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ABSTRACT 
 
 
Tactical Environmental Processor (TEP) is a through-the-sensor1 technique that 

converts radar returns from the AN/SPY-1 into environmental information known as 

spectral moments.  TEP was installed aboard the USS Normandy (CG 60) in May 2000 to 

support a Limited Objective Experiment during Joint Task Force Exercise (JTFEX) 00-2.  

On 15 May, TEP observed severe weather associated with a line of passing 

thunderstorms.  These weather events proved serious enough to suspend mid-cycle flight 

operations for the USS George Washington (CVN 73) during its simulated wartime 

scenario.  TEP is a significant benefit to nowcast weather forecasting and supports at-sea 

METOC and warfighters in two primary areas:  improved situational awareness and 

optimization of sensors, weapons and tactics.  Results from this case study demonstrate 

the importance of TEP as a Doppler at-sea weather radar in support of naval operations.   

 

 

                                                 
1 Through-the-sensor is a technique that extracts new information from existing sensor data, in this 

case; TEP converts the AN/SPY-1 radar returns into atmospheric measurements (spectral moments). 
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EXECUTIVE SUMMARY 
 

Tactical Environmental Processor (TEP) is a through-the-sensor technique that 

converts radar returns from the AN/SPY-1 into environmental information known as 

spectral moments.  TEP was installed aboard the USS Normandy (CG 60) in May 2000 to 

support a Limited Objective Experiment during Joint Task Force Exercise (JTFEX) 00-2.  

On 15 May, TEP captured a severe weather cell associated with a line of passing 

thunderstorms.  Observers on the USS George Washington (CVN 73) witnessed a 

waterspout, intense lightning storm and apparent microburst.  These weather events 

proved serious enough to suspend mid-cycle flight operations for the USS George 

Washington during its simulated wartime scenario. 

This thesis is one of the first public reports to exhibit the TEP program.  Focusing 

on the significant weather events from 15 May 2000, this case study contains a synoptic, 

mesoscale and Doppler at-sea weather radar (TEP) analysis.  The goal of analyzing the 

severe weather events from different perspectives is not to determine why the events 

occurred, but to emphasize the distinction between traditional at-sea forecasting and 

nowcasting2 with TEP.  The objective of this thesis is to provide an evaluation of TEP’s 

utility to the Navy, especially the warfighters. 

As weather radar, TEP directly supports the warfighter while providing METOC 

with an at-sea nowcast of the atmosphere.  The JTFEX synoptic and mesoscale analysis 

indicated thunderstorm activity in an area of operations, but TEP revealed individual 

storm cell locations.  Additionally, TEP provided a measure of the relative storm 

strength, which could be used for safety of flight and strike planning.  By fusing the TEP 

environmental nowcast with model forecasts and satellite interpretations, at-sea METOC 

can provide superior atmospheric knowledge to support the warfighter in a real-time 

fashion.  TEP is an environmental window that helps the surface warrior optimize his air 

defense radar while providing the carrier an excellent tool for operational planning.  The 

utility of the TEP atmospheric nowcast allows the Navy, especially the warfighters, to 

take advantage of the environment! 
                                                 

 xvii

2  Nowcast is a real-time rapid environmental assessment (REA) in the short (0-2 hours) and small 
horizontal scale (0-100 nautical miles). 
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I. INTRODUCTION  

In this era of increasing global conflict, our naval forces are frequently called 

upon to operate in remote and confined locations.  Environmental conditions affecting 

operations have become more complex and dynamic with the shift from open ocean to 

the littoral region.  In the littoral arena, naval forces are stationed in close proximity to 

hostile forces ashore and must operate in an environment defined by greater temporal and 

spatial atmospheric variability.  This complex battlespace combined with advanced naval 

systems mandates aggressive characterization of the tactical battlespace in order to 

determine the impact on aircraft, ships and sensors.  Without an accurate and timely 

characterization of the continually changing atmosphere, the warfighter is left to react to 

the constraints the environments places on the battlespace.  However, with a nowcast of 

the atmosphere, the warfighter is able to adjust sensors, weapons and tactics to exploit the 

environment surrounding the battlegroup in real-time.   

Littoral operations have greatly confined the space available for ship and air 

operations.  With less room to maneuver, there is an increased demand to identify 

potential severe weather cells before they influence naval operations.  The ability to 

directly observe and quantitatively measure properties of convective storm cells and 

predict their movement can benefit air and radar operations, especially those conducted 

outside the CONUS weather network.  Current operational Meteorology and 

Oceanography (METOC) products do not have the spatial or temporal resolution needed 

to capture real-time littoral varying environmental conditions nor can they nowcast 

specific weather events.  Tactical Environmental Processor (TEP) provides the critical 

atmospheric nowcast needed to configure weapons systems and ensure the safety of 

continuous air operations in the dynamically changing atmospheric conditions associated 

with the littorals. 

TEP is a thru-the-sensor technique that converts radar returns from the AN/SPY-1 

into environmental measurements known as spectral moments.  Unlike other 

environmental sensing techniques, TEP can perform these measurements simultaneously 

with normal radar operations.  On request from U.S. Second Fleet, TEP was engaged to 
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support a METOC Limited Objective Experiment (LOE) conducted during Joint Task 

Force Exercise (JTFEX) 00-2.  The purpose of this LOE was to evaluate the benefits and 

usefulness of TEP environmental sensing in support of the Navy.  This thesis is focused 

on a significant weather event that occurred during JTFEX 00-2.  On 15 May 2000, TEP 

observed an apparent microburst associated with a line of passing thunderstorms.  This 

weather event proved serious enough to suspend mid-cycle flight operations on the USS 

George Washington (CVN 73) during the simulated wartime scenario. 

Since 1995, the U.S. Navy and Lockheed Martin have been developing new and 

more efficient methods of characterizing the environment by utilizing through-the-sensor 

techniques. These studies culminated in an at-sea demonstration of TEP aboard USS 

O'Kane (DDG 77) and the LOE aboard USS Normandy (CG 60).  Both of these at-sea 

trials are detailed in the TEP Final Report (prepared by Lockheed Martin for the Office of 

Naval Research with limited distribution).  This thesis is the first in-depth analysis of the 

SPY-1/TEP system in an operational environment.  Since the TEP Final Report is the 

single source of TEP information, this thesis makes repeated reference to its content, 

especially when describing the TEP system and associated at-sea demonstration results. 

The objective of this thesis is to provide an evaluation of the utility of TEP for the 

Navy, especially the warfighters.  The thesis includes background material (Chapter II) - 

a description of the TEP system, TEP products and a comparison of the SPY-1 to the 

ground truth weather radar, NEXRAD.  Chapter III details the TEP data collection and 

processing.  Chapter IV contains two meteorological accounts, a synoptic/mesoscale3 

description and a TEP analysis (nowcast) of the weather events that took place during 

JTFEX 00-2.  A discussion of the synoptic/mesoscale analysis and the TEP nowcast 

ability concludes the JTFEX 00-2 section.  Chapter V is an evaluation of the TEP 

operational and environmental performance from a surface warfare, aviation and 

METOC perspective.  Recommendations for future TEP studies and research are found in 

Chapter V.  The Appendix provides a background discussion about AN/SPY-1 radar 

operations, giving non-AEGIS TEP users an understanding of SPY-1 dynamics from a 

radar operator perspective.   
                                                 

3 Synoptic scale is atmospheric motion on a range of thousands of miles; where Mesoscale is defined 
on horizontal scales of few to several hundred miles.    
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II. 

                                                

TACTICAL ENVIRONMENTAL PROCESSOR 

The primary focus of the TEP program has been to optimize Air Defense (AD) 

radar performance by using TEP to detect changing atmospheric conditions in near real-

time.  However, the utility of TEP as a tactical weather radar also provides critical 

nowcast information to non-AEGIS personnel.  To fully exploit the utility of TEP, 

potential users need to have a general understanding of the AN/SPY-1 radar system and 

its environmental influences from a warfighter perspective.  However, results of thesis 

can be presented outside of this AEGIS understanding.  For this reason, a background 

discussion about AN/SPY-1 radar operations is provided in the Appendix 

TEP performs its function with a combination of Commercial Off-The-Shelf 

(COTS) processors and specialized algorithms that convert radar returns from the 

AN/SPY-1 radars into environmental measurements known as spectral moments.  

Spectral moments (reflectivity, radial velocity and spectrum width) are basic radar 

meteorological measurements that could be used to support safe and effective at-sea 

operations.  The following section contains a description of the TEP system, TEP modes, 

TEP products and a comparison of TEP to another Doppler weather radar, NEXRAD. 

 

A.   SYSTEM DESCRIPTION 

TEP is a COTS-based signal processor that generates environmental spectral 

moments from SPY-1 radar in-phase and quadrature (I & Q)4 data.  TEP consists of two 

major sub-systems:  Auxiliary Environmental Signal Processor (AESP) and Display & 

Control Subsystem (DCS).  The AESP is responsible for capturing radar I/Q data and 

processing this data into spectral moments.  The DCS provides an operator interface and 

display for the processed spectral moment data.  The TEP system obtains radar I/Q data 

through a passive data tap and receives ship motion data from the Gyro Data Converter 

(GDC, an AEGIS subsystem).  Figure 2-1 provides the TEP system architecture.  The 

passive tap in the SPY-1 signal processor provides digitized I/Q data to TEP.  It is 

 
4   In-phase is the component of a complex signal along the real axis in the complex plane, and 

Quadrature is the component of the complex signal perpendicular to the real axis. 
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important to note that the data tap installed in the SPY-1 signal processor does not alter 

the functionality of the radar but merely extracts existing signals.  A TEP patch set for the 

SPY-1 radar control program was installed and operated in all modes of the SPY-1 with  

Figure 2-1:  TEP Block Diagram (from: TEP Final Report, 2000) 
 

the exception of weapons engagement.  Since the TEP operation aboard Normandy was 

only approved for demonstration during the JTFEX, TEP active patches were removed 

during weapons release, including gun and missile firings.  However, the TEP passive 

data tap remained resident in the SPY-1 signal processor. 

The AESP subsystem performs two basic functions: collect SPY-1 I/Q and 

stimulus data, and process the data into spectral moments.  After collection, the data is 

passed to a TEP signal processor where special algorithms convert raw I/Q data into 

spectral moments.  NTDS interface cards receive and decode ship motion data tapped 

from the Gyro Data Converter interface.  Ship motion data is used to remove the effects 

of a moving radar platform from the spectral moment data.  The AESP subsystem has a 

high-density 8 mm tape drive for archiving raw I/Q data streams for future data analysis.   

Once the SPY-1 returns are processed by the ASEP, the spectral moment data are 

transferred to the DCS where it is written into Universal Format (UF) data files.  The 

DCS serves as the operator interface and controller for the TEP system.  It is hosted on a 

portable UNIX-based workstation, which includes an external hard disk drive for 

processing data storage and an 8-mm tape drive for data archiving.  From the DCS, 
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operators choose which TEP scan mode to use for environment characterization.  

Processed UF files can be displayed using a NCAR RDI (National Center for 

Atmospheric Research, Radar Data Interface) display package.  The DCS operator has 

the ability to view available TEP products, displayed by elevation (PPI radar format) or 

along a particular radial from the radar (RHI display).   

 

B.   TEP SCAN MODES 

TEP is an adjunct signal processor that performs remote sensing of environmental 

measurements known as spectral moments.  In a passive role, TEP performs these 

atmospheric measurements simultaneously with normal SPY-1 operations.  Using 

standard SPY-1 search waveforms, TEP passively extracts high-resolution environmental 

data from normally scheduled radar scans.  TEP can also be used in an active role, where 

special 16- and 32-pulse Doppler (PD) SPY-1 waveforms achieve higher sensitivity to 

profile specific atmospheric conditions.  Each scan of the active TEP system requires a 

minimal amount of available SPY-1 resources (see Appendix for a description of AEGIS 

time allocation and the importance of radar resources).  Table 2-1 is a listing of the four 

TEP scan modes and their subsequent SPY-1 response.   

 

TEP Mode SPY-1 Usage SPY-1 Waveform Comments 

Tactical Passive Clear 1-Pulse = Reflectivity Only 

Tactical Passive MTI 3 or 4- Pulse = 3 Spectral Moments 

Non-Tactical Active PD-16 Special Refractivity Measure (RFC) 

Wind Profile Active Sparse PD-32 Radial Velocity and VAD used 

Clear Air  Active  PD-32 High Sensitivity Scan 

Table 2-1:  TEP Modes and SPY-1 Responses 
 

The TEP tactical mode passively uses normally scheduled SPY-1 clear and 

Moving Target Indicator (MTI) search waveforms to provide up to three spectral 

moments.  TEP only extracts reflectivity from the 1-pulse clear waveform, but generates 
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all three spectral moments from the 3 or 4-pulse MTI waveform.  Therefore, depending 

on SPY-1 radar settings, the TEP tactical mode data may contain any combination of 

reflectivity-only or reflectivity and velocity-based measurements for each dwell.  Since 

SPY-1 typically schedules MTI waveforms in regions where clutter exists, TEP tactical 

mode will usually provide data for all three spectral moments wherever significant 

surface clutter or precipitation is present.  In both cases (clear and MTI), refractivity and 

radio frequency propagation loss are provided via the SPAWAR Refractivity From 

Clutter (RFC) technique. 

The non-tactical PD-16 mode uses 16 coherent pulses at each beam position for 

the first two elevation angles in the SPY-1 search pattern.  This yields an improved level 

of sensitivity for the purpose of detailed refractivity estimation and increased spectral 

characterization for enhanced clutter filtering.  

To further increase radar sensitivity, the wind profiling and clear air modes use 

PD-32 waveforms (32 coherently integrated pulses).  Clear air mode uses waveforms that 

provide enough sensitivity to measure clear air winds, and turbulence found in the marine 

boundary layer or non-precipitating clouds.  The wind-profiling mode is a subset of the 

clear air mode, using a sparse PD-32 scan (every 4 beam positions) between 200 and 300 

in elevation. 

 

C. TEP PRODUCTS 

TEP uses up to three spectral moments to monitor the changing atmospheric state.  

Reflectivity is a measure of the strength of the radar echo (in dBZ) and is indicative of 

the density associated with the scatterer.  This product is used to detect precipitation, 

evaluate storm structure, estimate storm intensity and locate storm boundaries.  Radial 

velocity is a measure of the relative movement of the scatterer versus the radar.  Figure 2-

2 is a plot of the radial component of the wind, either toward or away from the radar.  

Radial velocity is used to estimate wind speed and direction, identify storm boundaries, 

locate severe weather signatures and observe suspected areas of turbulence.  Spectrum 

width is an estimate of velocity dispersion within the sampled radar volume.  The 

primary use of this variance product is to estimate turbulence in the radar volumes 
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associated with a variety of phenomena, including wind shear, turbulence, mesoscale 

circulations and general storm-generated turbulence 

Figure 2-2:  Radial Velocity Plot; blue-green colors indicate scatters moving toward TEP, 
and brown colors for scatters moving away TEP.  (from: TEP Final Report, 2000) 

 

TEP can convert the three base meteorological radar measurements into a diverse 

set of products via computer processing and the use of tactical and special SPY-1 

waveforms.  The following describes some of the current TEP products.  This summary is 

more of a starting point than an all-inclusive list, as TEP is an evolving system for the at-

sea warfighter and METOC forecaster. 

Among the various TEP products available, composite reflectivity was the feature 

chosen for automated display and dissemination during JTFEX 00-2.  Figure 2-3 is plot  

Figure 2-3:  Composite Reflectivity (from: TEP Final Report, 2000) 
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of composite reflectivity.  This two-dimensional map depicts the maximum reflectivity 

(i.e. storm’s precipitation intensity) for the total volume within the range of the radar.  

Composite reflectivity describes reflectivity data from all the elevations projected down 

to the first elevation tier.  Further, the maximum reflectivity value for each projection was 

chosen for display.  Although not optimal for meteorology, this “quick look” product 

provides an overview of the storm structure within the radar volume. 

TEP makes spectral measurements of the clutter environment and timely 

volumetric estimations of radar propagation conditions using the RFC algorithm 

(Gerstoft, et al., 2001).  TEP supplies high-resolution surface clutter maps from which 

RFC performs real-time assessments of propagation and ducting conditions surrounding 

the resident TEP platform.  Point measurement devices (i.e. rawinsondes) used with 

traditional radio frequency propagation assessment approach (i.e. Advanced Refractive 

Effects Prediction System) lack the three-dimensional refractivity assessments possible 

with TEP and RFC.  A single temperature-humidity profile relies on the simplified 

assumption of atmospheric homogeneity to derive refractivity for the entire battlespace.  

In contrast, RFC uses radar clutter returns to derive a sector-by-sector assessment of 

ducting and propagation surrounding the ship.  This propagation data can be used to 

position battlegroup assets to take advantage of spatial varying anomalous propagation 

conditions, or to compensate for deteriorating conditions.  Eckardt (2002) has evaluated 

the effect of model errors with the RFC approach. 
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When local atmospheric conditions are clear (no precipitation, heavy clouds or 

scatterers), TEP can utilize special high-sensitivity waveforms to characterize the 

environment.  These dedicated PD waveforms measure the weaker signals produced by 

phenomena that cause a change in the index of refraction.  TEP uses these active 

waveforms to perform cloud detection, wind profiling, and marine boundary layer 

characterization.  Wind profiling transmits a high-sensitivity PD-32 waveform in a sparse 

lattice to generate data for Velocity Azimuth Display (VAD) processing.  This data 

supports the generation of three-dimensional wind fields that could be used to nowcast 

carrier positioning for aircraft launch and recovery cycles.  Clear air conditions require 

the PD-32 waveform at all beam positions to collect data on a non-precipitating 

atmosphere such as cloud profiles and boundary layer information.   



TEP can also provide a two-hour history loop and storm track forecast.  These 

movie-like views allow the at-sea warfighter and forecaster to witness how the 

environment evolves and reveal a glimpse of how it may progress into the immediate 

future.  Additionally, TEP could provide critical mesoscale model verification data and 

eventually be adapted to support mesoscale model data assimilation.  Derived TEP 

products allow the at-sea forecaster to exploit the variability of atmospheric weather 

conditions and provide the critical ingredient for any potential nowcast weather system. 

 

D. AEGIS RADAR VS. NEXRAD 

In previous reports describing the TEP system, many comparisons of TEP and 

NEXRAD were made.  The two systems are similar; however, there are distinct 

differences that define TEP as a ”tactical” weather radar.  The first distinction is the 

difference in Doppler waveforms used by the two radars.  Another difference is location; 

NEXRAD is geographically fixed where TEP is resident on a moving platform.  Finally, 

the two radars vary in mission, NEXRAD is a stand-alone weather radar; whereas TEP is 

an external subset of the AN/SPY-1 radar and AEGIS Combat System.  Despite all these 

differences, it is still important to compare TEP and NEXRAD data sampled from the 

same time and point in space. 

TEP products are dependent on the SPY-1 tactical radar, which has a coded signal 

and compressed pulse to improve sensitivity and range resolution.  Pulse compression 

produces range sidelobes that produce ambiguous information when applied to weather 

events.  Recent radar technology has made significant inroads to this barrier through the 

use of Doppler tolerant sidelobe suppression techniques.  TEP’s ability to use pulse 

compression waveforms results in three major benefits: 1) increased sensitivity to detect 

weaker weather phenomena; 2) reduced data collection time scales; and 3) higher quality 

data points through averaging over more independent samples.  SPY-1 enhanced 

sensitivity provides enhanced examination of weak weather signals, such as vertical and 

horizontal wind shear, low altitude turbulence, and clear air turbulence.  Additionally, 

phased array radars with tactical waveforms can collect data for the same sample volume 

in a matter of seconds compared to several minutes for rotating radars such as NEXRAD. 
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Since TEP is deployed at-sea, it is not fixed with regard to location and its 

performance is subject to sea clutter.  Ship motion contributes to errors in the estimation 

of mean radial velocity (and the estimation of spectral width) and can degrade the 

performance of Doppler-tolerant processing.  TEP receives and decodes ship motion data 

that removes the effects of a moving radar platform from the spectral moment data and 

allows the use of phase compensation in TEP Doppler-tolerant processing techniques.  

Since most weather radars operate in fixed positions over land, low-pass filtering can be 

used to remove ground clutter contamination from the spectral moments.  However, sea 

clutter varies dramatically in intensity and velocity.  TEP uses a sophisticated matrix 

clutter filter to estimate sea clutter characteristics, and then remove the clutter signal 

without degrading the meteorological signal. 

Since TEP is a moving weather radar, TEP products must be referenced with 

respect to the user’s location (e.g. the carrier) and not necessarily with respect to the ship 

possessing TEP.  For example, NEXRAD systems are geographically fixed and therefore, 

their displays are viewed with a familiar geographic boundary such as shorelines, state or 

country boundaries.  Interpretation of detected features occurs with the user positioning 

themselves with respect to a familiar feature and immediately referencing the storm 

location and probable impact.  However, in naval operations, the ship based TEP data, 

ship-borne TEP user and radar observed storm feature could all be moving 

independently.  There may be not physical boundaries to reference besides man-made 

latitude and longitude parallels.   

10 

The most notable difference between TEP and NEXRAD seems to be related to 

their respective mission foci.  NEXRAD operations are focused only on characterizing 

the environment using various waveforms to produce a multitude of displays and 

products that help the weather forecaster describe the atmosphere.  The AEGIS Combat 

System and the AN/SPY-1 radar operations are focused on fleet air defense, not weather 

description.  Air Defense (AD) requires maximum radar ranges and rapid search times 

with minimal radar loading.  As a tactical weather radar, TEP uses passive and active 

modes of operation to characterize a constantly evolving environment.  Used passively 

(i.e. with SPY-1 tactical waveforms), TEP can support faster SPY-1 search times through 

clutter recognition without additional radar loading.  However, nowcasting may require 



the use of active TEP/SPY-1 waveforms to characterize small-scale events.  This places a 

minimal, but additional resource load on the already stressed tactical air radar.  TEP and 

SPY-1 must have balanced operations, allowing all interested parties to utilize the 

benefits that TEP has to offer, but not at the expense of excessive SPY-1 search times.  

The advantages of an at-sea NEXRAD quality weather radar are too great to be 

overshadowed by minimal increases in radar loading. 

One goal of the TEP at-sea demonstrations was to validate the accuracy of the 

TEP spectral moment measurements by comparison to WSR-88D (NEXRAD) radar.  A 

direct comparison of NEXRAD and TEP spectral moment values does not prove that 

TEP measurements are exact.  However, it is generally accepted by the operational 

meteorological community that TEP environmental measurements within a few dB of 

NEXRAD, are within the margin of error for the two radars and would be considered 

more than adequate for most operational applications.  The TEP Final Report contains a 

direct comparison of TEP reflectivity to the Jacksonville, Florida WSR-88D radar.  

Figure 2-4 shows the NEXRAD site compared with TEP data acquired from the USS 

Figure 2-4:  Comparison of TEP Reflectivity (left) vs. NEXRAD (right) for a Developing 
Squall Line Off Jacksonville on 09/10/99 (from:  TEP Final Report, 2000) 
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O’Kane that was positioned about 30 nm offshore.  Both reflectivity plots are a 

representation of the first elevation plot from their respective radars.  The scans were 

within 5 minutes of each other and represent the same convective storm.  The scans did 

not occur at the exact same time, due to the different time periods required for the two 

radars to obtain a full volume scan.   

To compare the accuracy of TEP measured reflectivity values, the difference 

between NEXRAD and TEP first elevation reflectivity plots were calculated.  Figure 2-5  

Figure 2-5:  TEP vs. NEXRAD Difference Plot (from: TEP Final Report, 2000) 
 

represents the difference between 0028Z TEP and 0024Z NEXRAD scans.  Additionally, 

the median difference was calculated for all overlapping 1x1 nm range cells in which 

both radars reported valid reflectivity measurements.  Results show a mean reflectivity 

difference of only 5 dBZ or less, well within the limits of measurement accuracy for both 

radars.  Considering that some minor differences can be attributed to variations in radar 

locations and thresholding of the SPY-1 data, TEP detected storm boundaries, structures 

and changes in storm intensity with similar accuracy to the NEXRAD system.  Assuming 

that NEXRAD measured reflectivity is accurate, this example shows that TEP measured 
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reflectivity is comparable to NEXRAD reflectivity accuracy.  This allows for the 

practical benefits of NEXRAD-like operations in forward-deployed regions that have no 

other in situ meteorological radar resources. 
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III. TEP DATA PROCESSING IN AT-SEA DEMONSTRATION 
(JTFEX 00-2)  

On request from U.S. Second Fleet, TEP was deployed to support a METOC 

Limited Objective Experiment conducted during JTFEX 00-2.  Beginning in February 

2000, TEP was configured for autonomous operations aboard USS Normandy (CG 60).  

Since JTFEX is a simulated high-threat environment, TEP was only operated in the 

passive (tactical) mode.  Data extracted from normal SPY-1 search waveforms during 

this demonstration supplied three spectral moments (reflectivity, radial velocity and 

spectrum width).  No high sensitivity waveforms were available.   

After operator initiation during the JTFEX 00-2 demonstration, TEP 

automatically sampled and processed a new volume scan approximately every ten 

minutes for the entire JTFEX.  A complete SPY-1 volume scan takes 20-30 seconds; 

however, ten-minutes was the approximate interval required to allow the Refractivity 

From Clutter (RFC, see Chapter II for further description) sub-system to conduct its 

environmental calculations.  TEP operated in an autonomous mode during most volume 

scans, but was manually terminated to support JTFEX scripted SIPRNET attacks and for 

periodic maintenance.  This explains the irregular (greater than ten-minute) data gaps 

associated with the JTFEX 00-2 data.  Since TEP is dependent on SPY-1 resources for 

environmental measurements, during non-radiating maintenance, Emission Control 

(EMCON) periods, or the establishment of flight quarters, there were occasional but 

sector specific TEP data outages.   

Once the Auxiliary Environmental Signal Processor (ASEP) processed the 

spectral moments, the data were transferred over a TEP ethernet to the Display and 

Control Subsystem (DCS).  The DCS converted the spectral moment into Universal 

Format (UF) data files and transferred the UF files to 8-mm tapes for data archiving.  

During processing, the JTFEX radial velocity spectral moments were corrupted.  

Lockheed Martin engineers believe these spectral moments are correctable, but the data 

were unavailable at the time of this thesis (personal communication). 
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Throughout the TEP LOE, composite reflectivity was derived from the 

reflectivity data and made available for viewing in the Combat Information Center (CIC) 

onboard Normandy.  Plots of composite reflectivity were then transferred via an internal 

ship-network to the Global Command and Control System – Maritime (GCCS-M) 

system, where a separate server at Navy Atlantic Meteorology and Oceanography Center 

(NLMOC, located at Norfolk, VA) pulled the composite reflectivity image every 30 

minutes via the SIPRNET.  Once at NLMOC, the composite reflectivity image was made 

available to the George Washington Battle Group via a JTFEX web site. 

At the conclusion of JTFEX 00-2, the TEP system and 8mm data tapes were 

removed from Normandy.  Lockheed Martin released a copy of the TEP data tapes to the 

Naval Research Laboratory (NRL) Monterey, CA for research purposes.  In the raw UF, 

TEP data are classified secret to protect the sensitivity of the AN/SPY-1 radar system.  

To comply with security declassification procedures, the TEP data included in this thesis 

have been thresholded at the 3-dBZ reflectivity level by an approved Lockheed Martin 

algorithm, and are thus declassified.  This prevents the disclosure of SPY-1 sensitivity 

and allows the TEP data to be processed, displayed and disseminated on unclassified 

media sources.  Additionally, during the declassification process the distance associated 

with the first range gate was modified to protect this classified part of the operation of the 

SPY-1 radar.  The unclassified value for the distance to the first range gate presented in 

this thesis is 4.26 nm (7.89 km).   

Development of processing procedures that were performed after declassification 

was done with the assistance of NRL and NCAR programs and personal.  First, the 

thresholded TEP data were hand corrected to properly increment the individual scan 

numbers into a sequential format.  TEP is a unique Doppler weather radar that is 

dependent on the collection of spectral moment data from the SPY-1, a tactical phased 

array radar.  All of the existing weather radar display programs are designed to support 

NEXRAD.  Since NEXRAD uses a rotating beam to observe weather events, it has 

different time sequencing properties than the SPY-1 radar.  Subsequently, the TEP 

processors wrote the mandatory UF header data (Barnes, 1980) based on rotating radar 

technology.  The corrected TEP UF data were converted to DORADE (SWP, also called 
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“sweep”) and meteorological data volume (MDV) files to be displayed on two existing 

NCAR visualization software packages (both designed to visualize NEXRAD).   

The first NCAR data display and manipulation system is called SOLO II.  SOLO 

II only accepts DORADE (SWP) files, but allows the user to view and edit the individual 

sweep volumes.  This tool was used to investigate the individual TEP files, but not as an 

editor.  All the TEP reflectivity data used in this thesis were left in their raw declassified 

format.  This allows the reader to witness any range or velocity aliasing errors and the sea 

clutter returns associated with TEP. 

The second NCAR visualization tool was the Configurable, Interactive Data 

Display (CIDD) software.  CIDD was developed to display real-time meteorological data 

but can be used for archived case studies.  Converting the raw or SOLO II processed UF 

TEP files into MDV format allows CIDD to display TEP reflectivities from the 

Normandy.  CIDD allows the user to integrate and display (in real-time), meteorological 

data from disparate and distributed sources (Hage, 2002).  It combines visualizations of 

gridded data, symbolic data and text overlaid with maps and geographical symbols.  Data 

from grids of differing sources, resolutions or positions can be viewed simultaneously, 

being automatically registered onto the same image.  Displays are automatically updated 

as new data arrives, and movie loops shift forward as time progresses.  Its client-server 

design allows a wide variety of distributed storage topologies and access modes.  By 

using an intelligent server, temporal and spatial clips are rendered to support the user, 

vice requesting entire data files.  This processes makes CIDD an ideal display system for 

low bandwidth applications.  CIDD was the display tool used in this thesis to visualize 

and investigate the TEP data associated with the 15 May 2000 case study.   
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IV. JTFEX 00-2:  15 MAY 2000 

TEP was included in a Limited Objective Experiment (LOE) during JTFEX 00-2.  

JTFEX is a simulated high-threat environment that involves naval, air and ground 

components, incorporating surveillance, reconnaissance and other operations that may 

include maritime interdiction, embassy support, and non-combatant evacuation.  The 

realistic scenario incorporates many of the challenges a carrier battle group and possible 

amphibious ready group may encounter during their upcoming deployment.  The 

METOC Limited Objective Experiment (LOE) conducted during JTFEX was designed to 

evaluate the benefits and usefulness of TEP environmental sensing in support of the 

operational fleet.  TEP was installed aboard USS Normandy (CG 60) and interfaced with 

the ship GCCS-M network, which provided SIPRNET connectivity to the George 

Washington Battle Group via Naval Atlantic Meteorology and Oceanography Center 

(NLMOC) ashore at Norfolk, VA. 

JTFEX 00-2 took place during a time and in a location where mesoscale 

convective systems were almost a daily occurrence.  The JTFEX operating environment, 

off the North Carolina coast, ranged from benign to prohibitive depending on 

thunderstorm location, a situation common in spring when cold frontal activity interacts 

with warm Gulf Stream waters.  The difference between environmental extremes could 

span a few nautical miles or an hour in storm evolution.  Thunderstorm events during the 

JTFEX provide a good illustration of the sensitivity of carrier operations to mesoscale 

weather events and the drastic need for an at-sea weather radar. 

On Monday, May 15, a line of severe thunderstorms formed to the south of the 

George Washington Battle Group.  Satellite imagery provided limited data; owing to the 

time delay to receive satellite updates and the inability of the satellite to penetrate cirrus 

cloud cover that was produced by and overlay the thunderstorm system.  Doppler weather 

radar, NEXRAD via the NIPRNET, was the primary tool used by forecasters aboard the 

USS George Washington (CVN 73) to track and observe storm conditions. 

At 19:28 (EST, 23:38 UTC) the USS George Washington (GW) turned into the 

storm front in an attempt to create enough headwind for a scheduled launch/recovery 
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cycle.  Severe storm conditions were observed, including heavy rain, intense lightning 

and an observed waterspout that was reported just 7 nm from the carrier.  As the GW 

passed under the downdraft of the storm, the winds suddenly increased and became 

radially outbound.  With no options available to maintain the required headwind, all 

flight operations for the simulated war were suspended until the carrier could reposition. 

The TEP Final Report recounts the events from the shooter on duty who had to 

quickly react to changing wind conditions for the last F/A 18 that was launched in the 

storm.  The flight was dialed-in at 28 kts, but during the pre-launch scan the winds 

suddenly increased to an estimated 50 kts.  This forced a quick and unexpected change of 

the launch settings.  Immediately following the aircraft launch, the shooter lost sight of 

the bow safety in the heavy rain and flight operations were suspended until the carrier 

could clear the storm area. 

The following chapter is a description of the events that occurred on 15 May 

2000.  The goal of approaching the severe weather events from different perspectives is 

not to determine why the events occurred from a purely scientific perspective, but to 

detail the differences between traditional at-sea forecasting and nowcasting with TEP.  

Section A contains two detailed accounts from meteorologists onboard the GW 

participating in the TEP LOE.  Sections B and C are a synoptic and mesoscale analysis.  

The next section is a description of the thunderstorm by the at-sea Doppler weather radar, 

TEP.  Finally, a brief summary of the analysis methods is included to demonstrate the 

value a nowcast system has on operational events. 

 

A. OBSERVATIONAL DATA 

During the JTFEX, sets of observers were stationed aboard the USS Mount 

Whitney (LCC 20, Command and Control Ship for Commander, 2nd Fleet), USS George 

Washington, and the USS Normandy.  These observers, Lockheed Martin engineers and 

scientific personnel, provided TEP support to the GW Battle Group as well as a first-hand 

account of how TEP products and services were received and utilized.  The following is 

an account of the activities that occurred on 15 May as witnessed by the meteorology 

observers aboard the GW.  The following observational weather summary is compiled 
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from the detailed trip reports of Dr. George Young (Penn State University) and Dr. John 

McCarthy (Naval Research Laboratory). 

Dr. Young witnessed a thunderstorm cluster to the south of GW which was 

proceeding NE with arcus on the SE side.  TEP and NEXRAD data (from Wilmington, 

N.C. NWS station) showed Normandy penetrating the NW edge of anvil precipitation.  

The thunderstorm cluster had not been forecasted, nor was the continued triggering of 

new convection along the gust front that formed its perimeter.  Satellite imagery was 

rarely able to penetrate the cirrus cloud deck located over the center of this mesobeta 

system of thunderstorms (Figure 4-1, red circle represents the USS Normandy position  

Figure 4-1:  GOES 8 VIS Satellite Image (1 km resolution) for 2245Z on 15 May 2000 
(red circle represent the USS Normandy area of operation) 

 

at the time of analysis).  Therefore, the gust front and new thunderstorm triggering were 

often obscured from remote sensors.    

At 0900(EST, 1300 UTC) lightning, rain and arcus was observed along the gust 

front boundary, located NW of the GW.  Thunderstorm condition 2 (thunderstorm 

development within 25 nm or expected within 6 hours) was declared.  At 1247, an IR 
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satellite image showed arcus around the boundary on the NE/SW batch of anvil that 

extended from Jacksonville, FL to Cape Hatteras.  The GW was located under the anvil, 

inside the ring of arcus.  TEP radar showed the same two cumulus congestus lines under 

the cirrus at the NW edge of the anvil and surface cold pool.  At 1450, GW was under a 

line of highly sheared cumulus-congestus.  The sky was overcast cirrus to the east and to 

the west it had scattered cumulus and cumulus congestus, some with lowering bases 

suggesting rainsqualls.  At 1533, the congestus line overhead GW dropped a “surprise” 

shower. 

At 1850, after watching the cumulus congestus line for 30 minutes, Dr. Young 

spotted a waterspout about 7 nm off the starboard beam of the GW.  A spray ring with a 

height and width of about 100 feet was visible under the funnel.  This storm was a 

mesogamma segment of the mesobeta gust front that circled the cold pool.  At 1856 the 

waterspout terminated as the rain and lightning became more intense; Dr. McCarthy 

stated that the cloud-to-sea/ground lightning was perhaps the most intense he had ever 

witnessed.  

At 1928, GW turned towards the storm to achieve enough headwind to support a 

launch/recovery cycle.  The storm was displayed as a line of 45 dB convective cores, 

within the range that TEP detects sea clutter, and one core at 50 dB.  After driving into 

the storm, GW had to terminate the launch due to increasing tailwinds under the 

downdraft.  GW set thunderstorm condition 1 (thunderstorm development within 5 nm or 

within 1 hour). 

Dr. McCarthy states that a major gust front/microburst associated with an intense 

thunderstorm appeared to form directly over the carrier and had a major impact on flight 

operations for the GW, although there was no sensor verification besides observation.  It 

was almost 1900 when a line of congestus formed into cumulonimbus, and a waterspout 

formed off of the starboard bow of the carrier.  This preceded the formation of an 

apparent microburst/downburst directly over GW.  There was heavy rain and intense 

lightning in all directions from the carrier.  GW was sailing northward into strong 

headwinds at the start of the event.  Aircraft were being launched into the face of the 

storm, with wind speed intensity as high as 50 knots.  As the intensity of rain increased 
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and visibility decreased, the flight deck crew and Airboss felt that the weather was 

becoming too severe to support air operations.  Soon the winds shifted and became 

southerly, indicating a tailwind flow on the backside of the microburst.  These winds 

made the flight deck unsuitable for continued air operations without a turn back toward 

the storm. 

 

B. SYNOPTIC ANALYSIS 

The following synoptic description is based on model initialization analysis from 

0000Z (16 May).  This date and time is referenced as 16/00, with 2300 on 15 May being 

the approximate time of the waterspout and apparent microburst events.  This analysis is 

from the Navy Operational Global Atmospheric Prediction System (NOGAPS).  

NOGAPS is a primitive equation, with hydrostatic approximation, model that uses the 

Multivariate Optimum Interpolation (MVOI) scheme to assimilate observations, model 

forecasts and climatology.  Even so, the NOGAPS analyses describe synoptic features of 

the atmosphere well.  Each NOGAPS model graphic displays a red “cross-hair” to 

represent the center of the JTFEX operating area (approximately 15 nm radius).  The 

model was used to provide an indication of the general conditions pertinent to the TEP 

case study, but should not be construed to be an exhaustive model analysis. 

 

1.  Upper Levels 

A negative tilted trough is located over the eastern seaboard of the United States 

(Figure 4-2).  The trough extends north from the JTFEX operating area into the Hudson 

Bay.  Over the past 12 hours, the 300 mb long wave trough has developed more of a 

negative tilt and is slowly deepening.  A relatively weak vorticity max associated with the 

500 mb long wave trough is centered over Vermont (Figure 4-3).  Downstream of the 

trough, a short wave ridge is building over the western Atlantic near 35N 60W.  A low 

pressure system, centered at 37N 50W, is almost vertically stacked between the 300 mb 

and 850 mb height fields.  The east coast is dominated by meridional flow associated 

with the deepening continental trough and building offshore ridge (located at eastern edge 
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of the model field).  The 300 mb and 500 mb troughs axes appear to be forward stacked, 

with 300 mb trough slightly ahead of 500 mb axis (not shown). 

At 300 mb, two jet streaks are evident in the meridional flow (Figure 4-2).  A 100 

kt NW-SE oriented jet streak is crossing the southern U.S. before terminating at the base 

of the upper level trough.  The northern jet streak consists of two separate meridional jets.  

First streak is just north of the 100 kt southern jet, while the second northern jet streak is 

found along the eastern seaboard.  This downstream jet streak has intensified and become 

more aligned with the coast during the past 12 hours.  The 100 kt core of downstream jet 

streak is positioned just off the coast of Maine.  Of particular interest is the location of the 

jets’ divergent regions in relation to area of interest.  The southern jet streak is positioned 

such that the left exit region is just south of the JTFEX operating area, while the 

downstream northern jet streak has its right entrance region near the area of operations.   

 

2.  850mb and Surface 

A strong ridge extending from southern Illinois into northern Minnesota is found 

over the continental U.S. (Figure 4-4).  A trough with a strong positive tilt is located off 

the eastern seaboard over the Gulf Stream.  This deepening trough almost extends to the 

pre-existing trough associated with the 850 mb cyclone over northern Canada.  The 500 

mb and 850 mb troughs appear to be out-of-phase, but the short wave ridge found in the 

upper levels over the western Atlantic is evident at 850 mb between the two merging 

troughs.  Upper level closed low appears at 850 mb near 37N 53W.  A distinct frontal 

boundary is found in the equivalent potential temperature field, located directly over the 

area of interest (Figure 4-5).  This frontal boundary has intensified and slowly 

propagating through the JTFEX operating area during the past 12 hours. 

At sea level, the eastern half of the U.S. is dominated by a 1021 mb anticyclone 

positioned over Ohio, while the western Atlantic is under the influence of a weak 1010 

mb low pressure center (Figure 4-6).  The JTFEX area of operations is loosely bound 

between the high and low pressure systems.  
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Figure 4-2:  16/00  300mb Heights and Isotachs (red cross-hair represents center of 

JTFEX OPAREA) 
 
 
 

 
Figure 4-3:  16/00  500mb Heights and Absolute Vorticity (red cross-hair represents 

center of JTFEX OPAREA) 
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Figure 4-4:  16/00  850mb Heights and 500mb Heights (red cross-hair represents center 

of JTFEX OPAREA) 
 
 
 

 
Figure 4-5:  16/00  850mb Heights and Equivalent Potential Temperature (red cross-hair 

represents center of JTFEX OPAREA) 
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Figure 4-6:  16/00  Sea Level Pressure and IR Satellite Image (red cross-hair represents 

center of JTFEX OPAREA) 
 
 
C. MESOSCALE ANALYSIS 

Similar to the synoptic analysis, the following is a description of the atmosphere 

from a mesoscale perspective.  These analyses are from the mesoscale Coupled Ocean 

Atmosphere Prediction System (COAMPS) model.  COAMPS uses a nested grid scheme 

to achieve finer horizontal resolution.  Three nested grids result in horizontal output 

domains of 81 x 27 x 9 km.  The outer grid (81 km resolution) was defined to represent 

the U.S. East Coast and initialized from NOGAPS analysis fields.  Vertical levels were 

resolved with 10 levels on sigma z coordinates.  COAMPS ran for two 24-hour periods, 

one initialized at 1200Z (15 May) and the other at 0000Z (16 May).  These dates and 

times are referenced as 15/12 and 16/00, with 16/00 being the approximate time of the 

waterspout and apparent microburst events.  Again, a red “cross-hair” in the COAMPS 

model display represents the center (approximate 15 nm radius) of the JTFEX operating 

area for this limited 15 May 2000 case study.  As in the NOGAPS analysis, use of 

COAMPS is considered instructional regarding the general mesoscale situation, but 

should not be considered an in depth scientific analysis.  
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Similar to the synoptic NOGAPS analysis, COAMPS displays the 300 mb 

trough/jet streaks (Figure 4-7, jet streaks not shown) and 500 mb trough/absolute 

vorticity (Figure 4-8, absolute vorticity not shown) throughout the two model runs.  Since 

the significant weather events occur near the initialization of the 16/00 COAMPS model, 

Figure 4-7 and Figure 4-8 overlay the 15/12 +12 hour and 16/00 initialization model runs.  

Note the similar structure used by the two different COAMPS model runs to define the 

300 mb and 500 mb long wave troughs located over the region of interest.  Both 300 mb 

COAMPS troughs display the similar negative slope found in the synoptic analysis.  The 

300 mb southern and seaboard meridional jet streaks described by NOGAPS have similar 

placements and strengths in the COAMPS model.  At 500 mb, synoptic and mesoscale 

models views are again similar.  The 500 mb trough displays an almost neutral slope over 

the focused JTFEX area for both COAMPS and NOGAPS.  Similarly, no appreciable 

vorticity is associated with either model’s mesoscale 500 mb trough.    

The 850 mb comparison of 15/12 +12 hour and 16/00 initialization models 

(Figure 4-9) shows a good resemblance to the NOGAPS 850 mb height analysis (Figure 

4-4).  A timing difference between the two COAMPS model runs is evident in Figure 4-

9, but each run displays the positively tilted long wave trough in similar locations.  

However, there is a discrepancy in the comparison of sea level pressure between 

NOGAPS and COAMPS.  COAMPS 15/12 +12 hour model representation of sea level 

pressure is similarly to the 16/00 NOGAPS analysis (Figure 4-6), but the 16/00 

COAMPS initialization is distinctly different (comparison of COAMPS 15/12 +12 hour 

and 16/00 initialization models are not shown).  Believing the difference to be related to 

COAMPS model initialization, Figure 4-10 is a comparison of 15/12 +15 hour to 16/00 

+3 hour sea level pressure fields.  Figure 4-10 show a similar structure between the two 

COAMPS model runs, with a small variation in intensity over the area of interest.  
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The synoptic and mesoscale model similarity found in the upper level features is 

not found in the comparison of 850 mb equivalent potential temperature.  The well 

defined frontal feature found over the JTFEX area in the NOGAPS analysis (Figure 4-5) 

is not seen in the COAMPS model, in terms of phase.  The COAMPS frontal feature 

appears to be about 100 nm to the west of the NOGAPS analysis, nevertheless, there are 

certainly similarities except for the phase shift.  The 15/12 +12 hour equivalent potential 



temperature analysis (Figure 4-11) shows a strong coastal baroclinic zone, but does not 

reveal a frontal feature over the JTFEX operating area.  The 16/00 initialization analysis 

is not displayed because COAMPS was originally initialized without NOGAPS moisture 

fields.  Therefore, the 16/00 initialization requires 6-8 hours to generate an equivalent 

potential temperature structure.  Of particular interest, the COAMPS 500-1000 mb 

thickness fields are comparable to the NOGAPS model, but neither model thickness 

fields represents the well defined frontal boundary like the equivalent potential 

temperature profile (thickness plots for NOGAPS and COAMPS are not shown). 

 

 

 
Figure 4-7:  Comparison of 300 mb Heights for 15/12 (green) at Model Time +12 hours 

and 16/00 (blue) Initialization (red cross-hair represents center of JTFEX OPAREA) 
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Figure 4-8:  Comparison of 500 mb Heights for 15/12 (green) at Model Time +12 hours 

and 16/00 (blue) Initialization (red cross-hair represents center of JTFEX OPAREA) 
 
 

 
Figure 4-9:  Comparison of 850 mb Heights for 15/12 (green) at Model Time +12 Hours 

and 16/00 (blue) Initialization (red cross-hair represents center of JTFEX OPAREA) 
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Figure 4-10:  Comparison of Sea Level Pressure for 15/12 (green) at Model Time +15 
Hours and 16/00 (blue) at Model Time +3 Hours (red cross-hair represents center of 

JTFEX OPAREA) 
 
 
 

 
Figure 4-11:  Comparison of 850 mb Equivalent Potential Temperature for 15/12 (green) 
at Model Time +12 Hours and 16/00 (blue) Initialization (red cross-hair represents center 

of JTFEX OPAREA) 
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D. TEP ANALYSIS 

TEP was placed aboard the USS Normandy to characterize the JTFEX 

atmosphere.  During this simulated high-threat environment, no active pulse Doppler 

waveforms were permitted due to the experimental nature of the TEP installation.  TEP 

was only exercised in a passive role and collected spectral moment data from normal 

SPY-1 operations.  The TEP data were simultaneously archived to 8mm tape.  During 

processing, the radial velocity spectral moments were corrupted.  For the purpose of this 

limited case study, only TEP reflectivity data will be presented. 

After the TEP data were collected, SPY-1 volume scans were displayed as plots 

of composite reflectivity in the Combat Information Center (CIC) onboard Normandy.  

This processed TEP product was then pulled by NLMOC at Norfolk, VA every thirty 

minutes.  The composite reflectivity plots were made available to the George Washington 

Battle Group, mainly the METOC Team aboard GW, via a SIPRNET connection to the 

JTFEX 00-2 website.  Like most new experiments, there were connectivity issues 

associated with the transfer of data.  NLMOC had difficulty pulling the processed TEP 

data from Normandy.  Additionally, the GW METOC Team experienced long delays in 

downloading the TEP composite reflectivity plots from the JTFEX website.  These 

difficulties were compounded significantly by simulated SIPRNET attacks that were 

scripted into the JTFEX scenario.  The end result was that most TEP images were far too 

late to be of value to the METOC Team or GW Battle Group. 

Drs. Young and McCarthy observed the severe weather events from the GW 

beginning at 1900 (EST) or 2300 (UTC).  Table 4-1 is a complete listing of the available 

TEP volume scans that display the suspected thunderstorm cell.  Of the 17 scans listed, 

only volume scan #9 (00:24:51 UTC) was incomplete and contained no usable data.  

Table 4-1 also shows an inconsistent time interval between each volume scan.  A ten-

minute interval is the approximate time required to allow the Reflectivity From Clutter 

(RFC, see Chapter III for further description) program to conduct its environmental 

calculations.  During some volume scans, TEP was operated in an autonomous mode (ten 
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Scan Number Time (UTC) Scan Time (sec) Latitude (W) Longitude (N) 

1 22:43:48 23 330 06’ 41.4’’ 0760 50’ 26.2’’ 

2 22:53:36 33 330 08’ 05.3’’ 0760 49’ 13.1’’ 

3 23:10:00 30 330 08’ 59.6” 0760 47’ 11.0” 

4 23:20:24 28 330 09’ 29.2” 0760 46’ 04.4” 

5 23:30:00 24 330 08’ 39.8” 0760 44’ 54.2” 

6 23:40:45 12 330 07’ 10.6” 0760 44’ 50.3” 

7 23:50:57 34 330 04’ 42.2” 0760 46’ 38.6” 

8 00:00:26 24 330 02’ 04.2” 0760 48’ 22.0” 

9 00:24:51 No Data 320 56’ 33.4” 0760 53’ 48.1” 

10 00:37:29 25 320 57’ 13.0” 0760 54’ 51.5” 

11 00:47:16 24 320 58’ 46.6” 0760 52’ 44.0” 

12 00:57:15 30 330 00’ 35.3” 0760 52’ 14.9” 

13 01:07:14 30 330 01’ 39.7” 0760 51’ 48.6” 

14 01:17:12 28 330 02’ 19.3” 0760 50’ 49.6” 

15 01:26:56 22 330 03’ 28.1” 0760 50’ 00.6” 

16 01:37:15 30 330 04’ 13.1” 0760 49’ 02.3” 

17 01:46:51 31 330 05’ 07.4” 0760 48’ 37.8” 

Table 4-1:  TEP Reflectivity Data Used for 15 May 2000 Case Study 
 

minute intervals) and during other scans TEP was manually terminated to allow for 

experimentation with the RFC program.  This explains the irregular data gaps associated 

with the case study presented here.  The ending scan time is used to name and reference 

each volume scan file.  Additionally, Table 4-1 contains the actual SPY-1 radar time 

required to conduct each volume scan.  Every scan was sampled from regions where the 

SPY-1 radar was actively radiating, nominally defined as a full 360° in azimuth and 19° 
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in elevation.   The positioning of the Normandy is included, but the relative spacing 

between the Normandy and GW is not available. 

 The following TEP reflectivity plots are snapshots taken from the Configurable, 

Interactive Data Display (CIDD, NCAR display system) system that was described in the 

TEP data processing section (Chapter IV).  Figure 4-12 shows a TEP reflectivity plot.  

Most of the CIDD plots presented are volume scans from the lowest elevation angle, 0.70 

(note pink elevation bar located on the right-hand-side of Figure 4-12).  The CIDD plot 

includes a reflectivity color bar (dBZ units), plot title, range rings and azimuth markers 

(not displayed on Figure 4-12).  Figure 4-12 shows a full volume scan of TEP reflectivity 

out to 100 nm (display limit of all TEP products during the LOE).  Overlaid on the 

reflectivity plot is archived lightning data (an archived National Convective Weather 

Forecasting (NCWF) product provided by NCAR, specifically Research Applications 

Program Division).5  The lightning is symbolized by a small orange “+” symbol (only 

over the ocean) and remains resident on the reflectivity plot for thirty minutes.  This long-

range plot of TEP reflectivity also displays the North Carolina coast and corresponding 

Archived 
Lightning 

Data 

Figure 4-12:  Plot of TEP Reflectivity for 00:57Z on 15 May 2000 
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5   Original lightning data was from Global Atmospherics Inc. (via NCAR) 



National Weather Service (NWS) NEXRAD locations (LTX = NWS Wilmington and 

INS = NWS Morehead City).  All the reflectivity displays used in this TEP analysis will 

be close-in snapshots of this same operating area. 

 Figure 4-13 is a zoomed plot of TEP reflectivity.  Of particular interest is the 

blank region located between 3450 and 0850.  This non-radiating (“blanked”) region for 

the SPY-1 radar could be the result of common maintenance procedures or something as 

routine as the setting of flight quarters for helicopter launch/recovery.  Since the SPY-1 

radar is not radiating in this sector, there were no TEP data collected.  This same 

condition applies for the inner blind zone associated with the non-radiating region before 

the first range gate (range to the first range gate is 4.26 nm).  A closer examination of the 

reflectivity plot demonstrates how different SPY-1 waveforms or sensitivities sample the 

environment.  Notice the distinct SPY-1 waveform/sensitivity alteration at 0950 and 2750 

that reveal a noticeable change in the sea-clutter return.  These changes could be the 

result of high power versus low power sectors or an alteration in the actual waveform 

generated to analyze the battlespace.  Figure 4-13 also shows the level of detail obtained 

 

Distinct 
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Change 

Archived
Lightning 

Data 

Figure 4-13:  Zoomed Plot of TEP Reflectivity for 2340Z on 15 May 2000 
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with the TEP environmental characterization.  The NCAR CIDD software measured pixel 

values of 49 dBZ at 5 nm on a bearing of 2100 and 52 dBZ at 12 nm on a bearing of 1950.  

Note the relative placement of archived lightning data in relation to the reflectivity 

centers and within the first range gate.  This archived product provided an independent 

account of the storm location within the non-illuminated region of the TEP sensor.  

Accounting for storm motion, it is clear to see that the reflectivity and lightning data 

directly correspond with the convective weather. 

 The following reflectivity analysis is a chronological account of the TEP data 

gathered during the time of significant weather.  It is assumed that the thunderstorm of 

interest was located within the Normandy reflectivity display.  This assumption is 

justified by the fact that the focus of this case study is to show the value added by the 

TEP nowcast ability and not to determine the exact cause of the severe weather present 

on 15 May 2000.  It should be emphasized that the discussion and plots of TEP 

reflectivity are a description of the environment from the perspective of tactical weather 

radar.   Any direct comparison to the NEXRAD characterization of the storm would be 

made out of context and are beyond the scope of this case study.  Additionally, this thesis 

describes captured CIDD plots of TEP reflectivity; however, a long-range movie 

projection of the seventeen TEP scans listed in Table 4-1 can be viewed at the following 

web page:  [ftp://ftp.nrlmry.navy.mil/receive/7500/7503/Robinson/TEP Movie.ppt]. 

 Figure 4-14 shows a zoomed plot of the TEP reflectivity data collected at 22:43Z.  

Prior to this analysis, there was a 38-minute data gap.  At 22:43Z, there are no significant 

reflectivity returns in the 0.70 reflectivity plot that would support the severe weather 

observed from the GW.  However, when the elevation was increased to 9.10 (Figure 4-15) 

there was evidence of a severe storm just inside the first range gate.  The 55+ dBZ 

reflectivities found at 3150 represent strong convection within the top6 of the storm cell.  

The next TEP analysis, Figure 4-16 (22:53 displayed at 0.70) reveals no signature of the 

storm cell.  In fact, it was not until 23:20 that CIDD overlays lightning data with 

                                                 
6  The phased array and rapid scan of the SPY-1 radar allows TEP to analyze a storm that is essentially 

located over the USS Normandy.  Conventionally scanning weather radars, like NEXRAD, would not be 
able to observe an overhead storm (directly overhead is within their no-radiating region, cone-of-silence). 
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relatively high reflectivity returns (+40 dBZ).  The main thunderstorm cell was located 

within the TEP blind zone, inside the first range gate.   

At 23:30 (Figure 4-19), there was a drastic change in the SPY-1 waveform 

between 2400 and 2800.  The radar operator was reacting to the environment by adjusting 

the SPY-1 settings to minimize the clutter return associated with the storm.  This clutter 

region will be searched by the de-sensitized waveform for the next 30 minutes to an hour.  

Unfortunately, the incomplete TEP data scan (00:24Z) occurs in middle of when the 

waveform was returned to its original state.  Therefore, it is hard to exactly determine the 

time when the radar operator was able to re-sensitize the region with a more robust 

waveform.  However, these regions of sensitivity adjustment are important for the 

conservation of SPY-1 resources and become tactically significant when they are co-

located within or near a designated threat bearing.  Without a nowcast of the atmosphere, 

the radar operator is left to guess when the environment can support increased SPY-1 

sensitivity.  This is one of the main areas where TEP is an outstanding utility for the 

surface warfare community. 

From the first TEP reflectivity plot (Figure 4-14, 22:43) until time 23:40 (Figure 

4-20), the CIDD plot remained centered on the Normandy initial position.  This provides 

a “viewer referenced display” where the sequential TEP reflectivity plots reveals 

Normandy’s movement throughout the storm period.  This movie-like display is useful to 

TEP users who are not onboard the TEP platform and want to visualize storm motion.  

Between times 22:43 and 23:40, Normandy traveled NE and returned to the SW.  At time 

23:40, Normandy was displaced by 4.69 nm (bearing 2670) from the original position.  

The movement pattern of the Normandy helps to explain why the thunderstorm remains 

within the SPY-1 blind zone for such an extended time period. 

After 23:40, the lightning activity began to increase but the storm cell was still 

confined to the blind zone within the first range gate.  Finally, at time 00:37 (Figure 4-23) 

the thunder cell are characterized by TEP and clearly evident between 0900 and 1500.  

The archived lightning data corresponds with the strong TEP reflectivity returns and the 

observed reports of an intense lightning storm.  Figure 4-24 is a zoomed picture of the 

same thunderstorm cell.  Strong convective weather was represented by the reflectivity 
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values near 50 dBZ throughout the cell.  A zoomed display of the same storm cell (still at 

time 00:37) from a 9.10 elevation shows a snapshot of intense convection within upper 

portions of the cell.  This elevated plot strongly resembles the elevated snapshot of 

reflectivity from initial time of 22:43 (Figure 4-15), two hours prior. 

 There was a second storm cell in Figure 4-23 (time 00:37) bearing 0500 at 25 nm 

from Normandy.  Similar to the storm of interest, strong reflectivities and intense 

lightning also define this second cell.  In the last reflectivity plot shown for this case 

study, Figure 4-26 (time 00:47), the two storms are clearly evident and show regions of 

strong convective weather.  For the next hour, both storms are characterized and tracked 

by TEP as they head due south.  

 

 

 

 
Figure 4-14:  TEP Reflectivity Plot for 22:43Z on 15 May 2000 (Strom of interest 

occurred at 23:00Z, previous TEP data was at 22:05) 
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Figure 4-15:  TEP Reflectivity Plot (9.10 elevation) for 22:43Z on 15 May 2000 (notice 

upper level of intense storm at 3150, body of storm within first range gate) 
 

 
Figure 4-16:  TEP Reflectivity Plot for 22:53Z on 15 May 2000 
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Figure 4-17:  TEP Reflectivity Plot for 23:10Z on 15 May 2000 

 

 
Figure 4-18:  TEP Reflectivity Plot for 23:20Z on 15 May 2000 
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Figure 4-19:  TEP Reflectivity Plot for 23:30Z on 15 May 2000 (distinct SPY-1 
waveform or power change between 2400 and 2800) 
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Figure 4-20:  TEP Reflectivity Plot for 23:40Z on 15 May 2000 (SPY-1 waveform 
between 2400 and 2800 is still de-sensitized) 
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Figure 4-21:  TEP Reflectivity Plot for 23:50Z on 15 May 2000 (SPY-1 waveform 
between 2400 and 2800 is still de-sensitized, second thunder cell bearing 040 @ 27nm) 
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Figure 4-22:  TEP Reflectivity Plot for 00:00Z on 16 May 2000 (SPY-1 waveform 
between 2400 and 2800 is still de-sensitized) 
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Figure 4-23:  TEP Reflectivity Plot for 00:37Z on 16 May 2000 (SPY-1 waveform 
between 2400 and 2800 has been restored to a more robust search pattern, lightning 

directly corresponds with significant intensities from both thunderstorm cells) 
 

 
Figure 4-24:  Zoomed TEP Reflectivity Plot for 00:37Z on 16 May 2000 (lightning 

corresponds with strong reflectivity for a significant storm)  
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Figure 4-25:  Zoomed TEP Reflectivity Plot (9.10 elevation) for 00:37Z on 16 May 2000 

(snapshot of intense convection within upper portions of the thunderstorm cell) 
 

 
Figure 4-26:  TEP Reflectivity Plot for 00:47Z on 16 May 2000 
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E. DISCUSSION  

The goal of this chapter was not to evaluate TEP during the JTFEX, but to 

demonstrate the TEP utility as an at-sea Doppler weather radar.  Analyzing this severe 

and operational important weather event was accomplished by two distinct weather 

characterization methods.  The synoptic/mesoscale analysis provided a forecast for 

thunderstorm activity, while the TEP nowcast revealed individual cell detection and 

relative storm intensities.  In comparison to the environment, these two techniques could 

have provided the GW METOC Team with the tools necessary to support the warfighter.  

However, connectivity issues and experimental data gaps constrained the TEP 

operational debut.  Had this information been made available to the GW Battle Group in 

a real-time manner, the weather conditions that suspended flight operations on 15 May 

could have been avoided if the METOC office had the conduit necessary to inform the 

decision-makers on the bridge of the hazardous weather situation.         

From an analysis perspective, TEP provided critical weather information to the 

JTFEX warfighters and METOC.  Figure 4-27 contains a background display of IR  

 
Figure 4-27:  Independent Severe Storm Verification - GOES IR Channel 5 Imagery 

(23:35Z) Overlaid with TEP Reflectivity (23:40Z) and Archived Lightning Data 
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satellite (channel five) imagery overlaid with TEP reflectivity (0.70 elevation) and 

archived lightning data.  The TEP reflectivity (23:40Z) and the satellite data (23:35Z) are 

within five minutes.  The data fusion plot reveals the storm cell location and relative 

intensity from three independent sources.  This composite plot collaborates the TEP 

analysis and is an independent verification of the severe weather that occurred on 15 May 

2000.  It is important to note the value-added by incorporating all the weather sensors 

into a common operating picture or data fusion system. 
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V. SUMMARY AND CONCLUSIONS 

Diverse battlespace challenges and advanced naval systems have increased the 

importance of accurate and timely atmospheric characterization.  A deployed naval 

battlegroup faces diverse and often challenging environments.  Clutter and anomalous 

propagation impact sensor and weapon performance while clouds and severe weather 

effect fleet operations.  At-sea warfighters and weather forecasters require current, 

relevant information about the ever-changing environment surrounding the battlegroup.  

This requirement is enhanced in littoral regions, where restricted space and volatile 

environmental conditions combine to amplify the dramatic meteorological variability.  

TEP provides this critical weather information to the warfighter and METOC in a 

nowcast format. 

The objective of this thesis was to demonstrate TEP utility to the Navy, especially 

to the warfighter.  The results from the JTFEX 00-2 TEP analysis clearly show that TEP 

provides a significant at-sea capability for the Navy.  TEP demonstrates this capability 

via a case study that could be considered a worst-case scenario for the nowcast of the 

JTFEX storm.  There was no history of the thunderstorm prior to 22:43Z and for the next 

two hours the TEP characterization was masked by the non-radiating sector within the 

first range gate.  Even with all these difficulties, it is evident from the JTFEX severe 

weather analysis that TEP offers a significant advantage to any at-sea naval operation.  

TEP nowcast weather information could be used to make measurable impacts on the 

operational capabilities for any battle group or deployed naval unit.  The utility of the 

TEP atmospheric nowcast allows the Navy, especially the warfighters, to take advantage 

of the environment! 

 

A. SURFACE WARFARE 

Tactical engagements are inseparable from the environment in which they are 

fought.  Therefore, to fully exploit the METOC aspects of the battlespace is to gain the 

tactical advantage over an adversary.  The AEGIS weapon system, the premiere air 

defense system in the U.S. Navy, does not have the environmental support to 
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continuously optimize system parameters and adapt to evolving atmospheric conditions.  

The TEP environmental nowcast combined with the RFC ducting estimates provide the 

temporal and spatial sampling that can help to detect and subsequently control difficult 

SPY-1 clutter events.  TEP and RFC provide the radar operator an environmental window 

to control radar resources.  Radar operators can become proactive vice reactive in their 

response to a constantly changing atmosphere.  Figure 5-1 demonstrates how the TEP 

environmental nowcast could be used to balance available radar resources against 

constantly changing environmental conditions.  Goal is to match the blue-dashed line 

(radar sensitivity) with the solid-red line (environmental conditions).  TEP can 

specifically help 

    Environmental Conditions     Radar Sensitivity        Failure to De-Sensitize       Failure to Re-Sensitize 
Figure 5-1:  Plot Demonstrating the Method and Importance of Real-Time Sensor 

Optimization (from: Easton, 2000) 
 

the radar operator in two critical areas: 1) de-sensitizing the radar when the environment 

degrades (darker green shading) and; 2) re-sensitizing the radar when battlespace 

characterization is less than what is permitted by the atmosphere (light yellow shading).  

De-sensitizing the sensor is instinctive; minimize radar resources when search times 

exceed operational levels.  However, increasing radar sensitivity is counter-intuitive and 

difficult to predict without an atmospheric nowcast tool.  To alter a satisfactory radar 

picture, even though the current sensitivity setting is sub-optimizing the radar’s 
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capability, is not an obvious conclusion for even the most experienced radar operator.  

TEP provides the tools to help tailor sensor configuration with changing atmospheric 

conditions, thereby maximizing sensor capabilities and optimizing radar coverage.  

Another use of weather radar at sea would be to exploit stormy conditions against the 

enemy.  By placing critical assets within a storm, to avoid surface or airborne detection or 

attacks, could be a temporary but significant advantage on the battlefield. 

Operationally, TEP supports the SPY-1 radar by providing an environmental 

characterization, but TEP can detract tactically from available SPY-1 resources if the 

active TEP load is too great.  Potential TEP users must have an understanding of SPY-1 

operations and the significance of over-scheduling active TEP waveforms.  To preserve 

the tactical importance of SPY-1 resources, a balance needs to be established between the 

operational significance of available SPY-1 resources and the atmospheric sensitivity 

required.  This balance should not be a constant, but a flux that favors the tactical 

importance of SPY-1 resources based on operational threats and the significance of the 

environmental characterization requested.  

 

B. AVIATION 

Almost 160 NEXRAD radars are located throughout CONUS and also in Alaska, 

Guam, Puerto Rico, and South Korea.  These radars provide continuous atmospheric 

information with an invaluable focus on severe weather warnings.  In contrast, current 

carrier and amphibious air operations are conducted without the protection of an at-sea 

weather radar.  The ability to nowcast atmospheric conditions at-sea is critical to daily 

aviation operations.   

From FY90-98, weather related mishaps to the aviation community were found to 

have caused $69 million in damage and produced 11 fatalities per year (Cantu, 2001).7  

From a safety of flight stand-point, an at-sea weather radar is long overdue; without it, 

the Navy lags further behind CONUS and other landbase weather safety capabilities.  

TEP could be used to identify aviation hazards like approaching storms or severe wind 

                                                 
7   It is important to note that the Navy Safety Center does not permit weather to be causal in mishaps, 

but only a factor (by their definition). 
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shifts.  This would allow for smoother operational transitions between launch/recovery 

cycles and provide the CVN or LHD CO/OOD with an excellent planning tool.  

Additionally, TEP would prove useful as an aid in flight planning, not to mention the 

potential TEP offers for strike planning.  A relatively simple display of weather radar for 

naval aviation operations, particularly the carrier or large deck amphibious platforms (i.e. 

ready rooms, bridge, combat) would have major advantages to flight planning and 

operations.  Air traffic controllers could use the weather information for aircraft routing 

and in the establishment of marshalling stacks and CAP stations.   

 

C. METOC 

TEP provides an at-sea nowcast tool.  TEP reflectivity and radial velocity plots 

provide the weather data necessary for real-time forecasts and storm tracking.  This 

nowcast ability fills a gap that currently exists in the METOC arsenal.  At-sea weather 

forecaster are very good at synoptic and mesoscale analysis, but they simply cannot 

forecast accurately on the temporal and spatial scales required for daily at-sea operations.    

TEP environmental radar data is invaluable to the METOC community, especially in 

forward-deployed locations away from the CONUS weather network. 

TEP supports the METOC role at-sea.  Without a forecast, radar observers will 

often miss the first events of an at-sea weather episode.  Regardless of the quality of the 

radar data, a forecast is necessary to alert the radar operator of a potential severe weather 

situation.  With a forecast, the TEP operator will be anticipating severe weather and will 

use radar data to identify particular severe weather storms as they develop in, or move 

into, the area operations.  With the marriage of current model forecasts and a nowcast 

tool, the at-sea METOC is able to provide relevant, real-time environmental knowledge 

to better support the warfighter.   

TEP links the warfighter and METOC closer together.  With all the advances in 

naval weapon and sensor technology, the largest wartime variable is still the 

environment.  The ability to assess and predict the effect of the environment on both 

force and threat sensors is a key facet in mission planning.  By linking 

synoptic/mesoscale model forecasts and satellite interpretation to present weather, TEP 
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becomes a meteorological component in any system that would fuse data from a myriad 

of sources (in situ and remote sensors, models, etc.).  A temporal-based weather plot 

would provide an invaluable wartime advantage over the enemy and allow for safer 

peacetime operations.  TEP exploits the battlespace to leverage a tactical advantage and 

provides the Navy a nowcasting tool that affects both forces and sensors. 

 

D. ISSUES TO OVERCOME 

Through-the-sensor technology allows TEP to utilize the SPY-1 radar to 

characterize the atmosphere.  Like the SPY-1 air defense umbrella, TEP is an 

environmental cloak that supports the warfighter.  This provides a positive impact on a 

range of naval operations and an asymmetrical battlespace advantage.  However, before 

TEP is implemented into common fleet use, there are a few areas of interest that need to 

be addressed: 

• TEP is a time critical product.  Since TEP and its data are resident on the 

CG or DDG, there must be enough bandwidth to provide the CVN/LHD 

the raw TEP data, and allow these larger platforms to distribute the 

requested TEP products to the Carrier Battle Group (CBG) or Amphibious 

Ready Group (ARG). 

• TEP may be an organic sensor for the CBG or ARG, but who will have 

access to the generation of active TEP waveforms?  TEP is resident 

onboard the AEGIS platform, but best operated by the CVN/LHD 

embarked METOC Teams. 

• A threshold for too many active TEP waveforms8 needs to be defined.  

This allows all the interested TEP parties a boundary to work within.  

Potential model use for TEP products could require significant active PD 

SPY-1 environmental characterization, which could distract valuable radar 

resources.   

 
                                                 

8  Note:  Lockheed Martin estimates a 1% SPY-1 load for auto scheduling of high sensitivity TEP 
waveforms to cover the radar volume once every 10 minutes (personal communication). 
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VI. RECOMMENDATIONS FOR FUTURE STUDIES 

A. TEP LIMITED AT-SEA EXPOSURE AND TESTING 

At the time of this thesis, TEP has only been included in two at-sea 

demonstrations: 1) Maiden voyage and initial CSSQT for USS O'Kane (DDG 77); and 2) 

METOC LOE conducted during JTFEX 00-2, TEP aboard the USS Normandy (CG 60).  

This limited at-sea exposure and testing needs to be expanded to explore additional 

advantages and disadvantages offered by an at-sea Doppler weather radar.  For example: 

• One or more battle group assets could incorporate TEP into their 

deployment training and work-up cycle.   

• TEP should be evaluated in Amphibious Ready Group (ARG) operations. 

• Further RFC testing and development which could eventually lead to some 

form of automated SPY-1 optimization. 

• TEP has the potential to characterize the environment to support a variety 

of DOD, Home Land Defense and Naval Warfare specialties (i.e. wind 

analysis for WMD fallout, strike/land attack planning, etc.). 

 

B.   TEP DATA PROCESSING, DISTRIBUTION AND DISPLAY 

There are many potential uses of TEP data and products.  However, for each TEP 

product desired, the data must be collected, processed and delivered in a timely manner 

and usable format.  In most cases, the user is not interested in the actual origin or myriad 

of data that emanates from TEP, but rather in the graphical end-user product.  This 

product needs to present the TEP data in a framework that makes the environment easier 

to understand for operational decision makers. 
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Significant research needs to be dedicated into the processing, distribution and 

display of TEP data.  Fast and reliable data transfer methods need to be investigated to 

ensure that the time sensitivity of TEP products are a benefit to the warfighter and not a 

barrier.  Additionally, CIDD or a similar data fusion display system must become part of 

the TEP package.  Relatedly, TEP could readily become part of other larger data fusion 



program such as Nowcast for the Next Generation Navy, currently an ONR effort being 

funded to the Naval Research Laboratory, Monterey.  Such steps would allow an 

integrated weather database, fusion display and the distribution of user specified weather 

products to the entire battle group.  Together, the TEP products and associated battle 

group architecture could be used as a valuable decision-making tool that will have 

significant impact on operations.  
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APPENDIX. AEGIS RADAR OPERATING FUNDAMENTALS 

Tactical Environmental Processor (TEP) is a technique that converts radar returns 

from the AN/SPY-1 radar into environmental measurements known as spectral moments.  

These spectral moments provide critical nowcast-weather information to AEGIS and non-

AEGIS personnel.  TEP generally operates in a passive role, extracting weather data from 

tactically scheduled SPY-1 returns.  When designated, TEP can be used in an active scan 

mode, where TEP requests the SPY-1 radar to generate specialized waveforms to 

characterized small-scale features in the atmosphere.  However subtle the differences 

between the two TEP scan modes seem, their scheduling of SPY-1 resources is an 

important concept.  To exploit the utility of TEP, potential users need to have a general 

understanding of the AN/SPY-1 radar system and its environmental influences from a 

warfighter perspective.  This Appendix is a generic, unclassified discussion about the 

interactions between the SPY-1 radar and TEP. 

The AEGIS Combat System, resident on Ticonderoga Cruisers (CG) and Arleigh 

Burke Destroyers (DDG), was designed as a total weapon package.  At the heart of the 

AEGIS system is an advanced, automatic detect and track radar, the AN/SPY-1.  This 

multi-function radar is electronically scanned and operates in the S-Band with an output 

of several megawatts.  The SPY-1 radar has no moving parts and utilizes four fixed 

transmit and receive arrays.  Each phased-array covers 90+ degrees of azimuth.  Every 

radar element is computer controlled to produce multiple energy pulses (dwells) that are 

able to radiate at any azimuth, at any elevation, at any time.  SPY-1 can simultaneously 

search, detect, classify, and track targets of interest.  However, the radar resources 

required to perform these basic radar functions varies.  Searching the battlespace for 

unknown point targets and tracking objects of interest carry a minimal radar resource 

cost.  While transitioning tracks to a “tracking” mode (i.e. detecting and classifying 

potential targets) is resource intensive, as the radar has to develop a track history prior to 

“tracking” the target.  Since the AEGIS Combat System tries to maximize the tactical use 

every available SPY-1 radar resource, events that place a heavy load on SPY-1 radar 

resource are significant.      
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SPY-1 is focused on fleet air defense, not weather description.  Air Defense (AD) 

requires maximum radar ranges and rapid search times with minimal radar loading.  

Considering that each AEGIS cruiser or destroyer can simultaneously track 100+ targets, 

atmospheric events that slow search times become tactically significant.  Airborne debris, 

birds and atmospheric effects can cause SPY-1 to initiate a significant number of 

“clutter” tracks.  To appreciate why clutter tracks are a burden and to gain a basic 

understanding of SPY-1 operations, an explanation of SPY-1 radar time allocations is 

necessary.  The AEGIS Combat System and SPY-1 are designed to maximize the tactical 

use of all available radar resources.  On a millisecond time interval, SPY-1 must generate 

a series of dwells to support the immediate tactical mission.  To accomplish this, SPY-1 

uses a pre-established order that gives priority to dwells of higher tactical significance.  

The list would be similar to the following table: 

 

Tracking 
Horizon Search 
Volume Search 
House Keeping 

Table A-1:  SPY-1 Scheduling Order 
 

Dwells are scheduled similar to the order listed.  If tracking, including transition-to-track, 

consumes too many resources then House Keeping is delayed in scheduling.  Eventually 

the load can become too great and the search functions are delayed.  If a significant 

number of clutter cells are detected and subsequently transitioned to track, this can have a 

serious effect on SPY-1 search times.  Since clutter cells are generally associated with 

weather, these SPY-1 nuisance events are significantly important to TEP.   

SPY-1 uses many schemes to help eliminate clutter tracks.  Moving Target 

Indicator (MTI) is one of the primary means.  MTI uses a sequence of three or four pulses 

to determine which targets are stationary (i.e. clutter) and which are moving (i.e. targets).  

The goal of SPY is to only allow moving targets to transition to track, whereas weather 

radars wants to remove point targets and observe stationary weather events.  In addition 

to MTI, Track Initiation Processor (TIP) is used in the SPY horizon search volume to 
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prevent non-moving targets and clutter detections from transitioning to track.  MTI is 

used in all beam positions where clutter is mapped or can be manually ordered in any 

search sector by the radar operator.  MTI is a special SPY waveform that is used to 

reduce clutter, but still supports the TEP environmental characterization and produce 

three spectral moments. 

At ranges beyond the extent of horizon search, neither TIP nor MTI processing is 

available.  Additionally, it is at ranges beyond horizon search, that large numbers of 

clutter tracks are encountered.  Supplemental techniques are used to help eliminate these 

long-range clutter tracks.  In spite of all these clutter suppression techniques, the SPY-1 

radar can still be burdened with clutter detections.  The most stressing cases for SPY-1 

operators are those that cause search frame times to exceed acceptable levels.  This is 

often caused by excessive clutter, particularly long-range clutter that cannot be eliminated 

by MTI or TIP.  Operation in the littoral environment and the presence of ducting can 

contribute to this severe clutter load.   

Figure A-1 is an example of a reflectivity map generated by TEP onboard the 

USS O’Kane (DDG 77). The USS O’Kane was positioned off the coast of Jacksonville,  

Figure A-1:  TEP Reflectivity Overlaid with Clutter Track Initiations, reflectivity color 
bar not included (from: TEP Final Report, 2000) 
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Florida when a severe squall line moved through the area.  The reflectivity map 

represents the TEP radar volume (azimuth: 00 to 3600 and elevation: 00 to 30) and is 

thresholded to prevent disclosure of SPY-1 sensitivity.  Overlaid on this reflectivity map 



are clutter tracks seen by the SPY-1 radar.  For the purpose of this analysis, clutter tracks 

are defined as those tracks that were in existence less than time required to successfully 

transition-to-track.  Colored areas represent reflectivity intensities and SPY-1 clutter 

tracks are denoted by black dots.  The reflectivity map gives an indication of the storms 

magnitude and shows the presence of long-range clutter tracks that are subject to costly 

transient dwells.  Since transient dwells are scheduled at a higher rate to ensure that 

potential targets are smoothly transitioned-to-track with quantified metrics, it is easy to 

witness how long-range clutter can put a heavy load on SPY-1 resources.  This figure 

also represents the delicate balance between nuisance SPY-1 clutter tracks and important 

weather radar environment characterization.    

Figure A-2 shows real targets in track by the SPY-1 radar overlaid on clutter 

tracks for the same period.  Real targets are defined as those tracks that remain in track  

Figure A-2:  Overlay of Real vs. Clutter Tracks (from: TEP Final Report, 2000) 
 

long enough to transition-to-track.  Each long line is a single point target under track by 

SPY-1, and represents objects of tactical interest (i.e. aircraft) or nuisance tracks (i.e. 

birds).  After targets have transitioned-to-track, they are typically tracked at a slower rate; 

therefore, putting little load on SPY-1 resources.  In Figure A-2 it is clear to see that there 

are significantly fewer real tracks than clutter tracks.  This is a problem for SPY-1 

resource management, as clutter tracks that are transitioning are more expensive than real 
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targets in terms of SPY-1 radar allocations.  Without continuous sampling techniques, the 

radar operator is only left to guess the present atmospheric conditions by their impact on 

radar resources.  To reduce the long-range clutter content, the radar operator is generally 

forced to desensitize the radar.  Desensitizing the radar reduces its ability to see targets, 

and may allow hostile aircraft or missiles to go undetected long enough to prevent the 

ship from defending itself or others in the battle group.  It is the detection and elimination 

of clutter tracks that allows SPY-1 to maintain its fast search frame times and thus 

achieve its primary goal of defense of the fleet.  In the situation of clutter detection, TEP 

can provide both help and hindrance.  Used passively, TEP can only help to define the 

environment, especially ducting situations that can lead to increased clutter detection.  

However, active TEP waveforms must be used conservatively so as to not over allocate 

necessary SPY-1 resources needed to survey and protect the battlespace.  

It needs to be emphasized that TEP/SPY-1 are not and will never be NEXRAD 

weather radars.  The differences between a dedicated weather radar and tactical air 

defense radar are too drastic.  Since TEP is dependent on a tactical radar, it is subject to 

periodic data gaps and unannounced waveform alterations.  The TEP data gaps may be 

sector orientated (i.e. non-radiating sectors for flight quarters, underway replenishment, 

etc.) or subject to the full radar volume (i.e. EMCON restrictions or maintenance 

periods).  Additionally, TEP velocity measurements are only available in beam positions 

where SPY-1 doctrine selects the MTI waveform (active TEP scan modes also support 

velocity measurements).  Figure A-3 is a good example of the lack of velocity data  

 
Figure A-3:  TEP Radial Velocity with SPY-1 Auto MTI (from:  TEP Final Report, 2000) 
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available from an auto-MTI9 SPY-1 radar function.  The figure shows two small sectors 

where radial velocity was measured.  However, even with all these distinctions from 

NEXRAD, TEP is a significant asset to the at-sea METOC and warfighter. 

TEP does not need to be of the same quality as NEXRAD to support the 

warfighter.  TEP has proven to be operationally equivalent to NEXRAD, but the 

paragraph above demonstrates some of the quality differences.  This is an important 

distinction in the at-sea operational environment.  Plots showing accurate storm 

boundaries and areas of high reflectivity are more useful to the warfighter than having 

highly accurate absolute reflectivity measurements.  The benefit to aviation that TEP 

provides is it allows the carrier CO/OOD to relocate the airfield in the event of 

potentially severe weather.  Because the airfield is mobile, there is a lesser requirement of 

detailed atmospheric characterization.  However, as naval weapons and sensors evolve, 

the requirement to describe the environment will become more stringent.  TEP could 

evolve to meet these challenges, but for now the benefit of the TEP environmental 

nowcast and weather composite plots is an order of magnitude improvement in at-sea 

METOC forecasting. 

   

 

                                                 
9   Auto-MTI is a SPY-1 operator initiated function that automatically schedules MTI search dwells in 

the horizon wherever clutter is mapped. 
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