the under that of the numbers, jw-, jw.' z^",

/x'", &c.

V 2
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v'22
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v/70
69596 169 &c
2 1 2 1 2 16 2 1 &c.

V71
7 5 112 115 7 1 7 5 &c.

2 2 17 1 2 2 16 2 2 &c.

V72
8 18 1 8 &c.
2 16 2 16 2 &c.

v/73
9 8 3 3 8 9 1 9 8 &c.
1 1 5 5 1 1 16 1 1 &c.

v/74
10 7 7 10 I 10 7 c^^c.

Ill 1 16 11 &c.

x/75
116 11 1 11 6 &c.

11 1 16 11 &c.

•^7^
12 5 8 9 3 4 3 9 8 6 12 1 12 5 &c.
12 115 4 5 112 1 16 1 2 &c.

s/77
13 4 7 4 13 1 13 4 &c.

13 2 3 1 16 1 3 &c.

n/78

n/79

14 3 14 114 3 &c.
14 1 16 14 &c.

15 2 15 I 15 2 &c.
17 1 16 17 &c.

V80
16 1 16 1 16 &c.

1 16 I 16 1 &c.

^82
1 1 I &c.

18 18 18 &c.

>/83
2 12 1 2 &c.
9 18 9 18 9 &c.

^/84
3 1 y 1 3 &c.

6 18 6 18 9 &c.

v/85
4 9 9 4 1 4 9 &c.

4 1 1 4 18 4 1 &c.

s/86
5 10 7 11 2 11 7 10 5 1 5 10 &c.

3 II 18 11 1 3 18 3 1 &c.

x/87
6 16 16 &c.

3 18 3 18 3 &c.

v/88
7 9 8 9 7 1 7 9 &c.

2 1 1 1 2 18 2 1 &c.

V89
8 5 5 8 J 8 5 &c.
2 3 3 2 18 2 3 &c.

x/90
9 19 1 &c.

2 18 2 18 &c.

V9I
10 9 3 14 3 9 10 1 10 9 &c.
115 15 1 1 18 1 1 &c.

-s/92
11 8 7 4 7 8 11 1 11 8 &c.
112 4 2 1 1 18 ] 1 &c.
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CHAP. III.

Of the Resolution, 171 Integer Numbers, of Equations of the

first Degree, confaining txvo unknorvn Quantities.

[appendix to chap. I.]

42. When we have to resolve an equation of this form,

ax — by = c,

in v/hich a, 6, c, are given integer numbers, positive, or

negative, and in which the two unknown quantities, x and 3/,

must also be integers, it is sufficient to know one solution,

in order to deduce with ease all the other solutions that are

possible.

For, suppose we know that these values, <r = a, and

?/ = /3, satisiy the conditions of the equation proposed, a and

/3 being any integer numbers, we shall then have aa — 6/3 =c

;

and, consequently,

ax — by — ax — 6/3, or a{x - a) ~ b{y — /3) = ;

whence we find = —. Let us reduce the fraction
?/-/3 a

— to its least terms, and supposing, in consequence of this

b'

reduction, that it becomes — , where 6' and a' will be prime

to one another, it is evident that the equation,

x—ab'
f^ " ^'

could not subsist, on the supposition of x — a, and 2/ — ^,
being integers, unless we have .r — a. = mb', and y — ^ = ma\
m being any integer number; so that we shall have, in

general, x = a. -\- mb', and y = ^ -\- ma'; m being an in-

determinate integer.

Now, as we may take m either positive, or negative, it is

easy to perceive, that we may always determine the number
in in such a manner, that the value of x may not be greater

than "^, or that of_y not greater than —
, (abstracting from

the signs of these quantities) ; whence it follows, that if the
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given equation ax — by — c, is resolvible in integer num-
bers, and we successively substitute for a; all the integer

numbers, positive as well as negative, contained between
b' -h

these two limits— , and —^, we shall necessarily find one

that will satisfy this equation : and we shall likewise find

a satisfactory value of y among the positive, or negative

d —a!
whole numbers, contained between the limits -^, and —^.

By these means we may find the first solutitm of the

equation proposed ; after which, we shall have all the others

by the preceding formuke.
43. But, without employing the method of trial, which

we have now proposed, and which would sometimes be very
laborious, we may make use of the very simple and direct

method explained in Chap. I. of the preceding Treatise, or

of the following method.
First, if the numbers a and b are not prime to each other,

the equation cannot subsist in integer numbers, unless the

given number, c, be divisible by the greatest common
measure of a and b. Supposing, therefore, the division

performed, and expressing the quotients by a', V, c', we
shall have to resolve the equation,

a'x — b'y — c\

where d and b' are prime to each other.

Secondly, if we can find values of^ and q that satisfy the

equation, dp — ^'g' = ± 1, we may resolve the preceding

equation ; for it is evident that, by multiplying these values

by ± d, we shall have values that will satisfy the equation,

.

a'x — b'y = c';

that is to say, we shall have

jr =± pd , and j/
~- ± qd.

Now, the equation dp — Vq — + 1 is always resolvible

in integers, as we have demonstrated, Art. 23 ; and, in order

to find the least values ofp and q that can satisfy it, we shall

only have to convert the fraction —7, into a continued frac-
•' a

tion by the method of Art. 4, and then deduce from it a

series of principal fractions, converging to the same fraction,

-r, by the formulae of Art. 10; the last of these fractions

will be the same fraction -j ; and if we represent the last
a

1.1 M 2
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P
but one by —, we shall have, by the law of these fractions,

(Art. 12) ap — i'g — + 1 ; the upper sign being for the

case, in which the rank of the fraction is even, and the under
for that in which it is odd.

These values of p and q being thus known, we shall first

have oj = + pc\ and y — ^ qc, and then taking these values

for a and /3, we shall have, in general, (Art. 42),

oc — ± pd + mb', 3/ = ± qc' + ma',

expressions which necessarily include all the solutions of the

given equation that are possible in integer numbers.

That we may leave no obstacle to the practice of this

method, we shall observe, that although the numbers a and
b may be positive, or negative, we may notwithstanding

take them always positive, provided we give contrary signs

to X, when a is negative, and to ?/, when b is negative.

44. Example. To give an example of the preceding me-
thod, we shall take that of Art. 14^ Chap. I. of the pre-

ceding Treatise, where it is required to resolve the equation,

Q()p = 56q + 11. Changing p into x, and q into y, we shall

have 39^ — 56?/ = 11.

So that we shall make a = 39, b = 56, and c = 11 ; and
as 56 and 39 are already prime to each other, we shall have

a' = 39, b' = 56, c' — 11. We must therefore reduce the

V
fraction —r = 4-1^, to a continued fraction ; and, for this

a ^^

purpose, as we have already done (Art, 20), we shall make
the following calculation

:

39)50(1
39

17)39(2
34

5)17(3
15

2)5(2
4

1)2(2
2

0.
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Then, with the quotients 1, 2, 3, &c. we may form the

fractions,

I i 10 2 3 S 6
T> "2» T > T"5'> To"'

and the last fraction but one, ^|, will be that which we have

P
expressed in general by --

; so that we shall have p = 23,

q = 16; and, as this fraction is the fourth, and consequently,

of an even rank, we must take the upper sign; so that we
shall have, in general,

ar = 23 X 11 + 567)1, and

y = 16 X 11 + S9?n;

7n being any integer number whatever, positive, or negative.

45. Scholium. We owe the first solution of this problem
to M. Bachet de Meziriac, who gave it in the second edition

of his Mathematical Recreations, entitled Problemes 'plaisans
et delectahles, &c. The first edition of this work appeared
in 1612 ; but the solution in question is there only an-

nounced, and is only found complete in the edition of 1624.

The method of BI. Bachet is very direct and ingenious, and
cannot be rendered more elegant, or more general.

I seize v;ith pleasure the present opportunity of doing

justice to this learned auihor, having observed that the ma-
thematicians, who have since resolved the same problem,

have never taken any notice of his labours.

The method of M. Bachet may be explained in a few

words. After having shewn how the solution of equations

of the form ax — by =^ c, [a and b being prime to each

other), may be reduced to that o^ ux — by = + 1, he ap-

plies to the resolution of this last equation ; and, for this

purpose, prescribes the same operation with regard to the

numbers a and 6, as if we wished to find tlieir greatest com-
mon divisor, (and this is what we have just done); then

calling c, rf, e^J", &c. the remainders arising from the dif-

ferent divisions, and supposing, for example, that f is the

last remainder, which will necessarily be equal to unity (be-

cause a and b are prime to one another, by hypothesis), he

makes, when the number of remainders is even, as ii? the

present case,

_^ sd±\ Jc:f1 yb±^ n

/3«Tl—;— = a:
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and these last numbers /3, and a, will be the least values of

X and i/.

Hthe number of the remainders were odd, ^for instance

being the last remainder = 1, then we must make

te+l Bd±l
/ ± 1 == ^, -w- = s, —^ ^ ^, &c.

It is easy to see that this method is fundamentally the

same as that of Chap. I. ; but it is less convenient, because

it requires divisions. Those who are curious in such specu-

lations, will see with pleasure, in the work of M. Bachet, the

artifices which he has employed to arrive at the foregoing

Rule, and to deduce from it a complete solution of equations

of the form, ax — by = c.

CHAP. IV.

General methodfor resolving, in Integer Numbers, Equa-
tions zoith tiDo nnhnown Quantities, of which one does not

exceed thefirst Degree.

[appendix to chap. III.]

46. Let the general equation,

a -\- hx -\-cy-\- dx"^ + exy + gx^-ij -\-fx^ + hxf^ -|- Icx^y -f , &c.

— be proposed, in which the coefficients «, k, c, &c. are

given integer numbers, and x and y two indeterminate num-
bers, which must also be integers.

Deducing the value of j/ from this equation, we shall have

a + hx + dx"' \-fx^ + hx* -f- , Sec.

^ ~
f + ex -^-gx^ -^-kx^ -\-

, &c.

so that the question will be reduced to finding an integer

nimiber, which, when taken for x, makes the numerator of
this fraction divisible by its denominator.

Let us suppose'

p — a -f bx -\- dx- -\-fx^ + hx^ +, &c.

q — c -^ ex -\- gx"^ -J- kx^ -}-, &c.

and taking x out of both these equations by the ordinary rules

of Algebra, we shall have a final equation of this form,

A + up + cq + vp- + Ejpg + Fq^ + cp^ 4-, &c. =0,
where the coefficients a, i5, c, &c. will be rational and integer

iunctions of the numbers a, h, c, &c.
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Now, since y — , we shall also have p ^—qy-, so

that by substituting this value of />, we shall get

A — -Byq + c<7 + D2/Y" — ^y^ + T^q'^ +5 &c. = 0,

where all the terms are multiplied by q, except the first, a ;

therefore the number a must be divisible by the number q^
otherwise it would be impossible for the numbers q and y to

be both integers.

We shall therefore seek all the divisors of the known in-

teger number a, and shall successively take each of these

divisors for q ; from each of which suppositions we shall have
a determinate equation in x, the integer and rational roots of
which, if it have any, will be found by the known methods

;

then substituting these roots for oc, we shall see whether the

P
values ofp and ^, which result, are such, that -^ may be an

integer number. By these means, we shall certainly find all

the integer values of x, which may likewise give integer

values of 3/ in the equation proposed.

Hence we see, that the number of integer solutions of such

equations must always be limited; but there is one case

which must be excepted, and which does not fall under the

preceding method.

47. This case is when there are no coefficients <?, g, Ji, &c.

So that we have simply,

a + ba: + dx- + fx^ + hx'^ + , &c.
y = 7

In order to find all the values of a\ that will render the

quantity a + So? + dx^- -\- fx^ + hx'^ 4-, &c. divisible by the

quantity c, we must proceed as follows. Suppose we have

already found an integer, tz, which satisfies this condition

;

it is evident that every number of the form w + ^c will

likewise satisfy it, jw- being any integer number ; farther, ifw is

-7 -^ (abstracting from the signs of n and c), we may always

determine the number jx, and the sign which precedes it, so

c
that the number n ± p-c may become z -^ ; and it is easy

to perceive that this could only be done in one way, the

values of n and c being given ; wherefore, if we express by

w' that value of n ± f/^c, which is ^ -^, and which satisfies
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ti'.c condition in question, we shall have, in general,

n — n ^ [j.c^
fj.

being any number whatever.

AVhence I conclude, that if we substitute successively, in

the formula, a H- bx + dx"^ +J^x^ +? &c- instead of a?, all the

c
integers positive, or negative, that do not exceed— , and if we

denote by 7i', w", ?i'", &c. such of those numbers as will render

the quantity, a ~\- hx -{• dx~ +, &c. divisible by c, all the

other numbers that do the same, will necessarily be included

in the formulae n' + /x'c, w" + fjJ'c, n'" ± jw.'''c, &c. jw,', ju-", ju,'",

&c. being any integer numbers.

Various remarks might here be made tofacilitate the finding

of the numbers ?i', w", n"\ &,c. but it is the more unnecessary

to enlarge upon this subject, as I have already had occasion

to treat of it, in a Memoir published among those of the

Academy of Berlin for the year 1768, and entitled Nouvelle
Methods pour resoudre les Prohhnies Indetermines.

48. I shall, however, sav a word on the method of de-

termining two numbers, x and y, so that the fraction

a v'" + by'^-'x + dy-"'-^x'- -Vfif-^x^ 4- , &c.

c

may become an integer number, as this investigation will be
very useful to us in tlie sequel.

Supposing that y and x must be prime to each other, and
farther, that y must be prime to c, we may always make
X ~ ny — cz\ n and z being indeterminate numbers ; for,

considering x, y^ and c, as given numbers, we shall have an
equation always resolvible in whole numbers !)y the method
of Chap. III., because j/ and 6* have no common measure, by
the hypotiicsis. Kow, if we substitute tins expression of a;

in the quantity, aij"' + hy"—^x + dy'—'^x- -K, &c. it will be-

come,

(a -I- bn -i- dn^ + fn' + , &c.) 2/'"

- (6 + 9.dni- l3/w--h, kc')cy'''~'z

^' (d + 5fn +, kc.)c-y"'-h''
—

-, &c.

and it is evident, that this quantity could not be divisible by
c, unless the first term, (a + bn -j- dn- -\-fn^ +, &c.)?/'" were
so, since all the other terms are multiplied by c. There-
fore, as c and y are supposed to be prime to each other, the

quantity a -{- bn + dn- -{-fn^ +, &c. must itself be divisible

by c; so that we siiall only have to seek, by the method of

the preceding Article, all the values of n that can satisfy this
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condition, and then we shall have, in general, x = iiy — az,

z being any integer number whatever.

It is proper to observe, that although we have supposed
the numbers x and y to be prime to each other, as well as

the numbers y and c, our solution is still no less general;

for li X and y had a common measure a, we should only have
to substitute ccsd and aj/', instead of x and y, and should
then consider x' and xj' as prime to each other; likewise, if

y and c were a common measure /3, we might put /3?/", in-

stead of y, and consider 3/' and c as prime to each other.

CHAP. V.

A direct and general method for finding the values of x,

that will render Quantities of the form ^/(a + bx + cx-)^

Rational, and for resolving, in Rational Numbers, the

indeterminate Equations of the second Degree, which
have two unJcnown Quantities, whe7i they admit o/" Solu-

tions of this kind.

[appendix to chap. IV.]

49. I suppose first that the knoy.n numbers a, by c, are

integers ; for if they were fractions, we should o-:ly have to

reduce them to a common square denominator, and then it is

evident, that we might always abstract from their denomina-
tor ; but with respect to the number .r, we shall suppose

that it may be integer, or fractional, and shall see, in what
follows, how the question is to be resolved, when we admit

only integer numbers.
Let then \/{(i + bx + cx^-) = y, and we shall have

^cx + b = "/{-ley" + /)- — 4ac) ; so that the difficulty will

be reduced to rendering rational the quantity,

V'(467/" + b- - 4flc).

50. Let us suppose, therefore, in general, that we have to

make i-ational the quantity v/(aj/- + b) ; that is to say, to

make Ay^ + b equal to a sc[uare, a and b being given integer

numbers positive or negative, and ?/ an indeterminate num-
ber, which must be rational.

It is evident that if one of the numbers a, or B, were 1,

or any other square, the problem would be resolvible by
the known methods of Diophantus, which are detailed in
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Chap. IV. ; we shall therefore abstract from those cases, or

rather we shall endeavour to reduce all the rest to them.

Farther, if the numbers a and b were divisible by any
square numbers, we might likewise abstract from those

divisors ; that is to say, suppress them, only by taking for a
and B the quotients, which we should have, after dividing the

given values by the greatest squares possible ; in fact, sup-

posing A =. u-a', and /3 = jS^b', we shall have to make the

number, a'cc'-tj" -}- b'^" a square ; therefore, dividing by /S**,

ay
and making -^=:y; we shall have to determine the un-

111
known quantity 3/' ; so that A9/^ + i^ ma}' be a square.

Whence it follows that, when we have found a value of y
that will make aj/" -j- b become a square (rejecting in the

given values of a and jb the square factors a- and /3-, which
they might contain), we shall only have to multiply the

value found for j/ by — , in order to have that which answers

to the quantity proposed.

51. Let us, therefore, consider the formula aj/- + b, in

which A and B are given integers, not divisible by any square

;

and, as we suppose that y may be a fraction, let us make

P
y = —, p and q being integers prime to each other, in order

that the fraction may be reduced to its least terms ; we shall

A»^
therefore have the quantity --— + b, which must be a square

;

wherefore, Ap- f b^'^ must be a square also; so that we
shall have to resolve the equation, a^*^ + Bq^ = s-, sup-

posing p, q, and £, to be integer numbers.
Now, 1 say that q must be prime to A, and p prime to b ;

for if q and a had a common divisor, it is evident that the

term Bg- would be divisible by the square of that divisor;

and the term Ap" would only be divisible by the first power
of the same divisor, because ip and q are prime to each other,

and A is supposed not to contain any square factor; where-

fore the number a/;- -i- b<2'- would only be once divisible by
the common divisor of ^^ and a ; consequently, it would be
impossible for that number to be a square. In the same
manner, it may be proved, that p and b can have no com-
mon divisor.
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Resolution of the Equation Ap- + cq^ = z- in integer

Numbers.

52. Supposing a greater than b, the equation will be
written thus,

Ap"- = Z'' - BJ^',

and as the numbers p, q, and ^ must be integer, ^"- — £(/-

must be divisible by a.

Now, since a and q are prime to each other (Art. 51), we
shall, according to the method of Art. 48, make

z — nq — A^',

n and ^ being two indeterminate integers ; which will change

the formula, z- ~ T&q^^ into (n" —- b)^- — 9>nkq(^ 4- A-g'-, in

which ?/- — B must be divisible by a, taking for n an integer

number, not 7 ^r-

We shall try therefore for n all the integer numbers that

do not exceed -^, and if we find none that makes w® — b

divisible by a, we conclude immediately, that the equation

Afr z=. z- — 'aq^ is not resolvible in whole numbers, and
therefore that the quantity hy- -p B.can never become a

square.

But if we find one or more satisfactory values of ti, we
must substitute them, one after the other, for w, and proceed

in the calculation, as shall now be shevvn.

I shall only remark farther, that it would be useless to

_^

give n values greater than— , for calhng n\ n", n"\ &c, the

values of n less than -^, which will render w- — b divisible by

A, all the other values of ;/ that will have the same effect will

be contained in these formulse, ^^' + fx'A, ?^" i iu."A, n'" + /"-'"a,

&c. (Chap. IV. 47). Now, substituting these values for n,

in the formula, (n^ — b)^'- — 2nAqq' + a-*/", that is to say,

{nq — Aq')- — Bq", it is evident that we shall have the same
results, as if we only put 7i', n", n'", &c. instead of w, and
added to q the quantities ^ [J^'q, + ijJ'q, + [^'"q. Sec. so that,

as q' is an indeterminate number, these substitutions would
not give formulae difterent from what we should have, by the

simple substitution of the values n\ w', n''', Sic.

53. Since, therefore, w — b must be divisible by a, let a'
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bo the quotient of this division, so that aa' — rf- — b, and
the equation,

Ap- =z z~ - Bq" = (vi- — b)^- — Q/iAqq' + A-gf*,

being divided by a, will become

p" ~ A'q"^ — ^nqq' + a^",

where a' will necessarily be less than a, because

,
n- — B A

a' ~ '. and B z A. and n not 7 -^r-
A X,

First, if a' be a square number, it is evident this equation

will be resolvlble by the known methods ; and the simplest

solution will be obtained, by making q ~ 0, g = 1, and

p = v'a'.

SeconJli/, if a' be not a square, we must ascertain whether
it be lefs than b, or at least whether it be divisible by any
square number, so that the quotient may be less than b,

abstracting from the signs ; then we must multiply the

whole equation by a', and, because aa' — n- = — b, we

; /

shall have A'p^ = (A'g — nq')- — mq- ; so that Bq" + A'p^

must be a square; hence, dividing by p-, and making

q'
-— = ?/', and a' = c, we shall have to make a square of the
£

I

formula bij- + c, which evidently resembles that of Art. 52.

Thus, if c contains a square factor 7-, we may suppress it,

by multiplying the value which we shall find for ?/' by y, in

order to have its true value ; and we shall have a formula

similar to that of Art. 51, but with this difference, that the

coefficients, B and c, of our last will be less than the co-

efficients, A and B, of the other.

54. But if a' be not less than b, nor becomes so when di-

vided by the greatest square, which measures it, then we
must make q — v(^' + q'' ; and, substituting this value in the

equation, it will become

// /

p' = A'q- — 2n'q"q' + A"q%
where n' - n — va',

I

and a' = a'v- — 2«v + a =: ;—

.

a'

We must determine the whole number v, which is always

possible, so, that Ji' may not be 7 ^, abstracting from the
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signs, and then it is evident, that a" will become L. a', be-

/

W2 — B a'
cause a" = jr—, and u =, or Z a, and n =, or Z —

,

We shall therefore apply the same reasoning here that we
did in the preceding Article ; and if a" is a square, we shall

have the resolution of the equation : but if a" be not a square,

and Z. B, or becomes so, when divided by a square, we must
multiply the equation by a', and shall thus have, by making

—^=y^ and a" = c, the formula By- + c, which must be a

square, and in which the coefficients, b and c, (after having
suppressed in c the square divisors, if there are any), will be
less than those of the formula Ktf + b of Art. 51. But if

these cases do not take place, we shall, as before, make
^' = j/y -\- <^"'^ and the equation will be changed into this,

m II II III

p2 — j^qi _ ^ny'q" + Aq\
where n" = n' — w'a",

//

and a'" = A"n" — 2wV + a' = jr—

.

a''

We shall therefore take for v' such an integer number, that

a"
«" may not be 7 -^, abstracting from the signs ; and, as b

W-^
is not 7 a" (Jiyp.), it follows, from the equation, a

that a'" will be Z. a"; so that we may go over the same

reasoning as before, and shall draw from it similar con-

clusions.

Now, as the numbers a, a', a", a'", &c. form a decreasing

series of integer numbers, it is evident, that, by continuing

this series, we shall necessarily arrive at a term less than the

given number b ; and then calling this term c, we shall have,

as we have already seen, the formula b^- -t- c to make equal

to a square. So that by the operations we have now ex-

plained, we may always be certain of reducing the formula,

hy- + B, to one more simple, such as b?/- r c ; at least, if

the problem is resolvible.

55. Now, in the same manner as we have reduced the
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;

formula, ky^ -r b, to bj/- -{- c, we might reduce this last to

//

Cj/" + D, where d will be less than c, and so on ; and as the

numbers a, b, c, d, &c. form a decreasing series of integers,

it is evident that this series cannot go on to infinity, and
therefore the operation must always terminate. If the ques-

tion admits of no solution in rational numbers, we shall

arrive at an impossible condition ; but, if the question be re-

solvible, we shall always be brought to an equation like that

of Art. 53, in which one of the coefficients, as a', will be a

square ; so that the known methods will be applicable to it

:

this equation being resolved, we may, by inverting the

operation, successively resolve all the preceding equations,

up to the first k^"- \- Bg- = ;^-.

We will illustrate this method by some examples.

56. Example 1. Let it be proposed to find a rational

value of a-, such, that the formula, 7 + 15x + 13a;\ may
become a square*.

Here, we shall have a ~ 7, b = 15, c = 13 ; and there-

fore 4c — 4 X 13, and b" — 4>ac = — 139 ; so that calling

the root of the square in question y, we shall have the

formula 4 x 132/- — 139, which must be a square. We
shall also have a = 4 x 13, and b = — 139, where it will

at once be observed, that a is divisible by the square 4; so

that we must reject this square divisor, and simply suppose
A = 13 ; but we must then divide the value found for y by
2, as is shewn, Art. 50.

Making, therefore, y — —^ we shall have the equation,

13p= — 139^^ — ;;2; or, because 139 is 7 13, let us make

y = — , in order to have — 1 39/3- + 13g'- = z-, an equation

which we may write thus, — 139/>' = z- — ISq".

We shall now make (Art. 52) z =nq — 139<7', and must
take for n an integer number not 7 '|^; that is to say,

Z 70 such, that n- — 13 may be divisible by 139. As-
suming now w — 41, we have w" — 13 = 1668 = 139 x 12;

so that by making the substitution, and then dividing by
— 139, we shall have the equation,

^

;;- = - \2q"- + 9, x 4^1gg' - 139q-.

Now, as — 12 is not a square, this equation has not the

* See Chap. IV. Art. 57, of the preceding Treatise.
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requisite conditions; since 12 is already less than 13, we
shall multiply the whole equation by — 12, and it will be-

come - Up- =: {-Uq + 4!lq'y - 13f ; so that IScf- 12p'^

must be a square ; or, making -^ = y. ISy^ — 12 must be

so too. Where, it is evident, we should only have to make

?/ = 1 ; but as we have got this value merely by chance, let

us proceed in the calculation according to our method, until

we arrive at a formula, to which the ordinary methods may
be apphed. As 12 is divisible by 4, we may reject this

square divisor, remembering, however, that we must mul-

tiply the value of ?/' by 2 ; we have therefore to make a

square of the formula ISy- — 3; or making 3/ = —,
(sup-

posing r and s to be integers prime to each other ; so that

the fraction— is already reduced to its least terms, as well

as the fraction —), the formula ISr*^ —Ss~ must be a square.

Let the root be^', which gives \3r*=z^ + Qs- ; and, making

s' = ms — 13i'', m being an integer not 7 V, that is, Z 7,

and such, that m- + 3 may be divisible by 13. Assuming

m = 6, which gives w" + 3 = 39 = 13 x 3, we have, by

substituting the value of ^r', and dividing the whole equation

by 13, r2 = 3s^ - 2 x 6ss' + 135^. As the coefficient 3 of

s" is neither a square, nor less than that of s-, in the pre-

ceding equation, let us make (Art. 54), s = fj-s' + s", and

substituting, we shall have the transformed equation,

r2 r= Ss"- - 2(6 - Si^)s"s' + (3p2 - 2 X 6p. + 13)s-

;

and here we must determine /x so, that 6 — 3|w. may not be

7 ^, and it is clear that we must make i^
= 2, which gives

6 — 3fA — ; and the equation will become r~ = 2s' + s%

which is evidently reduced to the form required, as the co-

efficient of the square of one of the two indeterminate

quantities of the second side is also a square. In order to

have the most simple solution, we shall make s" = 0, s' = 1,

*
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and r = 1 ; therefore, 5 = |U. = 2, hence ?/' = — =
i'-,

but

we know that we must multiply the value of ?/' by 2 ; so that

we shall have y = 1 ; wherefore, tracing back the steps, we

obtam — = 1 ; whence q' = p; and the equation

-1%;^^=(-129 + 41^')'—l^willgive

that is, ~ IQq + 4<lp = p ; so that l^q = 40p; therefore,

y — — = 4^1^ = y ; but as we must divide the value of 3/

by 2, we shall have «/ = |- ; which will be the root of the

given formula, 7 -1- 15^ -}- 13^-; so that making %

7 + 15x + IQx- —. y, we shall find, by resolving the

equation, that ^6x -\- 15 = ± y ; whence, x = — ||., or
_z

We might have also taken — I2q + 41j9 = — p, and

should have had 9/ — — = V > ^^^i dividing by 2, 3/=^;

then making 7 + 15r + 13a:- = (44)% ^^'^ shall find

26.r + 15 = ±1-; whence, x = ~ |4, or = — ^.

If we wished to have other values of x, we should only

have to seek other solutions of the equation r- = 3s'^ + s%

which is resolvible in general by the methods that are known;
but when we know a single value of x, we may immediately

deduce from it all the other satisfactory values, by the

method explained in Chap. IV. of the preceding Treatise.

57. Scholium. Suppose, in general, that the quantity

a -\- bx -r c/T' becomes equal to a square ;§•-, when x =f, so

that we have a + bf + cj^ =-g~; then a = g" — bf — cf^;

substituting this value in the given formula, it will become
^2 4- b{x - f) + c(x- —f~). Now, let us take

g -j- m{x — f) for the root of this quantity, {m being an in-

determinate number), and we shall have the equation,

g- + bi,x -/) + c{x^ -/) ^
g' + ^mgi^-f) + m%x -/)-';

that is, expunging g- on both sides, and then dividing

by X — J\ we have

h + c\x +/) = "-Xmg -f m-{x -/);
n 1 fm-— ^^m-\-b-\-cf ^ ,. . ., ,

whence we find x = =^- —. And it is evident,
m^ — c



CHAP. V. ' ADDITIONS. 545

on account of the indeterminate number m, tliat this ex-

pression oi' a; must comprehend all the values that can be

given to x, in order to make the proposed formula a square

;

for whatever be the square number, to which this formula

may be equal, it is evident, that the root of this number may
always be represented by g -f- m{x — /), giving to m a

suitable value. So that when we have found, by the method
above explained, a single satisfactory value of x, we have

only to take it fory, and the root of the square which results

for ^; and, by the preceding formula, we shajl have all the

other possible values of ^r.

In the preceding example, we found y — 4, and x-= —~ ;

so that, making g — 4-, andy == — |-, we shall have

19—10m — 2m=
'^ ^ 3(m"--13)

which is a general expression for the rational values of .r,

by which the quantity 7 + 15:r + lo.i- may be made a

square.

58. Example 2. Let it also be proposed to find a rational

value of z/, so that 23^^ — 5 may be a square. %
As 23 and 5 are not divisible by any square number,

we shall have no reduction to make. So that making

P
y — -^, the formula 23/?- — 5^- must become a square, F-

;

so that we shall have the equation 23^- = s" + ^cf.

We shall therefore make z — nq — 23^', and we must

take for w an integer number, not 7 V> such, that ti- -r 5

may be divisible by 23. I find n = 8, which gives

n°- -|- 5 = 23 X 3, and this value of n is the only one that has

the requisite conditions. Substituting, therefore, 8fj — 23q',

in the room of s, and dividing the whole equation by 23, we

shall have p"- = Sq- — 2 x 8qq' + 23g'-, in which we see

that the coefficient 3 is already less than the value of b,

which is 5, abstracting from the sign. Art. 52.

Thus, we shall multiply the whole equation by 3, and

shall have Sp^ = (2q — Sq')- + 5q- ; so that making

q' I '— =3/, the formula — 5j/- + 3 must be a square, the co-

efficients 5 and 3 admitting of no reduction.

I r , .

Therefore, let ?/ = — (r and s being supposed prune to

N N
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each other, whereas q and f cannot be), and we shall have

to make a square of the quantity — ^f'- + 3s-; so that

calhng the root z\ we shall have — 5r- + 85- = ^-, and

thence — 5;-- = ;r- — 3i'.

AVe shall, therefore, take 2' = w,? + 5^, and m must be
an integer number not -7 ^, and such, that m- — 3 may be
divisible by 5. Now, this is impossible ; for we can only

take m = 1, or m = 2, which gives m'^ — S = — 2, or = 1.

From this, therefore, we may conclude that the problem is

not resolvible ; that is to say, it is impossible for the formula

23y" — 5 ever to become a square, whatever number we
substitute for 3/*.

59. Co7-ollary. If we had a quadratic equation, with

two unknown quantities, such as

a + bx + CI/ + dx- + exy + fif- = 0, and it were pro-

posed to find rational values of x and i/ that would satisfy

the conditions of this equation, we might do thisj when it is

possible, by the method already explained.

Taking the value of i/ in x, we have

2fi/ + ex + c = \/i{c — ex)" — 4f{a + bx + dx") )

;

or, making a = c- — 4<af, /3 = ^ce — ^hf, y — c"- — 4idf,

'^fy -r ex + c =A/(a -{- ^x + yx~) ; the question will be
reduced to finding the values of x, that will render rational

the radical quantity ^/(a + (5x + y.r-).

60. Scliolium. I have already considered this subject,

rather differently, in the Memoirs of the Academyof Sciences

at Berlin, for the year 1767, and, I believe, first gave a direct

method, without the necessity of trial, for solving indeter-

minate problems of the second degree. The reader, who
wishes to investigate this subject fully, may consult those

Memoirs; where he will, in particular, find new and im-

portant remarks on the investigation of such integer num-
bers as, when taken for n, will render n^ — b divisible by
A, A and B being given numbers.

* The impossibility of the formula 23v'— = 2^ is readily de-

monstrated: \'ov y- must be of one of the forms An, or An -^ 1.

In the first case, 23_j/^— 5 is of the form 23 x An— 5, which is the

same as An—\, and this is an impossible form for square num-
bers. In the second case, 233/-—5 is ofthe form 23 x(4?z + l)— 5,
which is the same as An— 18, or An— 2, and this again is an im-
possible form for square numbers. Therefore, the formula

23j/- — b = z"^ is always impossible. B.
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In the Memoirs for 1770, and the following years, in-

vestigations will be found on the form of divisors of the
numbers represented by z" — Bg*; so that by the mere
form of the number a, we shall often be able to judge
of the impossibility of the equation a^^ =l z" — Bq% where
Aj/^ + B = D, (Art. 52).

CHAP. VI.

Of Double and Triple Equalities.

61. We shall here say a few words on the subject of double
and triple equalities, which are much used in the analysis

of Diophantus, and for the solution of which, that great

mathematician, and his commentators, have thought it ne-
cessary to give particular rules.

When we have a formula, containing one or more un-
known quantities, to make equal to a perfect power, such as

a square, or a cube, &c. this is called, in the Diophantine
analysis, a simple equality ; and when we have two formulae,

containing the same unknown quantity, or quantities, to

make equal each to a perfect power, this is called a double
equality, and so on.

Hitherto, we have seen how to resolve simple equalities,

in which the unknown quantity does not exceed the second

degree, and the power proposed is the square.

Let us now see how double and triple equalities of the

same kind are to be managed.
62. Let us first propose this double equality,

a + bx = D
;

c + dx = a ;

where the unknown quantity is found only in the first

degree.

Making a + bx = t^^ and c -{- dx = u^, and expunging
X from both equations, we have ad — be = dt" — bu"^.

Therefore, dt- = bu" + ad — be; and, multiplying by d,

d-t- = dbu- + {ad — bc)d: so that the difficulty

will be reduced to finding a rational value of u, such, that

dbu" -f ad' — bed may become a square. This simple

N N 2
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equality will be resolved by the method already explained

;

and knowing ii, we shall likewise have x = —-j—

.

If the double equality were

aa;^ + bx = D

,

cx- + dx = D

,

we should only have to make x = — , and then multiplying
X

I

both formulae by the square x-, we should get these two

equalities, a+ bx = D , and c + dx = O, which are similar

to the preceding.

Thus, we may resolve, in general, all the double equa-

lities, in which the unknown quantity does not exceed the

first degree, and those in which the unknown quantity is

found in all the terms, provided it does not exceed the

second degree ; but it is not the same when we have equali-

ties of this form,

a + bx -^ ex" = n,
a + (5x + yx- = D

.

If we resolve the first of these equalities by our method, and
call f the value of x, which makes a + bx -\- ex" = g^, we
shall have, in general (Art. 57.),

Jm" — ^gm + b + cf

in— c

wherefore, substituting this expression of x in the other

formula, a-{- (ix + yx", and then multiplying it by (mr—c)-,
we shall have to resolve the equality,

a(wt^ — cy + p{m- — c) X {Jm~ — 9.gm + b -{- cf) +
y{fm"- - Qgm + 6 + cff = a;

in which, the unknown quantity, m, rises to the fourth

degree.

Now, we have not yet any general rule for resolving

such equalities ; and all we can do is to find successively

different solutions, when we already know one. (See

Chap. IX.)
63. If we had the triple equality,

ax + b?/^

ex + dj/^ = D

,

hx + ktj )

we must make ax -\-by = t\ ex + djj = u'^, and
hx + kj/ = s",
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and expunging x and y from these three equations, we
should have

(ok — M)w^ — {ck — dh^t- = (ad — cb)s- ;

so that, making — = z, the difficulty would be reduced to

resolving the simple equality,

aJc— hh ^ c7c—dh

ad— cb'^ ad — cb
~ '

which is evidently a case of our general method.

Having found the value of s, we shall have u = tz, and
the first two equations will give

d—bz- az-—c

ad—cb '' ad— CO

But if the given triple equality contained only one variable

quantity, we should then again have an equality with the

unknown quantity rising to the fourth degree.

In fact, it is evident that this case may be deduced from
the preceding, by making 3/ = 1 ; so that we must have

az-— c az^ — c
—z jt- = 1 ; and, consequently, —j 7 = D

.

Now, callingyone of the values of z, which satisfy the

above equality, and, in order to abridge, making

—J r = e, we shall have, in general, (Art. 57.)

fm'^—Qgm + ef

m-—e
Then, substituting this value of z in the last equaUty, and

multiplying the whole of it by the square of m^ — e, we shall

have, -^ —T^ ^^ — = n, where the un-
ad—cb

known quantity, m, evidently rises to the fourth power.
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CHAP. VII.

A direct and general methodfor finding all the values qfy
expressed in Integer Numbers, bi/ which we may render

Quantities of the form \/(Ay'^ + b), rational; a and b

being given Integer Numbers ; and also for finding all

the jmssihle Solutions, in Integer Numbers, of indeter-

minate Quadratic Equations of two unJcnown Quantities.

[appendix to chap. VI.]

64. Though by the method of Art. 5, general formulae

may be found, containing all the rational values of y, by
which Ay^ + B may be made equal to a square ; yet those

formulae are of no use, when the values of y are required to

be expressed in integer numbers : for which reason, we must
here give a particular method for resolving the question in

the case of integer numbers.

Let then ai/" + b = x-; and as a and b are supposed to

be integer numbers, and y must also be integer, it is evident

that X ought likewise to be integer; so that we shall have to

resolve, in integers, the equation x''' — Ay- = b. Now, I

begin by remarking, that if b is not divisible by a square

number, y must necessarily be prime to b ; for suppose, if

possible, that 3/ and b have a common divisor a, so that

y = a^/', and b = an' ; we shall then have a:- =Aa,"7/^ = as',

whence it follows that x- must be divisible by a ; and as a is

neither a square, nor divisible by any square Qiyp.), be-

cause a is a factor of b, x must be divisible by a. Making

then X = az'f we shall have a-.r- — a'-A2/- + «b'; or, di-

vidmg by a, ax'^ = akif + b' ; whence it is evident, that b'

must still be divisible by a, which is contrary to the hypo-
thesis.

It is only, therefore, when b contains square factors, that

y can have a common measure with b; and it is easy to

see, from the preceding demonstration, that this common
measure of ?/ and b can only be the root of one of the square
factors of b, and that the number x must have the same
common measure ; so that the whole equation will be divisible

by the square of this common divisor of ^, y, and b.
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Hence I conclude, 1st. That if b is not divisible by any
square, y and B will be prime to each other.

2dly. That if b is divisible by a single square a", y may
be either prime to b, or divisible by a, which makes two
cases to be separately examined. In the first case, we shall

resolve the equation x" — a?/'' = b, supposing ?/ and b

prime to one another ; in the second, we shall have to resolve

the equation, x" — xyf^ = b', b' being = —, supposing also

y and b' prime to each other; but it will then be ne-

cessary to multiply by a the values found for y and a;,

in order to have values corresponding to the equation

proposed.

3dly. If B is divisible by two different squares, a- and /3 *,

we shall have three cases to consider. In the first, we shall

resolve the equation x'- — a?/- = b, considering y and b as

prime to each other. In the second, we shall likewise resolve

the equation, x^ — Ay" = b', b' being = —7. on the supposi-

tion of y and b being prime to each other, and we shall

then multiply the values of x and y by a. In the third,

we shall resolve the equation x'^ — Ay- = b", b" being

= -^, on the supposition of 3/ and b" being prime to each

other, and we shall then multiply the values of x and y
by (3.

4thly, &c. Thus, we shall have as many different equa-

tions to resolve, as there may be different square divisors

of b ; but those equations will be all of the same form,

x^ — Ay" = b, and y also will always be prime to b.

65. Let us therefore consider, generally, the equation

x'^ — Aj/'^ = B ; where y is prime to b ; and, as x and y must
be integers, x^ — Ay- must be divisible by b.

By the method, therefore, of Chap. IV. 48, we shall make
X •= ny — B^, and shall have the equation,

{n" — a)j/- — %myz + b"s~ = b, from which we perceive,

that the term, (w- — A)y-, must be divisible by b, since all

the others are so of themselves ; wherefore, as y is prime to

B, {Iiyp.)'nP' — A must be divisible by b ; so that making

= c, and dividing by b, we shall have,

a/=^ — ^nyz + bz- = 1. Now, this equation is simpler than

the one proposed, because the second side is equal to unity.
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We shall seek, therefore, the values of 7i, which may ren-

der w- — A divisible by b; for this it will be sufficient,

(Art. 47), to try for n all the integer numbers, positive or

negative, not 7 -^; and if among these we find no one

satisfactory, we shall at once conclude that it is impossible

for n- — A to be divisible by u, and therefore that the given
equation is not resolvible in integer numbers.

But if, in this manner, we find one, or more satisfactory

numbers, we must take them, one after another, for w, which
will give as many different equations, to be separately con-

sidered, each of which will furnish one, or more solutions, of
the given question.

With regard to such values of n as would exceed that of

B
-^, we may neglect them, because they would give no equa-

tions different from those, which will result from the values

of n that are not 7 -^ , as we have already shewn (Art. 52).

Lastly, as the condition from which we must determine 11

is, that )f- — A may be divisible by B, it is evident, that each
value of n may be negative, as well as positive ; so that it

will be sufficient to try, successively, for w, all the natural

numbers, that are not greater than -^, and then to take the

satisfactory values of w, both in plus and in minus.
We have elsewhere given rules for facilitating the investi-

gation of the values of n, that may have the property re-

quired, and even for finding those values a priori in a great

number of cases. See the Memoirs of Berlin for the year

176T, pages 194, and 274.

Resolution of the Equation cy" ~ 2nyz + bz- = 1, in

Integer Numbers.

This equation may be resolved by two different methods.

First Method.

GG. As the quantities c, w, b are supposed to be integer

numbers, as well as the indeterminate quantities y and z, it

is evident, that the quantity aj" - 9,nyz-\-B:s' must always be
equal to integer numl)ers; consequently, unity will be its

least possible value, unless it may become 0, wjiich can only
happen, when this quantity may be resolved into two rational
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factors. As this case is attended with no difficulty, wc shall

at once neglect it, and the question will be reduced to find-

ing such values of y and 2, as will make the quantity in

question the least possible. If the minimum be equal to

unity, we shall have the resolution of the proposed equation

;

otherwise, we shall be assured, that it admits of no solution

in integer numbers. So that the present problem falls under
the third problem of Chap. II., and admits of a similar so-

lution. Now, as we have here (^n)- — 4bc = 4a (Art. 65),
we must make two distinct cases, according as a shall be
positive, or negative.

First case, when n- — bc = a z. 0.

67. According to the method of Art. 32, we must reduce

the fraction —;-, taken positively, to a continued fraction

;

this may be done by the rule of Art. 4 ; then, by the formulae

of Art. 10, we shall form the series of fractions converging

towards — , and shall have only to try, successively, the nume-

rators of those fractions for the number y, and the correspond-

ing denominators for the number z: if the given formula be

resolvible in integers, we shall in this way find the satisfac-

tory values of ?/ and z; and, conversely, we may be certain,

that it admits not of any solution in integer numbers, if no

satisfactory values are found among the numbers that are

tried.

Second 'case, when w'^ — bc — a 7 0.

68. We shall here employ the method of Art. 33 et seq. so

that, because e = 4a, we shall at once consider the quantity

(Art. 39), a = -^
, in which we must determine the

signs both of the value of n, which we have seen may be

either positive or negative, and of -v/a, so that it may become

positive ; we shall then make the following calculation

:

— QO ± ^,/A

y- ^

I

q'-' A
q! =~ /^po + qO^ p' =: ^—

,

(JJ Z

pO

-Q'q: ^/A
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Second Method.
70. Let the formula Cj/2—2n?/^ + BZ^ undergo such trans-

formations as those we have already made (Art. 54), and we
shall invariably be brought by the transformations, to an
equation, such as l^- — 2m^^ + N^f/-, the numbers, l, m, n,

being whole numbers, depending upon the given numbers
c, B, w, so that we have m- — ln = n- — cb = a ; and far-

ther, that 2m may not be greater (abstracting from the signs)

than the number l, nor the number n ; the numbers g and
\|/ will likewise be integer, but depending on the indeter-

minate numbers
J/

and s.

For example, let c be less than b, and let us put the

formula in question into this form,

B'f- - 9,mjy + wf,
making c = b', and z = y' -^ if 2n be not greater than b', it

is evident that this formula will already of itself have the

requisite conditions ; but if 9>n be greater than b', then we
must suppose y = wj/' + .3/"; and, by substitution, we
shall have the transformed formula,

i II I

B^/^ — 2n'y''i/' + B"i/% where

/

n-—A
n' =s n — mB, and b" = w-b' — 2w» + b = ;—

.

b'

Now, as the number m is indeterminate, we may, by sup-

posing it an integer, take it such, that the number n — ijib'

may not be greater than jb', abstracting from the sign ; then

2n' will not surpass b'. So that, if 2/i' does not even exceed

b", the preceding transformed formula will already be in the

case which we have seen ; but if 2?i' is greater than b", we
shall then continue to suppose y = w'j/" + y, which will

give this new transformation,

/;/ ;/ // III

Bj/^ — 2w"yj/"' + w/% where

II

I II n^— A
n" = n' — w'b", and b'" = m~B" — 9,mn -f b' = —tt- .

B'

We shall now determine the whole number m\ so that

b"
?i' — m'B" may not be greater than—, by which means Sn"

will not exceed b" ; so that we shall have the required trans-

formation, if 2n" does not even exceed b'" ; but if 2n" exceed

b'", we shall again suppose y = wt"^'" + «/'^, &c. &c.
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Now, it is evident, that these operations cannot go on to

infinity ; for since 2w is greater than b', and 2/^' is not, «'

will evidently be less than n ; in the same manner, 2;*' is

greater than b", and 2«" is not, wherefore w" will be less than

n', and so on ; so that the numbers ??, ?/, w", &c. will form a

decreasing series of integers, which of course cannot go on
to infinity. We shall therefore arrive at a formula, in which

the coefficient of the middle term will not be greater than

those of the two extreme terms, and which will likewise have

the other properties already mentioned ; as is evident from

the nature of the transformations employed.

In order to facilitate the transformation of the formula,

cj/^ — 2m/z + Tiz" into this,

let us denote by d the greater of the two extreme coefficients

c and B, and the other coefficient by d' ; and, vice versa, let

us denote by 9 the variable quantity, whose square shall be

found multiplied by d', and the other variable quantity by 6'

;

so that the given formula may take this form,

d'S2 - 2nQS' + dK

where d is less than d ; then we have only to make the fol-

lowing calculation

:

m — —r, 7i' — n — mn', d" = -,—, 9 = m& ^- 9",
TV'

' '
T»'

-^

A
m'

.'/»
n" = n' — m'D", d"'= ^ , 6' = m'Q" + 6'",

III

m"= ~,n"'=:n<'-m"D'<>D''= —757-, e"= m"6"'+6^
d'" d'"

&c. &c. &c.

where it must be observed, that the sign =, which is put

after the letters m, m', m", &c. does not express a perfect

equality, but only an equality as approximate as possible,

so long as we understand only integer numbers by w, w',

m", &c. The sign = being only employed for want of a

better.

These operations must be continued, until in the series

7i, w', ?/', &,c. we find a term, as nf, which (abstracting from

the sign) does not exceed the half of the corresponding term,
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Dp of the series d', d", d'", &c. any more than thehalf of the

following term d?+i. Then we may make d? = l, n? = n,

DP+i = M, and Sp = 4*, 3f+i = ^, or dp = m, dp+i = l,

and ^p = 0, 0f+i = ^. We must always suppose, as we
proceed, that we have taken, for m, the less of the two num-
bers DP, DP+i.

71. The equation, cy-—^nyz-\- dz" — 1, will therefore be
reduced to this,

L?' — 2n^4/ + M>" = 1,

where n*^ — lm = a, and where 2n is neither 7 l, nor 7 M,

(abstracting from the signs). Now, m being the less of the

two coefficients l and m, let us multiply the whole of the

equation by the coefficient m ; and making

V — M^ — N^,

it is evident, that it will be changed into

V- — Ag" = M,

in which we must make a distinction between the two cases

of A positive, and a negative.

1st. Let A be negative, and = — a{a being a positive

number), the equation will then be

0^ + a^'^ = M.

Now, as N* -- LM = a, we shall have a = lm — n" ; whence
we immediately perceive, that the numbers l and m must
have the same signs ; otherwise, 2n can neither be 7 l, nor

VM; wherefore n^ will not be 7 —r 5 therefore, a =, or

7 |:LM ; and since m is supposed to be less than l, or at least

not greater than l, we shall have, a fortiori, a =, or

Af/y

7 ^M-; whence m =, or Z ^/-^ ; and m Z ^ ^a.
o

Hence, we see that the equation, 0- + a^- = M, could not

exist on the supposition of and ^ being whole numbers,

unless we made ^ = 0, and 0- = m, which requires m to be a

square number.

Let us, therefore, suppose m = /x-, and we shall have

^ = 0, y = + jw- ; wherefore, from the equation, v =m^ — n^,

we shall have f^"^ = ± i"-)
and, consequently, ^ = ± - ; so

f^

that ^ cannot be a whole number, as it ought, by the

hypothesis, unless /j. be equal to unity, or = +1, and, con-

sequently, M = 1.

Hence, therefore, we may infer, that the given equation is
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not resolvible in integers, unless m be found equal to unity,

and positive. If this condition take place, tlien we make
^ = 0, ^ = + 1, and go back from tliese values to those of

y and z.

This method is founded on the same principles as that of

Art. 67; but it has the advantage of not requiring any
trial.

2dly. Let a be now a positive number, and we shall have

A 1 1 ,
LM . .

A = N- — LM. And as n^ cannot be greater than -j-, it is

evident that the equation cannot subsist, unless — lm be a

positive number ; that is to say, unless l and m have con-

trary signs. Thus, a will necessarily be z — lm, or at

farthest = - lm, if n = ; so that we shall have — lm =,
or / a; and, consequently, m- =, or Z a, or m =, or

Z VA-
The case of m = ^/A cannot take place, except when a

is a square ; consequently, this case may be easily resolved

by the method already given (Art. 69).

There remains, now, only the case in which a is not a

square, and in which we shall necessarily have m Z Va
(abstracting from the sign of m); then the equation,

a- — a^ = M, will come under the case of the theorem, Art.

38, and may therefore be resolved by the method there ex-

plained.

Hence, we have only to make the following calculation

:

QP = 0, po = 1, |U. /_ ^/A

' , -q'-a/A
q! = y., P = Q'--A, /^' Z. -,

iu."p''

Q'-A
,,, , -a"'-v/A

&c. &c. &c.

continuing it until two corresponding terms of the first and
second series appear again together ; or until in the series

p', p", p'", &c. there be found a term equal to unity, and
positive ; that is to say, — v^ : for then all the succeeding

terms Avill return in the same order in each of the three series

(Art. 37). If in the series p', p'', p'", &c. there be found a

term equal to m, we shall have the resolution of the given
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equation ; for we shall only have to take, for v and 0, the cor-

responding terms of the series p',p", p", &c. q', 5", g'", &c.

calculated according to the formulae of Art. i25 ; and we may
even find an infinite number of satisfactory values for u and ^,

by continuing the same series to infinity.

Now, as soon as we know two values of v and J, we shall

have, from the equation, v rz mv|/ — n^, that of ^y which will

also be a whole number ; then we may go back from these

values of ^ and 4'? that is to say, of Gp+i, and 5p, to those of

6 and 6', or of?/ and z (Art. 70).

But if in the series p', p'', p'", &c. there is no term = m,

we are sure that the equation proposed admits of no solution

in whole numbers.

It is proper to observe, that, as the series p", p', p'', &c. as

well as the two others, oP, a', a", &c. and ju., yJ, jO.", &c. de-

pend only on the number a ; the calculation, once made for

a given value of a, will serve for all the equations in which

A, or n" — CB, shall have the same value ; and hence the

foregoing method is preferable to that of Art. 68, which
requires a new calculation for each equation.

Lastly, so long as A does not exceed 100, we may make
use of the Table given. Art. 41, which contains for each

radical ^/A, the values of the terms of the two series p%
— p', p", — p'", &c. and

i«-,
[jJ, [jJ', &.C. continued, until one

of the terms p', p", p'", &c. becomes = 1 ; after which, all

the succeeding terms of both series return in the same order.

So that, by means of this Table, we may judge, immediately,

whether the equation, "v" — a^* = m, be resolvible, or not.

Of the manner of finding all the possible solutions of the

equation, cy- — 2nyz -j- bz^ = 1, when we know only one

of them.

72. Though, by the methods just given, we may suc-

cessively find all the solutions of this equation, when it is

resolvible in integer numbers ; yet this may be done, in a

manner still more simple, as follows

:

Call p and q the values found fory and z ; so that we have

cp- — %i])q + B52 = Ij

and take two other whole numbers, r and 5, such, that

ps — qr =.\% which is always possible, because p and q are

necessarily prime to each other ; then suppose

y z= pt + ru, and z = qt + su,

t and u being two new indeterminate numbers ; substituting

these expressions in the equation,

cy"- — 2nyz + nz- — 1,
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and, in order to abridge, making

p = cp- — %ipq-\- nq-,

Q = cpr — n(ps + qr) + Bqs,

R z= cr^ — 2nrs + bs%

we shall have the equation transformed into this,

vt' + 2atu + RM« = 1.

Now we have, by hypothesis, p == 1 ; farther, if we
call § and a-, two values of /• and s that satisfy the equation,

ps — qr = 1, we shall have, in general, (Art. 42),

r = f -f mp, s = a- -\- mq,

m being any whole number ; therefore, putting these values

into the expression of q, it will become

Q. = cp2 — n{p(T + g'f ) + B§'a- -f 711V ;

so that, as P = 1 , we may make q = 0, by taking

m = — cpo -f n{p(T + q^) — Bqo:

We now observe, that the value of a" — PR is reduced

(after the above substitutions and reductions), to this

;

(n- — cb) X (ps — q?')' ; so that as ps — qr — 1 , we shall

have q'^ — PR = rf- — cb = a ; therefore, making p = 1,

and Q = 0, we shall have — r = a, that is, r = — a ; so

that the equation before transformed will become V—AVr=\.
Now, as

J/, ^, p, q, r, and s are whole numbers, by the

hypothesis, it is easy to perceive, that t and it will also be

whole numbers ; for, deducing their values from the equa-

tions, y = pt + ru, and is = qt -]- su, we have

, = ?tl5, and « = ?i^'^;
ps — qr qr — ps

that is to say, (because ps — qr = 1), t = sy — rs, and
u = p^ -qy-
We shall therefore only have to resolve, in whole numbers,

the equation ^- — au~ = 1, and each value of t and u will

give new values of j/ and z.

For, substituting the value of the number w, already

found, in the general values of r and s, we shall have

r = f(l — Cj9-) — Jipq(r + iip{p(r + ^p),

S = o-(l — B^2) - cpq(i + nq(p(r + q^) ;

or, because cp^ — ^npq + By- = 1,

r = (b<7 — np) X {q§ — per) = — ^q + np^

s = (cp — nq) X {p<^ — q^) ~ C¥ — nq.

Therefore, putting these values of r and s in the fore-

going expressions of y and z, we shall have, in general.
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y = pt- in ~ ^^p)u,

z = qt -\' {cp — nq)u.

73. The whole therefore is reduced to resolvino- the

equation t- — au- =1.
Now, 1st, if A be a negative number, it is evident, that

this equation cannot subsist, in whole numbers, except by
making ii zz 0, and ^ = 1 , which would give y :=: p, and
z =: q. Whence w:e may conclude that, in the case of a
being a negative number, the proposed equation,

c^2 _ 2rii/z 4- B2- = 1)

can never admit but of one solution in whole numbers.

The case would be the same, if a were a positive square

number ; for making a = a-, we should have

{t + au) X {t — mi) = 1 ; wherefore, t + au = + 1, and
t — au = + 1 ; wherefore, '2au = 0, w = 0, and conse-

quently t =-^\.
2dly. But if A be a positive number, not square, then the

equation, t^ — Ku" = 1, is always capable of an infinite

number of solutions, in whole numbers, (Art. 37), which

may be found by the formulas already given (Art. 71) ; but

it will be sufficient to find the least values of t and u ; and,

for this purpose, as soon as we have arrived, in the series

p', p'', p"', &c. at a term equal to unity, we shall have only to

calculate, by the formulae of Art. 25, the corresponding terms

of the two series y, y, p'", &c. and §',
(f,

q'", &c. for these

will be the values required of t and u. Whence it is evident,

that the same calculation made for resolving the equation

0* — A^- = M, will serve also for the equation

t- — AU- = 1.

Provided that a does not exceed 100, we have the least

values of t and u calculated in the Table, at the end of

Chap. VII. of the preceding Treatise, and in which the

numbers a, m, n, are the same as those that are here called

A, t and u.

74. Let us denote by t', ?/, the least values of t, ii, in the

equation i" — au"- = 1 ; and in the same manner as these

values may serve to find new values of ?/ and z, in the equa-

tion, cy" — 2nyz -f- b^- = 1, so they will likewise serve for

finding new values of t and u in the equation t^ — aw- = 1,

which is only a particular case of the former. For this pur-

pose, we shall only have to suppose c = 1, and w = 0, which

gives — B = A, and then take t, ic, instead of ?/, z, and t', u'^

instead of j9, 2'. Making these substitutions, therefore, in

the general expressions of j/ and 2? (Art. 72), and farther,

putting T, V, instead of t, ti, we shall have, generally,

o o
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t — Tt^ + AY«',

U=. TU' -{-Vt',

and, for the determination of t and v, we shall have the

equation t" — av- ~ 1, which is similar to the one proposed.

Thus, we may suppose t = t', and v — ti', which will give

t = p -\- AU-, u = tkd + jf'w'.

Calling f^ ti" the second values of t and u, we shall have

f = f^ + All" u" = 2/'m'.

Now, it is evident, that we may take these new values ^",

w'', instead of the first t\ 11} ; so that we shall have

t = Tt" + AYU",

U = TU" + V^",

where we may again suppose t = t', v = m', which will give

t = t'i" + Au'u", u - i'u" -h idf.

Thus, we shall have new values of t and u, which will be

t'" = t't" + Au'ti" -i{i" + 3aw2),

u"i= t'ti''+ u'f = u'{Sr- + Au"-),

and so on.

75. The foregoing method only enables us to find the

values /'', if'", &c. it!', m'", &c. successively ; let us now con-

siderhow this investigation may be generalised. We have first,

t — Tt' + Avu', u = Tu' + vt'
;

whence this combination,

t ±U ^/A = (t' ± %i -v/a) X (t + V -v/ a) ;

then supposing t = t\ and v = m', we shall have

f ± m" a/ a = {f ± m'a/a)2.

Let us now substitute these values of f and it", instead of

those of t^ and w', and we shall have

^ ± M -V/ A = (^' ± mV a)'^ X (T ± V a/ a),

where, again making t = t\ and v = m', and calling f\ ?/'",

the resulting values of t and w, there will arise

^" ± W'" ^A = {p ± m' Va)3.

In the same manner, we shall find

r ± ic" ^A- (f ±u'x^aY,
and so on.

Hence, in order to simplify, if we now call t and v the

first and the least values of t, u, which we before called t', u'.
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we shall have, in general,

^ + M a/a = (t + V a/ a)*",

m being any positive whole number ; whence, on account of

the ambiguity of the signs, we derive

(t + Va/a^-I-Ct-v Va)"'
t =

2

(t + v a/ a)'" - (t - v a/a)'

2 a/a

Though these expressions appear under an irrational form,

it is easy to see that they will become rational, if we involve

the powers of t + v a/a ; for it is well known that

(t + V a/ A)"" = T™ ± mT"'-'y a/a + ^^-^—/t'"-2v2a

w(w —l)x(m— 2) „ „

+ --^

2ir3
-^T'"-H^A VA+, &C.

Wherefore,

m(7ii--l)
j5 = T'" + —^ AT'"-^^=

m(ni-l)x(m-2)x('m-3) ^

u = mT'"-'v + -^ ~-^r -'at™-='v3
Ji X o

+ -^
a a A K

^ A'-T'"-SV^ + , &C.^ 2x3x4x5 '

Where we may take for m any positive whole numbers
whatever.

It is evident that, by successively making m = 1, 2, 3, 4,

&c. we shall have values of ^ and ii, that will go on increasing.

I shall now shew that, in this manner, we may obtain all

the possible values of t and u, provided t and v are the

least of them. For this purpose, it is sufficient to prove,

that, between the values of t and u, which answer to m, any

number whatever, and those which would answer to the

number, m + 1, it is impossible to find any intermediate

values, that will satisfy the equation f^ — am- = 1.

For example, let us make the values t"', u'", which result

from the supposition of m = S, and the values f, n>^, which

result from the supposition of m = 4, and let us suppose it

possible that there are other intermediate values, 9 and o,

which would likewise satisfy the equation t" — mi" ~ 1.

o o 2
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/;/ ;// iv iv

Since we have t- — au- = 1 , t- — A7i- = 1 , and 9 - — Ay" = 1

,

we shall have 9- — t" = A(y" — m-), and t- — 6" = a{u"— v") ;

whence' we see that, if 6 7 f and Z ^'^, we shall also have
V 7u'", and /Lii*'. Farther, we shall also have these other

values of t and u ; namely, i — 9/'" — auw'^', u = hi^" — vP",

which will satisfy the same equation, t- — au^ = 1 ; for, by
substitution, we shall have

iv iv

(6r - AVU'^y- - A(t;^'^" - 6itiv)2 = (92 _ A02) X {t^-AV"-) = 1,
iv iv

an identical equation, because 9^ — ao"= 1, and i-— Au" = 1

{hyp.). Now, these two last equations give

6 — \/A =
J.

, and /'^' — Mi^' -v/A = -r-

hence, substituting instead of 9, in the expression,

1
the quantity v -^/ a -\- —^ —

; and, instead of ^'^, thequan-
6 T y a/a

tity %!>'' \/A + -. :
, we shall have

u =
b-\-Vx^A ^'^+?AiV-v/A

In the same manner, if we consider the quantity t^^hi}^ — w"V'^,

in III

it may likewise, on account of t^~ — aw^ = 1, be put into the

u'^' u'"
^orm, fw+^w^j, + ?M-w'Wa'

Now, it is easy to perceive, that the preceding quantity

must be less than this, because 9 7 ^'", and v 7 u'" ; therefore,

we shall have a value of u, which will be less than the quan-
tity f"'M"' — u'''^" ; but this quantity is equal to v ; for

_ (t+v^a)^4-(t-vVa)^
^ ~ 2

iv _ (t + vVa)H(t-v-v/a)^
* ~ 2

III — (t + Wa)^-(t-v va)3

2va '

^iv ^ (t + vVa)^-(t-vVaV
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^'u^" - ru'" =
(t- V a/a)^ X (t + V Va)* - (t - V \/ a)^ X (T + V VaY

2~7a
~~'

Farther, (t — v V^Y X (t + v v'a)^ — (t^ — av^)' = 1,

since t^ — av" = 1 , by hypothesis ; whence

(t — V x/A.f X (T + V a/a)* = t + V a/A, and

(t — V -v/A)* X (t + V VAf = T — V ^A

;

so that the value of f'u^^ — liH''' will be reduced to

2va/a _
¥77 ~ ^*

It would follow from this, that we should have a value of
%c L V, which is contrary to the hypothesis ; since v is sup-

posed to be the least possible value of u. There cannot,

therefore, be any intermediate values of t and u between
these, /", f, and ?t'", u^^. And, as this reasoning may be
applied, in general, to all the values of t and u, which would
result from the above formula?, by making in equal to any
whole number, we may infer, that those formulae actually

contain all the possible values of t and u.

It is unnecessary to observe, that the values of t and ?<

may be taken either positive, or negative; for this is evident

from the equation itself, t- — am- = 1

.

Of the manner offinding all the possible Solutions, in xvhole

numbers, of indeterminate Quadratic Equations of tioo

%inknown quantities.

76. The methods, which we have just explained, are suf-

ficient for the complete solution of equations of the form

Ay" -{• ^ = X--, but we may have to resolve equations of a

more complicated form ; for which reason, it is proper to

shew how such solutions are to be obtained.

Let there be proposed 4rlie equation

ar- + brs + CS' + dr + es -I-f = o,

where a, b, c, d, e, f, are given whole number.--, and r

and s are two unknown numbers, that must likewise be

integer.

I shall first have, by the common solution,

2rtr -\- bs -\- d = V{(bs + df — 4ia{cs'' + es + d)),

whence wc see, that the difliculty is reduced to making

{bs + dy - 4<«(<s' I- CS + d) a square.

In order to simplify, let us sup[iose
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h- — A'ttC = A,

bd — ^ae = g,
^/2 - 4<af = h,

and AS- + 2gs + h must be a square; representing this

square by y", in order that we may have the equation,

As^ + ^gs + h = y%
and taking the value of^, we shall have

AS -^ g = V(Ay- + g~ - Ah) ;

so that we shall only have to make a square of the formula,

Aj/- + r- — ^1^'

If, therefore, we also make g"- — Ah = b, we shall have to

render rational the radical quantity, v/(a?/' + b) ; which we
may do by the known methods.

Let a/(a?/-+ b) = ;r, so that the equation to be resolved

may be Ay- + b = .r- ; we shall then have as + g = ± x.

Now, we already have 2ar + bs + d = ± «/ ; so that, when
we have found the values of .r and ^, we shall have those of

r and s, by the two equations,

± .r—£ ztn — d— bs
s = §-, r = —^ .

a 2a

Now, as r and s must be whole numbers, it is evident,

1st, that X and 1/ must be whole numbers likewise; 2dly,

that + X — g must be divisible by a, and ± 7/ — d — bs

by 2a. Thus, after having found all the possible values of

.r and «/, in whole numbers, it will still remain to find those

among them that will render 1' and s whole numbers. If a

is a negative number, or a positive square number, we have

seen that the number of possible solutions in whole num-
bers is always limited; so that in these cases, we shall only

have to try, successively, for x and «/, the values found ; and
if we meet with none that give whole numbers for r and *,

we conclude that the proposed equation admits of no solution

of this kind.

There is no difficulty, therefore, but in the case of a being

a positive number, not a square ; in which we have seen,

that the number of possible solutions in whole numbers may
be infinite. In this case, as we should have an infinite

number of values to try, we could never judge of the sol-

vibility of the proposed equation, without having a rule, by
which the trial may be reduced within certain limits. This
we shall now investigate.

77. Since we have (Art. 65), x = ny — b;, and (Art. 72),

y = pt — {bq — np)u, and z=^qt + (cp — nq)u, it is easy

to perceive, that the general expressions of r and * will take

,lhis form,
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_at + ^u+y _a'i-\- (5'u + y'
r -

^ , s - -
,

a, |S, 7, (J, a!, j3', y', ?', being known whole numbers, and t,

zt, being given by the formulEe of Art. 75, in which the ex-
ponent 7n may be any positive whole number; thus, the
question is reduced to finding what value m'c must give

to m, in order that the values of r and s may be whole
numbers,

78. I observe, first, that it is always possible to find a
value of II divisible by any given number, a ; for, sup-

posing w = Aw, the equation, t- — mi" = 1, will become
t- — A A-cu'^ = 1, which is always resolvible in whole num-
bers; and we shall find the least values of f and iv, by
making the same calculation as before, only taking a a-,
instead of a. Now, as these values also satisfy the equation

t' — Au- = 1, they will necessarily be contained in the

formulae of Art. 75. Thus, we shall necessarily have a

value of m, which will make the expression of u divisible

by A.
Let us denote this value of m by /a, and I say that, if we

make m = Sf^, in the general expressions of t and u of the

Article just quoted, the value of m will be divisible by_^ A ;

and that of t being divided by a Avill give 1 for a re-

mainder.

For, if we express by t' and v' the values of t and u,

in which m = //-, and by t" and v" those in which in — 2/x,

we shall have (Art. 75),

t' + v' v'A = (t ± V -v/a)-", and

t" ± \'\/a = (t ± V v/a)2/« ; therefore,

( r' ± v' ^/a)2= (t" ± v" v'A),

that is to say, comparing the rational part of the first side

with the rational part of the second, and the irrational with

the irrational,

t" = T- -I- AV-, and v" = 2t'v' ;

hence, since v' is divisible by a , v" will be so likewise ; and

t" will leave the same remainder that t- would leave ; but

we have t- — av- = 1 {hyp.), therefore t- — 1 must be di-

visible by A, and even by a^, since v" is so already ; where-

fore, T-, and, consequently, t" likewise, being divided by A,

will leave the remainder 1.
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Now, I say that the values of t and u, which answer to

any exponent whatever, m, beuig divided by A, will leave

the same remainders as the values of t and a, which would

answer to the exponent m + 2/x. For, denoting these last

by 9 and y, we shall have,

^ + ?^ v/A = (t + v v'a)"*, and
fi + u a/a = (t + V v'a)"* + 2/' ; wherefore,

5 + y A./A — (^ ±u ^/a) X (t + v a/a)'^/^,

but we have just before found

t" + v" v/A = (t + V a/A)2// ;

whence we shall have

9 ± u a/a = (i ± iWa) X (t" ± v" a/a) ;

then, by multiplying and comparing the rational parts, and
the irrational parts, respectively, we derive

6 r:^ ^t" -f- AZ^V", — ^v" -f UT' .

Now, v" is divisible by A, and t" leaves the remainder 1

;

therefore 9 will leave tlie same remainder as t, and y the

same remainder as u.

In general, therefore, the remainders of the values of ^

and u, corresponding to the exponents m + 2/x, m + 4jW',

m + 6f^, &c. will be the same as those of the values, which
correspond to any exponent whatever, m.

Hence, therefore, we may conclude, that, if we wish to

have the remainders arising from the division of the terms
t', /', f, &c. and u\ u', u"', &c. which correspond to vi =1,
2, 3, &c. by the number A, it will be sufficient to find these

remainders as far as the terms f-^-" and wV inclusive; for,

after these terms, the same remainders will return in the

same order ; and so on to infinity.

With regard to the terms l^i^ and ifiy, at which we may
stop, one of them 7i'^f^ will be exactly divisible by A, and the

other ^ '/" will leave unity for a remainder ; so that we shall

only have to continue the divisions until we arrive at the re-

mainders 1 and ; we may then be sure that the succeeding

terms will always give a repetition of the same remainders

as those we have already found.

We might also find the exponent, 2//-, a priori ; for we
should only have to perform the calculation pointed out,

Art. 71, in the first place, for the number a, and then for

the number aA'; and if tt be the rank of the term of tlie

series i-', p'', p'"', &c. which, in the first case, will be = 1,

and g the rank of the term that will be = 1, in the second

£ase, we shall only have to seek the smallest multiple of tt
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and §, whicli being divided by tt, will give the required

value of [X,.

Thus, for example, if we have a = 6, and a = 3, we
shall find for the radical ^/6, in the Table of Art. 41,
po = 1, p' = _ 2, r" = 1 ; therefore, tt = 2. Then we shall

find, in the same Table, for the radical ^/(6 x 9) = a/54,
po = 1, p/ = _ 5, p'' = 9, p'" = ~ '2, p'^ = 9, p^ = — 5,

p" = 1 ; and hence § = 6. Now, the least multiple of 2
and 6 is 6, which being divided by 2 gives the remainder 3

;

so that we shall here have [x, = 3, and 9.ij^ = 6.

Therefore, in order to have, in this case, all the remainders

of the division of the terms /', f^ t'", &c. and n', u", u'",

&c. by 3, it will be sufficient to find those of the six leading-

terms of each series ; for the succeeding terms will always

give a repetition of the same remainders: that is to say,

the seventh terms will give the same remainders as the

first, the eighth terms, the same as the second ; and so on to

infinity.

Lastly, the terms tf^ and Uf^ may sometimes happen to

have the same properties as the terms t'^t^ and tfit^; that is

to say, UP- may be divisible by a, and tf^ may leave unity

for a remainder. In such cases, we may stop at these very

terms; for the remainders of the succeeding terms, ^/^+i,

^M- + 2, &c. u^^+i, ict^+'^, &c. will be the same as those of the

terms t', t", &c. u', n", &c. and so of the others.

In general, v^e shall denote by m the least value of the

exponent in, that will render ^ — 1, and w, divisible by A.

79. Let us now suppose that we have any expression

Avhatever, composed of t and u, and given whole numbers,

so that it may always represent whole numbers; and that it

is required to find the values, which must be given to the ex-

ponent 7n, in order that this expression may become divisible

by any given number whatever, A : we shall only have to

make, successively, ??z = 1, 2, 3, &c. as far as m; and if

none of these suppositions render the given expression di-

visible by A, we may conclude, with certainty, that it can

never become so, whatever values we give to m.

But if in this manner we find one, or more values of m,

which render the given expression divisible by a , then calling

each of these values n, all the values of in that can possibly

do the same, will be n, n + m, n + 2m, n + 3m, &c.

and, in general, n + Xm ; A being any whole number
whatever.

In the same manner, if we had another expression com-

posed likewise of t, u, and given whole numbers, and, at the

same time, divisible by any other given number whatever,
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a', we should in like manner seek the corresponding values

of M and N, which we shall here express by m' and n', and
all the values of the exponent m, that will satisfy the con-

dition proposed, will be contained in the formula n' + a'm' ;

a' being any whole number whatever. So that we shall

only have to seek the values, which we must give to the

whole numbers A and A', in order that we may have

N + Am = n' + A'm, or mA — mA' = n' — n,

an equation resolvible by the method of Art. 42.

It is easy to apply what we have just now said to the

case of Art. 77, where the given expressions have the form,

at + ^u + y, cct + ^'ii + y, and the divisors are ^ and (J'.

We must only recollect to take the numbers t and «, suc-

cessively, positive and negative, in order to have all the cases

that are possible.

80. Scholium. If the equation proposed for resolution, in

whole numbers, were of the form

ar- + 2brs -f- cs- =f,
we might immediately apply to it the method of Art. Q5 ;

for, 1st, it is evident that r and s could have no common di-

visor, unless the number^ were at the same time divisible

by the square of that divisor ; so that we may always reduce

the question to the case, in which r and s shall be prime to

each other. 2dly, It is evident, also, that sandy could have

no common divisor, unless that divisor were one also of the

number a, supposing r prime to s : so that we may also

reduce the question to the case, in which s andy shall be
prime to each other. (See Art. 64).

Now, s being supposed prime to f, and to r, we may
make r — ns —J^ ; and, in order that the equation may be

resolvible in whole numbers, there must be a value of 7?,

positive or negative, not greater than -^, which may render

the quantity cm- + Zhn + c divisible by f. This value

being substituted for w, the whole equation will become
divisible by /", and will be found reduced to the case of Art.

66, et seq.

It is easy to perceive, that the same method may serve for

reducing every equation of the form,

ar'" + br"s + cr"'-'s- +, &c. + ks'" =f,
a, b, c, &c. being given whole numbers, and r and s being

two indeterminate numbers, which must likewise be integers,

in another similar et] nation, but in which the whole known
term is unity, and ihen we may apply to it the general

method of Chap. 2. See the SchoUum of Art. 30.
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81. Example 1. Let it be proposed to render rational

the quantity, V{^0 + 6^s — 7s-), by taking only whole

numbers for s.

We shall here have to resolve this equation,

30 + 625 — 75^ = tf,

which being multiplied by 7, may be put into this form,

7 X 30 + (31)^ - (7s - 31)- = It/"-,

or, making 75 — 31 = x, and transposing,

a;« = 1171 - 7y, or x"- + 7y' = 1171.

This equation now comes under the case of Art. 64 ; so that

we shall have a = — 7, and b = 1171, from which we in-

stantly perceive, that y and b must be prime to each other,

since this last number contains no square factor.

According to the method of Art. 65, we shall make
X = ny — 1171^; and, in order that the equation may be

resolvible, we must find for n a positive, or negative integer,

not 7 -Q- ; that is, not 7 580, such that «- - a, or n' + 7,

may be divisible by b, or by 1171.

I find n = + 321, which gives n"- + 7 = 1171 x 88j so

that I substitute, in the preceding equation, +321?/ - 1171;:^,

instead oi x\ by which means, the whole is now divisible by

1171, and when the division is performed, it becomes

88?/'^ + 642^/^ + 11712^ = 1.

In order to resolve this equation, I shall employ the

second method, explained in Art. 70, because it is in fact

simpler and more convenient than the first. Now, as the

coefficient of y'- is less than that of s-, we shall here have

D = 1171, n' = 88, and w = ± 321 ; wherefore retaining,

for the sake of simplifying, the letter y, instead of 0, and

putting y, instead of z, 1 shall make the following cal-

culation, first supposing n — 321

;

m = ?gV = 4, n' = 321 - 4 X 88 = - 31,

3P + 7
D"= -^ -11, y =4y + y',

m' = -j^ = - 3, «" = - 31 + 3 X 11 = 2,

^ D"'=^-i, y=-3y' + y',

m" = i = 2, /i"'= 2 - 2 X 1 = 0,

D-'= i = 7, y = 2/' + f\
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d'" b"
Since n'" = 0, and consequently z —, and z —, we shall

here stop, and make d"'= m=1, d'''= l = 7, w"'=0= n, and
y'" =z ^^2/'-' = ^, because d'" is z d" .

I now observe, that a being = — 7, and consequently

negative, in order that the equation may be resolvible, we
must have m = 1, as we have just now found; so that we
may conclude, that the resolution is possible. We shall

therefore suppose — y" — 0, -^ = y^"' = + 1 ; and we shall

have, from the foregoing formula?,

y = ± 1, y = + 3 = ^. 3/ = + 12 ± 1 = + 11'

the doubtful signs being arbitrary. Therefore,

X = 32I3/ — 1171^ =+18; and, consequently,

^+31 31 + 18 _,^ ._.,_-.
S — — „ — ^,01 — y— /.

Now, as tlie value of s is required to be a whole number, we
can only take s = 7.

It is remarkable, that the other value of s, namely, V^

,

although fractional, gives nevertlieless a whole number for

the value of the radical, ^' (30 + 62s — 7^ ), and the same

number, 11, which the value 5 = 7 gives; so that these two

values of s- will be the roots of the equation,

30 -f 62s - 7s- = 121.

We have supposed n = 321. Now, we may likewise

make n = — 321 ; but it is easy to foresee, that the whole

change that would result from it, in the preceding formulas,

would be a change of the sign of the values of w, vi', ni", and

of n', n", by which means the values of j/', and of y, will

also have different signs ; we should not therefore have

any new result, since these values already have the doubtful

sign ±.
It will be the same in all other cases ; so that we need not

take the value of //, successively, positive and negative.

The value s = 7, which we have just found, results from

the value of « = ± 321 : and we may find other values of s,

if we have found other values of 7i having the requisite con-

dition; but, as the divisor b = 1171, is a prime number,

there can be no other values of w, with the same jiropcrty,

as we have elsewhere demonstrated *, whence we must con-

clude, that the number 7 is the only one that satisfies the

i|uestion.

* Memoirs of Mitriiii, iar tlic yciu 1/67, paye 19-1.
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The preceding problem may be resolved more easily by
mere trial; for when we have arrived at the equation,

x" = 1171 — 7^-, we shall only have to try, for ?/, all the

whole numbers, whose squai-es multiplied by 7 do not exceed

1171 ; that is to say, all the numbers / v" y ', or Z 13.

It is the same with all the equations, in which a is a ne-

gative number; for when we are brought to the equation,

X- = B + A?/-, where making a = — a, and x- = b — ay",

it is evident, that the satisfactory values of «/, if there are

any, can only be found among the numbers, Z. a/— . So

that I have not given particular methods for the case of a
negative, only because these methods are intimately con-

nected with those concerning the case of a positive, and
because all these methods, being so nearly alike, reciprocally

illustrate and confirm each other.

82. Example 2. Let us now give some examples for the

case of A positive, and let it be proposed to find all the whole
numbers, which we may take for ?/, in order that the radical

quantity, ^/(IS^/- + 101), may become rational.

Here, we shall have (Art. 64), a = 13, b == 101 ; and
the equation to be resolved in integers will be,

X- — 13j/2 = 101, in which, because 101 is not divisible by
any square, y must be prime to 101.

We shall therefore make (Art. 65), a; = ny — lOlz, and
7t- — 13 must be divisible by 101, taking n Z. '^' z 51.

I find n = 35, which gives ti^ = 1225, and

w2 - 13 = 1212 = 101 X 12

;

so that we may take n =±, 35, and substituting

± 35?/ — 101;?, instead of a:, we shall have an equation

wholly divisible by 101, which, after the division, will be
12y^ + 70yz + IOI2- = 1.

In order to resolve this equation, let us also employ the

method of Article 70. Let us make d' = 12, d = 101,
n =±S5; but, instead of the letter 9, we shall preserve the,

letter «/, and shall only change z into «/', as in the preceding

example.

1st. If w = 35, we shall make the following calculation :

w = 44 = 3, 7i' = 35 - 3 X 12 = - 1,

I2
„ 1-13
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-1
m —

_^ = 1, w"=_l + l=0,

d"' = -^ = 13, y =/+/'.

d" , d"'
As n" = 0, and consequently, Z -^, and Z.—, we shall

stop here, and shall have the transformed equation,

III II II III II III

uy^ — 2n"7/'y + D^- = 1, or ISz/'- — y" z= I

;

III

which being reduced to the form, 9/~ — 13]/" = 1, will admit

of the method of Art. 71 ; and, as a = 13 is z. 100, we may
make use of the Table, Art. 41.

Thus, we shall only have to see, whether, in the upper
series of numbers belonging to ^13, there be found the

number 1 in an even place ; for, in order that the preceding-

equation may be resolvible, we must find in the series p'', p',

p", &c. a terra = — 1 ; but we have p^ = 1, — p' = 4,

p" = 3, &c. wherefore, &c. Now, in the series, 1, 4, 3, 3,

4, 1 , &c. we find 1 in the sixth place ; so that p^ = — 1 ;

and hence we shall have a solution of the given equation,

by taking y'" = p", and y" =
(f,

the numbers p^', q^, being

calculated according to the formulae of Article 25, giving to

l"*? l"-'? i"-"?
&c. the values 3, 1, 1, 1, 1, 6, &c, which form

the lower series of numbers belonging to a/13 in the same
Table.

We shall therefore have

po
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m' = -^=-l, n" =1-1=0,

d'" = ^i? = 13, y = - y + V".

Thus, we have the same values of d", d'", and //', as before

;

so that the transformed equation in y, and ?/'", will likewise

be the same.

We shall, therefore, have also y'" = 18, and y" — 5 ;

wherefore, 7/'=— 7/'' + 7/'"= 13, and 7/— —3i/' + -i/"=: — 34.

So that we have found two values of y, with the cor-

responding values of y', or ^ ; and these values result from
the supposition of n — -^ 35. Now, as we cannot find any
other value of n, with the requisite conditions, it follows that

the preceding values will be the only primitive values that

we can have ; but we may then find from them an infinite

number of derivative values by the method of Art. 72.

Taking, therefore, these values of 7/ and z for p and q,
we shall have, in general, by the same Article,

2/ = 74jJ - (101 X 23 - 35 X 74)?^ = 74^ + 267m
J? = 23^ + ( 12 X 74 - 35 X 23)?^ = 22i + 83m; or

3/ = - 34^ - ( 101 X 13 — 35 x 34)m = - 3^t - 123m
% zz I'St + (-12 X 34 + 35 X I3)w = 13^ + 47m;

and we shall only have farther to deduce the values of t

and u from the equation, t^- — 13u"- = 1. Now, all these

values may be found already calculated in the Table at the

end of Chap. VII. of the preceding Treatise: we shall

therefore immediately have t =. 649, and u = 180 ; so that

taking these values for t and v, in the formulae of Art. 75,

we shall have, in general,

(649+180v/13)'» + (649 - 180 y 13)'"

t =

u rr

2

(649 + 180 Vl3)"'- (649 -180 v/13)'

2V13
where we may give to m whatever value we choose, provided

we take only positive whole numbers.
Now, as the values of t and u may he taken both positive

and negative, the values ofj/, which satisfy the question,

will all be contained in these two formulae,

2/ = ± 74^ + 267m,

and y = ± 34^ + 123m,

the doubtful signs being arbitrary.
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If we make m — 0, we shall have t zzj, and ?/- =: 0;
wherefore, y "=+ 74, or = ± 34 ; and this last value is the

least that will resolve the problem.

I have already resolved this problem in the Memoirs of

Berlin, for the year 1768, page 24<3; but as I have there

employed a method somewhat different from the foregoing,

and fundamentally the same as the^r*^ method of Art. 66,

it was thought proper to repeat it here, in order that the

comparison of the results, which are the same by both
methods, might serve, if necessary, as a confirmation of

them.

83. Example 3. Let it be proposed to find whole num-
bers, which being taken for 3/, may render rational the

quantity, ^/(79y- + 101).

Here we shall have to resolve, in integers, the equation,

x^ - 79^^ = 101,

in which y will be prime to 101, since this number does not

contain any square factor.

If we theretbre suppose z' =: ny — lOlz, n" — 79 must be
divisible by 101, taking n /. '^' Z 51 ; we find n ~ 33,

which gives ti- — 13 r: 1010 = 101 x 10; thus, we may
take n -- in 33, and these will be the only values that have
the condition required.

Substituting, therefore, + 33?/ — 101s instead of a?, and
then dividing the whole equation by 101, we shall have

*">dt transformed into lOv/^ =F QQyz + 101s" r: 1. Let us,

therefore, make d' r: 10, d = 101, n zz ± 33, and first

taking n positive, we shall work as in the preceding example

;

thus, we shall have m = ^ — S, n' = 33 - 3 x 10 = 3,

9—79D"=^=-7,3/ = 3y + y'.

d' d" . .

Now, as n' = 3 is already Z — , and Z — , it is not ne-

cessary to proceed any farther : so that the equation will be

transformed to this,

/ //_ 7y: _ cyy + lOy' = 1,

which being multipUed by — 7, may be put into this form,

W + 3y'r- - ^%^ = -^
Since, therefore, 7 is z V79, if this equation be resolvible,

the number 7 must be found among the terms of the upper

series of numbers answering to a/79 in the Table (Art. 41 ),

and also hold an even place there, since it has the sign —

.
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But the series in question contains only the numbers 1, 15,

2, always repeated ; therefore, we may immediately conclude,

that the last equation is not resolvible ; and, consequently,

the equation proposed is not, at least when we take n = 33.

It only remains, therefore, to try the other value of

n =— 33, which will give

m = —^ = - 3, «' = - 33 + 3 X 10 = - 3,

so that we shall have the equation transformed into

which may be reduced to the form,

(7y-3y')— 79> = -7,
which is similar to the preceding. Whence I conclude, that

the given equation absolutely admits of no solution in whole

numbers.
84. ScJiolium. M. Euler, in an excellent Memoir printed

in Vol. IX. of the New Commentaries of Petersburg, finds

by induction this rule for determining the resolvibility of

every equation of the form x" — Ay~ = b, when b is a prime
number : it is, that the equation must be possible, whenever
B shall have the form 4a?z + r-, or 4aw + r- — a ; but the

foregoing example shews this rule to be defective ; for 101
is a prime number, of the form 4aw + r^ — a, making
A = 79, w = -r- 4, and r = 38 ; yet the equation,

,

s" — 79/^ = 101, admits of no solution in whole numbers.

If the foregoing rule were true, it would follow, that, if

the equation x- — aj/- = b were possible, when b has any
value whatever, b, it would be so likewise, Avhen we have

taken b = 4*An + b, provided b were a prime number. We
might limit this last rule, by requiring b to be also a prime
number ; but even with this limitation the preceding ex-

ample would shew it to be false; for we have 101=4aw+ 6,

by taking A = 79, n = — ii, and b.= "79^; now, 733 is a

prime number, of the form cc- — 79j/-, making a: = 38, and
t/ = 3 ; yet 101 is not of the same form, x^ — 79j/''.

p r
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CHAP. VIII.

Remarks on Equations of theform p- = Aq^ + 1, and on

the common method of resolving them in Whole Numbers.

85. The method of Chap. VII. of the preceding Treatise,

for resolving equations of this kind, is the same that Wallis

gives in his Algebra (Chap. 98), and ascribes to Lord
Brouncker. We find it, also, in the Algebra of Ozanam,
who gives the honor of it to M. de Fermat. Whoever was
the inventor of this method, it is at least certain, that M. de
Fermat was the author of the problem which is the subject

of it. He had proposed it as a challenge to all the English

mathematicians, as we learn from the Commercium EpistoU-

cum of Wallis ; which led Lord Brouncker to the invention

of the method in question. But it does not appear that this

author was fully apprised of the importance of the problem
which he resolved. We find nothing on the subject, even

in the writings of Fermat, which we possess, nor in any of

the works of the last century, which treat of the Indeterminate

Analysis. It is natural to suppose that Fermat, who was
particularly engaged in the theory of integer numbers, con-

cerning which he has left us some very excellent theorems,

had been led to the problem in question by his researches on
the general resolution of equations of the form,

X- = A?/" + B,

to which all quadratic equations of two unknown quantities

are reduced. However, we are indebted to Euler alone for

the remark, that this problem is necessary for finding all the

possible solutions of such equations *.

The method which I have pursued for demonstrating this

proposition, is somewhat different from that of M. Euler ; but
it is, if I am not mistaken, more direct and more general. For,

on the one hand, the method of M. Euler naturally leads fo

fractional expressions, where it is required to avoid them

;

and, on the other, it does not appear very evidently, that the

suppositions, which are made in order to remove the fractions,

are the only ones that could have taken place. Indeed, we
have elsewhere shewn, that the finding of one solution of the

equation x"^ = Ay'^ + b, is not always sufficient to enable us to

* See Chap. VI. of the preceding Treatise, Vol. VI, of the

Ancient Commentaries of Petersburg, and Vol. IX. of the New.
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deduce others from it, by means of the equation j9-=Aj- + 1

;

and that, frequently, at least when b is not a prime number,
there may be values of x and y, which cannot be contained

in the general expressions of M. Euler *.

With regard to the manner of resolving equations of the

formj9-= A9-+ l, I think that of Chap. VII., however in-

genious it may be, is still far from being perfect. For, in

the first place, it does not shew that every equation of this

kind is always resolvible in whole numbers, when a is a
positive number not a square. Secondly, it is not demon-
strated, that it must always lead to the solution sought for.

Wallis, indeed, has professed to prove the former of these

propositions ; but his demonstration, if I may presume to

say so, is a mere peiiiio principii. (See Chap. 99.) Mine, I

believe, is the first rigid demonstration that has appeared

;

it is in the Melanges de Turin^ Vol. IV. ; but it is very

long, and very indirect : that of Art. 37, is founded on the

true principles of the subject, and leaves, I think, nothing to

wish for. It enables us, also, to appreciate that of Chap. VII.,

and to perceive the inconveniences into which it might lead,

if followed without precaution. This is what we shall now
discuss.

86. From what we have demonstrated, Chap. II., it fol-

lows, that the values ofjO and q, which satisfy the equation

p- — Aq- = 1, can only be the terras of some one of the

prMicij9aZ fractions derived from the continued fraction, which
would express the value of \/a ; so that supposing this con-

tinued fraction to be represented thus,

'^+7 +^+1+ &e
r

we must have,

^^.4.1 1t-=f-+77.J_y"'^ V' + p." + , &c.

1

+ "75

ju.e being any term whatever of the infinite series /x', ^x", &c.

the rank of which, ^ , can only be determined a posteriori.

We must observe that, in this continued fraction, the num-
bers, ft, ^', ju,", &.C. must all be positive, although we have

* See Art. 45 of my Memoir on Indeterminate Problems, in

the Memoirs of Berlin. J 7&7»

PP 2 .
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seen (Art. 3) that, in general, in continued fractions, we may
render the denominators positive or negative, according as

we take the approximate values less, or greater, than the real

ones; but the method of Problem I. (Art. 23, et seq.), ab-

solutely requires the approximate values p-, p', yJ', &c. to be

all taken less than the real ones.

87. Now, since the fraction -— is equal to a continued

fraction, whose terms are fx, fjj, fjJ', &c. it is evident, from

Art. 4, that jw, will be the quotient ofp divided by g, that ijJ

will be that of q divided by the remainder, p/, that of this

remainder divided by the second remainder, and so on ; so

that calling r, s, t, &,c. the remainders in question, we shall

have, from the nature of division, p = ij.q + r, q = /x'r -\-s,

r = itl's + ^, &c. where the last remainder must be = 0,

and the one before the last = 1 , because p and q are num-
bers prime to each other. Thus, [j^ will be the approximate

integer value of—, uJ that of —, a" that of — , &c. these

values being all taken less than the real ones, except the

last /x?, which will be exactly equal to the corresponding

fraction ; because the following remainder is supposed to be

nothing.

Now, as the numbers /x, ju-', |U<", &c. a?, are the same for

V
the continued fraction, which expresses the value of—, and

for that which expresses the value of a/ a, we may take, as

P
far as the term wif, -^ = a/a, that is to say, p* — Aq" = 0.

Thus, we shall first seek the approximate, deficient value of

^—; that is to say, of a/A, and that will be the value of ju,;

then we shall substitute in p" — Aq- = 0, instead o£p, its

value [J^q + r, which will give

(//.2 _ a)^2 _|. 2aqr + r^ = 0,

and we shall again seek the approximate, deficient value of

— ; that is, of the positive root of the equation,

(^e _ A) X (-i-)c + 2^^ + 1 = 0,

and we shall have the value of ju-.

StUl continuing to substitute fjJr + 5, instead of g, in the

^
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transformed equation {fjr - A)q" + 9,t/iqr-\-r^ = ; we shall

r
have an equation, whose root will be — ; then taking the

approximate, deficient value of this root, we shall have the

value of p". Here again we shall substitute [jJ'r + s, instead

of r, &c.

Let us now suppose, for example, that t is the last re-

mainder, which must be nothing, then s will be the last but

one, which must be =1; wherefore, if the formula p- — Ay'',

when transformed into terms of s and t, is vs- + ast -\- at-,

by making ^ = 0, and s = 1, it must become == 1, in order

that the given equation, />-— Ag'-= 1, may take place; and
therefore p must be = 1. Thus, we shall only have to con-

tinue the above operations and transformations, until we
arrive at a transformed formula, in which the coefficient of

the first term is equal to unity ; then, in that formula, we
shall make the first of the two indeterminates, as r, equal to

1, and the second, as s, equal to ; and, by going back, we
shall have the corresponding values of jo and q.

We might likewise work with the equation p- — Aq- = 1

itself, only taking care to abstract from the term 1, which is

known, and consequently from the other known terms, like-

wise, that may result from this, in the determination of the

p q r
approximate values [j^, ft-', /x", &c. of—, —, — , &c. In

this case, we shall try at each new transformation, whether

the indeterminate equation can subsist, by making one of the

two indeterminates = 1, and the other = ; v/hen we have

arrived at such a transformation, the operation will be

finished ; and we shall have only to go back through the

several steps, in order to have the required values of p
and q.

Here, therefore, we are brought to the method of Chap.

VII. To examine this method in itself, and independently

of the principles from which we have just deduced it, it must

appear indifferent whether we take the approximate values

of ju., [jJ, |x", &c. less, or greater than the real values; since,

in whatever way we take these values, those of r, s, t, &c.

must go on decreasing to 0. (Art. 6.)

Wallis also expressly says, that we may employ the limits

for ju., ^', ju,", &c. either in plus, or in minus^ at pleasu-re ; and

he even proposes this, as the proper means often of abridging

the calculation. This is likewise remarked by Euler, Art.

102, et seq. of the chapter just now quoted. However, the

following example will shew, that by setting about it in this
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way, we may run the risk of never arriving at the solution of

the equation proposed.

Let us take the example of Art. 101 of that chapter, in

which it is required to resolve an equation of this form,

p'- = Gg'- + 1, or ^" — Q>(f
= 1. We have p = a/(65'- + 1) ;

and, neglecting the constant term 1, ^ = ^^6; wherefore

-t- = V 6 7 2, Z. 3. Let us take the limit in minus, and
9
make jw- = 2, and then j9 = 2g + r ; substituting this value,

therefore, we shall have — ^q" + 4<gr + r- = 1 ; whence,

q = ^ ; or, rejectmg the constant term — 2,

q = ^ ; whence, -^ = —^— 7 », ^ o. Let us

again take the limit in minus, and make q = %' -{-s; the last

equation will then become r^ — 4rs — 2s- = 1 ; Avhere we
at once perceive, that we may suppose * = 0, and r = 1

;

so that we shall have q = % and p = 5.

Let us now resume the former transformation,

— Sg^"- + 4<qr + r^-=i,

where we found— 7 2, and Z. 3 ; and, instead of taking

the limit in mi?ius, let us take it in pius, that is to say, let us

suppose q = 87- + s; or, since 5 must then be a negative

quantity, q = 3r — 5, we shall then have the following

transformation, — 5r^ + 8rs — 2s^ = 1> which will give

r = ^ ; wherefore, neglecting the constant

4s+sV6 , r 4 + ^6 ^ , _
term 5, r = =

, and — =—-— 7 1, and Z. 2.so
Let us again take the limit in plus, and make r =i2s~ t,

we shall now have — 6s" + 1^5/ — 5t- = 1 ; therefore

6t+V{Gt'-6)
t,

. . ,

s = ^ ; so that, rejectmg the term — o,

6t+tv6 , s ^ v6 , _

s = g , and -y = 1 +—g 7 1, Z 2.

Let us continue taking the limits in jplus, and make
s = at — M, we shall next have ~ 5t" + 12tu — 6u" = 1

;

wherefore,

6u+ V{6u"-5) . t G + ^6 ^ ^
t = ; and— =—7?—- 7 1, Z. 2.

5 u 5
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Let us, therefore, in the same manner, make t — 9,u — x,

and we shall have — 2?^* + Sux — 5<r- = 1 ; wherefore, &c.

Continuing thus to take the limits always in plus, we shall

never come to a transformed equation, in which the coefficient

of the first term is equal to unity, which is necessary to our
finding a solution of the equation proposed.

The same thing must happen, whenever we take the first

limit in minus, and all the succeeding in plus ; the reason of
this might be given a priori ; but as the reader can easily

deduce it from the principles of our theory, I shall not dwell
on it. It is sufficient for the present to have shewn the

necessity of investigating these problems more fully, and
more rigorously, than has hitherto been done.

CHAP. IX.

Of the manner ofJinding Algebraic Functions of all De-
grees, which, when multiplied tog'ether, mayalways produce
Similar Functions.

[appendix to chap. XI. AND XII.]

88. I believe I had, at the same time with M. Euler, the

idea of employing the irrational, and even imaginary factors

of formulse of the second degree, in finding tlie conditions,

whidi render those formulse equal to squares, or to any
powers. On this subject, I read a Memoir to the Academy
in 1768, which has not been printed ; but of which I have

given a summary at the end of my researches on Indeter-

minate Prohlems, which are to be found in the volume for

the year 1767, printed in 1769, before even the German
edition of M. Euler's Algebra.

In the place now quoted, I have shewn how the same
method may be extended to formulas of higher dimensions

than the second ; and I have by these means given the solu-

tion of some equations, which it would perhaps have been

extremely difficult to resolve in any other way. It is here

intended to generalise this method still more, as it seems to

deserve the attention of mathematicians, from its novelty

and singularity.

89. Let a and /3 be the two roots of the quadratic equation,

5- — as -{ h = 0,

and let us consider the product of these two factors,
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(x + ay) X {x + /3y),

which must be a real product; being equal to

^^ + (a + (5>!/ + a/Sy-.

Now, we have a -\- ^ = a, and afi = b, from the nature of

the equation, s^ — as + b = 0; therefore we shall have this

formula of the second degree,

a;- + ax2/ -j- bi/",

which is composed of the two factors,

X + ai/, and X + /3y.

It is evident, that if we have^a similar formula,

y /

j;- + ax' I/' + bt/',

and wish to multiply them, the one by the other, we have
only to multiply together the two factors x -\- ocj/^ a^ -j- ut/,

and also the other two factors x + /Sy, x' + /Sy, and then

the two products, the one b}' the other. Now, the product of

X -\- oLxf by .r' + ay^ is, ^'- + a.{xy^ + yx^) + oryy' \ but

since a is one of the roots of the equation, s- — 05 -|- 6 = 0,

we shall have o?— act. -j- & = ; whence, a^ = aa — 5 ; and,

substituting this value of a", in the preceding formula, it will

become, xx' — byy' + ^(03/' + yx^ + ^j/j/') ; so that, in order

to simplify, making

X = xx^ — byy'

y = xy^ + yx^ 4- ayy\

the product of the two factors x + aj/, x^ + a?/', will be
X + aY; and, consequently, of the same form as each of

them. In the same manner, we shall find, that the product

of the two other factors, x+fiy, and x' + ^y\ will be x+/3y;
so that the whole product will be (x + ay) X (x + /3y) ;

that is, x^ + axY + 6y^, which is the product of the two
similar formulae,

x" + axy + by^, and x^ + ax'y' + by~.

If we wished to have the product of these three similar

formulse,

x" + axy + by", x- + axy + 6y^, a;^ + axy + by\

we should only have to find that ofthe formula, x"+ axY + 5y-,

n II n II

by the last, a.'- + axy + by'^ ; and it is evident, from the

foregoing formulae, that, by making

x' = xy" - bry",

y' = }iy" -j- Yx'' + avy",
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the product sought would be

/ / / /

X- + axY + br'^

In the same manner, we might find the product of four, or
of a still greater number of formulae similar to this,

X- + axy 4- ^?/-j

and these products likewise will always have the same form.

90. If we make x = .r, and y = e/, we shall have

X = x~ — 6j/2, Y = 2a;y + 03/-

;

and, consequently,

(^ + axi/ + by-y = X- + axY -{- by-.

Therefore, if we wish to find rational values of x and y,

such, that the formula x-H-oxy + Sy- may become a square,

we shall only have to give the preceding values to x and y,
and we shall have, for the root of the square, the formula,

X- + axy + by- ;

X and y being two indeterminate numbers.

If we farther make ^r" = a;' = a', and 1/" = ^' = y, we
shall have x' = xjt — bxy^ y' = x?/ + yx + axy ; that is,

by substituting the preceding values of x and y,

x' = a;^ — ^bxy^ + aby^,

y' = 3^-^ + %axy- -\- {a- — b)y^ ;

wherefore,
y ^ , ,

{x"^ + axy + by'^y = x* + axY + by-.

Thus, if we proposed to find the rational values of x' and y',

' '

'

' •

such, that the formula x- + Q,xy -f bv- might become a

cube, Ave should only have to give to x and y the foregoing
values, by which means we should have a cube, whose root
would be X- + axy + by"; x and y being both indeter-

minate.

In a similar manner, we may resolve questions, in which
it is required to produce fourth, fifth powers, &c. but we
may, once for all, find general formulae for any power what-
ever, 7n, without passing through the lower powers.

Let it be proposed, therefore, to find rational values of x
and Y, such, that the formula, x- + axY + 6y-, may become
a power, m ; that is, let it be required to solve the equation,

X-+ axY + 6y- = z".

As the quantity x' -f axY + b\" is formed from the pro-

duct of the two factors, x + aY, and x + (3y, in order that
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this quantity may become a power of the dimension 7n, each

of its factors must likewise become a similar power.

Let us, therefore, first make

X 4- av = (^ + «y)'"»

and, expressing this power by Newton''s theorem, we shall

have

mim — 1)

\-——i—^ x^'-yc,^ +, &c.
/v X tJ

Now, since a is one of the roots of the equation,

s^ — rts + 6 = 0, we shall also have a- — aa -f $ = ;

wherefore, ce- = aa — b, c^ = aa? — ba = (a^ _ b)a — ab,

a* = {cf- — b)cc" — abx — {a^ — ^ab) cc — a"b + Z>' ; and so

on. Thus, we shall only have to substitute these values in

the preceding formula, and then we shall find it to be com-
pounded of two parts, the one wholly rational, which we
shall compare to x, and the other wholly multiplied by the

root a, which we shall compare to aY.

If, in order to simplify, we make

a' = 1 b' =
a" = a b" = b

a'" = aA" - bA' b'" = an" - bn'

A'^= aA'"—bA" b'^= a-B"'-bB"

A^ = flAi^ — 6a'", b>' = aB'^-bs'",

he. &c. &c. we shall have,

a = a'oc — b'

a«= a"a- b"

a.^ = a"'cc - -b'"

a^= A'^'a-B% &c. '

Wherefore, substituting these values, and comparing, we
shall have

mim— 1) „ ,,

X = ;r'" — mx'"-^7/&' x"'~^i/-w'

m(m — \)x(m—2) , „ „,V J V _ijp'«-3^B"'-, &C.
2x3

jnlm— 1) „ „
Y = 7nx'"-\i/A' + —^-g— x"'-^/a1'

+——^ -a;'"-yA"' +, &c.

Now, as the root a does not enter into the expressions of
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X and Y, it is evident, that, having x + ocy = {x -\- ay)'",

we shall likewise have, x + /3e/ = (x -}- /S?/)" ; wherefore,

multiplying these two equations together, we shall have,

X- + a\Y + 6y" = [a;^ + axi/ + by-Y ;

and, consequently, z = ^^ + axy + by". The problem,

therefore, is solved.

If a were = 0, the foregoing formulae would become

simpler ; for we should have a' = 1, a" = 0, a'" = — b,

A'^ = 0, A' = b\ A"' = 0, a^" = — b\ &c. and, likewise,

b' = 0, b" = b, b'" = 0, B*^ = - b% Bv = 0, B" = b\ &c.

^. ^ m(m — l) „ ,

Therefore, x = x"" —^ x'^-^y^b +

m(m— l)x(m— ^)x(m—S) ,
..

2x3x4 J ^

Y — mx"'-^y + —^^ ~-^ -x^'-^y^h +
AiX O

m{yn-\) x (m-2) x (m- 3) x {m-^)^^ ^^
2x3x4x5 ^ *

And these values will satisfy the equation,

x2 + 5y2 = (a^ + hy"y.

91. Let us now proceed to the formulas of three di-

mensions ; in order to which, we shall denote by a, /3, y,
the three roots of the cubic equation, s^—as^ + bs — c = 0,

and we shall then consider the product of these three

factors,

{x + ay + oC-z) x (a? + /3j/ + Z^^;?) x (a; + 73/ + y°s),

which must be rational, as we shall perceive. The multiplica-

tion being performed, we shall have the following product,

^3 + (a + /3 + y )^2_j, + (a^ + ,32 +y'^)j;^;s + ( a/3 + ay + ^y)xy'^

+ (a2/3 + a?y+ /3'^a+ /3^ +y% + Y^i^)xyz +
(a2|32 -f o?y"- + /32y2)^2"- + ai3y^/•'' + (a^^y + jS^ay + y"a.^)y"z

+ (a^/SV + a5y'^/3 + ^Y^a)yz^ + a'^/SV"^'-

Now, from the nature of equations, we have

a, -{- fi + y = a. aj5 -\. ay + ^y = b, a(5y = c.

Farther, we shall find

a* + /3- + y-= (a + j3 + y)2-2(a/3 + «y + /3y) =a^ -26,

a2/3+a-y+/3^aH-/32y+r^a+r''2= (*+ /3+y) x (cc^+ ay + fty)

-Soc^y= ab-Sc; and a2/3'^ + aV"+ j3-y"=(a/3+ay + /3y)2

— g(a+ /3 +y)a.i3y =Z»2— 2ttc ; also, aT-l^y + ^'^ay +y'^cc(3=
(a + /3 + y)a(3y= ac, and a-|3^7 -f a^y^/S + /32y2a=
(a/3 -1- ay + (5y)a^y~ be.
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Therefore, making these substitutions, the product in ques-

tion will be

x^+ar'^i/-\-{a" —9.b)oo-z -\-hxy^'-\-{ah—oc)xyx + {h"—9,ac)xz-

+ C7/^ -\- acy-z + hcyz- + c-z^.

And this formula will have the property, that if vve mul-
tiply together as many similar formulae as we choose, the

})roduct will always be a similar formula.

Let us suppose that the product of the foregoing formula
by the following was required, namely,It III

x'^ + ax'i/ + {a^ — 2b)x-z' + bxtf + {ah - 3c)x'y'z'

III I II I

+ {b- — 2ac)xz' + cif + acy"z + bcyz""- + c'-:^-^

it is evident, that we have only to seek the product of these

six factors,

X \- ay -\. a"z, x -i- ^// + jo-z, x -\- y?/ + y"z,

^ -f ay' -f a2^', x' + %' + ^'^', x' + yi/-\- y-z'

;

if we first multiply x + ay + a"z, by x' + ay' -f- a-z', we
shall have this partial product,

.vx^ + a{xy'-\-yx') -\- a,%xz'+ zx' Vyy) + a:\yz' \-zij') + a*zz\

Now, a being one of the roots of the equation,

s^ — as- + bs — c = 0,

wc shall have a^ — aa." + bx — c = ; consequently,

a^ = aa- — 6a + c ; whence,

a.* = «a3 — ba" + ca = (a^ — b)cx,- — {ab — c)x -\- ac ;

so that substituting these values, and, in order to abridiie,

raakmg

X = xx' — c{yz' 4- zy') + aczz',

Y = xy' -\- yx' — b[yz' + zy') — {ab — c)zz\

z = xz' -\- zx' + yy' + a(yz' -f- zy') + {a- — b)zz\

the product in question will become of this form, x-faY -\-a--'/.\

that is to say, of the same form as each of those from which
it has been produced. Now, as the root a does not enter

into the values of x, y, z, it is evident, that these quantities

will be the same, if we change a into /3, or y ; wherefore,

since we already have

{x -{- ay -\- a"z) X (a:' + aj/' + arz') = x + aY + a'-'z,

we shall likewise have, by changing a into /3,

{x + ^y { ft'-z) X [x' + jSy + iS'z') = X + /3y + /32z

;

and, by changing a into y,

(.f + 7^ + y"z) X (a.-' + yy + r'-*) = x + yY + y-z.
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Therefore, by multiplying these three equations toget'Iier, we
shall have, on the one side, the product of the two given

formulae, and on the other, the formula,

x^ -1- flx-Y + (a^ — 26)x-z + bxY' + {ah — 3c)xyz +
{¥— 9.ac)x7r + cy' + ccY-z + icYZ- + c-z^,

which will therefore be equal to the product required ; and

is evidently of the same form as each of the two formulae of

which it is composed.

If we had a third formula, such as

Ir^ + aiy + (a — 26)jr-s" + hxif + (a6 - Qc)xY^'

nil II II „ , //;/ II

+ (i^ — 2ac)a7^« + cf + acy^'z" + hcyz^ + c-2;\

and if we wished to have the product of this formula and

the two preceding, it is evident, that we should only have

to make

x' = xj;" — c(y2" + zy) + aczs",

y' = xj/" + Y^'' — 6(ys" + z?/'' ) - {ab — c)z2;'',

z' = x^;" + zx" + y/ + a{Yz" + zy'') +(«'- - ^)zz",

and we should have, for the product required,

x-^ + ax^Y' + (a2 - 26)x2z' + hxY^ + {ah — 3c)x'y'z'

II I I
, -, " ',

+ (6* — Qac)xz- + CY^ + «cY'-z' + bcYZ^ + c^z^

92. Let us now make x' =i x, y' = y, z' = z, and we

shall have,

x = x" — 2cyz + acz'^,

Y = 2xy — 9byz — {ah — c)z^,

z = ^xz + 3/* + 9.ayz + (a* - b)z'^\

and these values will satisfy the equation,

X'^ + ax*Y + ^>XY- + CY^ 4- (a^ — 25)x-z

+ {ah — 3c)xYZ + acY^z + {b" — 2ac)xz«'

+ 6cYz" + c'^z^ = v% by taking

V = a:3 -f aa;2y + bxy^ + c^/' + (a"— 26)a:-«+ {ab—Sc)xyz

+ acy"z + (6« - '^ac)xz' + bcyz- + c-^'.

Wherefore, if we had, for example, to resolve an equation of

this form, x"^ + ax-Y + bxY- + cy^ = v", a, 6, c, being any

given quantities, we should only have to destroy z, by
making 2xz + ^^ + 2ayz + (a^ ~ 62)^- = 0, whence we

, . y--\-2ayz + {a'— b")z'^
, , • . i •

derive x zz — "^ — ; and, substitutmg this
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value of x in the foregoing expressions of x, y, and v, we
shall have very general values of these quantities, which will

satisfy the equation proposed.

This solution deserves particular attention, on account
of its generality, and the manner in which we have arrived

at it ; which is, perhaps, the only way in which it can be
easily resolved.

We should likewise obtain the solution of the equation,

x^ + aL"v' + {a~ - 26)x^^z' + bir~ + {ah - 3c)x'y'z'

+ (6^^ — 2ac)xz2 + cY^ 4- acY-z' + hcYZ^ + e-z^ = v'',

by making, in the foregoing formulae,

;r" = jr' = .r, 3/" = 7/ =z y^ z" = z' = z,

and taking

\ = x^ -\- ax'y + (fl2 _ 25)a;-2; + hxy" + {ab — Sc)xyz

+ (6'^ — ^ac)a;z- + cy^ + acy"z + bcyz'^ + c"z^.

And we might resolve, successively, the cases in which,
instead of the third power v^, we should have V*, v^, &c.

But we are going to consider these questions in a general

manner, as we have done Art. 90.

93. Let it be proposed, therefore, to resolve an equation

of thio form,

x^ + «x-Y + (a2 — 26)x''z + hxY- + {ab — 3c) xyz +
(i« — 2ac)xz'^ + cY^ + flCY-z + bcYz'^ + c"z^ = v™.

Since the quantity, which forms the first side of this equa-

tion, is nothing more than the product of these three

factors,

(x + aY + a'-z) X (x 4- /3y + /3"z) x (x + yY + y-z),

it is evident that, in order to render this quantity equal to a

power of the dimension m, we have only to make each of its

factors separately equal to such a power.

Let then x + aY + a^z = (^ + ay + a"^)"'.

We shall begin by expressing the mth power of ,r +ay-\-a'^z

according to Newton's theorem, which will give

fn(m—l)
,

. „
ar'" + mx^'-\y + a.z)a -\ ^—^ -V'-2(z/ + a5;)2a2

+ -'^

—

^ x--'{y + az)V +, &c.

Or rather, forming the different powers of «/ + a^;, and then

arranging them, according to the dimensions of a,
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/ ,
m(m—l) „ „^

viiin 1^ X (m 2)
+ {m{m-l )x""-hjz + -^ -^-^ -V-y)a^ + , &c.

/i ^ O

But as in this formula we do not easily perceive the law

of the terms, we shall suppose, in general,

(or + aj/ + a-z)"' = p + p'a + p"a" + P"'a' + P'^'a* +, &c.

and we shall find,

p = x"",

niyv
p' = -^,

a;

,,
{m — l)j/r' + 2m;sp

~ si '

(m— 3^ ?/p"' 4- (9.m. —g) zp"—-— , &c.
^x

which may easily be demonstrated by the differential cal-

culus.

Now, since a is one of the roots of the equation,

s"^ — as" + bs — c = 0, we shall have
a^ — aoc^^ ba, — c = ; whence,

a? = ua^ — ba + c; wherefore,

a*= aa?— ba."-\-ca, = {a- — b)a" — (ab — c)a + ac,

a^ = (^2 _ ^)a^ — (ab - c)a'^ + acx = (a^ — 2ab + c)a«

— (a^b — S' — ac)x + (a* — b)c; and so on.

So that if, in order to simplify, we make
a' = Aiv = a\"' - bA" + ca!

a" =1 A^ = ftAi'-' — bA'" + ca"

a'" = a A^' = ttA" - 6a*^+ ca'", &c.

b' = 1 c' =
b" =0 c" =
b'" = b d" = c

fii^ = an'" — 6b" + cb' civ = fljc'" — be" f cc'

B^ = flB'v — 6b"' + cb" c^' = ttciv — ^c'" 4- cc"

B^'i = aB^ — 6b>v + cb'", &c. c ' = ac^ — 6c"^' + cc'", &c.

we shall have,

a = a'cc' — B'a + c' a3 = A"'a^ - B"'a -f c'"

a2 = A"a2 — B"a + c" a* = A^^'a^ — B'^a + c"', &c.

Substituting these values, therefore, in the expression
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(x -{• ccj/ + a*^)™, it will be found composed of three parts,

one all rational, another all multiplied by- a, and the third

all multiplied by a-; so that we shall only have to compare
the first to x, the second to ay, and the third to a-z, and,

by these means, we shall have

X = p + p'c' + p"c" + p"'c'''' + P'^'C"', &c.

Y = — p'e' t- p"b" — p"'-b"''— p'^'b'% &e.

Z = p'a' + p"a" + p"'a"' + P'''A'% &C.

These values, therefore, will satisfy the equation,

X 4- «¥.+ a^z = (x + a^ + a-^)"';

and as the root a does not enter into the expressions of x,

Y, and z, it is evident, that we may change a into /3, or

into y; so that we shall have both

X 4- /3y + |32z = {x + ^2/ + /322)'", and

X. + yY + y"z = {x + yy + y"zY.

If we now multiply these three equations together, it is

evident, that the first member will be the same as that of

the given equation, and that the second will be equal to a
power, m, the root of which being called v, we shall have

V = ^^ + ax"y 4- (a^ — 25)^-.? + hxy~ + {ah — Sc)xys

+ (Z>- — 2ac)xz''- -\- cy^ + acif-z + hcyz'^ + c-s^.

Thus, we shall have the values required of x, y, z, and

V, which will contain three indeterminates, o", y, %.

94. If we wished to find formulae of four dimensions,

having the same properties as those we have now examined,

it would be necessary to consider the product of four factors

of this form,

cr + ay + a?z + aH

X + yy -\- y"z + yH
X ^ ly ^ P-z + hH,

supposing a, /3, 7, to be the roots of a biquadratic equation,

such as i"* - as"" + bs- — cs + d = 0; we shall thus have

a + (5 + y + S = a^

cc(i +ay + a^ r /3y + /3J + r^ = 6,

a/3y + oc^S + ayS + ^yS = c,
; :_

;^.^^

a^yS = d, ^-;:|^
i

by which means we may determine all the coefficients of the

different terms of the product in question, without knowing
the roots a, |3, 7, ^. But as this requires different re-
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ductions, which are not easily performed, we may set about

it, if it be judged more coitvenient, in the following manner.

Let us suppose, in general,

X + SJ/ + s^z + sH = ^

;

and, as s is determined by the equation,

6* — as^ + 6s- ^ cs + d = 0,

let us take away s from these two equations^ by the common
rules, and the equation, which results, after expunging s,

being arranged according to the unknown quantity
f,

will

rise to the fourth degree; so that it may be. put into this

form, c"* — Nf ^ + vf — 0.0 + R z= 0.

Now, the cause of this equation in ^ rising to the fourth

degree is, that s may have the four values a, /3, y, S;

and also that § may likewise have these four corresponding

values,

X + ai/ + arz + aH

a; + jSy + /3^« + ^H
X + yt/ + y°z + yH
a; + 5j/ + J«^ + hH,

which are nothing but those factors, the product of which is

required. Wherefore, since the last term u must be the

product of all the four roots, or values of
f , it follows, that

this quantity, k, will be the product required.

But we have now said enough on this subject, which we
might resume, perhaps, on some other occasion.

I shall here close these Additions, which the limits I pre-

scribed to myself will not permit me to carry any farther;

perhaps they have already been found too long: but the

subjects I have considered being rather new and little known,
I thought it incumbent on me to enter into several details,

necessary for the full illustration of the methods which I

have explained, and of their different uses.

THE END.

a Q
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