

Forest Service U.S. Department of Agriculture Equipment Development Center Missoula, Montana

Equipment Development and Test Report 7700-9

Inductive Loops – Their Design, Installation, and Maintenance for Road Traffic Surveillance

by Loren F. DeLand, P.E. electronic engineer

August 1977

Forest Service U.S. Department of Agriculture Equipment Development Center Missoula, Mont. 59801

Abstract

Inductive loop detectors are used to obtain road traffic data on National Forests. Loops consist of one or more turns of wire, usually arranged in a rectangle and buried in the road surface. The loop is connected by lead-in wires to a traffic detector that drives an alternating flow of current in the wire, producing a magnetic field. When a vehicle passes over the loop and through this magnetic field, eddy currents are induced, causing a drop in loop inductance. The detector senses this change and advances a recording mechanism, registering a count.

Effective inductance—the inductance presented to the terminals of a detector—should be in the 100 to 300 microhenry range for accurate traffic counting. Numbers 14 and 12 American Wire Gage stranded copper wire are good choices for loops. Polyvinylchloride insulation is adequate for short-term installations—3 to 5 years—at dry sites on gravel roads and where lead-in's can be 30 feet or less. Polyethylene-insulated wire is recommended for all other situations as it offers the maximum resistance to moisture and damage.

Several factors dictate loop design: the kinds of traffic to be counted; the need to limit lead-in inductance and capacitance; and the overall requirement that inductance presented to the detector should be in the 100 to 300 microhenry range.

Reference tables supply information to quickly determine a proper loop design. The steps required to install, inspect, and test loops are discussed.

Keywords: Traffic surveillance equipment, inductive loops, road traffic counters, road administration/planning, National Forest transportation policy, equipment engineering, equipment development, equipment testing.

A report written under Equipment Development and Test (ED&T) Project 2538, Inductive Loop Traffic Surveillance Equipment, for the Engineering Staff.

Contents

Abstract	ii
Introduction	
Theory of Loops	2
Wire Selection.	
Loop Design	
Installation	
Inspection and testing	
Summary	

Illustrations

Page

Figu	res	
1	Loop installation details	12
2	Alternate method for loop fabrication on gravel roads	13
3	Loop installed on asphalt road	14
4	Loop taped to road surface	14
5	Making loop-to-lead-in splice	15
6	Sealing loop-to-lead-in splice	16

Page

Tables

1	Inductance vs. loop size and number of turns	6
2	Effective inductance with 50 kHz detectors	7
3	Effective inductance with 75 kHz detectors	8
1	Effective inductance with 100 kHz detectors	9
5	Resistivities for bare copper wire	17

Information contained in this report has been developed for the guidance of employees of the Forest Service, U.S. Department of Agriculture, its contractors, and its cooperating Federal and State agencies. The Department of Agriculture assumes no responsibility for the interpretation or use of this information by other than its own employees.

The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others which may be suitable.

Introduction

This report will help resolve the many uncertainties surrounding inductive loop design. It is a confusing situation at best for the fieldman seeking information to insure that his loop performs accurately and reliably with inductive loop detectors in road traffic counting installations. Where does he turn for facts? What wire should he use in constructing loops? What loop configurations are best?

The Equipment Development Center at Missoula has been investigating traffic surveillance equipment since 1970 under Equipment Development and Test Project 1983, Road Traffic Counters. After looking into various methods of counting traffic, the Center recommended that the Forest Service use inductive loop detectors¹ to obtain traffic data. Most of these detectors impose similar constraints on the sensing mechanism, the inductive loop.

To gain a sound theoretical understanding and mathematical description of inductive loops from which loop design criteria could be derived, the Missoula Center contracted with the electrical engineering department of Montana State University, Bozeman. That study was conducted by Professors N.A. Shyne and J.P. Hanton. They developed models of loops, derived equations to describe the models, and verified the accuracy of their models using experimental test data. The two researchers designed a computer program for calculating coil inductance, and Center engineers modified and extended the program to generate design data for this report.

In addition, literature from five manufacturers was reviewed in detail to gain perspective from the experience of these companies. Their installation manuals contained some errors, and disagreements were found with the choice of materials, construction, and operation of loops.

Based on our findings, we present here a description of inductive loops and how they work, materials used in constructing loops, and proper loop design. There are also sections about installation and maintenance procedures.

¹A distinction can be made between counters and detectors. A counter is a device that both detects and counts traffic; detectors do not contain a counter, but must be used with a separate device that tallies traffic totals.

Theory of Loops

Inductive loops consist of one or more turns of wire, usually arranged in a rectangle. Inductive loops, as their name implies, operate by exploiting the electrical property of inductance. Inductance, measured in microhenries, can be defined as that property of an electric circuit whereby electromotive force is induced in a circuit by a change of current.

But how is this property applied to traffic detection? The loop is buried just below the surface of the roadway and connected to the terminals of a traffic detector by a pair of wires, called a lead-in. The traffic detector drives an alternating flow of current through the loop at or below resonant frequency. (Operating frequencies range from 20,000 to 120,000 cycles per second -20-120 kilohertz (kHz).) When a vehicle crosses the loop, eddy currents are induced causing an apparent drop in loop inductance. The detector senses this change and advances a recording mechanism to register a count.

Detectors monitor inductance in several ways. With *self-tuning detectors*, the oscillator is automatically adjusted to a null condition in feedback circuits. Any drop in inductance temporarily "detunes" the loop, causing a phase shift or amplitude change in the current flowing through the loop. Long-term inductance changes, such as a vehicle parked on part of the loop, are compensated for by the feedback circuit automatically tuning to a new null. Traffic Data Systems' LDC-353 and LDC-355 are two examples of self-tuning detectors.

In *manually tuned detectors*, such as Streeter Amet's 260 series, a tuned condition is achieved by adjusting the capacitance of the output

circuit to match the loop to the detector's fixed frequency. No compensation is provided for long-term inductance changes.

A third type of detector, for example, Streeter Amet's Spadet Jr. or 703 series, uses a *balanced bridge* circuit. The loop is placed in one arm of the bridge. A vehicle-caused drop in inductance unbalances the bridge causing an output signal. The most critical problem is maintaining balance despite changes in lead-in capacitance, which varies with temperature and moisture. This is also a problem with manually tuned detectors. The balanced bridge detector does not compensate for long-term inductance changes.

Besides inductance and capacitance, loops and lead-ins exhibit the electrical property of resistance and the frequency-related properties of reactance, impedance, resonance, and "Q," the quality factor of the loop. Traffic detectors respond to the net effect of these properties or to changes in them.

However, our studies indicate that when designing a loop, it is sufficient to consider only *effective* inductance; that is, the inductance presented to the terminals of the detector. Effective inductance includes not only the inductance of the loop (or loops), but also the effects of inductance and capacitance of the lead-in. Most detectors operate with inductances ranging from 50 to 500 microhenries.² But based on our experience, effective inductance of the loop installation should be in the 100 to 300 microhenry range for accurate traffic counting. To achieve this, choice of wire is important, as well as the physical design of the loop itself.

²Manufacturers' literature should be carefully monitored. In some cases, inductance ranges change in a given model without being called to the user's attention.

Wire Selection

Loops

Wire size and insulation greatly affect loop performance-how well inductance change caused by a passing vehicle is presented to the detector.

A loop's ability to reflect an inductance change is increased with large wire sizes such as #14 or #12 American Wire Gage (AWG) because resistance is negligible. Wire can be solid or stranded aluminum or copper. Stranded copper is a good choice. It is easier to form into a loop, and copper is less resistive than aluminum.

Type TW (moisture resistant thermoplastic) or type THW (moisture and heat resistant thermoplastic) wire with polyvinyl chloride (PVC) insulation is adequate for both loop *and* lead-in under these conditions: short-term installations (3 to 5 years) at dry sites on gravel roads and where short lead-ins (30 feet or less) are possible. Because of the number of small pinholes in PVC insulation, the loop can be grounded out on long lead-ins where wet conditions exist. A better choice for wet conditions is polyethylene (PE) insulation. Any insulation has pinhole flaws that allow conductive paths to form from the wire when the ground is moist. But PE insulation is manufactured by a process that involves thorough melting of the material, resulting in fewer pinholes than PVC.

Type USE (underground service entrance) or type UF (underground feeder) direct burial wire insulated with PE offers the maximum resistance to moisture and damage for loops (Type USE and UF can be purchased with PE-insulated conductors even though the outer jacket may be PVC.)

Where wire could contact hot tar or hot asphalt, as when roads are being resurfaced, type USE or UF wire with silicon rubber insulation may be a good compromise. It is not as mechanically durable as PE insulation but withstands temperatures to 300° F.

Lead-Ins

Large wire sizes-#14 and #12 AWG-should also be used for lead-ins. Specific types of wire and insulation depend on the site and lead-in length.

For short lead-ins at dry sites, type TW or THW wire with PVC insulation is adequate. Type USE and UF wire should not be used for lead-in wire since lead-ins must be twisted at least three turns per foot throughout their length. Twisting the wire together eliminates any small "loops," which can occur in the wire otherwise. Such "loops" increase lead-in inductance reducing the installation's ability to detect traffic.

Lead-in inductance must be kept small because a passing vehicle rarely reduces loop inductance more than 1 or 2 percent. (The exact percentage depends on how nearly the vehicle fills the loop.) By adding a large lead-in inductance, the vehicle-caused drop in loop inductance becomes proportionately even smaller. When large lead-in inductances "dilute" vehicle-caused reductions in this way, the detector cannot always "sense" the change, and counting accuracy declines. Capacitance is an important concern in wire selection, particularly when choosing a wire for long lead-ins, since it, too, has the effect of boosting lead-in inductance. The capacitance of wire is rated in picofarads per foot (pF/ft). Wire for lead-ins should be rated at 25 pF/ft or less at 70°F. Capacitance varies with temperature and moisture, so a good insulation can minimize these effects.

For long lead-ins we recommend wire insulated with crosslinked³ PE instead of PVC to limit capacitance. The capacitance of PVC and PE are about the same at 70°F. But for each 10 degrees of temperature change, the capacitance of PVC changes about 5 percent, that of PE less than 0.1 percent. Since self-tuning detectors must track that change, and manually tuned detectors may require retuning, it is best to limit capacitance changes by choosing wire insulated with PE.

PE-insulated cables suitable for long lead-ins are Belden's part numbers 8720 (#14 AWG) and 8718 (#12 AWG) or equivalent. These cables consist of a twisted, shielded pair of stranded, tinned copper conductors in a vinyl outer jacket. Belden also markets a good high density insulated #12 AWG stranded wire (part number YR-14903) for loops and short lead-ins.

³Crosslinking is a means of modifying the base structure of PE. This can be accomplished either by irradiation with high energy electron beams or through chemical crosslinking additives. Crosslinking increases continuous-use temperature, an important requirement in cable insulation.

Loop Design

The guidelines in this section are for designing loops that are as compatible as possible with available detectors. The object of good design is to fashion a loop that easily presents inductance change to the detector. The ability to reflect changed inductance is called *sensitivity* and is defined as the change in effective inductance occurring when a vehicle crosses the loop. The designer should also know how small an inductance change his detector will pick up. Manufacturers or the Missoula Center can supply that information.

Several factors dictate loop design: the kinds of traffic you want to count; the need to limit leadin inductance and capacitance; and the overall requirement that inductance presented to the detector-effective inductance-should be in the 100 to 300 microhenry range.

Small loops extending no more than 6 to 10 feet down the roadway do an accurate job of detecting motorcycles, snowmobiles, and cars, but often logging trucks are counted as two vehicles (the trailer often causes a separate count). If logging trucks must be counted as single units, for maintenance sharing data, for example, the loop should extend 12 to 14 feet or more down the roadway; 6 to 10 feet is ample if your detector has a time delay, however.⁴ Loops extending 12 to 14 feet down the road are accurate for cars and most trucks. These larger loops perform well with car and truck traffic but may miss most motorcycles.

In general, loops on forest roads should extend to within 3 feet of the shoulder, so vehicles cannot bypass the loop. Avoid shoulders and ditches where road maintenance equipment could damage loop or lead-in wires. With two or more loops and some logic circuitry, individual lane-counting or direction-of-flow data can be obtained. The primary difficulty is that the loops can interfere with each other, a problem that relates closely to the detector used. For such multiloop installations, you may want to contact the Missoula Center for technical help.

Once you have decided on the classes of traffic to be counted, you can choose the best combination of dimensions and number of turns for your loop. To verify that your choice is a good one-within the 100 to 300 microhenry range-calculate the effective inductance of your loop installation.

Four steps are involved:

 \bullet Refer to table 1 to find the inductance of your loop.

- Calculate lead-in inductance.
- Calculate lead-in capacitance.

• Refer to table 2, 3, or 4-depending on your detector frequency-for effective inductance.

$$\frac{1}{\text{total loop inductance}} = \frac{1}{L_1} + \frac{1}{L_2}$$

where L_1 is the inductance of one loop and L_2 the inductance of the second. Loops connected in series or in parallel do not improve traffic counting ability and require more time and effort to install, so it is best to avoid them. However, they can be employed to "save" a loop installation where effective inductance is either too high or too low. If too high, a loop connected in parallel to the malfunctioning loop can reduce inductance to the proper microhenry range; if too low, a loop connected in series may raise effective inductance to that range.

⁴The time delay is a popular detector modification. When loaded logging trucks must be counted as one unit of traffic, a time delay is incorporated so the detector does not reset to the original "ready" condition for 0.5 to 1 second after inductance has returned to normal.

⁵To compute the inductance of two or more loops connected in series, add the inductance of each loop together. For loops connected in parallel, inductances cannot simply be added because parallel loops combine to produce a total loop inductance smaller than the inductance of individual loops; mathematically this is expressed

T	able	e 1.	–Ind	luctance	vs.	loop	size	and	number	of	[°] turns

Longth	Width		Inducta	nce in Mic	rohenries					Inductan	ce in Micro	ohenries	
Length (Feet)	Width (Feet)	1 Turn	2 Turns	3 Turns	4 Turns	5 Turns	Length (Feet)	Width (Feet)	1 Turn	2 Turns	3 Turns	4 Turns	5 Turns
2 2 2 2	2 4 6 8	3 5 6 8	10 16 22 28	21 33 45 57	34 55 75 95	51 81 112 142	16 16 16 16	34 36 38 40	52 54 56 58	184 192 200 208	389 406 423 439	662 690 719 747	999 1042 1085 1128
4 4 4 4 4 4 4 4 4 4 4 4 4	4 8 10 12 14 16	7 9 10 12 14 16 18	23 29 36 43 49 56 62	47 61 75 89 102 116 129	79 103 126 149 172 195 218	1 18 1 5 3 1 8 8 2 2 3 2 5 7 2 9 2 3 2 6	18 18 18 18 18 18 18 18	18 20 22 24 26 28 30 32	36 39 41 43 45 48 50 52	129 137 145 154 162 170 178 186	272 290 307 324 341 358 375 392	463 492 521 551 580 609 638 667	697 742 786 830 875 919 963 1007
6 6 6 6	6 8 10 12 14	11 13 14 16 18	37 44 51 58	76 91 106 120 135	129 154 178 203 228	192 230 267 305 342	18 18 18 18	34 36 38 40	54 57 59 61	194 202 210 218	409 426 443 460	69 6 725 754 78 3	1050 1094 1138 1182
6 6 6 6	16 18 20 22 24	20 22 24 26 28	71 78 85 92 99	1 49 1 64 1 78 19 3 207	252 277 301 326 350	379 416 452 489 526	20 20 20 20 20 20	20 22 24 26 28 30	41 43 46 48 50 52	146 154 162 170 178 187	307 325 342 360 377 394	522 552 582 612 641 671	787 833 878 923 968 1012
8 8 8 8 8	8 10 12 14 16 18	15 17 19 21 23 25	51 58 66 73 80 87	107 122 138 153 168 183	180 207 233 259 284 310	270 310 349 388 427 466	20 20 20 20 20	32 34 36 38 40	55 57 59 61 64	195 203 211 219 227	412 429 446 463 481	700 730 759 789 818	1057 1102 1146 1191 1235
8 8 8 8 8 8 8	20 22 24 26 30 32	27 29 31 33 35 37 39	95 102 109 116 123 130 138	198 214 229 244 259 274 289	336 362 377 413 438 464 490	505 543 582 621 659 698 737	22 22 22 22 22 22 22 22 22 22 22	22 24 26 28 30 32 34 36	46 48 50 52 55 57 59 62	162 171 179 187 195 204 212 220	343 360 378 396 413 431 448 466	583 613 643 673 703 733 763 793	879 925 978 1016 1061 1107 1152 1197
10 10 10 10 10	10 12 14 16 18	19 21 23 25 27	66 74 81 89 96	138 154 170 186 202	234 261 288 315 342	351 392 433 474 514	22 22 24 24	38 40 24 26 28	64 66 50 53 55	228 237 179 187 196	48,3 501 378 39,6 414	8 23 8 53 644 674 7 05	1243 1288 971 1018 1064
10 10 10 10 10 10 10 10	20 22 24 26 28 30 32 34	29 31 33 35 38 40 42 44	103 111 126 133 140 148 155	213 233 249 264 280 296 311 327	368 395 422 448 475 501 528 554	554 594 635 675 715 755 795 835	24 24 24 24 24 24 24	28 30 32 34 36 38 40	55 57 59 62 64 66 69	204 213 221 229 238 246	414 432 450 468 485 503 521	735 766 796 826 857 887	1084 1110 1156 1202 1248 1294 1340
10 10 12 12 12	36 38 40 12 14 16 18	46 48 50 23 25 27 30	163 170 177 81 89 97 104	342 358 374 171 187 204 220	581 607 634 289 317 345 373	875 915 955 435 477 519 561	26 26 26 26 26 26 26 26 26	26 28 30 32 34 36 38 48	55 57 60 62 64 67 69 71	196 205 213 221 230 238 247 255	415 433 451 469 487 505 522 540	705 736 767 798 829 859 850 921	1065 1)12 1159 1205 1252 1252 1298 1345 1391
12 12 12 12 12 12 12 12	20 22 24 26 28 30 32 34 36	32 34 36 38 40 42 44 47 49) 12) 20 127) 35) 43) 50] 58] 65] 73	236 252 268 284 300 316 332 348 364	400 428 455 482 510 537 564 591 619	602 644 685 726 768 809 850 891 932	28 28 28 28 28 28 28 28 28	28 30 32 34 36 38 40	60 62 64 67 69 71 74	213 222 230 239 247 256 264	451 469 487 506 524 542 560	768 799 830 861 892 923 954	1159 1207 1254 1301 1348 1395 1442
12 12 14 14 14	38 40 14 16 18	51 53 27 30 32	180 188 97 105 113	380 396 204 221 238	646 673 346 375 403	973 1015 521 564 607	30 30 30 30 30 30 30	30 32 34 36 38 40	64 67 69 72 74 76	230 239 248 256 265 273	488 506 525 543 561 579	8 31 8 62 8 9 4 9 25 9 5 6 9 88	1255 1303 1350 1398 1445 1493
]4]4]4]4]4]4	20 22 24 26 28 30 32	34 36 38 41 43 45 47	121 128 136 144 152 159 167	254 271 287 304 320 336 353	431 459 487 515 543 571 599	649 692 734 777 819 861 903	32 32 32 32 32 32	32 34 36 38 40	69 72 74 76 79	248 256 265 274 28 2	525 543 562 580 599	894 926 958 989. 1021	1351 1399 1447 1495 1543
14 14 14 14	34 36 38 40	49 51 53 56	175 183 190 198	369 386 492 418	627 655 683 711	946 988 1030 1072	34 34 34 34	34 36 38 40	74 76 79 81	265 274 283 291	562 581 599 618	958 990 1022 1054	1 4 48 1 49 7 1 5 4 5 1 59 4
16 16 16 16	16 18 20 22 24	32 34 36 39 41	113 121 129 137 145	238 255 272 289 306	404 433 462 491 519	608 652 696 739 783	36 36 36 38	36 38 40 38	79 81 84 84	283 292 300 301	600 619 637 638	1022 1055 1087	1546 1595 1644 1644
16 16 16 16	26 28 30 32	43 45 47 50	153 161 169 177	323 339 356 373	548 576 605 634	826 869 912 955	38 40	40 40	86 89	309 318	656 676	1120	1694 1743

27 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	40 M CH	CUTANUS	\geq								
L. A. Q	ç ^o	, 	LOOP			HENRI		NCE			DUCTANCE ES)
10 3	50	100	150	200	250	300	350	400	450	500	350 400 450 500
13.0 206 300 300 300 300 1200 1200 1200 1200 120		1000001111111100222222222230003334003351	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\$		$\begin{array}{l} 259\\ 251\\ 252\\ 252\\ 255\\ 255\\ 255\\ 255\\ 255$	309 301 302 304 305 305 305 305 305 311 312 314 315 317 319 3214 315 317 319 3214 319 3214 319 3214 3224 3224 3224 3224 3224 3224 3224	$\begin{array}{c} 3551\\ 24556\\ 7961\\ 3552\\ 4556\\ 7961\\ 3564\\ 566\\ 8666\\ 8666\\ 8666\\ 777\\ 777\\ 7862\\ 8666\\ 8666\\ 8666\\ 8666\\ 777\\ 777\\ 7862\\ 8666\\ 8666\\ 9666\\ 9666\\ 8666\\ 9666\\ 866$	$\begin{array}{c} 6 & 2 & 0 \\ 6 & 0 \\ 6 & 0 & 0 \\ 6 & 0 & 0 \\ 6 &$	0944580247017558224701459145914702575035814758555555555555555555555555555555555	502 502 502 502 502 502 502 502 502 502	351 402 152 502 352 403 -54 505 354 405 406 513 355 406 468 513 357 410 462 513 357 410 462 513 366 413 467 521 361 416 471 526 363 416 471 526 364 418 473 529 365 420 475 531 366 422 478 534 366 422 478 534 366 422 478 543 372 427 487 546 375 432 491 552 377 438 494 555 377 438 494 555 377 436 511 577 385 446 501 561

47 47 48 40 49 6880 6188	COC 40 IN COC 40	D LC	DOP PL (US LE IN MIC			CTANC 350	E 400
6269	52	-167	165	227 227 228	293 294 295	365 366 367		524 527 532
 5320 5320 5320 5320 5320 5320 7220 7220 7230 7230 7230 7230 7200 7200<td>······································</td><td></td><td>56666777778888899998889998889998889998889998889998889998889998889998889998889998889998889998889998889998888</td><td>00000000+244000445000425000000001440003400027550002544000554000554000544000544000544000544000544000544000544000000</td><td>19789988458898511181458789918042785818755814589144477884187558145891444778881875581458891444778881</td><td>269 2712 2715 2715 2715 2715 2715 2715 2715</td><td>07.8143570835658888555544556885554288855555555555555</td><td>9935544 47255455555555555555555555555555555</td>	······································		56666777778888899998889998889998889998889998889998889998889998889998889998889998889998889998889998889998888	00000000+244000445000425000000001440003400027550002544000554000554000544000544000544000544000544000544000544000000	19789988458898511181458789918042785818755814589144477884187558145891444778881875581458891444778881	269 2712 2715 2715 2715 2715 2715 2715 2715	07.8143570835658888555544556885554288855555555555555	9935544 47255455555555555555555555555555555

Table 2.-Effective inductance for 50 kHz detectors (in microhenries)

7

074 1074 1074 1074 1070	50 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	ID0	LOC 150	0P PLU (II) 200		D-IN OHEN 300		TANCE 400	450	500
$\begin{array}{c} 160\\ 260\\ 360\\ 360\\ 360\\ 360\\ 360\\ 360\\ 1200\\ 1$	000000000011111111111111111111110000000	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$	$\begin{array}{c} 501\\ 1552\\ 155323444555667788996911155666778999611555667789996115556677899961165666778999611656677899961165667789996116566778999611656778999601165677899960116567789996011656778999601165677899960116567789996011656778999601100000000000000000000000000000000$	$\begin{array}{c} 269\\ 2691\\ 2623\\ 2694\\ 2655\\ 2695\\ 2655\\ $	$\begin{array}{c} 259\\ 253\\ 255\\ 255\\ 255\\ 255\\ 256\\ 265\\ 265\\ 265$	$\begin{array}{c} 332446889215791146881369024753366925815381538259372948371158499467994894\\ 333333333333333333333333333333333333$	$\begin{array}{c} 33558314\\ 5558314\\ 75335936993683714\\ 82684972336936936996683714\\ 42233497245161728848628575555567\\ 333333333339968371444444444444444444444444444445565755555555$	$\begin{array}{c} 394\\ 499\\ 41159\\ 371159\\ 394\\ 445\\ 447\\ 447\\ 447\\ 447\\ 447\\ 447\\ 44$	45594949499495173952997493 444444449955555555555555555555555555	508 506 511 5129 5529 5529 5529 5529 5529 5529

	20 20 20 10 Capacity Company			CTANC	E	
LOL TO LAND	50	100	150	200	250	300
 6185 6280 6380 6480 6580 6480 6580 6480 6580 7280 7280<td>\$\; \$\; \$\; \$\; \$\; \$\; \$\; \$\; \$\; \$\;</td><td>$\begin{array}{c} 116\\ 116\\ 117\\ 117\\ 118\\ 118\\ 1199\\$</td><td>$\begin{array}{c} 188\\ 199\\ 191\\ 192\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196$</td><td>199917917927992499924499221077914907499179981479971472014982979920 777778888889999692232220011111114449236934444401953752202070990 942233888999969223222000000777728889989344440095355522070990 94233889999999999999999999999999999994444009535552007099999999999999999999999999999999</td><td>21481080507664001-1084040044040511-1985.8545 5858859894821104429714555440944440511-1985.8545 8888888442114444444444444444444445555555555</td><td>065 011 517 025 5548 5552 5525 5525 552 552 552 552 552 552</td>	\$\; \$\; \$\; \$\; \$\; \$\; \$\; \$\; \$\; \$\;	$\begin{array}{c} 116\\ 116\\ 117\\ 117\\ 118\\ 118\\ 1199\\$	$\begin{array}{c} 188\\ 199\\ 191\\ 192\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196$	199917917927992499924499221077914907499179981479971472014982979920 777778888889999692232220011111114449236934444401953752202070990 942233888999969223222000000777728889989344440095355522070990 94233889999999999999999999999999999994444009535552007099999999999999999999999999999999	21481080507664001-1084040044040511-1985.8545 5858859894821104429714555440944440511-1985.8545 8888888442114444444444444444444445555555555	065 011 517 025 5548 5552 5525 5525 552 552 552 552 552 552

Table 4-Effective inductance for 100 kHz detectors(in microhenries)

/.	DEAD-IN CAP	201 201 201 201 201 201 201 201 201 201			5 LEAI	——————————————————————————————————————	(in	micro		for 100 i
0741		100	150	200	250	300		400	450	500
1 100 100 100 100 100 100 100 100 100 10	30 8888888111111111118888888888888888888		150 151123 4 5 6 6 1 5 4 5 6 7 6 9 5 7 1 0 4 5 6 6 7 7 9 6 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 7 6 9 5 7 1 0 4 5 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 5 7 6 6 6 7 6 9 7 6 7 6 7 6 7 6 7 6 7 7 7 7	200 200 200 200 200 200 200 200 200 200	$\begin{array}{c} 239\\ 258\\ 255\\ 255\\ 255\\ 255\\ 255\\ 255\\ 255$	$\begin{array}{c} 300\\ 800\\ 800\\ 800\\ 800\\ 800\\ 800\\ 800\\$	350 355 365 365 365 365 365 365 365 365 365	400 	456 4587 4587 4894 44567 4894 4555 5555 5555 5555 55555 55555 55555 5555	500 510 521 531 555 567 580 594

6899 6189 6299 6299 6299 6299 6299 6299 6299 7299 7	TOTAL International	ectors	
57777777788888889999999999999888888999999	50	200 200 100 000 000 000 000 000 000 000	
$\begin{array}{c} 132\\ 1323\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1355\\ 1555\\ $	IN MIC	II CITAWCE	\wedge
235792244691 235792244691 22544691 22544691 22544691 225647925222647735522226582259958269937125044832573552222222222222222222235826593342573555555555555555555555555555555555	I50	NDUCT	
3866 3866 3892 344 744 745 456 26 30 344 744 745 36 30 344 744 745 36 30 344 744 745 36 30 344 744 745 36 30 344 745 36 36 36 36 36 36 36 36 36 36 36 36 36	200	D-IN ANCE	

As an example, if you are interested in counting logging trucks, perhaps you would select a 10 x 14-foot loop. Checking table 1, which gives inductance figures for single loops with one to five turns, you might decide that a three-turn loop of 170 microhenries was appropriate.

Next calculate lead-in inductance. Multiply the length of your lead-in in feet times 0.22 microhenries (wire has a rating of 22 microhenries per 100 feet). A 125-foot lead-in, for example, would be 27.5 microhenries (125 x 0.22). Thus, loop plus lead-in inductance totals 197.5 microhenries (170 + 27.5).

Now calculate lead-in capacitance by multiplying the picofarads per foot rating of the lead-in wire times its length. A 125-foot lead-in of 25 pF/ft would be 3,125 picofarads.

Turn to table 2, 3, or 4, depending on the operating frequency of your detector, to determine the effective inductance of your design. For example, if your detector operates at 50 kHZ, turn to table 2. In the left-hand column of that table locate the lead-in capacitance figure closest to 3,125 picofarads, 3,100; next, under the loop plus lead-in inductance heading, locate the 200-microhenry column, the one closest to 197.2 microhenries. Moving across the table you find the effective inductance of your sample installation is 213 microhenries –

within the range for a well-designed loop. (Actual effective inductance would be just below 213 since loop plus lead-in inductance was slightly less than 200 microhenries.)

When designing loops, these general guidelines may be helpful:

• As a rule, only 20 percent of a loop installation's inductance should be in the leadin. Loop inductance can be raised by designing loops with multiple turns, limiting lead-in length, or both.⁶

• Lead-ins over 30 feet should be treated as long lead-ins and appropriate wire used.

• Lead-ins must never exceed 750 feet in length.

• Wire considered for lead-in should have a capacitance rating of 25 pF/ft or less at 70°F.

• For most long lead-ins, capacitance should not be allowed to vary more than 0.1 percent for every 10 degrees of temperature change. In other words, PE-insulated wire should be used in most cases.

• Consult wire manufacturers or the Missoula Center when considering new or unique wire insulation.

⁶Some loop designers have said they can facilitate tuning when effective inductance is low by adding a capacitor across lead-in wires. It increases effective inductance, but the contribution of capacitance makes it difficult for the detector to pick up the vehicle-caused change in inductance.

Installation

Installation consists of physically putting the loop in the roadway, splicing loop and lead-in if separate lead-in wire is used, and connecting lead-ins to a detector.

It is good practice to install loops that will last for the life of the road. In too many cases a loop is installed with a weak link such as a poor splice, and the loop functions properly for only a year or two. Much time and money go into a loop installation, so it should be done with care.

Select a site where traffic flows uniformly at moderate speed, and passing or parking is unlikely. Avoid areas close to intersections. Put the detector near the loop but out of view of traffic if possible.

Loops should be installed away from masses of metal such as reinforcing bar in concrete roadways and steel in bridge decks. Large amounts of metal make the loop less sensitive by reducing inductance by as much as 5 to 1.

Loop sensitivity is inversely proportional to the square of the distance from the loop to the vehicle, so loops should be as close to the surface of the roadway as possible and still maintain good physical and electrical properties.

When installing a loop in concrete or asphalt, draw an outline of the loop on the road surface. Avoid crossing expansion joints, and never use them as readymade slots. Use a diamond or abrasive saw blade 3/16-inch wide to cut a slot up to 1 inch deep in concrete or 2 to 3 inches deep in asphalt. Cut diagonals at the corners to eliminate sharp bends (fig.1). In gravel the loop should be 6 to 8 inches below the surface. Slots or trenches can be dug by hand with shovels and picks or with backhoes or roadgraders.

Figure 2 shows another method for forming loops that has a number of advantages for installations on gravel roads. Make a single loop with a length of three-conductor, UF cable with or without ground (ground wire is never used for loop). By splicing as shown in figure 2, a three-turn loop is created to which the lead-in is attached. The cable's outer jacket holds the conductors together offering greater resistance to moisture and damage. Lead-ins are then buried.

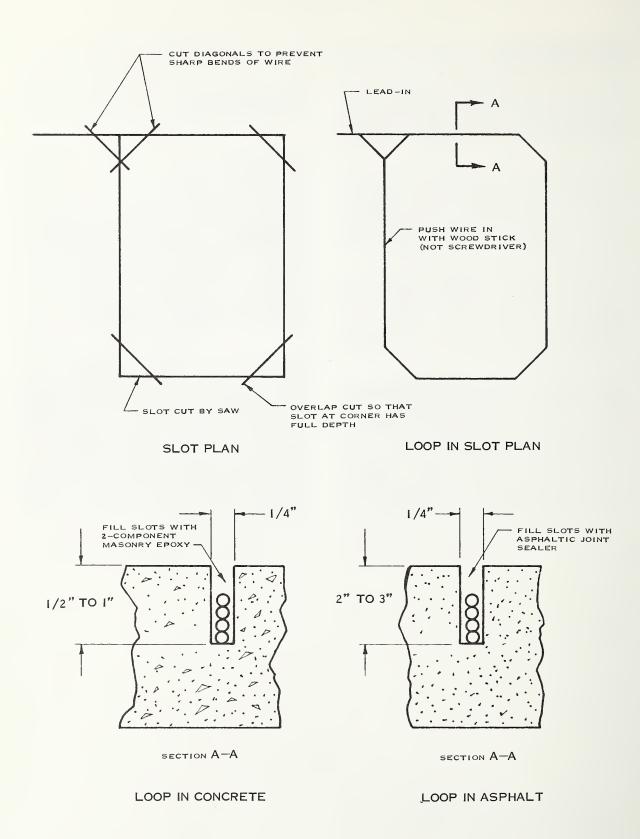


Figure 1.-Loop installation details.

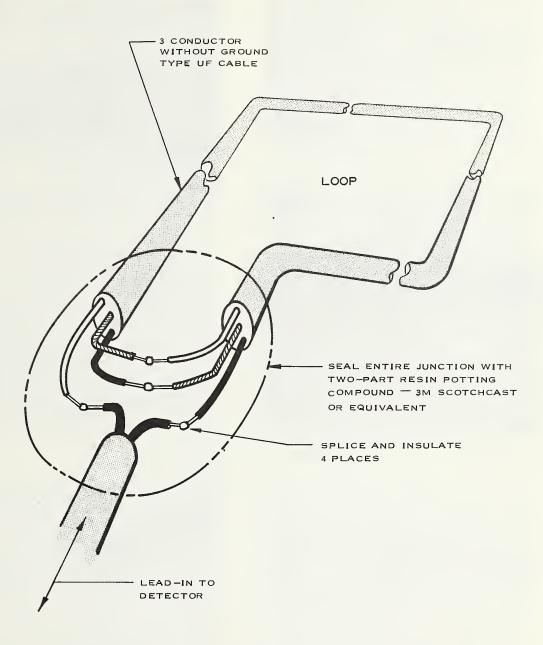
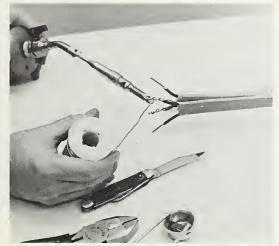


Figure 2.-Alternate method for loop fabrication on gravel roads.

At sites where lead-ins can be short, run a length of wire from the detector to the loop, form a loop of the required number of turns with the wire and continue it back to the detector. (On gravel, loops can be prefabricated and then placed on the road surface.) Position each turn in the slot, being careful not to damage wire insulation. A wooden tool can be used to position the wire in concrete or asphalt slots. Fill the slot with masonry epoxy (concrete roadway) or rubberized asphaltic joint sealer (asphalt road) (fig. 3). For gravel, secure the corners of the loop to stakes or nails driven well into the roadbed and cover with gravel. Keep wires together by taping every 3 to 5 feet. On roads to be resurfaced, simply tape the loop to the old surface (fig. 4). Make sure wire insulation can withstand the heat involved in applying a new road surface such as asphalt.

Figure 3-Loop installed on asphalt road.

Twist the lead-in wires together at least three turns per foot. This will insure that no small loops have been set up in the lead-in, which might increase inductance and reduce sensitivity. Route the lead-in in a shallow trench directly to the detector. Bury the lead-in several inches deeper than the loop for added protection against road maintenance equipment. Installing this section in rubber or plastic tubing or nonmetallic conduit also helps.


Figure 4–Loop taped to road surface.

At sites requiring longer lead-ins, special lead-in wire is needed to keep the effects of capacitance within tolerable limits. PE-insulated cable such as Belden numbers 8720 or 8718 or equivalent are good choices.

Form the loop as above beginning and ending the loop at the roadway's edge. Then trim insulation from the ends of the loop wires. Some wire has an aluminum shield. This must be stripped from the ends of the wire and not used or connected in any way. Twist and solder individual wires (fig. 5, A and B). All soldering should be done with a 60/40 resin core solder. Never use acid flux solders. Tape the two ends of the unused conductor so they will not come in contact with the active conductor. Bind with rubber splicing compound and plastic tape. Now make the loop-to-lead-in splices by twisting together wires and soldering (fig. 5, C and D). Rubber splicing compound and plastic tape thoroughly seal area against moisture (fig. 5, E and F).

A.— Twist individual wires (three conductor cable is being used for loop).

B.—Solder each junction.

D.— Solder wires together.

E.— Wrap with rubber splicing compound and plastic tape.

C. – Twist loop and lead-in wires together.

F. – Properly taped splice.

Figure 5.-Making loop-to-lead-in splice.

For permanent installations, we suggest two-part resin potting compounds such as 3M Co.'s Scotchcast or equivalent to seal splices (fig. 6). First, remove liners from sealing putty on mold body and position around splice (fig. 6, A and B). Compress sealing putty tightly around each cable. Pour resin into the mold and seal top (fig. 6, C and D). Resin hardens completely in about 30 minutes (fig. 6, E).

A.- Remove liners from sealing putty on mold.

C.-Pour resin into mold.

D.— Seal top of mold.

B.— Position mold around splice.

E.-Finished splice.

Figure 6.-Sealing loop-to-lead-in splice.

Inspection and Testing

Follow these steps when inspecting sites:

1. Determine if the loop may have been damaged by road maintenance equipment, shifts of pavement, or vandalism. Inspect the exposed end of the lead-in for evidence of deterioration.

2. Disconnect the lead-in from the detector and connect lead-in wires to an ohmmeter. Set the ohmmeter to its lowest range and measure the resistance of the loop and lead-in. Compare the indication with the design value. Refer to table 5 for resistivities.

Here is an example: A 12 x 20-foot, three turn loop constructed from #12 AWG copper wire with 150 feet of Belden 8720 lead-in. The total length of the loop is 192 feet (12 + 20) (2) (3). The 150-foot lead-in is #14 AWG copper wire with a total circuit length of 300 feet (2 x 150 feet). Since the resistance of #12 AWG is 1.588 ohms per 1,000 feet, and the resistance of #14 AWG is 2.525 ohms per 1,000 feet (table 5), loop resistance should be $\frac{192}{1,000} \ x \ 1.588 = 0.305 \ ohms$

and the resistance of the lead-in should be

$$\frac{300}{1,000}$$
 x 2.525 = 0.758 ohms,

totaling 1.06.

Resistances greater than the design value indicate faulty splices or partially severed conductors. Very high or infinite readings on the highest scale indicate an open circuit. In either case, repair or replacement is necessary.

3. With the lead-in disconnected from the detector, drive a metal stake well into the earth and measure the resistance between either conductor of the lead-in and ground. This is a test of the insulation. The metal stake must be driven deep enough to contact moist earth, and the highest range of the ohmmeter must be used. Resistance lower than 1 million ohms (1

	Diameter	Anar	•	Resistance o	+ 60° F
Gage (AWG)	Diameter, (in), Nominal	Area, circular mils	Weight, lb/1,000 ft	Ohms per 1,000 ft	<u>Ft/ohm</u>
10	0.1019	10380.	31.43	0.9989	1001.0
12	0.08081	6530.	19.77	1.588	629.6
14	0.06408	4107.	12.43	2.525	396.0
16	0.05082	2583.	7.818	4.016	249.0
18	0.04030	1624.	4.917	6.385	156.5
20	0.03196	1022.	3.092	10.150	98.5

Megohm) indicates damage or deterioration. Replacement of the lead-in or loop or both may be required.⁷

4. If the detector operates satisfactorily on test loops or at other sites, obtain an inductance meter and measure the inductance of the loop. Check the specification, contact the manufacturer, or both, to insure that the detector being used will operate at the loop's inductance range.

5. If the loop operates properly under moderate weather conditions but does not operate in wet, cold, or very hot weather without retuning, the lead-in probably has excessive capacitive variation and should be replaced. If this is not practical, a self-tuning detector must be used for accurate counting.

⁷A grounded loop can work satisfactorily if the grounding is close to one side of the lead-in and if this side is connected to the ground side of the detector. If the grounded side cannot be detected with the ohmmeter, the correct side can be found by reversing the leads. This condition should be corrected.

Summary

With the information contained in this report, it is possible to design loops that easily present vehicle-caused changes in loop inductance to a detector. The well-designed traffic counting installation assures that road management decisions are based on accurate traffic data.

Effective Inductance: A key consideration in loop design. It should be in the 100 to 300 microhenry range. To compute effective inductance obtain loop inductance from table 1; calculate lead-in inductance by multiplying lead-in length in feet times 0.22 microhenries; calculate lead-in capacitance by multiplying pF/ft of your lead-in wire times its length; then refer to the effective inductance tables.

Lead-ins: A second important consideration. Limit lead-in inductance and capacitance by keeping lead-in length as short as possible. In no case should lead-in length exceed 750 feet.

*Wire & Insulation: #*14 or *#*12 AWG is recommended for loops and lead-ins; stranded copper wire is a good choice. Insulation will depend on temperature and humidity, physical characteristics of the site, and lead-in length. Type TW or THW wire with PVC insulation is adequate for short-term loops at dry sites on gravel roads and where lead-ins are short. Polyethylene-insulated type USE or UF wire is best for permanent loops or where temperatures vary widely. PE-insulated cable is recommended for long lead-ins. Belden numbers 8720 and 8718 or equivalent are good choices.

Installation: Loops should be installed at sites where traffic moves at moderate speed and passing and parking are unlikely. Avoid areas near intersections. Installation should be away from reinforcing bar in concrete highways and masses of metal. Loop sensitivity depends in part on how deep wire is buried in the road. A 1-inch-deep slot is adequate in concrete, 2 to 3 inches in asphalt, and 6 to 8 inches in gravel. Rubber splicing compound and plastic tape are adequate to seal loop-to-lead-in splices at short-term installations. At permanent sites, the additional step of sealing splices with potting compound is recommended.

☆ U.S. GOVERNMENT PRINTING OFFICE: 1977-796-018/103

