
Rob 501 - Mathematics for R b tics
HW #7

Prof. Grizzle

Due Nov. 8, 2018
3PM via Gradescope

Remarks: Problems 1 through 5 involve calculations. Problem 5 is very important. Please spend extra time
on it as it is very helpful for understanding the Kalman Filter. Problem 6 explains why we can often obtain
recursion relations of the type: x̂k+1 is a linear combination of x̂k and the “innovation” or new measured
information (yk+1− ŷk+1|k). If you are pressed for time, skip Problem 6 and study the solutions. It is better
to spend your time on Problem 5.

1. Classify each matrix as positive definite, positive semi-definite, or neither. In addition, if the matrix is
either positive definite or positive semi-definite, find a square root. You may use MATLAB to factor
a symmetric matrix as Λ = O>PO or as P = OΛO>.

(a) =

[
1 3
3 9

]
.

(b) =

 6 10 11
10 19 19
11 19 21

 .
(c) =

 2 6 10
6 10 14

10 14 18

 .
2. Use the results on Schur Complements to solve the following problems BY HAND:

(a) Determine if =

[
1 3
3 8

]
is positive definite or not.

(b) Determine if =

 1 0 6
0 4 7
6 7 10

 is positive definite or not.

(c) Find the range of a such that the following matrix is positive definite: =

 1 2 6
2 5 7
6 7 a


3. Find x of minimum norm that satisfies the equation[

1 3 2
3 8 4

]
x =

[
1
2

]
(a) Use the standard inner product on R3
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(b) Use the inner product < x, y >= x>

 5 1 9
1 2 1
9 1 17

 y
4. x has been bewitched to give the following data:

y = x+ ε

with

=


1 2
3 4
5 0
0 6

 y =


1.5377
3.6948
−7.7193

7.3621

 and E{εε>} = Q =


1.00 0.50 0.50 0.25
0.50 2.00 0.25 1.00
0.50 0.25 2.00 1.00
0.25 1.00 1.00 4.00


As in class, E{ε} = 0.

(a) Find the Best Linear Unbiased Estimate (BLUE) for x, using only the first two values of y. Also
compute the covariance of the estimate.

(b) Find the Best Linear Unbiased Estimate (BLUE) for x, using only the first three values of y. Also
compute the covariance of the estimate.

(c) Find the Best Linear Unbiased Estimate (BLUE) for x, using all the values of y. Also compute
the covariance of the estimate.

Note: For (a), you use the first 2 rows of y and and the upper 2× 2 part of Q. For (b), you use
the first 3 rows of y and C, as well as the upper 3× 3 part of Q. You see the pattern, I hope. Do all
the calculations in MATLAB. You do not have to turn in your code.

5. Read the Handout GaussianRandomVariablesAndVectors.pdf, which you can find on CANVAS. We
consider three jointly normal random variables (X,Y, Z), with

mean µ =

 −1
0
1

 and covariance Σ =

 2 2 1
2 4 2
1 2 2


(a) Compute the conditional distribution of

[
X
Y

]
|{Z = z} , the conditional distribution of the vector

[X,Y ]> given Z = z, which is the same as the joint distribution of the normal random variables
X|{Z = z} and Y |{Z = z}. To be extra clear, give the mean vector and covariance matrix for
[X,Y ]> given Z = z.

(b) Compute the distribution of X|{Z=z} conditioned on Y |{Z=z} = y.

(c) Compute the conditional distribution of X| Y = y
Z = z

, or more compactly, X|Y=y,Z=z, the con-

ditional distribution of X given the vector [Y = y, Z = z]>.

(d) Compare your answers for (b) and (c).
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6. Let (X ,R, < ·, · >) be a finite-dimensional inner product space. Our objective is to understand recursion
relations similar to what we see in RLS and the Kalman filter. With that in mind, let {y1, · · · , yN} be
a linearly independent set in X . For 1 ≤ k ≤ N define

Mk := span{y1, · · · , yk}

and for x ∈ X define x̂k := arg minm∈Mk
||x−m||, which is the orthogonal projection of x onto Mk.

(a) Suppose that for some 1 ≤ k < N , we have yk+1 ⊥ Mk (interpretation: the new measurement
yk+1 is orthogonal to the previous measurements). Show that there exists β ∈ R such that

x̂k+1 = x̂k + βyk+1,

and give a formula for β.

(b) We no longer make any hypothesis about yk+1 being orthogonal to Mk. What we do now is, for
each 1 ≤ k < N , define

ŷk+1|k = arg minm∈Mk
||yk+1 −m||,

which we interpret as the orthogonal projection of the new measurement yk+1 onto the subspace
generated by the previous measurements. Show that there exists β ∈ R such that

x̂k+1 = x̂k + β(yk+1 − ŷk+1|k),

and give a formula for β.

Remark: The error term (yk+1 − ŷk+1|k) is the “innovations” in the case of the Kalman filter
and RLS. What is particularly nice in the case of RLS and the Kalman filter, where we have a
model such as yk = Ckxk +vk, we can compute ŷk+1|k directly from x̂k, often with a formula such
as ŷk+1|k = Ck+1x̂k. In other words, we do not have to solve an extra optimization problem in
order to compute ŷk+1|k; instead, we can bootstrap from the previous solution to the optimization
problem.

3



Hints

Hints: Prob. 1 Use the help eig command in MATLAB.

Hints: Prob. 2 Recall that for a symmetric matrix M =

[
A B
B> C

]
the following are equivalent:

(a) M � 0

(b) A � 0 and C −B>A−1B � 0

(c) C � 0 and A−BC−1B> � 0

Hints: Prob. 3 This is an under determined system of equations and not an over determined system of
equations.

Hints: Prob. 4 Recall our formulas (using C := for convenience):

K̂ = (C>Q−1C)−1C>Q−1 and E{(x̂− x)(x̂− x)>} = (C>Q−1C)−1

For (a), you use the first 2 rows of y and C and the upper 2× 2 part of Q. For (b), you use the first 3 rows
of y and C, as well as the upper 3 × 3 part of Q. You see the pattern, I hope. Do all the calculations in
MATLAB. You do not have to turn in your code.

Hints: Prob. 5 Print out the handout on Jointly Gaussian Random Vectors, and read it carefully. Note
Fact 1: Conditional Distributions of Gaussian Random Vectors

(a) Identify X1 =

[
X
Y

]
and X2 = Z. Based on this, identify and write down Σ11, Σ12, Σ21, and Σ22,

and then µ1 and µ2, and finally, note that x2 = z. Now apply the formulas for µ1|2 and Σ1|2. These
are the mean and covariance of the jointly normally distributed random variables X|Z=z and Y|Z=z.

(b) From (a), we know X|Z=z and Y|Z=z are jointly distributed normal random variables, and we know
their mean and covariance. Rename the mean µ and the covariance Σ (i.e., µ1|2 → µ and Σ1|2 → Σ).
Using Fact 1, identify X1 = X|Z=z and X2 = Y|Z=z, and then identify and write down Σ11, Σ12, Σ21,
and Σ22, and then µ1 and µ2, and finally, note that x2 = y. Now apply the formulas for µ1|2 and Σ1|2.
These are the mean and covariance of a normally distributed random variable. Which one? If you do
not know, work part (c) and then return here. If you do know, still work part (c).

(c) Go back to the very beginning with our three jointly normal random variables, and this time identify

X1 = X and X2 =

[
Y
Z

]
. Based on this, identify and write down Σ11, Σ12, Σ21, and Σ22, and then

µ1 and µ2, and finally, note that x2 =

[
y
z

]
. Now apply the formulas for µ1|2 and Σ1|2. These are the

mean and covariance of the normally distributed random variable X|Y=y,Z=z.

(d) Read again the handout on Jointly Gaussian Random Vectors. Go back to the beginning and repeat
as necessary: FACT 4: If we have jointly distributed normal random vectors, when we condition one
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block of vectors on another, we always obtain either a jointly distributed normal random vector or,
if only a scalar quantity is left, a normally distributed random variable. This is an amazingly useful
property of Gaussian (i.e., normal) random variables.

Hints: Prob. 6 There are several ways to approach part (a):

• Method 1: Let Gk be the Gram matrix for Mk and Gk+1 be the Gram matrix for Mk+1. Then, using
yk+1 ⊥Mk, you deduce that

Gk+1 =

[
Gk 01×k

0k×1 < yk+1, yk+1 >

]
Use this block diagonal structure to relate the solution of the normal equations forMk+1 to the solution
of the normal equations for Mk.

• Method 2: The solution of the optimization problem depends on the subspaces Mk and not on the
bases you use for them. Apply Gram Schmidt to produce an orthonormal basis for Mk. Relate it to
an orthornormal basis for Mk+1. Then use what you know about the orthogonal projection of x onto
sets with orthonormal bases.

For part (b), we know from the Projection Theorem that yk+1 − ŷk+1|k is orthogonal to Mk. If you need a
second hint, note that

Mk+1 = Mk ⊕ span{yk+1} = Mk ⊕ span{yk+1 − v},

for any v ∈Mk. Hence, because ŷk+1|k ∈Mk by definition, we have

Mk+1 = Mk ⊕ span{yk+1 − ŷk+1|k} and Mk ⊥ (yk+1 − ŷk+1|k).

You can now apply your result from (a).

5


