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THE ELECTROMAGNETIC VECTORS. 

BY H. BATEMAN. 

§ I. An electromagnetic field in the ether is usually specified by the 
values at each point and at each instant of two vectors E and H, but a 
more general specification is obtained by using the two vectors 

c 
• ( i ) 

Q = H-±(vXE)% 

where v is an arbitrary velocity representing at each point and at each 
instant the velocity of an imaginary recording instrument and c is the 
velocity of light. 

These vectors are of fundamental importance in electromagnetic theory 
for F is usually supposed to represent the force which the field would 
exert on a minute unit electric charge moving with velocity v and Q 
may be supposed to represent the force which the field would exert on a 
minute unit magnetic charge if such a thing could exist and move with 
Velocity v. 

On account of the importance of these vectors F and Q it will be 
worth while to get a clear conception of the way in which they vary 
when the field remains constant and v varies. 

Let lines OE, OH, be drawn to represent the instantaneous values of 
E and H at any point in magnitude and direction and let circles of radii 
H and E and center 0 be drawn in planes at right angles to OH and OE 
respectively. If v is less than c the vector F is represented in magnitude 
and direction by the line FE where F is some point within the first circle 
while Q is represented by QH where Q is some point within the second 
circle. When v is greater than c the same construction may be used but 
the points F and Q may now lie outside their respective circles. 

It is clear from this construction that J7 is a minimum when F is parallel 
to H and that <2 is a minimum when Q is parallel to E. 

When E and H are perpendicular and E is greater than H the point 
E lies in the plane of the first circle and outside the circle, consequently 
when v is less than c the direction of F lies within a certain angle bounded 
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by two straight lines in the directions of Si and — s2 where Si and $2 
are the two real unit vectors 5 which satisfy the relations1 

E + (s XH) = ks, E-s = k. (2) 

The vector Q can under the same conditions take any direction in a plane 
perpendicular to E. 

In the case of the field of a moving electric pole one of the two vectors 
5 is in the direction of the radius from the effective position of the pole, 
that is the point from which a disturbance travelling with velocity c 
must start in order to reach the point of observation 0 at time t. 

When the electric pole moves with uniform velocity along a straight 
line the second vector 5 is in the direction of the radius to that position 
of the pole which can be reached by a disturbance starting from 0 at 
time t. 

In the general case when E and H are not necessarily perpendicular, 
the directions of F and Q for v < c are confined to certain quadric cones. 
If E is greater than H the angle of Q's cone is greater than that of F's. 
These two cones have the same focal lines which are in the direction of 
the two real unit vectors2 s which satisfy the equations (2). 

Relative to one of these vectors 5 the field vectors E and H may be 
resolved into longitudinal components E-s and H'S parallel to 5 and 
transverse components represented by the vectors E — (E-s)s and 
H — (H-s)s perpendicular to s. These latter components are per­
pendicular to one another and equal in magnitude as may be seen from 
the relations 

(E-fl) = (E-s)(H-s) (3) 

E2 - (E-s)2 = H2 - (H-s)2 (4) 

which are easily derived from (2). 
We may also divide up the energy in the field as follows: 

Longitudinal electric energy ^(E-s)2, 
Longitudinal magnetic energy |(iiZ"-s)2, 
Transverse electric energy \E2 — J(E-s)2, 
Transverse magnetic energy \H2 — ^(H-s)2. 

It is clear from equation (4) that the transverse electric energy is 
equal to the transverse magnetic energy and that the Lagrangian function 
| (E 2 — H2) may be supposed to arise entirely from the longitudinal part 

1 They also satisfy the relations embodied in the vector equation 

H - (s XE) =s(s-H). 
2 These vectors have been introduced for different purposes on previous occasions. Proc. 

London Math. Soc, Ser. 2, Vol. 8, 1910, p. 469; Vol. 10, 1911, pp. 7, 96; Mess, of Math., 
Vol. 14, 1915. P- 112. 
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of the field. It should be noticed that the longitudinal part of the field 
is conjugate1 to the transverse part; in other words the invariants (for 
transformations of the theory of relativity) E2 — H2 and (E-H) for the 
total field are the sums of the corresponding invariants for the longitudinal 
and transverse parts. It should also be noticed that the energy in the 
total field is the sum of the energies of the longitudinal and transverse 
parts, consequently all the principal characteristics of the two component 
fields are additive. 

The transverse field evidently has the characteristics of a pure radiant 
field or self conjugate field and in the case of an electric pole which at one 
instant has no velocity but a finite acceleration the transverse field rela­
tive to the vector s, which is in the direction of the radius vector from the 
pole, is the so-called wave of acceleration while the longitudinal field is 
the electrostatic field. When the electric pole has a finite velocity this 
description fails for the longitudinal field is the electric field represented 
by the radial component of the electric vector, while part of the trans­
verse field depends on the velocity. 

It is interesting to notice that the resolution of the energy into longi­
tudinal and transverse energies is the same as far as the magnitudes are 
concerned whichever vector of type s is used. It should also be noticed 
that the total longitudinal energy 

UE-s)2 + h{H-s)2 = | [ (£ 2 - H2)2 + 4(E.H)2y2 (5) 

is an invariant and is proportional in fact to Cunningham's principal 
stress. The longitudinal field disappears entirely when 

E2 - H2 = o and .(E-fl) = o, (6) 

that is, in the case of a pure radiant field or self-conjugate field. The 
two vectors of type 5 then coincide in direction with Poynting's vector. 

It should be noticed that v — cs is a special velocity for which both 
F and Q are parallel to v. The different possible directions of a velocity 
v such that F is parallel to v are of some interest and may be found as 
follows: 

When F is parallel to v the vector v X E is perpendicular to F and is 
therefore perpendicular to v X H. This means that the direction of v 
lies on a quadric cone which is the locus of a line OL for which the planes 
EOL and HOL are perpendicular. This cone has the lines OE, OH in 
one of its principal planes and has its circular sections perpendicular to 
them. It is clear that this cone is also the locus of directions for which 
Q can be parallel to v. If v and w have the same direction and v is a 

1 For the definition of conjugate fields see Bull. Amer. M a t h . S o c , Vol. 21, March, 1915, 

p . 299. 
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velocity for which F is parallel to v while w is a velocity for which Q is 
parallel to w, v and w are connected by the relation vw = c2, consequently 
they cannot both be less than c and they cannot be equal unless they are 
both equal to c. 

As OL moves round the cone the velocity v takes all values between 0 
and oo twice over and so for any velocity there are generally two direc­
tions for which either F or Q is in the direction of v. Two generators of 
this cone are, of course, in the direction of the two real unit vectors s 
which satisfy equations (2). The directions of v for which F is per­
pendicular to v evidently lie in a plane perpendicular to E, similarly the 
directions of v for which Q is perpendicular to v lie in a plane perpendicular 
to H. 

The directions of v for which F and Q are in the same direction are of 
some interest as these velocities v are possible velocities of the ether in 
the theory of E. Cunningham.1 The directions are confined to two planes, 
one of which contains the two real unit vectors of type s and Poynting's 
vector while the other contains the two imaginary vectors of type 5 
and Poynting's vector. These planes are in fact the two real planes 
through the real and imaginary focal lines of the two cones2 already 
mentioned which limit the directions of F and Q respectively for v < c. 
As we have remarked elsewhere,3 the extremity of a line OV representing 
the vector v lies on one of two straight lines which are polar lines with 
regard to a sphere center 0 and radius c, these lines intersect at right 
angles the line through 0 in the direction of Poynting's vector. 

The lines FE representing the corresponding vectors F are such that F 
lies on one of two straight lines parallel to Poynting's vector. These 
lines may be obtained by drawing through E two planes parallel to the 
two planes previously mentioned and finding where these planes meet the 
plane through 0 perpendicular to H. There is a similar construction 
for the corresponding vectors Q. 

When Q is perpendicular to F we have an equation 

(c2 - v2)(E-H) = - (p-E)(v-H), 

for v which indicates that the extremity of a line 0 V representing this 
velocity lies on a quadric surface having the cone swept out by OL as 
asymptotic cone. The region for which v is less than c is bounded by 
the two planes through 0 perpendicular to E and H and consequently 
by the two diametral circular sections of the quadric. If we are given the 
direction of F the corresponding value of v for which Q is perpendicular 

1 For this remark see S. B. McLaren, Phil. Mag., 26, 1913, p. 636. 
2 These cones are supposed to have their vertices at 0. 
3 Phil. Mag., 34, 1917, p. 405; Mass. of Math., 14, 1915, p . ' n o . 
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to F is uniquely determined except in the case when 0 V is in the plane 
containing OH and the line through 0 in the direction of Poynting's 
vector. The correspondence between the points F and Q when F is 
perpendicular to Q is a one to one quadratic transformation. The point 
at infinity in the direction of Poynting's vector and the points in which 
the plane OEH meets the circle are the singular points in each plane. 
This completes the description of the geometrical properties of an electro­
magnetic field which is supposed to be explored by a crowd of imaginary 
observers moving in an arbitrary manner. 

We have been acting on the assumption that F and Q are the quanti­
ties that are observed directly and that E and H are secondary quantities 
which may be derived from them. The quantities E and H are usually 
regarded as the primary quantities on account of the simplicity of the 
field equations which they satisfy but it should be noticed that the 
electromagnetic laws can also be expressed directly in terms of F and Q. 
This is a known result but it may be worth while to recall it at this point. 

§ 2. In the year 1908 two very important papers on electromagnetic 
theory were published. One of these was Minkowski's paper on the 
electrodynamical equations for moving bodies,1 a paper which soon 
influenced mathematical thought very considerably and received world 
wide attention. The other paper was by Mr. Richard Hargreaves, of 
Southport, England, and was entitled " Integral forms and their connec­
tion with physical equations." This paper which is perhaps the more 
important of the two, contains two new presentations of the principles 
of electromagnetism in terms of space-time integrals. This at once 
places the time coordinate on the same level as the other coordinates and 
suggests the idea of space-time vectors just as in Minkowski's work. 
The chief importance of Mr. Hargreaves' work lies, however, in the fact 
that it throws light at once upon the nature of the solutions of the electro­
magnetic equations and that the principles are presented in a form which 
is independent of the choice of the space and time coordinates. The 
last circumstance enables one to obtain the transformations of the theory 
of relativity in a simple and natural manner and makes it easy to obtain 
the invariants by a simple application of the methods of the absolute 
calculus of Ricci and Levi Civita.3 The first two theorems which are 
usually written in the form 

1 H. Minkowski, Gott. Nachr., 1908. 
2 R. Hargreaves, Cambr. Phil. Trans., Vol. 21, 1908, p. 107. Some interesting develop­

ments and applications of Hargreaves' theorems have been made in an enthusiastic way by 
M. de Donder in Belgium, Bull, de l'Acad. roy. de Belgique (Classe des Sciences), 1909, p. 66; 
1911, p. 3; 1912, p. 3. 

3 H. Bateman, Proc. London Math. Soc, Vol. 8, 1910, p. 223. 
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ff [Exd(y, z) + Eyd(z, x) + Ezd(x, y) - cHxd(x, t) 

- cHyd{y, t) - cHzd(z, t)] 

= fff [pd(x, y, z) — pwxd(y, z, t) — pwyd(z, x, t) — pwzd(x, y, t)] 

ff[HJ(y, z) + Hyd(z, x) + Hzd(x, y) + cExd(x, t) 

+ cEyd(y, t) + cEzd(z, t)] = o 

indicate the invariance of the electromagnetic equations under conditions 
in which the integrands in the integrals are invariants. Now the first 
integral certainly vanishes when the moving surface of integration is 
made up of moving lines of electric force1 and this indicates the invariance 
of moving lines of electric force under the transformations of the theory 
of relativity. This theorem is true for all transformations of coordinates 
when the ideas of general relativity are adopted and the vectors in the 
second of the two equations are not assumed to be the same as in the first. 

A moving line of electric force thus assumes the form of a definite 
physical entity when we adopt the view that invariants are symbols for 
physical entities which are independent of the measuring apparatus or 
method of observation. 

We have already shown that Mr. Hargreaves' theorems can be pre­
sented in a form in which ordinary surface and volume integrals are used2 

and as this gives the desired expression of the electromagnetic laws in 
terms of the vectors F and Q the results will be quoted here in vector 
notation. 

Let us assume that throughout a certain region of space a time is 
associated with each point in space by means of a relation of type 
t ~ f(x, y, 2), where/ is a uniform function. This time may be supposed 
to be the time at which an observation is made at the point in question. 
We shall suppose, moreover, that the velocity of the observer or observing 
instrument is determined by the equation 

v = <Mf, (7) 

then with the notation of § 1, we have the two theorems 

J Fndcr = J p I - ^ ( ^ ) U r , (8) 

J Qnd(x = o, (9) 

where do- denotes an element of surface, dr an element of volume, the 
suffix n denotes that the normal component of the vector is taken, p 

1 Phil. Mag., Vol. 34, 1914, p. 405. 
2 See last reference but one. 



N£"6. ] THE ELECTROMAGNETIC VECTORS. 465 

denotes the volume density of electricity and pw the convection current. 
In these theorems the surface integrals are supposed to be taken over a 
closed surface and the volume integral over the volume enclosed by this 
surface. In the ether of course the volume integral disappears and we 
have 

f Fnda = f Qnd(T = o. 

The equation (8) may be regarded as a generalization of Gauss' theorem 
and may be assumed to hold whether the behavior of the quantities 
involved permits an application of the ordinary form of Green's theorem 
or not.1 Calling Fnd<x the flux across the element of surface da the 
theorem may be interpreted to mean that the flux across a closed surface 
is equal to the charge inside. This, of course, is in a generalized sense, 
for it must be remembered that quantities are measured at different 
points of space at different times. Since the flux across a surface made 
up of moving lines of electric force is zero we may conclude that the 
flux across a cross section of a tube made up of moving lines of electric 
force is constant along the tube provided there is no electricity within 
the tube between the two sections under consideration at the times 
specified by the law of observation t = f(x, y, z). We must generally 
assume that observations are made throughout a region of space by °°3 

observers. This is necessary for instance if the observations are to be 
simultaneous but in some cases it is convenient to assume that sets of 
observations are made by 002 observers travelling along specified paths. 
In particular, if the observers are supposed to travel along straight 
lines with the velocity of light the velocity v may represent the velocity 
of the observer and the time / = f(x, y, z) the time at which he reaches 
the point (x, y, z). 

Let us take the case in which v is at each point in the direction of one 
of the unit vectors s in an electromagnetic field and that sets of observa­
tions are made by imaginary observers who travel along straight lines 
with the velocity of light. The vectors F and Q then represent the 
longitudinal part of the field and the electromagnetic laws give us the 
properties of this part of the field alone. Thus if the field is that of a 
moving electric pole and the observers are supposed to start from a 
particular position of this pole and travel away from it with the velocity 
of light our theorems enable us to study the properties of the field which 
is left when the transverse wave is subtracted from the total field. In 
other words our observers do not record the effects of the transverse 
wave because they travel with it at the speed of light. 

1 In this way we may avoid the difficulty that occurs on p. 21 of my book "Electrical and 
Optical Wave Motion." The above theorems are more general than the electromagnetic 
equations. 
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Mr. Hargreaves' second set of theorems indicate the way in which 
space time integrals change when a small variation is made of the region 
of integration; they give for instance the rate of change of the flux across 
a closed surface when the surface is in motion.1 Let us suppose that the 
change of times and region of integration are made by moving the observer 
at each point (x, y, z) to some consecutive point {% + dx, y + by, z + dz) 
at a velocity u which is a function of x, y, z, t and let the new time of obser­
vation be the time at which each observer arrives at his new position. 

We shall quote Hargreaves* theorem for the case of a volume integral 
which in our notation is written in the form 

J p L i ~ ?^'w) \dT-
p and w are supposed here to satisfy the equation of continuity 

— + div pw = o, 
ot 

so that the integral may be regarded as representing the total amount 
of electricity within a closed moving surface when the observations are 
made at times specified by the law t — f(x, y, z), and w represents the 
velocity of the electricity,, p its density. The rate of change of this 
volume integral is now represented by an integral of type 

fFn'dtr 

over the boundary of the closed surface where 

F* = £ ' + - 0 XH') c 

and Ef and Hf are defined by the equations 

£ ' = p{u - w), H' = - p[w X u]. 

This result is of interest because it indicates that if we start with the idea 
of a fluid electricity moving according to the law of continuity we can, 
by a process analogous to differentiation, derive from it a field of two 
vectors E' and H' which are expressible directly in terms of the quantities 
p and pw which specify the'flow of electricity in the original field. The 
quantities p' and p V which are connected with E' and Hf by the equa­
tions 

div £ ' - p', c rot H' = —- + P V , 
ot 

1 This provides us with the generalized forms of two theorems given by H. A. Lorentz, 
Encyklopadie der Math. Wiss., Bd. V., § 13, 1903, p. 119 and J. Larmor, Proc. Int. Congr. of 
Math., Cambridge, 1912, Vol. 1. 
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are different from p and pw because the total amount of electricity within 
a closed surface in the field E\ Hf represents the rate of change of the 
amount of electricity within this closed surface in the original field. 
Strictly we ought not to use the same word electricity in the two cases 
because the quantities p and p' are not of the same dimensions. To 
avoid confusion we may call p' density of electricity and p density of 
proto-electricity, It must be clearly understood that quantity of elec­
tricity represents the rate at which a quantity of proto-electricity 
appears to change in magnitude when successive observations are made 
by a crowd of imaginary observers moving in such a way that the velocity 
of the observer at (x, y, z, t) is u(x> y, z, t). This vector u may of course 
be the same as the vector v but it is not necessary to assume that the 
velocity of an observer is the same as that of his instrument of observa­
tion. 

It should be noticed that in our derived field E\ W we have 

E'-H' = o and E' > Hf 

where the inequality holds provided at least one of the veloctiies u, w 
is less than c. To prove this inequality let us draw lines OU, OW to 
represent the velocities u and w in magnitude and direction. The quan­
tity En is then represented by the square of the distance UW while H'2 

is represented by the square of the distance UW multiplied by the square 
of the perpendicular from 0 on UW and divided by the square of c. 
Clearly then E' is greater than H' if the perpendicular is less than c 
and this is certainly true if one of the quantities u, w is less than c. 
If both u and w are greater than c it does not necessarily follow that Ef 

is not greater than H' for the line UW may still cut a sphere of radius 
c in real points and so be at a distance from 0 less than c. 

The idea that quantity of electricity represents a rate of change of a 
quantity of proto-electricity may perhaps account for the existence of 
two types of electricity, positive and negative, because even if a quantity 
of proto-electricity is always represented by a positive number, its rate 
of change may be either positive or negative. 

This suggests that the plan of deriving electromagnetic fields from 
proto fields of moving proto-electricity by a process analogous to dif­
ferentiation may be very useful. It should be remarked at the outset 
that the type of differentiation considered above is only a particular case 
of a more general type of differentiation in which two proto' fields which 
differ slightly from one another are subtracted and a limiting process 
carried out after all the small quantities obtained are divided by the 
same small quantity. 
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Of course in a proto field we can consider two vector functions E and 
H which are connected with p and pw by the electromagnetic laws and 
it seems likely that fields which satisfy the electromagnetic equations 
and do not possess the characteristics of the types of electromagnetic 
fields with which we are familiar may be really proto fields. The fields 
whose singularities consist of moving curves are a case in point for 
when two such fields are superposed so that the singular curves overlap 
it is possible to obtain a cancelling of singularities with the result that 
in the total field there are only point singularities. In other words line 
charges in the proto field may give rise to isolated electric charges in the 
derived field. In the original form of Sir Joseph Thomson's theory of 
moving Faraday tubes the analysis indicates that a Faraday tube always 
consists of the same particles of electricity.1 This result may seem 
strange to most scientists but the explanation is that a field of Thomson's 
type is probably a proto field and that really a Faraday tube always 
consists of the same particles of proto-electricity while when an electro­
magnetic field is derived from this proto field by a process analogous to 
differentiation the electric charges appear only at the ends of the tube, 
The foregoing remarks indicate that the interpretation of the electric 
and magnetic vectors in terms of proto-electricity may be simpler than 
any interpretation in terms of the electricity of their own field and this 
we shall now endeavor to show. It may be remarked that the dynamical 
laws of motion for proto-electricity are unknown, it is possible that they 
are of the first order instead of the second and that the accelerations in 
the Newtonian laws arise in the process of differentiation by which an 
electromagnetic field is derived from a proto field. 

§ 3. To begin with it will be convenient to assume that a pro to-electric 
charge can be either positive or negative. The negative charges can be 
eliminated eventually, by adding positive constants to all the charges, 
but this may not be necessary. 

Let us suppose that a positive charge e and a negative charge — e 
separate at a point 0 and travel along straight lines with the velocity of 
light and let the points A and B respectively represent their positions 
at some time /. If T denotes the time which has elapsed from the 
moment of separation up to this instant, we have 

OA = OB = cT. 

Now consider two imaginary observers, one of whom travels with the 
point A while the other travels with the point B. Let the unit vectors 
Si and S2 specify the directions of motion of A and B. If we imagine 

1 See H. Bateman, Phil. Mag., Vol. 34, 1917, p. 405. 
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a field of two vectors E and H to exist at the two moving points A and 
B and nowhere else, A may be supposed to record the vectors 

Ft = E + (st X H), 

Qi = H - (*i X £ ) , 

while i? records the vectors 

i?2 = E + (s2 X H), 

Q2 = H - (s2X E). 

Now a natural vector for A to record is ecTsi and a natural vector for B 
to record is — ecTs2; we shall therefore consider the consequences of 
assuming that 

E + Oi X H) = - ecJTsi, H - (Sl X E) = o, 

£ + fcXiI)= *cr*2, H- (s2XE) = o. 

These equations are quite consistent with one another and they indicate 
that Si and $2 are the two vectors of type 5 defined by equations (2) for 
the two points where the field exists. Solving these equations we get 

c 5"2 — ^1 Si X S2 E = ecT , H= ecT •. (11) 
I — $1* S2 I — Sl*S2 

The electric vector is thus in the direction of the line AB but is not 
simply proportional to the length of this line for there is an additional 
factor depending on the angle between the vectors Si and s2. The mag­
netic vector H is perpendicular to both these vectors and to E. 

It should be noticed that 

E2 - H2 = e2c2T2, E-S!= - ecT, E>s2 = ecT, 

,i + svs2 
E2 = e2c2T2 , H2 = e2c2T2 

I — SvS2 

EXH - e2c2T2 

I — Si*S2 I — -S"l*^2 

Si + ^2 

If the flow of energy is supposed to be indicated by Poynting's vector a 
puzzling result is obtained for since the field exists only at the two moving 
points A and B it is difficult to understand how energy can get away 
from these points, which it would do if the flow were in the direction of 
the vector Sx + s2. The probable explanation of this paradox is that the 
flow is modified owing to the presence of the charges and the work which 
is done on them by the field. We are interested in the behavior of the 
total energy and so the concealed energy which is equivalent to the work 
done must be taken into account and its influence on the total flow must 
also be considered. 
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We shall consequently take the total energy at A to be a multiple ofx 

i(E2 + H*) +4CE.S!)2 = £ 2 

and the flow of energy to be represented by the same multiple of 

c(E X H) + cE(E-S!) = CE2SL 

Similarly the total energy at B will be assumed to be a multiple of 

! (£ 2 + H2) + i(£.52)2 = £ 2 

and the flow of energy the same multiple of 

c(EX H) + cE'(E-s2) = cE2s2. 

This makes the flow of energy take place in the directions of motion of 
A and B which seems right. The lack of symmetry with respect to 
E and H arises on account of the fact that (H- Si) and (H-Sz) are both zero. 

Let us now use our expressions for E and H to build up an electro­
magnetic field in the ether. Instead of supposing that the separation of 
charges takes place at only one point at one instant we shall suppose 
that a separation is continually taking place in the neighborhood of a 
moving point S whose coordinates at time r are £(r), 77(7-), f(r). We 
shall suppose that in the process of separation which takes place during 
the interval of time from r to r + dr concentrated charges of magnitudes 
f{r)dr and — f{r)dT are fired out in the directions specified by the unit 
vectors Si and s% respectively and that diffuse charges which will just 
balance the concentrated charges are shot out in all directions in such a 
way that each compensating diffuse charge is distributed uniformly 
throughout the shell bounded by the two spheres of radii c(t — r) and 
c(t — r — dr) whose centers are the positions of S at times r and r + dr 
respectively. The density of the charge compensating f(j)dT is easily 
seen to be 

where 

v = ?(r)[x - f(r)] + vf(r)[y - „(r)] + f'MI* ~ fa)] - C*(t - r), 

r = c{t - r) . 

On account of its displacement this charge provides us with the field 

f(r) s - S l __ f(r) Sl X s 
4TTV I — S-Si 4.TV I — S'Si 

where rs denotes the vector whose components are x — £(r), y — rj(r)t 

z — fM> respectively. It should be noticed that the density of the 
1 The te rm i(E-si)2 represents the potential energy gained on account of work done against 

the force. 
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diffuse charge is used here in place of e and so £1, Hi are in a sense 
densities of the corresponding quantities when e is used. The density 
of the diffuse charge compensating ~ f{r)dT is likewise 

-fir) 
4irrv 

and this provides us with the field 

r? / ' M s ~ s * TJ f(r) s2Xs 
_£,2 = — — - j f t2 — 47TJ> I — s*S2 4irv I — s*s% 

Superposing the two fields the densities of the two diffuse distributions 
of charge cancel out but we are left with an electromagnetic field specified 
by the vectors 

E = '/'to f s ~ Sl _ s - s2 1 
4TTV [ . I ~ S'S± I •— S'$2 J ' 

ir^/'tor si><s _ ^ x n 
47TJ | _ I — S'Si I — S'S2 J * 

(12) 

In these expressions it must be remembered that r is defined in terms of 
x, y, z and t by means of the equation 

[x - £(r)]2 + [y - v(r)f + [* - r t o ? = *»(* - r)2, r < *. 

If we introduce the auxiliary quantities 

/ t o Q t i - *-*i 
4?r ^ & I — W 2 

it is easy to see that 
l( dp da\ / N £ = U V a i7 - v ^J' I = VaXvft (I3) 

and that 
TT I dE t. ^ 

rot i l = - —7 , div £ = o, 
c at 

rot E = — - — , div i l = o. 
c at 

This means that our field vectors satisfy Maxwell's equations and 
that these equations are a consequence of our assumption that proto-
electric charges travel along straight lines with the velocity of light and 
our additional hypothesis for the specification of the electric and mag­
netic vectors.1 This hypothesis is that the field vectors at the two moving 
points A, B are the same at any instant, that the longitudinal components 

1 Another derivation of Maxwell's equations from elementary assumptions is given by-
Leigh Page, Am. Jour. Sci., 38, 1914, p. 169. He uses the theory of relativity and the assump­
tion that each electric point charge is a center of uniformly diverging tubes of strain. 
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of the electric vector are — ecT and + ecT respectively and that the 
longitudinal components of the magnetic vector are zero. By longi­
tudinal components we mean components parallel to Si and S2. Another 
way of looking at the matter is to regard the coefficients of ecT in formulae 
( n ) as direction ratios of the moving line AB. Since each vector has 
three components there are six direction ratios. 

The field specified by the formulae (12) is a simple generalization of 
the one described by Heaviside1 in 1901. If the function / ' ( T ) varies 
continuously the concentrated charges form two moving curves along 
which the above expressions for E and H are infinite but it is not certain 
that these expressions are valid for these moving curves. Since the field 
contains line charges it should, perhaps, be regarded as a pro to field from 
which an ordinary electromagnetic field may be derived by a process 
analogous to differentiation. An appropriate process is described fully 
in a paper which will appear shortly in the Proceedings of the London 
Mathematical Society. In the simple case when the line charges are 
stationary except for motion along the line the process is simply a 
differentiation with regard to one coordinate z, for we may write 

Y Y — Z 

a = t , 6 = log —.— , r2 — x2 + y2 + z2. 
c &

 Y + z 
The resulting field is the electrostatic field of an electric pole at the origin. 

It should be noticed that a field of type (12) from which the field of a 
moving electric pole may be obtained by a process analogous to dif­
ferentiation is a pure radiant field in which the vectors E and H satisfy 
the conditions 

(E-H) = 0 , E2 - H2 = o. 
As this field is of an elementary nature the character of the energy 
ought to be determined and this is a matter which we shall now discuss. 

§ 4. I think most authorities agree that the flow of energy in an 
ordinary electromagnetic field may be represented by means of Poyn-
ting's vector2 S = cE X H and that the volume density of electro­
magnetic energy h W — \{E2 + H2). 

If no electricity is present so that no work is being done at the point 
under consideration the question arises as to whether the transfer of 
energy can be represented as a motion of all the energy in a single 
direction. 

The fact that the equation of continuity 

1 O. Heaviside, The Electrician, Nov. 29, 1901. Electromagnetic Theory, Vol. III., p. 122. 
2 For a recent discussion of the matter see a paper by G. H. Livens, Phil. Mag., 34, 1917, 

P. 385. 
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is satisfied suggests that it is sometimes possible to adopt this view, and 
as the velocity of motion 

is never greater than c, the velocity of light, this way of looking at the 
matter seems at first quite reasonable. It is of some interest, however, 
to compare this velocity with Cunningham's velocity of the ether,1 which 
we shall denote by the symbol u. 

Let us consider the hypothesis that the energy in a field can be regarded 
as energy of motion of a single entity or a group of entities having prac­
tically the same motion when the velocity of flow is a possible velocity 
of the ether. 

Taking first the simple case in which E-H = o, the velocity u is 
governed by one of the equations H = u X E, cE + u X H = o but 
the component of u perpendicular to S is indeterminate. If now u is 
in the direction of S, u is equal to either c-H/E or c-E/H and it is clear 
that u is equal to the velocity of flow of the energy only in the case when 
E2 = H2. 

A similar result is obtained when we do not make the initial assumption 
E • H — o; for in this case the velocity u is governed by the equation2 

ch = u X e, 
where 

h = \H + ixE, e = \E - 11H, 

and X and JJ, are chosen so that e • h = o. Since e X h = (X2 + /*2) (E X H) 
it appears that when u is in the direction of 5, u-e = o and we have 

c2h2 = u2e2. 
Now 

e2 + h2 = (X2 + M2)(-E2 + iJ2) 
and 

e*h* = (X2 + ix2)2{E2H2 - (E-il)2}, 

hence u is equal to the velocity with which the energy flows only when 
e2 = h2 and then it follows that E2 = H2 and E-H = o. 

Thus it is only in a simple radiant field for which the above equations 
are satisfied that the energy may be supposed to flow with the same speed 
as the ether. I have adopted the view elsewhere3 that the energy in 
such a field is entirely kinetic energy or energy of motion but this view 
is rather unorthodox and may perhaps be questioned. The point at 
issue depends on the definition of the different kinds of energy and also 

1 Proc. Roy. Soc. London, 83, 1909, p. n o . The Principle of Relativity, Ch. XV. 
2 See H. Bateman, Mess, of Math., 14, 1915, p. i n . 
3 Proc. National Academy of Sciences, May, 1918. 
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on the question whether the usual identification of magnetic energy with 
kinetic energy is valid for all types of field. Perhaps it is advisable to 
distinguish between kinetic energy and energy of motion, as is done for 
instance by Page,1 and to use the term kinetic energy only when energy 
can be expressed in the form T = \muL where u is a velocity and m the 
transverse mass. According to this view the kinetic energy in the electro­
magnetic field of a moving electron can be represented by \B} per unit 
volume, this being the usual expression adopted by Larmor and others. 
This view seems to be strengthened by the form of the Lagrangian 
function in the principle of least action but it may not be right to adopt 
the expression \H2 for the kinetic energy per unit volume in the ideal 
case of a magnetic particle for we may expect from symmetry that \E2 

is the correct expression. Since, moreover, a simple radiant field cannot 
generally be derived by superposition from the fields of electric poles 
moving with velocities less than c we cannot conclude from the above 
that the kinetic energy per unit volume is in this case represented by 
JH"2, although there may be some other way of arriving at this result. 
At any rate it does not seem right to assume that \H2 per unit volume 
completely represents the apparent energy of motion1 in the field, for it 
seems reasonable to adopt the view that there is no apparent energy of 
motion when the field is static and there is no flow of energy. Assuming 
that a field in the ether is static when there is no flow of energy a static 
field may be characterized by either E = o or H = o, the general require­
ment being that E should be parallel to H, When a field is static it is 
possible for Cunningham's velocity u to be zero and conversely if u can 
be zero the field is static. 

According to the above view there is no apparent energy of motion 
either in an electrostatic field or a static magnetic field but in both cases 
there is concealed energy of motion if we adopt the ideas of Thomson and 
Hertz. This concealed energy of motion may perhaps be brought into 
evidence by building up the static fields from simple radiant fields of the 
type for which E2 = H2 and E-H — o, for in each field of this type there 
is certainly energy of motion. 

In what follows we shall adopt the hypothesis that the energy in a 
simple radiant field is entirely energy of motion. In justification of this 
we may, perhaps, reason as follows, but the argument is not very con­
clusive. 

In the case when cH = u X E and u is parallel to S the kinetic energy 
1 Am. Jour, of Science, 40, Aug., 1915. 
2 This term is used because according to the views of Sir Joseph Thomson—The Applica­

tions of Dynamics to Physics and Chemistry, 1888, p. 15—all energy is ultimately kinetic 
energy or energy of motion. 
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\H2 and the momentum (i/c2)S can be accounted for by assuming that 
a particle with transverse mass m = E2/c2 moves with velocity u = c-H/E 
in the direction of 5. Now in the case of a moving electron the energy 
which it has acquired in virtue of its motion may be expressed in terms 
of the velocity u and transverse mass m by means of the formula1 

mc2[i - Vi - (P][i + j V i - 02], (14) 

where (3 = u/c. If this formula is supposed to be applicable in the case 
of a particle whose transverse mass remains finite when u = c the expres­
sion for the energy of motion becomes mc2 and this is equal to E2 in the 
case of the electromagnetic field. The view that the energy is entirely 
energy of motion when E2 = H2 and E- H = o is thus in accordance with 
the above expression. Of course if the transverse mass is finite when 
u = c the particle must be supposed to have no energy when it is at rest. 

So far no general expression for the energy of motion in terms of the 
field vectors has been obtained which will satisfy the condition that the 
total energy of motion in a moving electron's field is equal to the expres­
sion (14). 

In a general electromagnetic field it is probably not permissible to 
regard the momentum and kinetic energy in an electromagnetic field 
as arising from the motion of a mass in the direction of Poynting's 
vector. 'To elucidate matters a little let us consider the result of super­
posing two fields (— £ , — H) and (E + dE, H + dH) which differ very 
slightly and which are both simple radiant fields. Let the unit vectors 
s and s + ds indicate the direction of Poynting's vector S in the two 
fields, then on account of the assumed property of the fields we have the 
relations 

E + s XH = o, dE + s X dH + ds X H = o, 

s-E = o, s-H = o. 

Since s-ds = o we may write ds = AE + BH and so 

ds X H = AE X H = \s; 

this means that the vector s satisfies equations of type 
dE + sXdH = ks, s-dE = k, 

and so is one of the unit vectors (of the type considered in § 1) for the 
resultant field (dE} dH). 

The energy %(dE)2 + %(dH)2 in the resultant field is generally very 
much less than the sum of the energies 

\E2 + iH2, i ( E + dE)2 + i(H + dH)2 

1 See for instance, L. Page, Amer. Jour. Sci., Vol. XL., Aug., 1915. P- 119. It should be 
mentioned that in the derivation of the formula there is an assumption with regard to the 
size of the electron when at rest as compared with its size when in motion. 
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in the component fields, so that there is a loss of energy of amount 
E(E + dE) + H(H + dH) due to interference. This energy may per­
haps be regarded as concealed energy of motion. The question now 
arises how two fields in which energy flows practically in the direction 
of the unit vector 5 can give a resultant field in which energy flows in a 
direction different from 5. The answer is that the flow at right angles to 
5 in the resultant field arises from the motion of a very large amount of 
energy with a very small component velocity perpendicular to s. 

This may be the explanation of the perplexing fact that in the field 
of a moving electron the direction of Poynting's vector is quite different 
from that of the radius from the effective position of the electron. In­
deed the field of a moving electron can be built up from simple radiant 
fields in each of which the flow of energy to a point is actually or very 
nearly along the radius just mentioned and it is just because the total 
amount of energy in these radiant fields is vastly greater than the energy 
usually attributed to the electron's field that the slight deviations in the 
paths from the mean radius can give rise to an appreciable transverse 
flow. 

In our opinion then there is a colossal amount of concealed energy of 
motion in the field of an electron or positive nucleus of an atom. Whether 
this energy will ever become available or not we are quite unable to say. 
Of course it must be remembered that our theory of the structure of an 
electric field is based on the idea that the electric charge of an electron 
is continually being renewed1 by electric separation (i. e.y the breaking up 
of minute doublets) and that the charge remains constant because a 
steady state has been reached. At present there is no way of deciding 
between this theory and the usual theory that an electron always consists 
of the same particles of electricity, but in support of the new theory it 
may be claimed that it gives a simple geometrical reason for the shape 
of the lines of electric force of a moving electric pole2 and provides a 
possible explanation of gravitation as an effect due to an extremely slight 
fluctuation of the charges on electrons and positive nuclei in what may 
be slight deviations from the steady state of renewal of these charges. 

The chief reason for pursuing a theory of this kind is the hope that it 
may throw some light on the nature of force and the real meaning of 
the dynamical equations of motion. It is very probable that the equa­
tions of motion are fundamentally of a geometrical nature3 implying 

1 An idea somewhat similar to this is adopted by the late S. B. McLaren in his theory of 
gravitation, Phil. Mag., Vol. 26, 1913, p. 636. 

2 Mess, of Math., Vol. 47, 1918, p. 161. 
3 An attempt to express the fundamental laws of physical phenomena by geometrical con­

siderations has been made recently by H. A. Lorentz, Amst. Proc, 19, pp. 1341-1369; 20, 
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the existence of certain incidences and correspondences with perhaps a 
minimum principle thrown in. While the general problem still baffles 
us some useful information may perhaps be gained by considering cases 
in which we can actually find an equivalent of the energy lost when work 
is done. 

We shall commence by considering an electromagnetic field in which 
the usual equations 

c rot H = — + pv, div E = p, 
ot 

3H ( I 5 ) 

c rot E = — —- + <rw, div H = — a, 
ot 

are satisfied and as usual a = o, aw = o. We shall assume, however, 
that p and pv have the forms 

p = "" c ~dl' pV = CV^' ^l6^ 

The usual form of the energy equation is, moreover, obtained from 
the relation 

P(p.E) + I [ | ( E 2 + H*)] + div [c(E X H)] = o, (17) 

where the first term represents the rate at which work is being done by 
the field on the electric charges present. 

Now 

cdiv^E) = - ^ + p ( i , . E ) , 

hence the energy equation may be written in the form 

| [ | ( E 2 + H* + ^2)] + div [c(E X H ) + c^E] = o, 

and the career of the energy which has been transformed into work is 
not lost sight of if we assume that the total amount of energy per unit 
volume is | (E 2 + H2 + ^2) and that the total flow of energy is speci­
fied by the vector 

c(E X H) + cfE. 

The lack of symmetry with respect to E and H can be avoided if we write 

1 ox 
* = - - - , aw = cvx, 

pp. 2-34, 1917. Further interesting geometrical developments may enter in the study of the 
growth of simple correspondences between different parts of the field figure and in estimating 
the closeness of fit of an imperfect correspondence. 
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and add the term — (crw-H) to the left-hand side of (17) for then 

dx 
c div (XH) = X~^j. + <r(w-H), 

and the energy equation may be written in the form 

a 
dt - [|(£2 + H2 + f* + x2)] + div [c(E X H) + c^E - cxH\ = o. 

Similarly the usual momentum equations of type 

dXx dXy dXz I dXt 

~~dx + ~dy + ~dz +~c~dT 

= p \ Ex + - (vyHz - vzHy) - a\ H*-- («vE, - wzEy) , 

in which 

Xx = E* + H2 - \{E2 + EP); X* = E*E. + HXHZ, 

Xy = ExEy "J" HXHy, Xt = EZHy EyHg 

may be written in the form 

dXJ dXl dXl 1 dX/ _ 
dx + dy + dz + c dt ' ~ °' 

where 

XJ = Xx + K^2 + X2), . XJ = XZ + *Hy + xEy, 

Xyf = Xy - ^HZ - XEZ1 X/ = Xt + ^Ex - XHX. 

If we write 
M = H + iE, — i<j> = ^ + i%, 

the fundamental equations may be written in the form 

JdM , \ 
c rot M = - % ( — + cV4> J , 

I 86 
div M + ~ ~~ = o, 

(18) 

and an interesting class of solutions is obtained by adding the additional 
equation1 M2 = <£2. 

In this case we may write 

,.. ^ si - s2 + i(sj X s2) 
1 - Oi-s2) 

where s± and $2 are unit vectors which are easily seen to satisfy equations 
(2) of § 1. Assuming that these are real and writing I for the x-com-

1 Cf. H. Bateman, Mess, of Math., 47, 1918, p. 161. 
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ponent of s2, X for the vector with components XX1 Xy, XZ1 and K for 
the quantity 

^2 + x2 

i - (svs2) 
we have 

1(E2 + H2 + ^ + % 2 ) = R i 

*E - xH + EXH = i ^ x , 

tE-xH-EXH-- Ks2, 

X = - JSTfai, 

JST# = — i n . 

This means that the career of the energy transformed into work is not 
lost sight of if we suppose that an amount of energy K flows with the 
velocity of light in the direction of the unit vector Si and that momentum 
— Ks2 flows with the velocity of light in the same direction. This 
momentum may perhaps be supposed to arise from the motion of par­
ticles in directions differing very slightly from the direction $i, a conditioa 
which suggests the existence of two or more superposed fields which 
differ very slightly in properties. If a field of the present type is supposed 
to arise from the breaking up of minute electric and magnetic doublets 
and a rectilinear motion of their constituents with the velocity of light 
the dynamical equations of motion may simply imply that certain 
groups of particles travel along without losing any of their energy or 
momentum. In the general case, however, it is more probable that the 
dynamical laws tell us what happens when old groups of particles are 
broken up and new ones formed. It should be mentioned that a more 
general type of field has been found in which the career of the energy 
transformed into work at an ordinary point of space is not lost sight of. 
In this case we take 

I da 
pv = cVa + c\su p = - - — + X, 

c at 
I dp , 

aw = cV/3 + Cfxsu a = — + jtt, 
c at 

where Si is one of the unit vectors connected with the field by equations 
(2) of § 1. If now a and jS are defined by the equations 

a = (*!•£), fi = - (Ji-fl), 

we have as before with a and ft in place of \j/ and x 

/ T^\ i» / TVV • da 

(pv • E) = c div (aE) + a — , 

(aw-H) = cdiv(pH) - 0 ^ 7 , 
at 
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whatever X and /x may be, but these must be chosen, of course, so that 
the equations of continuity 

— + div (pv) = o, — + div (aw) = o 

are satisfied. The energy in the field is now 

T = UE2 + H* + a* + /52) = \{E? + W) + M(£2 - # 2 ) 2 + 4(£-#)2]1 / 2 , 

and the flow of energy 

S = c[(E X H) + E(svE) + H(svH)] = cTsu 

On the other hand we have 

, Xt = [Ex{svE) + H9{svE) -{EX H)x] = - T(s*)x, 

where s2 is the second unit vector connected with the field. We also 
have X — — Tsi(s2)x, hence a total amount of energy T flows with the 
velocity of light in the direction of Si and a total momentum — (i/c)Ts2 
flows with the velocity of light in the same direction. It is probable 
that this type of field also arises from the breaking up of electric and 
magnetic doublets and the rectilinear motion of their constituents with 
the velocity of light. The above argument probably breaks down at 
points where the breaking up of the doublets occurs. 

Returning to the previous type of field we note that equations (18) 
may be satisfied by writing 

I dT 
M = - — + ^rot T + V$, 

where $ and the components of V are solutions of the wave equation. 
If X = o so that there is no real magnetism we have simply a field in 
which the volume density of electricity is proportional to the rate of 
change of a function \f/ and the convection current is also derivable 
from \f/ by differentiation. Let us call \p the electric storage. It is im­
portant now to notice that there may be a finite constant value of \[/ and no 
electromagnetic field, for if in the above equations we write 

/» - x de 

we have clearly M = o and 
I d29 
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It is only necessary then to choose 6 to be a solution of the equation 

1 d26 
V20 - ^ ^ = constant, 

in order to ensure that <£ and the components of r may be solutions of 
the wave-equation. The quantity <t> is then constant and so therefore 
is \p while there is no electromagnetic field. 

This result indicates that in any field of type (18) we can regard the 
electric storage ^ a s a positive quantity. 

Electric storage is in some respects analogous to quantity of proto-
electricity but the function \[/ is an absolute invariant under the trans­
formations of the theory of relativity. It seems more reasonable to 
regard quantity of proto-electricity as the rate of change of electric 
storage; the existence of both positive and negative charges of proto-
electricity then seems quite natural. 

SUMMARY. 

1. An electromagnetic field is studied geometrically in relation to a 
moving observer and various vectors are located with the aid of the two 
cones which at each point limit the directions of the forces acting on 
electric and magnetic charges moving with velocities less than that of 
light. 

2. The electromagnetic laws are expressed directly in terms of the 
forces on unit electric and magnetic charges in motion and some deduc­
tions relating to lines of force are made from Hargreaves' theorems for 
space time integrals. One of Hargreaves' theorems suggests that quan­
tity of electricity may represent a rate of change of another entity— 
quantity of proto-electricity, and electromagnetic fields are regarded as 
derivable from proto-electromagnetic fields containing line charges by a 
method analogous to differentiation. 

3. Field vectors satisfying Maxwell's equations are constructed from 
the assumption that an aggregate of particles travel along straight lines 
with the velocity, and from a further hypothesis regarding the nature 
of the vectors. 

4. A critical discussion is given on the nature of the energy in an elec­
tromagnetic field and the nature of its flow. A theory is developed which 
indicates that there is a colossal amount of concealed energy in the 
field of a moving electron. 

Some examples are given which indicate what becomes of the energy 
which is apparently lost or transformed when work is done by an electro­
magnetic field on the electric charges within it. 

T H R O O P COLLEGE, PASADENA. 


