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PEEFACE TO PAET III.

The curved lines of arclies are pleasing to the eye, and may

often be introduced with advantage in constructions. An arch

may furnish, under some circumstances, a very economical way

of spanning an opening; and arched ribs are employed in

other cases, at conspicuous locations, where beauty of design

is regarded, or where ample and uninterrupted space beneath a

roof is desired. Stone arches have been built for many centu-

ries : at the present time, wood, iron, and steel are also used as

materials. If the principles which enable one to ascertain the

forces acting in all parts of an arched structure are clearly

understood, designs of this type will be more common than

they now are; and it is with the desire to do what he can to-

^\'ard shedding some light upon this subject, as well as to give

the ability to intelligently design an arch to those who are not

familiar with the higher mathematics, that the autlior submits

tlie following pages to the public.

jNIost persons experience difficulty in mastering the principles

which govern the action of an arch, as they have hitherto been

presented. Even one who lias successfully Avorkcd through

the mathematical theory, as he finds it in the text-books, may

sometimes lose sight of the actual meaning of each step in the

3
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4 PREFACE TO PART HI.

process ; so that there is a certain mystery about the applica-

tion of the formulae to a specific example, although one may

feel confident that the results are reliable. To many con-

structors a treatise on the arch, as usually written, is a sealed

book, and the whole subject is veiled in obscurity. Empirical

rules, copying of existing examples, and guesswork have been

the refuge of many. While such practice may answer for

masonry structures, where the factor of safety as regards

strength is very large, the introduction of iron skeleton struc-

tures, where the pieces occupy definite lines of force, and the

sharp rivalry for economical disposition of the material, render

a better practice desirable. It is hoped that the graphical

method developed in the following pages will enable the reader

to understand as clearly the efi"ect of applied forces on an arch,

as it has, through the explanations of Parts I. and II., enabled

him to analyze trussed roofs and bridges.

From the bending moment^ direct thrust^ and shear^ here

obtained at successive sections of the arched rib, the stresses

in the chords or flanges, and bracing or web, are derived as if

the structure were a simple truss. In finding the resultant

stresses in the pieces, the method of Part I. will sometimes be

preferred to that of Part II. So far as possible, the formulae

of the text have been obtained by direct and easy ways ; and,

while it has been convenient to arrive at some of the definite

results by the use of the calculus, such results have been

obtained from the diagrams, and can in all cases be verified by

the reader, for any specific example, by the most simple means.

After the subject is once mastered, the resulting formulse

and applications will, naturally, alone be referred to in working

out designs : the author has therefore thought it best to place

the results, &c., in direct connection with the explanatory
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statements, and to have the analytical or mathematical demon-

strations follow in smaller type. One who simply desires

working-material may omit the matter printed in small type,

without losing any of the facts, but must then take some state-

ments for granted.

A distinctive notation for the figures, introduced in Parts I.

and II.,— capitals for structures and moment diagrams, small

letters for the shear diagrams, and numerals for the stress dia-

grams, — has been generally adhered to. While an accjuaint-

ance with Parts I. and II. will aid the reader in understanding

more readily the graphical constructions here given, it has been

the aim of the author to enter sufficiently into detail to make

this part intelligible by itself: hence a few explanations are

repeated here.

It is believed that many things offered in these pages will be

new to most readers. The work is almost entirely the result of

independent investigation. A portion of the material was once

printed in the " Engineering News," but it has been entirely

revised since that time : over one-half of this part is now in

type for the first time. The device of increasing the breadth

of the parabolic rib, or the thickness of the flanges, from the

crown to the springing, while the depth remains constant,

—

which device will be found in Rankine's " Civil Engineering,"

— enables the summation of ordinates to be made across the

span, as for a beam, rendering the treatment simple. On the

other hand, the depth and breadth of the circular rib are sup-

posed to be constant, and the summation is made along the

curve. Herein the treatment differs from that of some authors.

It is shown that the direct thrust on a right section is not equal

to the product of the horizontal thrust by the secant of the

inclination of the rib at the section to the horizon, as some
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writers assume, unless the equilibrium curve is puriillel to the

axis of the rib. Other points of difference in treatment and

result will be found by readers who are familiar with tlie litera-

ture on this subject. The discussion, in Chapter VIII., of the

action of the wind on an arched roof, will, it is hoped, be found

timely and serviceable ; the effect of change of temperature,

and the change of form under stress (Chapter XI.), are often

ignored by writers ; an example of a stone arch of considerable

magnitude is worked out in detail ; the methods of stiffening

suspension bridges are discussed and compared : on some of

these points very little has heretofore been given.

C. E. G.

Ann Akbok, Mich., July, 1879.

N^OTE TO THIKD EDITION.

In the present edition the parabolic rilj with a hinge at the

crown only has been treated. The solution will be found on

page 192. The method of locating the equilibrium polygon by

ti-ial, on a rib of any outline, has been emphasized. Illustra-

tions of three notable arched bridges are added—one over the

Harlem river at Xew York, two over the Xiagara river at

Niagara Falls, N. Y. In designing two of these structures, if

not all three, the method of analysis developed in this book was

applied.
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ARCHES.

CHAPTER L

GENERAL PIIIXCIPLES.

1. Arches.— An arch may he considered to be an}' structure

which, under the action of vertical forces, exerts horizontal or

inclined forces against its supports or abutments. Such a defi-

nition will include not onl}* the roof of two simple rafters, but

also the suspension bridge ; and we see no objection to so

including them. The case of two rafters we need not touch

upon : the suspension bridge only comes incidentally within the

scope of this part, until we take up tlu' means of stiffening such

a structure inidci' a moving and partial load.

2. Funicular Polygon applied to a Curved Rib. — Suppose

that a curved rib A C E B, Fig. 1, of any material wliich pos-

sesses stiffness, for instance iron, is attached by a pin, on which

it can turn freely, to each of the points of support A and B,

and has suspended from it certain known weights, represented

by Wj, W._,. cVrc, at kn(»wn ]>oiiits. Tlie weight of the curved

rib itself is not at present considered. The rib. if flexible, as a

cord or eliain is flexible, will tend to assume the shape of the

funieular, or e([tiilil)rium polygon, proper to these weights in

their respective positions. If we lay off the load line 2-1, to

any scale, space off on it the weights in succession, assume any

convenient point 0, draw radiating lines from that point to the

15



16 ARCHES.

points of division and to the extremities of the load line, and

then, starting from A, or any other point in the vertical through

that point of support, draw lines, successively parallel to the

lines radiating from 0, and limited by the verticals through the

weights, one such equilibrium polygon will be found.

This polygon was discussed in Part II., " Bridges," § 2. By
moving the point of the stress diagram, the place where the

equilibrium polygon strikes the vertical drawn through B will

be changed ; and, if is horizontally opposite the point which

divides the load line into the two supporting forces, the poly-

gon, drawn from A as a foint of beginning, will strike B. But
may move on a horizontal line, and H will then have any

value we please. H is therefore, at present, an unknown quan-

tity ; but we will suppose that A K I B is the desired equilib-

rium polygon for this given case, — an imaginary line, the

weights being attached to the arch.

3. Relation between Equilibrium Polygon and Bending
Moments.— If the rib is made of a rigid material, the tend-

ency to take a shape other than the one to which it was first

formed will cause a bending action or moment at different

points. Thus, between A and C the rib will flatten somewhat,

moving towards the straight line A C, and frcjm C to B it will

l)ecome slightly more convex. xA.t C, where the rib coincides

with the equilibrium polygon, there will be no tendency to

bend. The bending moments on either side of a point where

the equilibrium polygon crosses the rib will therefore be of con-

trary kinds or signs. It is necessary to know the value of the

bending moments at all points, in order to so design the cross-

section of the rib that it shall be able to resist them. The
point C is not necessarily the crown of the arch : it happens to

come near it in our figure. If the arched rib is free to turn at

its supporting points, no bending moments can exist there ; if it

is jointed or hinged at any place, as, for example, the middle or

crown, no bending moment will be found there : the equilib-

rium polygon must therefore pass through all such points.

The rib may be so fastened at A and B that it cannot turn in a
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vertical plane ; and there will then be bending moments at those

points, as in the analogous case of a beam fixed at both ends,

except lor such a distribution of the load as makes the equilib-

rium polygon coincide with the arch at its ends.

If the rib is hinged at three points, that is, at the ends and
middle, the equilibrium polygon is immediately fixed in position

by the necessity of passing through these three points, and the

problem of finding the stresses in the rib becomes very simple,

as will be seen later.

4. Value of Bending Moment. — Let us suppose, at first,

that the rib of Fig. 1 is jointed, and free to turn at its ends

only. The stress diagram, 12, and the imaginary equilibrium

polygon, having been constructed, and the horizontal line H
from di"awn, it will be seen that this line will divide the load

line into two forces, the vertical components of the abutment

reactions, as proved in Part II., § 6. The arrows in the figure

denote these components ; and we will call the vertical ones,

analogous to the supporting forces of a beam, Pj and P,, as

marked. We have here the usual closed polygon of external

forces.

Let an imaginary vertical section be made at D F : from the

theorem of moments, as equilibrium exists in this loaded arch,

the moments of all the external forces must balance around any
point, for instance the point E, wliere the plane of section cuts

the rib. If the sum of the moments around E equals zero, the

moments on one side of the plane of section must equal those

on the other ; and, as E is in the section of the rib, these mo-
ments can only neutralize one another through the moment of

resistance of the section : consequently, the sum of the moments
on either side must equal the bending moment at E. Then at

E, if P, and H are the rectangular components of the reaction

at B, and — W. L denotes the sum of the products of each

weight b}- its horizontal distance L from E, the bending moment
will be

M = P,. DB — SW. L — H. DE. (1.)

If the weights had been attached to the cord, or equilibrium
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])()lygon, we should have liad, for moments on the riglit of anjj

about F,
P, . DB — 2 W. L — II.DF. (2.)

But a cord, being flexible, can resist no bending moment. As

this cord is the equilibrium polygon, there can be no tendency

to move or no bending moment at any point of it, and expres-

sion (2.) must reduce to zero, or

P. . D B — 2 W. L =r H . D F.

Substitute this value in (1.), and it becomes

M = n . D F — H . D E = II . E F
; (3.)

Avhich signifies that the bending moment at any point of an

arched rib, under any vertical load, is equal to the product

of the vertical ordinate from that point to the proper equi/ibrium

2JoIi/f/o7i, multiplied l^y H from the stress diagram.

5. Remarks. — It will be noticed that, to the left of C,

D F — D E will change sign, becoming negative, and therefore

that the bending moment will change in direction, as stated

before. If the rib becomes straight and horizontal, the point E
moves u]) to D, and the bending moment becomes equal to

H . D F, which is its value for a beam supported at both ends.

The relation of the equilibrium polygon to the arch, or the

fact that the bending moment equals H . E F, as just proved,

may he readily explained in another way. Suppose that the

arch A' B' of Fig. 14 has a single weight j)laced upon it in a cer-

tain position: it will thrust horizontally against the abutments

an amount II. Let the equilibrium polj'gon for this weight,

and having the same H, be A F B. The ordinates to this

equilil.)rium j)olygon will be proportional to the bending mo-

ments, due to the weight on a beam or truss of span A B

;

the moments will all be positive, and equal to II . D F. But

the thrust II of the arch, which actually carries the weight,

acting in the line A' B', will exert negative bending moments

equal to H . D E at all sections of the arch. The resultant

l)ending moment at any point, when the equilibrium ])olygon

is superimposed on the arch, will be the product of 11 by the
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difference of tliose two ordinates, or IT (D F — D E) nr II . E F,

at some places negative, and at others positive. Thus we see

that, while we have for a given system of weights an equi-

librimn polygon exactly similar to those treated in Part II.,

" Bridges," the arch, by reason of its horizontal thrust which

causes negative bending moments as above, annuls or cuts off a

portion of the area of the equilibrium polygon, and the portion

of the ordinate in excess or deficient at any point measures the

existing bending moment. It is only necessary that the arch

and polygon should have the same value of H. The arch, in

its capacity of frame, as it were, carries a portion, more or

less, of the forces which w'ould otherwise cause bending mo-
ments and shears.

Such an arrangement of weights might be devised, coutinu-

ousl}- distributed along the rib, that there would be no tendency

to change the shape of the arch at any point. The equilibrium

polygon, becoming a curve for a continuous load, would then

coincide with the centre line of the arch, and we should have

M'hat is termed an equilibrated rib. And, on the other hand, a

rib can be designed for any given distribution of load, of such

a shape as to be in equilibrium. This fact can sometimes be

made use of when the load is definite, that is, not a moving
load, and we shall refer to it again in the sequel.

6. Condition to determine H; Invariability of Span. — It

may be noticed tliat in § 4 we used the term proper equilihrium

polyyon. It has been stated that it is easy to draw, between

A and D, any number of funicular polygons, which have their

angles on the verticals let fall from the weights, l)y simj)ly

moving the point horizontally in the stress diagram, and thus

altering the value of II, the horizontal comj^onent of the ten-

sion. But the actual rib, under a given system of weights,

must have a fixed value of II, and definite bending moments
at all points : there is therefore but one funicular polygon
which will be the proper e(iuilibrium polygon, ^ome condition

must be imposed ; and a sufticient one is, that, supposing the

points A and B to be fixed in position relatively to one
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another, the distance A B, or tltv Kpan of the rih, yJiall he

nnchanijed. An arch between two unyiekling abutments satis-

fies this condition. If the curve A C is flattened by the pull

upon it, or by the bending moments by wliieh it is urged

tow^ards the straight line A C, the point C will move a little

to the right, while the portion between C and B will become

slightly more convex. The movement of the point B, how-

ever, with reference to A, must be zero.

7. Formula for this Condition.— Consider the arched rib

as disconnected from its fixed points of support, but suspended

in the air by the forces which were but now the reactions at

those points. Equilibrium will still exist. The bending mo-

ment H . E F at E, from its effect on the particles at that

section, causing an elongation of the fibres on one side and a

compression of the fibres on the other side, produces what may-

be called an exceedingly small angle in the rib, or, better, a

change of inclination^ at E, moving the free end B, so far as

this change alone is concerned, a very small distance in a direc-

tion perpendicular to a straight line from E to B. The amount

of this displacement will depend upon the distance E B, and

upon the change of inclination at E, which change has just

been shown to depend upon the bending moment H . E F. The

amount. B R. of this movement, is greatly exaggerated in the

figure. But the horizontal component, or projection, B S, of

the displacement, which alone affects the horizontal distance

of B from A, will manifestly, from the proportionality of the

sides of the two right-angled triangles B R S and E B D, be to

B R as D E is to E B, or B S will be proportional to D E.

Perhaps this point may be brought out more plainly if stated

algebraically, thus :
—
B R varies as E B . H . E F;

B S = B K . ^ J^^ therefore,
E B

T^o EB.H.EF.DE iTr'T^r»r>B S varies as -—
, or as H . E b . D E.

E B

Taking all the points in the rib into consideration, we see
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that the total horizontal displacement of B from A will be pro-

portional to H . ^ E F . D E, if 2' is the sign of summation of all

of the products E F . D E. As the span A B is to be unchanged,

the above quantity must equal zero, and therefore, as H cannot

be zero, we have the desired condition reduced to

sEF.DE= 0. (1.)

8. The Equilibrium Polygon determinate. — As E F

changes sign when the equilibrium polygon crosses the rib,

as at C, we arrive at this result for a rib free to turn, or

hinged, at its ends, that the iniiamation of the products EF.DE
for every point where the equilibrium polyjo7i lies on one side of

the rib must equal the summation of the similar products for every

-point where the polygon lies on the other side. Only one polygon,

manifestly, will satisfy this condition ; for, if we draw a new
polygon between A and B, we immediately increase one set

of E F's and diminish the other. An equilibrium polygon may
first be drawn tentatively, ordinates be measured at intervals,

and the above products computed. It will then be readily seen

whether the polygon should be moved up or down ; to move it,

change H, and draw again. We can deal thus with a rib of

any outline ; but, for the regular forms of arches commonly in

use, we will show presently how to determine the exact equi-

librium polygon without experimental trial.

9. Deflection of the Rib.— The vertical component R S, of

the displacement B R, manifests itself, since B cannot move, by

a slight movement of the rib at E vertically, corresponding to

the deflection of a beam under transverse forces.

10. Another Value for Bending Moment.— It has been

shown that the bending moment at E equals H . E F. If we
draw from E a perpendicular, E N, to that side of the equilib-

rium polygon which passes through F, the side being prolonged

if necessary, we shall form a right-angled triangle, similar to

one formed in the stress diagram by H, the line parallel to the

side of the polygon, and the vertical line. Thus, in Fig. 1,

the triangle E F N will be similar to 2 5, and we may write

the proportion
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0-2:0-5==P:F:EN;

or, if T denotes the tension 0-2 in the part of the cord which

passes though P\ we get, upon multiplying extremes and means,

II.I<:F = T.EN; (1.)

so that the bending moment at each point is also equal to the

product of the tension in the cord by the perpendicular let fall

on the cord from the given point ; and this is tlie measure of a

moment^ as shown in mechanics. The discussion of the bend-

ing moment might have been approached in this way.

11. Combined Effect of Bending Moment and Direct

Force.—If .a force T acts in the line A K, which, when we con-

sider the curved rib, is an imaginary line, its moment with

respect to the rib at E is, then, T . E N. Now, from mechanics,

if we analyze the effect of a force T, Fig. 2, at any distance lat-

erallj^ from a point E, Ave may apply two equal and opposite

forces, -f-T and— T, at this point, which is here the middle of

the rib, or Avhat would be, for flexure only, the neutral axis,

without destroying the equilibrium. Hence we have at E the

direct force -[-T, producing tension, and the couple T . E N,

producing flexure. The enlarged sketches will represent the

condition of the rib. The small arrows at E' denote the mag-

nitude or intensities of the stresses which form the moment of

resistance to balance the bending moment, these intensities

being taken as uniformly varying, a supposition Avhich is satis-

fied within the elastic limit ; at E" are shown the stresses on

the particles of the section from the direct force ; and the com-

bination of the moment and force is represented at E'", it being

understood that these several views represent one and the same

section E.

The point of no stress, or the position of tlie neutral axis, is

seen to be shifted from the middle of the section at E' to one

side at E"'; and it will disappear altogether when tlie arm of

the couple or moment becomes sufficiently small, so that the

entire section may be under one kind of stress of varying in-

tensity. If we know the form of cross-section of the rib, we



AKCHES. 23

can tell from the location of the equilibrium polygon, by sim-

ple inspection, where we shall find both tension and compres-

sion, and where only one kind of stress. This matter will be

touched upon later : §§ 100-108.

12. Reversal of Figure; Movement of Rib from Equilib-

rium Polygon.— When an arch is under analysis, the figures

thus far oiven will be inverted. Imaoine them to be so. All

of the forces will then be reversed. The polygon wiiicli was

under tension will be compressed, and its sides will represent

struts. It will be in unstable equilibrium, and its relation to

vertical forces is not, perhaps, so readily apprehended, by one

not acquainted with this subject, as is that of the funicular

polygon. For this reason it was thought best to take an in-

verted arch first. Hereafter the arches will be drawn above

the springing line ; H becomes the horizontal thrust of the rib

against its abutments.

The curved rib, between the points A and C, Fig. 1, so long

as there is tension along the straight line A C, tends to move
towards that line, just as the cord, if drawn towards the arch,

returns to its former position ; but as soon as the figure is

inverted, and C is forced by compression towards A, the arch

tends to move aioayfrom the equilibrium j^olygon. This fact is

true of all points of the rib, and, being borne in mind, will

enable one to tell at a glance the kind of moment at each point

of the rib. All the bending moments are therefore reversed.

Those bending moments which tend to make the arch flatter,

or of less curvature, at any point, are called positive ; those

which tend to make it more convex are called negative.

It may aid in fixing the ideas, to take a piece of small steel

wire, bend it into the arc of a circle, and, placing the two ends

in two notches upon a board, notice the change of shape aris-

ing from a pressure or load imposed on any portion. The
movement of the wire will indicate, in a general way, where

the equilibrium curve lies in reference to the rib.

13. Equilibrium Polygon for a Single Load.— It is now
readily seen that the equilibrium polygon for a single, concen-
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trated load on an arcli is composed of two straight lines which

meet on the vertical drawn through the point where the load

is imposed. In the case just treated, these lines will start from

the two springing points of the arch. The only quantity need-

ful to fix their position will be the distance of their point of

intersection vertically from the rib ; and the single condition

of (1.) § 7, that ^ E F . D E = 0, will determine the unknown

quantity. It will be easier to find the effect of a single load

at successive points on the arch, and to combine these effects

for any possible arrangements and intensities of load, than to

treat at once several loads. We shall pursue this method.

14. Direct Force and Shear at a Right Section.— Since

an arched rib is often composed of two flanges, and a web or

connecting bracing, similar to a girder or truss, we desire, after

we have found the bending moments at all points, to find that

portion of the vertical force or the shear at each section which

must be resisted by the web members. Shear was explained

in Part II., " Bridges," § 4. In a horizontal beam, carried on

two supports, we should have, in Fig. 1, P, for the supporting

force, and shear on the right of any section between B and Wj

;

P, — Wj, or (1-5) — (3-1), for the shear anywhere between

W, and W2 ; P, - Wj - W.„ or (3-5) - (4-3), that is - (5-4),

between W2 and W3 ; and so on, subtracting each weight from

the previous shear or resultant. But in a beam, or a truss with

horizontal chords, the other forces, those which oppose the

bending moment, are horizontal : here they are not. Supposing

the rib to be inverted, the direct thrust, being in the direction

of a tangent at the centre line of the rib, has a vertical com-

ponent which affects the amount of shear to be resisted by the

web. In short, the inclined flanges or chords act as braces ; and

we have, at any section, these chords as well as the web mem-

bers, among which to distribute the shearing force. The

action corresponds with that of the bow in a bowstring girder.

It is not probable that the thrust in the side of the equilib-

rium polygon will be parallel to the tangent to the curve of

the centre line of the rib at a particular section, but this thrust
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will be the resultant force at the section. It may then prop-

erly be resolved into two rectangular components, one perpen-

dicular to the section, representing the direct force, and the

other parallel to the plane of the section, representing the

shear. The direct stress, combined with the tension and com-

pression due to bending moment, will be resisted by the flanges

or chords, and the shear by the web members, if the rib is so

constructed. If the rib is of solid section, like a beam, the

separate consideration of shear is generally unnecessary. It

will at once be seen that the direct stress at any point of the

rib is obtained by projecting the force in that side of the

equilibrium polygon which passes near the ^^oint upon the tan-

gent to the rib. Thus, in Fig. 1, 0-3 is the tensile force in the

side I G of the equilibrium polygon, and 0-6 is drawn parallel

to the tangent at U : if a perpendicular were drawn from 3

upon 0-6 prolonged, the distance from to the foot of the

perpendicular would he the direct stress, and the perpendicular

itself woidd be tlie shear on a right section at U. Or, again,

if 0-2 is the force in A K, and 0-7 is parallel to the tangent at

Q, a perpendicular from 2 on 0-7 will cut off the direct stress,

and be itself the shear at Q.

15. Sign of Shear; Maximum Bending Moment at Point

of Zero Shear.— The above points may be made more clear,

if necessary, by reference to the sketch above and on the left

of Fig. 8. Let A C represent a portion of an arch, and A R'

a portion of the equilibrium polygon which exerts a thrust R
at A. The components of the abutment reaction will be H,

the horizontal thrust, and P„ the vertical force. But R may
also be decomposed, on a right section of the rib ner(7' A, into

T direct thrust and F shear at the section. The little sketch

adjoining shows, that, as these components act on the left of

tlie section, we must have the opposite shear on the right of the

section, giving what we have been accustomed to call nega-

tive shear (see Part II., '^ Bridges "). When, at any right

section, a line parallel to the side of the equilibrium polygon

lies above the tangent to the rib, the forces being taken on the
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left of the section, as is the case at C, where T' and F' are the

components of R', the sliear will be positive. Where the side

of the equilibrium polygon is parallel to the tangent to the

rib, as tor instance near d^ at that point there will be no shear,

and the sliear will be of opj)osite signs on each side of such

point. The direct stress there will be H mnltii)lied by the

secant of the inclination of the tangent to the liorizon.

As the maximum ordinate between the side of tlie equilib-

rium polygon and the arch occurs where the side of the polygon

is parallel to the rib, the maximum bending moments in the

arch, as in a beam or truss, are found at points of no shear.

16. Treatment of Arch vrith Fixed Ends requires Three

Conditions.— If the arched rilj is fixed in direction at the

ends (in place of being free to turn as previously supposed),

by being lirnily liolted to the abutments, or b}- having sc^uare

ends accurately bedded upon the skewbacks, a bending mo-

ment Avill generally exist at the points of support wlien the

arch is loaded. B}' taking the piece of easily flexible wire

before mentioned, clamping the ends firmly, so as to fix the

wire in the position of an arch, and then applying a load or

the pressure of the finger, one can easily verify this statement

for himself; and he Avill see that, for many positions of the

load, the bending moment at one abutment is of the opposite

kind to that at the other. The points at which the equilibrium

polygon begins and ends will no longer be A and B of Fig. 1,

and some new conditions must be imposed in order to deter-

mine these points.

Consider the effect of a single load upon the arched rib A C B
of Fig. 3, which rib is fixed in direction at its ends. The equi-

librium polygon will be two straight lines, such as I N and N L
;

and, as there may be bending at both points of support, it will

be necessary to find the magnitudes of A I and B L, as well as

of N G, three unknown (quantities. Three conditions must

therefore be satisfied. Such Avriters as, in treating the arch

either graphically or mathematically, require but two condi-

tions to be fulfilled for an arch with fixed ends, err in their
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assumptions, and hence in their results. If two conditions only

are imposed, where three are necessary, many polygons can be

drawn, and the problem is left undetermined.

17. First Condition.— One condition which must be satisfied

is plainly the one already used, §§ 6 and 7, that the change of

span A B shall equal zero, or that

i; E F. l)E = o.

18. Second Condition: Change of Inclination between
Abutments equals Zero. — As the rhaniji- of inclination be-

tween any two contiguous points is directly proportional, in

direction and magnitude, to the bending moment (for the elon-

gation and compression of the fibres on the two sides, upper

and lower, of the rib, result from tins bending moment, and

cause whatever change of direction or inclination the rib may
take on), and as the bending moment has been proved to be

proportional simply to the ordinate E F, the change of inclina-

tion at any point is proportional to the ordinate E F fi'om that

point of the rib to the equilibrium polygon.

The reader must distinguish between the change of inclina-

tion produced by flexure, and the original inclination of the rib

to the horizon at each point due to the curve to which the rilj

is constructed. If an arch is loaded, it assumes a form slightly

different from its shape when unloaded. The angle, at any

particular point, between the two tangents to the curve of the

rib, before and after it is loaded, is the chancje of inclination at

that point.

Starting from A, Fig. 3, the total change of inclination at C
will be proportional to the sum of all the ordinates betAveen A
and C. On the other side of C, where the straight line crosses

the rib, the bending moment being of the opposite kind, the

changes of inclination will be in the opposite direction, and, in

any summation of ordinates, for instance from A to E, must bo

subtracted. Then, as both A and B are fixed in their original

directions, if we sum up all of the ordinates E F, from A to B,

the total change of inclination between abutments is zero, and
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this sum must be zero. Therefore the second condition to be

realized is that
2EF = 0;

or that fh' sum of all the ordinates between the arch and the equi-

llhriuni polygon on the inside of the arch must equal the similar

xiOii outside.

19. Third Condition: Deflection between Abutments

equals Zero.— Fig. 3 shows that, since the displacement B li

of B, relatively to the point E, in case B could move, has been

proved, by § 7, to be proportional to H . E F . E B, the vertical

component of this displacement varies as H . E F . D B ; for, by

a similar proportion to the one used in that section,

SR=rBR^; therefore,
EB

S R vanes as —
, or as H . E F . D B.

E B

If the products E F . D B should be summed up for all points

from A to Q, for example, we should get a quantity proportional

to the vertical displacement of Q, arising from the separate

minute displacements between A and Q. If we pass beyond C,

we have products of an opposite sign; and it then appears, that,

since the ends at A and B are fixed both in position and direc-

tion, the sum of all the products between A and B must equal

zero, or, since H cannot equal zero,

SEF.DB= 0. (1.)

Therefore the third and last condition is, that the sum of the

jyroducfs of each ordinate, between the arch and the equilibrium

polyiion on the inside of the arch, by its distance from one spring-

ing point, must equal the similar sum on the outside. It is imma-

terial which springing is chosen, but all the D B's must be

measured to tl\e same abutment.

20. This Condition not applicable to Hinged Rib.— It

may be expedient to dwell upon this equation a little longer;

for the question will apparently arise, why this condition is not

also properly applicable to an arch which is jointed or hinged at
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the ends. Let a tangent A K be drawn to the rib at the point

A, and a vertical line be dropped from it to the point Q. If

the arch is now bent at the point E', by a bending moment
which is proportional to E' F, the point Q is moved a distance

proportional to E' F mnltiplied by the distance from E' to Q ;

but the distance which Q moves in the vertical line Q K will be

proportional to F/ F multiplied by the horizontal projection of

E' Q, or I) 1\ and similarly for moments at all other points be-

tween A and Q. As the tangent at A is fixed in direction in

this case, tlie movement of Q away from the extremit}^ of K Q,

or its movement in relation to the tangent at A, will be propor-

tional to the summation of the E F's multiplied by the D T's

;

and as the abutment B is fixed, the distance of B from a tan-

gent at A must be unchanged by any load, or its displacement

must be zero, as above. In the case of the rib hinged at the

ends, while the above area moments give the deflection from

the tangent at A, this tangent is not fixed, but changes in

direction upon the imposition of a load, and this condition can-

not be applied. If, however, one should treat an arch which

was fixed at A and hinged at B, this condition would be neces-

sary, and all the distances D B would be measured to the hinged

end ; while the second condition would not aj^ply, and would

not be needed.

This third condition was first applied to the determination of

the bending moments in continuous bridges and pivot draw
spans, in the first edition of Part II. of this work.

21. Remarks: Abutment Reactions; Shear, &c.— The
arch of Fig. 3 is cut by the equilibrium polygon in three places,

and it may be cut in four points, giving as many places of con-

trafiexure. The areas on opposite sides of the rib represent

liending moments of opposite kinds, and of which kind is readily

known if one remembers that the arch under thrust alwavs

moves from the equilibrium polygon. The amount of the

weight, not being contained in any of the equations of condi-

tion, does not affect the diagram ; for H is constant for all

points of the arch for any given vertical load, and, not being
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e(iual to zero, is thrown out of the equations. But the weight

W does affect the value of H.

If 1-2 represents W in the stress diagram of Fig. 3, and 1-0

and 2-0 are drawn parallel to N I and N L, 0-3 drawn horizon-

tally will determine the horizontal thrust H, while the load-line

will be divided at 3 into the two vertical components Pj and P.,

of tlie reactions as marked. These vertical forces are not the

same as would be obtained for the case previously considered,

nor for a beam only supported at the ends. Such forces would

be equal to the divisions of 1-2 made by a line drawn through

0, parallel to a line from I to L. If we notice the arrows drawn

at tlie abutment A, we see that, supposing Pj were at first the

fraction of W due to the position of G, or -^-^ W, we have also

at A, besides the horizontal thrust H, a couple H . A I. There

is another couple at the other abutment, which may be of the

same or opposite kind ; their algebraic sum can only be balanced

by vertical forces at the two abutments acting with a lever arm

of the span ; and these vertical forces must l)e added to one

reaction, and suljtracted from the other, bringing Pj and P., to

the amounts found by the stress diagram. The effect of the

couple is the same as if Pi had been calculated for the point

where N I would meet the horizontal line. This is another

example of the })rinciple in mechanics cited in § 11.

The remarks on shear in v^§ 14, 15, apply equally well here.

The direct compression in the rib at any point is obtained, as

before, by drawing a line througli parallel to the tangent to

the rib at the point in question, and dropping a perpendicular

upon it from the extremity of the line which represents the

stress in the adjacent side of the equilibrium polygon. Thus

the compression at E will be the distance from along 0-4 pro-

duced to the foot of a perpendicular from 2. Recalling the

three conditions just stated, it will l)e evident, that, while it will

be possible to adjust the two lines of the equilibrium polygon to

their proper position by successive trials, it will not, as in the

former case, be easy. The three ordinates, A I, G N, and B L,



ARCHES. 31

cjui, however, be computed quite readily, and the remainder of

the process is very simple. The statements so far made apply to

a structure of any outline, so long as it acts as an arch, although

some modilication will be called for when the cross-section and

tlie depth vary very much, or when what is known as the mo-

ment of inertia is not practically constant; but, for forms other

than regular curves, the application of these conditions must

probably be made by trial.

21a. Shear at a Vertical Section.—The relation of the

ecpiilibriuin polygon to the arch which was pointed out in § 5,

Fig. 14, shows how the shear at any vertical secti(.»n of a loaded

rib is affected by the curvature of the arch. In the same way
that the ordinates of the rib may be superimposed on those of the

triangle which represents the equilibrium polygon for a single

load, the two shear diagrams may be placed on one another. One
will have the form of aimni, Fig. 8, conforming to the load

which gives the curve of Fig. 14, and found from the amount of

vertical reaction which, combined with H, will give a direct thrnst

at the springing ; the other will reseml)le ade/gl, Fig. 8, the

usual shear diagram for a single load, which load produces the

triangle of Fig. 14. The flanges of the arch take up at each point

an amonnt equal to the ordinates from a I to {71, and the web or

bracing carries the remaindei", which will be positive at some

points and negative at others, as marked in the Figure. Thus

we see that, through the direct thrust, the arch is relieved of a

portion of the truss stresses due to both bending moment and

shear.
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ARCH HINGED AT THREE POINTS.

22. Three-hinged Arch.— Before taking up for treatment

any arches of special curves, we will notice the simple case of

a rib, of any form, hinged at both ends and the middle, or, as it

is sometimes called, the " three-hinged arch." The tliree hinges

or joints may be located anywhere, and two of them may be

placed near together at one abutment, reducing the portion of

arch between them to a short link or strut, which necessarily

lies in the direction of the thrust at that abutment. For the

ribs of this chapter it has been stated that the equilibrium

polygon or curve is at once definitely located. If a single load

is placed at K, on the arch A D B of Fig. 4, hinged at A, D, and

B, one of the two straight lines composing the polygon must,

starting from A, pass through D, while the other, starting from

B, must meet the former on the vertical Ihie drawn through K,

as required by the principle of the funicular j^olygon : A C B,

therefore, is the polygon. If 2-1 represents the weight at K,

and 2-0 and 1-0 are drawn parallel to C B and A C, 0-3, drawn

horizontally, will give the horizontal thrust, while 1-3 and 3-2

will be the vertical components of the reactions at A and B.

Let it be remembered that the total reaction of the abutment

at A is, and is in the direction of, 1-0, although it is often con-

venient to decompose it into Pj and H.

A load vertically below E will, similarly, have for its equi-

lil)vium polygon A E B. For different positions of the weight

32
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between D and B, all of the vertices of the polj'gons will be

found on the straight line D L, and the portion A D does not

change for any movement of the weight on the right half of the

arch. A weight on the left half Avill simply reverse the dia-

gram. The dotted lines show the equilibrium polygons for a

weight at such successive points as divide the half-span into

live e(puil liorizontal parts, and the corresponding changes in

the \ alue of H will be seen in the stress diagram on the left.

23. Fonnula for H.— If F D, the height or rise of the arch,

is denoted by k, the half-span A F, = F B, by c, and the hori-

zontal distance F G, from the weight to the middle of the span,

by ?>, we shall have A G = c -j- b, and G B = c — b. From the

similarity of triangles A D F and 1 3, we may write,

3-0 : 3-1 = c : k; or 11 : P, = c : k.

By the usual rule,

therefore

T, = '^^W;

H = ^-W.

The quantity c — 6 is to be understood to mean the horizontal

distance from the weight to the nearer abutment. H is seen to

decrease regularly as the weight moves from the middle of the

span.

24. Stone Arches.— In the treatment of stone arches it has

often been assumed by writers that the equilibrium curve passed

through either the middle of the depth of the keystone or some

other arbitrary point within the middle third of its depth ; and a

similar assumption would then be made for the springing-points.

Such a treatment immediately reduces the stone arch to this

case, and the equilibrium curve can at once be drawn. As such

an assumption does not seem to be warranted, it is not thought

expedient to go into the case of the stone arch until later

(Chap. IX.) ; but the reader who desires to look up such a

mode of handling the problem is referred to a paper by William

Bell, in the Transactions of the Institute of Civil Engineers of
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Great Britain, vol. xxxiii., reprinted in Van Nostrand's " Engi-

neering Magazine," vol. viii., March to May, 1873.

25. Example.— We will, as an example, show how to draw

an equilibrium curve for iiu arch which is loaded uniformly

along its rib. Such a distribution will conform quite well to

that of the steady load on an arched roof. For definiteness, let

the pointed arch of Fig. 5 be of 80 feet span, 40 feet rise, the

two arcs having a radius of (30 feet, and let it be loaded with

500 pounds per foot of the rib. We may, if we please, divide

the rib into a convenient number of equal portions, which

divisions will give us a number of equal Aveights to be laid off

on the load line. Otherwise we may space off a number of

equal liorizontal distances. In either case, the load of each

space will be considered as concentrated at its centre of gravit}-;

and, if the spaces are small enough, the centre of gravity may,

without sensible error, be taken as coinciding with the middle

of each space. For the sake of reducing the number of lines,

so as to avoid confusion in a small figure, we have divided the

half-span into four parts, of ten feet each, measured horizon-

tally ; and their centres of gravity will be assumed to be at five

feet, fifteen feet, &c., from the point of support. Draw verti-

cals through these centres of gravity, D, E, F, and G.

To find the weight on each division : The lengths of the

several portions of arc may, with sufficient exactness, be con-

sidej;ed the same as the lengths of their chords, which chords

are perpendicular to the radii which pass through D, E, &c.

If, then, the load on ten feet is 5,000 lbs., draw a h horizontally

and equal, by an}' scale, to this amount; then will hg.hf, he,

and h d, drawn parallel to the respective chords, give the amount

of load on each division, at the successive points G, F, E, &c.

Upon scaling these amounts we will lay them off upon a verti-

cal line, from 1 to 5. In order to cause the equilibrium poly-

gon to separate from the rib sufficiently to be easily seen in this

small figure, we have taken the liberty of doubling the load on

D, thus making it 4-6, in place of 4-5. The loads will there-

fore be, successively, about 5,400 lbs., 5,900 lbs., 7,000 lbs., and
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2 X 10,000 lbs., or 20,000 lbs., from G to D, and from 1 to 6.

Since 11=2 --—=— W, we h^ve for its value
2 k

1 II^ 35 X O.400 H- 25 X 5,900 + 15 X 7.000 + 5 X 20.000 ^ ^ ^g^ ^^^

If the given load were nnsynnnetrical \\ith regard to a verti-

cal through (', it would be neeessarv to calculate the two verti-

cal components of the reactions at A and B, or P, and P.,, tlie

reaction at B being laid off from that end of the load line from

which was measured the load nearest to B, and then to draw a

horizontal line from the point of division between P, and P.,. on

which to lay off the value of H. But, if both sides of the roof

are loaded alike, half a diagram and half an equilibrium poly-

gon will be sufficient. The load on the half-arch being 1-6,

6-1 will be the vertical component of the reaction at B, and H
will be laid ojff in the direction 1-0. Since we have calculated

H for only one-half of the entire load, the above quantity must

be doubled, and the total horizontal thrust will l)e 18,538 lbs.,

;= 1-0. The reaction at B is therefore 6-0.

Nothing remains but to draw, first a line from B to the verti-

cal through 1), parallel to 6-0, then one, parallel to 4-0, from

the end of the last line to the vertical through E, and so on,

the last line, parallel to 1-0, passing through the hinge at C, as

required. The polygon on the side C A will be exactly similar.

It is well to have the points of division quite numerous. The
maximum ordinate between the rib and the equilibrium polygon,

multiplied In' H, gives the maximum bending moment.
26. Caution.— As this is the first example, it may be well to

pause here, and renew the caution to the draughtsman to lay off

the polygon of external forces in the order in which the forces

are found in going round the arcli or truss ; otherwise he will

fail to make his equilibrium polygon close on the desired point.

Thus, beginning at G, he should have the weights at G, F, E,

&c., or 1-2, 2-3, 3-4, &c., plotted, one after the other, down the

vertical load line in the direction of their action, until the point
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B is readied, for which he draws 6-0, from 6 to 0. Then tlie

point A gives ti siniiUir line from 0, slanting upwards toward

the right ; and the remaining loads on the left half of the arch

come down a vertical line, and close on 1, the starting-point.

The decomposition of 6-0 into 6-1 and 1-0 does not alter the

case. If we had gone round the arch in the opposite direction,

this stress diagram would have heen reversed, or turned 180°.

27. Relation between Equilibrium Polygon and Curve.

— The true equilibrium curve, for the load uniformly distrib-

uted along the rib, is a curve which will be tangent to the sides

of the funicular or equilibrium polygon just drawn. The
closer together the points D, E, &c., are taken, the nearer the

two will come together. If the points at which the loads are

concentrated divide the span into equal portions, that is, if the

end distances are the same as the others, so that the portions of

load near B and C are concentrated on those points, or, even

with unequal spacing, when the load lietween each two assumed

points is carried by those points as required by the principle of

the lever, the true equilibrium curve will pass through the ver-

tices of the equilibrium polygon. Such a distribution of load

is made in roofs and bridge trusses, when a half panel weight

is thrown on each abutment. Compare Part II., " Bridges,"'

§ 58.

The curve assumed by a rope or chain, of uniform weight per

foot, when suspended between two j^oints, is called a catenary.

Since the ec^uilibrium curve in Fig. 5, if we had not placed the

extra weight on D, would have come quite near to the rib. it

would have been a close approximation to a catenary. As we

expect to make some use of this curve later, we will show how
to draw one at that time.

28. The Paiabola the Equilibrium Curve for a Load
Uniform horizontally. — If tlie load on this arch wci'c distrib-

uted uniformly horizontally, the curve of equilibrium would be

a parabola. In case the whole arch were a parabola, with the

vertex at the crown, and the load extended over the entire span,

the two curves, coinciding at the springing-points and crown,
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would be identical throughout, and the rib itself would be in

perfect equilibrium. This same point was brought out in refer-

ence to the parabolic girder, Part II., '' l>ridg(;s,"' ^ 73. That

the parabola is the equilibrium curve for a continuous load, dis-

tributed uniformly horizontally, may be shown as follows :
—

. Let A B, Fig. 6, be a portion of a cord, horizontal at A,

which is in equilibrium under such a uniform load, represented

by A C, suspended from the cord. The tension at A will be in

j^he line of the tangent A C ; the resultant of the load A C will

be vertical, and must pass through its middle point D. As the

cord A I) is in cquilibriuin under its load and the reactions or

tensions of the other portions of the cord at A and B, the ten-

sion along the tangent at B must, by the principle of the tri-

angle of forces, also pass through D. As B C, drawn vertically,

is parallel to the resultant of the load, the sides of the triangle

BCD will be proportional to the three external forces ; and, if

AC :=^x^ BC=:^, W = total load on A B, =r w x (where w :=

load per unit of length), and H = tension at A, we have

W:H = BC":DC = ?/:^a;,

or

y~2 H " 2H^'

the equation of a parabola with vertex at A.

Therefore an arched rib of parabolic form, when loaded uni-

forndy horizontally, has no tendency to change its shape, that

is, experiences no bending moment, at any point.

29. Suspension Bridge.— A B of Fig. 6 may represent a

suspension bridge cable, A C" being the half-s]jan, and C B the

height of the tower : hence, if A C := r and (
' B =: k, we have

for the tension in the cable at the mid-span, v^ 28,

2 // 2 /•

The tension T at the tower will then be proportioned to H, as

B D to D C, or as \/¥ -f \ <r to I c ; therefore

2 k
~
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Eacli sii.s})en(ling rod must carry the greatest weight that can

come at its toot. Tlie pressure on the top of tlie tower from

tlie lialf-spau will be the weight of the half-s})aii, or wc ; to this

must he added the vertical component of the tension on the

aiiehorage side of the tower. If the cable has the same inclina-

tion hdtJi /('ai/i<, at the top of the tower, the pressure is 2 tv c.

The manner of stiffening a suspension bridge to resist the

tendency to distortion under a partial load is treated in Chap. X.

30. Equilibrium Curve for Partial Load.— If the load

extends over a portion only of the span of the arch, and is uni-

formlv distributed horizontally, the curve for the loaded jjortion

is parabolic, while that for an unloaded portion is a straight

line : thus, if the load extends from one abutment to the middle,

we shall have, on the unloaded half, a straight line from the

abutment to the crown, and, on the loaded half, a parabola from

the crown to the s})ringing. As it was proved in Part XL,

'' Bridges," ^10, that any two sides of the funicular polygon,

when prolonged, meet on the vertical drawn through the centre

of gravity of so much of the weight as is included between

these sides, the equilibrium curves for any cases where the rib

is hinged at three points can be drawn without previously deter-

mining the value of H. Thus, in the case just supposed, of a

load over tlie half-si)an, from B to F in Fig. 4, the centre of

gravity will be at G. Then, if G C is the vertical drawn from

G, the side of the funicidar polygon, or, more properly, the

tangent to the e([uilibrium curve, at B, must pass through C,

where C G meets A I), and the required parabola will be drawn

from D to B on D C and B C as tangents. As one point of the

curve we have the middle point of a line from C to the middle

of the chord D B. We can then find H by drawing 1-0 and

2-0, parallel to A C and C B. Henck's " Field Book for Rail-

road Engineers " gives methods for constructing parabolas ,* two

constructions are given in Part II., 'vBridges,"' ^§ 20 and 28,

one of them applying when two tangents are given.

31. Suggested Examples.— We would suggest the follow-

ing examples, Plate I • 1st, Given a semicircular ril), loaded
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uniformly horizontally over the whole span, and pivoted at the

erown and springings : find that the maxiiuuiu bending moment
occurs at 30° from the springing, and is ecjual to one-sixteenth

of the total load multi})lied by the radins of the arc-h. while II

is equal to one-fourth of the total load. 2d, (jivcii a i)ara-

bolic arch similarly pivoted, and in equilibrium under a steady

load distributed as above ; add a similar travelling load from

one abutment to the middle of the span : prove that the maxi-

mum bending moment is found at one-fourth of the span from

either abutment, is of opposite signs at these two places, and

is equal to one thirty-second of the travelling load then on the

arch multiplied by the span, while H for the travelling load

equals the same product divided by one-fourth the rise of the

arch, and for the steady load is twice as much.

32. Extent of Load to produce Maximum Bending

Moment. — It may be desired, when designing an arch of this

type, to hnd the extent of load which will })roduce the maxi-

mum bending moment at each point, and the value of that

moment. Suj^pose the point N, Fig. 4, to be examined : jjro-

long B N until it meets A D at E ; it is then manifest that

any load in the vertical through E will cause no bending

moment at N ; that the equilibrium polygon for any load on the

right of E will pass outside of the arch at N, while the e(|uilib-

rium polygon for any load to the left of E will pass inside of

N. Therefore the maximum bending monunit at N of one kind

will be found when all jjossible loads are put on the arch from

B to the vertical through E, and the maxinunn moment of the

other kind occurs when the load extends from \ to E. As the

arch tends to move away from the eciuililjrium polygon, the

kind of moment is easily distinguished. II can tlieii be found,

the equilibrium curve drawn, the ordinate scaled and multiplied

by H.

33. Braced Arch. — For the reason that the equiabrium

curve is at once definitely located by introducing three hinges

or pivots, no matter wliat form the arch may have, that type

which used to be known as the braced arch, having a horizontal
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upper and a curved lower member, the spandrel being filled with

bracing, has usually been treated as free to turn at both crown

and springings ; in that case a diagram may l)e drawn by Clerk

Maxwell's method, as set forth in Part I., " Roofs," or the

stresses may be found from the equilibrium curve. A braced

arch, hinged at crown and springings, with an elliptical lower

and a straight u[)per member, carries a track of the Pennsyl-

vania Railroad over Thirtieth Street, Philadelphia. (See "En-

gineering,*' Jidy 22, 1870.) Fig. 4A illustrates an application

of the tlii'ee-liinged arch. Polygons are shown for onc-lialf of

the sti-iK'tnre. The stress diagrams are seen at C, I, and K.

The t .vo l)alf arches at hottimi of Phite I. show designs which

have been nsed. Tlie hraced ai'ch without hinges is treated in

Chap. XII

.

84. Shear ; Temperature.— Since it is not practicable to

draw a shear diagram until the form of the rib is defined, we
can onl}-, at present, refer the reader to § 14. After we have

discussed the parabolic and circular ribs, the reader can doubts-

less work up any special design of the present class for himself.

One advantage possessed by this type of arch is that changes

of temperature have no straining effect, for the crown rises and

falls without affecting the two halves of the arch injuriously.

If the crown sinks a little, the value of H will be seen from

Fig. 4 to be very slightly increased, while the equilibrium

polygon will practically go with the arch.



CHAPTER III.

INTKODUCTORY TO I'ARABOLIC ARCHES.

35. Parabolic Arch.— We propose to apply the facts which

have been devek)})L'd thus far to the arch whose centre line is

a parabola. Tliis curve is chosen as one form; because it is, as

proved in § 28, in perfect equilibrium under a load distributed

uniformh' horizontally over the entire span. As in the case

of a suspension bridge, so in some arches of iron, most of the

steady load consists of a platform and such other parts as are

distributed in accordance with this requirement (the arch itself

and the vertical posts which carry the platform giving a some-

what greater intensity per horizontal foot as we approach the

springings), so that, for the former portion, as well as for the

travelling load over the whole span, the arch will be subjected

to no bending moments, and no shear ; hence there will be no

stress in the Ijracing. Then, again, the parabola for a given rise

and span is easily plotted and designed ; and, lastly, the deter-

mination of the equilibrium curves, for the cases taken up, will

be simpler than for circular arcs, and will naturally prepare

the way by rendering the reader familiar with the steps of the

analysis. It may be well to add here that a circular segmental

rib, whose rise is not more than one-tenth of its span, is so

nearly coincident with a parabolic arch of the same span and

rise, that the investigations which follow will apply with suffi-

cient accuracy to such flat segmental ribs.

36. Vertical Deflection of an Inclined Beam.— Let us

41
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consider the two cases of a horizontal beam and of one inclined

to the liorizon at an angle i; it is known from the usnai foi'-

mulse for deflection, Part 11., " Bridges," Chap. VI., that, other

things being equal, the deflection of a beam is directly propor-

tional to the load and the cnbe of the length. If, then/the

inclined beam is of a length /, and the hmizontal one of a

length I cos «', as shown in Fig. 7, the deflection of each,

measured perpendicularly to the respective beams, will, as re-

gards length onl}', Ije in the ratio of P to P cos^ i. But, if eacli

carries the same load W, the transverse component of W, wliich

alone causes flexure of the inclined beam, the longitudinal

component producing direct compression, will be W cos i

;

whence the deflection perpendicular to each beam will, for

similar points, be proportioned as 1 to cos " i. And, again, the

vertical component of the deflection of the inclined beam will

be to the perpendicular amount as cos i to 1 ; whence the ver-

tical deflection of the inclined beam will be to that of the

horizontal beam of the same cross-section as 1 to cf/.s- /. As

the stiffness of a beam is directly proportioned to its breadth,

should the inclined beam be made broader in its horizontal

dimensi(jn than is the horizontal beam, in the ratio of 1 to cos /,

the depth being unchanged, the vertical deflections of the two

beams for tlie same load would be exactly the same.

37. Application to Arches. — Any very small portion of

an arch, taken within such narrow limits as to be considered

straight, behaves like the inclined beam, as regards its flexure

under a load ; and therefore it follows, that if an arch has the

dimension perpendicular to its face increased, from the crown

to the springing, in the ratio of the secant of the inclination

to the horizon, it may be discussed as if it were a beam of

uniform cross-section, of the same span, similarly supported,

and carrying the same load which jjroduces flexure. In the

arch some of the load does not produce flexure ; in the para-

bolic rib, for instance, before cited, a iniiform liorizontal load

gives equilibrium. We propose, in our analysis of the para-

bolic rib, to make this supposition, that the ril) is broader at
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the abutments than at tlie crown in the ratio just mentioned,

and thus to simplify the work of" investigation. Iron arches

whose flanges or chords are thicker, as we approach the spring-

ing, in the above ratio, while the perpendicular depth between

the two flanges is constant, practically satisfy this case. In

this class of ribs the intensity of the direct thrust on the

square inch for a complete uniform load will be the same at all

cross-sections.

As we desire the reader to reproduce, on a much larger scale,

the figures and problems for himself, we remind him that points

on the curve of a parabolic rib are easily found by the construc-

tion of Fig. 8, Part II., '^ Bridges."

PARABOLIC RIB, HINGED AT ENDS.

38. Equilibrium Polygon for Single Load.— Taking up

the case of the parabolic rib, liinged at the ends only, let us

place a single weight at the point I, Fig. 8. If the lines A C B
fulfil the condition of § 7, that the sum of the products of the

ordinates I) E and E F for all points of the arch equals zero or

2: E F . 1) E = 0,

A C B will be the required equilibrium polygon. From the

reasoning of § 37, it will be proper to divide the areas above

the springing line A B by equidistant vertical lines, moderately

near together, scale oif the quantities corresponding to E F and

D E, and find the proper position of A C B by one or two trials.

It can thus be located with all desirable accuracy, as a slight

movement of the point C vertically alters tlie quantities to be

computed very materially. The reader who is not familiar with

the higher mathematics can thus verify the results we are about

to obtain.

Since C G may be considered the unknown quantity by which

to locate A C and B C, its value may be deduced from the

above equation. I^et the half-span A K, = K B, = e ; the

height or rise of tlie arch at the crown = k : the distance

K G, from mid-span to the position of the single weight, = 5 ;
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and the required maximum ordinate C G = yo« Then will the

value of C G be
32, c2

5 5c2— i2'

which becomes, \ih ^=n c, where n = a fraction of the half-span,

5 (D— )!~)

a quantit}^ independent of the span of tlie arch.

39. Proof of Formula.— Let A D, the distance from the abutment A to

any ordinate 1) E, between A and G, = x. A G= c -\- 1/ ; G B ^ c— />.

Since tlie ordinates to a parabola from the line A B are proportional to the

product of the segments into which they divide the span, we have

T>E:k = x (2 c — x) : c"^, or B E = -(2 c x -~ x^).

Also,

D F : w„ = .( : r + h, or D F = ''
. . x.

c -\-

The required condition is that

S E F . D E = 0, or 2 (D E — D F) D E = 0;

therefore, 2 D E^ = 2 D F. D E. (1.)

(From the above expressions we see, that, if the area included between the

rib and A B is considered positive, the area of the triangle A C B, superim-

posed u]wn it, will be deemed negative as before explained in Fig. 14.)

Substituting the values of the lines from above in (1.), multiplying by

d X, and writing the sign of integration, we get for the left-hand member,

f ^'l
(2 (• ,r — .t2)2 dx=z ^'^'

f (4 f2 x2— 4 c x^ -f r") d x
J C* C* J

(ic^r'-cx^-{-lx^'^^\ik^c. (2.)

For the right-hand member, between A and G, we get

/.-^

^ C-\-h r- c-(c-\-f>) J^

For the portion between G and B, if we write c — b for c -f- '^ and reckon

c— b
r from B to the left, 1) F will equal

''"
x, while D E will be unchanged;
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80 that the integration for the right-hand member of (1.), between G and B,

and between the limits x = and x = c — b, will give, simply by writing

— /; for + b,

^Uc(c-l>y-^(^-hyi (4.)

These two portions (8.) and (4.), for the right-hand member of (1.), being

added together, will produce, when the terms with the odd powers of b are

cancelled,

Finally equate this value with (2.) to satisfy (1.), and

i!t(^oc-^-h-^) = \%k-^c; ov y,= ^k ^-^-j^ (5.)

which is the desired value of C G in terms of the constant quantities, and

the variable distance K G. This exjuession is plainly applicable to points

on either side of K.

40. Formula for Horizontal Thrust.— For aii}' position of

the weight, plot the value of //,„ and draw the equilibrium

polygon. Then draw two lines from the extremities of the load

line W, parallel to the sides of the poh^gon, and thus determine

H, and the two vertical components of the reactions, which

vertical components will be the same as for a beam supported

at its ends. But, from the simple relations of the similar trian-

gles A G C and 3 1, Fig. 8, as also B G C and 3 2, we may
write a general formula for H, if desired. Thus we have

y,:c — h = V,:Yi., or P, == -^^-^, H

;

C O

Wo : c -f /y = W— P., : H, or W— P» = -^ H.'
' c -\- b

Eliminating P., in the second equation, by substituting its

value from the first one, we get

W— -J^ H = -4^ H, or (c2— A2) ^v^ 2 cyo H;
c— c -\- h

_^ C2-_J2 l__^2 5(5— ft-) C^
2c>/o 2 ' 32 ' h

*•
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This value also will apply to a load on either side of the

centre.

It will be observed that, to obtain this value of H, we have

simply to divide 2 (1 — n-} by the factor which multiplies k in

(1.), § 38, to obtain the variable factor here.

41. Computation of //^i and H, — The numerical values of

these factors are worth obtaining, as, the computations once

made, the results apply to every parabolic rib Avith pivoted

ends. Let the span of the arch be divided into any convenient •

number of equal parts, and, for illustration, suppose that the

number is ten, as shown in the figure ; let a weightW be placed

successively over each point of division, being supported by the

rib. The calculation may conveniently proceed in the following

manner :
—

Find the different values of yo ^^r different positions of W,
by e({uation (1.), § 38. Then compute H by § 40. The calcu-

lation and results are given below ; the equilibrium pol3'gons

and values of H for one-half of the arch are represented in

Fig. 8. As n- is positive, whether n is -f- or —, the values of

?/(, and H will be symmetrical on each side of the centre.

Values of //q and H.

= 0.2 0.4 0.6 0.8n= -
c

5 — /*« = 5.00 4.96 4.84 4.64 4.36

5(5_„2) — 25.00 24.80 24.20 23.20 21.80

^- = 1.280 1 2903 1.3223 1 3793 1.4679.

Multiply these factors by k to give y^.

5(5— n2)

i(l_,i2) — 0.50 0.48 0.42 0.32 0.18

i(l_n2) — ^^.'^^
, — 0.3906 0.3720 0.3176 0.2320 0.1226.

^ ^ ' ' 5(o— n-)

Multiply these factors by - W to give II.

For any other desired division of the span, proceed in a simi-

lar way.
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42. Remarks.— If everv point oi' division were loaded with

W at the same time, tlie value of the horizontal thrust would

he e(|ual to the sum of the ITs for each load, that is, the fac-

tor in column plus twice each of the others, and the sum

multii)lied ])V the factor ^ W ; we thus obtain 2,479 y- W = II.
'- • k k

If a 0-;/.s-.s- were uniformly loaded horizontally, the bending mo-

ment at the middle would be one-eighth of the total load multi-

plied by the span, or, for a truss of ten panels, with W = one

panel load,

M = ^^^^'^^ = 2i c W;

and the tension in the lower chord, or the compression in the

upper eliord, would be found by dividing this (juantit}' by the

height of the truss, k. If the span of the arch just treated had

been divided into twenty equal parts, the value of II, for loads

at all the points of division, would have been 4.990-t W. The

20 W 2 c c
truss, as before, would give —~— = 5 ^ W.

We thus see that the equilibrium polygon, for a number

of equal loads, equidistant horizontally, on a parabolic rib, gives

a value of H approximating closely to that for a uniform load

on a truss of height ^, coming nearer as the loads increase in

number, and ao-reeino- when the load is continuous. Then the

equilibrium polygon becomes a curve, coinciding perfectly with

the paral)olic rib, and gives the horizontal thrust to whieh we

are accustomed in the bowstring girder under a maximum
load.

4o. Computation of Bending Moments. — Wliile the ordiuates can be

readily scaled from a diagram, one who wishes may compute values of the

bending moment M for numerous points, when W is placed on any one

]>oint. If ?/ denotes the ordinate from A B to the inclined line, and z the

ordinate of the parabola from any point D, the bending moment may be

written,—
M= II (.y — z).
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If put in this form, it will be seen, that, in the neighborhood of //„, M will be

positive, coinciding with the moments for a beam supported at its two ends.

As this is the most familiar flexure of a beam or truss, we have chosen to

consider it as positive : § 12. The ordinates // and r can be readily calcu-

lated from the figure. Thus, if the weight is at 0.4 c from the middle of

the span, we have found i/^ to be 1.3223 k. If the span is divided into ten

parts, the number of divisions on one side of the weight being seven, i/ will

be successively |, |, |, &c., of //„; on the other side y will be i and | of >/„.

The sum of the denominators always equals the number of divisions, and

the fractions increase from both ends up to unity. After finding the first

ij at each end, we get the others by simple addition, and the row is checked

by obtaining y,, at the pi'oper point. As stated in § 39, the ordinate c is

proportional to the product of the segments into which it divides the span

;

or, if it is at a distance n c from the middle, we have,

The factors by which L is to be multiplied can therefore be at once obtained

by taking the decimals which are found in the second line of the table for

yo, § 41.

The computations may then be set down in the following shape, viz. :
—

Values of M.
Point

2/0
of 1234567

Division.

"y„ = .1889 .3778 .5667 .7556 .9445 1.1334 1.3223 .8815

2 = .36 .64 .84 .96 1.00 .96 .84 .64 .36 A

2/
— s=—.1711 —.2622 —.2733 —.2044 —.0.555 +.1734 +.4823 +.2415 +.0808 k

Multiply by H = 0.3176 ^ W.

M = — .0,J43 —.0833 —.0868 —.0649 —.0176 +.0551 +.1532 +.0767 +.0257 c W

AVith the explanation already given, this table will be understood. The
letter »/o is placed over 7 as a convenience, to show tliat the value //„ occurs

at this point of division. If the load is on the right of the centre, these

numbers run from the left abutment ; if the load is on the left of the cen-

tre, they must be reckoned from the right abutment.

44. Table of Bending Moments.— We have carried out this compu-
tation for a load at each joint successively, the span being divided into ten

ecpial parts, and have prepared a table given on p. 53. A table for a span

divided into twenty parts may be found in " Engineering News," Vol. IV.

p. 108. As a load on either side of the middle gives the same set of values

in the reverse order, it is necessary to calculate but one-half of the table.
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As many decimals may be taken as will give sufficiently accurate results.

By the use of loijarithms the labor of preparing another table for a different

number of divisions is very little. Each column belongs to the point of

division vvho.se number stands at its top, tlie numbers commencing at the

left abutment. Each horizontal line contains the factor for bending moment
at eucli point of division for a load W on the point marked at the beginning

of the line. The values of II are placed for convenience in the la.st colunm.

It is worthy of notice, tliat, while the value of v/q is inde-

pendent of the s])an of the arch, ]M is independent of the height

of the ai'eh. As it was proved, in § 28, that the parabola is the

('(|uilil)riuni i-urve for a load distributed uniformly horizontally,

this arch ought to be very nearly in equilibrium when we place

at once on each one of the nine points a load W : by footing

up the vertical columns of the table we shall find but a very

small residual moment at each joint.

45. Interpolation.— In the solution of a jjarticular example,

it may happen that the points at which the weight will be

concentrated will not coincide with the points of division which

we have taken. It will then be necessary to determine new
values of y^ and H, which may be done by the original form-

uhe or by interpolation. A new table of M may then be calcu-

lated, values may be interpolated in the one given here, or, if

preferred, from the value of H, and the vertical components of

the reactions, we may draw an equilibrium curve for any com-

bination of loads. The table here given, if not directly appli-

cable in all cases, serves two purposes ; one to show how a simi-

lar table can be made, and the other to indicate, by inspection,

what arrangement of loads on any arch will produce the niaxi-

minn bending moments.

If the successive values of any quantity increase at a tolera-

bly uniform rate, any intermediate value between two given

ones may be found by simple proportion. Otherwise we may
use the formula for interpolation,—

Desired quantity — a +/ [D, — h {\—/) Do],

in which a denotes the first given quantity, / the fraction of a

division from a to the desired quantity, and Dj and Dj the jir8t
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and second differences. To illustrate, take the values of H in

§ 41. If we place these in a column as below, find the amount

h.
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placed on tlie point to wliicli tlie factor refers, add '
ii[) tlie

products, and plot the resulting value of PI horizontally from

the point of division on the load line between the two vertical

components of the reactions.

For example : Let us draw the equilibrium polygon for an

arch of 100 feet span, 20 feet rise, whose weight is at present,

for simplicity's sake, neglected, when it is loaded with weights of

8 tons, '2 tons, 4 tons, and 2 tons, at the end of the 3d, 6th, 8th,

and 9tli division from the left, of ten equal horizontal divis-

ions, as shown in Fig. 9, where the numbers denote the weights

and the points of division above mentioned. The supporting

force on the left will be

P, =2X1+4X2+2X4+8X7 ^ 3 , ^„„^

.-. Po =; 7.1 tons.

From the table for H,

H = (0 317G X 3 + 0.372 X 2 + 0.232 x 4 + 0.1226 X 2) |f
= 2.87 X I= 7.175 tons.

These quantities are plotted in the stress diagram, as seen in

the figure, and the equilibrium polygon is then drawn. The
reader who reproduces this figure, or draws another, can be

as.sured of the accuracy of the construction by the closing of

the equilibrium polygon on the point of support. The weight

of the arch itself may be accounted for by concentrating the

proper amount at each point of division. Such amounts will

increase towards the springing in proportion to the s(|uare of the

secant of inclination to the horizon ; for we recall the fact that

the parabolic rib is to increase in breadth from crown to spring-

ing, and the amount in length projected into a horizontal foot

increases in the same way. The weight of each division of tlie

arch can be obtained with sufficient accuracy from a moderately

largo ligure.

Another good construction is the curve for a uniform load

over one-half of the span. The equilibrium curve for such a

load, on the left half of Fig. 8, is represented in that figure ; the
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work may be carried out in detail by the reader, and compared

with tlie same curve for the three-hinged rib.

47. Numerical Value of M.— It will be seen that the poly-

gon and rib of Fig. 9 a^jproach (][uite nearly at 3. We can

find the distance between them vertically, if we wish, from the

table of ^I. The bending moment will be, taking the column 3,

M= 50 ( 4- . 153 X 3 — .073 X 2— .075 X 4 — .043 x 2)= — 3.650 ft.tons.

M — 3.65

II ~ 7.2
— 0.5 ft. = u

A similar operation may be performed at any other point.

48. Shear Diagram.— This investigation of shear is intend-

ed to apply to ribs of an I-section or to those framed with

open-work or skeleton Avebs, and not to those of solid section^

rectangular, circular, or otherwise, nor to stone arches: in these

latter classes the shearing forces need seldom be taken into

account.

Adhering still to the case of a single weight W, at a distance

h from the middle of the span, we found that the vertical com-

ponent, P„ of the reaction at the end nearest to the weight,

would be ' ^- W, and at the other end —^— W. As seen in
Z c "1 C

Fig. 8, the diagram for shear on a beam will be, if we take the

shear on the left of any section, a d =^ Pj, = 3-1, on the left of

the weight, and l[/ = — Po^ = 3-2, on the right of the weight,

skiving the two rectangles included between a I and the broken

line defi/. As the parabola is in equilibrium under a load of

uniform intensity horizontally (§ 28), in which case there will

be no bracing required,— no shear for any bracing to resist,— it

is manifest that the diagram for that portion of the shear which

is here carried, at each vertical section, by the flanges or chords,

must be similar to the shear diagram for a uniform load on a

beam supported at both ends ; that is, to such a figure as a i m n I.

If, then, we can determine the value of d /, or of the equal

ordinate I w, we can draw this portion of the figure.

It is a well-known property of the parabola, that a tangent at
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the springing of the arch will intersect the middle ordinate at a

distance k above the crown, equal to the rise of the arch. If,

then, we draw a line 0-4 in the stress diagram, parallel to tlie

tangent A L, drawn as just described, the distance 3-4, inter-

cepted on the vertical line, will be the amount of vertical force

necessarily combined with H to give a thrust coinciding with

the rib at the springing point. Lay off', therefore, 3-4 at a i,

and an equal amount at I n ; then draw the straight line i n, cut-

ting a I at its middle point m : the ordinates to this line from a l^

Parabolic Rib, Hinged at Exds.

§ 44. M =: m c W. Values of 7n.
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each division ; and, wliere tlio amount subtracted is greater than

the original shear, the remainder will be of the opposite sign.

The signs are placed in the areas of this figure ; and it will be

apparent that the ordinates are reckoned from the inclined line

i ??, all above that line in our figure representing positive or

upward shear on the left of a vertical plane of section, while

those heloiv i n will be nefjative. See p. 81.

49. Shear on a Normal Section.— To obtain the shear on

a right or normal section, as at Q, we must draw a line q s

parallel to the normal section at Q, and project ;• q upon it, thus

finding s q as the shear at Q. A similar construction will

determine the shear at any other jDoint. The property of the

parabola before alluded to makes it easy to find the direction

of q -s', which will Ije perpendicular to a tangent at Q ; a tan-

gent at Q will strike K L at S, a distance above the crown

equal to that of the extremity R of the horizontal line Q R
below it. What has been done by the above steps may also

be easily seen from the sketch above Fig. 8. At A, Pi wdll be

a d OT 3-1, and the whole vertical force to be combined with

H will be a i or 3-4, which when subtracted from a d leaves

i d or 4-1 as the negative shear on a vertical plane, and F, t d,

or 6-1, as the shear on a right section at A.

In treating any arched rib, we shall desire to find tlie maxi-

mum shear at any section produced by a combination of

weights at several points. It will be easier to find the sum of

the several shears on a vertical section from single weights, and

then find the normal component once for all, than to resolve

each A'ertical shear separately ; hence the shear diagram of Fig.

8 and of subsequent figures will simpl}^ show the shears on the

several vertical sections before they are j)rojected on the nor-

mal sections.

.50. Formula for Vertical Shear.— A formula for tliis vertical shear

may be deduced without difficulty. If Y is the ordinate to / n from any

point of a I, and Yj its value at the springing, we have from the statement

of the last section,

Y, : II = 2 Z- : r, or Y, = --''' H.
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The vertical shear V in the web, at the abutmeut on the left, will then

be,

V = P, — Y, = '' ±— W — -- II. (1.)

For successive points, Pi will remain the value of the original shear

until we pass the weight, when it will become Pj—W or —P». Y will

diminish at a constant rate ; and, if we deduct at each point the ordinate

from a I to the inclined line, we shall get the desired results.

51. Computation of Shear.— As an example we will find the vertical

shear midican between the points of division of the arch of Fig. 8 with the

load there shown.

Pi^ 0.3 AV ; Po= 0.7 W ; H = .3170 j W ; Yi= .6352 W.

This value of Y, is applicable to any parabolic arch with hinged ends,

since it involves neither c nor k. Y at the middle of the first space

= (.635 — -^r) ^ = ••5''^- ^ '
^0^" every succeeding ordinate it diminishes

Values of V.

4 5 6 7 8 9 10

.3 .3 .3 .3 —.7 —.7 —.7 —Pa

.191 -I-.064 —.064 -.191 —.318 —.445 —.572

P — Y —.272 —.145 —.018 +.109 +.236 +..364 +.491 —..382 —.2.55 —.128 W.

Three decimal places here will be as exact as four in the values of ^I.

It will be seen by the ordinates in the shear diagram of Fig. S, how the

signs change.

52. Remarks on Shear.— We repeat that, as Pj was taken

as positive, the signs of the shears apply to the left side of each

vertical or each normal section. In Fig. 10 the sketch marked

R is an instance of positive shear, which acts up or outward

on the left of the imaginary section and inwartl on the right

of the same section. From the way in which the two parts of

the arch will tend to slide at the section, we see that at R a tie

will he required sloping down from the upper chord to the

right (or a strut in the opposite direction), while negative

shear, as represented in the sketch marked S, calls for a tie in

the reverse direction.

Space.
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53. Table of Shears.— A table has been computed by the i>rece(liii<;

process, for shears at the middle points of ten equal spaces, into which tlie

span is divided. It is intended to supplement the previous table of bend-

ing moments, and will serve as a guide for the calculation of any talilc

with a greater or less number of spaces. It will be found on \>.
')'>. A

shear at a joint can be found, if desired, by taking the mean of two adja-

cent shears just obtained. It is easy to select from this table that combina-

tion of loads which will give on any parabolic arch, hinged at the ends

only, the maximum shear of either kind in any one division, one arrange-

ment being the complement of the other. These shears, as should be the

case, foot up very nearly to zero for an equal load on e\"t^rv joint. It is only

necessary to calculate one-half of the table : the other half will contain the

same numbers in the reverse order, with the o[iposite signs. A table for

an arch of twenty divisions was printed in " Engineering News," vol. iv.,

p. 124.

54. Extent of Load to Produce Maximum Bending

Moments and Shears.— In single-spun trusses tlie niaxinuini

heniliiig nutuients, aiul e()nse(|uently the niaximuni stresses in

the chords, occur when tlie hrido-e is entirely covered with the

live load ; and the greatest shear at any section, or the greatest

stress in any brace, exists when the bridge is covered with

live load over one or the other, nsnally the longer, of the two

segments into whicli the section divides tlie span. A simple

inspection of the tables for M and A^, lately given, will sliow

that such rules are not true for an arch. Why this is so, will

be seen, if we consider the fact that the portion of the arcli.

Fig- <S, betAveen B and the point where (' A crosses the rib, is

under a bending moment of the positiv(^ kind, when there is

a single weight at I, while from that point to A bending

moments of the negative kind exist : and that an addition of

another load near I will increase in amount most of the posi-

tive and negative moments, while one placed on the left half

of the arch will ha\c an op})osite efl'ect. The shearing forces

for the braces, depending upon the change of stress in the

ilanges, will also be affected in the same way.

While an inspection of Fig. <S will show, as was pointed out

witli regard to Vig. 4, in § •)2, the extent of load to produce

the maximmu bending moment at any one point, and while the
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ioad lo produce maxiiiiiiiu shear at the same ijuiiit can also be

ascertained by inspection, § 15, an attempt has been made to

represent, by the horizontal lines in the diagram, Fig. 11, those

positions of the li^e h>ad, or the extent of the loaded portion,

which will give the maximum moments of both kinds at each

of nineteen points of division represented in the figure, and

also that arrangement of the live load which gives the maxi-

mum shear of either kind at the middle of each division. The
full line denotes the loaded portion of the span wdien the

maximum positive moment occurs at that point whose number
is placed at the end of the line, positive being understood to

mean that kind of moment wdiich would make a previouslv

straight beam concave on the upper side ; and the remaining

portion of the span must alone be covered w^th the live load

to produce the maximum negative moment at the same point.

Thus the maximum positive bending moment at 2, and at

3 also, is found when the load is on all points from the left

to 7 inclusive. A load from 8 to the right abutment gives

the maximum —INI. The maximum -\-M at 11 occurs when
the arch is loaded from 9 to 14 inclusive.

The live load required to produce the greatest positive shear

through the web in any division is indicated by the broken line;

and a load over the complementary blank portion will give the

maxinnnn shear of the op]io>ite kind.

5."). Resultant Maximum Stresses.—The steadv or fixed

L'a»], unless distributed unifornily horizontally, gives definite

beiKhng moments and shears. If, at a given point, the l>ending

moment from fixed weight is -|-, the addition of roIHng load

which gives the maximum -(-M at that point will give an

actual maxinnim -|-M. That rolling load which, in itself, gives

a maximum —M, if large enough to prevail against the -|-M,

will produce an actual maximum — M; but, if not, will only

cause a minimum -|-M. Similar remarks might be made con-

cerning shear. An absolute maxinnim M of either kind, for a

uniform load, will be found, if we sum up the quantities in the

table, page ail, to occur at the middle of the half-span. The
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loads to produce these values are seen in Fig. 11. The absolute

maximum ±F is found at the abutments, while another value,

nearly equal in amount, occurs at the crown.

As the direct thrust must be combined with the stress from

bending moment; as every additional weight increases the

direct thrust, while added weights at some points will diminish

the previously existing bending moments, and hence the tension

and compression caused by them, the maximum resultant tension

and compression in any portion of the flanges will be found for

other arrangements of loads than those which give maxinmm
bending moments. As the stress from bending moment de-

pends upon the depth of the rib, and not on the rise of the arch,

while that from H depends on Tc and the inclination of the rib,

it is not easy to determine a general expression for the load to

produce maximum stress in either flange, but for ribs of truss-

work, like Fig. 4B, the solution is more simple.

Suppose that this sketch represents a portion of the rib of

Fig. 8, which figure shows only the centre line or axis of the

rib. If one of the equilil)rium polygons, as O P, passes between

the two chords or flanges, the thrust along O P multiplied by the

perpendicular dropped on it from a joint, as A or I (or H mul-

tiplied by the vertical ordinate), will be a moment which must

be resisted by a compression in the opj^osite chord piece, E I

opposite A, or A B opposite I. For that piece alone prevents

rotation or collapse about the joint. Hence the quotient of the

moment divided by the perpendicular A G dropped from the

joint on the chord of the opposite panel length, or on the flange,

will give the compression in that member.

If the polygon, as TV, passes entirely without the rib, as at

A, the thrust in TY multiplied by the perpendicular A P' (or

II • AF') and divided by the depth of the rib A G will be the

tension in E I, while II • I F' divided by the perpendicular from

I on the chord A B will be the thrust in AB.
Also, for the polygon S N P, the thrust in S ^N" multiplied by

ID, or in jSTP multiplied by IL, or II • IIST, when divided by



ARCHES. 59

the normal depth of the rib, gives the tension in A B, and

II • A E' divided by A G gives the thrust in E I.

Hence all equilibrium polygons passing, at any right section,

between the two chords or flanges, will cause compression in

both flanges. Equilibrium polygons which pass above or below

the rib at any right section will cause compression in the nearer

flange and tension in the farther flange. It is therefore com-

paratively easy to select, from a drawing like Fig. 8, when the

outline of the rib is drawn as in Fig. 4B, those arrangements of

moving loads which will cause maximum compression and mini-

mum compression or possible tension in any chord-piece or

flange. See also § 106.

56. Example of Flange Stresses.—Let the rib of

Fig. 9, 100 feet span and 20 feet rise, be loaded with the four

weights only. If the rib is made of a web and two flanges 2^

feet from centre to centre, what will be the stress in each flange

at 8 ? By the ordinate above S, or from the table,

M = (.082 X 2 -i- .171 X 4 + .002 x 2 - .083 x 3jo0 = 30.15 foot tons.

Dividing by the depth, 2 J feet, we get 12.06 tons compression

in the upper flange and tension in the lower flange, from bend-

ing moment only. As the middle ordinate is 20 feet, the one

at 8 will be 20xif = 12.8 feet, or 7.2 feet less than the crown

ordinate; the tangent at this point will therefore strike the

middle vertical at 7.2 feet above the crown. Drawing 0-5

parallel to this tangent in the stress diagram, and dropping per-

pendiculars 3-6 and 1—7 on it from 3 and !, we find that the

direct thrust just to the right of 8 is 0-6, 8.6 tons, and to the

left of 8 is 0-7, 6.9 tons. Half of each force will be found

in each flange. To the right of point 8 we therefore have

12.06 -(- 4.3 = 16.30 tons compression in the upper flange, and

1.3 — 12.06= 7.76 tons tension in the lower flange; to the

left of s -we find 12.06 -|- 3.15 = 15.51 tons compression in

upper, and 3.45 — 12.06 = 8.61 tons tension in lower flange.

On a right section close to, but on the right of 8, there will be

4-7, 2.1 tons positive shear, and on the left of 8 will be found

3—6, 1.5 tons negative shear, to be resisted by the web.



CHAPTER IV.

PARABOLIC RIB WITH FIXED ENDS.

57. Values of Ordinates.— Passing next to the paiabolic

arch, fixed at the ends, we recall, from § 16, that, to locate the

equilibrium polygon for a single load at any point, we need

three ordinate^, one at each end, and the third passing through

the weight, and that the three conditions by which these must

be o])tained are, 1st, that the change of span is zero ; 2d, that

the cliange of inclination at the abutments is zero ; and, 3d,

that the abutment deflection is zero. As expressed in the

notation used, the three equations of condition are

2EF. I)E = 0,

2 E F = 0,

2 E F . I) B= 0.

If, in Fig. 12, INL represents the desired equilibrium poly-

gon for a weight W, attached to the rib A Q B at a point dis-

tant T G, = /), horizontally from the middle of tlie span ; and if

the span A B = 2 r% the rise of the arch = ^, A I= iyi, (tN=
^0, and P) L = ?/^, we will })rove tliat

V— 2 ^+ -''^^
2 1 + 5",. A0>)

.'A— 15 • T+T ^-15 T+TT *' ^-^C-\-b 15 1 + ;

c— f>bc— f)b , ., 1 — 5 n , ... .

wlien h=in e.

60
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58. Value of First Equation. — As before, the first condition may be
written,

V K V . 1) J-: = 2; ( I ) ]•: — 1 ) F) !)]•: = 0, or 2 1) i-:-^ = s d f . d e. (i .)

If A I) = ./. I) F =
;^;

(-2 r — .,) r, as in § 39. A G = r + i ; (i B =
r — /> If //, or //, hpcnnics negative, it is to be laid oif below AH, but

otherwise above: the fiLjure represents //.j as negative; and. in the majority

of cases, //, and ;/, have opposite signs. If a line be drawn horizontally from

I, I) F, as long as it is on the left of
//f,.

will be divided into a constant part

//,. and a remainder which varies witli the distance from I. Hence we see

that

' + ''

For the right-hand member of (L). between A and G, we therefore get

I nC+b
I

nC+b

, //, / (2 c X — .7-2) (1 X A- „ .
"">~ ''

I (2 r x^— x^) d x =

j;//,[r('- + /0'-H'- + /')^]+i(.yo-//.)[|'-(<'+ '')--i(^+ /')^]- (2.)

For the ]iortinn between G and B, if we write c — h for c -f- I'' find reckon

X from B to the left, we get

< — I)

the sign of i/.. being contained in the symbol. Then the integration for the

right-hand member of (1.). between B and G. or between the limits and

c — b. will give, when we substitute //., for //i. and c — h for c -\- /i.

The left-hand member of (1.) was .shown to be, in § .'iO. (2.),

r^^ (2cx-x^rdx=\it^c. (4.)

The two portions, (2.) and (3.). of the right-hand member, being added

together, when the coefficients of //„, //„ and //.. are reduced, will be equated

with (4.), the left-hand member of (1.), producing
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Qc^

or

2 c (5 c2— l/^)
//o _l_

(c+ 6)2 (3 c— h) y, -\- {c— hy {^c-\-h) y.= &^ /c c^. (5.

)

59. Values of Second and Third Equations.— It is not

necessary to integrate in order to obtain equations from the

other two conditions, although they may be derived quite

simply in tliat way. The second condition may be written,

i E F = 2 (D f: — D F) =z 0, or 2 D E ^ 2 D F.

The first member is the summation of all the ordinates to the

arch, or the included area between the rib and the line A B.

The area of a parabolic segment being equal to two-thirds of

the rectangle of the same base and altitude, the area will be

% . 2 c . k, or ^ e k. The second member will be the summation

of all the ordinates to the two inclined lines, or the area of the

two trapezoids, giving

Equating the two values, we obtain the second equation,

2c>,,-\-(c-\-b)y, + (c-l')y. = lck (1.)

The condition that v E F . D B =: 0, or that ^ (D E - D F)
DB=0, gives

2DE.DB = 2DF. DB,

and this condition is satisfied by the equivalent step of multi-

plying each area, just obtained, by the horizontal distance of

its centre of gravity from one abutment, the right one for

example, and equating the products. The left-hand member
will then plainly be | c -t . <?, or | c- k. As the second expression

above for the area of the trapezoids has three terms which cor-

respond to the three triangles formed by drawing lines from N
to A and B, we may multiply each triangle by the distance of

its centre of gravity from B, obtaining

cyo(<'-^i)-\-i(c + h)y,[r-b-^l(ci-b)]-^^_(c-b)y,l(c-b),
or,

1 y, (3 c-h)-^ I (c- -^b)y,{bc-b)^ \ y, {c - by.
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Equating the two members, and cleaiiucr of fractions, we find

that

2c(3c-b) .Vo + (c + h) (5 c-b)y,-\-{c- by y, = 8 c^ k. (2.)

60. Solution of Equations.— Equations (5.), § 58, and (1.)

and (2.), >5 5l>, contain tlie three unknown quantities. The
eliminations may be performed as follows :

—
Multiply (1.) by c — b, obtaining-

2c(c-h)!/,-^(c-{-b)ic-b)>j, + (c-bry,= ic-^-bc)^k.

Subtract from (2.)

4c2yo+ 4c(c + ^0^: = (2c2+ ?.c)|A:. (a.)

Multiply (2.) by 3 c -f- 5,

2 c (9 c-' -62) ^0 + (c + b) (15 6-2 -{-2cb- b-') in + (c- by' (3 c + b) y,=
(3f3 + //c^)Sjl-.

Subtract (5.), and divide the remainder l)y 2 c,

4 c'y, 4- 6 c (c + /.) y, = {\ c' -\-bc)^ k. (b.)

Subtract (rt^.),

2c(c-{-b)y, = (^Sc-' + ^,bc)L-, or 3/,= ,2_/_^fe.

Substituting this value in {a.) or (^>.), we get

and by analogy, or by substitution,

61. Remarks.— Tlie similarity between //, and y., is to be

expected ; fur, when a load is moved from one side of the centre

to an eqiial distance on the other, y^ and y^ change places.

Therefore it must be rememl)ered that y., is the value of the

ordinate at that springing which is nearer to the weight. If
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the load is in the middle, b =zO, and «/i =^2- It is worthy of

notice that ?/o is a constant quantity for all positions of the

weight. These ordinates can be easily computed for a weight

at different points, and it will be seen that a value of b greater

than ^ e will make ^2 negative, or to be plotted below the

springing line. The original reasoning showed, and the above

equations will prove, that the third condition may be taken

about the other abutment, and will still give the same values

for the ordinates.

62. Computation of Ordinates yi and y.,— If we propose

to work out data for use with this type of arch also, we must

first calculate the values of ?/, and 7/2 for all points. Let a rib

be divided into ten parts, equal liorizontally as before ; then, if

b =.n c, the results of the following table will be obtained. It

Values of //i and 1/2.
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zontal dotted lines from I and L, we shall have similar triangles

to those in the stress diagram, and may write

>,o-l/,:c-{-b=(2-S):U, or

P,= (2-3)= H^°"pf^ = ,«^ . ,:f" - . H,

l/o + (~>jd:c-b=i3-\):n, or

'/o
— y2 _ 8_ 2—

n

k

c— b ^^ ' (1—n)2c

Substitute the value of (2-3) from the first equation, trans-

pose, and obtain

H = — = U .

("^""—p^
. W= l& (1 - /,2)-4 W.

64. Computation of Values.— The amount of H for a load

at any one point will then be found in the several columns of

the table below. The first three values will be seen to be

Values of II, Pi, and P..

n = .2 A .« .8

1 .90 .84 .64 .36

1 .9216 .7056 .4096 .1296

.4687 ^320 .3308 .1920 .0607 j\Y.

H,^°^^^^ = 0..5 0.352 0.216 0.104 0.028 W^

_ > = P-

^ ^ = 0.5 0.648 0.784 0.896 0.972 \vj
(1— n)c

greater, and the last two to be smaller, than the corresponding

H's in § 41. It will next be necessary to find the vertical

components of the reactions by multiplying H by the (piantities

noted in the last section : the results will l)e found in the last

two lines. The larger value of P occurs at the nearer abut-

ment. It will be noted that these quantities differ in amount

from the two supporting forces of a single-span beam or truss.

If the ITs for an equal load at each of the nine points of

division are added together, we find that, for loads at all jjoints.

1-
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H = 2.4997
J-
W, which agrees more closely with the amount

for a truss or bowstring girder than did the value for a rib with

hinged ends, § 42. It is due to the fact that the equilibrium

poh'gon for a single weight crosses the rib often er in the present

case than in that of a rib with hinged ends ; so that, when several

loads are combined, the polygon will deviate from the parabola

(the form of the rib, and the true equilibrium curve for a

uniform distributed load) very little.

6."). Computation of Bending Moments. — If, in place of scaling, we
de.sire to compute the values of INI in this case also, we may use the former

equation, § 4:3,

M = ll(y-z).

The values of the ordinates, r, to the parabola will be the same as before.

If X denotes the distance from A to the foot of the ordinate y, and x' =z the

distance from B to the foot of the same ordinate, in which case x' := 2 c— x,

we shall have

y z=r _y, -|-
-j-fp"

X, on the left of the weight, and

y= y. -\- ''-^ '''
x', on tlie right of the weight,

the sign of y., being contained in the symbol.

Let us proceed to find the values of M, at both abutments and the nine

other jjoints, for a weight on the third point of division from the middle,

towards the right. As above.

H 0.192 ^W; ;'/o- i''^ 0.5417^; Vo — .'/-'

c -\-b f' c — Ij

mk, .64/.-, .Sik, .90 A-, h; .OGl; &c., §43.

Values of M.

4.6667-:
c

X = Oc
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^\' is placed over the number of the point to which it is attached, and a

iloulilc line is drawn on one side of W to denote the end of each series,

luiniing from the two ends of the table. The dividing line might just as

well have been drawn on the left of W, if preferred. More frequent values

of any of the preceding quantities may be obtained by interpolation, as

explained before.

66. Table of Bending Moments. — A table of vulues of M
has been |)ie})artMl for this case of an arch with lixed ends, the

sjjan being divided into ten e(j[ual parts, and is here prtisented,

p. 71. A table for twenty divisions may be found in "' Enoi-

neering News," vol. iv., p. 178. At any one point, for a uniform

load at all of the points of division, M reduces nearly to zero,

as before. The greatest possible positive M, as well as the

greatest possible negative M, for any combination of weights,

occurs at each abutment; positive maximum when the span is

loaded from the other abutment to and beyond tiie centre one

point ; negative when the other portion only of the span is

covered. The load on the first point from the middle produces

no M at the nearer abutment. There is another maximum at

the third or seventh point, with loads nearly the reverse of the

ones mentioned above. An inspection of the table will show

these facts.

67. Example. — As soon as H, P, ?/,, and '//., have been ob-

tained for all points, it is easy to draw an equilibrium polygon

for any desired arrangement of load. Let us suppose that one

must be constructed for weights of 2 tons, 6 tons, 3 tons, and

1 ton, on the 2d, 4th, 5th, and 8th points respectively, from

the left abutment, of an arch of 100 feet span and 20 feet rise.

Fig. 13, divided into ten equal parts along the span, as previ-

ously described. We Avill proceed as follows :
—

The vertical components of the reactions cannot be computed

foi' the load in the gross, as for a beam on two supports, but

must be summed up from the values lately given. Referring to

those data, we get
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P,. H.

2d joint, 0.896 X 2 = 1.792 tons. 0.192 X 2 = 0.384 1 tons.

4th " 0.048 X <» = 3 888 '' 0.432 X = 2.592 "

5th " 0.5 X 3 = 1.500 " 0.469 X 3 = 1.407 "

8th " 0.104 X 1 — 0.104 " 0.192 X 1 = 0.192 "

P, = 7.284 " H = 4..575 "

P, = 12 — 7.284 r= 4.710 tons. II = 4.575 x 2.5 = 11.44 tons.

Since H ?/i
= moment at the sj^ringing A, Fig. 13 ; since each

of these loads has a separate H and a definite tjx ? ^^^^ since the

H's for the different loads all conspire to produce the total

thrust, —we must calculate the arm with which the latter acts at

one or both springings, that is, the ordinate y( or ^o' of the

point whence the equilibrium polygon must start. We satisfy

the equation

U{ . 2 H = 2 n . ,j,. or .y/ =—|^,
which simply requires that the resultant moment shall be equal

to the algebraic sum of the original moments. We therefore

multiply each H for a given weight by its ^i, and divide the

sum of the products by the total H. The calculation having

been made, as here set down, we find that y( is equal to

—.02 feet, a comparatively insignificant amount. It is well

to compute y.{ also, as a check on the accuracy of the subse-

quent drawing, and it will be found to be +3.34 feet.
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While we may seeiu to have carried out this example in too

much detail, we are aware that inattention to ajjparently trivial

points will sometimes cause trouble, and we have therefore

given most of the work at full length. Now lay off the weights

iu order on the load line, i)lot Pi and P.,, lay off II on the j)roper

side, draw the usual radiating lines to the extremity of H, start

below A, a distance — ^/, and draw the equilibrium polygon

with sides parallel to the inclined lines of the stress diagram,

checking the polygon by the fact that it strikes the extremity

of the calculated ordinate y.!. Fig. 13 illustrates this example.

The diagram for vertical shear is also shown below, and needs

no explanation, as the construction is similar t(j previous cases.

The dotted lines in the stress diagram determine the value of

Yp It is (|uite noticeable in this figure, how the shear changes
sign wherever the bending moment becomes a maximum.

t)8. Table of Shear.— To find the numerical value of the vertical shear,

from which we may derive the normal components resisted by the braces of

an arch with tixed ends, we proceed as we did in the case of an arch with
hinged ends. The values of Pj. the vertical component of the abutment
reaction at the left, have been found. We then need only calculate the

value of Yi = 2 - H, and form a table, as was done in ^51. It is not

necessary to repeat the o]ierations here. A table of shears for an arch with
fixed ends, and for ten divisions, has been prepared, and is appended, p. 70.

The same remarks apply to it as to the previous similar table for the
parabolic arch with hinged ends. For a table for twenty divisions, see

Engineering Xews," vol. iv.. p. 108.

60. Extent of Load to produce Maximum M and F. —
A diagram is also presented. Fig. 15, showing, by the full lines,

the loads recpiired to produce the maximum -f-M, from live

load, at the point whose number is attached to the line, and by
the remaining blank portion the load required for maximum
—M at the same point. The broken lines and the blank
portion in each xjjace represent the way of distributing the load
for maximum -f-F and —F respectively. It is still more
apparent from this figure than from Fig. 11, that any investiga-

tion which considers the rolling load as continuous from one
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iibutiiu'iit over a portion of tlie span will not determine aetuai

niaxinnun stresses. See i^ .')4.

70. Comparison of Ribs ; Fixed and Hinged at Abut-
ments. — A eoniparison of Fin. 1.") with Fi;.;-. 1 1 will he in-

structive, as sliowing the ditTerenl loading,-, wlicn hing'es an;

omitted, to produce maxiniuni bcndinL;- nioinents and shears.

There are four points near the ends of the rib with fixed ends,

whicdi re<{uire that loads should he on i)otli cuds of the s])an

at once, to produce the maximum -{-M at those jioints; and

five points at the middle which have the maximum —M under

similar circumstances. In some sti'iicturcs such conditions can

be realized. If we foot up the i)lus and minus values of the

columns in the tables for M and V, we shall readily see that,

with tlu' exception of the springing points, all the i)oints in the

arch with fixed ends have less maximum bending moments of

either kind, for a load W at each loaded point, than in the case

of the arch witli hinged ends, and, in most cases, the ^'alucs are

materially less. A similar comparison of maximum shears will

show that the arch with fixed ends has to carry more shear over

its wei) or bracing for all the divisions of the fii'st and last

([uarters of the span, and less for the middle half of the sjian,

than an arch with hinged ends. These considerations alone

would indicate the superiority (»f the arch with fixed ends over

the other type, as re(|niring less material in the llaiiges or

chords, aiul throwing the heavier bi'acing towards the abut-

ments; the value of tlie direct thrust, however, as indicat(Ml by

the pre\iously com})ute(l amounts ol' II. varies according to

the amount of load, and conspires with the t'om})ression from

bending moment, so that the sections of the two chords must

be designed for the maximum com[)rcssion and tension at all

points; the effect of rise or fall of temperature will be shown
to be greater on the rib with fixed ends, reqnring a greater

increase of section to provide for it.



CHAPTER V.

CHANGE OF TEMPERATURE.

71. Action of Change of Temperature. — If the arch, when

either fixed or hinged at the ends, is exposed to a change of

temperature, it will tend to change its shape. If the rilj were

perfectly free, its expansion or contraction Avould be uniform in

all directions, so that the new arch would be the old arch on a

slightly altered scale. In a bowstring girder, the tie expands

and contracts with the bow, so that the horizontal projection of

the change of length of the bow is the same as the elongation

or contraction of the horizontal member. But as the abutments

of the art-h are considered as fixed, its span must remain

unchanged : and the alteration of the arch by a change of

temperature will be manifested by a rise or fall of the croAvn

of the arch, which movement, in the case of a metal rib, may
be a marked quantity.

It is manifest, that, if we imagine the rib at its normal tem-

perature to be placed upon its springing points or skewbacks, it

will liave a horizontal thrust against the abutments due to its

form and weight. If the temperature changes, the structure

endeavors to expand or contract in equal proportion in all

directions ; and hence, if possible, the span would be lengthened

just in proportion to the rise of temperature t, the coefficient of

expansion e, and the span 2 <?, or the change of span would

equal 2ft'c. Jf f expresses the number of degrees of fall in

temperature, it may be called minus, and the quantity 2 t c c.

72
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will denote the sliorteniugf of the span. lUit this attempted

change of length, being resisted at the points of attachment,

cannot take place, but must cause a horizontal force, either

tension or compression, which keeps the span invariable. This

-f-H or —H must exert a bending moment upon all parts of the

rib, as well as a direct thrust, which moment is too important

to be neglected. It being recollected that the condition

^ E F . D E := denoted that the change of span equalled

zero, it will l)e sufficient in this case to still make it zero, when
we have added or sulitracted a (juantity proportional to 2 f e a.

72. Change of Span influenced by Material and Cross-

section of Arch. — The bending moment M at any })uint has

been demonstrated, s^ 4, to be equal to the product of H from

the stress diagram multiplied by the vertical ordinate from that

point to the equilibrium poh'gon. Then it was shown, § 18,

that, if all these ordinates were summed up, that is, if we took

^EF between two points, this sum would be proportional to

the change of inclination between those two points ; but it was

not stated that this quantity was equal to the change of inclina-

tion, for neither the material nor the form of cross-section of the

rib was taken into account. As the amount of flexure was

stated, in Part II., " Bridges," §§85 and 86, to vary inversely

as the modulus of elasticity and the moment of inertia, we

^ .^ ^M H.^EF^ .^ . ,. Till,must write ^=r or — to obtain a (luantitv which shall
EI EI ^

equal the change of inclination. The same thing is true of the

expressions for deflection and change of span. When, however,

the summation is made from one abutment to the other, and

then put equal to zero, if E and I are constant, as well as H, it

must be true that 3 E F = 0, as heretofore stated ; and likewise

of the other equations. Now E is constant, as the material of

the rib is the same throughout : and since the parabolic rib, of

cross-section varying with the secant of the inclination of the

rib to the horizon, has been demonstrated, § 36, to deflect

vertically like a straight Ijeani of uniform section ei|ual to that

of the rib at the crown, I is likewise constant in these formulae,
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and represents the moment of inertia of the section at the

crown. In short, where one quantity is directly proportional to

another, if one is equal to zero, the other is also ; consequently

we can deal with areas, area nionients, &e., as if they Avere the

changes of inclination, deflections, &c., themselves.

73. Formula for H from Change of Temperature. — But

now we wish to introduce the distance It e c\ the change of

span which would occur from change of temperature, were it

unchecked. As this is an absolute and not a proportional

quantity, we must divide our original quantity for change of

span, § 7, by E I. We shall, therefore, have for the new
condition,

H, . 2 E F . D E
EI ± 2iec = 0,

where H, is used to signify the horizontal force (thrust or

tension) which is occasioned by the change of temperature ; or,

if we clear of fractions, we get the more convenient exj)ression

II, . 2 E F . D E ± 2 E I ? e c = 0.

A rise of temperature will make H a thrust or positive, while

a fall of temperature will make H a tension or negative. The
double sign is not needed in the above equation if the sign is

contained in the symbol f, that is, if t is negative for a diminu-

tion of temperature below the one at which the rib is con-

structed or laid out. The bending moments exerted on the

lib will be of the contrary kind when H, is minus, while the

ordinates are unchanged.

74. Application to Parabolic Rib, Hinged at Ends. —
To take up first the case of the jjarabolic rib hinged at ends.

The amount of H, is to be determined. As there can be no

bending moment at either abutment, and H, at each abutment

is the only applied force, the equilibrium polygon or line of

thrust. Fig. 16, must be in the line joining the two springings.

The bending moment at any point will, therefore, be equal to

the ordinate to the rib at that point, multiplied by the desired

value of H^. The expression J, E F . D E therefore becomes for
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this case ^ D E^ ; and we have, transposing the second term of

the equation of the previous section,

Hi . 2 D E- = 2 E I ? e c.

The value of vD E2 was shown in § 39 (2.), to be \^k-o;
therefore, substituting and transposing, we see that

IL - i-5. .
'_1^

a value which is 'independent of the span.

The maximum bending moment, which occurs at the middle

of the span, where the ordinate will be k, is

M (max.) =
-V-

. -^

The ordinates at all the usual points of division will be the

values of z, used repeatedly before; and, by multiplying H^ by

these several values of z, the bending moments at all points

are obtained for a given change of temperature t. An
additional line can be placed below tlie table of M to contain

these quantities, so as to have them convenient for use. All of

tliese moments will be positive for a fall of temperature below,

and negative for a rise above, that at whicli the rib was designed.

The worst effect of either change must be provided for.

75. Formula for Change of Span deduced analytically. — If one

likes to prove this value for chancre of span analytically, he may proceed as

follows: Let any ordinate to the arch be denoted by//, and the ab.scissa

measured horizontallj^ from one abutment by x. Then, if c == the vertical

deflection ordinate, that is, the deflection of any point from its original

position, we may write the usual equations for curvature, slope, and deflec-

tion of beam.s, recollecting that this arch acts like a beam of uniform section

in deflecting vertically,

-r—5= —- ; -^ = / dx; and r r= I I .,—- d a^.
dx^ EI' dx J EI J J EI

Now M = H //= II ', (2 (• X — X-) ; therefore

5= ^x4/(2— ^')"-^x- K"'-'J+^)-
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~=0,ior X = c; therefore C = —f c^. Then

dx m c-^ ^ 3 y V /

If u ^ horizontal displacement of any point, the infinitesimal horizontal

displacement d ii, due to the movement of the portion of arc d s, will give,

as may be seen to the right of Fig. 16,

d u : dv =z d 7/ : d X.

Since y =i —^ (2 c x — x-), d y = A; Q2 c —2 x) d x, and we have

2 k
d U :=: ^ (c x) d V.

c

Substitute the value oi dv from («.), and it becomes

'^w =^ . ^ (c'^ — |-ca;3 — |c* + la* + |-c3t) dx.

K this equation is integrated between the limits and 2 c, we obtain
TT

u = . i| kr c, which will be seen to correspond with the value of

2tecm the preceding section.

76. Application to Fixed Parabolic Rib. — If we turn

next to the rib with fixed ends, it will be manifest, that, since

there will be bending moments at the springings, the line which

corresponds to the equilibrium polygon and limits the ordinates

for bending moments cannot now pass through those points.

As the resistance to exj)ansion or contraction is the only cause

of those moments, the two abutment moments will be ecjual,

and the line will be horizontal. In order also to satisfy the

condition that the change of inclination at the abutments shall

equal zero, or, as expressed in § 18, ^ E F = 0, the horizontal

line must be so drawn as to make the areas within and without

the arch equal to one another, which will occur when the line

is drawn at a height of |- ^ above the springing, as seen in

Fig. 17. To prove the equality of areas it is only necessary to

recall the fact that the area of a parabolic segment equals two-

thirds of the enclosing rectangle. The area included within the
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whole arcli will therefore be | k . 2 c = -| k c The rectangle of

height
f^
k iias the same area. Therefore the portions of the

arch area and of the rectangle which do not coincide mnst

be eqnal to one anotlier. The third condition, of § 19, that

^ E F . D I) := 0, or the equality of area moments, is also

satished by this construction ; for the rectangle multiplied l)y

the iialf span, which is the distance of its centre of gravity from

one abutment, is equal to the area included by the whole arch

multiplied by the same distance.

To deduce in this case the value of H,: as ))efore,

11^ . SEF. DE ± 2EI<ec = 0. (1.)

From what has just been stated,

2 E F . I) E = >; (D E — |/>) D E = Z D E- — f I- . 2 I) E. (2.)

The first term, as before, amounts to -|| /r c ; since 2' D E =: area

enclosed by the arch, = lA-^-, the second term is |F(?; there-

fore

H, .
Jg jI" c = 2 E I < e c, or II, =

*f-
'-^^^

The bending moment at the crown will therefore be

and at the springing,

M = H< . f k =

or double the former amount, but of the opposite kind. Whether
the bending moment at either point is positive or negative,

depends upon whether H, is tension or compression. These

moments also can be conveniently added to the proper tal)le for

M, as explained for the first case.

77. Comparison of Arches under Change of Temper-

ature. — The bending moments for temperature, in both the

arch with hinged ends and that with fixed ends, will vary like

those of a beam uniformly loaded, and either simply supported

or fixed at the ends. Part II., '' Bridges," §§ 95, 99.

k

teHI
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It may be AA^ell to notice the comparative straining effect of

the same change of temperature in the two classes of parabolic

arches, for ribs of the same rise. H, is six times as great AV'hen

the arch is fixed as when it is hinged at the ends, and the direct

stress in the ribs will therefore vary in the same proportion.

The maximum moment, at the springing, for the rib with fixed

ends, is four times as great as at the crown of the rib with hinged

ends, and of the opposite kind ; while the value of M at the two

croAvns is as two to one against the ril) with fixed ends.

78. Shear from Change of Temperature. — The shear on

a riglit section can be shown by the accompanying Fig. 18. If

a h represents the amount of H caused by a change of temper-

ature, we may draw a d and h c parallel to the upper and lower

flange at any right section S of the rib, when e a will be the

value of the direct stress at the section, one-half in each llange,

and he will be the shear.* The bending moment will have any

magnitude, depending upon the length of the ordinate from the

equilibrium line to the point on the centre line of theai'ch wliere

this section is taken. As a e and g h are parallel, the perpen-

dicular distance 5 c, := c d, between them is constant, so that/tZ

may be taken, for our purpose, to represent the stress in one

chord, and <j c that in the other due to bending moment, the re-

sultant stresses being a d and c b, while tlie shear on the right of

a right section of the web will be d e. Since the resultant stress

at an}' section must be H, the directions of the forces, shown
b}' the arrows, in this closed polygon, are at once fixed. As the

inclination of the arch changes, the value of c d will change,

being zero at the crown and a maximum at the springings.

The arrows denote the case Avhere H is a thrust. The bending

moment will be negative, if the rib is hinged at the ends, the

bottom chord will be compressed, the top chord will have a

force exerted upon it amounting to the difference between the

direct thrust and the tension due to the moment, and couse-

(juently c b will be the stress exerted by the top chord against

the right side of the cross-section in the accompanying sketch.

79. Diagram for Vertical Shear. — Let us suj-pose a fall of

*In Fig 18, the point / should bisect e a.
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tenipc'iatuic to take plat-c : the lil) N\ill liavt' a tciideiicy to

come down at the crown. Wv recall the tact that a luiitunii

load has a parabola tor its e(|uilil)iiniri curve, and a load ot" tlie

proper intensity on an\ [laraholic arch will produce the value

of II which is now supj)osed to exist. It is evident, then, as is

also shown b}' the si^n ot" M, that the rib may be imagined

to be loaded uniformly horizontally with a weight sufficient to

produce this deflection or thesi> values of M. Tliis imaginary

weight will l)e just sufficient at all points to balance the com

ponent of an opposite kind which is required in combination

with the value of H^ (in this case a horizontal tension), in order

to give a resultant stress in the direction of the tangent to the

rib. And, further, if this weight were not just sufficient to

halance the above component, a remainder, of one sign or the

other, would be found at the abutments, as a vertical component

of the reaction there; but we know that no such vertical com-

ponent exists. If a bent spring is placed with its two ends on

a horizontal line, and compression or tension is applied in that

line, no vertical force is needed for e(|uilibrium. As the uniform

weight was entirely imaginary, the vertical components nmst

be su])plied l)y the web and flanges, and hence we conclude that

the diagram for vertical shear in the arch affected by a change

of temperature, will be that of an ordinary truss, supported or

fixed at its two ends, and carrying a complete uniform load,

and that tlie normal com[)onent will be carried by the web.

For a fall of temperature, therefore, the shear on a vcrtit'al

section will be of the same kind as, and, for a rise f)f temjjer-

ature, will be of the opposite kind to, that produced by a load

on a truss with horizontal chords.



CHAPTER VI.

CIECULAR RIB WITH HINGED ENDS.

80. Circular Rib to be of Uniform Section. — Passing

next to the consideration of the arch whose curve is the arc of

a circle, we shall assume tliat the rib is of uniform section, and

not, as before, of increasing breadth from the crown to the

springing. As the rib is of uniform section, it can no longer be

compared to a horizontal beam, as regards its change of inclina-

tion and deflection under bending moments, and the length

along the arch, instead of its projection on a horizontal line,

must be used in spacing off and in summing up the usual

quantities ; that is, the sum of the changes of inclination

between any two points will be made up from the change of

inclination at each successive point along the rib. We must

therefore use ds for dx in our integration, where •<? denotes the

length of an arc ; and polar co-ordinates will, in the more com-

plex cases, be used in place of rectangular ones. In spacing

off the rib for equal divisions, or for summing the ordinates

arithmetically, the measurements will be made along the curve,

and each division will subtend the same angle at the centre of

the circle.

We stated, it will be remembered, that a segmental arcli of

the circular type, if the rise did not exceed one-tenth of the

span, might, without serious error, be treated as if it were

parabolic. In discussing circular arches, there will be so many
points similar to those we have already explained, that we shall

80
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not go into much detail on some points, but leave the reader to

make the extended application as examples come up in his own
practice.

81. Experimental Verification.— The values to be obtained

for ^„, I'lir a ril) of imiforni section, curved to the arc of a circle,

and hinged or hva to turn at tlie ends, can be readily verified

or illustrated experimentally as follows: — Take a piece of

moderately stiff iron wii'e, and bend it accurately into the

desired shape, A C B, Fig. 19 ; suspend the wire from a

horizontal bar E F by means of strings fastened at A and B.

and then attach a weight at any point C. It will be convenient

to stretch a thread from A to B, which, as the span is to be

unchanged, will not interfere with the reactions. If the point

E is now moved horizontally, the length of the string E A being

at tlie same time changed, the line A B can l)e brought parallel

with E F, as can be readily ascertained with a scale. Then E A
and F B prolonged will meet at D on C D, and D G will equal

^0- E A and F B will actually intersect on the vertical through

the centre of gravity of the wire and weight combined ; but if

the weight of the wire is as small as is consistent with stiffness,

while the weight at (
- is large in comparison, the centre of

gravity will practically be in C D. If A B becomes slack, it

shows that E and F are not sufficiently far apart. By fastening-

two long threads independentl}' to E and F, the lines E A and

FB can l)c easily prolonged to an intersection.

82. Semicircular Arch ^vith Hinged Ends ; Value of ^^,.

— If tlie ril) with hinged ends is hrst taken up for disctission,

the A'alue of ^/^^ for a load at any point on a semicirctilar arch is

easily obtained by a simple device. Recurring again to the

usual formula in its modified form, we must satisfy the condi-

tion
1 I) lv= i: \)E . DF.

If we let D E, Fig. 20, = z ; \)F =i y ; A D = 2- ; and represent

a small portion of arc by d s, this equation becomes, for the

entire semicircle,

/--dszzzjyzds.
t'
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If WO draw a radius from any })()iiit E of the rib to the centre

O, and also draw the infinitesimal triangle whose sides are d s,

d x^ and d 2, we shall have, from similarity of triangles,

r : c =r r/ *•
: d x, or z d s ^ rd x

;

substituting this value in the above equation, we get

r j zd X = r
I

y dx.

The integral oi zd x between the given limits is the area of

the semicircle, while that of 1/ dx is the triangle A C B. Substi-

tute the value J Jt r^ for the former, and r ?/o for the latter, and

we obtain
1 77 /-^ = )-

//„ ; or //q = 1 tt r = 1.5708 r.

The ordinate
;^/o,

for a load at au}' point, on a semicircular

rib with hinged ends, is therefore a constant quantity, equal to

the length of the half rib. If we draw a horizontal line at this

height above the springing, it will contain the vertices of all

the e(iuilibrium polygons for single loads.

88. Segmental Arch ; Value of ?/(,.
— If the arch is seg-

mental, lliat is, less than a semicircle, we shall use the follow-

ing notation: Let the angle NOB, Fig. 21, subtended at the

centre (tf the circle by the half arch, be denoted by /^: the angle

N () I, from the crown to the jjoint where the weight is placed,

be denoted by '< ; and the angle N O E, from the crown to any

point where the ordinates I) E and EF are measured, be 0. The
radius of the arch =^ r. If, then, A C B is the desired curve of

equilibrium, C K = ?/,,. The value of this ordinate will be proved

to be

2/o= ''

/•»o •'\/jl+- COS- /3 „ \
(snr/? — sni-rt)

(
;i —l_ !_ — 3 cos/?

)^ ^ V Slll/j /

(sin- /3 — sin'^ a) -j- - cos /5 (a sin a -\- cos a — /3 sin ji — cos /3)

If the arch is a semicircle, p' = 00° := };?, and this value reduces

to «/(, = };Tt i\ as previously obtained.

The work of computing //,> for different values of a is not

great ; as, for a given arch, p is constant, and the second factor
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of the numerator is a constant ([uantity. Since a segmental

arch may snl)ten(l any angle, it is not worth while to go into

the computation here of values of //„ for a given value of j..'; Init,

as examples of ?/„, we will give

If ,3 = 45° and « = 0°, then .//q = .;}!» /• nearly.

" 45° " 30°, " .42 r '•

00° " :30°, " .71 /• "

All that one needs for the calculation from this formula is

an ordinary table of natural sines and cosines. The angles or

arcs jj and a are to be expressed in lengtlis of arc, Avhich subtend

the given number of degrees, to radius unity. The arc for one

deo'ree i)einr>' 7—-, or 0.017453, anv other arc will be obtained

by multiplying this quantit}- by the number of degrees which

tlie arc subtends, minutes being expressed as a decimal part of

a degree.

84. Proof. — From Fig. 21 we have D E = r (cos d — co.s /3).

I) F : C K =: A D : A K = J- (sin ,3 -f- sin d) : )• (sin,i -\- sin a)

on the left ot K, or D t = -.—^-^ — ;— ?/„

;

sni J -|- sin a-^"

,
, • , , . T' T^ T^ sin :i — sin d

on the nsjht 01 K, D i< = -.—r .— ?/„.
sni3 — sm a'

Snbstitutino- these values in the usual equation, § 39, 2 D E" ^ 2 I) E . D F,

(V'e obtain for the first member of the equation, remembering to use

ds = ri/n in place of d x, and considering angles to the left of ON as

negative.

?-^

I
(cos y — cos .3)-' d 6 ^ 1-^

I (cos- — 2 cos V cos -|- cos" .3) d 0*

= ;-^ (,i + 2 i3 cos- 3 — 3 sin 3 cos 3). (a.)

For the integral of the second member between a and — 3 we have

'.'/o

sin 3 + sin
/ (sin 3 cos (/ -)- sin t) cos t) — sin ,3 cos /3 — cos j3 sin o)dd'\

* fcos' d = i {H -\- sin H cos 0) ; cos — /3 = cos /3; sin — /3 = — sin /?.

t Tsin Ocosti dd = — i cos- d.
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= -.—^ ,
.— (sin a sin 3 — 4 cos^ a — a sin i3 cos 3

sm j3 -\- sua a
^

' z if
-\- cos a cos j3 -\- sin'- /3 — 1 cos" /3 — |i sin .3 cos /3).

Likewise for the integral of the second member between a and -|- /3 we have

r^ '/n
/* /^

-.—r

—

'-^.— / (sin 3 cos d — sin cos d — sin 3 cos 3 + cos j3 sin e) d 9sm

.'Jo (sin- ;3 — ^ cos" /3 — /? sin ,3 cos /3 — sin a sin /3
sin /J — sm a

— ^ cos'- a -\- a sin /3 cos /3 -{- cos o cos /3).

These two quantities are to be reduced to a common denominator, added

together and equated with the first member (a.). Upon making simple

cancellations, dividing through by sin /3, and factoring, we get the form of

//o
given in the last section.

85. Formula forH ; Value of Ordinates.— When the value,

of ?/„ is euinputed, we can readily draw the stress diagram of

Fig-. 21, and scale the value of H ; or the formula proved before,

§ 40, ma}^ be applied here, and is easily converted into the third

form,-

,T W c" — 6'- __ .^ A K . K B r (sin" /3 — sin" a) ,„ ,- ,

~ ^ 2c ~ C K . A B ~
7/o

. 2 sin /3
' ^

'^

If calculations have already been made for yo' the quantities

desired for this formula are at hand.

Then the ordinate at each jioint of division, by which II is to be multi-

plied to giv(! 'M for that point, will be, from § 84, if d is the angle between

the two i-adii from the crown and the point E,

1- V m^ T\ T-'
sin/3 ± sin e . ^ r,\ /n \hi =Ui — D L= w„ ——'-—

y
—, r (cos d — cos ,8). (2.)

" sui/3 ± sm a / V /

The plus sign is to be used for points between the weight and the farther

abutment, and the minus sign between the weight and the nearer abutment.

We must remember, however, that, if d is measured- from the crown to the

right as the positive direction, all angles O on the left of the crown will be

negative, and their sines will be minus. If E F is plus, it gives a positive

bending moment, tending to make the arch less convex, and vice versa.

8G. Numerical Computation of M. — In any practical case we should

much prefer., as more easy and sufficiently accurate, to scale all of these

quantities from a good-sized diagram; but it may be well to compute one set
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of values of M as an example, for fear the signs may give some readers

trouble. Taking the case of Fig. •22, let /3 = 45° and a = 20°. Then

the arc /? = .7854 and a = .3491 ; sin ,3 == cos /3 = .7071 ; sin a = .3420,

cos a = .9397. These values, substituted in the equation of § 83, give

(.5 — .1170) (^.7854 „^~- — 2.1213\

_ ^^ _\ -7071 2 -0384 _.
.

•Vo— '\5_.ii7o^ 1.4142 (.1194 .^.9397 _.5554_.7071)— 0954
''"'

(1.), § 85, will then become

jj_ (.5-. 1170) r W = '~ W =: .672 W.
1.4142 X -403 r .570

Sin /? -f sin a = 1.0491 ; sin j3 — sin a = .3651

;

,'/o _ .403 r.403 r

sin^S -|- sin a 1.0491
^ _ • -"- ' =, .384 r ; sm /3 — sin a

Values of M.
w.

.3651
= 1.104 r.

e
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shear in the ^yel). For we see by the direction of the arrows

that these forces last drawn bahuice Pj and H, and, as in

Fiof. 18, no matter how much the bending moment, and hence

the flange stress, may be, the perpendicukir distance 4-2 is

unchanged. The line 0-4 will be the magnitude of the direct

thrust. J'xtth of these forces are given on the right of the

section, and this shear is therefore negative. In the same way,

for the point E near B, draw 1-3 = — P., and 3-0 = II ; draw

0-8 parallel to the tangent at E ; 8-1, perpendicular to it, will

be the shear on the right of the section, again negative, and 0-8

will be the direct thrust. It is noticeable that the normal shear

in the web near the left abutment is opposite in sign to Pi,

wliile near the right abutment it agrees in sign with P^- For

the kind of brace needed, see Fig. 10. It is evident that these

figures may at once be drawn on the stress diagram, where 0-4

and 4-2 are already sketched. Such a way will answer well

for a few points on a large figure, especially if we have applied

such loads as give the maximum shear at any particular point.

If, however, we desire to see the variation of the shear across

the span, we may draw a different diagram.

88. Shear Diagram. — As the tangent is perpendicular to

the radius at the point of contact, we may at once see that the

angles marked d in Fig. 23 corres})ond with the angle d made
by the radius to the crown and that to the point E. Hence we
get a value for the normal shear, P cos /9—H sin /?. As the

j)oint E is distant horizontally from the middle of the span an

amount r sin d, the last term of this expression for shear varies

dircH'tly as the distance from the centre; and if we draw 3-7, in

the stress diagram of Fig. 22, parallel to the radius at A, cutting-

0-6 which is parallel to the tangent at A, 3-7 will be H sin d for

A, and may be laid off at a w and h r of Fig. 23. Tlie vertical

ordinate c d will then represent H sin (9 at any point. P, is laid

off at (• U and P.^ at cm ; with e as centre, and these two distances

as radii, draw the dotted arcs seen in the figure ; lay off several

angles at c, as, for instance, J c;! and m en for the points E;

project // and n horizontally to/ under the respective points E

;
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c?/will be P cos d, and from several siniilarl}- located points the

curves nit and vfr are found. Then at any point the vertical

distance df— ed or cy' will be the 7wrmal shear in the wel) on

the left of the section, positive if above the inclined line, neg-

ative if below it.

From the formula Pcos(9— 11 sin /?, a table of shciirs may be

easily computed for any given arch. P sin d -\-\\ cos 6 will give

the direct thrust.

<S0. Distribution of Load to produce Equilibrium. — A
series of lines drawn in the stress diagram from <>, parallel to

the tangents at a number of equidistant points in a eireular rib,

will cut off such portions of the load line as represent the loads

necessary to make the successive sides of the eijuilibrinm polygon

parallel to these tangents, or, in short, coincident with the rib.

But the lines radiating from will successively intercept

increasing lengths of load line. Hence the load which will keep

a circular arch in equilibrium must increase in intensity per

horizontal foot from the crown to the springing, and must

become infinite at the springing of a semicircular arch. Hence

it follows that no amount and distribution of vertical load can

make a semicircular arch a true e(|uilibrium curve, that is, one

which has no bending moment at any point. In fact, no curve

which starts vertically from the abutment can be an equilibrium

curve under vertical loads. This may be seen in a more simple

manner if we consider that no arrangement of weights will

cause a cord, attached at two points, to hang in a funicular

polygon whose first side is vertical.

90. Effect of Change of Temperature. — The horizontal

thrust or tension, due to a change ol" temperature, in a circular

rib hinged at the ends, is found by a similar method to that

pursued for the parabolic rib. Peferring, to avoid repetition,

to what was said at that time, §§ 71-73, the equation may be

written, as given in § 74,

H; . S D E2 = ± 2 E I . < e c.

Fig. 16 will answer for this case, if we imagine the arc to be
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circular. As we saw, in s; 82, that Jl'DJv' for a seiiiiciicular

arch was 2 rr r^, a substitution in tlie altove cijuation gives at

once

for a semicircuhir ril). Tlie bending moment at tlie crown,

where it is a maximum, will be

M (max.) = .

If the arch is less than a semicircle, (a.'), § 84, gives

2 D E"-^ = r^ (i3 -f- - /^ cos- /i — ) sin .i cos ,3),

and e = /-sin p'; therefore, substituting, we obtain

2EI/t-sin/:;
'

r'^ (^ -\-2 ji cos^ d— 3 sin /i cos J)'

and the bending moment at the crt)wn will be

M (max.)= ^^l^l^^a -c^^_)__.
^ ^ r (-1 -\--2 i3 cos-^ i3 — 8 siii ,3 cos ,i)

91. Shear from Change of Temperature. — If a load of

the proper amount and distril)ution were imposed on the rilt to

place it entirely in equilibrium, and cause it to exert against

the abutments tlie desired value of H due to temperature, such

a load wouhl supply the amount of shear needed at each section,

and, when the load is absent, the l)racing must supply such

shear. The line weeer of the shear diagram of Fig. 23 will

therefore limit the ordinates for shear at right sections of the

we)) inider changes of temperature, when 0-3 is the amount of

H,. A reference to § 78 and § 87 will aid the reader in recalling

these points.
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CIRCULAR RIB WITH FIXED EKDS.

92. Values of Equations of Condition. — When the cir-

cular rib is fixed at the ends, we apply the three equations of

condition which were developed in §§ 17-19, summing up the

ordinates, however, along the arch, as has just been done in the

preceding case, in place of the horizontal line. When the arch

is a complete semicircle, or, as it is often called, a complete

arch, as distinguished from a segmental one, the value of y/o, </i,

and y<y may ])e obtained by a device similar to the one employed

in § 82. The equation to satisfy the first condition is easily

derived, but the two others present more difficulty ; it is there-

fore not expedient to take up the semicircle as a special case,

but rather to work out the general equations, and make the

necessary substitutions.

In the arch of Fig. 24, let A N =;
y/i. C K = v/o- '^n^^ B R == y,

:

M O B = M O A =3 p', M O I = «, and i\I O E. to any point E.

= ^, angles to the right of M being positive. Tlie notation

agrees with that just used. Then it may be piovcd that tlie

three equations of condition will reduce to

sin (i yo ~h ? (sin /:* -j-sin a) ij^ -\- h (sin 3— sin a) ij-,= (3 — sin 3 cos 0) r; (1.)

— sin ,i (cos a — cos 3 -\- a sin a — 3 sin 3) Ho

-\- h (sin 3 — sin a) (cos a — cos^J + " sin a -\- /3sin a)y,

-f- ^ (sin 3 -\- sin a) (cos a — cos P -\- a sin a — (i sin a) y,

= (sin ji — ii cos fi) (sin-^i — sin- a) r ; (2.)

89
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[(|8 — cos /3 sin ,3) sin a — (a + sin a cos a — 2 sin a cos ,3) sin /3] y^

-(- ^ (sin (3 — sin a) (a -f- sin a cos a -\- i3 — sin 3 cos i3 — 2 sin a cos j3) y^

+ ^ (sin /3 -|- sin a) (a -[- sin a cos n— 3 -j- sin ,3 cos 3— '2 sin a cos i3) 7/.= 0. (3.)

It will be easier to solve the numerical e(Huitioiis after the

values of a and ^, with their sines and cosines, are introduced,

than to deduce independent values of ^i, &c., at present. They
may be written more briefly, for convenience in substitution, if

sm)3 — sin a = a ; sin 3 -\- sin a =^ b ; a -\- sin a cos a — 2 sin a cos 3 = c ;

/3 — sin
f3 cos 3 = '-^; cos a — cos 3 -\- a sin a = e ;

sin iJ y^ -{- i b y, -{- ^ a >/o = d r. (4.)

— (e — (3 sin /3) sin /3 //q + t « (^ + '^ sin a) //, -\- ^ b (e — 3 sin a) yo

=z a b {sin i3
— *3cos/3)/-. (5.)

(r/sin o — c sin -3) ^o + +«(•" + '0 .'A + i ^ (^ — ^0 .'/2 = 0. (6.)

93. Special Values for Semicircular Rib. — If the arch is

a semicircle, p = in; sin p' = 1 ; cos p nr ; and the three equa-

tions of the last section reduce to

//o + HI + sill a) !h + HI - sin a)7j, = ^^r: (1.)

(^~ — cos a — a sin a) //o + H^ — ^i" '^) ( <^os a -|- « sin a -|- ^ tt sin a) i/i

-{- HI + S"^ ") (S^^ a -\- a sin a — ^ tt sin a) //j = (1 — sin^ a) r : (2.)

{^ 77 sin a — a — sin a cos a) jif^
~\- ^ (i — sin a) (a -|- sin n cos a -\- ^-) //i

-)- ^ (1 -}- sin a) (fz -[- sin a cos a — 4 tt) //., = 0. (3.

)

If equation •(!.) is multiplied by «, equation (3.) may be

added to it, and then (2.) may be multiplied by sin u, and

subtracted from their sum, when there will result

(" + 4 ~— 4 '^ si" ") .'/i + (o — 4 ^— 4 ~ sin a) >/>= (^ tt a — siu a) r. (-4.)

If (1.) is multiplied by in — cos « — « sin (<. and equation (2.)

is subtracted from it, we shall get, upon dividing b}- the com-

mon coeflficient of //j and ?/2^

J, j^ . ^n (in — cos a — a sin a) — cns^ a

2 Uh -r :<h) — f^IL 2 cos a — 2 asin a -{- i nsm^ ^'

which, if the quantity in the parentheses be represented by^,

may be written,

1 / I
X i^^'/ — cos-« ,- .
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Upon multiplying this equation by 2a — i;rsiii «, and subtract-

ing it from (4.), we obtain, by factoring the second member,

(
j^ J

(a cos- a— (jsin a)

i fo, -,,) =^-^^^^^-^ r. (6.)

The sum of (5.) and (6.) will give i/x ; their difference will

give y.r, and these values, inserted in (1.), will readily give

us y^,.

94. First Equation of Condition. — Many of the following expressions

are similar to tiiose of §84, and a renienibrance of the relation between

iji and y., will, in a measure, prevent the ensuing work from seeming so

involved as it otherwise may appear. Generally, coefficients of //i and y. will

differ only in the signs of the terms which contain a and sine a. The first

condition is

2 D E= — 2 D F . D E.

From § 84, we have

2 D E2 1= r3 (/3 + 2 ,i cos^ ^3 — 3 sin 3 cos ,-3).

It will be seen, from Fig. 124. that 1) F = D L + L F =:
?/i (or ?/») + L F,

D L in the sketch being negative on the right of K, and that, therefore, in

place of the values of the section just referred to, we shall write

Tv-n 1
sin /^ -|- sin (/ , .

^i i i-i. r tt-DF = ?/i + ^- ~ - --^ iUa — Vi)^ on the left of K;

T^ „ . sin /j — sin d . , t-u \ >. t i^JjF = }u -\- -.—4
'.— (Wn — ?/.,), on the right of K,

"^'
' sm/j — sma ^"^° ^'' ®

For the value of the second member of the above equation of condition

between a and — we have then, since D E ^ r (cos — cos, 3),

»"
/ f'/i (cos 6 — cos 3) -\- .^, -^— (sin 8 cos -\- sin y cos y — sin 3 cos 3
J _/3

'
' sm 3 -f- sm a ^ '^ ' f- f-

— cos 3- sin f?)]* rZ (^ = ?-
[y, (sin a — a cos 3 + sin 3 — 3 cos 3)

A—-—^
X
— (sin a sin 3 — o cos^ a — a sin J cos 3 + cos a cos 3

' sin ;8 -|- sin fi
^ - '

-f- sin^ 3 — ^ cos^ 3 — 3 sin ,3 cos ,i)].

Likewise, for the value of the second member between a and -f- /3

* Compare § 84.
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J a

. Ccos H— COS tS) 4- ° '-^— (sill li cos t) — sill h cos — sin J cos ,J
^ ''

' sin i3 — sin a
^

-\- cos ,j sin ti)]* (I H = r- [//., (sin /3 — /3 cos /3 — sin a -\- a cos ,3)

-I

—

^-^ 'M— (siu"^ /3— ^ cos'^ (3— 3 sin /3 cos 3— sin « sin 3— h cos- a~
sin /3 — sin a^ ' - ' ^ ' "

4" a sin /3 cos /3 + cos a cos /3)].

Equating the sum of these two quantities which make up the second

member, with the first member, we obtain the first equation of condition,

which, when cleared of fractions, becomes

^0 (2 siii^ /?— sin 3 cos- /3— 2/3 sin- /3 cos /3— cos'^ a sin /3 -|- 2 cos a sin ,3 cos 3

— 2 sin''^ a sin /3 -]- 2 rt sin a sin /3 cos /3) -}-
.'/i (i sin 3 cos^ /3 — sin^ a

-f- a sin* a cos 3 -\- (i sin"^ a cos ii -\- ^ cos'- a sin /3 — cos a sin /3 cos 3

— i sin a cos^ a — a sin a sin /3 cos 3 -f- sin a cos a COS /3 -1- sin a sin- ,3

— ^ sin a cos- /3 — /3 sin a sin /3 cos /3) -|- //... (|^ sin 3 cos'^ ^3 -[- siii^ a

— a sin^ a cos /3 -)- /3 sin"-^ a cos /3 + |- cos^ a sin 3 — cos a sin ,3 cos j3

-[- i sin a cos^ a — a sin a sin /3 COS 3 — sin a cos a cos /3 — sin a sin^ j3

-|- ^ sin a cos- ;3 -|- 1^ sin a sin 3 cos /3) = r (sin- /9 — sin- a) (/3 -)- 2 .3 cos- ,3

— :i sin (3 cos /3).

95. Second Equation of Condition. — The next condition to be satis-

fied is 2 D J^ = S I) F, or. introdiiciiiu' the values of these quantities from

the preceding section,

?•- r (cos H — cos 3) do =ir /* "
fv, 4- . '^~'^l— (sin /3 + sin 6*)] d 9

J -3 J -if sin ,3 4- sin a^ ^

+ '• f '\!h+ •
'^~-^: (sin 13 — sin t*)] d d.

' J a Sin /3— sill «
^ '-'

Performing the indicated integration, and clearing of fractions, we obtain

?/o (2 /3 sin^ j3— 2 cos a sin /3 -f-
'- sin /3 cos /3 — 2 a sin a sin (3) -\- yi (— ^ sin^ a

— a sin" a -\- cos a sin /3 — sin /3 cos /3 -|- « sin a sin (3 -{- 3 sin a sin /3

— sin a cos a -\- sin « cos /3) -}- //s (— /3 sin- a -|- « sin- a -\- cos « sin /3

— sin (3 cos /3 -f- a sin a sin /3 — /3 sin « sin /3 -\- sin a cos a — sin o cos /3)

= 2 r (sin- /3 — sin'- a) (sin /3 — /3 cos 3)-

* Compare § 84.
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90. Third Equation of Condition. — TIic tliird eoiiditiuii, in the iiuxlifietl

from of S •'>!». is i; 1) K . 1) B z= i 1) F . 1) B. Since 1) H = r (sin li — sin t>),

this condition lu'coiius, l>y iiinlli])lyiii«- the previous condition by DB.

(sin ,>' cos (/ — sill cos H — sin ji cos li -\- cos iJ sin ti) <l

»

= r" I
'

['/i (sin ,i — sill ti) 4- .

''^
. -'l— (sin- /i — sin= e) d 9

+ r'i [//, (sin^— sin y) + -^|^|?_- (sin= /?— 2 sin /3 sin ^ -f sin- e)] rffl
*

which, when integrated and cleared of fractions, gives

2/o (2 ,i sin3 /j — a sin /i — sin a cos n sin ,3 + 2 sin" /3 cos ^ — 2 a sin a sin^ /?

-|- /:( sin a -\- sill ft sin /i cos \i — 2 cos a sin" /3) -}-
?/i (— | sin" /3 cos /?

-f- cos a sin- ,3— /3 sin" a sin /3— a sin" a sin /3 -}- sin" a cos /3— ^ sin" a cos a

-\- \a sin /i— 4 sin a cos a sin /:( -|- 4^ /j sin /i -}- 3 sin a sin" /3 -|- a sin a sin" ^

— ^ a sin a — ^ a sin a -(- ^ sin « sin /3 cos (3) -f" .Vs (— j sin" /J cos /3

-j- cos a sin'- (3— 3 sin" a sin \i-\-a sin" a sin ,3— sin" a cos /3 -|- i sin" a cos a

-f- A a sin ,3 -f- f sin a cos a sin /?— h ;3 sin /3— /3 sin a sin" /3 -}- a sin a sin" ,(3

-}- 7 a sin a— i /3 sin a — | sin a sin /3 cos /3) ^ 2 r sin /3 (sin" /3— sin" a)

(sin /3 — /3 cos ,3).

97. Reduction of Equations.— If the second equation of condition is

multiplied by cos /3, and added to the first, there results an equation in which,

as soon as we write 1 — sin" a for cos" a, and 1 — sin" 3 for cos-/3. there will

be found a common factor (sin- /3 — siir a). This being cancelled out. there

results (1.), § 92. The second equation again may he divided by 2. and then

factored, by simple inspection, into (2.). jj !»i'. Finally, the second ecpiation

of condition iii;iy l>e multiplied by sin o', and subtracted from tin- third, wlieii.

ui>()n factoring, we obtain (3.), ^92.

It will bf seen that the solution of (4.). (a.), juid ((;.). jj !i-j. lor any given

arch, and for several values of a. will not involve much work, owing to the

recurrence of the known factors denoted by (U h. c. il, and < . As the arch

may subtend any angle, it will not be ex])edient to go into calculations liere

for any si)Hcial values of 3. One case will be taken up later.

9.S. Values of H, &c.— When tlu- desired ordiiiates for any

arch are computed, we have the option of obtaining- tlie values

* /"sin' tf d tf = ^ (0 — sin tf cos 0). See also note to § 84.
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of H, of the vertical components of the abutment reactions, and

of the orchnates for bending moment, either by graphical con-

struction, 01- by formuhie similar to those applied to the i)arabolic

rib. By noticing the expressions to be substituted for />, c, and

k in the case of the circular arch with hinged ends, one can

readily adapt the formuhe of § 63 and § 65 to the computations

for this case. The ordinates to the circular arch will be the

same as in § 85.

99. Table of ?/o, ^i, and ij., for Semicircle.— We may, how-

ever, obtain the ordinates ^y, &c., for a. semicircle with com-

parative ease, and, as such a rib is sometimes used for large

roofs, these values may be convenient. Semicircular masonry

arches, liaving backing above the abutments, present a diiferent

case.

If a is taken as 20° or .3491, sin a = .3420, cos a = .9397, and

i;r = 1.5708; hence, in § 93, .^ = .5117, and (5.) and (6.) be-

come

-^'^''-^ —.3640

, — .2977 X.1333 ,.«« .

whence yi = .326 r, and y., =. .108 r. By substitution in (1.),

§ 93, y, = (1.5708 - .2187- .0357) r = 1.316 r.

If similar computations are carried out for other values

of u, we shall complete the following table for a semicircular

rib with lixed ends :

a
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formula for iiitcri^nlatioii, § 4/>. The minil)er of deeiinals it is

tl('siraI)U' to use iu any particular case will depend upon the

value of r. The e(|uilil)riuni polygons for these ordinates have

been drawn in Fig. 25, and from them we get the different

values of H, for a weight W at the several divisions, as shown

in the accompanying stress diagram.

100. Example. — As an application of these results, let us

draw the ecjuilihrium curve for a semicircular arch of uniform

section carrying only its own weight. As this weight is sym-

metrically disposed, y{=zy.^. By drawing the stress diagram

of Fig. 25 to a sufficiently large scale, we shall find b}'

measurement, that PI, for a weight at the crown, 10°, 20°, &c.,

from the crown, will be .46, .44, .39, .31, .23, .14, .07, .02, and

.01 W respectively. If we double all of these values except

the one for a weight at the crown, and take the sum of the

whole, we shall obtain for the horizontal thrust, II'irzo.GSW

for IT loads, each equal to W, at the 17 points of division in

the whole arch.

To find v/i', multiply each y/i by its H, remembering, that,

when the weights are on the left of the crown, the values of //.,

in the table of § 99 become v/j. and that we may, therefore,

before multiplying by H, add tt)gether v/i and y-i for each point

except the crown, and then divide the sum of these products

by H', just obtained. (Compare § 67.) For example, for a

load W on each of tiie two points distant 30° from the crown,

H ^1 + II
i/>

-= .31 W (.360 + .011) r = .115 r W, the value of

INI at the abutments. Performing the operations, and taking the

algebraic sum of the products, Ave get .6225 rW for the total

.6225 rW
moment at either abutment, and .^ . ^i- == ^^•^~ '' '=-

V\ ^ Vi-

To construct the e(iuilil)rium curve, we divide the semicircle

A C I), Fig. 26, into eighteen ecpial parts, each subtending 10°,

and draw verticals through the points of division. Assume the

weight of the arch to be represented by a vertical line of any

convenient length. Since the loads are supposed to be con-

centrated at the points of division, one-eighteenth of the gross



96 ARCHES.

weight of the arch will be found at each of these points, and one-

thirty-sixth at A and B ; for A and B will each carry directly one-

half of the adjacent division. Therefore, beginning and closing

with one-thirty-sixth, space off the load-line into eighteenths

;

from the middle of the load-line lay off H' = 3.68 W = 3-0,

where W = weight of one division, or H' = -^ = .204 of the

wliole weight (jf the ril). One-half of this load-line is 1-3. Lay

off i/i and
I/.,'
= .17 r, at A and B, and draw the sides of the

equilibrium polygon parallel to the lines which radiate from the

extremity of H' to the points of division of the load-line, thus

obtaining the curve E G D. The second half of the curve was

obtained by spacing off 0'- 3 to the left.

101. Practical Application. — Having at liand a Avooden

model of an arch-ring, representing the voussoirs, or stones, of

a semicircular arch, we tried some experiments as tests of the

accuracy of this method of analysis and of the correctness of

these results. The arch is represented by Fig. 26, and consisted

of forty-two independent voussoirs. The span, AB, of the

middle line of the ring, 18 inches, was 13.09 times the thickness

of the ring, and the structure would apparently just stand

alone when left to itself: a slight additional weight at the

crown would cause that part to sink, the haunches to move

outwards, and the ring t(j fall in pieces. Considering that this

arch, so long as it rested squarely on the faces at A and B, was

lixed in direction, or not free to turn at the ends, we laid off

at A E and B D the value of ^/i
obtained in the last section,

and drew the equilibrium polygon, as just described, on the

centre line of the ring, beginning at D with a line parallel to

0-4. It will 1)6 noted that no line is used from to 1 ; for the

weight represented by 1-4 is directly supported at B ; while

the amount 4-") is the weight concentrated on the first vertical

just above D.

As the arch is a continuous ring, the weights may properly be

concentrated at a greater number of points ; so that finally the

true equilibrium curve will pass through the vertices of the poly-
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gon we have just constructed : ilic difference between the

two is unimportant, liowever, and is only appreciable near

the crown. The bending- moment at any point has been proved

to be equal to II niulti]ili(^d l)y the vertical ordinate between the

centre line and the e(|uilibiiuni curve, or, by J^ 10, also equal to

T, the thrust aloni;- the tangent t(j the equilibrium curve, multi-

))lied by the per[)endicular from a point on the centre line to

this tangent: therefore if we draw EF as this tangent, the

bending moment at A will ecjual either H. E A, or the thrust

along E F multiplied by the perpendicular from A. The direc-

tion of the thrust E F, if prolonged, cuts the springing joint

very close to the outside edge : it will also be noticed that the

equilibrium curve approaches quite near to the edge of the

voussoirs at the crown G. Now, as we reminded the reader in

§ 11 that the force T, or O'-l, at the distance F A from the cen-

tre line of the rib, is equal to the same force at the centre line

and the couple which produces bending moment, conversely,

the resultant of the pressure of this rib at the end A must cut

the base in the prolongation of the line E F : in short, the tan-

gent to the equilibrium curve at each point gives the direction

and point of application of the resultant thrust at that right

section of the rib to which it belongs, as ascertained by erecting

a vertical from the middle point of the section.

102. Limiting Position of Equilibrium Curve. — If, as is

usually the case, the intensity of the resisting force of the abut-

ment at A is assumed to vary uniformly from one edge to the

other, then, in case the resistance is zero at the inside edge and

a maximum at the outside edge, the intensity at all points can

be represented, as shown in the small sketch marked A', by the

ordinates of a triangle whose base is the breadth of a voussoir,

and whose longest ordinate is the intensity of the pressure at

the edge near F. The total pressure will be e([ual to the area

of the triangle, and the resultant will pass through the centre

of gravity of the triangle, cutting the base at one-third of its

length from the outer edge. If there existed any tension near

the inner edge, we should have two triangles, as shown in the
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other sketch, the inclined line cntting the base at the point

where tlie stress changed from tension to compression ; and the

resultant of the two stresses must, since they are of opposite

kinds, lie outside of their separate resultants, and on the side

of tlie greater one. This fact as to the position (jf the re-

sultant of two opposite parallel forces was indicated in § 11,

Fig. 2, and is one of the well-known properties of the lever,

as proved in Mechanics.

Since, then, the resultant force, or the thrust on a section of

tlie ril) of Fig. 26, at A, B, and (", passes near the edge of the

section, or, as it is often stated, outside of the middle third of

the cross-section, we should expect to find tension at the

inside edge of the joint at these points. As this model consists

simply of Avooden blocks placed in juxtaposition, a voussoir

cannot exert tension on its neighbor at any point of contact,

and movement must immediately take place when the weight

of the rib is allowed to act freely, rotation being set up about

the outside edges at F, G, and Q. The crown will sink, the

haunches will move outwards, and the arch may be expected

to fall. -The reader will remember that it was explained,

in § 12, that an arch tends to move away from the e(|ui]il)rium

curve.

Since any material is compressible, it is probable that the

assumption of a uniform variation of intensity of stress at any

section will not be strictly true ; that the stress may not be

exerted over the entire surface of the originally plane joint

;

and that therefore the equilibrium curve may pass somewhat

outside of the middle third of the joint without causing tlie

arch to fall, although the joint will then open slightly at the

edge where no pressure is exerted, by reason of the compression

causing the joint to be no longer plane. But such an assuni})-

tion gives an additional element of safety to a design, when the

engineer so proportions his rib of rectangular section that

the equilibrium curve of the load at any time shall never

leave the limits f)f the middle tliird, and the tensile strength

of the cement will not then be relied upon to assure stability.
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108. Model as hinged at Three Points. — The aixh of

Fig. 2t) stood when the .string Avhieli at tiist passed around tiie

exterior was removed, although a slight ehange of shape wa.s

observable. A close inspection, however, showed that the vous-

soirs at the crown and the two s])ringings were then in contact

only at the outer edges. The rotation at these joints, indicated

in tlie last section as jjrobable, had c(tmmenced : ])ut. as soon as

the rib became thus hinged at three points, it was in e(|uili-

brium. It is desirable, then, as a further test, to draw the

equilibrium curve for this rib hinged at the crown and spring-

ings. As the change of shape and curvature was very little,

the supposition that the weight of the voussoirs is concentrated

along the arc K Q will be sufficiently near the trutli for our

purpose.

The half-weight being represented by 1-3, the first step is to

find the value of H for this case, when the load is concentrated

at intervals of ten degrees along the outer semicircle. We can

avail ourselves of the formula of ^ 23, finding tlie different

values of h by measurement, or from tables of sines, since

/; — rsin/?, and summing up the several amounts of H for the

whole semicircle ; or, as is done in this figure, Ave ma}" use the

principle explained in § 30, that any two sides of tlie funicular

polygon, or two tangents to the equilibrium curve, will meet,

when prolonged, on the vertical through the centre of gravit\'

of the included weight. Since the arch is symmetrically loaded.

the thrtist at the crown will be horizontal, and therefore lie in

the line K L ; the centre of gravity of the (juadrant arc K Q
will be on the vertical line P L, drawn at such a distance. K L,

from the crown as to satisfy the value for the ordinate from the

centre of a circle to the centre of gravity of a circular arc, viz.,

radius X chord i .i p i i i • .

-, 7i—

P

; and therefore the thrust at tlie .s])rnioinp- will
length of arc ^ .^ f-

lie in the line Q L, drawn from Q to the inter.-^ection of the

other two forces. As 1-3 represents the weight of one-half the

arch, and the thrust at the crown is parallel to 3-0, a line from

1, parallel to Q L, will complete the triangle of forces, and,
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cutting the horizontal line at 9, will determine 3-0 to be the

desired value of H. The equilibrium polygon can now be

drawn from Q to K, its sides being successively parallel to

lines }:idiating from 9, the first line being 9-4 and the last one

9-(]. Tliese lines are Jiot drawn in the stress diagram. The

other half of the polygon may be added, if desired.

It will now be seen, that, excepting the hinged points, the

nearest approach of the equilibrium curve to the edge of a

voussoir is at P, where it is still well within the rib, and conse-

quentl}' no further movement of the rib is to be expected.

Another model, somewhat thinner than the one here illustrated,

was experimented with, and would not stand. If the arch of

Fig. 26 is slightly weighted at K, the joint at P begins to open

on the outside, confirming the result, that the equilibrium curve

here passes nearest to the inner edge. If it be objected that

the change of outline previously referred to carries the portion

of the rib near P farther from the centre, so that the equilibrium

curve may run nearer the edge than we have plotted it, we

rejoin, that such a movement, carrying the centre of gravity,

and hence the line P L, in the same direction, will cause Q L
to make a slightly less angle witli the vertical, diminishing the

value of H, and moving the equilibrium curve also a little away

from P.

104. Model as hinged at Abutments. — For the purpose

of making an additional test of our results, we finally placed a

small wire at A and B, thus hinging the rib on its centre line at

these points. The equilil^rium curve for one-half of the arch is

A N K. The amount of H is determined by computation from

the formula of § 85, which becomes, for a semicircular rib,

H = —-— W ; and the summation for the whole arch, carrying
71

W at intervals of ten degrees along the centre line, is

H = 2.86 W, laid off at 3-8. Radiating lines between 8-4 and

8-6 will enable one to draw A N K. The arch, when released,

fell in ruins, and the first joint to open, on the outside at the

haunch, was near N, lower than P in the former case.
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We have dwelt on these curves at some length, as they give

so good a confirmation of previous deductions and results, and

as they will aid the reader in assuring himself that he under-

stands the method of treatment. Such diagrams must, for

accuracy, be drawn to quite a large scale, and the results will

then be very satisfactory.

105. Effect of Change of Temperature. — It remains to

find the effect of change of temperature on the circvdar rib with

fixed ends. As was previously indicated in § 76, we must find

the height A G = B I r= ^i, at which the equilibrium line shall

be drawn in Fig. 27, by the condition that the change of in-

clination at the abutments, or ^ E F :=: 0. If the notation of

the angles subtended by portions of the arch is as before, and

as marked in the figure, we have E F m I) E — ^i, and

r+i3
2 E F = I r(rcosO r cos /j —//,)(/ = 2/-(/".sin/i —rfieosfJ — yi /?) = 0,

J —(i

/sin/:; A
?/i ^ ?

(
— COS 3

j,

which Vjecomes, for a semicircle,

v/, = "^/ = 0.082 r.

The first term of (1.). vj 7(i, therefore becomes 2 D E- — yj .3DE.
From § 84, ^ D E- = r^ (|-; + 2 p' cos^ p' — 3 sin p' cos p'), while

i/i . ^D E gives, as above, ?•*
[
—^ — cos

p' J (2 sin j^
— 2(i cos (i) ;

/ . 2 sin-

A

so that the first term reduces to r' I p' -f- sin ^ cos ^
—-

], and

(1.), § 76, takes the form of

H, . r' (3 + sin /J cos (i— ^"^^^ = ± 2 E I ^ e r sii

2

., / /3 , 3 o sin ,3\

'

-"
(
-.—

3 + cos /3 — 2 —-^
)\sin/i ' ' )j /

H,= ±

sin /?.

2EIle
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For a semicircle, the formula for horizontal thrust simplifies

into
2E I/c Bit p

The bending moments at the crown and springing can now be

written, and compared with
J5"

90. II is about live times as

great, ]\[ at springing about 'S.'I times and M at crown about

1.9 times as groat as when the eiids are hinged. The remarks

of § 91 in regard to shear will apply equall}- well here.

For the Elliptic Rib, see § 153.

106. Maximum Stress determined by Length of Ordi-

nate; Rib of Rectangular Section. — It may sometimes be

convenient to have the means of determining from a simple

inspection of a diagram, by noting the position of the equili-

brium polygon, how much the maximum intensity of stress at

any section exceeds the mean intensity. As the mean intensity

/:=T-^S where T is the direct thrust and S is the area of

cross-section, and is obtained at any point from the known
value-. of; the thrust in the side of the equilibrium polygon, the

nuixiiniim intensity of stress will be readily found by multi-

•pljing" by the proper ratio. The stress arising from bending

moment in a solid section is always taken as uniformly varying

(see Fig. 2). The combination of direct stress with that from

bending moment will also give a uniformly varjdng stress.

Considering, first, the rib of rectangular cross-section. Fig. 28,

we see, that if we call the intensity, A C, of direct stress unity,

a bending moment which will produce a compression, D E, of

unity at the upper extreme fibre, and a tension, C A, of unity

at the lower extreme fibre, will bring the resultant stress at all

points to the amounts indicated in the left-hand sketch, twice

the mean intensity at one edge, and zero at the other. If the

cross-section is treated by the method of Part I., " Roofs," p.

57, Fig. 24, in order to make an e({uivalent area of uniform

stress equal to the maximum, we get the shaded area of the

section oix the l^eft, whicl>. is evidently one-half of the wdiole
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section. Tlio centre of gravity ol" tliis area, lying at one-tliird

the height from the npper edge, will be the point of application

of the resnltant force on the cross-section. If the bending

moment is reversed, the sketch will be inverted : hence, when

the line of thrnst, or the side of the equilibrium polygon, passes

at one-sixth of the depth above or below the axh of the rib, the

intensity of stress at that edge of the rib which is nearer the

line of thrust will be twice the mean intensity.

If, again, the maximum intensity is to be thrice the mean,

the line F G, starting at a distance B F = 3 B I), still cuts C D
at its middle point in order to make the total tension from

bending moment equal to the total conq^ression from the same

cause. Noting where F G cuts A I>, we have the point of no

stress at | h from the upper edge of the section : hence the

shaded areas are drawn as given in the section on tiie right,

the upper one for compression, the lower one for tension. The

area of the upper one is | ?> . | A = \hh : the lower one, being-

similar, but of one-third the altitude, has one-ninth the area of

the other, or Jj h h. The difference is 4 h h, or one-third the area

of the cross-section, as required if the maximum intensity is to

be three times the mean. Letting these areas represent the

forces, and taking moments about the upper edge, each force

being applied at the centre of gravity of its triangle, we have

for the position of the resultant, measured from the upper

edge,

If, therefore, the line of thrust passes at ^ h from the edge, or

one-third the depth from the axis, the intensity of compression

on the outside fibre nearer the line will be three times the mean

compression, and at the other edge there will be a tension equal

in magnitude to the mean stress.

In the same way it may be shown, that, when the line of

thrust cuts the edge, the compression there will be B I, four

times the mean, and the tension at the other edge will be A K,

twice the magnitude of the mean stress. Thus it will be seen,
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that, for every one-sixth h that the line of thrust is distant from

the axis, the compression on the square inch will be increased

by unity on the side to which the line deviates, and dimin-

ished l)y unity on the other side, the mean compression being

denoted l)y unity. This is indicated by the numerals marked

on the sketches of Fic^'. "20.

107. Rib of Two Flanges.— If the rib is composed of two

flanges and an open-work web, the stress in either flange is

easily determined. If tlie line of thrust is in the axis, each

flange will carry one-half of the direct stress. If the line of

thrust })asses throiigli one flange, Fig. 30, that flange may be

consid(M't'(l to carry all of the compression imiformly dis-

tributed, and the other flange to be under no stress ; for the

dei)tli of the flange is so small, compared with the whole depth

of tlie rib, that no error of importance is involved in consider-

ing the stress as uniformly -distributed over the section of one

flange. If the line of thrust passes without the rib a distance

equal to its depth, we get, by taking moments at A, F^ig. 30,

Thrust at C X 2 A B =3 Compression at B X A B
;

or, Compression at B = 2 X direct stress.

If moments are taken at B, we find,

Tension at A = direct stress.

In the same way, if W C z=2 A' B',

Compression at B' ^ 3 X direct stress ; Tension at A' = 2 X direct stress.

Hence we may draw a sketch for this rib similar to the one for

the rectangular rib. The numerals here denote that one flange

carries once, twice, &c., the entire direct stress. If the rib has

a plate web, or is an I beam, the above method will give a good

approximation to the true stresses. If the web is heavy, the

method of the next section may be applied.

108. Rib of Circular Section; General Construction.—
When the rib is of less simple section, we must return to the
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graphical construction first referred to. As an instance, sup-

pose the cross-section of the rib to be a circle. The variation of

stress on a diameter, in the direction of deviation, is indicated

by the left-hand sketch of Fig. 31, when the intensity of stress

is twice the mean at one edge, and zero at the other. By con-

structing, according to the principles already laid down. Part I.,

" Roofs," the equivalent area of maximum intensity, we obtain

the shaded area of the figure, and then we determine its centre

of gravity by cutting out the area, and balancing it over a knife-

edge. The deviation of the line of thrust from the centre of

the circle, to make the maximum intensit}' twice the mean,

and the minimum zero, is thus found, and proves to be one-

fourth the radius.

By the construction of the other sketch, taking moments as

in § 106, or reasoning by analogy, we find that the deviation, in

order that the maximum shall be thrice the mean intensity of

compression, and the tension at the other end of the diameter

shall equal the mean stress, must be one-half the radius from

the centre : hence, when the line of thrust cuts the edge, the

maximum compression equals five times the mean, and the

tension at the other extreme of the diameter is three times

the mean compression. Thus we get the numerals and their

positions, as given in the figure.

In a thin tube of circular, elliptical, or oval section, the

maximum compression is nearly three times the mean intensity

of direct stress where the equilibrium polygon cuts the surface

of the tube ; and a tensile stress ecpial in magnitude to the mean

will then be found at the other end of the extremity of the

diameter : hemt' [)roportionate distances of the side of the

equilibrium polygon from the axis of the rib will give twice,

four times, &c., the mean stress.



CHAPTER VIII.

ARCHED KIBS UNDER WIND PRESSURE : HORIZONTAL FORCES.

109. Wind Pressure on an Inclined Surface.— When
arched ribs ure used, as is ol'ten the case, for the support of a

roof, the pressure of the wind, being normal to the surface, will

have a different effect upon the arch from that caused by a simple

weight or vertical force. While referring to Part I., " Roofs,"

p. 31, for some remarks about the action of wind on a roof, we
will repeat here, that, if P equals the horizontal force of the

wind on a square foot of a vertical jDlane, the perpendicular

pressure on a square foot of a surface inclined at an angle i to

the horizon may be expressed by the empirical formula,—
P. 1.84 cos i — \

Sin I

If, then, the maximum force of the wind be taken as forty

pounds per square foot, which is an amount sufficiently great

for the purposes of a design, the perpendicular or normal press-

ure per square foot, on surfaces inclined at different angles to

the horizon, will be :
—

.ngle of
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For steeper pitches, the pressure may be taken as trnty

pounds.

The resultant pressure at each of tlie joints in the rafter

which is on the side of the \vind is then ascertained as in the

case of any roof. If the roof surface is curved, any short por-

tion between two points where braces abut, or purlins rest, may
be considered as straight, and the wind force will then be per-

pendicular to such portion ; this pressure being the only force

exerted by the wind. If the resultant pressure at each joint

is then found, either graphically or otherwise, and is resolved

into vertical and horizontal components, we may include the

vertical component in the analysis already carried^out in detail.

The effect of the horizontal component remains to be con-

sidered.

110. Fonn of the Equilibrium Polygon; Vertical Com-
ponent of Reaction.— The tendency of such a force to distort

the arch being resisted by the stiffness of the rib, the equili-

brium polygon for a single horizontal force H, applied at any

point I on the rib, Fig. 32, must, if the arch is hinged at the

ends, be two straight lines, which start from the two springing

points, and meet on the prolongation of the line of action of

H ; for the rib must be in equilibrium under H and the two

forces at the abutments. In the case of the arch A C B of Fig.

32, the reactions at A and B must lie in the lines A G and B G,

the point G being found on the horizontal line I G, but its loca-

tion on that line being at present unknown. It will be evident,

when we conceive H to be applied to the equilibrium polygon

at G, that the side A G will be in tension^ wliile G B is com-

pressed : therefore the reaction at B will be a thrust, as usual,

but that at A will be a tension ; and, if H were the only applied

force, the arch would tend to rise from the abutment A, and

would require fastening down.

As H acts at a vertical distance I L above the springing line,

the moment which tends to overturn the frame is H . I L. If

we take either abutment as the axis of moments, the condition

of equilibrium that the moments of exterior forces must balance
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gives H . I L= P . A B ; and consequently the vertical component

of the reaction at either abutment is,—

being tension at the side nearer to I, and compression on the

other side. H will be partially resisted at each abutment. The

stress diagram will be a figure like 1 2 3, in which 3-4 and 4-1

are— P and Hj for A, while 2-4 and 4-3 are H., and+ P for B,

1-2 being equal to H.

111. Rib hinged at Three Points.— As was the case with

arches under vertical forces only, so also with ribs under a wind

pressure : the hinging of the rib at three points makes the analy-

sis at once very simple. If the arch of Fig. 32 is pivoted or

jointed at A, C, and B, C being usually taken at the crown of

the rib, and the external horizontal force H is applied at I, the

line of thrust for the right-hand portion of the arch must be

B C. This will be plainly seen, if we consider that the part

B E C of the rib is supported by a reaction at B and the thrust

of the other half of the arch at C, while there is no other force

exerted upon it: for equilibrium, therefore, these two forces

must lie in one straight line, which can be no other than B C,

drawn through the two points of application. Then, as proved

before, the reaction at A must lie in A G, drawn to the inter-

section of H with B C. It may be noted that 1-4, or H,, is

always greater that one-half of II.

112. Value of Bending Moments.— If we make a section

at any point E on the right of C, the only force acting on the

right of the section is the inclined reaction at the abutment B.

The bending moment at E is, therefore, equal to (3-2) E N, or

to either of the equal products H., . E F and P . E K. The bending

moment at any point between C and I, for the same reason, will

still be expressed by Hj . E F or P . E K, but will be of the oppo-

site kind, jsince we passed a point of no bending moment at C,

and E F or E K is drawn in a reverse direction. For sections

between I and A it will be easier to take the force on the left
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of the plane of section, which will be the tension of the left

abutment, as this is the only force on that side : the bending

moment will therefore be H, . E F or P . E K. It will be per-

ceived, on a little reflection, that these moments will agree in

kind with those between C and I ; the reversal of the ordinate

E F from the outside to the inside of the ril) offsetting the

change from li,, compression, to Hj, tension. The application of

H at I to a moderately flexible wire of the sluq)i' AC i> would

flatten the left portion, and make the right portion more convex.

We may very simply consider the bending moment at any

point of the rib to be represented by the product P . E K, where

E K is the horizontal distance or abscissa from E to the equili-

brium polygon. We thus have an evident analogy between the

equilibrium polygons for horizontal and for vertical forces, if

the ordinate for bending moment is taken parallel to the applied

force, and is then multiplied by a constant, P in this case, H in

the other. The point of contraflexure is where the polygon

meets the rib, and one point of, maximum flexure is at I, the

point of application of the external t'oix-e.

The insertion of })ivots at three points of the rib enables one

to draw the equilibrium polygon at once for one or all of the'

forces to which the roof may be at one time subjected, and we
will therefore proceed, without further delay, to consider the

case of the })arabolic ril) hinged at the abutments only.

113. Parabolic Rib hinged at Abutments; Formula for

Xq — If Fig. 33 represents a parabolic rib hinged at A and B,

with a horizontal force H applied at I, the point of intersection

of A G and B N must be determined. Since it will lie upon

the horizontal line drawn through I, the distance of G horizon-

tally from the middle of the span will be denoted by x^^ positive

when measured from the middle away from I. The well-known

condition that change of s[)an shall be zero may be put either

2 H, . E F . D E (from B to I) + 2 II, . E F . 1) E (from A to I) = 0,

or

P . S E K . D E == 0, (1.)
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If h denotes the horizontal distance of I from the middle of the

span, and c the half-span,

^0 = ^4 (5 c'^ - *=) = i ri' (5 - n') c, (2.)

TO = 0.3 0.4 0.6 0.8

3-0= 0.01 0.077 0.25 0.56 c,

when h = nc. We shall see that x^^ is always laid off on the

opposite side of the centre from 5, and hence that Hj , the

horizontal tension^ is always greater than one-half of II. The
value of a?o is independent of h.

114. Proof of Formula. — Retaining the usual notation, we have

kAL = c — h; LB = c-f-^; and GQ^IL = -2(c- — 6"). If x denotes

the horizontal distance, B D, to the abutment, from any ordinate, D E, on the

right of I we h^ve

DE = '^l(2cx— x^),and DF:DB=:GQ: QB, or DF = -I (c^—n -^
As E K : E F = Q B : G Q, and EF = DE — DF, we have

E K = (D E — D F) ^^, and E K . D E = (D E- — D E . D F) ^.G Q, G Q

Substituting the values of these quantities, we get

2EK.DE= r^3 ["(Ocx — X-)- — (2cx— x=)x^^^-^l ^.^^ d x

as the expression whicli is applicable from B to I. From A to I the abscissa

E K will be limited by the line A G, which differs in inclination from B C.

If X, however, is now reckoned from A to the right, and A Q, denoted by
' + -'o'

is used in place of Q B, we have an expression for the space

from A to 1. This expedient was used in previous sections. As A G is in

tension while B C is compressed, these two portions of (1.), § 113, will have

opposite signs, and. when integrated, must be equal : we may, therefore, in

ecjuating, strike out the common constant quantities, obtaining

('^^— ^o) Z"^^" (4 c= x'— 4 c x3 -f x*) dx — {c^ — }r)C^^{^cx' — x^) d x

— (c 4- X.) f~^{\c-j? — \ c x3 4- x4) dx — {c- — h-) f"'^ (.- C3r— x^)dx.
J II J
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Perforraiug the indieatod inti't^ration, we get

(c-xo) li c' (c+f>y-c ic+h)*+i (c+hy]-(c'-b') [f c (c+by-\(c+by]

= ic+xo)llc"-(c-f>y-c(c-by+U<^-bri-(ic"—b"-)iicic-by-\ic-hyi

which at once reduces to

or

b^
^0 = 47:4 (5 <^" — b-).

115. Another Proof.— We may, if we please, find the desired

distance Xq by another method. Imagine the roof of Fig. 34 to

have two equal but opposite forces. H, applied at the two points

C and a in the same horizontal line. These forces, if acting

alone, will tend to diminish the span of the roof: there will be

no vertical forces ; and as the bending moments caused by

them, in case the rib did not rest upon abutments, would b(^

directly proportional to E F, the change of span would be

proportional to 2EF.DE from C to G. When the rib is

retained by abutments, one H will give rise to H, at A, and H.

at B: the other H will cause H. at A. and II, at B. As H, is

always o})posite in sign to Ho, the resultant force at each abut-

ment will be Hi — H._„ and is manifestly a tension exerted by

the abutment on the rib. The change of span due to Hj — H.,

will be proportional to ^"0 E- from A to B (compare ^ 74). and

this change of span must offset the one from H.

If D is at a distance x from the middle of the span, and C is

k
distant b from the same point, we have D E = ^ (c-^ — .r), and

k
E F z= ;,

(h' — a--). Since the rib is acted upon svmmetricallv,
c-

we need only integrate from the middle to one side; and we

k
therefore have, wlien we drop the common factor -g,

(H, — H,)f (C2 — X2)2 ,lx = II f (//^ — X') (C^ — X2) d X,
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or

(H.-H0^cS = H(fi3c2_.2^c5). (a.)

From the stress diagram of Fig. 33 we see that

Hi : IIo : n = c -f- Xq : c — x^ : 2c;

whence

Hi — Ho =z II
^ + ^0 ^ + -^o ^ H -0.

2 c c

Substituting this value in (a.) we get, as before, § 114,

^0 = 4-4 (•'' c'' — ^'')-

IIG. Formulae for Hi and P.— The value of Hi is seen to

be, frum the above proportion.

We also have, from Fig. 33,

P:H = GQ: AB=-2(c2 — i2) :2c;

or

The reader may now calculate, if desirable, numerical values

of Zy, Hi, and P, for different values of 5, as was previously done

for vertical forces. The several values of .i\, for four different

positions of H are plotted in Fig. 33.

117. Shear and Direct Stress.— The shear will undergo

some modification when the force applied to the arch acts

horizontally, instead of vertically. The stress diagram is, as we
have seen, a triangle, whose base is H, and whose altitude is P,

represented by 1 2 of Fig. 36. At A of the parabolic rib the

thrust is 1-0 : if 1-4 is drawn parallel to the tangent at A, and
0-8 perpendicular to it, 1-8 will be the direct thrust, and 8-0

the negative shear, on a right section at A. This shear will
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diminish at successive sections until we reach a point where the

tangent to the rib is parallel to A G, when the shear will be

zero, and the direct thrust 1-0. lieyond this point the shear

will be positive until we pass I. At the abutment B, there is

a tension 2-0 : if 2-7 is drawn parallel to the tangent at B, 2-9

will be the direct tension, and 9-0 the shear, again negative, on

a right section at B. In the same way tlie shear just to the left

of I will be 10-0, positive, and to the right of I, 11-0, negative.

It will be remembered that positive shear acts upward on the

left of any section.

118. Shear Diagram. — A shear diagram may be drawn for

a rib under a horizcjutal force by a similar method to the one

previously explained, showing the vertical shear which will be

projected on each right section. Lay off at a the quantity

P = 3-0 = a/, which is the vertical component of the reaction

at A, and as P is constant across the entire span, being, in fact,

the only external vertical force, complete the rectangle afdh.

The vertical component which is required at A to produce 1-4

is 3-4, laid off at a e ; and at B is 3-7, laid off above the line at

h /, because 0-2 is a tension. A load of uniform intensity hori-

zontally being required to put a parabolic rib in equilibrium,

and Hi being constant as far as I, draw e eg through c, the middle

point of a b, and draw I n so as to pass through c, if prolonged.

Then will the vertical ordinates between the inclined lines

Awdfd represent the shear on a vertical section, and the projec-

tion of these ordinates on the respective normal sections will be

the shear in the web. Thus ef is 4-0, wliich gives by projection

8-0, ig is 0-5, and in is 0-6. As in previous diagrams, the

ordinates will be measured from the inclined lines, positive

above and negative below, as marked. The shear will change

sign at the point of maximum bending moment, and it will

plaiidy be equal to P at the crown of the arch.

If it is remembered that the abutment reaction at B is of the

opposite kind to that at A, or to the usual reaction for a

weight W, the rotation of the diagram on the right of «, from

the customary position below the line to its present place above
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a b, will be accounted for. The force H has been assumed on

the right in Fig. 36, in order that this shear diagram may be

compared with that of Fig. 8. The vertical shear from a nor-

mal force may be found from an addition of these two figures.

Moment diagrams cannot be added together in the same way,

as the values of H and Hj or H, will not be the same in the

two cases.

119. Circular Rib hinged at Ends.— The method of tind-

ing ;r„, introduced in § 115, is easily applied to the circular rib

hinged at the ends ; while the process of ^ 114 is considenil)ly

more involved. Let the angle subtended, in Fig. 35, by the

half arch of radius r be denoted by pi ; the angle from the crown

to the point of application of the external horizontal force, H,

be a ; and the variable angle from the crown to any point be d.

Let H be applied at two opposite points at the same level,

as shown by the arrows in the figure, and let the abutment

reactions be Hj — H.,. Then, by parallel reasoning to that of

§ 115, we have, if ?/ denotes any ordinate, and a the ordinate to

the point of application of H,

(11, — H.,)/'"*fds^nf (?/ — a) y d s.

y = r (cos 6 — cos /3) ; n z= r (cos a — cos /3) ;
.*.

/,3' (cos- ff — 2 cos y cos i3 -f- cos''^ i3) d d

=: II r^ f (cos- — cos y COS jS — cos cos a -\- cos a cos (3) d tf

.

Performing the integration, we get

(H, — H„) (^ ,3 — I sin /3 cos i3 + ,3 cos^ (3)

= 11 (^ a — ^ sin a COS a — sin a COS ,3 -\- a COS a COS 3).

• * • c -i-i r Hi H) H 1 Ho . , ,

As m § 115, j-Q = ' „—- c — —^Q—= r sni p : whence

a — sin a COS a— '2 COS /J (sin a — « cos a)

• '^

j3 — 3 sin )J cos (3 -\- 2 f3 cos^ i3
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If the rib is a semicircle, p' := ^ ;r ; cos p' = ; siu ^ = 1 ; and

(1.) becomes,
2r

Zf) = — (u — Siti a cos a). (2.)

120. Fonnulee for Hi and P. — The value of II, will be, as

ill § 116,

II, = H ^i^«= H (i+ ^? ^J2 c ^ -
' 2 r sill 3

- \ ' 3 — 3 sin ,3 cos /^ -]- 2 /3 cos^ /3 /'

and

p Ha cos a — COS /3 y,

27 ~ T^^ '

or, for a complete semicircle.

TT ^ - -{- a sin a COS O TT -r> 1 TT
H, = ' H ; P= i COS a II.

121. Experimental Verification.— Tlie values ol"./-,,, obtained

above, can be readily shown to be true by turning the model

previously referred to through an angle of ninety degrees. A
moderately stiff wire carefully bent to a curve A Ci B, Fig. 37,

symmetrical with regard to the point G (an arc of a circle being

probably the easiest one to fashion), is suspended from j^oints

C and D by strings from A to C, and from B to D. If the string

B I) is doubled so as to pass on both sides of the wire above G,

A G B will l)e prevented from swinging round. A thread from

A to B will hinder the span from enlarging, and will indicate

by its slackening when the span is narrowed. If, then, a

weight is attached at E, and, the string at C remaining station-

ary, that at D is moved until B is vertically below A, as proved

])}- plumbing the thread A B, C A, when prolonged, will be

found to iutersect B D at F iu the vertical line E F, giviug the

desired value of .7-(,. The point of intersection will be slightly

changed by the weight of the wire, as before suggested in § 81.

It is worthy of note that, 11 now being an external pull on the

rib, in place of the usual thrust, x^ will, hi Fig. 37, be found on

the same side of the centre with H.
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122. Parabolic Rib fixed at Ends; Formulae foi a-Q, 2:1,

and x.y. — Referring to Fig. 38, we will suppose that the exter-

nal force H is applied at I, on the left of this parabolic rib with

fixed ends; that the desired equilibrium polygon is given by

the lines L G and N G C ; and that the abscissae, at present

unknown, are, A L = ^-j, B N ;= .r,, and O Q := a^o? the latter being

measured from the middle of the span, and all being considered

as positive when laid off as shown in this figure. The rest of

the notation agrees with that used before. It may be proved

that the abscissae have the following easily computed values

:

or

Several of these values, for different positions of H, are plotted

in Fig. 38.

If h is given successive values from 0.1 c to 0.9 c, these quan-

tities will be found to be

u.

0.1c
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EK = RN — DN; RN:llK^QN:QG,or RN^ ^^\-5^^
;

therefore

These quantities, in the notation employed, may be written, if x is measured

from the right abutment,

\s -^ will be a common factor in the equations which follow, we shall omit

it. Substituting these values, we shall get, as the expression to be summed
from B to I, for the first condition,

2EK. DE= r r^i^=^=5^0(4c2x2— 4f.r^+ x4)— (.r.,+x)(2cx—x2)1dx.

If X is measured from the left abutment. L Q substituted for Q N, and Xi

written for x.,, we get an expi-ession which is applicable from A to I, or

2EK . 1)E= r r^+^!±^(4c-^x2— 4r./;34-x-')— (x,+x)(2cx— .t2)~1^/x.

As in § 114, these two expressions will be equated to make tlie clianqe ot

span zero, and upon performing the indicated integrations, and multiplying

through by c'^ — i-, we obtain

(c-{-x,-x,-)lic^(c-^hr-e(c-\-hy^l(c^by]-(c'-h-^)[r,-,(c-^hy

_ c (c- - by + !(<- '')'] - (<-' - ''') [^ -^i ('• - '')' - i ^-i (c - by

This equation, by reduction and factoring, may be written,

8 C5 Xq— (c5— 5 C3 //^ J^ 5 c-i />3_ /,5) j-^ J^ (^5 _ 5 ^3 //^_ ") c" b^ -\- b^) Xj

— 10c3 b3— -2cb^. (1.)

124. Second and Third Equations of Condition.— The second condi-

tion, that the change of inclination at the abutme'nts siiall equal zero, is

2 E K ^ 0, and the portion of this expression from W to I will be,

2 E K
=J^

""

'

[i+^=L£o ^2cx- xO - (x..+ •'

)]
d x,
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while from A to I we may write, as just explained,

2 E K = r~ [^4^T=^ (o c X — x") — (x, -\- xildz.

Equating, integrating, and reducing, we get

(c + -r, - .To) Ic (c + hy- H^+ ^'r^ - (S'- ^r) {r, (c + /,) + i (c+ bf]

= (c + T. + X,) [c (c - /.)--W- f')']

- (c' - U') [.-, (c-h) + iic- by] ;

or

4 c3 3-^_ (c3_ 3 c 6-+ 2 1,3) X,+ (c3 — 3 c Ir— 2 h^) x.,= 4 c //S. (1
.

)

In writing the third condition, that the abutment deflection shall equal

zero, or 2 P] K . D B r= 0, we must, if we use the values of E K already

adopted, make D B equal to x on the right of I, and equal to 2 c — x on the

left of I. We then have, from B to I,

r P + ^~ ^0
(2 ex- — x3) — (xo -f x) ^dx,

and from A to I,

f ["^^4^2^° (4 c- X — 4 c x= 4- x3) — (x, + x) (2 c — x)"] ^ x.

Equating these two expressions and integrating, we find that

(c + x,- Xo) [§ c (c+ l.y -\{c+ ly^ - (c^- /r) [^ X, {c+ Z;)^+ H^+ '0«]

:= (c + X, + Xo) [2 c^ (c - ly _ A r (r - Z.)-^ + H^ - «)*]

- (c^- 6=) [2 c X, (c- i) + H2 c - xO (c- by -h{c- hy],

which reduces to

16 c" Xo — (7 r" — 18 c- h" -|- 8 r />3
-f-

3 /;*) x, -|_ (c* — G r fr—Scb^ — S b*) x.,

=— 2 c5— 4 c3 ^y- 4- 16 c- />3
-I- 6 c /y*. (2.)

From (1.), § 123, and (1.) and (2.) of the present section, we may readily

eliminate Xq, obtaining

(C3 — ^,3) j-_ _ (,.3 -\-b3)x.i = -2c i3,

and

(c2 _ f2) X, + (r2 _ //2) .r, = i r3 + 2 c b\

whence may be deduced the formula? of § 122.
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125. Formulae for H, and P.— The values of H,, IL,, and

P, can now be scaled from the stress diagram, whicli will also

give, if preferred, the proportion

II, : II, : H = e + ,-, + x, : c + x, — x^ : 2 c + .r, -f x^

or

H. = H^t^±^^ = H[4+(.oc"— 3//)^^,]= iII[l+ in3(5-3n=)].

H, will therefore always be greater than .] H.

Likewise we have, for the vertical component of the abutment

reactions,

P : H = ^ (c= — i-) — c + X, + X,,

or

p = H . 1^- ^^^^=iu^(i - rr-y.

The shear diagram for this case will follow the explanation

given in § 118.

126. Circular Arch fixed at Ends. — There remains to be

considered the circular rib, fixed at the ends, under the action

of an external horizontal force. The notation of the angles is

the same as that previously used for the circular arch. As H
is here applied at a point on the right side, a-^, measured from

the middle of the span, will now lie on the left of the centre O.

Then we will prove that

in which equations

a = cos a — cos /3, d =: (3 sin a — a sin /?,

b = ajS — sin a sin /3, e = 1 — cos a cos (3,

c := (3'- — 2 sin'- /i -|- 3 sin /3 cos ;3, f=^i^ — cos a sin f3.
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It will be noticed that e is constant for a given arch. The

value of ;r,) can then be obtained from the equation

2 (sin /3 — /3 cos ,i) .Cq — [sin y3 + ^J'^ « — 0^ + ") "^o^ «] -^'i "f" [•'^i" '^ — si'i "

— (/3 — a) cos o] .To = 2 r sin /3 (sin a —a cos a). (8.)

The distance x^ and a., will, in every case, be laid off outwards

from the abutments, and :?„ will be plotted away from the side

where the force is applied. In these formulse, x^ is on the oppo-

site side of the arch from the applied force, as is also Hi- lu

any case it is easy to distinguish between numerical values of

2-1 and a-o, or Hj and H,, if we notice that the larger value belongs

to the abutment which is nearer to the point of apj^lication of

the external force.

Several of the equilibrium polygons have been drawn in

Fig. 39 for a horizontal force applied at different distances

from tlie crown. The angle p' of this rib is 60°; and the com-

puted values of the al)scissfe, for H at points distant 10° suc-

cessively from one another, are

10°
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on the rjglit of I. Upon tlie left of I, since E' K now equals I) L — K L,

this expression will change in sign; and, since we measure from L. \vc must
substitute a:, in place of .r,, must subtract .'q in place of adding it, and must
change the sign of r sin ii : hence, on the left of I,

E K = — ' Lni:J

—

Ja (eos t) — COS ,i) -I- (r sin ^4- x,-4-r siu d),
cos a COS ,i

1 >- I \ - I
I

I y

The first condition, invariability of span, will now give,

s"* E K . D E + >; '' E K . D E = 0,

or, multiplying by cos a — cos i3,

^[(/- siu li -f X., -f- Xq) (cos2 e — 2 cos (^ cos ,3 -\- cos^ ^)

— (cos a — cos /J) (r sin (3 -{- x-, — r sin e) (cos 6 — cos J)] '/ d

+ ^ f—l [('" s"^ >3 + ^1 — •'o) (— cos^ y -|- 2 cos ^ cos 3 — cos'^ ,3)

-}- (cos a — COS 3) (r sin fi -\- Xi -\- >• sin 0) (cos y — cos 3)1 il 6 ^ 0.

The integration is similar to that already given for the circular rib

in the earlier sections. There results, upon bringing together common
factors,

(3— ) sin 3 cos 3 -\-2 3 cos'^ J) ig — (? .'^ 4" i "— i sin 3 cos 3 — ^ sin a cos a

— sin a cos ,:< — cos a sin ,i -f" /3 cos a cos ,3 -{- a cos a cos ^i) x,

-(- (^ o' — 7 a — i sin li cos (3 + J sin a cos a + sin a cos 3 — cos a sin (i

-|- 3 cos a cos (3— a COS a COS 3)xo = r sin ,i (a— sin « cos a— 2 sin a cos 3

-J- 2 a cos a cos 3). (1.)

\2>>. Second and Third Equations of Condition.— The second con-

dition, that i; E K -}- S , E K ^ 0. similarly gives.
a ' —3 '

/i3
[(/• sin 3 -f- ^1+ -^'o)

(cos D— cos 3) — (cos a— cos li) (rsm ^-)- Xo— r sin 6)1(19

-f- r_^ , [_{r sin 3 -\- .r, — x^) (— cos H -{- cos 3)

-\- (cos a — cos 3) (r sin 3 -\- r, -f-
;• sin 6)1(10 ^=0.

From this equation we obtain, by integrating and factoring.

(2 sin 3 — 2 ,3 cos 3) J-o — (sin /3 -}- sin a — /i cos a — a cos a) x,

-\- (sin/3— sin a — |3 cos o -|- a cos a) x.^ = rsin/3 (2 sin a — 2 a cos a). (1.)
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The third condition, that 2^^ E K . D B + 2^^ E K . D B = 0, will give,

when we introduce the value of D B =: r (sin /3 — sin o),

[ ( r sin /3 -|" -^2 + '"o ) ( ^^^ ^ — <^^s ,i ) ( sin /3 — sin e )

— (cos a — cos /i) (r sin /j -)- a:o — r sin «) (sin ,3 — sin y)] </ S

-|- r
/ _o [(' sin /3 + X, — Xo) (— cos « -|- cos /i) (sin ^i — sin y)

4- (cos a — cos (i) (r sin /3 -|- arj -|- '' sin y) (sin ,3 — sin e)] J (^ = 0.

Operating upon this equation also, we find tliat

{2 sin^ 3 — 2 3 sin /3 cos /J) Tq — (sin- /i -j" sin a sin ,3 — 4 cos^ /3 — h cos^ a

-)- cos a cos ;i — /3 cos a sin 5 — a cos a sin /3) .r, -}- (sin- /3 — sin a sin /i

-f- J cos^ ^ -|- J cos^ a — cos a cos ,3 — 3 cos a sin ;3 -)- " cos a sin J) x.,

=^ r sin /J (2 sin a sin /3 — cos'^ a -\- cos a cos /i — 2 a cos a sin /?)

+ r^Ucosa — cos,5). (2.)

129. Reduction. — From (1.), § 127, and (1.) and (2.), § 128, we can

determine the desii-ed quantities .Tq, .r„ and x.,, by any of the usual steps for

elimination. If the second equation of condition is multiplied by siujii,

and then subti'acted from the third, there will result

{^ cos- 3 — cos a cos /? -f- i cos^ a) (xj -)- :i\)

m ;• sin 3 (cos a cos li — cos"^ a) -\- r j3 (cos a — cos /3),

which, upon being divided by ^ (cos« — cos/3), becomes

(cos a — cos ,3) (,r, -\- .r.,) = 2 ?• (,3 — COS a sin ,3). (a.)

Again: the second equation maybe multiplied by cos /3, and added to the

first, after which the values of Xq from tlie new equation and from the

second equation of condition may be equated. If we then clear of fractions,

and factor the resulting equation, it may be written

[n (h --c) — d e] .r„ -\- {a {}> -\. c) — d e] .r, =— 2 r sin ,3 (a b— d e), (b.)

while equation (a.) will be

aix,-\-x.:)=2fr; (c.)

in which equations the literal coefficients stand for the quantities already

given in § 126.
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From (/;.) and (c.) it is easy for one to obtain the half sum and the half

difference of the two unknown (quantities, and thence equations (1.) and

(2.), S li<i- Equation (:?.) is i.lentical with (1.). ?; l-'^-

180. Formulae for H,, &c. ; Semicircular Arch.— To find

the values of H,, Hj, and P by formula, we make use of similar

expressions to those of § 12"). The figure gives us

II, : II.. : II =; r sin 3 -f ^i — 'o •
* •'^"" .^ "h •''-' + 'o • - ''^"' 1^ + ^"i + ^n'l

or

Ij
_ Ij

/• sin ;3 H-

-

^^^1 —
-^"o _ A ^ sin 3 -{- x, — x^ ^

'

2 r sin 3 -f A + ''> ~ >'
'

t^
— sin 3 cos f3

P : H = ?• (cos a— cos 3) : 2 r sin /3 -j- .f, -\- x.,= a r : 2 r &\n ^ -\- "^^-J—
;

P==i

—

"
. ^ Hrir^H-asiu,.J+/ - /3 — sin (3 cos ji

If the arch subtends a semicircle, p = .] tt, sin p' rr 1, cos /^ = 0,

and the preceding values are much simplified. Without writing

them in detail, it will be sufhcieut to indicate that then

a = cos a, c = I
-' — 2, f ^= 1»

b ^ ^n a — sin a, d =z ^ - sin a — a, f= ^ n — cos a.

131. Sign of Bending Moment. — In determining the sign

of the bending moment at an}' jDoint when the arch is acted

upon by a horizontal force, it will be well for the reader to

recollect, that, when there is a thrust along any portion of the

equilibrium polygon, the arched rib tends to move away from

the polygon, but, when there is tension in any portion, the arch

moves towards the polygon. This tendency to move in one

direction or the other is easily fixed in the mind, if one thinks

of the alteration of curvature of a bent wire when a force is

applied at each end in the line joining the two ends. The same

thing was noticed in the suspended arch of Fig. 1 and in those

under vertical forces. Therefore, in Fig. 32 and the following



124 AUCMKS.

ribs, the arch tends to approach the tension side of tlie equih-

brium polygon, and to recede from the compression side. If

then, as before, that moment which makes any portion of the

rib less curved, or which, if exerted on a beam supported at

both ends, would make it concave on the upper side, be called

positive, the areas of — M will occur l)etween 1> and C in Figs.

32 and 33, and those of + M will be found between C and A.

Ribs fixed at the ends will be strained similarly. In Fig. 38,

for example, the area to the right of B will gi\ e + ^I ; from the

point where N G crosses the rib to there will be — M, which

then changes to -f- M on the left of C. and to — M. when the

polygon crosses the rib above A.

132. Example of Normal Forces.— As we have now ascer-

tained the values of the abutment reactions when a rib is acted

upon by a horizontal force, we will show, by an example, that

the various horizontal and vertical forces which are exerted at

one time at different points of the rib may be provided for in

one polygon, without the necessity for separate treatment of the

horizontal and vertical components into which the normal or

oblique external forces can be decomposed. We will suppose

that a parabolic rib of 100 feet span and 50 feet rise is to l)e

used as a principal to carry a roof, and that it is desired to

ascertain the bending moments arising from the action of the

wind upon one side. We will take the case where the rib is

fixed at the ends as being less simple. After this discussion,

the reader will have no difficulty in applying a similar treatment

to other ribs.

Let the rib be represented by A C B, Fig. 40. and let us sup-

pose that the normal wind pressure is directly resisted by the

flanges and bracing of the rib at points D, E, F, and G, at which

purlins rest, and which are distant 40 feet, 30 feet, 20 feet, and

10 feet horizontally from the middle of the span. The amount

of the pressure N, at E will be the total or resultant of the

distributed pressure on m n, the points w and ?? being taken

midway of the spaces on each side of E. There will be no error

of consequence in assuming that the wind pressure on m n is
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perpendicular to the straight line m w, or to the tangent of tlie

parabola at E.* To find this tangent, draw E E' horizontally,

make C E" = C E', and E YJ ' will be the desired tangent. The
tangents at the other points are found in tlie same way. The
angle E' E E' ' is very nearly 50° ; the intensity of wind pres-

sure, by the table of v^ 109. is 38 pounds on the square foot of

roof; and if the principals are 10 feet apart, and m n is \bl feet,

the total normal force Ng at this point will be 38x10x15^ =
5,890 pounds. For tlie four jxtints we therefore liiid in detail

N. Y. H.

1 58° 40 X 1« X 10 = 7.600 lbs. 4.000 Ihs. (3,400 lbs.

2 50 38 1.')^ 10 5.8no :}.,SOO 4,-500

8 :58^ 8-2 lo 10 4,1G0 3,200 2,600

4 22 20 11 10 2.200 2,000 900

These normal forces are plotted on the figure, and then

decom})osed graphically into their vertical and horizontal com-

ponents, which, scaled to the nearest one hundred pounds, are

found above in the columns headed V and H. The figure antl

diagrams are drawn to scales of forty feet and ten thousand

pounds equal one inch.

133. Finding the Reactions. — The next step will be to

find the values of H,, H.,, Pj, and P.,, for the above forces. First,

upon referring to § 64, we see that a vertical force at E,

Fig. 40, 0.6 e from the middle of the span, will cause a vertical

reaction of 0.896 V at A, one of 0.104 V at B, and will give

rise to H, at each abutment, of the amount 0.192
'' V = 0.192 V.
h

We also see, by the table of $ 62, that the ordinate at A will

be — 0.667 k. and at P» + 0.333 k, for the same force at E : and
we can then obtain the values of M at the abutments arising

from V by multiplying these ordinates by H = 0.192 V. just

ascertained. The computations for the four loaded points mav
be grouped together as follows

:

* If picforrod. analyze the wind pressures as in Part I., Roofs, p. 44.
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The final alnitiuent nioinents will be

M,' = —00,400 — 154,428 = —214,828 ft. lbs.

M.: = 41,400 4- 57,015 = -f 98,421 ft. lbs.

The components of the reaction at A are, if thrusts .are con-

sidered positive,

r,' = r, — r = ii,098 — 2,001 = +9,007 ibs.

II,' = II + II, = 2,890 — 10,872 = —7,970 lbs.

The components at B will be

P.; = r, + P = 1,902 + 2,001 = -f 3.903 lbs.

11/ z= H + Ho = 2,890 + 3,528 ^ +0,424 lbs.

The arrows at A and B show these reactions. If the rib con-

sists of chords and bracing, the stresses on the pieces can be

found by a diagram like Fig. 21, Part I., " Roofs," care being

taken to have the stresses in the two flanges at the abutment

give the proper reaction (see § 195). If the equilibrium poly-

gon is to be drawn, from which to find bending moments and

chord stresses, we need the point of beginning for the polygon.

The abscissa, or ordinate to the equilibrium polygon at A, will

be found by dividing the total M at that point by P/ or H/

;

and similarly for the al)utment B ; thus,

-214,828 _ _ +98,421 _ .,^1— +9,097 — -'-'J". x, —
_^^_y^,_.j

— ^-o.-ii.

— 214,828 , o-A^^ ,
+98,421

, .^..f.
y^ = -^:7;97(r

= + 2' -0 ft. y.' =^^^ = + 15.3 ft.

As in previous examples, the ordinate at one abutment alone is

needed ; but the others are useful as a check on the accuracy of

the drawing.

1-34. Eqiiilibrium Polygon; Bending Moments.— We may
now proceed to draw the stress diagram. Lay off 1-2, 2-3, 3-4

and 4-5, parallel successively to the external forces at G, F, E,
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and D, and equal to the calculated amounts by any desirable

scale ; make 5-6 =. H/, and 6-0 =: P/, so that 5-0 shall repre-

sent the reaction at A in the proper direction as expressed by

the signs obtained above, P/ being a compression, and H/ a ten-

sion ; finally, lay off 0-7 = P/, and 7-1 ==H/, giving 0-1 for

the reaction at B. Tlie closing of 0-1 on the point 1 proves

that the diagram has been drawn with care. Having drawn

P) Q = -(- y./, or B R = + x.,\ draw through Q or R a line par-

allel to 0-1, as far as O, where it meets the normal force at G.

Tlien draw O L parallel to 0-2, to cut the force N;j at L. Fol-

low with L K and K I, parallel to 0-3 and 0-4, closing with a

line through I, parallel to 0-5, which, if the polygon has been

accurately drawn, will make AW =i/i, as recently computed,

or A U = —./, .

As neither H nor P is constant for oblique forces on an arch,

the bending moment at any point will equal the product of the

force acting along a side of the polygon just drawn multiplied

by the perpendicular from the point to the side : thus the bend-

ing moment at E is E S X (0-3), or E T X (0-4). If the exter-

nal forces had been considered as applied at a greater number

of points, or as distributed along the principal rafter itself, we
should have obtained a polygon which approached nearer to a

regular curve, and such a curve has been sketched through the

vertices of the polygon just drawn.

135. Equilibrium Polygons for the Vertical and Hori-

zontal Components. — Since most of the needful data have

already been obtained, we liave tliought it expedient to draw the

equilibrium polygons for the vertical and horizontal components

separately, so that they may be compared with eacli other and

with the })olygon for normal forces. If a horizontal and a

vertical line are drawn from 1 and 5, the components H and V
can be at once projected upon them. Upon laying off Hj, and

plotting P, we shall locate the pole 0"; and 0' -2'', 0"-3", &c., will

be parallel to the lines of the polygon for horizontal forces.

In the same wa}^ Pj and H for vertical forces will determine 0'.

The value of i/., will be found, upon dividing the Mj which
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comes from V by II, to be 14.3 feet, giving the starting-pnint

just below Q. Upon drawing the polygon so that the angles are

made at the verticals through the loaded points, we obtain the

broken line which tiiially runs below A. This ordinate //, may
be verified. W M, Irom the H's is divided by P, we have

^•.,= 28.5 feet, an ordinate a little longer than B R. The poly-

gon, if now drawn, will be the broken line which passes near

E', and extends to a considerable distance, 77.2 feet, to the left

of A. All the sides of this polygon except the first are in

tension.

136. Shear and Direct Stress.— To complete this exam-

ple, the normal shear at the middle of each division is found,

and at the same time the direct stress. The small letters I, m, n,

&c., mark the middle of each division. Draw O-l in the stress

diagram, parallel to the tangent at I in the rib, and 5-1 perpen-

dicular to it ; then will 5-^ be the normal shear at I, and l-O the

direct thrust. To satisfy ourselves in regard to the sign of this

shear, we note that 5-0 is the thrust in the side U I of the equi-

librium polygon, and will therefore be the resultant force on the

left of any section between A and D ; the forces 5-f and /-O, in

the directions named, will be its com})onents, also on the left of

the section I: hence we \m\e positive shear and a direct thrust.

In the same way at w, since 4-0 is the thrust in I K, 4-m will

be the positive shear, and m-0 the direct thrust. Between m
and n the shear changes sign ; for at n we find -i-u and yi-0, the

former being drawn dowtu instead of up. Passing on, we see

that the shear again changes between r and •*, because 1-r and

l-.v run in opposite directions. As noted before, this change of

sign occurs at points of maximum bending moment.

l;37. Vertical Shear Diagram.— We may draw a veitical shear diagram,

if desired, and from that obtain the normal components ; but it is not so con-

veniently constructed in the case of several forces which are always applied

tofjether as for a case of a single load. If a ft represents the span, P,' or

fi-O is laid off at a w, upwards as usual ; then the subtraction of V, at D, or

4'-.o, brings us to the line d ; thence a step is made to e, to /', and finally to

V, closing at b with 0-7, the reaction at B. The horizontal line below a h

cuts off P, or 0"-3", so that the vertical components shown in the line 5-1'
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might be considered as laid off from this lower line, and the constant quan-

tity P, due to the horizontal components, then subtracted. As the thrust at

B is 0-1, a line drawn through 0, parallel to the tangent at B, will cut off

from a vertical line drawn from 1 as mucli vertical force as is required, in

addition to 0-7, to give a resultant in the direction of tlie rib at B. The

amount so determined is laid oft" at <{ r' . Since it has been shown that all

inclined lines are drawn towards the middle of the span c, and are imin-

terrupted until an external force is encountered, we draw through r the

line r' 6- s.

In a similar way, a line 0-10 from 0, parallel to the tangent at A, will cut

the vertical through 5 at a distance 5-10, equal to ic u ; a line from 0, par-

allel to the tangent at D, will cut off the distance from a vertical through 4,

which is plotted from d to ^• ; one parallel to the tangent at E will cut off

3-8, which is plotted at e o ; and the tangent at F gives 0-9, so that 2-9 is laid

off at fp. If inclined lines are drawn through the points thus found, run-

ning towards the point c, the diagram will be completed. Normal com-

ponents of the ordinates between the two sets of lines just constructed,

measured above /, m, n, &c., will agree with the values of the last section,

— positive when above the inclined lines, negative when below.
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:i.VuENT OF CTVII- ENGMEZr:

CHAPTER IX.

STONE ARCHES.

138. Location of Equilibrium Curve determines Thick-

ness of Voussoirs.— Stone arches ma}' be treated as belonging

to the ckiss of ribs with fixed ends, as the voussoirs have suffi-

cient breadth at the skew-backs to make a firm bearing. We
can, then, for a given rise, span, and distribution of steady and

travelling load, draw the equilibrium curve, and thence deter-

mine the required thickness of the arch-ring. To repeat Avhat

was mentioned incidentally earlier : if no reliance is placed

upon the tenacity of the cement, and if the intensity of pressure

at a joint between any two voussoirs or arch-stones is considered

to vary uniforml}' from the outside to the inside edge, the ex-

treme case of deviation of the resultant pressure from the middle

of the joint consistent with safety will occur when the pressure

is zero at one edge. As the varying intensity of pressure will

be represented by the ordinates to an inclined line which passes

through the point where the pressure is zero, the total pressure

will be equal to the area of a triangle, and the resultant will

pass through the centre of gravity of the triangle, ov at a dis-

tance of one-third the breadth of the ring from that edge where

the pressure is most intense. Since the equilibrium curve is the

locus of the resultant force at each joint, the condition that the

pressure shall never be less than zero at any point, or that there

sliall be no tension, is equivalent to requiring that the equili-

l)rium curve shall never pass beyond the middle third of the

131
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arch-ring, however the distribution of the load may be varied

:

hence, when the equilibrium curves are drawn, the thickness

of the voussoirs is readily determined. The tensile strength of

the cement after it has become firm, and any deviation from

the assumption that the force between two stones must be

distributed over the whole joint, increase the safety of the

structure, and thus give what is akin to the factor of safet}' in

other cases.

139. Intensity of Pressure. — When the stability of the

arch-ring is thus assured, it is an easy matter to find

the greatest intensity of pressure, and hence to see whether the

material proposed for the arch will have strength enough.

When the equilibrium curve passes through the centre of the

joint, the pressure on the square inch will be l\)U]id by dividing

the thrust at that joint by the area of the bearing surface. If

the curve touches the extreme limit, the edge of the middle

third, the most intense pressure, at the edge of the joint nearest

to the curve, will be twice the mean pressure ; for the height of

the triangle whose ordinates represent the varying intensities

is twice its mean ordinate. In some rare cases, where the span

is large, and the stone is of a weak quality, we may have to

increase the depth of the arch-ring in order to provide sufficient

strength.

140. Circular Arch ; Load for Equilibrium.— Although

the curve of the arch-ring may be any one of a number of forms,

the circular arch is the more common type, and we have there-

fore thought it best to take such an arch as an example of this

method : the steps will apply to any form. Tlie Gothic arch

will be classed with the example of § 194. If the load is en-

tirely, or almost entirely, steady, as in the aqueduct or canal

bridge, it will be advisable, on the score of economy, to find

that distribution of the load which shall cause the equilibrium

curve to coincide with the centre line of the arch-ring. Then,

by arranging the filling and the empty spaces above the arch-

ring so as to conform to that distribution, the voussoirs can be

made of moderate depth.
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Thus, if B C, Fig. 45, be one-half of an arcli whieli it is de-

sired to load in this way, divide it, by vertical lines, into quite

a large number of parts, equal horizontally. If the divisions

are small, the areas of these portions between the soffit of the

arch and the upper line may be considered trapezoids, and the

middle ordinate of each division will be proportional to its

volume for unity of thickness, and to its weight, if homogene-

ous. It is then evident, that, if there is to be no bending

moment at any point, the equilibrium curve must coincide,

either with the tangents to the centre line of the ring at these

loaded points, or with the chords drawn between these points,

according as the first loaded point is taken at half a division's

distance from the abutment, or at the abutment itself. See

Part II., '• Bridges," § 58. Let this weight be concentrated,

in imagination, on each middle ordinate.

Upon drawing, from any point 0, radiating lines parallel to

the tangents, or perpendicular to tlie radii, at the successive

points of division, and cutting them all by a vertical line 1-12

at any convenient distance, loads in each division, supposed to

be concentrated at the intersection of the above tangents,* and

proportional to the several portions of the vertical line inter-

cepted by the inclined lines, will be the ones required for equi-

librium ; and the distributed loads spread over all of each

division, or, in other words, a continuous load over the whole

arch, will thus be found. If 1-2 is placed at such a distance

from that it will represent, by a convenient scale, the mean
depth, as well as the weight of the load, in the first division on

the right of C, 2-3. 3-4, itc. will represent the required depth

of loading in the succeeding divisions. As the angle nuule l>y

0-2 with the horizontal line is the same as that subtended at

the centre by the tirst division near C, there is no difficulty in

finding, by calculation, the exact length of 0-1, when 1-2 is

given, in case the angle at is too acute to give any accurate

result graphically. In our figure the depth of the load at the

* The tangents will not intersect exactlj- in the middle of each division.
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crown was assumed to l)e five feet, and tlie intercepted portions

of the vertical line were then plotted from the points where

verticals at the middle of each division would cut the centre

line of the arch. The curved line drawn through the upper

ends of these ordinates will then show the desired amount of

homogeneous load to l)e spread over the arch to produce equi-

librium.

141. Limiting Angle for Arch-Ring without Backing. —
It is now worthy of notice, that, while the required depth of

loading increases but slowly for some distance after we leave

the crown, when we reach the haunches, the ordinates rapidly

lengthen, and the curve through their upper ends will finally

become vertical, if the arch springs verticallv from the abut-

ment. This point was also referred to in § 89. It is appar-

ent, therefore, that it is not practicaljle to so load with vertical

forces a circular arch, beyond a certain distance from the

crown, that the line of thrust shall coincide with the centre line

of the arch-ring. As the roadwa}' must not deviate greatly

from a horizontal line, we see, that, for an arch extending 60°

each way from the crown, the amount of material as hea\'y as

masonry required over the springing will fill all of the available

space, and, when the spandrel filling is lighter, the limiting

angle will probably be in the neighljorhood of 45°. In ordina-

ry cases of loading, the equilibrium curve will deviate so much
from the centre line in this portion of the rib as to require

very deep voussoirs to retain the curve witliin the middle third

when the attempt is made to extend the unassisted arch-ring

much farther. It is customary, therefore, to carry the masonry

backing, in horizontal courses, up to the neighborhood of the

jjoint where the arch-ring is inclined at an angle of 45°
: below

this point any attempt of the arch-ring to move outwards under

the thrust of the upper portion is inunediately resisted by the

backing, and the arch will be designed as if the springing

points were at the joints level with the top of this masonry

backing. The portion below realh' forms a part of the abut-

ment.
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142. Example; Data. — In aiH-oiduiKc wiih the uljove state-

ments, and as an example of the application of preceding prin-

ciples, we propose to design a circular segnu;ntal arcli of stone,

for a railrcjad bridge, wliicli shall siiljtend 100°, with a radius,

for the centre line of the voussoirs, of 100 feet, making the

span, from centre to centre of skew-backs, about 153 I'cct, and

the rise about 36 feet. The rolling load will be 3,000 pounds

per running foot of track, and the width of the bridge over

which this b^ad is distributed will be ten feet. The backing will

be carried up to the point where the rib is inclined at 45°, and

the remainder of the spandrel will be filled with such material,

or will have such an amount and distribution oi" empty spaces,

that it shall weigh, on the average, one-half as much per cubic

foot as does the masonry of the arch-ring. The e(|uilil)rium

curve for steady load will now first be found ; then such possi-

ble combinations of rolling load will be discussed as will in-

crease the deviation of the steady load curve at those points

where it already deviates most from the centre line of the arch-

ring ; and, finally, the necessary depth of the voussoirs will be

determined by the rule suggested in § 138. The depth of the

voussoirs at the crown is assumed, in our present ignorance of

the final dimensions, at five feet ; two feet of filling, earth or

some other material, is added at that point, and the Iiorizontal

line drawn seven feet above the soffit at the crown will be the

upper boundary of the spandrel filling. If, then, the arch-ring

is taken at a uniform thickness of five feet, as shown at A C,

on the left half of Fig. 45, the depth of a homogeneous load

equal to stone will be found by shortening each ordinate above

the arch ring one-half. Thus was obtained the curve D E. By
dividing the area between this curve and the soffit into small

portions by vertical lines, we may find the weight to be concen-

trated on the several assumed loaded points of the arch-ring.

143. Calculations for Steady Load.— Fnnn the ecjuations

of § 92, after making p' =r 45°, and giving to n the successive

values, 5°, 10°, 15° . . . 40°, we have worked out the quantities

y,, «/y, and y.^t for a weight at such distances froni the crown, and
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these quantities are given in tlie first portion of the following

table, it being understood that the weights are here placed on

the left of the crown to correspond with our figure :
—

a. ?/!. //o- .'/,. II. Pi- P2.

0° .0449)- .3587 /• .0449 r 1.120 W .5W .5^

5 .025-2 .3.").S.') .0007 1.095 .590 .411

10 .0001 .3578 .0735 1.007 .683 .325

15
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making the wciglit of the half-arch (when we take one-half of

the load at C, and add 9,800 pounds for the load at A), = 113,-

450 pounds.

Calculate II for steady load l)y multiplying each co-efficieut

of H in the table above by its W in pounds just ascertained,

and adding all the results for both halves of the arch. Tlie

work in detail is below. As the two halves of the arch are

alike, we add up the column for H, add in again all but the

amount for the load at the crown, and have H' for the entire

arch. Each vertical reaction will equal the weight of the half

arch.

To find the ordinate 3// =: (//, for the combined weights, mul-

tiply each H by its ?/i, add the products, and divide by H'. As,

for each weight on one half of the arch, there will be a corre-

sponding and equal weight on the other half, it will shorten

the process to add i/i and //.> together for each point on one-half

of the rib, except the centre one at C

c.
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off ir from the middle of 1-2' to ()', and. starting at 0.71 feet

below A, draw an e(|iulibrinm polygon with its sides succes-

sively parallel to the lines which would radiate from 0'. This

polygon will run quite close to the centre line, crossing it twice

between A and C, and passing 0.4 feet below it at the crown.

In any actual example the whole polygon should be drawn, as

its accuracy will be proved by its striking the ordinate from B

at the proper distance. If this arch were never to be subjected

to any other than a steady load, or should the travelling load

always be light, voussoirs of moderate depth would contain

this pol3'gon within their middle third. The true e(pii]ibrium

curve Avill pass tln-ougli the angles of the polygon just drawn.

145. Calculations for Rolling Load.— But, as we stated

that a line of railroad was to be carried over this arch, let us

suppose that the rolling load of one ton and a half per foot of

track, or 3,000 pounds, is distributed over the ten feet of width

of the arch ; the moving load will then amount to 300 pounds

per foot of span on the rib of our figure. The sleepers, the

fillinsf over the rib, and the bond of the arch-stones, will dis-

tribute any concentrated load over a considerable area.

At the crown of the arch the curve already drawn falls some-

what below the centre line. Ujion inspecting Fig. 44 we see

that six of the polygons there drawn pass below the crown of

the rib. . If, therefore, we place upon the stone arch a rolling

load which covers six points of division from each abutment,

that is, from Q to R on one side, and a corresponding distance

on the other half arch, this distribution of load, if a practicable

one under the usual method of running trains, will cause the

greatest deviation of the equilibrium curve at the crown ('.

To draw the polygon for this rolling load alone : first multi-

ply each liorizontal distance belonging to I, K, L, &c., by 800

pounds, to obtain the concentrated load on each point ; then

multiply l»y the proper co-efficients of H already obtained; sum

the products, and double the results for both halves of the

arch ; multiply each H by its (jx
and y.> ; divide the algebraic
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sums of these products by H". The operations are carried out

below.

W. II. >j,^y,.

I.
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middle third, the keystone and adjoining voussoirs nui.st not be

less than 0.6 X 6 = 3.6 feet deep. The greatest intensity of

pressure, found at the inner edge, will then be twice the mean

intensity of pressure, or 2 [114,625 -^ (3.6 X 144)] = 442

pounds per square inch, giving a factor of safety against

crusliing of about ten, for good limestone or sandstone.

If the depth of the joint be increased to four feet, the greatest

intensity of pressure at the inner edge will be reduced to

4 + 3.6" 114,625 ^_„ ,,

''.

,—h— • 1—Vrr = '^' " ^"*- P^^" «4uare inch.
4 4 X 144

147. Increase of Bending Moment at Haunch.— The

steady load curve deviates outwardly from the centre line the

greatest distance, 0.5 feet, at L. Fig. 44 again shows that a

rolling load from Q to R of Fig. 45 will increase this devia-

tion to the greatest extent. The value of the horizontal thrust,

H'", for this load, will be seen, from the table of § 145, to be

6,159 pounds. Multiplying tlie same values of H by the then

existing values of ?/,, and proceeding as usual, we shall obtain

?//". If the total Ml of this table is subtracted from

H. //,.
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f- i/./"at B, draw thai equilibi-iuiii p(jlygoii which pa&seri 7.1 feet

above L.

By tlie same process as before, we lind that the eqiiilil)riuin

curve for the steady load, combined with these six loads on the

left side of the arch, will be dis-
1 IP ., , ,. 10-J.:}07 X <>..-) = 51,153.5 ft. U.S.

placed irom the centre line ver-

tically at L 0.875 feet. The (i,15!} x T 1 = 4:1728 9

depth of the arch-ring at this 108,460 )f)4,882.4

point should, therefore, not be (^^.^-^^^^^^ ^^ j^ _ ^3^5 ^^

less, vertically, than 5.25, or,

measuring normally, than 5.25 x cos 25° z= 5.25 x 0.9063 =
4.76 feet.

148. Influence of an Additional Load.— When it is no-

ticed that an additional load on the point G will cause the

greatest positive moment at K. it may be suspected that these

seven loads "will cause a greater deviation at K tlian the one

just found at L. To ascertain the fact, we may dispense with

any new^ polygon by proceeding as follows : The new load G
will he 8.6 X 300 = 2,580 pounds. H for this point, being

1.007 W, will equal 2,580 x 1-007 = 2,598 pounds. By scale,

in Fig. 44, the ordinate from the proper polygon to the arch at

the point K is .017 ?• = 1.7 feet.
rj.-. v . ^ ^1 102,:307 X 0.:i5 = O5.807.4 ft. lbs.
ilie ordniates to the curves

already drawn in Fig. 45 being 6,159 x 8.10 = 49,887.9

scaled at K. the annexed com- 0^598 x 1.70 = 4,416.6

putaticn is readily made, and ^^J^ 90ail9
the quotient is seen to be less

than the amount at L. Kindred steps might be taken for any

point.

149. Increase of Bending Moment at Springing; Maxi-

mum H.— The remaining point of maximum deviation of the

curve for steady load is at the springing A, where we have

found it to be .71 feet. As the same six loads from Q to R will

be seen, from Fig. 44, to produce the maximum effect at A, the

polygons are already drawn to our hand, and the moments at

the springnig point are seen in the respective tables. There-
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fore tlie ordinate at A is 1.45 feet, and the normal displacement

is 1.45 X cos 45° = 1.45 X .707 = 1.03 feet. The necessary

depth for this joint will be 6.2
""'

'

'

"'
feet. If the amount of Pi from

6.159 X 13.8 = 84,970 rolling load, 12,226 pounds, is

108,466 )157,810 laid off below 10', and H'",

Ordinate at A = Tis ft.
^.'^^^ pounds, is plotted to the

right of 0', the line connecting

t]ie two points thus found will be the thrust at A, and, from its

projection on a line inclined at 45°, we get 158,000 pounds for

the direct tlirust at A. The maximum intensity of compression

on tliis joint will be at the inner edge, and will be 2 [158,000

-^ (6.2 X 111)] = 354 pounds per square inch.

The maximum value of H will occur when the rolling load

covers the whole bridge. If tlie amounts of H for the points

which have not yet been loaded are computed, the horizontal

thrust for a complete travelling load will be found to be 26.206

pounds. The equilibrium curve for such a load will be a para-

bola, the ordinates j/i and y^_ will be 1.19 feet, and the curve

will pass the crown at a distance of -}- 0.5 feet vertically. As
this paraboha, when drawn if desired, will be found to lie at

most points on the opposite side of the centre line from the

curve for steady load, the effect of a complete rolling load will

be to Iniiig the arch quite near to actual equilibrium. The de-

viation at the crown will be reduced to — 0.2 feet, and, as the

total thrust will then be 128,513 pounds, the greatest intensity

of compression at that section, for a four-foot voussoir, will be

4 -f 1.2 128,513 ^^^ „ , . , „. 1—4— '
4. w -|4_i ^^ -''^' ^'J^- on the square inch. VVe have now

examined in detail all of the critical points of this arch.

150. Final Dimensions of Arch.— The arch-ring^ was as-

sumed, at the start, to be live feet deep. It is apparent, from

our investigation and the conditions imposed, that this depth is

greater than is necessary for the larger part of the arch, but is

less than is required near the springings. For a travelling load

of somewhat less intensity, a ring having a uniform depth of
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five feet will be entirely siitislaetorv. Guided hy these results,

we may redistribute the steady load in the spandrels so as to

bring the e<)uilil)riuni eurye for that load nearer the centre line

at the springings. Another trial will probably acuoniplish the

desired end, and the aliove curves for rolling load can Ije used

anew. Otherwise, the arch-ring may be made four feet deep

at the crown, and six feet and a half deep at the apj.arent

springings, as shown on the right half of Fig. 45, and in that

case the curves which have been discussed will lie within the

middle third of the rib. Although the formuhe for the circu-

lar arch were derived upon the assumption that the rib was of

constant thickness, the deviation which we suggest will hardly

be of serious consequence. The tenacity of the cement, and

the greater or less resisting power of the material immediately

in contact with the ring, will sufficiently provide for all contin-

gencies. We have therefore drawn this form as the final deter-

mined shape of the arch-ring, the centre line being undisturbed,

and the radii of the intrados and extrados being about 95 feet

and 104 feet respectively. One must remember, that, as the

ring has been altered from a uniform depth of five feet, care

must be taken to put a little more filling at the crown, and less

at the springing, in order that the distribution of the steady

load may be unchanged.

151. General Remarks.— If the exterior spandrel wall is

massive, a separate equilibrium curve may be re(iuired for ihat

portion of the ring which carries the wall : such portion will be

subjected to a steady load equal to the weight of the wall, but

need not be considered as carrying any travelling load. It was

not our purpose to enter into the subject of the construction of

stone arches, but to show the method of finding the forces

which act on a given or assumed rib. Two or three matters,

however, will be briefly referred to. If, at any point, the direc-

tion of the resultant pressure makes a considerable angle with

the tangent to the centre line of the ring, the two voussoirs

having a joint at that place might slip on one another if the

joint were radial. No joint should deviate very far from a
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plane perpendicular to the pressure. Generally this angle of

deviation is too small to be of importance, and the joints are

made normal to the intrados. If several arches are built in a

series, it is well to so proportion the spans and rises that the H's

from steady load may nearly balance, to avoid a disturbance of

one arch by the other, and carry the arches on reasonably slen-

der piers. If one arch has more thrust than the other, and

the pier between the two yields, we have a change of span, like

that due to temperature.

Knowing the direction, amount, and point of application of

the thrust at the springing, we can construct the line of thrust,

or equilibrium curve for the abutment, by combining the weight

of the abutment and of the masonry immediately above it with

this thrust at the springing, the weight of the masonry just

above this ])oint being first compounded, and then the weights

of successive portions of the abutment. Hence the required

thickness of the abutment is ascertained.

Since some of the equilibrium curves may run quite close to

the centre line, especially the one for steady load, it may im-

prove the accuracy of measurement of the ordinates or displace-

ments to exaggerate the vertical scale of the drawing. In this

case, since all vertical lines will be increased in length, the load

lines of the stress diagrams must be laid off with the same pro-

portion to those which represent H.

152. Location of Equilibrium Polygon by Trial.—
It is comparatively an easy matter to locate the equilibrium

polygon tentatively to satisfy one condition only, as in the case

of a rib hinged at the ends. See § 38. The location of the

equilibrium polygon can be made to satisfy two conditions with

a little more labor. To fulfil three requirements at once, as is

necessary in a rib without hinges, is a very much harder mat-

ter. By a method of attack now to be suggested, the labor of

experimentally drawing the approximately correct polygon for

ribs not parabolas nor circular arcs, under any given loading, is

much reduced. Familiarity with the arches already analyzed in
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this book will aid the judgment in assuming reasonable values

for H, ^1, and Pj.

153. Rib Hinged at Abutments.—The equilibrium poly-

gon for any known loading, on an arch of any outline or form,

hinged at abutments can be drawn in a short time, by trial, with

sufficient accuracy for practical purposes. Lay off the loads in

sequence on a load line, compute P,, assume a value for H,
complete the stress diagram, and draw the e(|uilibrium polvo-on

from hinge to hinge, as in Fig, 9. Divide the axis or centre

line of the rib into a reasonable number of equal parts, draw and
scale the ordinates E F and D E, as in Fig. 8, at these points of

division, and try whether ^Er-DE = 0. If not, as will

probably be the case, increase or diminish H, as appears neces-

sary, draw a new poh'gon, and apply the condition again. Two
or three trials will usually locate the polygon as closely as the

assumptions as to load and distribution, as well as the possibili-

ties of designing, call for.

154. Rib Fixed at End; Symmetrical Load.—If a

rib with ends fixed is symmetrically loaded on its two halves,

of the three conditions to be satisfied the deflection condition

^E F • D B = need not be tried, as when the area condition
-5" E F = is satisfied the former will be, since the positive and
negative areas have common centres of gravity on the middle
ordinate of the arch. Hence

For symmetrical loads, Fig. 43, plot the loads on the half-

arch C B on the load line 2-1. Assume 11 = 0-2, accord-

ing to judgment. Begin at K, any assumed point, above or

below the crown C, and draw the polygon KI, with sides parallel

to 0'-3, 0-4, etc., as usual. Draw a convenient number of

ordinates E F, equidistant along the rib, and by the eye, or by
actual summation, see whether ^ E F = 0, In the sketch the
dotted equilibrium polygon evidently makes .5" E F above the rib

exceed 2 E F below it. It is also apjiarent that + .2" E F • D E
is greater than — 2 EF • D E. It will not be enough to move
the point K down and draw a polygon parallel to the first, but
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11 must be reduced to 0—2, and tlieii the polygon shown l)y a

full line results.

155. Rib Fixed at Ends ; Unsymmetrical Load-—
If the given loads on the rib are unsymraetrically placed, P^'ig.

43A, make the loading symmetrical by putting similar loads on

the other half of the arch (or select the unsymmetrical portion

and add its complement), and then proceed as in § 1 51, Fig. 13.

When H has been thus found, ^H will be the horizontal thrust

for the first given loads (or for the unsymmetrical portion) ; for

equal loads on the two halves of the arch will cause twice the

thrust due to the loads on one-half the rib.

Then assume, in Fig. 43A, a point 6 on the load line 2-1

for the given unsymmetrical loading, lay off fi-0 z= ^H just

found, assume y, or y, at one abutment, making y/, positive, as

shown, at the aljutment farther from the load. Then draw

the equilibrium polygon, closing with a y, or y,, at the other

abutment. Kegard being paid to their signs, |(yj -{- y„) should

equal y^ of Fig. 13. As it probably will not at the first trial,

change the ordinate y^ or y^ and draw a new polygon. Tlien

try .S" E F • D B = and shift the point 6 until both conditions

are satisfied.

156. Catenary.— There is one special case which it may be

well to take up. It not seldom occurs in construction that an

opening in a wall is to be spanned by an arch, and the masonry

at top is limited by a horizontal line, while the load is perma-

nent. If we can make the arch of the form of the equilibrium

curve for such a load, we may get a rib of good stability with

a very moderate depth. A method of constructing such a

curve will now be shown. AVe stated, in the early part of the

book, that the curve assumed by a cord or chain hanging

between two points of suspension, and under the action of its

own weight only, was called a catenary. The load is distributed

uniformly along the curve ; that is, the intensity per foot of the

curve is constant. To draw a catenary, proceed as follows

:

Lay off on a vertical line, 1-11, Fig. 41, a convenient number
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of equal spaces, 1-2, 2-3, &c., the more the better, and let each

of these spaces represent the weight of a certain short length of

chain, as, for instance, in our figure, 6.4 feet. They may be of

tlie same length as the pieces of chain, if desired. As we do

not know the value of H at present, assume it, and draw 1-0

horizontally, equal to H ; draw 11-0 ; consider the weight of

the first piece of chain to be concentrated at its middle, and

make A B equal to one-half piece of chain, say 3.2 feet ; then

draw B C parallel to 10-0, C D parallel to 9-0, and so on, B C,

C D, &c., being successively laid off equal to one piece of eliain,

here 6.4 feet. We shall close with N O parallel to 1-0, and

equal in lengtli to A B. A curve from A to O, tangent to this

broken line, will be a catenary. If 1-11 represents tlie weiglit

of tlie chain A O, 1-0 will represent the ten*sion at (), and

hence the weight of a piece of chain, which, hanging over a

smooth peg at O, will keep the curve in equilibiium. Let O P
represent the length of the piece which weighs H, or 0-1.

Then a horizontal line P Q, drawn through P, is known as the

directrix of the catenar}-. This curve has some peculiar attri-

butes, which may be deduced by mathematical analysis, and may
be verified, in any particular case, from the drawing. An}' ver-

tical ordinate to the curve will represent the tension along the

curve at the point to which it is drawn. Further, this curve

will also be in equilibrium under a load which shall fill the en-

tire area included between P Q and O A with a uniform load

per square foot of the area. Since, however, when () P is given,

the entire curve is fixed, it is possiljle to make a catenary curve

of but one span and rise, if the depth of load at the crown is

fixed ; and hence the catenary itself is not applicable to the

form of an arch where the three quantities just mentioned are

given. This arises from the fact that all catenaries are similar

figures: therefore, two of the above quantities being given, as

for instance, span and rise, the third, the depth at crown, is

definitely dctermiiuMl frtun tlicni.

157. Transformed Catenary; Example.— It is possible,

however, to find a curve which shall be in equilibrium under
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such a load, when the span, rise, and depth are all given. In

the same way that an ellipse is derived by projection from a

circle, a curve, called a transformed catenary, can be projected

from a catenary, and will be in perfect equilibrium under the

desired or prescribed wall. AVhile some of the quantities used

are derived by mathematical analysis, which we will not insert

here, the accuracy of these quantities can be verified from the

diagram.

Let it be desired to find the form of the arch, of half span

P Q, which shall be in equilibrium under masonry whose depth

at the crown sliall be S P, and at the springing R Q. It is

understood that the arch will be inverted from this figure, and

it will be seen that this type of arch may be applied to any span

and rise. Let P Q = c% P S = //„, Q R = A„ P O = w?, and

Q A = ^,. The first step will be to find the value of P O, and

thus determine the original catenary. This will be done by

solving the equation

//c ^ J

2.30158 X log
(I; +^5^: _l)

where lo(/. denotes the common logarithm of the quantity in

tlie parenthesis. Let the half-span be 30 feet, the rise 8 feet,

and the depth of load at the crown 2 feet ; then is h^ 10 feet, and

the above expression becomes

^^ ^^
13.09 ft.

2.30158 X log (5 + V24) 2.29242

Then by proportion

A(, : m = h -.yi, or y, = "y^ = 13.09 X 5 = 65.45 ft.
"0

We next obtain from the following formula, the length of the

catenary,

s = \/(yi^ — m2) = y/(65.452 _ 13.092) = 64.1 ft.,

and

P, s 64.1

H "m" 13.09
4.9.



ARCHES. 140

We may now proceed to draw the catoiiarv Ix'tweeu llu;

points A and O. Any lengtli of load line may be laid off, and

II then drawn of the proper proj^ortioiiate amount just found.

But, if preferred, Pj may he made ((pial to tlu! weight on the

catenar}^ which will he \hc arc^a hctwoi^n the curve and the

directrix multiplied by the weight of a euhie focjt of masonry.

The area can be proved e(]ual to ni s, or the product of P O by

the length of the curvi; just found. Divich^ the load line into

a certain number of espial parts, and divide .s- by the same

number. Then proceed with the construction of § 156.

158. Construction.— The transformed catenary must be :i

projection of tlie catenary so drawn, and the load and load

line will be reduced in the same proportion. To save the

trouble of redividing the load line, multiply 1-0 by the ratio

m -f- Iiq ; that is, enlarge the scale of the stress diagram, and lay

off that distance from 1 to 0'. Radiating lines from 0' to the

old points of division will be parallel to those which might be

drawn from to new points of division ; therefore, starting

from R, draw the curve R S by making its sides parallel to lines

radiating from 0', and bringing the points B', C, D', &c., ver-

tically below B, C, D, &c. But it must be remembered that H
in the new curve is the same in amount as H in the old (jne,

while P„ the vertical component of the reaction, is reduced in

the ratio just referred to. The rib need only be deep enough

to have strength to resist the thrust. Fig. 42 shows the arch in

an erect position.

159. Many-centred Arch. — If it is wished to lay out an

approximation to the transformed catenary, composed of arcs

of circles, draw normals at the middle points of the successive

sides of our construction, and, to get them accurately, make
them perpendicular to the radiating lines of the stress diagram.

Prolong them until they intersect one another, and, on or near

the curve which can be sketched through those intersections,

select as many centres as may be desired for the circular arcs.

Thus arches of three, five, or seven centres may be drawn, which

will be good approximations to the transformed catenary.



CHAPTER X.

STIFFENED SUSPENSION-BKIDGES.

160. Necessity for Stiffening.— Tliat the curve of equili-

brium for the cable of a suspension-bridge, when the load is

supposed uniform per horizontal foot, and covers the entire span,

is a parabola, was proved in § 28, Fig. 6. The stead}- load will

always be carried by the cable. When, however, a moving load

is upon the structure, the cable will tend to become flatter in

curA'ature over the lightly-loaded portion, and more curved over

the Ileavily-loaded portion, thus throwing the roadway from its

proper line. Some means of stiffening the roadway or chain

against distortion is therefore needed. Bridges subjected to

travelling loads of but mudeiate amount may l)e stiffened by

the longitudinal beams of the roadway : but lieaAv loads neces-

sitate the em})loyment of trusses or girders in some form.

161. Inverted Arch.— If the cable is divided into two par-

allel members, braced togetlier as shown in Fig. 46, it becomes

an inverted arch, and follows the treatment already given in

eitlier Chap. II., III., or IV., depending upon whether hinges

are or are not introduced at the piers and the midcUe. From
the fact tliat the cables are carried over the towers to anchor-

ages, and that movement over the top of the tower will take place

both from change of load and cliange of temperature, tlie span

cannot be assumed invarial)le : lience there is greater liability

to alteration of stress in the several members from unavoidable

causes ; and a larger factor of safetj' than is commonl}- employed
150
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ill structures will be appropriate. The introduction of three

hinges will do away with these sources of error. This type of

stiftening truss will be discussed further in connection with the

one which follows.

162. Horizontal Grirder.— It is much more common to em-

ploy a horizontal truss or girder, as shown in Fig. 47, to stiffen

the suspension-bridge. If we note that the office of the arch or

inverted arch is twofold,— first to resist the direct stress, and,

second, to resist the bending moments at successive sections,

— we see that the horizontal girder of this figure will be subject

to the same bending moments at similar sections as the inverted

areh or braced rib of Fig. 46, while the chain will here carry

the direct stress, which in the former case was also resisted by
the rib.

If the truss is hinged at the middle as well as at the abut-

ments, it comes under the class of Chap. II.; and the effect of

one or more loads is easily determined. We may draw Fig. 48,

if desired, and find by inspection the extent of rolling load

required to produce the maximiun bending moment of either

kind at any point. See § 32. Thus, at one-fourth the span

from one abutment, the maximum bending moment of one kind

occurs when the rolling load covers four-tenths of the span on

the same side ; and the maximum bending moment of the oppo-

site kind, when the rolling load covers the other six-tenths of

the span. The maximum moment at a point near the abut-

ment is found when the head of the load is at one-third the

span from that abutment. These values are easily deduced by

finding the horizontal distance of the point of intersection D,

in Fig. 48, on A F, of that line, which, starting from B, passes

through E, the extremity of a certain ordinate. Those authors

who make maximum bending moments at all points occur, for

a stiffening girder hinged at ends and middle, when the half-

span is covered, are in error. The shear diagrams are con-

structed as explained in the earlier chapters. The construction

for normal shear will be applicable to Fig. 46, and the vertical

shear diagram to the stiffeninci' truss of Fio^. 47.
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163. Distribution of Rolling Load between Cable and

Truss.— It may be well to call more paitienlar attention to

the distribution of the rolling load l)etween the truss and cable

of Fig. 47, and the way in which bending moments are caused

in the unloaded portion of the horizontal girder. If the bridge

is unequally loaded, and no stiffening a[)pliances are used, a

distortion is produced, as explained in the hrst section of this

chapter. When a weight W is applied on a suspension-bridge

of half-span c, at any point distant h from the middle liinge, we

know, in the first place, that the totaJ reaction at A, Fig. 47, the

end farthest from the weight, is W -^.^— , and at B i?

and, in the second place, as there can be no shear in the cable,

we see, from the equilil)riuni polygon of Fig. 48, and the lines

0-4 and 0-3, drawn in the stress diagram parallel to the tangents

to the cable at the tops of the towers, that 5-4 : H = 2^ : c,

or 5-4 :=
"^

- H. By § 23, H = o-,—W , therefore the amount

c — h
K^i vertical force combined with H of the cable is W .

c

Hence at A and at B the cable itself i)roduces a reaction of

,,_ , the balance of the reaction comes from the truss; theW c

reaction of the truss at A will therefore be —W ^ , and at

B will be w('--;t^ -^ ^'^ ^ W?4^^- This reaction also

will l)e negative when h is less than ^ c. Such is the case in

Fig. 48, for the polygon A D B ; and we have a corroboration

in the negative bending moments near each end.

As the vertical force at A or B from the cable is the load on

the half-si)an of the cable, and this load must be uniformly dis-

trilnited horizontally to keep the cable in its curve, the intensi-

ty of vertical pull exerted between the cable and the rods per

horizontal foot is found by dividing the above force by the half-

span : hence it is W ^-^— • This will be the nptvard pull on
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the girder per horizontal foot at all points and the eause oi" the

bending moments. Of course at the point of appliealion of W
tlie resultant force acts downward. The action of a continu-

ous load over a greater or less portion of the girder will follow

the same law; and we shall have downward forces on the londed

portion of the girder equal to the difference between the im-

posed load and the pull of the vertical rods, and upward forces

on the unloaded portion.

It is convenient to notice that the amount of W carried by
either half of the cable is that portion which would be carried

by the middle hinge if the half-girder alone supported W. As
the girder reaction at the farther abutment is one-half of this

amount, and the half-girder on the unloaded side is subjected to

a uniform upward force, the shear on the middle liinge will also

e — I)

be one-half of this amount, or W --,— . The shear diagram is
'J. c ^

given in Fig. 48. For any extent of load it will noAv be easy

to find the amount carried by tlie cable ; for we have only to

calculate the portion which woidd come upon the middle hinge,

Avere that a point of support of a simple truss of span c, and

this portion will be the load on the half-cable.

164. Comparison of Inverted Arch and Horizontal Gird-

er.— All statements in regard to the horizontal stiffening girder

are equally true of the two parallel chains with bracing.

While, in the Ijridge formed of cable and horizontal girder,

the girder resists bending moments, and the chain takes up the

direct stress, in the latter case the cables have to resist both

moment and direct stress. But the maximum direct stress at

any section, half of which is borne by each cable, occurs when
the bridge is fully loaded : the maximum bending moment is

found with a partial load, at wliicli time the direct stress is less.

Hence less material is theoretically re([uired for the cables and

truss of the type of Fig. 46 than for one like Fig, 47,— per-

haps three-fourths as much. The introduction of the middle

hinge in the axis of the rib of Fig. 46, Avith connections of suf-

ficient strength to transmit the cable stresses, is attended with

a litth' difficulty, which does not exist in tlie other case.
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The three-hinged girder or rib may have the third liinge re-

moved from the middle towards one end, as shown in Fig. 50,

where one portion of the girder takes the form of a short link,

extending to the lirst suspending rod.

165. Horizontal Stiffening Girder hinged at Ends
only.—In case the middle hinge is omitted the girder will be

exposed to bending moments, as explained in Chap. III. Here,

again, an inspection of Fig. 8 will show the extent of load re-

quired to produce maximum M of either kind ; and an exami-

nation of the table of bending moments will show that an abso-

lute maximum M occurs at one-fourth of the span from either

abutment for a continuous load extending from one end to a

point distant 0.43 of the span from the end nearer to the point

of maximum M. Its amount is about .133 of the maxinmm
moment at the middle of an unassisted girder of the entire span.

The stretching of the cables on both sides of the towers inij)<iirs

the accuracy of these deductions. For twenty divisions in the

span M is maximum at 5 for a load from 1 to 8 inclusive, giving

M = 4" O.G654:r?AY. Loads from to 10 give an equal nega-

tive moment at 5. The point of contratlexure in the first case

is between points 9 and 10, and not exactly at head of load.

1

W

I = i(20 w -2 6')= 5 w c. 0. 6651 -^ 5 = 0. 1 33.

From the value of Y,, § 50, it is evident that

is carried by either half- chain, and tliis quantity divided by c will

give the intensity of upward pull on the truss from a load W at

one point. The above amount is again that which w^ould be car-

ried to the point of contraliexure of the truss, if that were the point

of support of the unassisted truss, and the truss were discon-

tinuous over the support. (Compare Rankine's "Applied

Mechanics," page 375, note.')

166. Stiffening Girder of Varying Depth.—Returning

anew to the case of the htilfening girder witli tliree hinges, it is
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evident, that if the girder has a variable <lepth, greatest at the

points of maximvmi bending moment, the stresses in the flanges

or chords will be diminished proportionally, with an economy

of material. If, at the same time, the girder is itself the sus-

pension cable, we can so adjust the depth, that the flange stress-

es for a partial load shall never exceed those arising from an

entire load. Modifications having this end more or less in view

have been suggested and carried out. Let us first draw, in

Fig. 49, the equilibrium curve for a rolling load alone over half

the span. While this curve will not give maximum bending

moments, it will not differ greatly from the curves of maximum
M, and it offers a very convenient and sufficiently accurate

basis of comparison. Its form will be a straight line over the

unloaded half of the span, and a paraliola tangent to that line

for the remaining portion. As the tangent at the abutment end

of this parabola meets the tangent from the other end in the

vertical through the centre of gravity of the load, the tangent

A D is at once drawn. Draw the chord A C. The parabola

cuts the middle vertical ordinate E D from the chord A C at

its middle point F. If the height of the original parabola of

the cable is ^, the ordinate at one-fourth the span is f /fc. G D
= lh; G E = I Jc ; tlierefore ED = k; EF = }, k ; and F G
= k. Hence the remaining ordinate for bending moment at

one-fourth the span is i ^ on either side, and of opposite signs.

167. Bad's Arch, or Lenticular Stiffening G-irder.— If the

two half-ribs of the arch of Fig. 51, or of the stiffened suspen-

sion-bridge, are each made of two equal parabolas, the outer

ones being the continuous equilibrium curve for a complete

load, the vertical depth of the semi-girders at their middle sec-

tions E and F will be one-half the rise or height, k. Let us

denote the horizontal thrust or tension from steady load to by

H; that from a full rolling load w\ by H'. The horizontal

stress due to a rolling load extending from one abutment over

half the span will be ^ H' ; for a similar load over the other

half-span must give an equal stress, and both combined must

equal H'. When the above bridge is fully covered with mov-
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iiig load, the equilibrium curve will coincide with the continu-

ous curve, and the stress at each section of the main cable will

be that due to H -f- H'. The auxiliary ribs and bracing will

experience no stress. When the bridge is half loaded, say from

C to B, tlie equilibrium polygon for rolling load will be the

one sketched in our figure ; it passes at I, i k below the main

cable at D, and through the middle or axis of the truss A C.

The horizontal component of the stress at 1), due to 2 H' at

I, is, from tlie equation of moments about E, 1 H'; that is,

^ W . ^ k =: lior. comp. at D X ^ ^- Taking moments about D,

^ H.' . I k =z — hor. comp. at E x 2k; or horizontal component

at E is — 5 W. At F and G the horizontal component is, in

each member, i H'. The minus-sign denotes opposite stress,

here compression , in the arch, tension. We may therefore

write the following table of cases

:

Horizontal component of stress at . E D F G.

With steady load only H OH,
" and one-half rolling load -^H' H+^H' +^R' H+^H',

" complete " " H+H' H+H'.

Since F and G change places with E and D for a load on the

other half-span, we see that the lower member, or main cable,

experiences a horizontal component which fluctuates from H to

II -|- ir, always tension; while the auxiliary rib has a stress

Avhose horizontal component ranges between i H', tension, and

i H', compression. The bracing will undergo no stress from

a full load. The stress in the bracing for partial loads may be

worked out by the method of the previous chapters for finding

the amount of shear remaining after subtracting the vertical

components for the two cables at a section, by the method of

Part II., " Bridges," Chap. V., or by drawing stress diagrams as

given in Part I., " Roofs."

As the ])arabola through I is a jirojeetion of that through D,

t'ne above (IcMhutions for the points D and E are true for the

other ])oints of the girder. Although, as pointed out in § 162,
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the bending moments are a little greater for loads which cover

not quite hall" the span, it is evident that the horizontal compo-

nent of the stress in the main cable can never exceed H -)- IF,

and in the counter-rib will but slightly exceed ± J H'. This

form of arch was designed and patented by James B. Eads:

a paper upon it by him may be found in the "Transactions of

the American Society of Civil Engineers," vol. iii.. No. H,

October, 1874.

168. Bowstring Stiffening Girder.— If the auxiliary mem-
bers connecting the hinges A, C, and B, Fig. 52, are straight,

we have a variation in the method of stiffening and a change

in the stresses. The equilibrium curve A F C I B, for a rolling

load over one-half the span, is also drawn here, coinciding with

A C, and passing through I, i ^ below D. The steady load will

be entirely carried by the main cable as before, as will also

a complete rolling load. The half rolling load, behig entirely

supported on the left by A F C\ will cause in that member
a tension whose horizontal component is h H' ; a horizontal

tension in D, of H', and a horizontal compression in E, of

i H^ as is found by similar e([uations of moments to those in

the last section. There results, then, for this type the following-

cases :
—

Horizontal component of stress at . . E 1) F G,

With steady load only II II,

" " " and one-half rolling- load -Ur 11+ IT +^ll' II,

" " " " complete " " II + H' II + 11'.

The stress on the main cables will be very slightly increased

for some partial loads, as shown before. The increase will, how-

ever, be small, for the direct stress is decreased at the time the

bending moment is increased; so that the absolute maximum
may be called H -f- H' without any error of importance. The
stress in the straight stiffening rib ranges from a tension of

i H' to a compression of ^ H'. While the member A C or C B
has to resist double the force of the preceding case, and that
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force also completely reversed for a moving load over one-lialf

of the bridge, the unbraced lengths are shorter than in Fig. 51,

the construction of a straight member is simpler, and the web

members are only one-half as long : the cost may therefore be

sufficiently influenced to cause this design to commend itself

more to the practical builder than does the former. A notable

example of this type is the Point Bridge at Pittsburgh, Penn.,

eight hundred feet span, built by the American Bridge Com-

pany of Chicago, in 1876.

169. Fidler's Stiffened Suspension-Bridge. — Again, let

us conceive of two caljles, A F C D B and B E C G A, Fig. 53,

each separately subject to, and in equilibrium under, a rolling

load over one-half the span, and then let their places be taken

by the two girders shown. A C and C B will be straight, as in

the last figure ; A G C and C D B will be parabolas, each tan-

gent at C to the chord of the other : and the equilibrium curve

for a complete load will pass through the middle of each truss,

as shown by the dotted line. These trusses are, therefore, of

the form of Fig. 52 ; but they have a depth equal to that of the

trusses of Fig. 51. The horizontal component H, of steady

load, and H', of complete rolling load, will be carried equally

by both members of each truss, i H and ^ H' on each. A roll-

ing load on the right half of the span will cause a horizontal

tension of i H' at D and at F. We may, then, write, for this

type.

Horizontal component of stress at E D F G.

With steady load only . . . . i H ^ H i H i H,

" " " and one-half roll-

ing load iH ill-f-iir iH-fiH' ^H,

with steady load and complete roll-

ing load iH+ Ur " " iH-f^H'.

The stresses will, therefore, always be tension, and the hori-

zontal component will vary in each member from i H to i

(H -f- H'), a most favorable showing for the structure. The
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remark of § 162 in regard to nuiximum l)endiiig moments

applies here also. The maximum stresses in the bracing can

be worked up in the way thought most convenient. This type

may also be analyzed as two inverted bowstring girders, a

weight on one causing simply a tension in the tie of the other

and an inclined reaction in its line at the middle hinge. Hence

the investigation of the bowstring girder in Part II. may be

applied here. A very interesting analytit-al discussion of the

tv[)cs of bridges and arches of this chapter may be found in

'' Engineering," vol. xx. for 1875, from the pen of Mr. T. Clax-

ton Fidler, the inventor and patentee of the type discussed in

this section.

170. Ordish's Suspension-Bridge.—Another stiffened sus-

pension-bridge, in which the proljlem of resisting distortion

from a partial load is solved in quite a different way, is what

is known as Ordish's, show^n in Fig. 65. The Albert IJridge

over the Thames, at Chelsea, Eug., is of tliis type ; and one of

moderate span has been erected over the Pennsylvania Rail-

road, at 40th Street, Philadelphia. Here a certain initial stiff-

ness is given to the platform itself, and it is then directly sup-

ported at several points from the tops of the towers. It is

intended that the weight shall be entirely carried by the

inclined tics. As these ties, from their length, would sag con-

siderably under their own weight, a passing load would cause

the roadway to move vertically ; for an increased pull on a tie

would tend to straighten it. They are, therefore, suspended,

at the joints in the several bars which make up tlie ties, from a

light cable, which is designed simply to carry the weight of the

ties ; and the suspending rods are so adjusted, that the ties sliall

be straight. No movement of the roadway of any importance

can tlu'ii take place. Tlie analysis is very simiilc

171. Erect and Inverted Arch combined.—The bridge

over the Elbe, at Hanibnrg, one span of wliieh is shown in Fig.

54. is a combination of the erect and inverted arch. This con-

struction tlispenses witli abutments to withstand a thrust, as

the thrust of the upper rib will at all times be balanced by the
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tension of the lower rib. If the iil)s are of equal stiffness, any

load may be considered as divided ec^ually between the two

sj'stems : if the ribs, while having the same curvature, are not

alike in cross-section, the load will probably be distributed in

the ratio of their moments of inertia. As the erect arch

always tends to move away from its equilibrium curve, and the

inverted arch to approach the ecjiiilibrium curve, the tangents

at the abutment ends will move in the same direction, and

therefore the structure should be ti-eated as hinged at the ends,

unless each flange is firmly bolted to the skew-back. If the

structure is carried on columns or a pier, it appears to us that

the ends cannot be rigid, and we judge that the two ribs will

begin to turn about the middle of the depth without the intro-

duction of a pivot or hinge.

The effect of temperature is annulled. Also the shortening

of the erect arch under the direct compression being opposite

to the extension of the inverted arch under tlie direct tension,

the span will tend to remain unaltered ; but the ribs themselves

will be changed in form, one rib flattening as tlie other be-

comes more convex. If, in making such a design, the section

of tlie arch is found to differ mucli from the section of the in-

verted rib, it will be well to calculate the relative deflections of

the tAvo ribs at the middle. The amount of load each will

carrv varies inversely as the deflection under equal loads, since

they must deflect equally: and hence, if the arcli is first de-

signed of such shape, for the purpose of resisting compression,

that it is stiffer or has less deflection than the chain, when each

has one-half the load, the cross-section of the arch must be in-

creased, and that of the chain may be diminished. This type

of structure must not be confounded with a lenticular girder:

the absence of V)racing between the ribs makes them independ-

ent.



CHAPTER XI.

BENDING MOMENTS FROM CHANGE OF FORM.^

172. Displacement from Bending Moments.— It follows,

from the fact that the aicliecl rib moves away from the equilib-

rium polygon or curve, that the bending moments and chord

stresses will have a slight tendency to increase. When the rib

changes in shape, however, the equilibrium polygon must also

move enough to still satisfy for the new form the equations of

condition by which it was first established, and this movement

will in some measure counteract the former. Besides, the

equilibrium curve for steady load generally runs so close to the

axis of the rib, that the change of shape from bending moments

is very slight ; and, even when the influence of rolling load is

added, the increments of the bending moment ordinates are too

small to be of material consequence.

The vertical displacement at any point E, Fig. 56, produced

by any load, will be found, for the parabolic rib, by taking area

moments^ as explained in Part II., " Bridges," Chap. VI., or for

the circular rib by summing the ordinates as usual along the

rib. As was done in the treatment of beams, it will here be

necessary to find the point D where the tangent to the rib in its

new form is horizontal, which point will not be at the crown,

1 Many of the deductions in this chapter are only intended as guides in practi-

cal construction, to indicate where, and to show approximately how much, addi-

tional stress may be anticipated from change of form. Exact results are not

attempted.
161
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except for symmetrical loads. D is then to be assumed momen-

tarily as a fixed point, and the deflection or area moment of A
and E obtained with reference to it : the subtraction of the

latter from the former gives the displacement of E relatively

to the abutment A ; that is, from the area moment between

I) and A subtract the area moment between D and E ; and

the remainder, when multiplied by H -^ E I, will be the vertical

displacement of E. As just stated, these disphicements may be

neglected.

173. Displacement and Bending Moments from Com-
pression.—The thrust which exists at each section of the rib

must, by its compression of the particles, cause a shortening

of the rib, and, as the shorter rib must fit the same abutments,

it is necessarily lowered at the crown. The resulting bending

moments may be of consequence. So far as the rib retains

sensibly its old form, parabolic or the segment of a circle, the

equilibrium polygon is lowered proportionally to the sinking of

the rib, as indicated in Fig. 57, in order to still satisfy the

equations of condition ; but, as the deflection v at the crown

is very small compared with k, the alteration of the bending

moment ordinates is very trifling. On the other hand, this

lowering 'of the apex of the equilibrium polygon at once in-

creases the value of II, offsetting the change first pointed out.

Tliis will be seen, also, from the values of M, § 44, into

which k does not enter. The bending moments from the exter-

nal load are therefore practically unaltered by the change of

form.

To produce this change of form, however, or to bring the

arch down to its new position, requires a change of inclination,

and consequently a bending moment, at most points of the rib.

The strains thus induced should be examined. Strictly accu-

rate theoretical investigations for the different ribs cannot

easil}' be made ; but formulce may be deduced which will serve

nil practical purposes.

174. Parabolic Rib hinged at Ends.— The parabolic rib

which we have treated varies in cross-section, from the crown
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in llio 4)iiiigiiig, according to the secant of the inclination t(t

the horizon, § 31 ; and, as the magnitude of the direct thrust

for a complete uniform load varies in the same way, the inten-

sity of direct compri^ssion per unit of cross-section arising from

II will be constant, and every unit of length of arc will be

shortened by that thrust the same amount, so that the arch will

be altered as if exposed to a change of temperature. Wv will

assume that the new form of the rib is still a ])aral)ola with a

rise k' in place of k% but with the original span 2 c.

By definition. Part II., '^ Bridges," § 85, the modulus of elas-

ticity E equals the intensity of stress divided by the shortening

of a unit's length. Let the constant intensity of thrust ecpial

the thrust at the crown II, divided by the cross-section at the

crown A; let the compression of a unit's length e(iual the dif-

ference, s-s\ between the lengths of arc before and after com-

pression divided by the original length s. Then

Us

A)i approximate formula for the length of a parabolic arc is,

in our usual notation, s =: 2 r' -f- 4 . The value of ,s-' will be

(tbtained by writing /-' for / ; then

' ~ Of ^
'

"

"^ ~~ A E ~~
8 A E c

As r, the deflection at the crown and the difference between

k and k\ is very small, we may write, without sensible error,

/ — /"' = V, and k -\- k' = 2k ; Avhence /r — k"- = '2k t\ and we
have

8 - 2 II 3 c^ -f 2 f^ H 3 c'^ + •_> A -^

3 c 3 A E c
'

4 A E Ic

It was proved, in $ '5i), that this rib deflected vertically like a

horizontal beam of unift)rm section : hence to bring the arch

down to its new position will create bending moments at all

l)oints such as would accompany the same deflection in a
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straight beam, supported at the ends, uniformly loaded, and of

a cross-section equal to that of the rib at the crown. In

Part II., " Bridges," § 95, we found, for a beam supported and

loaded as above with tr per foot,

5 icl^ ott'c* SMqC^
'^ ~ 384' EI ~ 2Te1 ~ 12ET'

if Mo is the bending moment at the middle. Equating these

two values of w, we obtain

12EI ~ 4AE t '

or

_ 31 H (8^+2^^^0— oAcU-

the additional positive bending moment at the crown of the

arcli, caused by its conq)ression under the thrust H.

Tlie bending moments at other points may then be taken

to compare with those of the beam, that is, as the ordinates to

the })aralx)la, l^eing | ^1,^ at the (quarter-span.

175. Remarks; Example.— It will be noticed that E has

disappeared from the expression for Mq : hence the bending

moment will be the same, whether the material be iron, steel,

or wood. As I contains A, and may be written n A Jr, Part II.,

" Bridges," § 86, w being a nimierical factor, it is seen that the

bending moment from deflection of the lilj due to compression

increases with the square of the depth of the rib, and, as ]M -f- h

equals the flange stress, this stress will increase directly as the

depth. To diminish the eifect of change of form alone, employ

a shallow rib.

If H = 20 tons, c = 100 feet or I z= 200 feet, ^ = 20 feet,

and h = '2\ feet, for a rib with two plate flanges and thin or

open web, 1 = 2 {
i A . (^ h)'-}= | A Jr, and

, , 3 X 25 X 20 X 30.800 ^ a n 4- ,
^^0 =

.5 X 1(J X 10.000 X 20 = -^ ^^- ^"'^^ ^^ ^^°^"'

giving 1.16 tons compression on upper flange, and an equal

tension on lower flange.
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176. Displacement from Change of Temperature.— The
deflection produced by a lall ol" temperature in the parabolic

rib hinged at the ends will be found by taking tlie area moment
of the half parabolic segment, Fig. 16, from the crown to tlio

springing about one abutment, and multiplying by H -^ E L
Hence, as in Part II., " Bridges," § 95,

Hy
•) . /, 5 - 5 I

V

2 7-
Vt —^ . 3 t /.. . g C

J J . ^-^ . C K,

the deflection at the crown when the temperature falls, and the

rise of the crown when the temperature rises. One may prefer

to consider the rib in its new position as the proper curve from

which to obtain the area moment. If it is assumed to still be

a parabola with the rise k\ we have

V = A ;gp^ c^ k', and k' = k ±. v.

Substitute this value of k\ and v becomes

_ 5 H c^ k

"~12EI If: 5IIc2'

This deflection is the result of the bendinsj moments arisinsr

from H^, and is not to be regarded in the light of the preceding

section. The moments were computed in § 74. These moments
will be slightly altered by the movement, as it shortens or

lengthens the ordinates ; but H^ will be changed in the opposite

direction, reducing the actual modification of the moments.

Since

15 / c E I _ 25 / e c2

^' - ¥ • ~1^' '' - ¥y IT'

a quantity independent of the cross-section of the rib, and, so

far as the material is concerned, affected by the co-efiicient of

expansion only.

The bending moments due to the direct thrust, whether arising from a

load or change of temperature, have been considered, as well as the result-

ing deflection. When the temperature rises, H^ is thrust, and in itself tends
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to shorten the rib, and thus reduce the above amount of rise due to ex/an*

sion. The ratio of the two deflections will be

In the example previously cited this ratio becomes

a reduction of three-fourths of one per cent. When the temperature falls,

H; is a tension, and, in lengthening the rib, sliglitly reduces tiie detiection.

The deflection for a co-efficient of expansion of .000007 and a

range of temperature of 30° will be, in our example of § 175,

_ 25 X 30 X 000007 X 10.000 _ ,,, ,,_ ^ , i^.^.
' 82 X 20

[The expansion or contraction of a straight bar may l)e con-

veniently stated as J inch in one hundred feet for 30° F.] The

theoretical movement of the rib at the crown for a range of 30°

above and below the temperature at which it was constructed

will tlierefore be two inches. The actual movement is gener-

ally less than theory would indicate, owing to gradual transi-

tion from one extreme to another, protection of some portions

oi the structure from extremes of temperature, as by shielding

from the direct rays of the sun, &c., and, finally, imperfect free-

dom of motion.

177. Initial Camber for Arch.— It may he expedient to

make the rib a little longer than the distance between the

springings to compensate for the amount of compression which

will arise from the steady load, or else to wedge up the spring-

ing points until the crown of the rib, when not under strain,

shall be a distance v above its normal position : the rib will

then, when in place and under its steady load, come down to

the curve for which it is designed, and will l)e free from that

portion of initial bending moment due to change of form from

steady load. This will be true, because, in forcing the rib up,
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we have introduced bending moments of the opposite kind to

an ('([ual amount. An additional allowance may be made for

ail ordinary travelling load. If the rib is to be made longer to

offset the compression, tind r, § 174, or II from steady load, and

make the parabolic rib of a span 2 c -{- u and a rise k, so that,

when sprung into i)laee on a span 2 r, it would rise to a heiglit

k -\- i\ if it were not compressed at the same time.

Noticing, from § 174, that this compression acts like a fall of

temperature in shortening the rib, we have, from § 74,

„ 15 EI 15 EI u

jj T
since u must equal 2.t e c. But H^ = ^rf- -rrr i\ by § 176, and,

ecj^uating these two values, we get

15 E I 12 E I

or

If, in our preceding example, A is eight square inches, and "E is

24,000,000, ti becomes half an inch.

178. Parabolic Rib with Fixed Ends.— lii this case the

deflection will naturally correspond with that of a beam of

uniform section, uniformly loaded, and fixed at the ends, as will

be seen by comparing the equilibrium curve of Fig. 17, where

H from temperature alone acts, with that of such a beam. In

Part II., " Bridges," § 99, and Fig. 47, we found that

lu
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The bending moment at the .springings will be double this

amount, and of the opposite sign.

The deflection produced by a change of temperature will be

found by taking the area moment of the semi-segment of the

parabola already obtained in § 176, and subtracting the area

moment of the rectangle whose height is | ^ and base c.

«^< = El ( i'^ cU- — f c ^-
.

i c) = J^
^^ c-' k.

Applying the data of the previous example of § 175, we have

- - 25 X 20 X 30,800 . ^ *. ^
^0 =

16-x-1070-00->r20
= ^-^ ^*- ^°"^ ""^ ^^^^^"'

giving 1.92 tons, compression on upper flange and an equal

tension on lower flange at crown, and 3.85 tons, tension on

upper flange with an equal compression on lower flange, at

either springing.

To find such additional length of span for the parabolic rib

fixed at the ends, that, when compressed under steady load,

it may have no bending moments due to change of form, we
pursue again the method of § 177. From § 76,

As above,

therefore

a quantity five-sixths of that for the rib with hinged ends.

179. Circular Rib hinged at Ends.— It is more difficult to

obtain the amount of deflection from change of form produced

by the compression at each section of a circular rib, even

approximately. As the equilibrium polygon for steady load

will not deviate much from the axis of the ril), the tliriist T
may l)e assumed to vary as secant 0, the inclination of the rib

I _45
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at successive points to the liorizou : hence the shortening of a

small portion, d s, of arc tinder the thrust will be

d (.s- — .V ) = -T-_ = * xi secant y = -r-^ . •;
^ ^AE AE AE cos

as the section is constant,

, _ llr r+:^jl_d__ 1 + sin (3 llr
' ~ * "" A E j _^3C0sy ~ ^^ 1 — sin /3

" A B"
^^'^

(The symbol Io[/ denotes the hyperbolic logarithm; to obtain

it, multiply the common logarithm by 2.30158.)

As, with a small deflection, the rib will vary but slightly

from its original form, let it be assumed to be an arc of a circle

after compression. We have then s — / == 2 r p! — 2 / p'', where

/ is the new radius, and ^ the new angle subtended by the half-

arch. Now

C24.A-2 , c2_|_(t_v)2 , . ^, c

By assuming a value for i\ r' and i^ can be obtained, and the

value of 2 (r p' — / j/) calculated : if it agrees with the value

.s — s' of equation (1.), the assumed v is sufficiently near the

truth ; if not, the process of approximation may be repeated.

We may adopt, as a value which will answer very well in many

cases, V = ——-. Then

H r , 1 4- sin /J

los:* 1 — sin ^?

This logarithmic expression may be written as a series,

H
AE^ (sin i3 + i sin3 ,3

-f-
i sin^ /3. &c.).

It was shown in § 36 that the vertical deflections of two

beams of the same cross-section, and carrying the same gross

load uniformly distributed,— one inclined at an angle ^, and the

other the horizontal projection of the former,— were in the pro-
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portion of 1 : cos i. If, then, the h)a(l on the horizontal beam is

increased in intensity in the ratio sec i : 1, the vertical deflec-

tions of the two beams will be the same. We desire to find the

amount and distribution of load on a straight beam of the same

span as the circular arch. Fig. 58, and the same cross-section,

which shall produce the same deflection at the middle. By
what has just been stated, the load on any horizontal foot of a

straight beam must be to the intensity on an inclined beam as

w sec to u\ A small portion of the arch d s = sec ff d x ; hence

it follows, that, if the arch is carrying tv per horizontal foot over

the whole span, a horizontal beam, as above, loaded with the

ds
varying intensitv w sec d = w -^~ per foot, will have the same

dx
deflection. This load will be the projection of a load of uniform

intensity measured along the ril), or the load on the beam is

w .S', or 2zv r p', in our usual notation.

In any particular case we may easily solve the problem

graphically. Lay off .1-2, Fig. 58, equal w . A B ; divide A B
into a number of equal parts, and 1-2 into the same number,

with half-loads at 1 and 2 as usual. ]Make 2-0 equal to H for

this load, and, with as a pole, draw the equilibrium polygon

A' B', which, for an arch of moderate rise, will be a close

approximation to a catenary. C B' . (0-2) will be the desired

bending moment M,,, for a deflection found by taking the area

moment of A' B' C about A', multiplying by 0-2, and dividing

by EI. Use these values as we did those of §174. In con-

structing, increase the length of the rib by (1.) if thought

desirable. The values of the following section may be taken

if preferred.

180. Analytical Discussion. — The exact values may be deduced by
the usual process for finding the deflection of a beam. If x is the, dis-

tance of any point of the beam from one abutment (Fig. .59), [3, the angle

subtended at the centre by the half-arch, t), the angle from the crown to

any point whose projection is x, and lo, the load per foot on the arch, and

also at the middle of tlie beam, then ar= r (sin ,3— sin t)), d x= — r cos d d tj,

the load at any point = lo sec y per foot, and load on d x ^ ic sec y (/ x
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= — 10 r sec cos Odd = — iv r d 0. The load on one-half of the span is

shown in the figure.

Load on half-span = f to sec o d x = ic r j d u ^= w r /3.

This expression is the I'eaction Pj at the abutment. If x' is the distance

from the abutment to any section at wiiich we desire the bending moment,

and the corresponding angle is y', we have the bending moment

/x'
(x' — x) ir sec d X

= wf^ (sin 3 — sin y') — w ?-
j

(sm ti' — sm y) d (i

= If r- (li sin ti -\- cos ^3 — o' sin y' — cos y'),

which becomes at the middle

]\I (max) = m; ?- (3 sin 3 + cos 3 — 1) = ir r (c 3 — A-).

Writing the usual expressions for inclination and deflection, and dropping

the accents, we have

rr: — '^J- (,i siu /3 siu + COS ,3 siu y — f sin ycosy — 4O -{-^0 cos- y).*

The slope at the abutment, when ti = 3, is —
,
.^(/3sin-/V— ,icos2,3-Hsih/3cos/3),

which, if we remove , is the area of the half equilibrium polygon A' B' C

of Fig. 58. The deflection of the centre is

v= ^idx-':^ /
' (/i;sin/3siny-|-cos,isiny— fsinycosy— |y+i(^cos-y)eosy(/0

Jo i' I J I)

= ^(^(3sin3/3-t-5?eSin2;3cos,J-i^sin^-icos/i+i).*

* These expressions aie reduced. To aid any who desire to prove them,

we give the following integrals : ft) cos oao= e sin -f cos t) ; ft) sin d cos d

= —L
t) cos- fJ -f ^ cos y sin y -f i «

; / cos'^ d d t) = h sin 6 cos + i ;

fi) cos^ tidO ^0 cos- y sin t)
-\- I cos^ y -f | y sin^ t)

~\-
'i
sin- cos d.
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From this expression, by removing =-^, we obtain the area moment of

A' B' C.

The quantities representing v and M will now be introduced in the

equation of § 179 : hence we get

^ 1
1 + sin^ ^ '-^(12-3sin3J+ 7sin2/3coSi3— 9;3sin3— 4C0S3+ 4).

Aij "1 — sinp 181^

Find the value of M for tlie special arch, and vahie of /3, and also the

value of V. Let i' -f- I\I = B r- ; then

2 B r^ A E ^ ^ 1 — sin ^

If the arch is a semicircle,

M(max)=r^w/-(T — 2); * = — ^ei' 2'
^' ^ 36'EI^^'' + ^*

181. Circular Rib Fixed at Ends.— From the method of

treating the parabolic rib with fixed ends, as compared with

the parabolic rib witli hinged ends, we would suggest that the

deflection and the bending moments at crown and springing

of the circular arch witli fixed ends, due to the compression of

the rib from H, may l)e obtained from a drawing like Fig. 58,

when 2-0 is made equal t(^ the H of this case, by plotting the

closing line of Fig. 27 on the arch of Fig. 58, at the lieight

above A of ri'-^^ cosp!) (see § 105), projecting the points

of contraflexnie vertically on A' B', drawing the horizontal

closing line of tliis equilibrium polygon, and then finding M
and V for the beam fixed at the ends.

For circular arches of moderate rise, the treatment for para-

bolic arches will probably suffice.







CHAPTER XII.

BRACED ARCH WITH HORIZONTAL MEMBER ; OTHER SPECIAIj

FORMS ; CONCLUSION.

182. The Usual Analysis not Applicable.— The difficulty

in the way of u successful application of the usual formula

^ E F . D E = for the change of span of the braced arch with

horizontal member, of. Fig. GO, or, as it is sometimes called, the

rib with spandrel bracing, arises from the fact that the moment

of inertia of successive cross-sections cannot be left out of the

equation as a constant. In fact, it varies rapidly ; and its amount
at any section is unknown until the sizes of the respective

pieces are determined. It was shown, in § 72, that I must l)e

placed in the denominator of the above formula: and, if not

constant, it must come within the sign of summation.

This arch is pivoted at the springings, but continuous at the

crown. If it were hinged at the crown by the omission of a

piece in either the lower or the upper chord, the thrusts at the

abutments could at once be determined by the principles of

Chap. II. ; and a diagram by the method of Part I., ''• Roofs,"

would at once give the stresses in all the pieces for any given

load. For the treatment of the case rej)resented in Fig. 60, the

following practicable method is offered. It was published in

" The Engineer," Feb. 10, 1873, and will also be found in the

ninth edition of "The C5^clop8edia Britannica," art. "Bridges,"

where it is attributed to Professor Clerk-Maxwell.

173
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183. Change of Span from Stress in a Piece.— From
previous stateineiits, we know that the modulus of elasticity

E is the measure of the extensibility or compressibility of the

kind of material to which it refers, so long as the stress does not

surpass the elastic limit, and is ecjual to the quotient of the in-

tensity of the stress on a cross-section divided by the extension

or compression of a unit's length of the piece in which the stress

is exerted. Thus, if I is the length of a piece in inches, A its

cross-section in square inches, T the thrust or tension in pounds

to which it is exposed, and J I the change of length produced,

E=.T i_; or M^^l. (L)

If the piece A of the frame of Fig. 61 is changed in lengthy

and every other piece is unchanged, while the portion of the

frame to the right is held firmly in place, the span L of the

frame will undergo an alteration J L. In this case the motion

takes place about the joint opposite to A, and we may write

A L : A / == o c : a h, (2.)

or the distance described by the point h for a small disjDlace-

ment around the axis a will be to the horizontal movement of

d as the arm a h to the arm of (?, or ae. A similar proportion

will be true, if one of the lower chord pieces is supposed to alter

in length. In case any diagonal is changed in length, as, for

instance,///, the four-sided figure efig must alter to efi'g' of

the sketch below, the point i turning about / as a centre, and

the point g about e : hence, for a small displacement, the centre

of motion is at the point of meeting, o, of if and g e prolonged,

which, for this arch, will lie in the upper chord ; and the perpen-

dicular }), dropped on the line of the piece, will take the place

of a h above.

184. Stress in a Piece from H and P.— Let t be the

stress produced in a member by a horizontal force H acting

l)etween the springing points. Then the principle of equality

of moments as necessary for equilibrium about the point around
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which motion wouhl otherwise begin, and whieh is no other

than the point noticed at the close of the last section, will

determine the relation of the forces. A general rnle for find-

ing- the axis about which rotation will begin is, Make a section

which shall cut three pieces oid}-
; prolong the lines of two of

the pieces until they meet: the moment of the stress in the

third piece about that point of meeting will equal the moment
of H about the same [)oint. Hence we have, for the piece A

*•'
I . ab = U . a c, ort = "4 H.

a h

Similarly, let f be the stress produced in A by a vertical

force P applied at one springing, while the other end of i\n}.

frame is held rigidly so that it cannot turn. As the arm of P
Avill be d 6% we may write

f . ah^V . <l c, or /' = ~ P.
a h

The distances d c and a c, being respectively horizontal and ver-

tical, may be denoted in general for any piece by x and ij. In

order to make the symbol a h of the last section and of this

one general, so as to apply to a diagonal as well as a chord

piece, let us write for a h the perpendicular p drawn from the

axis of rotation upon the action-line of the piece.

Any thrust at the springing having horizontal and vertical

components H and P will produce a stress T in the piece, equal

to t -\- t\ or

^ ^ ac.VL-\-fU .V ^ H.v -\-Vx
ab p

It is evident that heed must be paid to the kind of stress

produced by H and P; thus, in any piece of the top member,
H will produce tension and elongation, while P will produce

compression and shortening: the reverse will be true of the

lower member; how the diagonals are affected will be seen

when we come to our application. Appropriate signs, therefore,

must be given to the arithmetical values of the stress and alter-
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atiou of length ; tlius compression and shortening ma}' be

called positive , tension and lengthening, negative.

185. Formula for H.— From equations (1.) and (2.), § 183,

upon writing y and /*, as indicated above, for a c and a b, we get

the change of span for any stress, T, in a particular piece,

p p E A

or, upon inserting the value of T from equation (1.), last sec-

tion,

p- E A'

This same quantity can be calculated for the extensibility

due to each member of the frame ; and the result will not be

altered by the slight yielding of all the others, unless this

yielding produces sensible deformation, making appreciable

X y
changes in - and - : hence the sum of all the changes of span,

P P
or the total change of span, will be

"^/•EA+^^;r ' EA'

If the abutments do not yield, this expression is zero. If the span

changes, by a yielding of the abutments, so that e is the elonga-

tion of span for one ton of H, then the above expression for

change of span equals e H. P is the vertical component of the

reaction at one abutment, found as for any frame loaded as this

arch may be : hence H may be found. If the abutments do

not yield, we then obtain

H = . f'f^ . (1.)

"p-' HA

186. Application of Method.— Let a single weight, W, be

applied at an}^ one of the top joints of the braced arch. Fig. ,60.
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Inclined reactions will be produced at each abutment, whose

components will be H and P, at the left, H and P._, at the right.

The calculations for the resulting stresses in the pieces are then

best made as follows : Construct tables of the values x -^ p and

i/ ~ p for each member of the frame ; the metliod of sections

through the opposite joints, or of moments, will answer best for

the top and bottom members, and a diagram such as has been

drawn for a roof, for the diagonals ; assume a cross-section for

each member for an assumed probable value of the abutment

1 ,,,,..* V ^ 1 ir I

thrust : make tables ot -~
. .i^—r- and ^, . .=—ri or, wiiat is

p- E A j9- E A
equivalent when all the frame is of one material, so that E is

.f, and 4-r-
p- A p- A

cated in ( 1. ), § 185, can then l)e made. In summing P . --/^^ the

value Pi must be used for all pieces to the left of the loaded

joint, and P., for all pieces to the right of the load. Equation

(1.), above, will now give the value of H for this single load.

The process of finding the numerator of (1.) must be re-

peated for each joint which is loaded. The abutment reactions

having thus been found, the stress in each piece will be com-

puted by (1.) § 184, or will be scaled from a diagram drawn as

in Part I., " Roofs." If, upon finding the maximum stresses in

the pieces, resulting from the steady load and such rolling loads

as will have the worst efi'eot, the assumed sections are jiot

strong enough for these stresses, fresh cross-sections must be

assumed, and the whole calculation repeated. The change in

cross-sections will cause some change in the values of II ; but

this tentative process need seldom be repeated but once.

187. Example; Stresses from H and P.— These processes

will probably be rendered mure clear by an example. Let the

arched frame of Fig. 60 be 120 feet in span, 12 feet rise to the

curved member, and 17 feet rise to the straight member, making

the depth at mid-span 5 feet. Let the upper member be

divided into panels of 10 feet each, and the parabolic or circu-
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lar arc into portions of 10.263 feet each.' The radius of the

curved niemljer Avill l)e 156 feet. Let it be desired to design

this arched structure to bear a steady load of ten tons per joint

of the top nieml)er and a travelling load of the same intensity.

If a horizontal line L O is drawn to represent a certain value

of H, we may construct Fig. 62 by the method used in Part I.,

" Roofs," and by scale determine the magnitude of the stress in

eacli piece due to this H, as the only force, api)lied as a thrust at

each abutment; all of the stresses being measured -d^ fractions of

H, and the kind of stress noted. One-half of the diagram is

sufficient, as it will be symmetrical. The magnitude of any

stress in a tojj or bottom piece can be readily j^roved by the

method of moments. We may now fill the columns of a table

Avith these ratios which represent // -^ p, being- not only the

ratios of the stresses to H, but of .±ie change of span to change

of length. Bow's notation is used, and the stresses in one half

of the frame will correspond Avith those in the other half. The
sign -f- denotes compression, the sign — denotes tension.

VALUES OF -.

B O —0.272 A L + 1.20:'. ( ) A — 0.444 A B + 0.450

DO— 0.639 CL +1.520 BC— 0.47tt CD +0.480

F 0—1.117 E L + 1.027 D E — 0.500 E F + 0,502

I O— 1.67S GL +2.427 FG — 0.484 G I +0.488

K 0—2.185 J L +2.942 I J— 0.384 .J K + 0.38G

X O — 2.400 M L + 3.293 , KM— 0. 1-53 M N + 0. 154

In the same way a diagram constructed upon a vertical line

Avhich represents Pj, Fig. 63, Avill give the stresses in the several

pieces caused by this vertical force only, applied in an upward
direction at the left abutment, Avhile the right end is lield rigidly

in place Ijy fixing the end brace in position. This figure will

not be symmetrical, and therefore all the pieces must be entered

in the table. P., at the right abutment, in place of Pj at the

left, Avill reverse the table, B' O taking the place of B O; &c.

The ratio of these stresses to P will give ;* -^ p.

1 If tliR am is parabolic, the length of a piece will be 10.2G8 feet. The ilififer-

eiicc is not material for our example.
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X
Values of -.

P
B O

-I-
0.718 A L — 0.:3.-)4 O A +1.178 A B —1.189

1)0+ 1.87-J C L — l.:'.ll P. C +1. .-)(!.-> C I) —1.780

F O -f ;5.0(;-2 K L — •i.8:!:; J) E +1.S72 E F —1.870

I O -f- ().22(i CI L — 4.99(j F G -f i.-JU (; I — 2.2:J2

K O + 9.310 J L — 7.787 I J +2 :5}1 J K —2.35:}

NO-j- 12.000 ]\I L —10.05;') K INI +1.907 MX— 1.02O

K'O +18.10:5 M'L —12.592 NM' + 0.833 M'K'— 0.827

r () +12.075 J' L— 12.978 K' J' — 0.371 J' I' + 0.309

F' O + 11.283 G' L — 12.134 I' G' — 1.212 (V V + 1.202

D'0+ 9.098 E'L— 10.767 F'E'— 1.G57 E'I)' + 1.064

B'0+ 8.200 C L — 9.387 D'C — 1.870 C'B'_+1.8S0

A' L — 8.139 B' A' — 1.307 A' O fixed.

188. Computation of Tables.— We may now write a tal)le

for '+r, and another for '—.r-, for each i)iece of the frame. The
p- p-

first table, involving Sfjuares, will be positive throughout. The

lengths of the horizontal and rib pieces will be multiplied by

the footing of their respective columns to save labor ; but the

lengths of the diagonals are carried in as indicated.
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We next compute the following table, and multiply by the

length of each piece as we advance. It will be convenient to

add other columns, marked 2^, containing successive summations

of the factors for each set of pieces, as these numbers will be

used in turn. The summations are all negative, as will be

readily seen, and hence the sign — is omitted.

Values of —v.
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just stated, 65.88 + 48.04 ^ 113.9-2 P.. As the piece E L, below

the weight, is acted upon by J:\ oii one side, and P.. on the other,

it makes no difference whether it is considered to lie to the left

or the right of the loaded point. Adding up the respective

numbers, multiplying one by ij, and the other by o'j, adding,

and dividing by :^^'^"
I = 966.66, we get H = 0.831 W for a load

on the third joint only. The divisor 966.66 x 24 = 23,200, is

used.
Values of H.

Won
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190. Diagrams and Table of Stresses for Equal Cross.

sections.— We may now draw a diagram for a single load W
on any one joint, plotting the reactions, just obtained, and

proceeding by the method of Part I., " Roofs," Fig. 21. Six

diagrams, four of which are drawn, the scale being too small to

make the other two clear. Fig. 64, will give all the stresses, as,

by symmetry, loads on the right will cause stresses in pieces

marked Avith unaccented letters equal to those now found in

pieces marked with accents. The stresses are scaled in tons,

tabulated, and marked with their proper signs, in the following

table. They might be calculated by (1.), § 184, if preferred,

and their sum might be checked by a diagram for complete

load. Tlie sums of the respective compressions and tensions are

written below, and in the next line are found the diiferences of

these (juantities, or the stresses from steady load, marked S. L.

Upon adding to these latter the tensions or compressions first

referred to, we obtain the maximum stresses in the pieces for a

moving load of the same intensity.

It will be seen that the horizontal member is always com-

pressed ; the curved rib may have at times a little tension in its

middle portion, but the larger part of it is always compressed ;

the web members are struts and ties alternately, initil we reach

J K; the pieces from there to the middle may ])e exposed to a

reversal of stress.

191. Sections proportioned to Stresses. — (iuided by these

stresses, we will now assume sections of the different pieces,

which shall vary approximately as do the stresses just found.

O'i the wel) members, those under compression are intended

to l)e proportionately heavier than those in tension, as they

will not safely resist so large a unit stress. The assumed ratio

y' I

of the sections is marked on the figure. The quantities ~, . -^

X V I
and —^ . -^ are now found anew by simply dividing the pre-

vious similar quantities liy the section ratios just referred to.

The results follow on p. 184. ^K . -I i^ now 161.18.
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T7- '/ I
VALUES OF •-, . -7-.

/ A
B 0.296
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192. Bracing with Vertical Struts. — The bracing of the

arch just described is of the Warren or triangular type. The

design of Fig. 65 lias been used with success, is probably more

economical of material, and is, in our judgment, more pleasing

to the eye. The inclined braces are ties, and the introduction

of the counters at the crown obviates the reversal of stress in

the braces. When the upper member approaches the curved

member closely at the crown, the web may be made of a plate

for a distance of two panels : sometimes the two members are

brought into contact at the crown.

193. Cast-iron Arch as a Breast-Summer.— Builders some-

times employ a cast-iron member, shaped like Fig. 66, for span-

ning openings of considerable size, and carrying the weight of a

brick wall. Aside from the fact that cast-iron in large masses

is of very uncertain strength, by reason of internal stresses

produced by contraction in cooling, an additional element of

uncertainty is introduced by the method of constructing these

ribs. The thrust of the arch is resisted by a wrought-iron rod,

represented by a straight line in the figure, which, in place of

being fastened by bolts or nuts, is fitted into recesses in the

casting at its ends. In order to have the rod tight, it is made
shorter than the distance between bearings, then heated, and

shrunk into place. The rod is therefore under an initial ten-

sion, and the rib under initial compression, both of wliich are

likely to be of uncertain amount, and detrimental ; for, when the

arch is loaded, its horizontal thrust will be added to the tension

in the bar, and the compression of the rib will be increased. As,

however, the bar elongates under the pull, it would be well,

were it possible, to have the bar so much shorter than the nor-

mal span of the arch, that the value of H proper to the arch

under the proposed load should elongate the rod to that normal

span ; then the initial bending moments produced in the rib by

shrinking on the rod will be removed. It would seem possible,

by a careful measurement of the extension of the rod between

two marks some ten or twenty feet apart, especially if the

stretch has been previously tested, to determine the initial ten-

sion.
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If the arch is well built into the masonry at the ends, and if

the bearings are long, the rib may be considered as fixed at the

ends. If not so built, and in preliminary testing on two sup-

ports under an applied weight, the rib must be considered as

pivoted at the ends. From the small rise, such arches may be

assumed, in either case, to be parabolic. In testing, therefore,

under a single weight W applied at the middle, by § 40

H 1= II r W. At that time temporary bearings ought to be

placed at A to prevent the arch from bearing at C when loaded.

Under the load of the wall, unless the latter is cut by large

openings, so that a pier concentrates the weight on a small por-

tion of the rib, there will be no bending moments, as the load

is uniformly distributed.

194. Gothic Rib for Roofs.— The rib which supports the

roof of the Grand Central Depot in New-York City is pro])a-

bly circular, and will be analyzed readily by the principles

already laid down ; but the Gothic rib requires some special

treatment. Fig. 67 is a sketch of the rib which sustains the

roof over the train-house of the Boston and Providence Rail-

road Depot in Boston, Mass. The span is 125 feet between

walls, and the height is 55 feet to the axis of the rib. As
height impresses one more tlian horizontal distance, it is evident

that this roof appears lofty when viewed from the inside. In

order to give height quickly near the walls, the half-rib is struck

with two radii, as indicated in the figure. The lower portion is

built with a solid web ; while most of the upper portion has a uni-

form depth of three feet. If the junction at the crown or apex

of the roof allows any movement, if the ribs can rock or turn

on castings at their bases, and if they are independent of the

side walls, they may be treated as hinged at three points, and

discussed like any three-hinged arch. If there is no opportuni-

ty for movement at the bases, and especially if the ribs abut

closely against the side walls and buttresses, while still a joint

is provided at the crown, the condition , of invariability of span

must be applied, and also the condition that the deflection of
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the crown when measured by area moments from the tangent

at one abutment shall equal the deflection of the crown from

the tangent at the other abutment. The integration will then

be between limits which will appear from the discussion of the

third supposition.

The rib may be fixed at the ends and crown, and will then

offer a troublesome case for treatment by reason of the great

depth at the haunches, unless we assume that it is well but-

tressed by the wall. In this case, the portion below the top of

the wall and the wall itself will act as an abutment ; and, as it

will only require a moderate tension in the inside flange at the

springing to resist the overturning moment, such an assumption

seems entirely warrantable. Above the wall, then, some 25 feet

high, where the horizontal mark is made on the left-hand side,

we assume the springing line of the areli. and consider the

remainder as a rib fixed at the ends, and continuous at the

crown. In applying the conditions for a rib with fixed ends to

this case, we must change the derived equations, as the curve

is not continuous at the crown. A parabola drawn through the

middle of the depth of the rib at crown, springing, and a third

point near the upper end of the straight portion of the rafter,

will agree very closely with the axis of the rib throughout.

We must first determine k and c for this parabola. In Fig. 68

let h be the height or rise of the arch at the apex, a the hori-

zontal distance from h to the point where the parabola would
become horizontal ; then

h = -„ (c° — a") ; or k = h —
c-

^ '
c- — a-

For another ordinate //, distant c — a' from the springing, we
write

k= li' -J-

In this case c — a~ 55.75 feet, h = 30.3 feet, c — a' = 22.5 feet,

and 7/ = 17 feet : hence we find that k = 31.68 feet, e ^ 70.48

feet, and a = 14.73 feet.
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III place of performing the integrations of §§ 58-59 between

the limits therr givt-n. we must omit or subtract from the

e([uations the integrals between the limits -\-a and — (/, as this

portion is cut out of the parabola. Thus the equation (1.) of

§ 58 will be written

-l)K^_r I)]vz=f DF.DE-T DF.I)E+r DF.DE.
II J I—

a

»' " »' c — a J o

As limits c -\- a and c — a will yield terms similar to limits c -{- h

and c — />, the subtractive quantities above can be written from

inspection of (2.), § 58>r and (2.), § 39. A similar treatment

of the other equations of condition will be required. The

solution will then proceed as usual.

If the weight at the apex of the roof, arising from the venti-

lator, &c., is sufficiently great, it will take the place of the

omitted portion of breadth 2 a, so that the rib will be very

nearly in eciuilibrium under steady load.

195. Remarks on Designing.— The examples which have

been given in the preceding pages will indicate the steps to

be pursued in working out a specific design. The type of

structure having been determined upon, the moving load must

be taken of an intensity in harmony with the position of the

bridge, or we must decide upon the weight of snow and pres-

sure of wind to which the roof will be liable. The dead weight

of the structure must then be assumed, of such an amount as

our judgment and experience dictate, to be afterwards verified

and corrected from the actual sections. The abutment reac-

tions and bending moments from the applied forces will then be

found, after which, stress diagrams may be constructed, or equi-

librium polygons drawn: from the first we of)tain stresses direct-

ly, as in Part I. ; from the second, bending moments, with shears

and direct thrusts, from which the stresses in the several pieces

will be found, as in Part II. The first method is probably the

shorter for roofs, unless the rib is solid, or has a plate web, as all

of the load of one kind may be included at one operation: the

second method will be preferred where a moving load has to be
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considered. The stresses will then be tabulated, and the maxi-

mum compression and tension on each piece found.

A point which may call for a little explanation is illustrated

by Fig. 69. We desire to draw a stress diagram for an arched

rib, which is fixed at the end A B, the equilibrium curve begin-

ning with the line G D, and the bending moment at A B being

T . p^ or its equivalent. The flanges at A and B will transmit

direct force only : therefore decompose T into C, the compres-

sion parallel to the flanges, at the springing, and F, the shear

at right angles. Then, by moments about A, Thrust at

C . A G
B . A B = C . A G, or Thrust at B 1= — '

^ ; by moments

P B T'

about B, Tension at A = —'r-r^— • The shear F will be re-A B
sisted either at A or B, depending upon which of the braces is

designed to carry it : if the braces are ties, it must pass through

the one at A. Thus we obtain the forces with which to begin

the stress diagram. In case of a hinge at the abutment, the

point G is found midway between A and B, and there will be

i C, compression, at each flange. F will be found in the proper

brace as above.

Tlie arched rib must be thoroughly stayed laterally ; for so

much of either flange as is compressed is in unstable equilib.

rium ; between lateral stays, the breadth of a compressed flange

must be determined from the formulae for columns. For for-

mulae and directions for detailing, see the author'^ "Structural

Mechanics."



APPEXDIX.

lOG. Circular Arch with Springings 70 Degrees
from the Crown.

a.
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tlie hinge Q for tlie right lialf of tlie rib. The signs of these

displacements in the necessary equations will be the same as the

signs of the bending moments. In the left half of a rit) a posi-

tive bending moment will tend to cause a horizontal movement

to the left, and a negative moment will tend to cause the same

kind of a horizontal movement in the right half. The co-

oi-dinates of the hinge Q from any point E where a bending

moment is felt are E K and K Q. Ifence the equation for the

liorizontal displacement of Q may be written

:S E F • E K from A to Q + ^^ E F • E K fr.jin B to Q = 0, (1.)

An upward deflection in both halves of the rib will be

caused by positive moments and a downward deflection by nega-

tive moments. Hence for vertical displacement of the point Q,

2f E F • K Q from A to Q - 3 E F • K Q from B to Q, (2.

)

Apply these equations to the parabolic I'ib, using the nota-

tion employed in chapter lY., Init measuring x from the middle

ordinate through Q.

DE = ^ (c^-a;-'); E K = A: - D E = ^-c".

E F = D E - D F.

From A to Q, D F = y, 4- ^-^^ (c - x)
c ->r

" QtoN, DF^y^ + ^-^^l'ic-^x).

" NtoB, D F = y, + •^" "~
f (c - x).

c —

Hence for the first condition

- -,(c---t')]2:'ax+ I Tr*. + "- ~ '-'
(<^ - •!) - -\<c'-l'l].r'dt=0.

c" r Jh c — &
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Integrating and reducing we liave

2/u (2 c» - 2 f //) + y^ (8 & + <•»
Z( — 4 r' //^ -\- ch'' — b^) -l

y, (8 c-' - H ^ - 4 r' I/' + (/>*-{- f/-) = V k c^ (c^ - 6'), (3.)

The second condition, equation (2.), is equivalent to equating

tlu! moments of the areas between the rib and the polygon

about the middle ordinate through Q, or

I C {k - //, ) + ^ r-'^i ^Ib-'k + i b-' (y,-k)-f-l{c + 2 b) (c - I,) {y. - y,)

+ Ly,(c^-n (4.)

Since one side of the polygon always passes through tiie

hinge at the crown,

_ (c + /^)A:-c.yo _ (1 + ») ^ - y^
Vi-

J
-

^ » K^')

Combining (3.), (4.), and (5.), and substituting n c for Z»,

we get

_ k
_
ll//' + 23/i4-ir)

_ _ A .5 71^ + 11 72,2 4-11 7i -3
^" ~ 5

'
«-' + 2 /i + :5 ' ^' ~ 5 (7i -T) (74^^ 2 ra~+3j

COMPUTED VALUES.

n =
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span of the lialf-arch, if free, due to the change of temperature.

The line which corresponds to the equilibrium polygon must be

horizontal and must pass through the hinge. Hence (righ^

hand sketch)

H< • :2 E F^ horn A to Q or B to Q = E I • « e c.

EF=^a;'. Ut T -,x*dx= EI tec.
€' Jo C*

5teEIm =

1 f T* T
M max. = 5—;— at each abutment.

k



Arche:>".

Kig. 3.

s-^

-i1j





"P\>a^K



A-TcAvl,



P\ciX,t"IXL.

Fig,i7.



P\,<iX,«,"33L.

Fig.15 Fig. 16.

h^^'
Fig. 17.



A^-vcVv^' 3!\a\tTV^.

Tig. 37.



rig.37.



^Vo\^^.



Fi^.-lO.



:p\oAt'Yi..





A.-rc^ ^\o.\eA^

liiliaL.





Aj
P\cx>ucVA\i ,

^ig.60

"vr«-»vAtv.-^.

Fig. 69,



EVoXt\rivs

.

T^ig.66.

Fig-69. I



SHORT-TITLE CATALOGUE
OF TIIL

PUBLICATIONS
OF

JO-HISr WILEY & SONS,
New York.

London: CHAPMAN & HALL, Limited.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.
Books marked with an asterisk are sold at net prices only.
All books are bound in cloth unless otherwise stated.

AGEICTTLTTTRE.
Armsby's Manual of Cattle-feeding I2mo, $1 75

Budd and Hansen's American Horticultural Manual:
Part I.—Propagation, Culture, and Improvement .... 12mo, 1 60
Part II.—Systematic Pomology. (In preparation.)

Downing's Fruits and' Fruit-trees of America 8vo, 5 00
Grotenfelt's Principles of Modern Dairy Practice. (Woll.) ..12mo, 2 00
Kemp's Landscape Gardening 12mo, 2 50
Maynard's Landscape Gardening as Applied to Home Decoration.

12mo, 1 50
Sanderson's Insects Injurious to Staple Crops 12mo, 1 50

" Insects Injurious to Garden Crops. {In preparation.)
" Insects Injuring Fruits. (In prepai'tttion.)

Stockbridge's Rocks and Soils 8vo, 2 50'

Woll's Handbook for Farmers and Dairymen 16mo, 1 50

ARCHITECTURE.
Baldwin's Steam Heating for Buildings 12mo, 2 50
Berg's Buildings and Structures of American Railroads 4to, 5 00

Birkmire's Planning and Construction of American Theatres.Svo, 3 00
" Architectural Iron and Steel 8vo, 3 50
" Compound Riveted Girders as Applied in Buildings.

Svo, 2 00
" Planning and Construction of High Office Buildings.

Svo, 3 50
" Skeleton Construction in Buildings Svo, 3 00

Briggs's Modem American School Buildings Svo, 4 00

Carpenter's Heating and Ventilating of Buildings Svo, 4 OO
Freitag's Architectural Engineering. 2d Edition, Rewritten. Svo, 3 50

" Fireproofing of Steel Buildings Svo, 2 50

Gerhard's Guide to Sanitary House-inspection 16mo, 1 00
" Theatre Fires and Panics 12mo, 1 50

Hatfield's American House Carpenter Svo, 5 00
Holly's Carpenters' and Joiners' Handbook ISmo, 75

Kidder's Architect's and Builder's Pocket-book. .16mo, morocco, 4 00

Merrill's Stones for Building and Decoration Svo, 5 00
Monckton's Stair-building '. 4to, 4 00

1



5 00
1 50



1



1



3



• Wheeler's Elementary Course of Civil Engineering Svo, 4 00
Wilson's Topographic Surveying 8vo, 3 50

BRIDGES AND ROOFS.

Boiler's Practical Treatise on the Construction of Iron Highway
Bridges 8vo, 2 00

• Boiler's Thames River Bridge 4to, paper, 5 00
Burr's Course on the Stresses in Bridges and Roof Trusses,

Arched Ribs, and Suspension Bridges 8vo, 3 50
Du Bois's Mechanics of Engineering. Vol. II Small 4to, 10 00
Foster's Treatise on Wooden Trestle Bridges 4to, 5 00
Fowler's Coffer-dam Process for Piers Svo, 2 50
Greene's Roof Trusses Svo, 1 25

" Bridge Trusses Svo, 2 50
" Arches in Wood, Iron, and Stone Svo, 2 50

Howe's Treatise on Arches Svo, 4 00
" Design of Simple Roof-trusses in Wood and Steel . Svo, 2 00

Johnson, Bryan and Tumeaure's Theory and Practice in the
Designing of Modem Framed Structures Small 4to, 10 00

Herriman and Jacoby's Text-book on Roofs and Bridges:
Part I.—Stresses in Simple Trusses Svo, 2 50
Part n.—Graphic Statics Svo, 2 50
Part III.—Bridge Design. Fourth Ed., Rewritten Svo, 2 50
Part IV.—Higher Structures Svo, 2 50

Morison's Memphis Bridge 4to, 10 00
Waddell's De Pontibus, a Pocket Book for Bridge Engineers.

16mo, mor., 3 00
" Specifications for Steel Bridges 12mo, 1 25

Wood's Treatise on the Theory of the Construction of Bridges
and Roofs Svo, 2 06

Wright's Designing of Draw-spans:
Part I.—Plate-girder Draws Svo, 2 60
Part II.—Riveted-truss and Pin-connected Long-span Draws.

Svo, 2 50
Two parts in one volume Svo, 3 60

HYDRAULICS.
Bazin's Experiments upon the Contraction of the Liquid Vein

Issuing from an Orifice. (Trautwine.) Svo,

Bovey's Treatise on Hydraulics Svo,
Church's Mechanics of Engineering Svo,

" Diagrams of Mean Velocity of Water in Open Channels
paper.

Coffin's Graphical Solution of Hydraulic Problems. .16mo, mor.,
Flather's Dynamometers, and the Measurement of Power.12mo,
Folwell's Water-supply Engineering Svo,
Frizell's Water-power Svo,
Fuertes's Water and Public Health 12mo,

" Water-filtration Works 12mo,
Ckmguillet and Kutteris General Formula for the Uniform

Flow of Water in Rivers and Other Channels. (Ber-
ing and Trautwine.) Svo,

Hazen's Filtration of Public Water-supply Svo,
Hazlehurst's Towers and Tanks for Water-works Svo,

Herschel's 115 Experiments on the Carrying Capacity of Large,
Riveted, Metal Conduits Svo, 2 09

6

2 00



Mason's Water-supply. (Considered Principally from a Sani-
tary Standpoint.) 8vo, 4 00

Merriman's Treatise on Hydraulics 8vo, 4 00
• Miehie's Ellements of Analytical Mechanics 8vo, 4 00
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic

Water-supply Large Sto, 5 00
Tumeaure and Russell. Public Water-supplies Svo, 5 00
Wegmann's Design and Construction of Dams 4to, 5 00

" Water-supply of the City of New York from 1658 to
1895 4to, 10 00

Weisbach's Hydraulics and Hydraulic Motors. (Du Bols.) . .8vo, 5 06
Wilson's ilanual of Irrigation Engineering Small 8vo, 4 00
Wolff's Windmill as a Prime Mover 8vo, 3 06
Wood's Turbines 8vo, 2 60

" Elements of Analytical Mechanics Svo, 3 00

MATERIALS OF ENGINEERING.

Baker's Treatise on Masonry Construction 8to, 5 00
Black's United States Public Works Oblong 4to, 5 00
Bovey's Strength of Materials and Theory of Structures. . . .8vo, 7 60
Burr's Elasticity and Resistance of the Materials of Engineer-

ing ,..8vo, 6 00
Byrne's Highway Construction • 8vo, 5 00

" Inspection of the Materials and Workmanship Em-
ployed in Construction 16mo, 3 00

Church's Mechanics of Engineering 8vo, 6 00 •

Du Bois's Mechanics of Engineering. Vol. I Small 4to, 7 50
Johnson's Materials of Construction Large Svo, 6 00
Keep's Cast Iron Svo, S 59
Lanza's Applied Mechanics Svo, 7 6#
Martens's Handbook on Testing ^Materials. ( Henning. ) .2 v., 8vo, 7 50
Merrill's Stones for Building and Decoration Svo, 6 00
Merriman's Text-book on the Mechanics of Materials Svo, 4 06
Merriman's Strength of Materials I2mo, 1 00
Metcalfs Steel. A Manual for Steel-users 12mo, 2 00
Patton's Practical Treatise on Foundations Svo, 5 06
Rockwell's Roads and Pavements in France 12mo, 1 26
Smith's Wire: Its Use and Manufacture Small 4to, 3 00

" Materials of Machines 12mo, 1 00
Snow's Principal Species of Wood: Their Characteristic Proper-

ties. {In 'preparation.)

Spalding's Hydraulic Cement 12mo, 2 06
" Text-book on Roads and Pavements 12mo, 2 00

Thurston's Materials of Engineering 3 Parts. Svo, 8 00
Part I.—Non-metallic Materials of Engineering and Metal-

lurgy Svo, 2 60
Part II.—Iron and Steel Svo, 3 SO
Part III.—A Treatise on Brasses, Bronzes and Other Alloys

and Their Constituents Svo, 2 66
Thurston's Text-lxKik of the Materials of Construction Svo, 5 00
Tillson's Street Pavements and Paving Materials Svo, 4 00
Waddell's De Pontibus. (A Pocket-book for Bridge Engineers.)

16mo, morocco, 3 00
" Specifications for Steel Bridges 12mo, 1 25

Wood's Treatise on the Resistance of Materials, and an Ap-
pendix on the Preservation of Timber Svo, 2 00

" Elements of Analytical Mechanics Svo, 3 00

7



RAILWAY ENGINEERING.

^ndrews's Handbook for Street Railway lEngineers. 3x5 in. mor., 1 25
Jerg's Buildings and Structures of American Eailroads.. .4to, 5 00
Brooks's Handbook of Street Railroad Location.. 16mo, morocco, 1 50
Butts's Civil Engineer's Field-book 16mo, morocco, 2 50
Crandall's Transition Curve 16mo, morocco, 1 50

" Railway and Other Earthwork Tables 8vo, 1 50
Dawson's Electric Railways and Tramways. Small 4to, half mor., 12 60

" " Engineering " and Electric Traction Pocket-book.
16mo, morocco, 4 00

Dredge's History of the Pennsylvania Railroad: (1879.) .Paper, 5 00
• Drinker's Tunneling, Explosive Compounds, and Rock Drills.

4to, half morocco, 25 00
Fisher's Table of Cubic Yards Cardb«ard," 26
Godwin's Railroad Engineers' Field-book and Explorers' Guide.

16mo, morocco, 2 50
Howard's Transition Curve Field-book 16mo, morocco, 1 50
Hudson's Tables for Calculating the Cubic Contents of Exca-

vations and Embankments 8vo, 1 00
Nagle's Field Manual for Railroad Engineers. . . .16mo, morocco, 3 00
Philbrick's Field Manual for Engineers 16mo, morocco, 3 00
Pratt and Alden's Street-railway Road-bed 8vo, 2 00
Searles's Field Engineering 16mo, morocco, 3 00

" Railroad Spiral 16mo, morocco, 1 50
Taylor's Prismoidal Formulae and Earthwork 8vo, 1 50
• Tiuutwine's Method of Calculating the Cubic Contents of Ex-

cavations and Embankments by the Aid of Dia-
grams 8vo, 2 00

• " The Field Practice of Laying Out Circular Curves
for Railroads 12mo, morocco, 2 50

• " Cross-section Sheet Paper, 25
Webb's Railroad Construction 8vo, 4 00
Wellington's Economic Theory of the Location of Railways.

.

Small 8vo, 5 00

DRAWING.
Barr's Kinematics of Machinery 8vo, 2 60
• Bartlett's Mechanical Drawing 8vo, 3 00
Coolidge's Manual of Drawing 8vo, paper, 1 00
Durley's Elementary Text-book of the Kinematics of Machines.

(In preparation.)
Hill's Text-book on Shades and Shadows, and Perspective. . 8vo, 2 00
Jones's Machine Design:
Part I.—Kinematics of Machinery 8vo, 1 50
Part n.—Form, Strength and Proportions of Parts 8vo, 3 00

MacCord's Elements of Descriptive Geometry 8vo, 3 00
" Kinematics ; or, Practical Mechanism 8vo, 5 00
" Mechanical Drawing 4to, 4 00
" Velocity Diagrams 8vo, 1 50

* Mahan's Descriptive Geometry and Stone-cutting 8vo, 1 50
Mahan's Industrial Drawing. (Thompson.) 8vo, 3 60
Reed's Topographical Drawing and Sketching 4to, 5 00
Reid's Course in Mechanical Drawing 8vo, 2 00

" Text-book of Mechanical Drawing and Elementary Ma-
chine Design 8vo, 3 00

Robinson's Principles of Mechanism 8vo, 3 00
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Smith's Manual of Topographical Drawing. (McMillan.) .8vo, 2 50
Warren's Elements of Plane and Solid Free-hand Geometrical

Drawing 12mo, 1 00
" Drafting Instruments and Operations 12mo, 1 25
" ilanual of Elementary Projection Drawing. . . . 12mo, 1 50
" Manual of Elementary Problems in the Linear Per-

spective of Form and Shadow 12mo, 1 00
" Plane Problems in Elementary Geometry 12mo, 1 25
" Primary Geometry 12mo, 75
" Elements orf Descriptive Geometry, Shadows, and Per-

spective 8vo, 3 50
" General Problems of Shades and Shadows 8vo, 3 00
" Elements of Machine Construction and Drawing. .Svo, 7 50
" Problems, Theorems, and Examples in Descriptive

Geometry 8vo, 2 50
Weisbach's Kinematics and the Power of Transmission. (Herr-

mann and Klein.) Svo, 5 00
Whelpley's Practical Lustniction in the Art of Letter Eln-

graving 12mo, 2 00
Wilson's Topographic Surveying 8vo, 3 50
Wilson's Free-hand Perspective 8vo, 2 50
WocJf's Elementary Course in Descriptive Geometry. .Large 8vo, 3 00

ELECTRICITY AND PHYSICS.

Anthony and Brackett's Text-book of Physics. (Magie.)

Small Svo, 3 00
Anthony's Lecture-notes on the Theory of Electrical Measur-

ments 12mo, 1 00
Benjamin's History of Electricity Svo, 3 00
Benjamin's Voltaic Cell Svo, 3 00
Classen's Qantitative Chemical Analysis by Electrolysis. Her-

rick and Boltwood.) Svo, 3 00
Crehore and Squier's Polarizing Photo-chronograph Svo, 3 00
Dawson's Electric Railways and Tramways..Small 4to, half mor., 12 60
Dawson's " Engineering " and Electric Traction Pocket-book.

16mo, morocco, 4 00
Flather's Dynamometers, and the Measurement of Power. . 12mo, 3 00
Gilbert's De Magnete. (Mottelay.) Svo, 2 50
Holman's Precision of Measurements Svo, 2 00

" Telescopic Mirror-scale Method, Adjustments, and
Tests Large Svo, 75

Landauer's Spectrum Analysis.
,
(Tingle.) Svo, 3 00

L« Chatelier's High-temperature Measurements. (Boudouard

—

Burgess.) 12mo, 3 00
Lob's Electrolysis and Electrosynthesis of Organic Compounds.

(Lorenz.) 12mo, 100
Lyons's Treatise on Electromagnetic Phenomena Svo, 6 00
• Michie. Elements of Wave Motion Relating to Sound and

Light Svo, 4 00
Niaudet's Elementary Treatise on Electric Batteries (Fish-

back.) 12mo, 2 50
• Parehall and Hobart's Electric Generators..Small 4to, half mor., 10 00
Ryan, Norris, and Hoxie's Electrical Machinery. (In preparation.)
TTiurston's Stationary Steam-engines Svo, 2 50
• Tillman. Elementary Lessons in Heat Svo, 1 50
Tory and Pitcher. Manual of Laboratory Physics. .Small Svo, 2 00
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LAW.
• Davis. Elements of Law 8vo, 2 50
• " Treatise on the Military Law of United States. .8vo, 7 00
• Sheep, 7 50
Manual for Courts-martial 16mo, morocco, 1 50
Wait's Engineering and Architectural Jurisprudence Svo, 6 00

Sheep, 6 60
" Law of Operations Preliminary to Construction in En-

gineering and Architecture Svo, 5 00
Sheep, 5 50

" Law of Contracts Svo, 3 00
Winthrop's Abridgment of Military Law 12mo, 2 60

MANUFACTURES.
Beaumont's Woollen and Worsted Cloth Manufacture. . . .12mo, 1 60
Bemadou's Smokeless Powder—Nitro-eellulose and Theory of

the Cellulose Molecule X2mo, 2 69
Holland's Iron Founder 12mo, cloth, 2 60

" " The Iron Founder " Supplement I2mo, 2 60
" Encyclopedia of Founding and Dictionary of Foundry

Terms Used in yie Practice of Moulding. ... 12mo, 3 00
Eissler's Modem High Expiosives Svo, 4 00
Eflfrnnt's Enzymes and their Applications. (Prescott.).. .Svo, 3 00
Fitzgerald's Boston Machinist ISmo, 1 00
Ford's Boiler Making for Boiler Makers ISmo, 100
Hopkins's Oil-chemists' Handbook Svo, 3 00
Keep's Cast Iron Svo 2 50
Leach's The Inspection and Analysis of Food with Special

Reference to State Control. {In preparation.)
Metcalf's Steel. A Manual for Steel-users 12mo, 2 00
Metcalf's Cost of Manufactures—And the jn».dminiBtration of

Workshops, Public and Private Svo, 5 00
Meyer's Modern Locomotive Construction 4to, 10 00
• Reisig's Guide to Piece-dyeing Svo, 25 00
Smith's Press-working of Metals Svo, 3 00

" Wire: Its Use and Manufacture Small 4to, 3 00
Spalding's Hydraulic Cement 12mo, 2 00
Spencer's Handbook for Chemists of Beet-sugar Houses.

16mo, morocco, 3 00
" Handbook for Sugar Manufacturers and their Chem-

ists 16mo, morocco, 2 00
Thurston's Manual of Steam-boilers, their Designs, Construc-

tion and Operation Svo, 6 00
Walke's Lectures on Explosives Svo, 4 00
West's American Foundry Practice 12mo, 2 5D

" Moulder's Text-book 12mo, 2 60
Wiechmann's Sugar Analysis Small Svo, 2 60
Wolff's Windmill as a Prime Mover Svo, 3 00
Woodbury's Fire Protection of Mills Svo, 2 60

MATHEMATICS.
Baker's Elliptic Functions Svo, 1 SO
• Bass's Elements of Differential Calculus 12mo, 4 00
Briggs's Elements of Plane Analytic Geometry 12mo, 1 00

Chapman's Elementary Course in Theory of liquations. . .12mo, 1 60
Compton's Manual of Logarithmic Computations 12mo, 1 60
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Davis's Introduction to the Logic of Algebra 8vo, 1 60
•Dickson's College Algebra Large 12mo, 1 50
Halsted's Elements of Geometry 8vo, 1 76

" Elementary Synthetic Geometry 8vo, 1 50
•Johnson's Three-place Logarithmic Tables: Vest-pocket size,

pap., 15

100 copies for 6 00
• Mounted on heavy cardboard, 8 X 10 inches, 25

10 copies for 2 00
" Elementary Treatise on the Integral Calculus.

Small Svo, 1 50
** Curve Tracing in Cartesian Co-ordinates 12mo, 1 00
" Treatise on Ordinary and Partial Differential

Equations Small Svo, 3 50
" Theory of Errors and the Method of Least

Squares 12mo, 1 50
• " Theoretical Mechanics 12mo, 3 00
Laplace's Philosophical Essav on Probabilities. (Truscott and

Emory.) " 12mo, 2 00
•Ludlow and Bass. Elements of Trigonometry and Logarith-

mic and Other Tables Svo, 3 00
" Trigonometry. Tables published separately. .Each, 2 00

Merriman and Woodward. Higher Mathematics Svo, 5 00
Merriman's Method of Least Squares Svo, 2 00
Rice and Johnson's Elementary Treatise on the Differential

Calculus Small Svo, 3 00
*• Differential and Integral Calculus. 2 vols.

in one Small Svo, 2 50
Wood's Elements of Co-ordinate Geometry Svo, 2 00

" Trigometry: Analytical, Plane, and Spherical 12mo, 1 00

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM ENGINES
AND BOILERS.

Baldwin's Steam Heating for Buildings 12mo, 2 50
Barr's Kinematics of Machinery Svo, 2 50
• Bartlett's Mechanical Drawing Svo, 3 00
Benjamin's Wrinkles and Recipes 12mo, 2 00
Carpenter's Experimental Engineering Svo, 6 00

" Heating and Ventilating Buildings Svo, 4 00
aerk's Gas and Oil Engine Small Svo, 4 00

Coolidge's Manual of Drawing Svo, paper, 1 00
Cromwell's Treatise on Toothed Gearing 12mo, 1 50

" Treatise on Belts and Pulleys 12mo, 1 60
Durley's Elementary Text-book of the Kinematics of Machines.

(In preparation.)
Flather's Dynamometers, and the Measurement of Power . . 12mo, 3 00

Rope Driving 12mo, 2 00
Gill's Gas an Fuel Analysis for Engineers 12mo, 1 26
Hall's Car Lubrication 12mo, 1 00
Jones's Machine Design:
Part I.—Kinematics of Machinery Svo, 1 50
Part II.—Form, Strength and Proportions of Parts Svo, 3 00

Kent's Mechanical Engineers' Pocket-book 16mo, morocco, 5 00
Kerr's Power and Power Transmission Svo, 2 00
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MacCord's Kinematics ; or, Practical Mechanism 8vo, 5 00
" Mechanical Drawing 4to, 4 00
" Velocity Diagrams 8vo, 1 50

Mahan's Industrial Drawing. (Thompson.) 8vo, 3 50
Poole's Calorific Power of Fuels 8vo, 3 00
Reid'fl Course in Mechanical Drawing 8vo, 2 00

" TeXt-book of Mechanical Drawing and Elementary
Machine Design 8vo, 3 00

Richards's Compressed Air 12mo, 1 50
Robinson's Principles of Mechanism Svo, 3 00
Smith's Press-working of Metals Svo, 3 00
Thurston's Treatise on Friction and Lost Work in Machin-

ery and Mill Work Svo, 3 00
" Animal as a Machine and Prime Motor and the

Laws of Energetics 12mo, 1 00
Warren's Elements of Machine Construction and Drawing. .8vo, 7 60
Weisbach's Kinematics and the Power of Transmission. (Herr-

mann—KJein.) Svo, 5 00
" Machinery of Transmission and Governors. (Herr-

mann—Klein.) Svo, 5 00
" Hydraulics and Hydraulic Motors. (Du Bois.) .Svo, 5 00

Wolff's Windmill as a Prime Mover Svo, 3 00
Wood's Turbines Svo, 2 60

MATERIALS OF ENGINEERING.
Bovey's Strength of Materials and Theory of Structures .. Svo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineer-

ing Svo,
Church's Mechanics of Engineering Svo,
Johnson's Materials of Construction Large Svo,
Keep's Cast Iron Svo,
Lanza's Applied Mechanics Svo,
Martens's Handbook on Testing Materials. (Henning-) . . . .Svo,

Merriman'a Text-book on the Mechanics of Materials. .. .Svo,
" Strength of Materials 12mo,

Metcalf's Steel. A Manual for Steel-users 12mo,
Smith's Wire: Its Use and Manufacture Small 4to,

" Materials of Machines 12mo,
Thurston's Materials of Engineering 3 vols., Svo,

Part II.—Iron and Steel Svo,

Part III.—A Treatise on Brasses, Bronzes and Other Alloys
and their Constituents Svo,

Thurston's Text-book of the Materials of Construction. .. .Svo,

Wood's Treatise on the Resistance of Materials and an Ap-
pendix on the Preservation of Timber Svo,

" Elements of Analytical Mechanics Svo,

STEAM ENGINES AND BOILERS.

Camot's Reflections on the Motive Power of Heat. (Thurston.)
12mo, 1 80

Dawson's " Engineering " and Electric Traction Pocket-book.
16mo, morocco, 4 00

Ford's Boiler Making for Boiler Makers ISmo, 1 00
Goss's Locomotive Sparks Svo, 2 00
Hemenway's Indicator Practice and Steam-engine Economy.

12mo, 2 00
Hutton's Mechanical Engineering of Power Plants Svo, 5 00

" Heat and Heat-engines Svo, 5 00

12

>, 5 00



Kent's Steam-boiler Ekjonomy 8vo, 4 00
Kneass's Practice and Theory of the Injector 8vo, 1 50
MacCord's Slide-valves 8vo, 2 00
Meyer's Modern Locomotive Construction 4to, 10 00
Peabody'a Manual of the Steam-engine Indicator 12mo, 1 50

" Tables of the Properties of Saturated Steam and
Other Vapors 8vo, 1 00

" Thermodynamics of the Steam-engine and Other
Heat-engines 8vo, 5 00

" Valve-gears for Steam-engines 8vo, 2 50
Peabody and Miller. Steam-boilers 8vo, 4 00
Pray's Twenty Years with the Indicator Large 8vo, 2 50
Pupin's Thermodynamics of Reversible Cycles in Gases and

Saturated Vapors. (Osterberg.) 12mo, 1 26
Reagan's Locomotive Mechanism and Engineering 12mo, 2 90
Rontgen's Principles of Thermodynamics. (Du Bois.) . . . .8vo, 5 00
Sinclair's Locomotive Engine Running and Management. .12mo, 2 00
Smart's Handbook of Engineering Laboratory Practice. .12mo, 2 50
Snow's Steam-boiler Practice 8vo, 3 00
Spangler's Valve-gears 8vo, 2 50

" Notes on Thermodynamics 12mo, 1 00
Thurston's Handy Tables 8vo, 1 50

" Manual of the Steam-engine 2 vols., 8vo, 10 00
Part I.—History, Structure, and Theory 8vo, 6 00
Part II.—Design, Construction, and Operation 8vo, 6 00

Thurston's Handbook of Engine and Boiler Trials, and the Use
of the Indicator and the Prony Brake 8vo, 5 00

" Stationary Steam-engines 8vo, 2 50
" Steam-boiler Explosions in Theory and in Prac-

tice 12mo, 1 50
" Manual of Steam-boilers, Their Designs, Construc-

tion, and Operation 8vo, 5 00
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.)..8vo, 5 00
Whitham's Steam-engine Design 8vo, 5 00
Wilson's Treatise on Steam-boilers- (Flather.) 16mo, 2 60
Wood's Thermodynamics, Heat Motors, and Refrigerating

Machines 8vo, 4 00

MECHANICS AND MACHINERY.
Barr's Kinematics of Machinery 8vo, 2 60
Bovey's Strength of Materials and Theory of Structures . . 8vo, 7 50
Chordal.—Extracts from Letters 12mo, 2 00
Church's Mechanics of Engineering 8vo, 6 00

" Notes and Examples in Mechanics 8vo, 2 00
Compton's First Lessons in Metal-working 12mo, 1 50
Compton and De Groodt. The Speed Lathe 12mo, 1 66
Cromwell's Treatise on Toothed Gearing 12mo, 1 50

" Treatise on Belts and Pulleys 12mo, 1 50
Dana's Text-book of Elementary Mechanics for the Use of

Colleges and Schools 12mo, 1 50
Dingey's Machinery Pattern Making 12mo, 2 00
Dredge's Record of the Transportation Exhibits Building of the

World's Columbian Exposition of 1893 4to, h^f mor., 6 00
Du Bois's Elementary Principles of Mechanics:
Vol. L—Kinematics 8vo, 3 50
Vol. TL—Statics 8vo, 4 00
Vol. III.—Kinetics 8vo, 3 50

Du Bois's Mechanics of Engineering. Vol. I Small 4to, 7 50
" Vol.n Small 4to, 10 00
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Durley's Elementary Text-book of the Kinematics of Machines.
(In preparation.)

Fitzgerald's Boston Machinist 16mo, 1 00
Flather's Dynamometers, and the Measurement of Power. 12mo, 3 00

" Kope Driving 12mo, 2 00
Goss's Locomotive Sparks 8vo, 2 00
Hall's Car Lubrication 12mo, 1 00
Holly's Art of Saw Filing 18mo, 76
• Johnson's Theoretical Mechanics 12mo, 3 00
Johnson's Short Course in Statics by Graphic and Algebraic

Methods. (In preparation.)

Jones's Machine Design:
Part I—Kinematics of Machinery 8vo, 1 50
Part II.—Form, Strength and Proportions of Parts. .. .8vo, 3 00

Kerr's Power and Power Transmission 8vo, 2 00
Lanza's Applied Mechanics 8vo, 7 50
MacCk)rd'8 Kinematics; or. Practical Mechanism 8vo, 5 00

" Velocity Diagrams 8vo, 1 50
Merriman's Text-book on the Mechanics of Materials 8vo, 4 00
• Miehie's Elements of Analytical Mechanics 8vo, 4 00
Reagan's Locomotive Mechanism and Elngineering 12mo, 2 00
Reid's Course in Mechanical Drawing 8vo, 2 00

" Text-book of Mechanical Drawing and Elementary
Machine Design 8vo, 3 00

Richards's Compressed Air 12mo, 1 50
Robinson's Principles of Mechanism 8vo, 3 00
Ryan, Norris, and Hoxie's Electrical Machinery. (In preparation.)

Sinclair's Locomotive-engine Running and Management. .12mo, 2 00
Smith's Press-working of Metals 8vo, S 00

" Materials of Machines 12mo, 1 00
Thurston's Treatise on Friction and Lo«t Work in Machin-

ery and Mill Work 8vo, 3 00
" Animal as a Machine and Prime Motor, and the

Laws of Energetics 12mo, 1 00
Warren's Elements of Machine Construction and Drawing. .8vo, 7 59
Weisbaeh's Kinematics and the Power of Transmission.

(Herrman—Klein.) 8vo, 5 00
" Machinery of Transmission and Governors. (Herr-

(man—Klein.) 8vo, 6 00
Wood's Elements of Analytical Mechanics 8vo, 3 00

" Principles of Elementary Mechanics 12mo, 1 25
" Turbines 8vo, 2 50

The World's Columbian Exposition of 1893 4to, 1 00

METALLURGY.
Egleston's Metallurgy of SUver, Gold, and Mercury:

Vol. I.—Silver 8vo, 7 50
Vol. n.—Gold and Mercury 8vo, 7 60

** Ees's Lead-smelting 12mo, 2 50
Keep's Cast Iron 8vo, 2 50
Kunhardt's Practice of Ore Dressing in Itirope 8vo, 1 50
Le Chatelier's High-temperature Measurements. (Boudouard

—

Burgess.) < 12mo, 3 00
Metcalfe Steel. A Manual for Steel-users 12mo, 2 00
Smith's Materials of Machines 12m0j 1 00
Thurston's Materials of Engineering. In Three Parts 8vo, 8 00

Part n.—Iron and Steel 8vo, 3 60
Part III.—A Treatise on Brasses, Bronzes and Other Alloys

and Their Constituents 8vo, 2 60
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MINERALOGY.

Barringer's Description of Minerals of Commercial Value.
Oblong, morocco, 2 50

Boyd's Resources of Southwest Virginia 8vo, 3 00
" Map of Southwest Virginia Pocket-book form, 2 00

Brush's Manual of Determinative Mineralogy. (Penfield.) .8vo, 4 00
Chester's Catalogue of Minerals 8vo, paper, 1 00

Cloth, 1 26
" Dictionary of the Names of Minerals Svo, 3 50

Dana's System of Mineralogy Large Svo, half leather, 12 60
" First Appendix to Dana's New " System of Mineralogy."

Large Svo, 1 OO
" Text-book of Mineralogy Svo, 4 00
*• Minerals and How to Study Them 12mo, 1 50
" Catalogue of American Localities of Minerals. Large Svo, 1 00
" Manual of Mineralogy and Petrography 12mo, 2 00

Egleston's Catalogue of Minerals and Synonyms Svo, 2 60
Hussak's The Determination of Rock-forming Minerals.

(Smith.) Small Svo, 2 00
• Penfleld's Notes on Determinative Mineralogy and Record of

Mineral Tests Svo, paper, 50
Rosenbusch's Microscopical Physiography of the Rock-making

Minerals. (Idding's.) Svo, 6 00
•Tillman's Text-book of Important Minerals and Rocks.. Svo, 2 00
Williams's Manual of Lithology Svo, 3 00

MINING.

Beard's Ventilation of Mines 12mo, 2 50
Boyd's Resources of Southwest Virginia Svo, 3 00

" Map of Southwest Virginia Pocket-book form, 2 00
•Drinker's Tunneling, Explosive Compounds, and Rock

Drills 4to, half morocco, 25 00
Eissler's Modem High Explosives Svo, 4 00
Fowler's Sewage Works Analyses 12mo, 2 00
Goodyear's Coal-mines of the Western Coast of the United

States 12mo, 2 50
DilBeng's Manual of Mining Svo, 4 00
** Iles's Lead-smelting 12mo, 2 50
Kunhardt's Practice of Ore Dressing in Europe Svo, 1 50
CDriscoU's Notes on the Treatment of Gold Ores Svo, 2 00
Sawyer's Accidents in Mines Svo, 7 00
Walke's Lectures on Explosives Svo, 4 00
Wilson's Cyanide Processes 12mo, 1 50
Wilson's C^ilorination Process 12mo, 1 60
Wilson's Hydraulic and Placer Mining 12mo, 2 00
Wilson's Treatise on Practical and Theoretical Mine Ventila-

tion 12mo, 1 26

SANITARY SCIENCE.

Folwell's Sewerage. (Designing, Construction and Maintenance.)
Svo, 3 00

" Water-supply Engineering Svo, 4 00
Fuertes's Water and Public Health 12mo, 1 50

" Water-mtration Works 12mo, 2 60
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Gerhard's Guide to Sanitary House-inspection 16mo, 1 00
Goodrich's Economical Disposal of Towns' Refuse . . .Demy 8vo, 3 50
Hazen's Filtration of Public Water-supplies 8vo, 3 00
Kiersted's Sewage Disposal , 12mo, 1 26
Leach's The Inspection and Analysis of Food with Special

Reference to State Control. (In preparation.)

Mason's Water-supply. (Considered Principally from a San-
itary Standpoint. 3d Edition, Rewritten 8vo, 4 OO

" Examination of Water. (Chemical and Bacterio-
logical.) 12mo, 1 25

Merriman's Elements of Sanitary Engineering 8vo, 2 00
Nichols's Water-supply. (Considered Mainly from a Chemical

and Sanitary Standpoint.) (1883.) 8vo, 2 60
Ogden's Sewer Design 12mo, 2 00
• Price's Handbook on Sanitation 12mo, 1 50
Richards's Cost of Food. A Study in Dietaries 12mo, 1 0^
Richards and Woodman's Air, Water, and Food from a Sani-

tary Standpoint 8vo, 2 00
Richards's Cost of Living as Modified by Sanitary Science. 12mo, 1 00
• Richards and Williams's The Dietary Computer 8vo, 1 60
Rideal's Sewage and Bacterial Purification of Sewage 8vo, 3 60
Tumeaure and Russell's Public Water-supplies 8vo, 5 00
\^Tiipple's Microscopy of Drinking-water 8vo, 3 60
WoodhuU's Notes on Military Hygiene 16mo, 1 60

MISCELLANEOUS.

Barker's Deep-sea Soundings 8vo, 2 00-

Emmoiis's Geological Guide-book of the Rocky Mountain Ex-
cursion of the International Congress of Geologists.

Large 8vo, 1 60
Ferrel's Popular Treatise on the Winds 8vo, 4 OO
Haines's American Railway Management 12mo, 2 60
Mott's Composition, Digestibility, and Nutritive Value of Food.

Mounted chart, 1 26
" Fallacy of the Present Theory of Sound 16mo, 1 00

Ricketts's History of Rensselaer Polytechnic Institute, 1824-

1894 Small 8vo, 3 00
Rotherham's Emphasised New Testament Large 8vo, 2 00

" Critical Emphasised New Testament 12mo, 1 50
Steel's Treatise on the Diseases of the Dog 8vo, 3 50
Totten's Important Question in Metrology 8vo, 2 60
The World's Columbian Exposition of 1893 4to, 1 00
Worcester and Atkinson. Small Hospitals, Establishment and

Maintenance, and Suggestions for Hospital Architecture,

with Plans for a Small Hospital I2mo, 1 26

HEBREW AND CHALDEE TEXT-BOOKS.

Green's Grammar of the Hebrew Language 8vo, 3 00
" Elementary Hebrew Grammar 12mo, 1 25
" Hebrew Chrestomathy 8vo, 2 00

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament
Scriptures. (Tregelles.) Small 4to, half morocco, 5 00-

Letteris's Hebrew Bible 8vo, 2 25
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