李灰教科室

752747

校教科書谷

陳蓋民編

節 學基本運算之練習

MG 012/ 30

	學校教科書戶	陳 蓋 民 編
商務印書館發行	基本運算之練習	

3 1774 6284 7

簡易師範算學第一册學校教科書算學第一册

(基本運算之練習)

目次

第一編 整數(數之起源)

一章 整數的起源和牠的運算…… §1.數的起源——名數——不名數,§2.自然數— 自然數系,§3.自然數系是序系,§4.純數與序數, §5.命數法,§6.數之記號,§7.一對一和等式,§8. 等式的對稱性及傳遞性,§9.不等式,§10.不等式 的傳遞性,§11.四則,§12.加法在四則中之重要, §13.加法定義,§14.加法的運算律,§15.乘法 定義,§16.乘法運算律,§17.冪一根一指數。§18. 指數定律,§19.記數法,§20.減法定義,§21. 減法運算律,§22.除法定義,§23.餘數處置法, §24.除法和零的關係,§25.除法運算律,§26.四 則運算的三大定律,\$27. 三大定律還原的應用, §28. 運算符號和式, § 29. 乘除運算律, § 80. 四則運算 的次序和括號使用法。

§ 31. 算草, § 32. 加法算草, § 33. 速加法, § 34. 心算練習法, § 35. 速加測驗, § 36. 減法算草, § 37.

速減法, § 38. 乘法算草, § 39. 速乘法, § 40. 速 乘測驗, § 41. 除法算草, § 42. 速除法。

第三章 約數和倍數58

§ 43. 約數及倍數的定義, § 44. 偶數和奇數, § 45. 公約數, § 46. 約數和倍數的定理, § 47. 定理的應 用, § 48. 質數及合數, § 49. 質因數, § 50. 因數 分解,§51. 最大公約數,§52. 求 G.C.M. 的基本 原理, § 53. G.C.M. 求法, § 54. 互質數和兩對兩 的互值數, § 55. 公倍數和最小公倍數, § 56. L.C. M. 求法。

§ 57. 速算, § 58. 加的簡便算, § 59. 補數, § 60. 減的簡便算, § 61. 簡乘法, § 62. 簡除法。

第二編 分數(數系擴充之一)

第五章 分數的起源和牠的運算
§ 63. 不連續量和連續量, § 64. 連續量和分數的定義,
§ 65. 近似值, § 66. 分數的基礎性質, § 67. 擴分
與約分,§68.分數的類別,§69.通分,§70.分
數大小的比較法, § 71. 分數加減法, § 72. 分數乘
法, § 73. 分數的冪, § 74. 倒數, § 75. 分數除法,
§ 76. 繁分數。

第六章 分數和小數 122

§ 77. 十進法和十退法,§ 78. 小數的起源及定義,§ 79. 小數的命名,§ 80. 小數的特性,§ 81. 通位法,§ 82. 十退分數和非十退分數, § 83. 十退分數和小數互化法, § 84. 非十退分數和循環小數, § 85. 循環小數的要性,§ 86. 循環小數通位法,§ 87. 分數種類和小數種類的關係,§ 88. 化純循環小數為分數法,§ 89. 化混循環小數為分數法,§ 90. 有限小數加減法,§ 91. 循環小數加減法,§ 92. 有限小數乘法 § 93. 有限小除數法,§ 94. 循環小數乘除法。

第三編 數和量的關係

第-	七章	單位			**********	••••••	• • • • • • • • • • • • • • • • • • •	*****	143
	§ 95.	量數和	單位,	§ 96.	單位的	種類和	進率,	§ 97	•,
	度量衡	, § 9	8. 米制	的長度	單位,	§ 99.	面積的	單位	•
	§ 100.	體積的	, 的單位千	進法,	§ 101	. 米制	的容量	單位	
	§ 102.	米制的	內重量單	位,	§ 103.	我國 現	行權	度制	,
	§ 104.	外國村	灌度制,	§ 105	. 主幣	哺幣,	§ 106	我国	刘
	現行幣	制,	§ 107.	外國幣	制,§	108.	國幣和	外幣的	ħ
	比較,	§ 109	. 時間的	內單位。	•				
第	八章	複名	數運算	ž		•••••••		******	169
	§ 110.	單名類	數複名數	, §1	11. 十	進複名關	數的通	法和命	ग्रे
	法,	§ 112.	非十進	複名數	的通法,	§ 11	3. 非	十進を	复
	名數命	法,	§ 114.	非十進	複名數	加減法,	§ 1:	l5. ∌	ŧ
	十進複	名數乘	美法, §	116. 5	非十進複	包數的	法。		
第	九章	省略	算(近	似計算	郼)	14 * * * * * * * * * * * * * *		*****	182
	§ 117.	近似何	直在日常	生活上	的重要	, § 11	8. 近	以值的	勺 ·
	選擇,	§ 11	9. 近似	值和零	記號,	§ 120.	絕對	娛差 才	月 ·
	對誤差	, §1	21. 省四	各算,	§ 122.	省略加	法,	§ 123	

省略減法, § 124、省略乘法, § 125. 省略除法。
第十章 比和比例191
§ 126. 比和除法, § 127. 比的種類, § 128. 比的特性, § 129. 比的運算律, § 130. 正比反比 § 131.
單比複比, § 132. 連比, § 133. 比重, § 134. 比
例, § 135. 比例的基本定理, § 136. 正比例正變,
§ 137. 反比例反變, § 138. 比例的應用, § 139. 歸
一法, § 140. 複比例, § 141. 連鎖法, § 142. 配
分法, § 143. 混合法。
第十一章 百分法(percentages)223
§ 144. 問題 1, § 145. 問題 2, § 146. 百分法百分
率, § 147. 符號, § 148. 化小數為百分率的法則,
§ 149. 化分數為百分率的法則,§ 150. 百分率和子數
母數的關係, § 151. 百分法的應用, § 152. 佣錢,
§ 153. 折扣連折扣, § 154. 賺賠, § 155. 保險,
§ 156. 賦稅。

第四編 無理數(數系擴充之二)

第十二章 開方 無理數的近似值求法.....237

	§ 15'	7. 乘	冪開方,	§ 15	8. 根	数的記號	,	§ 159.	開平	方
	的應	用,	§ 160.	無理	敦 ,	§ 161.	無	理數的	近似作	直,
	§ 169	2. 開	平方,	§ 163.	開立	方。				
附針	录	乘冪	開方	長	•••••	,i.,,,,,,,,,	.3	* *** **** ***	*******	244

簡易師範算學第一册學校教科書算學第一册

(基本運算之練習)

第一編 整數(數之起源)

第一章 整數的起源和牠的運算

§ 1. 數的起源——名數——不名數 假使有人問我們: 這房裏有多少桌子?這班裏有多少學生? 那籃裏有多少蘋果? … …我們就——給他一個答案,這答案就是『數』,精確的說: 就是 『整數』。

這些答案要是仔細的考查起來,就可以分為兩種不同的情形:一種帶有單位名稱的,像九張(桌子),二十五人(學生),叫做『名數』。其他一種是不帶單位名稱的,像九,二十五,都是抽象的數,叫做『不名數』。算學上所研究的數都是不名數。本書以後所謂數,也是指不名數。

我們因為房裏的桌子,班裏的學生,都是成羣集合着的,就 把牠叫做物羣。構成物羣的東西,如桌子,學生,叫做物羣的元素。

§ 2. 自然數——自然數系 由上面的說明,可知『沒有』 也是一個數,『沒有』也叫做『零』,由零而一,一加一為二,二加一 為三,三加一為四……,依此繼續加上去,就得一串有頭無尾的 數:

0,1,2,3,4,5,6,7,8,9.....

這一串數叫做自然數。所有自然數的數叫做自然數系或整數系。

§ 3. 自然數系是序系 一個小孩子要知道物學的數, 總要這樣的數: 一,二,三,四,五……經過這樣數了以後, 他

緩能把這個物羣的數說得出來。小孩子如此,成年人也是如此。 無論成年人數得如何的迅速,他總要依一,二,三,四……的次序 數去,纔能知道物羣的數。所以自然數系的數是有一定次序的, 牠是有次序的數系。簡言之,牠是序系(Ordinal system)。

- § 4. 純數與序數 上面所謂數都是表示物羣元素多寡用的不名數。牠和物羣元素的性質及其排列的次序都沒有關係的。 凡祇表示元素的多寡而與元素排列的次序無關的數,叫做純數 (Cardinal number),但在日常生活上,有時要知道元素排列的 次序,表示元素排列次序用的數,叫做序數(Ordinal number)。 序數之最常用者為:第一,第二,第三……,其他如:子丑寅卯… …,甲乙丙丁……,天地元黃……,伯仲叔季等,有時也含有序數 的意義。
- § 5. 命數法 前面說過:自然數系由零而一,而二,而三, 而四……,這樣繼續下去後面還有無窮多的數。現在因為要使後 面這些數可以用口說出來給別人聽起見,就不得不把每一個數 規定一個名稱。但是每一個數都要規定一個名稱,不但找不出那 樣多名稱,並且也沒有法子把這些名稱都一一記住。所以現在就 要設法,用少數的名稱說出自然數系中一切自然數來。自然數系 的數,前十個名稱上面已經說過;十以後的名稱,我們祖先會想 出極便利的方法,就用上面所說十個名稱來拼合。譬如十加一,

萬以上的名稱,因為從前生活簡單,不很常用,所以意義紛歧,到於今始終還沒有確定。照算學啓蒙(1)來說:萬以下的數是十進的,萬以上的數是萬萬進的。照數術記遺來說: 黃帝所用數的名稱共計二十三個,即一,二,三……十,百,千,萬,億,兆,京, 陵,秭,壤,溝,澗,正,載等。萬以下,以十進,萬以上就有十進法,

⁽¹⁾算學啓蒙: 『一,十,百,千,萬,十萬,百萬,千萬,萬萬日億,萬萬億日兆, 萬萬兆日京,萬萬京日陔,萬萬該日秭,萬萬秭日獎,萬萬壤日壽,萬萬游日調,萬萬 潤日正,萬萬正日載,萬萬載日極,萬萬極日恆河沙,萬萬恆河沙日阿偕祗,萬萬阿 僧祇日那由他,萬萬那由他日不可思議,萬萬不可思議日無量數』。

萬進法,及自乘進法三種不同的命數法(1)。

萬以上的命數法,雖然意見紛歧,沒有定論,但是日常通用 都採取黃帝的萬進法,即萬萬爲億,萬億爲兆·······················郎:

數是多至無窮的,無論用十進法,或萬進法,或自乘法,終究是不 能——規定名稱的。現在祇規定到通常够用就罷了。

§ 6. 數之記號 一切常用的數,有了命數法固然可以用口說耳聽;但是口說耳聽,很容易忘掉,并且不能傳到遠的地方去。我們要牠傳到遠的地方去,并且可以記憶,就要規定出記號來代表牠。通常所用數的記號分為數字與數碼兩種如下表:

 中國數字
 零一二三四五六七八九十季百晉千

 零豐或叁肆伍陸柒捌玖拾餐佰營仟

 中國數碼
 〇 「 川 川 X 8 1 上 上 文 升 份 陌 循 斤

 阿拉泊數碼
 0 1 2 3 4 5 6 7 8 9

 I II III IV V VI VII VIII IX X L CD M

 羅馬數碼
 i ii iii iv v vi vii viii ix x

阿拉伯數碼發源於印度,由印度傳到阿拉伯轉入歐洲,前清 未葉又傳入中國,現在已經成為萬國通用的數碼了。

⁽¹⁾數衡配證: 『黄帝母法數有十等,及其用也乃有三焉。十等者億兆京隊 秭望滿間正載。三等者謂上中下也。下數者十十壓之,若言十萬日億,十億日兆,十 兆日京也。中數者萬萬壓之,若言萬萬日億,萬億日兆,萬兆日京也。上數者數窮則 歷,若言萬萬日億,億億日兆,兆兆日京』。

數字與數碼所代表的數都是確定的,獨一的,無疑的;至於不確定的數,我們常用『某數』兩字來代表,或甲數,乙數等文字來代表,但是甲數,乙數等文字寫起來,頗覺不便,所以我們照各國慣例用拉丁字母(1) a, b, c, d, e,來代表某數。

習 題

試就下列 1,2,3 各題中指出何數為名數? 何數為不名數? 何數為序數或純數?

- 1. 中華民國二十五年二月份華茶出口狀況,據上海商品 檢驗局茶檢部報告共計一萬九千九百十二公擔,較二十 四年二月份減少一萬四千一百六十擔。
- 2. 三人行必有我師焉。一日不見,如三秋兮。吾日三省吾身。我把我所看見的事情都一五一十的告訴了我父親。
- 3. 不管三七二十一,我總是這樣往前做。一鼓作氣,再而 衰三而竭。
- § 7. 一對一和等式 假設有兩個物羣,甲羣的元素為『天,地,元,黄,』乙羣的元素為『子,丑,寅,卯』。現在由甲羣取一元素 『天』和乙羣的元素『子』配成一對,又取『地』和『丑』配成一對,又

⁽¹⁾注國數學家 Vieta (1540—1603)首先用字母代表數,後來法國數學家策哲學家笛卡兒、Descartes, 1596—1650) 又用二十六個字母中前面幾個代表已知敬,後面字母如 x,y,z……等代表未知數。

取『元』和『寅』配成一對……,到了甲羣的元素取完,乙羣的元素 也取完。如此,我們就說這兩羣的元素是『一對一』的。甲乙兩羣 的元素若是一對一的,我們就說牠的數是相等的。某數和某數相 等,常用下面的式子表示出來:

$$a = b$$
.

這個式子叫做等式,讀為『 a 等於 b 』,這個符號『=』叫做 『等號』(1),讀為『等於』。

- § 8. 等式的對稱性及傳遞性 由等式的定義可知:
 - I. 若 a=b,則 b=a. 這叫做等式的對稱性。

II. 若 a=b, b=c; 則 a=c. 這叫做等式的傳遞性。

§ 9. 不等式 設有甲乙兩物羣,甲羣之數為 a, 乙羣之數為 b。現在由甲,乙兩羣各取一元素,使牠一對一的配起來,若乙的元素已經取完,而甲的元素還沒有取完,於是我們就說 a 大龄 b 或 b 小於 a。這兩句話若用式子來表示即:

a > b 或 b < a.

這兩個式子叫做『不等式』(2),讀為『a大於b』或『b小於a』,>和<叫做『不等號』,讀為『大於』和『小於』。

⁽¹⁾英國算學家李康特 (Recorde 1510—1558)於 1557 年出版一本代數,首 先用還記號 [=] 代表 [等於] 。 他想兩種東西相等其過於兩條平行而又長短相 等的線了,所以拿還樣平行線 [=] 來代表等於。

⁽²⁾不等號><創造於何人,不得其詳了。我們祇知道: 1631 年英國算學家 紡譜歌(Harriot 1560—1621)的證著出版,就在這遺著中發現了這兩個不等號。

倘若祇知 a 與 b 不相等, 但不知其誰大誰小, 就用下面的式子表示牠的關係:

 $a \Rightarrow b$

這個式子叫做『不等式』,讀為『 a 不等於 b 』。

§ 10. 不等式的傳遞性 由不等式的定義可知:差 a > b. b > c; 則 a > c.

- §11. 四則 加減乘除是算學的基本運算,普通稱為四則。 四則運算在小學裏都已經學過,此處似乎可以不必講;但是我們 要知道:小學裏祇講其然,而不講其所以然; 現在我們要研究其 所以然,並且要曉得所以然的理論。師範生對於這種理論應該深 刻的了解,否則自己囫圇吞棗,沒有澈底的了解,畢業後怎樣可 以教人呢?
- § 12. 加法在四則中之重要 算學基於四則,四則起於加 法。(乘是加的別法,減是加的逆運算,除是減的別法)所以加法 在四則中特別重要,現在先述加法的定義及其運算律於下:
 - § 13. 加法定義 假設有兩個物羣:

甲羣之數為 a, 乙羣之數為 b。現在把這兩羣的元素併成一羣, 設 其數為 c; 於是這個數 c 叫做 a 與 b 之和。 a 及 b 叫做加數求和 的方法,叫做加法。用算式來表示卽: a+b=c.

這個式子讀為『a加b等於c』,這個符號『+』叫做加號(1), 讀為『加』。

§ 14. 加法的運算律 由上面的定義,可知求甲,乙兩羣之數之和,其方法先數甲羣後數乙羣,或先數乙羣後數甲羣; 其結果都是一樣。用算式來表示卽:

$$a+b=b+a$$
.

無論 a b 代表那一個整數,這個等式總是真的;所以這個等式所表示的運算程序就成為加法運算的規律, 叫做加法的對易律。

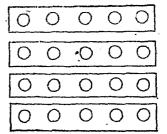
由實物試驗的結果,可知求 a, b, c 三個數之和有三種求法, 其結果都是相同的, 卽: (一) 先加 b 於 a, 再加 c 於 a b 之和;(二) 先加 c 於 a, 再加 b 於 a c 之和; (三) 先加 c 於 b; 再加 a 於 b c 之和。卽:

$$a+b+c=(a+b)+c=(a+c)+b=(b+c)+a$$
. 這個運算律叫做加法的結合律。

⁽¹⁾德國來卜西(Leipzig)地方有一個數學家魏特曼(Widmann)於 1489 年 属了一本算術,首先用『十』代表『加』字。當印刷術初發明寺拉丁文 "et"字 (et 與英文 and 同意義)的草書,其形狀極像『十』,因此就有人訊:加號是由拉 丁文 et 字壁來的。

習 題

用心算求出下列各題的答案:


- 1. 設 a=6, b=9, c=8, 問 a+b+c 之和為若干?
- 3. (4+2)+6+7 與(4+2+8)+7 及(4+7+2)+6,其結果相同否?試求其結果以證明之。
- 4. 下列各式能否成立,試用心算求其結果以驗之:

$$6+7+8+5=3+6+9+5+3$$
.

5. 以最便於心算之結合法(應用對易律及結合律),說明 下列各數之答案:

§ 15. 乘法定義 乘法是加法的特例。加法係求幾個不等數的和, 乘法係求幾個等數的和。例如有四個物羣,各羣的數,都是五,即右圖所示:

現在把這四個物墨併為一臺、問

這新物羣的數是多少? 用加法來算即:

5+5+5+5. 即新物羣之數為四個 5,或 5 被乘以 4, 用符號來表示,可寫為 5×4,讀為『5 被乘以 4』或『5 乘以 4』。這個符號『×』叫做乘號(1),讀為『乘以』。5 叫做被乘數, 4 叫做乘數。所求得的結果叫做『積』。乘數與被乘數叫做積的『因數』。

依同樣的道理,如若有b個a相加,即得 $a \times b$.又若有c 個 $a \times b$,即得 $a \times b \times c$.又若有d 個 $a \times b \times c$,則得 $a \times b \times c \times d$. 設a,b,c,d四個因數之積為p,則得 $p=a \times b \times c \times d$.

§ 16. 乘法運算律

- (一)分配律 以一數乘諮數之和等於以此數分乘各數所得 之積之和。即:(a+b+c)d=ad+bd+cd. 譬如 $(5+6+2)\times 3=$ $5\times 3+6\times 3+2\times 3$,因為 $(5+6+2)\times 3=(5+6+2)+$ (5+6+2)+(5+6+2)=(5+5+5)+(6+6+6)+(2+2+2)= $=5\times 3+6\times 3+2\times 3$.
- (二)對易律 諸數相乘,不必照原式所列各數依次遞乘,可 任意變更其次序:

卽 $a \times b = b \times a$ 譬如 $5 \times 4 = 4 \times 5$

⁽¹⁾英國算學家歐脫來 (Oughtred 1574—1600) 於 1631 年編了一本算學, 首先用『×』代表『乘以』。德國算學家賴勃尼支(Leibnity 角發明微積分學者 1646—1716)把 $a \times b$ 寫為 $a \cdot b$,現在大家都寫為 $a \cdot b$,所以 $a \times b = a \cdot b = ab$.

因為 5=1+1+1+1+1,

所以 5×4=4+4+4+4+4=4×5. (何故?)

(三)結合律 諸數相乘,不必照原式所列各數依次遞乘,可 任意將其中幾個因數先相乘再與其餘因數相乘:

 $\text{ for } a \times b \times c = a \times (b \times c).$

譬如 4×2×3 原來是 (4×2)×3 的意思, 但是也可

0 以作為:

$$4 \times 2 \times 3 = 2 \times 3 \times 4$$
 (何故?)
= $(2 \times 3) \times 4$ (何故?)
= $4 \times (2 \times 3)$ (何故?)

習 顯

- 1. 根據乘法定義說明 0+3 及 3×0 何以等於零? 用心算求下列各題的答案:
- 根據分配律可知 a d+b d+c d= (a+b+c) d. 現在應用此式說出下列各式的結果:

 $3 \times 5 + 2 \times 5 + 7 \times 5$; $4 \times 3 + 7 \times 3 + 9 \times 3 + 8 \times 3 + 7 \times 3$; $7 \times 6 + 5 \times 6 + 4 \times 6 + 9 \times 6 + 7 \times 6 + 8 \times 6 + 6 \times 6 + 3 \times 6$; $+2 \times 6$.

3. 應用結合律以最便利的結合法說出下列各式的答案:

 $5 \times 3 \times 4$; $9 \times 6 \times 3 \times 5$; $7 \times 2 \times 6 \times 3 \times 5$.

- 4. 設 a=4, b=5, c=7. 問 $a\times b\times c$ 之積爲若干?
- 5. 設 a=6, b=7, c=4, d=5. 問 $a\times b\times cd$ 之積為若干?
- 6. 應用乘法運算律,以最迅速的方法說出下列各式能否 成立:

$$(3+2+6) \times 4 = (7+4) \times 4$$
; $(5+6+7+8) \times 5$
= $(9+7+6) \times 5$; $3+4 \times 3+7+3+6 \times 3$
= $4 \times 6+2 \times 6+3 \times 6$; $5 \times 7 < 6 \times 8$;

 $4\times7\times6\times5<6\times8\times7\times5$; $3\times8\times7\times6<4\times2\times5\times6$.

因數相同的積叫做『幂』或『方』 譬如: $a \times b \times c \times d = p$,若是 a = b = c = d,則 $p = a \times a \times a \times a$.這個數 p 就是『a 的幂』。兩個 a 相乘,叫做 a 的二次幂,或二次方,或平方,即『 $a \times a$ 』。三個 a 相乘,叫做 a 的三次方或 a 的立方,n 個 a 相乘,叫做 a 的三次方或 a 的立方,n 個 a 相乘,叫做 a 的一次方。 為簡便起見,常把 $a \times a$ 寫為 a^2 ,讀為 a 的三次方。 a 的 a 的一次方 寫為 a^n .

a 的右上角的数 2, 3, n 等, 叫做『幂的指數』, 或簡稱為『指數』。a 自己叫做幂的『根』或底。精確的說: a 是 a² 的二次根或不方根; 也是 a³ 的三次根或立方根; 也是 a° 的 n 次根。譬如

三的平方為九,所以九的平方根為三;又如三的立方為二十七, 所以二十七的立方根為三。

習 題

- 1. 說出下列各數的二次方: 十一,十二,十三,十四,十五,十六,十七,十八,十九,二十。
- 2. 說出下列各數的平方根: 十六,二十五,三十六,四十九,一百二十一,六十四,八十一,一百四十四,兩百二十五,兩百五十六,一百九十六,一百六十九。
- 說出下列各數的立方:
 1,2,3,4,5,6,7,8,9.
- 4. 設 a 的二次方為六十四, 問 a 所代表的是多少? (a 所代表的數叫做『a 的值』。)
- 5. 設 a 的立方為六十四, 問 a 的值為若干?
- 6. 設 a 的六次方為六十四, 問 a 的值為若干?
- 7. 設 a 的立方為二百十六, 問 a 的值為若干?
- 8. 六十四如若以 2 為指數, 牠的底是多少?如若以 3 為指數, 牠的底是多少?如若以 6 為指數, 牠的底是多少?
- 9. 問那幾個數是十二的因數?那幾個數是二十七的因數? 那幾個數是三十六的因數?

§ 18. 指數定律 由冪及乘法定義可知:

$$4^8 \times 4^5 = (4 \times 4 \times 4) \times (4 \times 4 \times 4 \times 4 \times 4)$$

=43+5=48

由是得

指數相加定律:

$$a^m \times a^n = a^{m \cdot (n)}$$
.

依同理,可知:

$$(2^4)^8 = 2^4 \times 2^4 \times 2^4 = 2^{4+4+4} = 2^{4\times 8}$$
. 由是得

指數相乘定律1:

$$(a^m)^n = a^{m \times n}$$
.

由乘法定義及結合律可知:

$$(8 \times 4 \times 5)^3 = (8 \times 4 \times 5) \times (8 \times 4 \times 5) \times (8 \times 4 \times 5)$$

= $(8 \times 8 \times 8) \times (4 \times 4 \times 4) \times (5 \times 5 \times 5)$
= $8^3 \times 4^3 \times 5^3$. 由是得

指數相乘定律 2:

$$(a b c)^m = a^m b^m c^m$$
.

習 顯

用心算說出下列各等式括號中應塡的數碼:

- 1. $2^3 \times 2^5 = 2^{()}$
- $3. 3^4 \times 3^2 \times 3^3 \times 3^3 = 3$

- 3. $7^2 \times 7^{()} = 7^8$
- 4. $(6^8)^2 = 6^{()}$
- 5. $(3\times4)^3\times(3\times4^2)^2=3(\)\times4(\)$
- 6. $(7^2 \cdot 8^8)^2 (7 \cdot 8)^8 = 7() \cdot 8()$
- 7. $5^a \cdot 5^b \cdot 5^c = 5($
- 8. $(a^8b^2)^3=a^{()}b^{()}$

用心算說出下列各式中 x 的值:

- 9. $9^4 \times 9^5 = 9^m$
- 10. $(15^3)^6 = 15^{\circ}$
- 11. $(4^3 \times 4^5)^4 = 4^a$
- § 19. 記數法 命數法已經在前面講過了。有了命數法, 任何物羣的數都可以用口說耳聽了;但是口說的聲音不能傳到 遠的地方去,耳聽也聽不到遠地所發的聲音,所以我們要規定出 記號來,使得一切數可以用手寫眼看。但是每一個數都要用一個 符號來代表,這自然是不勝其繁的。現在用少數的符號記出一切 的數,使得一切數可以用手寫眼看,這種方法叫做記數法。

記數法所用的記號有兩種:即數字和數碼。這兩種記號前面都已經講過,其中最通用於世界的數碼要算阿拉伯數碼了。現在 說明十個阿拉伯數碼記出任何物學的數的方法如下:

譬如:有米一率,我們要把這個米辜的數用阿拉伯數碼記下

來。牠的方法:第一步:取幾個白紙袋來,每袋裝十顆米,到了末了,假使剩了七顆不成一袋,於是取一張紙來,分成若干格,把七寫在第一格上。

第四格	第三格	第二格	第一格		
干 位	百 位	十位	個 位		
2	3	4.	7		

第一格是以一顆為單位,叫做個位,凡不滿十的數都記在個位上第二步:取幾個黃紙袋來,每袋裝十個白紙袋,裝到未了,假使剩了四個,於是把4寫在第二格上,第二格是以十顆為單位,叫做十位。所以十位的4,是4個十的意思,如若單位是0,十位是1,就是表示一個十的意思,即10。所以十位是4,就是表示10×4。第三步:再取幾個紙袋來,每袋裝十個黃紙袋,假設裝了兩個紙袋,餘下三個黃紙袋,於是把3寫在第三格上,把2寫在第四格上。原來每一個黃紙袋有十個白紙袋,而每一個白紙袋米罩的數目是10,所以每一個黃紙袋裏有十個十或百,即10×10或10°2.因此第三格以百為單位,所以叫做百位。第三格的3是表示3個百即10°2×3.再查每個紅紙袋有十個黃紙袋,所以每一個紅紙袋的數是10°2×10=10°3,即是千。所以第四格是以千為單位,叫做千位。第四格的2是表示兩個千,即是10°8×2,由是所求米率的

數是二千三百四十七,即 2347 = 108×2+102×3+10×4+3.這個記數法都是以十進位,叫做十進記數法。由這個記數法,可知同是一個數碼,譬如 6,寫在第一格就是 6 個;寫在第二格就是六十個,即 10×6;寫在第三格就是六百,即 102×6;寫在第四格就是六千,即 108×6.

習 題

- 1. 據中央統計處發表:九一八事變,官方財產損失統計是 一百七十八億五千零六十四萬八千二百二十九元;又一 二八滬變,全市損失統計是十五億六千零零四萬九千八 百七十一元,試將上列兩損失統計用十進記數法記出來。

関係位的最小數,三位的最小數,四位的最小數 ······ p 位的最小數是甚麼數?

=9×10⁸ 個。

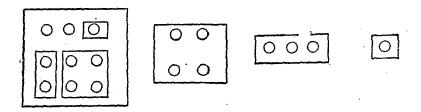
[解] 兩位的最小數是 10 或 102-1.

三位的最小數是 100 或 102=108-1.

四位的最小數是 1000 或 108=104-1.

p 位的最小數是 1(9-1.

- 4. 設 a 代表 2,3 兩數碼記出來的兩位數,問 a 所代表的數有幾個?這幾個數究竟是多少?
- 5. 設 b 是代表 2, 3, 4, 0 四個數碼記出來的四位數, 問 b 所代表的數有幾個?這幾個數究竟是多少?
- 6. 用 4, 7, 8, 9 四個不同的數碼記出最大及最小的四位數。
- § 20. 減法定義 我們要知道甲乙兩物羣的數是否积同,就要在甲乙兩物羣裏面各指一元素,在該元素上標一記號以作比較。譬如在元素上各寫一數碼『1』,再由甲乙兩物羣裏各指一元素,各寫一數碼『2』,依此進行,如若寫到5,甲羣的元素都已經寫上數碼,而乙羣元素還有3個未寫數碼;於是甲羣的數為5,乙羣的數為5+3或8,這個數『3』叫做甲乙兩羣的數的差,3為8和5的差,或8減5的差是3. 求差的方法叫做減法,用算式來表示,即3-5=3. 讀為『8減5等於3』.8 叫做被減數,5 叫來表示,即3-5=3. 讀為『8減5等於3』.8 叫做被減數,5 叫


做成數,這個記號『一』叫做減號,由是被減數一減數=差,

或
$$a-b=c$$
.

但是要a > b,否則這個減法爲不可能。

根據上面事實的說明,可知 8-5 有兩種意義: (一)就是問加多少於 5 是 8 的意思。(二)就是問由 8 裏面拿去 5,還剩多少的意思。所以算式『8-5』是代表一個問題: 問加多少於 5 是 8,或由 8 拿去 5 還剩多少? 又算式 8-5=3 是代表上面的問題及該問題的答案。再就一般的說;這個等式: a-b=c,牠的左邊的式子是代表一個問題: 問加多少於 b 等於 a; 右邊的 c 是代表該問題的答案。

§ 21. 減法運算律 假設有四個物羣

各羣的數是 9, 4, 3, 1, 這個式子 9-4-8-1 所代表的問題, 就是問先由 9 減去 4, 再由所得的差 5 裏面減去 8, 再由5減3 所得的差 2 減去 1. 即((9-4)-3)-1 還剩多少? 但是:

$$((9-4)-3)-1=((9-3)-4)-1=((9-1)-3)-4,$$

$$9-4-3-1=9-3-4-1=9-1-3-4.$$

即減數的位置可以互相對易的,即 a-b-c-d=a-c-d-b. 這個運算律叫做減數對易律。但是要注意,被減數與減數不能對易,所以減法,沒有對易律,祇有減數可以對易,這是和加法不相同的地方。

由上面的事實可知:

$$9-4-3-1=9-(4+3+1)$$
.

即由某數減去諸數,等於由某數減去諸數之和,即:

$$a-b-c-d=a-(b+c+d)$$
.

這個定律叫做減數結合律。

根據減數結合律,可知:

$$a-(b+c+d)=a-b-c-d$$
.

由是又得一括號渾用律於下:

括號運用律 括號前面有減號,如若撤去括號就要變換括號裏面的加號為減號。

習 題

用心算說出下列各題的答案:

- 1. 四十五減去七,再減去九,再減去六,問所得的差是多少?
- 2. 若 a 之值為三十五,b 之值為六,c 之值為九,d 之值

為八,問 a-b-c-d 所代表之值為若干?又 a-(b+c+d) 所代表之值為若干?

- 3. 若 a=47, b=31, c=6. 問 a-b-c 與 a-(a+c) 所代 表的數是否相等? 又問這兩個式子那一個便於心算?
- 4. 間八加多少是十三? 五加多少是十二? 四加多少是十一? 三加多少是十二? 八加多少是十四? 九加多少是十七? 七加多少是十二?
- 5. 用心算說出下列各等式括號內應塡的數碼:

$$7+()=11.$$

$$17+()=23.$$

$$13+()=27.$$

$$8+()=13.$$

$$8+()=19.$$

$$19 - 8 = ()$$
.

6. 設 a=23-5-6-3-2; b=23-(5+6+3+2). 問 a, b 的值各多少?

用心算說出下列各題中 x 之值:

- 7. 4+x=13.
- 8. 26+x=35.
- 9. 57+x=66.

10. 49-x=3

§ 22. 除法定義 除法是減法的特例。減法是由被減數減 去若干個不相等的數,除法是減去若干個相等的數。譬如 14 個 蘋果,分給 4 個小孩子,先每人分一個,再每人分一個,再每人分 一個,每人得 3 個,還剩 2 個。

$$14-4-4-4=14-(4+4+4)=14-4\times 3=2$$
,

或
$$14=4\times3+2$$
.

14 叫做被除數或『實』, 4 叫做除數或法, 3 叫做商, 2 叫做餘數, 求商及餘數的方法, 叫做除法。除字是均分的意思, 均分一個數分得太多恐怕不夠, 分得太少恐怕剩餘過多, 要分得恰當, 使餘數小於除數, 非有商量不可。14 個蘋菓, 4 個人分, 經商量的結果: 每人分 3 個餘 2 個。2 < 4 不能再分, 這個數『3』就是商量的結果, 所以叫做商。由是得:

被除數=除數×商+餘數。

設被除數為a,除數為b,商為q,餘數為r.

則得 a=bq+r, 並且r < q.

譬如8個蘋菓四個人分,即得8=4×2;即8被4整除。

上面說過除是均分的意思, 4個人均分8個蘋菓, 我們也常

說以4除8,用算式來表示: 即8÷4,讀為『8被除以4』或『8除以4』。這個符號叫做『除號』(1),讀為『被除以』或『除以』。

 $8\div 4$ 也寫作 8/4 或 $\frac{8}{4}$. 這兩個記號也讀為『8 除以 4 』。 所以這三個式子 $8\div 4$, $\frac{8}{4}$, 8/4 都是以 4 除 8 的意思。

§ 23. 餘數處置法 在整數除法中,兩數相除,每每不能整除而有餘數。這個餘數在整數除法上,究竟如何處置呢?這是極有趣味的問題。譬如 14 隻牛, 3 個人分, 若甲乙各得 5 隻, 丙得 4 隻, 丙就不贊成; 如若 3 人各得 4 隻, 所餘 2 隻任意丟去,這又不見得 3 人都能同意,也許 3 人一致反對。如若把這兩隻牛殺死來分,這又是分牛肉,并不是分牛了。最妥善的辦法: 先每人分4 隻, 所餘兩隻保留着不分,作為 3 人公有。整數除法,就仿這個辦法, 以 3 除 14 寫為 4 + 2 或 4 2 3 。 其中 4 是指每人實得的牛數, 2 是指分剩下來的牛數, 3 是人數。這個記號 [2] 就是表示餘 2, 要由 3 來分的意思,所以讀為『三分之二』。因此 4 2 讀為『四又三分之二』或『四又二除以三』。由是得:

$$14 \div 3 = \frac{14}{3} = 4 + \frac{2}{3} = 4\frac{2}{3}.$$

習題

1. 用等式記出下面所說的話:

⁽¹⁾瑞士數學家 Rahm 於 1659 年編了一本代數學,首先用÷代替『被除以』 三字。1668 年這本代數譯為英文,於是除號÷又傳到英國。

十九除以六等於三加一除以六。

二十四除以七等於三叉三除以七。

六十五除以八等於八叉一除以八。

2. 讀出下列各式:

$$17 \div 5 = 3 + \frac{2}{5} = 3\frac{2}{5}$$
.

$$29 \div 8 = \frac{29}{8} = 3\frac{5}{8}$$
.

$$36 \div 7 = 5 + \frac{1}{7} = 5\frac{1}{7}$$
.

$$47 \div 8 = 5 + \frac{7}{8}$$
.

用心算說出下列各類的答案:

3.
$$78 \div 9$$

3.
$$78 \div 9$$
 4. $14 \div 6$

5.
$$26 \div 6$$

6.
$$26 \div 7$$

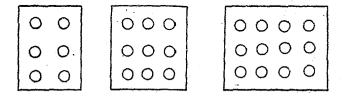
7.
$$83 \div 9$$

8.
$$83 \div 13$$

9.
$$47 \div 24$$

10.
$$42 \div 8$$

11.
$$39 \div 18$$


12.
$$63 \div 22$$

§ 24. 除法和零的關係 由上面除法定義,可知零可以做 被除數,但是不能做除數。因為零是表示沒有,沒有東西,無論幾 個人要分,總是沒有,所得的商是零。但是有了東西,而沒有人要 分,這就是根本不需要除法。所以在除法上,以零為除數,這是無 意義的,學者對於這一點應當牢記在心,由是:

 $0 \div b = 0$ 此處的 b 是代表任意整數。

但是 $a \div 0$ 是無意義的。 又 $0 \div 0$ 也是無意義的。

§ 25. 除法運算律 假設有三辜的梨,同在一處,各羣的數是 6,9,12.

現在把這三羣的梨分給三個人,就有兩個辦法:(一)把這三 羣合為一羣,求出牠的和,然後用 3 來除,即:(6+9+12)÷3= 27÷3=9.(二)先分甲羣每人得 2; 再分乙羣每人得 3; 再分丙 羣每人得 4, 求出所得的商 2, 3, 4 的和,這個和就是所求的結 果。即:

$$6 \div 3 + 9 \div 3 + 12 \div 3 = 2 + 3 + 4 = 9$$
.

由這兩個辦法可知:

$$(6+9+12) \div 3 = 6 \div 3 + 9 \div 3 + 12 \div 3 \cdots$$
 (子)

即以一數除諸數的和,等於以一數除諸數所得各商的和。

假使上面的三羣梨,其中甲羣的梨是不屬於這三個人的;那 麼,我們就要先從三羣裏減去一羣,再用3來除,卽:

$$(27-6) \div 3 = 21 \div 3 = 7$$
.

假若一起頭沒有想到,這三個人祇可以均分乙丙兩羣,就以 3除27得9,即27÷3=9.這自然有了錯誤了。這個錯誤就是 每人多分了兩個,即每人多分3,6÷3=2. 所以我們要改正這個 錯誤,就要從27÷3裏面減去6÷3,即:

由上面子, 丑兩式, 可知以一數除諸數的和差等於以一數除 諸數所得的商的和差, 這個運算律叫做除法的分配律。用算式來 表示即得:

除法分配律
$$(a+b-c) \div d = a \div d + b \div d - c \div d$$
.

假使有某班學生,分坐四行,每行6人,現在以48枝鉛筆分 給四行,各行以所得的鉛筆再分給本行各人。這件事實用算式來 表示即:

$$48 \div 4 \div 6 = 12 \div 6 = 2$$
.

但是這件事實也可以看做是: $48\div(4\times6)=48\div24=2$, 所以 $48\div4\div6=48\div(4\times6)$.

即以諸除數依次遞除被除數,等於諸除數相乘的積除被除 數,這個運算律叫做除數結合律,就是一切除數都可以按這個運 算律結合起來除被除數。由是得:

除數結合律 $a \div b \div c \div d = a \div (b \times c \times d)$.

由除數結合律及乘法對易律又得:

除數劉易律 $a \div b \div c \div d = a \div c \div d \div b$.

即諸除數的次序可以互相對易,但是除數不能和被除數對 易。

習 題

1. 應用除法分配律,以心算說出下列各式的結果:

$$(8+6-4) \div 2=?$$

 $(64+72+24) \div 8=?$
 $(52+72+81) \div 3=?$
 $(56-14) \div 7=?$

2. 應用除數結合律,以心算說出下列各式的結果:

$$56 \div 2 \div 7 \div 2 = ?$$
 $210 \div 5 \div 3 \div 7 = ?$
 $240 \div 2 \div 3 \div 4 \div 5 = ?$
 $252 \div 2 \div 7 \div 9 \div 2 = ?$

3. 應用除數對易律以最簡便算法,說出下列各式的結果:

$$120 \div 3 \div 10 = ?$$
 $72 \div 3 \div 8 = ?$
 $54 \div 3 \div 9 = ?$

$$56 \div 4 \div 7 = ?$$

4. 辨別下列各式的 真偽, 並說出其所以然:

$$a+b=b+a$$

$$a-b=b-a$$

$$a-b-c-d=a-d-c-b$$

$$a-b-c-d=b-a-c-d$$

$$a-b-c-d=a-(b+c+d)$$

$$a \div b \div c \div d = a \div d \div c \div b$$

$$a \div b \div c \div d = b \div a \div c \div d$$

$$a \div (b \times c \times d) = a \div b \div c \div d$$

§ 26. 四則運算的三大定律 對易律分配律及結合律叫 做四則運算的三大定律。這三大定律,前面都已經講過,原來可 以不必再提。但是因為他們能增加四則運算的便利和迅速,在四 則運算中非常重要,所以這裏再摘出來說一說,使得學者容易記 憶及比較。

(一) 對易律

(二) 結合律

$$a+b+c=a+(b+c)$$
 加法結合律
 $a\times b\times c=a\times (b\times c)$ 乘法結合律
 $a-b-c=a-(b+c)$ 減數結合律
 $a\div b\div c=a\div (b\times c)$ 除數結合律

(三) 分配律

$$(a+b-c) \times d = a \times d + b \times d - c \times d$$
 乘法分配律
 $(a+b-c) \div d = a \div d + b \div d - c \div d$ 除法分配律

有人說減法和除法都沒有對易律的,這話是很對的;但是減 數和除數卻是有這兩個運算律的,所以上面就列入減數對易律 除數對易律,學者對此應當特別注意,分別清楚。

§ 27. 三大定律還原的應用 根據等式的對稱性,可知上 面三大定律的等式也可以寫為:

$$c+b+a=a+b+c.$$

$$(a\times d)+(b\times d)-(c\times d)=(a+b-c)\times d.$$

$$a\div d+b\div d-c\div d=(a+b-c)\div d.$$

這種還原的手續,在運算中,極有用處,學者務須特別注意, 而對於分配律的還原尤其應當深思熟練。

(例一)
$$41 \times 6 + 32 \times 6 - 43 \times 6 = (41 + 32 - 43) \times 6$$

= $30 \times 6 = 180$.
(例二) $74 \div 8 + 26 \div 8 - 20 \div 8 = (74 + 26 - 20) \div 8$
= $80 \div 8 = 10$.

習 題

- 1. $15 \times 4 3 \times 4 = ?$
- 2. $17 \times 3 + 3 \times 3 + 5 \times 3 = ?$
- 3. $24 \times 5 + 5 9 \times 5 = ?$
- 4. $39 \div 3 + 3 6 \div 3 = ?$
- 5. $32 \div 11 \div 12 \div 11 11 \div 11 = ?$
- 6. $78 \div 9 + 3 \div 9 = ?$
- § 28. 運算符號和式 前面所用的+-×÷和=總稱為 運算符號。『算式』是由運算符號連結拉丁字母和阿拉伯數碼而 構成的。算式也簡稱為『式』。每一個式雖然含有好幾個數,但是 牠自身是代表一個數的,這個數叫做式的值。譬如 24 個桃,8 人 分,列為算式即 24÷8. 這個式的值是『3』.

習 題

1. 『凡式中含有加減乘三種符號時,必須先乘而後加減』,

這也是四則的運算律,這個運算律是根據那一個定律而來的?試說明其理。

- 2. 『凡式中含有加減除三種符號時,必須先除而後加減』, ·這個運算律是根據那一個定律而來的?
- 3. 『凡式中含有加減乘除四種符號時,必須先乘除而後加 減』,這是根據那一個定律而來的?

用心算說出下列各式的值:

- 4. $24 \div 6 + 8 \div 2$.
- 5. $32 \div 4 + 2 \times 3$.
- 6. $63 \div 21 3$.
- 7. $2 \times 5 \times 3 + 6 \div 2 13$.
 - 8. $36 \div 4 6 \div 2$.

〔注意〕 凡由加減號隔開的部分叫做項,如4,5,6各題都是兩項的算式,7題是三項的算式。

- § 29. 乘除運算律 問題: 設有鉛筆 8 打分為 4 紮,問 每紮若干枝?
 - 〔解〕 這個問題的解釋,可以有三種辦法:
 - (-) $12 \times 8 \div 4 = 96 \div 4 = 24.$
 - (=) $12 \div 4 \times 8 = 3 \times 8 = 24.$
 - (Ξ) 8÷4×12=24.

由是得乘除運算律: 祇有乘除號而無加減號的算式,可以 任意變更原來的次序(但須注意各數前面原來是帶乘號或除 號,變位後仍舊要帶乘號或除號,頭一個數可以看作和1相乘)。 即:

$$a \times b \div c = a \div c \times b = b \div c \times a$$
.

習 題

把下面等號兩邊的式,各用心算自左至右循次算出,以證等 號兩邊是否相等:

- 1. $36 \times 3 \div 9 = 36 \div 9 \times 3$.
- 2. $27 \div 4 \times 8 = 27 \times 8 \div 4$.
- 3. $27 \times 8 \div 4 = 8 \div 4 \times 27$.
- 4. $6 \times 7 \div 9 \times 18 = 18 \div 9 \times 6 \times 7$.
- 5. 根據乘除運算律說明上列各等式所以能成立的理由。
- § 30. 四則運算的次序和括號使用法 一個算式當中,如 -若沒有括號,牠的運算次序應當由左而右,依次演算,但是也可 以依下面的規律變更次序:

- 2. 祇含有乘除號而無加減號的算式,牠的運算次序可以 任意變更(但須注意各數前面原來是帶乘號或除號,變更後仍 舊要帶乘號或除號)。
- 3. 含有加減乘除各號的算式,牠的運算次序,應當先做乘 除,而後做加減。
- 一個算式當中,每每寫表示問題的意義及運算的次序起見, 非用括號不可,通常所用的括號可分為四種:

括線 —— 括弧 () 括帶 () 括号 ()

前兩種叫做小括號,多用在算式的內層,後兩種叫做大括號, 多用在算式的外層。現在規定括號的用法有如下:

括號使用律 1. 有括號的算式,應該先計算括號裏面的各數;算好,隨把括號撤去,再依無括號的運算律計算。

括號使用律 2. 含有多層括號的算式,應該由內而外,先 把最內層各數算好,隨時把括號撤去,依次算到外層。

括號使用律 3. 括號前面如若有減號,撤去括號時,就要 把括號裏面的加號變為減號,減號變為加號。反之;要在減號的 右旁添加括號,就要照這個定律變符號。 (什麼緣故?) 括號使用律 4. 括號前面如若有除號,撤去括號時,就要 把括號裏面的乘號變為除號,除號變為乘號。反之;在除號的右 旁添加括號,就要照這個定律變符號。 (什麼緣故?)

括號使用律 5. 括號前面如若有加號或乘號,可以任意撤去括號。 (什麼緣故?)

例題 1.
$$5+(3-4-3)-(5-3)+9$$

 $=5+(3-1)-(5-3)+9$
 $=5+2-2+9$
 $=5+9$
 $=14$.
例題 2. $42\div(3\times2\div7)$
 $=42\div3\div2\times7$
 $=42\div(3\times2)\times7$
 $=7\times7$
 $=49$.

第一章 總習題

- 1. 加減乘除四種運算,以何種運算為最基本的運算? 這四種運算的關係如何?
- 2. .被減數與減數,可以對調不?

- 3. 被除數與除數,可以對調不?
- 4. 被乘數與乘數,可以對調不?
- 5. 舉例說明:指數相加律,指數相乘律 1,及指數相乘律 2.
- 6. 一個算式當中,如若含有加減乘除各號及括號,這個 算式的運算來序應當如何?
- 7. 一個算式當中,如若含有加減乘除各號而沒有括號, 這個算式的運算次序,應當如何?
- 8. 含有減號或除號的算式,其中括號可以任意撤去或增加麼?
- 9. 一個算式當中,添加括號或撤去括號要按照甚麼規律行
- 10. 祇有乘除號而沒有加減號,也沒有括號的算式,要變 更式中各數的次序而不改其結果,必須遵守甚麼規律?
- 11. 問 1×1×1×1×1···········的積是多少?並說明所求結果的理由。
- 12. 問 1÷1÷1÷1÷1···········的商是多少?並說明所求結果的理由。
- 13. 設 a 代表任意整數, 問 a+0 和 a-0 是相等不? 又問 0÷a 及 a÷0 及 0÷0 的結果如何? 又問 a×0 及 0×a 的結果如何?

····的差, 0×0×0×0×0···········的精各若干?

用心算求出下列各式的結果:

15. $35 \div 7 \times 4 \div 2 + 3 \div 2 \times 6 - 4 \div 3 \div 3 \times 6$.

16.
$$23-(9-(8-5)+7-(5-(4-\overline{2+1})))$$
.

17. $36 \div 4 \div 3 \div 3 + 24 \div (6 \times 2 \div 3)$.

18. $9^2 \times 2(3^2 \times 3^2) + (5^2)^2$.

19. $10^5 \div 5^5 + 7 \div 2 \times 4$.

 $[接 10^5 = (2 \times 5)^5]$.

20. $6^3 \div 2^3 \div 3^2 \times 5$.

用心算求出下列各數的因數:

64, 121, 144, 256, 74, 196, 512, 729, 343, 216.

21. 問上面 15 題至 20 題, 各算式中各有若干項?

第二章 算草和速算

§ 31. 算草 前面所列的算式,雖然能表示出各種運算的 意義和程序;但是在心算未達到純熟時候,要用這樣算式來求答 案,就很覺不便了。譬如求 76345+37459+235784 的和,就覺得 用算草運算要比較算式方便了。四則的算草,在小學裏早已講過, 可惜祇講其然,而不講其所以然。所以這裏再提出來講一講:

> 76345 76345+37459+235784=349588. 37459 +235784 349588

- § 32. 加法算草 要說明加法算草的道理,須分為下面三種情形來講:
- 第一款 一位數與末位是零的數相加: 譬如 5 與 460 相加,可以根據前面講過的記數法, 即得 460+5=465. 由是可知: 求一位數與末位是 0 的數的和, 祇須把 0 改為一位數的數碼即得。

第二款 末位都是 0 的數相加: 譬如求 350,260,70 各數的和,這就是 35 個拾,26 個拾,7 個拾的和,假設這個和已經求出來是 68 個拾,於是在這個和的右端添上 0 即得,所求的和

為680. 由是可知:

求未位都是 0 的數的和,祇須把 0 去掉來求和,在求得的和 的右端再添上 0, 即得所求的和。

第三款 求任意數的和: 譬如求 438, 327, 及 106 的和。

$$+7+6=(430+320+100+20)+1.$$

所以祇須求得括弧裏面各數的和(據第二款,這個和的末位是 0.)就可以照第一款辦法求出和來。但是求括弧裏面各數的和, 可以照第二款的辦法,先求 43,32,10 及 2 的和,再在和的右端 添上 0,於是:

第二步: 因為
$$43+32+10+2=40+30+10+3+2+2$$

= $(40+30+10)+7$.

再仿第一步辦法,求得括弧裏面各數的和為 80. 所以: 43+32+10+2=87,而第一步括弧內的和為 870,由是得所求的和為 871. 現在為學者易於明瞭及演算起見,再將算草及算式分別列出,并加以說明:

〔算草說明〕 8+7為15,15+6為21,於是在橫線下的個位上填1,留下2個拾等到十位上來加,2個拾加上3個拾為5個拾,5個拾再加上2個拾為7個拾;於是在橫線下的十位上填7,4百加3百為7百,7百加1百為8百,於是在線下的百位上填8,由是得所求的和為871.

§ 33. 速加法

(一)單行併加法 由上面的算草,可知無論幾位數相加,牠的基礎都是建築在一位數相加。所以要加法迅速,先要一位數相

$\begin{array}{c} 45 \\ 73 \end{array}$	加來得迅速。我們如若不加思索,就能够把兩
19 23	個,三個或四個一位數的和立刻看出來,那就
41 72	可以使加法特别迅速,而得到事半功倍了。譬
+53	如左邊所舉的例,照通常加法,應當由上而下,
326	5+3 為 8, 8+9 為 17或由下而上 3+2

為 5, 5+1 為 6……,這樣加法雖然很合加法的定義,但是太慢了。我們看見 5 和3,應該不加思索,就立刻覺得是 8,或者看見 5,3,9 就立刻覺得是 17,或者看見 5,3,9,3,就立刻覺得是 20……。但是這種一看就得的技能,須有充分練習的工夫纔能做到。現在學出兩個一位數相加的練習表如下:

123400	8 - 2	3456	78934	1567894167	966780070	υ <mark>7 δ</mark> ,9 8 9 9
111111111	1.12	2222	22233	4567894-67 33333344444	1455555666	6777889

塵者可以察看這個表來練習,等到能夠一看就得爲止。

〔注意〕兩個一位數相加,是三個四個 …… 一位數相加的基礎,所以上面的表,要練習得十分純熟幾行,至於三個或四個的練習表要是都列出來,就太多了,并且練習起來也是乾燥無味的,祇有多算習題,可以得到迅速的。在學者還沒有達到

純熟時候,可以用標記來幫助求和,譬如左
面所舉的例,自下而上相加 3, 2, 9 得 14, 在
8 的右旁上作一標記丟去 10, 把所留下的 4
和 3,8 相加得 15,在 8 的右旁上作一標記,
丢去 10, 再把所留下的 5 和 3,5 相加得 13,

在5的右旁上作一標記丟去10,又把3和4相加得7,於是在橫線下的個位上寫7,所有丟去的10,因為有三個標記,所以有3個拾。依同樣方法使十位數相加,得所求的和為417.

(二)雙行併加法 兩位以上數相加,如若仍舊應用上面單 行併加法,就覺得還是不夠迅速;所以現在又有雙行倂加法。譬

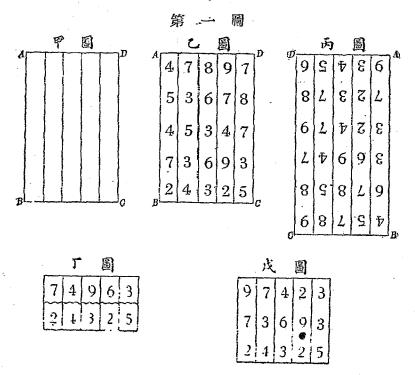
看見 24,91,32 就立刻知道是 147,得所求的和為 947.在這個一看就得的技術沒有達到純熟時候,可以把 24,91 看作是 24+90

為 114, 再加 1 為 115. 又 115+32 可以看作 115+30=145, 再加 2,得 147.

習題

1. 用單行倂加法,將教育部於25年1月發表的全國專稅 以上學校槪況表裏面的學校數,教員數,在校學生數,畢 業學生數的和,分別求出來:

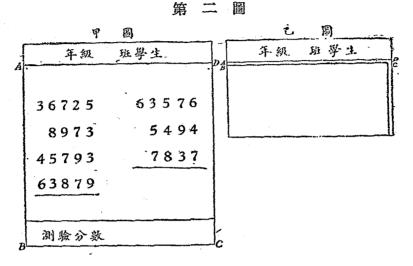
全國專科以上學校概況表(二十二年度調查)


學校類別	校 數	教員數	在校學生數	畢業生數
國立大學	13	2635	12060	2571
國立學院	6	173	1131	190
國立專科	4	57	142	46 `
公立專科	6	111	1005	271
省立大學	7	594	3685	957
省立學院	12	397	2049	225
省立專科	10	280	775	326
私立大學	20	1624	11737	1941
私立學院	22	1078	8704	1894
私立專科	9	260	1648	244

2. 據海關報告,自民國二年至十八年洋米自上海進口轉 銷長江各省的數量如下表:

_						
	民國年份	擔 數	年 份	擅 數	年 份	擔. 數
ľ	2	245	8	478	13	17103
1	3	716	9	17404	14	153577
١	4	4637	10	32927	15	5797140
ı	5	785	11	1634555	15	5006222
I	6	2024	12	1313889	17	116292
L	7	433			18	492073

- 3. 民國 25 年份, 上海公共租界工部局經常收入, 計有地 稅六百九十二萬元, 房捐一千萬元, 特區房捐七十七萬元, 特區廣告捐三萬五千元, 碼頭捐五十萬元, 執照捐三百十 三萬元, 局產租金三十九萬七千元, 公共事業收入二百零 一萬三千三百六十元, 雜項七十四萬六千六百四十元。問 以上九項共計多少元?
- § 34. 心算練習法 加法是四則運算的基礎;而心算又是 加法的基本工具,看上面的速加法,就可以知道心算的重要了。 但是心算的成功,並非完全由於天賦,還是由於特別練習,現在 舉一種簡便練習法於下:


取一張兩面有格的紙,如第一圖甲。在有格紙的上面,書寫幾個任意的數碼(行列要整齊,)如乙圖。又在有格紙的反面,書寫幾個任意的數碼,行列也要寫得整齊,如丙圖。現在把乙圖的紙向正面(卽上面)捲疊如丁圖,卽得兩個一位數相加的練習。若是把丁圖捲疊的一端展開一次,卽得三個一位數相加的練習如戊圖,依此連續展開,卽得四個五個……一位數的練習。這個方法,可以由一個學生獨自練習,也可以兩個學生一組,取比賽的方式來練習。

§ 35. 速加測验 學生對於心算已有相當練習 但是他的 迅速和正確,究竟到了甚麽程度,做教師的應當知道,所以在這 裏要舉行一個測驗。

目的: 測驗學生對於加法計算的迅速和正確度。

方法: 將測驗題印好,如第二圖甲,(此處為節省篇幅計祇 寫出兩題,但教師可以斟酌情形增加),每張題紙一一摺成如第 二圖乙,分給學生,并且同時告訴學生不要把題紙打開,必須先 把年級,班次,學生姓名都寫好,再等候教師發令測驗,纔可以打 開計算。教師發令後,經過若干分鐘(由教師斟酌題目繁簡及多 少而決定),再發令停止計算。學生聽到停止計算的命令,就立刻 ·把筆放下,並且舉起右手,表示計算已經停止。

驗算: 先叫學生調換試卷,次由教師宣告正確答數,再叫 學生把對的畫『0』,錯的畫『×』。

§ 36. 減法算草 前章已經講過, a-b=c有兩種定義: (一)由 a 裏面拿去 b 等於 c, 這樣說法便於說明。(二) a 等於 b 加 c, 這樣說法,便於運算。因此減法算草也有兩種說法,譬如下邊所舉的例: 照前一種說法: 7減 5餘 2, 於是在橫線下個位寫 2, 5 個拾減去 4 個拾餘一個拾,於是在橫線下的拾位上寫 1. 百

$$\begin{array}{r}
457 \\
-45 \\
-412
\end{array}$$

$$457-45=450+7-40-5$$

$$=400+(50-40)+(7-5)$$

$$=400+10\times(5-4)+(7-5).$$

位上並沒有數要減,所以在橫線下的百位上寫 4. 照後一種說法: 7等於 5+2, 所以在橫線下的個位寫 2, 5等於 4+1, 所以在橫線下的十位上寫 1. 4等於沒有加 4, 所以在橫線下的百位上寫 4. 這兩種說法, 原來任意採取那一種都可以。不過學者對於加

生的心算如若已經十分純熟 就要採用 -69 388 後一種來得方便。又如左面所舉的例,因 為7不能等於9加什麼數,所以要從拾

位上借一個拾來。使 17=8+9,於是在橫線下的個位寫 8,5個 拾借去一個拾紙剩 4 個拾,4 個拾不能等於 6 個拾加幾個拾,所 以要從百位上借一百或十個拾來,和四個十相加得 14 個拾,於 是 14 個拾等於 6 個拾加 8 個拾,所以在橫線下的拾位上寫 8, 得差寫 388.

〔注意〕 兩個以上的被減數減去兩個以上的減數,其法 先求被減數的和再求減數的和,減去減數的和即得。

§ 37. 速減法 減是加的遊運算,加的速算就是減的速算, 所以這裏不再舉減的速算。

習 題

1. 江西景德鎮陶瓷產額,自民國十六年至十九年,因地方不端,逐年減少如下表: 試求逐年減少的數目。

年	- 1	分	產	額
+	六	年.	12000000	元
+	七	年	9600000	元
+	八	年	5606000	元
+	九	年	5040000	元

2. 外國毛織品輸入中國逐年增加,現在列表如下:試將增加或減少的數值填入表中。

歷年毛織品輸入價值表

年 份 毛線品輸入價値 較上年增加價値 較上年減少價値 民國元年 4879281 民國三年 33C6047 民國四年 1729865 民國五年 2293558 民國五年 3201329 民國八年 3614055 民國十年 479.512 民國十一年 8793707 民國十二年 17692639 民國十二年 17692639 民國十二年 17692639 民國十二年 29362C64 民國十六年 17678463 民國十六年 18450738 民國十九年 18450738 民國十九年 26801176 民國二十年 26111680	-			H INNO A DECIMENS.	
民國三年 3306047 民國三年 3306047 民國四年 1729865 民國五年 2293558 民國五年 3676815 民國一七年 3201329 民國九年 479.512 民國十年 7407232 民國十一年 8793707 民國十二年 19042413 民國十三年 17692639 民國十五年 29362064 民國十五年 29362064 民國十六年 17678463 民國十七年 35244013 民國十九年 18450738 民國十九年 18450738	年	份	毛織品輸入價值	製上年增加價值	較上年減少價值
民國三年 33C6047 民國四年 1729865 民國五年 2293558 民國五年 3676815 民國七年 3201329 民國九年 479.512 民國十年 7407232 民國十一年 8793707 民國十二年 19C4£418 民國十三年 17692639 民國十五年 29362C64 民國十五年 29362C64 民國十六年 17678463 民國十七年 35244013 民國十九年 1845C738 民國十九年 1845C738	民國	元, 年	3887322 海關兩		
民國四年 1729865 民國五年 2293558 民國六年 3676815 民國六年 3614055 民國八年 3614055 民國十年 7407232 民國十一年 8793707 民國十一年 8793707 民國十二年 19042418 民國十三年 17692639 民國十五年 29362064 民國十五年 29362064 民國十六年 17678463 民國十七年 35244013 民國十九年 18450738 民國十九年 18450738	民國	二年	4879281		
民國五年 2293558 民國六年 3676815 民國七年 3201329 民國八年 3614055 民國八年 479.512 民國十年 7407232 民國十一年 8793707 民國十二年 19042413 民國十三年 17692639 民國十五年 29362064 民國十六年 17678463 民國十六年 17678463 民國十八年 35244013 民國十九年 35244013 民國十九年 26801176	民國	三年	3306047		
民國 六年 3676815 民國 七年 3201329 民國 八年 3614055 民國 九年 479.512 民國 十年 7407232 民國十一年 8793707 民國十二年 1964£413 民國十三年 17692639 民國十五年 2936264 民國十六年 17678463 民國十七年 35244013 民國十九年 35244013 民國十九年 18450738 民國十十年 26801176	民 國	四年	1729865		
民國七年 3201329 民國八年 3614055 民國九年 479.512 民國十年 7407232 民國十一年 8793707 民國十二年 19042413 民國十三年 17692639 民國十四年 15509013 民國十五年 29362064 民國十六年 17678463 民國十七年 35244013 民國十九年 35244013 民國十九年 18450738 民國十九年 18450738	民國	五年	2293558		
民國八年 3614055 民國九年 479.512 民國十年 7407232 民國十一年 8793707 民國十二年 19C42413 民國十二年 17692639 民國十四年 155C9213 民國十五年 29362C64 民國十六年 17678463 民國十六年 35244013 民國十九年 35244013 民國十九年 1845C738 民國十九年 26801176	民 國	六 年	3676815		
民國九年 479.512 民國十年 7407232 民國十一年 8793707 民國十二年 19042413 民國十三年 17692639 民國十四年 15509013 民國十五年 29362064 民國十六年 17678463 民國十六年 36514604 民國十八年 35244013 民國十九年 18450738 民國十九年 26801176	民國	七年	3201329		
民國十年 7407232 民國十一年 8793707 民國十二年 19C4£413 民國十三年 17692639 民國十四年 155C9£13 民國十五年 29362£64 民國十六年 17678463 民國十七年 36514604 民國十九年 35244013 民國十九年 1845€738 民國十九年 26801176	图 兒	八年	3614055	į	
民國十一年 8793707 民國十二年 19C4£418 民國十三年 17692639 民國十四年 155C9£18 民國十五年 29362£64 民國十六年 17678463 民國十七年 36514604 民國十九年 1845€738 民國二十年 26501176	国 吳	九年	479 .512		
民國十二年 1904至418 民國十三年 17692639 民國十四年 15509618 民國十五年 29362064 民國十六年 17678463 民國十七年 36514604 民國十八年 35244013 民國十九年 18450738 民國二十年 26801176	1		ł	1	
民國十三年 17692639 民國十四年 1550913 民國十五年 29362064 民國十六年 17678463 民國十七年 36514604 民國十八年 35244013 民國十九年 18450738 民國二十年 26801176	ł		1		
民國十四年 15509013 民國十五年 29862064 民國十六年 17678463 民國十七年 36514604 民國十八年 35244013 民國十九年 18450738 民國二十年 26801176	上國月	一二年	19042413		
民国十五年 29362164 民國十六年 17678463 民國十七年 36514604 民國十八年 35244013 民國十九年 18451738 民國二十年 26801176	3		ì		
民國十六年 民國十七年 36514604 民國十八年 35244013 民國十九年 18450738 民國二十年 26801176			l .		
民國十七年 36514604 民國十八年 35244013 民國十九年 18450738 民國二十年 26501176	1		ř		
民國十八年 35244013 民國十九年 18450738 民國二十年 26801176	1		-		
民國十九年 18450738 民國二十年 26801176	ì		1		
民國二十年 26801176	1		l .		
	ŧ				
民国二十一年 22111680					
	民国二	十一年	22111680	<u> </u>	

§ 38. 乘法算草 乘法的定義及算律,在前章都已說過, 現在的算草就是根據前面的定義及運算律而來的,不過排列方 法和前面的算式稍有不同而已。譬如:

(例一) 求 756×3 的積

但為求訊速起見上面的算草也寫為:

756

7206188

算式: 8756×823=8756×(800×20×3)

 $=8756 \times 3 + 8756 \times 20 + 8756 \times 800$

=26268+175120+7004800

=7206188.

速乘法 由上面兩個例,可知乘法的基礎是建築在 § 39. 一位數和一位數相乘,所以要縮短乘法的時間,必須熟讀九九表 傷行。不但要把九九表裏面順乘的積(如四八,三十二)能衡口而 出,並且逆乘的積(如八四,三十二)也能衝口而出;但是如何能 達到這樣衝口而出的純熟呢? 這就要熟讀的工夫了。速乘法的 基礎條件,除熟讀九九表外,還須熟讀兩位三位相乘的表。德國 數學家克蘭(Crelle 1780-1855)會經造出三位數和三位數相乘 的表:但是這種表很不容易讀得熟,不過要求乘法迅速起見,除 熟讀九九表外,至少還須熟讀一位數和兩位數或三位數相乘的 表。如若我們把這種表讀得很熟能衝口而出;那麼求一位數乘兩 位數或三位數的積,都不待布算就可說出來。譬如求 56×3 的積 不待布算就可以說出是 168, 又求 87×3 的積也可以立刻說出 來是 261. 又求 37×43 的積,因為 37×46=37×(40+6)=37× 40+37×6=37×4×10+37×6. 此處 37×4和 37×6 都應當很 快的說出來是 148 和 222, 所以 37×46=1480+222=1702.又 求 8756×3 的精, 也可以像下面的這樣布算:

叉求 8756×203 的積,牠的算草不必寫為:

應寫為:

$$\begin{array}{r}
 8756 \\
 \times 203 \\
 \hline
 26268 \\
 17512 \\
 1777468
 \end{array}$$

習題

1. 把表裏空的地方填入應填的積,譬如直行的 5,6 和橫 列的 17 相乘,得積為 85,102 填入表中。

被乘數乘數	11	12	13	14	15	16	17	18	19	21	22	23	24
.2	,			•									
3				*									
4													
, 5							85						
6							102						
7													
8							•			•			
9								۰					

2.
$$\%$$
 (9-4)(6-3)=9×6-9×3-4×6+4×3.

(證明) 設
$$(6-3)=d$$
. 則得:

$$(9-4)(6-3) = (9-4)d = 9d - 4d(分配律).$$

$$= 9(6-3) - 4(6-3)$$

$$= 9 \times 6 - 9 \times 3 - (4 \times 6 - 4 \times 3)$$

〔分配律〕.

$$=9 \times 6 - 9 \times 3 - 4 \times 6 + 4 \times 3$$

〔括號使用律3〕.

〔注意〕 上面右邊的算式可以看作由長方形 6-3 左端 兩數的積 9×6 加右端兩數的積 4×3 (同時記住有減號的數 和有減號的數相乘的積的前面是加號或者記住同號相乘得加

- 號,)減去對角線上兩數的積(同時記住有減號的數和有加 號的數相乘的積的前面是減或者記住異號相乘得減號)。
 - 3. 彷上面的證法證明下面各式:

$$(-) \quad (a-b)(c-d) = ac - ad - bc + bd.$$

$$(\Box)$$
 $(a+b)(c+d)=ac+ad+bc+bd$.

$$(\equiv)$$
 $(a+b)(c-d)=ac-ad+bc-bd$.

(
$$\square$$
) $(a+b)(a-b)=a^2-b^2$.

- 5. 米134 石買進每石9元,賣出12元,問可賺多少元?
- 6. 英國幣制,分一金鎊為 20 仙令,一仙令為 12 辨士,一 辨士為 4 法丁, 問一金鎊合多少法丁?
- 7. 以光的速度環繞遊地球每秒鐘可繞七圈,問每年以365日計算,可繞地球多少圈?
- 8. 每日看三頁書,問十年可看多少頁書?
- 9. 求證 $(5-3)(12-4)=5\times12-5\times4-3\times12+3\times4$ 及 $(7-2)(16+5)=7\times16+7\times5-2\times16-2\times5.$
- 10. 求證 $15^3-12^2=(15+12)(15-12)$.
- § 40. 速乘測驗 學生對於乘法已有相當練習,應該舉行 測驗一次, 看他們對於乘法計算的速度及正確度究竟達到如何 程度,測驗材料或由教師自由選擇,或用上面習題中第一題的表

都可以。至於方法及核算都和前面速加測驗相同。

§ 41. 除法算草 要說明除法算草運算的道理,須分為下 列三種情形來講:

第一款 商和除數都是一位數 譬如以 8 除 62. 照除法的 意義, 就是問 62 能含有幾個 8? 我們要試驗 62 能含有幾個 8, 牠的方法如下: 先在除數的右傍添一個 0, 成為 80. 然後以 80 和 被除數 62 比較大小, 80 就是十個 8, 因為被除數 62 小於十個

八八的積 64 要大於於 62,於是知道可以商 7,由 62 減去七八五十六餘 6.

第二款 商是一位數但是除數是多位數 譬如以 341 除 2253. 因為被除數 2253 小於十個 341, 就是小於 3410 (就是在 除數右旁加 0 而得的數),所以所求的商一定是小於 10. 但是究竟是多少呢?這就要用下面的方法來試驗了。

第一步 以300除2253或以3除22得7,由是知道2253至多祇有7個300,也是至多祇有7個341,這個數7叫做商的最大值或上界。

6········商 除數········341)2253·······被除數 2046-

算 草

第二步 以 400 除 2253 或以 4 除 22 得 5,由是可 知 2253 至少有 5 個 400, 也是至少有 5 個 341.由

這個試驗所得的商 5, 叫做商的最小值或下界。

第三步 由上面兩種試驗,知道以341除2253 所得的商是在5和7之間,就是所得的商是5或6或7.以7乘341得2387,這個數大於被除數2253,所以7不是商。又以6乘341得2046,這個數小於2253,所以所求的商是6,由2253-2046餘207.

第三款 一般的除法 譬如以841除189773.因為:

$$189773 \div 841 = (189700 + 70 + 3) \div 841$$

 $=1897 \times 10^2 \div 841 + 70 \div 841 + 3 \div 841$.

	225	
除數841)189773.	****被除數
	1682	_
	2157	
	1682	
	4753	
	4205	.
	548	餘數

所以第一步先以841除 1897百,照第二款的方 法得商2百,以2百乘 841得1682百,由1897 百减1682百,餘215百。

第二步因為這裏的 215 百和上面的 70 都是餘數,可以相加,得 2157 個拾,於是再照第二款以 841 除 2157 個拾,得商 2 個拾,

以 2 個拾乘 841 得 1682 個拾,由 2157—1682 得餘 475 個拾。第 三步因為這裏的 475 個十和上面的 3 都是餘數,可以相加,得和 為 4753. 於是再照第二款方法得商 5,餘數 548,因為 548<841 不能再除,於是除法停止。

§ 42. 速除法 由上面所舉的例看來,可知以841除 189778 第一步是從被除數取 1897 (卽比除數841多取一位)和 除數比較,看1897 能含有幾個841. 這個時候,如若學者對於一 位數和三位數相乘的積已經練習得很純熟,那麼所求的商2就

算草一	可以立刻看出來,所以要能速除
2	先要能速乘。再為求餘數 215 迅
$ \begin{array}{c c} 2 \\ \hline 215 \end{array} $	速起見,一面以2乘除數的1求
算草二	得積為2,一面由被除數的7減
841 189773	去這個積 2 得 5, 寫在橫線下面
2157 4753	(算草一)。依同樣方法,一面以2
14753 548	乘除數的4,求得積為8,一面由

被除數的 9 減去這個積 8 得 1, 寫 1 於橫線下。如此推算就可以 很快的得到除數為 215 如上邊算草一。仿此類推,得速除法如算 草二。

如若除數是一位數,譬如以7除4361, 牠的商就可以立刻 用心算求來是623。

習題

1. 用心算求出下面表裏應填的商寫入空格中,除不盡的餘數,也用記號寫出,譬如 $8479 \div 5$ 的商寫為 $695\frac{4}{5}$.

接段數學	3479	86135	573196	4357.	26789
2	,				4
3					
4					
5	695‡				
6					
7					,
8					
. 9					

第二章 總習題

- 1. 4700+470+47 的和是等於什麼數乘 47?
- 2. 把56000+5600+560+56 的和寫為兩數相乘的積。
- 3. 用什麼數來除 5349 可以得到商是 314 餘數是 11?
- 4. 一個數用 256 來除得商 73, 問這個數是多少?
- 5. 52 乘什麽數是等於 1508?

- 6. 問 36978 加多少是等於 58307?
- 7. 用什麼數來除 1986 可以得商 729 餘數 528?
- 8. 以834除44875得商53,餘數673,即:

$$48475 = 834 \times 53 + 673 \dots (1)$$
.

問加什麼數於除數 843 來除被除數可以使商仍舊不變?

[解] 設加入除數的數是 a, 於是:

$$834 \times 53 = (834 + a) \times 53 - 53 \times a$$
 代入(1)式即得:
 $44875 = (834 + a) \times 53 - 53a + 673$.

照除法定義,必須要餘數小於除數,即 673-53a<834+a.

由這個式子,可知必須要 53a < 673 或 $a < \frac{673}{53}$,即必須要 a 等於 1, 2, 3,………12. 由是得加入 834 的最大數為 12.

9. 問下面各式的商是多少?

 $12324 \div 425$, $11927 \div 425$, $973 \div 495$.

問除數加什麼數可以使所得的商不變?

10. 應用上面講過同號相乘得加,異號相乘得減的規律, 求下面各式的精:

$$(a+b)(a+b) = ?$$
 $(a+b)(a+b)(a+b) = ?$
 $(a-b)(a-b) = ?$ $(a-b)(a-b)(a-b) = ?$

第三章 約數和倍數

§ 43. 約數及倍數的定義 以8除24得整商3, 即24=8×3, 這就是24是8的三倍, 所以24叫做8的倍數, 而8叫做24的約數。

就一般的說: 以b除a,若是能得整商q, 即 $a=b\times q$,我們就說: b是a的約數, a是b的倍數。

一個數可以有許多約數,譬如 24 有八個約數, 即 1, 2, 3, 4, 6, 8, 12, 24. 因為 24=1×24=2×12=3×8=4×6=……由是可知一個數至少有兩個約數, 即 1 和牠自己;但是不能多至無窮。

因為約數就是能得整商的除數,所以『以8除24』,也常說 『以8約24』。

前面說過:0是不能做除數的,所以0也不能做約數。又任

何整數除 0 都是 0, 所以 0 是任何整數的倍數,這是無意義的。 因此本章研究自然數的約數及倍數都把 0 除外。

例題 1. 126 是 1386 的約數麽?

〔解〕 要判斷 126 是不是 1386 的約數, 祇要以 126 除 1386. 如若能得整商, 就是約數。

11

現在由 126 1386 得整商 11, 所以 126 是 1386 的約數。 126

[注意] 126 是 1386 的約數, 也常說 1386 對於 126 有整除性。

習題

- 1. 用心算說出6的倍數,憑你能心算得出多少就說多少。
- 問 47892 對於下面那幾個數有整除性?
 2,3,4,5.
- 用速除法求出下面各數那幾個是 24769 的約數?
 13, 17, 19, 31, 47.
- 4. 任何整數,至少有兩個約數,問這兩個約數是甚麽?
- 5. 問 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 等 數,除 1 和 他自己以外,還有其他約數沒有?
- 6. 問 156128 對於 56 有整除性沒有?

7. 一個積的因數,就是積的約數麽?

§ 44. 偶數和奇數 凡 2 的倍數,叫做偶數。例如 2, 4, 6, 8, 10 ……等都是偶數。凡不是 2 的倍數,叫做奇數,例如 1, 3, 5, 7, 9 ……等都是奇數。

§ 45. 公約數 諸數公有的約數, 叫做諸數的公約數。例如 4 是 24 的約數, 也是 32 的約數, 所以 4 是 24, 32 的公約數。 又 1, 2, 8, 等也是 24 和 32 的公約數。

§ 46. 約數和倍數的定理

約數定理: 兩數的公約數也是兩數和或差的約數。

〔證明〕 例如7是42和28的公約數。

於是 42=6×7, 28=4×7.這兩個等式相加或 相減得:

 $42\pm 28=6\times 7\pm 4\times 7=(6\pm 4)\times 7.$

卽 $42\pm28=(6\pm4)\times7$.

這個算式就是證明 7 是 42,28 的和 70,或差 14 的約數。就一般說: 設 q 是 a 及 d 的公約數,并設以 q 約 a 得 b,以 q 約 d 得 c, 即 a = bq, d = cq. 於是 a+d=(b+c) q 或 a-d=(b-c)q. 這兩個等式就是 證明 q 能整除 a+d 及 a-d, 所以 q 是 a+d 的約數,也是 a-d 的約數。

- 系 倘若 a, d 兩數是 q 的倍數, 那麼 a, d 兩數和或差也 是 q 的倍數。例如 42 及 28 都是 7 的倍數, 於是 70, 及 14 也是 7 的倍數。
- 倍數定理 一個數的倍數的倍數仍舊是這個數的倍數。
 - (證明) 譬如 8 的倍數是 16, 於是 16 的倍數 32, 48..... …也是 8 的倍數, 即 8 的倍數的倍數 32, 48......等 也是 8 的倍數。
 - 系 a 的約數仍舊是 a 的倍數 a, 2a, 3a的約數。譬如 13 的約數 8, 仍舊是 16 的倍數 32, 48.......的約數。

§ 47. 定理的應用:

(1)2的倍數 凡數的末位是 0,或是偶數,都是 2的倍數。.

譬如 438=430+8=43×10+8, 因為 10 是 2 的倍數, 所以 10 的倍數 43×10 也是 2 的倍數 (倍數定理)。因為 43×10 與 8 都是 2 的倍數, 所以 43×10+8=438 也是 2 的倍數。

(2) 5 的倍數 凡數的末位是 0 或是 5, 都是 5 的倍數。 譬如 435=430+5=43×10+5, 因為 10 是 5 的倍數, 所以 10 的倍數 43×10 也是 5 的倍數 (倍 數定理)。因為 43×10 和 5 都是 5 的倍數,所以 $43\times10+5=435$ 也是 5 的倍數。

(3) 4 的倍數 凡數的末兩位是 0, 或是 4 的倍數, 都是 4 的倍數。

(4) 25 的倍數 凡數的末兩位是 0, 或是 25 的倍數, 都 是 25 的倍數。

譬如 875=800+75=8×100+75, 因為 100 是 25 的倍數, 所以 100 的倍數 8×100 也是 25 的倍數, 因為 8×100 及 75 都是 25 的倍數, 所以 8×100+75=875 也是 25 的倍數。

(5) 8 的倍數 凡數的末三位是 0, 或是 8 的倍數, 都是 8 的倍數。

譬如 7112=700+112=7×1000+112, 因為 1000 及 112 都是 8 的倍數, 所以 7×1000+112=7112 也是 8 的倍數。

(6) 9 的倍數 一個數當中,各位數碼的和,如若是 9 的

倍數,那麽這個數也是9的倍數。

任意取一數來研究: 譬如取 4374=4000+300 +70+4=4×(999+1)+3×(99+1)+7×(9+1) +4=4×999+3×99+7×9+4+3+7+4=9 的倍 數+4+3+7+4. 現在祇要 4+3+7+4 是 9 的倍數, 於是 4374 也是 9 的倍數(倍數定理系)。

(7) 3 的倍數 一個數當中,各位數碼的和,如若是 3 的倍數,這個數也是 3 的倍數。

任取一數來研究: 譬如: 取 237=200+30+7 =2×(99+1)+3×(9+1)+7=2×99+3×9+2+ 3+7=3 的倍數 +2+3+7.現在根據約數定理的系 可知祗要 2+3+7 是 3 的倍數, 237 也是 3 的倍數。

(8) 11 的倍數 一個數,自右端起,奇位數碼之和與偶位數碼之和相減,所得的差若是 11 的倍數,或是 0,那 麼這個數就是 11 的倍數。

任取一數來研究: 譬如 86374=80000+6000+ $300+70+4=8\times(9999+1)+6\times(1001-1)+3\times(99+1)+7\times(11-1)+4=(8\times9999+6\times1001+3\times99+7\times11)+(8+3+4)-(6+7)=11$ 的倍數 +(8+3+4)-(6+7). 現在根據約數定理的系,可知

孤要 (8+3+4)-(6+7) 是 11 的倍數或是 0,於是 86374 也是 11 的倍數。

- (9) 6的倍數 凡 3 和 2 的倍數都是 6 的倍數。 譬如 474 是 3 的倍數,也是 2 的倍數,所以是 6 的倍數。
- (10) 12 的倍數 凡 3 和 4 的倍數, 也是 12 的倍數, 譬如 3228 是 4 和 3 的倍數, 所以也是 12 的倍 數。

〔注意〕 上面 9,10 兩條的理由,須留到代數及簡單數性 之計論中講。

智 題

- 1. 下面各數能被 3, 4, 5 各數整除的是那幾個? 73491, 36975, 4300, 7884, 3232, 4395.
- 2. 很快的說出少於 100 的 7 的倍數。
- 3. 少於100的13的倍數,用口說出來。
- 4. 填補下列各數中所缺的數碼:使牠各成為 9 的倍數。 563()9, 7034(), 8374()4.
- 5. 填補下列各數中所飲的數碼,使牠各成為 11 的倍數。 23578()6, 734()25, 489()735.

6. 下列各數那幾個是 6 的倍數? 那幾個是 12 的倍數? 那 幾個是 9 的倍數?

4374, 7836, 5832, 912672, 37392.

- 7. 2, 3, 4, 9, 11 各數都能整除 2772 麼?
- § 48. 質數及合數 上面講過任何整數 (除 0 外) 至少有兩個約數: 1 和牠自己。凡是一個數, 祇以 1 和牠自己做約數, 叫做質數, 例如 2, 3, 5, 7, 11, 13 …… 等都是質數。凡是一個數除 1 和牠自己以外還有別的數做約數, 叫做合數, 或複數, 例如 4, 6, 8, 9……等是。我們常常把質數看作是沒有約數的數, 這是把 1 和牠自己除外的緣故。

習 題

1. 用記號把下面的質數標出來:

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100.

- § 49. 質因數 一個因數,如若是質數,就叫做質因數。譬如 3,6,9 都是 18 的因數,這個 3 就是 18 的質因數,但是 6,9 不是質因數。又 18=1×3×3×2,所以 1,3,2,3 都是 18 的質因數。化合數爲質因數連乘式的方法,叫做劈因數或因數分解。
- § 50. 因數分解 求合數的質因數,減要拿質數來除合數 看牠能夠除得盡,就算是這個合數的質因數。現在應用這個原理, 進行因數分解如下:

例題1. 分解168 為質因數的積。

「解」 算草 算式

$$\frac{2 \mid 168}{2 \mid 84}$$
 $168 = 2 \times 84 = 2 \times 2 \times 42$
 $\frac{2 \mid 42}{3 \mid 21}$ $= 2 \times 2 \times 2 \times 21$
 $= 2 \times 2 \times 2 \times 3 \times 7$

例題 2. 分解 2810 為質因數的積。

「解」 算草 第式

$$\frac{2 \mid 2310}{3 \mid 1155}$$
 2310=2×1155=2×3×385
 $\frac{5 \mid 385}{7 \mid 77}$ =2×3×5×7×11.

〔注意〕 上面求質因數的方法,是拿小的質因數先來試除, 由小而漸大,逐次試除。但是實際上,不一定要拿質因數來試除, 也不一定要接大小的次序來除。譬如:

求 168或2310的質因數,可按下面的分解法:

8 | 168

$$3 | \underline{21}$$

 7
 $\therefore 168 = 2 \times 2 \times 2 \times 3 \times 7$.
10 | 2310
 $3 | \underline{231}$
 因為 $10 = 2 \times 5$

 $\therefore 2310 = 2 \times 5 \times 3 \times 11 \times 7.$

由是得一定理如下:

定理 一個數的質因數的積, 祇有一個式樣。

習 題

1. 化下列各數為質因數的積:

458, 372, 4532, 9009, 5544, 9999, 1111, 54342.

- 2. 一個數乘以 27, 所得的積減去乘以 24 所得的積,其差 為 453。問這個數是多少?
- 3. 問以13除甚麼數,所得的商和除數相等?

〔解〕 設 a 是所求的數, q 是商,於是得:

$$a = 13 \times q + q \dots (1)$$

(1)式可寫為 a=(13+1) g.

即a=14q.

根據(2)式可知 q 須小於 13,

所以α的值為 14, 14×2, 14×3, 14×4

 14×12 .

- 4. 問以37除甚麼數,所得的商和餘數相等?
- 5. 已知被除數是 1986, 餘數是 25, 問商和除數是多少?

[解] 設除數寫 d, 商為 q, 於是得:

$$1986 = d \times q + 25$$
(1)

并且要 25 < d.....(2)

由(1)式兩邊各減去 25, 得 1961=d×q

因為 1961=37×53=1961×1

於是根據(2)式除數大於25,得 d 的值為37,53 及1961.

由是本題有三個答案:

- (1) d=37; q=53
- (2) d-53; q=37
- (3) d=1961; q=1
- 6. 已知被除數為10790,餘數為31,問商和除數是今少?
- 7. 已知被除數為 1967, 餘數為 12, 問商和除數是多少?
- 8、 已知被除數為 25932、餘數為 12、問商和除數是多少?

- 9. 學生182人排成長方陣,問有幾種排法?幷問各種排法的行列人數是多少?
- § 51. 最大公約數 我們知道 12,24,36 三個數的公約數是 1,2,3,4,6,12,無論幾個數可以有許多個公約數,并且至少有一個(就是1)這些公約數最大的一個叫做最大公約數。譬如上面三個數的最大公約數是12,『最大公約數』五個字也常用拉丁字母 G.C.M.來代表,譬如說:求『12,24,36的 G.C.M.』就是說:求這三個數的最大公約數的意思。
- § 52. 求 G. C. M. 的基本原理 以 306 除 9072 得商為 q, 餘數為 198. 求證 306 與 9072 的 G. C. M. 就是 306 與餘數 198 的 G. C. M.。

〔證明〕 306 與 9072 的公約數,就是 306 的約數,這是很顧明的。根據倍數定理的系,可知牠也是 306 的倍數, $306 \times q$ 的約數,於是也是 9072 與 $306 \times q$ 的公約數;再根據約數定理,可知牠是 $9072-306 \times q=198$ 的約數。既然牠是 198 的約數,又是

306 的約數,所以是306與198的公約數。由是得一結論:

306 與 9072 的公約數, 就是 306 與餘數 198 的公約數。

反之,306 與 198 的公約數,也是 306 與 9072 的公約數。 因為 306 與 198 的公約數,也是 306 的約數,也是 306 的倍數 306×q 的約數,也是 198 與 306×q 的公約數,也是 306×q+ 198=9072 的約數(約數定理)。即是 9072 與 306 的公約數。

由上面正反兩方面的證明,可知這兩對數:(306,9072), (306,198)的公約數,是完全相同的。因此這些公約數中最大的一個公約數也是相同的,所以306與9072的 G. C. M.就是306與198的 G. C. M.。

§ 53. G.C.M. 求法:

(一)公約數連乘法 就是把諸數的公約數都——求出來, 這些公約數連乘的積就是所求的 G. C. M.。

例題1. 求140,210,及392的G.C.M.。

$$210=2\times7\times3\times5$$

$$392 = 2 \times 7 \times 4 \times 7$$

∴ 所求 G.C.M.=2×7.

(二) 輾轉相除法 求兩個很大的數的 G. C. M., 用上面方 法來求,每每因為這兩個數的公約數,不能立刻看出來,必須要 試求,但試求起來,頗不方便。所以又用下面的輾轉相除法:

例題1. 求 437 與 2645 的 G. C. M.。

算草的理由: 根據 G. C. M. 的基本原理,可知求 437 與2645 的 G. C. M., 就是求 23 與 437 的 G. C. M.。 現在 23 與437 的 G. C. M. 為23。所以437 與2645 的 G. C. M. 為23。

例題 2. 求 13081 與 6386 的 G. C. M.。

				_
	20	6386	13081	2
或		6180	12772	
	2	206	309	1
		206	206	
		0 .	168	

∴ 所求的 G. C. M. =103.

(注意) 求兩個以上的數的 G. C. M., 應先取其中任意兩數求 G. C. M., 再以所得 G. C. M. 和第三數求 G. C. M.。依此進行,最後求得的 G. C. M., 就是所求諸數的 G. C. M.。

例題3. 求 4329, 6279, 4641 的 G.C.M.

〔解〕 任意取兩數 6279 及 4641 求 G. C. M.

2	4641	6279	1	1	273	4329	15
	3276	4641			234	273	
5	1365	1638	1	•	39	1599	
	1365	1365				1365	
	0	273			·	234	6
1	i i			į		234	ľ
							1

.. 所求 G. C. M. =39.

習 題

1. 用公約數連乘法,求下列各組的數的 G. C. M.:

2. 用輾轉相除法,求下列各組的數的 G. C. M.:

3. 以 a 除諸數: 6355, 1705, 1271 各得餘數為 55, 25, 11 問 a 的最大值是多少?

〔解〕 設以 a 除諸數得的商為 q, q', q'' (q' 讀為 q 一撇, q'' 讀為 q 兩撇)於是依題意得:

$$6355 = aq + 55$$

$$1705 = aq' + 25$$

$$1271 = aq'' + 11$$

$$6300 = aq$$

$$1680 = aq'$$

$$1260 = aq''$$

$$11 < a$$

$$11 < a$$

由(2)式可知 a 是 6300, 1680 及 1260 三數的公約數。

現在要求 a 的最大值,就是要求這三個數的 G. C. M. 幷且 這個 G. C. M. 要適合(2)式裏面所列的不等式,即須 a>55. 由是用公約數速乘法得 a=420.

4. 以 a 除 2112 及 371 各得餘數為 35 及 36, 問 a 的最大

值是多少?

- 5. 假設有三個罇,牠們的體積各為 1092 立方尺, 2520 立方尺, 2772 立方尺,現在用第四個罇來盛酒,倒入上面三個罇裏,問第四罇對於各罇至少須各盛幾次纔能盛滿?并間第四罇的體積是多少立方尺?
- § 54. 互質數和兩對兩的互值數 以1為 G. C. M. 的諮數叫做互質數。譬如13,18,25三數的 G. C. M. 是1,所以這三個數是互質數。通常都認互質數是沒有公約數,這是因為1是任何整數的約數,沒有討論必要,把牠除外,就是說互質數沒有公約數的。其實互質數的公約數是1.

上面三個數,不但聯成一組沒有公約數,就是分開兩個一組,如(13,18)(13,25)(18,25)各組也沒有公約數。像這樣一組的數,我們叫做兩對兩的互質數。譬如 15,21,35,雖然是互質數,可不是兩對兩的互質數,因為把牠們兩個一對的配起來,每對都有公約數,又如15,21,16,也不是兩對兩的公約數。

習 題

- 1. 質數和合數有甚麽分別?
- 2. 質數和互質數有甚麼分別?
- 3. 兩對兩的互質數和互質數有什麽分別?

- 4. 兩個不相同的質數是不是互質數?
- 5. 三個不相同的質數是不是兩對兩的互質數?
- 6. 所有不相同的質數是不是兩對兩的互質數?
- 7. 下列各組的數,那幾組是互質數?那幾組是兩對兩的互質數?那幾組不是互質數?

(34, 27); (35, 15, 21); (14, 15, 17); (9, 27, 21); (25, 26, 27); (35, 36, 37, 38); (45, 36, 54)。

- 8. 設 a 是 100 以內的數。如若 a 和 2×3×5×7=210 為 互質數,問 a 是不是質數?
- § 55. 公倍數和最小公倍數 前面已經講過,以 b 除 a 如 若能得整商,我們就說 b 是 a 的約數, a 是 b 的倍數,譬如 8 是 24 的約數, 24 是 8 的倍數。
- 一個數的約數可以有許多個,但是不能多至無窮;一個數的 倍數也可以有許多個,并且可以多至無窮。譬如 a 的倍數是:

a, 2a, 3a, 4a, 5a.....

就是用自然數來乘 a 都是 a 的倍數。

這無窮個公倍數中最小的一個叫做諸數的最小公倍數或最低公倍數,這兩個名詞常用 L. C. M. 來代表,譬如求 2, 3, 4 的 L. C. M. 就是求 2, 3, 4,的最小公倍數。

§ 56. L.C.M. 求法:

(一)質因數分解法 就是把諸數分解為質因數的積的方法。 例題 1. 求 16,44,56 的 L. C. M.

由上面質因數分解,可知24是22, 98及24的 L. C. M.

24×11 是 21, 22×11 及 23的 L.C.M.

24×11×7 是 24, 22×11 及 23×7的 L. C. M.

即所求 L. C. M.=24×11×7=1232. 由是得:

来 L. C. M. 的法則 求諸數的 L. C. M.,可將諸數分解為 質因數的積,取其公有的及非公有的質因數附以最高的指數連乘即得。

例顧 2. 求 12, 17, 34, 63, 48 的 L. C. M.

〔解〕 因 34 是 17 的倍數, 48 是 12 的倍數。 所以 34, 63, 48 的 L. C. M.也是 12, 17, 63, 34, 48 的 L. C. M.。由是:

∴ 所求 L. C. M. = 24×32×7×17.

(注意) 1. 求諸數的 L. C. M.,如若其中有一數是他數的因數,應當先把這個數省略去不算,譬如例題 2,應當把 12 及 17 省略去不算。

(注意) 2. 每次所用的除數應當都是質數,除到所得的諸 商為互質數而止,每次的除數和最後諸商相乘的積,就是所求 L.C.M.

(二) 求最大公約數法

例題 1. 求 1008 和 812 的 L.C.M.

4	812	1008	1	求得 G. C.M. 為 28,以 28
	784	812		除1008和812
	28	196	7	得 ₁ 008=28×36
	===	196		
				$812 = 28 \times 29$

所以 1008 和 812 的 L. C. M. 為 28×36×29.

由上面兩個等式,可知 1008×812=28×36×28×29

 $\approx (28 \times 36 \times 29) \times 28$

 $=L.C.M.\times G.C.M.$

由是得一定理:

定理 兩數相乘的積等於兩數的 L. C. M. 與 G. C. M. 相乘的積。

又由這個定理得:

求 L. C. M. 的法則 以兩數的 G. C. M. 除兩數的所得的 商就是兩數的 L. C. M.。

〔注意〕 求三個或四個數的 L. C. M.,可任意先取兩個數來, 然後以所得的 L. C. M. 與第三數求 L. C. M.。依此進行最後所得的 L. C. M. 就是所求的 L. C. M.。

習 題

- 1. 用質因數分解法求下列各組的數的 L. C. M.: (342, 252, 72); (47, 82, 92); (24, 56, 72, 88); (345, 207, 115); (732, 432, 78)。
- 2. 以求 G. C. M. 法求下列各組的數的 L. C. M.: (1479, 834); (3478, 942); (4378, 932, 442)。
- 3. 假設有梨一籃,大約不到 100 個,分給兒童,若每人分 8 個或 9 個或 12 個都是餘兩個,問這籃的梨有多少?
- 4. 韓信將兵不到一萬人,三個三個的數,恰好數盡; 五個 五個的數也數盡; 七個七個的數,或八個八個的數,都也

敷盡, 問韓信所將的兵是多少?

第三章 總習題

- 1. 一個數的倍數可以有多少個? 一個數的約數可以多至無窮麼?
- 2. 質數和合數如何區別?
- 3. 質數和因數有何區別?
- 4. 分解下列各數為質因數的積: 4374; 5733; 357891.
- 5. 已知被除數為 4399, 餘數為 7, 問商和除數是多少?
- 6. 求下列各組的數的 G. C. M.: (1333, 304); (3024, 1824); (12264, 1932)。
- 7. 以 a 除諸數: 1808, 1445, 2573, 得餘數 8, 5, 7, 問 a 的最大值是多少?
- 8. 求下列各組的數的 L.C.M.: (5832, 774); (58784, 3872); (612, 1428, 3366)。
 - 9. 假使有一個數 a, 用 8, 15, 24 來除都是餘 5, 問 a 的 值有幾個?又問 a 的最小值是多少?
- 10. 有羊一罩,大約500隻以上,1000隻以下,要是4隻4隻的數,或5隻5隻的數,或6隻6隻的數,都是餘1隻.

若是7隻7隻的數,就沒有剩餘,問羣羊究竟有多少隻?

- 11. 假使有一數 a,以 2, 3, 4, 5, 6, 7, 8, 9, 10 除之得餘 數為 1, 2, 3, 4, 5, 6, 7, 8, 9, 問 a 的最小值是多少?
- 12. 已知兩數之一數為 2349, 兩數的 G. C. M. 為 261, 兩數的 L. C. M. 為 5220 問這兩數中其他一數是多少?

第四章 簡便算

- § 57. 速算 速算是利用心算以求運算之迅速, 牠是以熟求速, 這在前面已經講過。現在所講簡便算除利用心算以外還引用數的性質以求運算的迅速, 牠是以巧求速。我們知道有許多學式專靠熟是不夠迅速的, 還要取巧方能得到特別迅速, 所以簡便算是很重要的。不過速算是簡便算的基礎, 簡便算是速算進一步的研究。我們為求運算敏捷起見, 這兩種方法都是很重要的。
- § 58. 加的簡便算 加法是四則運算中最基本的運算。牠自身已經是很簡單,似乎不能再有簡便算,其實不盡然,遇到特別情形時候也有簡便算法。譬如:
 - (一)求平均值的簡便算 在各種統計上,或理化實驗上,

2343	每每求平均值祇要取末尾相異的數字相
2342 2346	加,如左邊所舉的例祇把個位的數加起
2345 2344	來得20,以5除20得4,於是得所求平
$\frac{5}{4}$	均值爲2344。

、(二)求等差級數和的簡便算 假設有一串的數,如 4+6+ 8+10 其中任何一項和前項的差都是相等,這串數就叫做等差 級數,頭一項叫做首項,末了一項叫做末項。

假設這串級數的和是 a,

於是 a=4+6+8+10.

根據對易律得 a=10+8+6+4.

 $\therefore 2a=14\times4.$

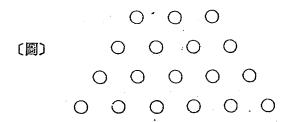
這裏的 14 就是首項與末項的和, 4 就是項數上面等式的兩邊各以 2 除之即得:

a=7×4=28. 由是得:

定理 一個等差級數和的兩倍等於以牠的項數乘首末兩項和所得的積。

(三)相近數的簡便加法 n 個相近數的相加,可以先取其中一數或另外一數與 n 相乘,然後再訂正結果:

例題 1. 求 24+26+25+24+27 的和。


[解] 所求的和 $=25 \times 5 + 1 = 126$.

(四)與10乘方相近的數的簡便加法。譬如:

7841 + 994 = 7841 + 100 - 6 = 8841 - 6 = 7835.

習 題

1. 有木一堆,頂層計三株,底層計六株如圖,問這堆木有 多少株?

- 2. 某書記第一日寫 4356 字,以後逐日增寫 36 字,連寫十日,每千字以兩角計算,問該書記共得多少錢?
- 4. 43+40+42+40+41.
- 5.637 + 94.
- 6.7894 + 3007.
- 7. 6+9+12+15+18+21+24.
- 8. 13+18+23+28+33+38+43.
- § 59. 補數 兩數的差叫做小數對於大數的補數,譬如 4 是 8 對於 12 的補數,也是 7 對於 11 的補數,又 733 對於 739 的補數是 6. 一個數加入他數能使他數成為10的方,這個數就叫做他數的補數。譬如 37 加入 63 能使 63 成為 10²,於是 37 是 63 的補數(這裏不說 37 是 63 對於 100 的補數,祇簡稱為,3的補數)。又 733 加入 267 能使 267 成為 10³,所以 733 是 267 的補數。

習題

- 1. 問 23 對於下列各數的補數是什麽? 47, 36, 54, 29, 39, 41.
- 間下列各數的補數是什麽?
 237,9456,37495,83457,943456.
- § 60. 減的簡便算
- (一)和10的乘方相近的數的簡便算

例 1.
$$3497-998=3497+2-1000=2499$$
.

例 2.
$$3487-489=3487+11-500=2998$$
.

例 3.
$$1003-897=999-897+4=106$$
.

(二)諸數減諸數的簡便算

例 1. 435+7349-2347-1324+347+8792-3213 的 结果。

·. 所求的結果為 10039.

習題

用適當的簡便算,求下列各題的結果:

- 1. 6789 3436 1231 + 36745 12321 + 234.
- 2. 8347-9988.
- 3. 10032 7342.
- 4. 43923 3478 2132 327 + 56789 36478.
- § 61. 簡乘法 乘法簡便算的變化很多,這裏限於篇幅, 不能——都講,派略舉幾種簡單常用的方法如下:
- (一) 倘若乘數是 5 或 50, 就先乘以 10 或 100, 然後除以 2, 即得所求的猜:

例 1. 求 378×5 的積。

算 草 第 式

$$\begin{array}{rcl}
2 & 3780 & 378 \times 5 = 778 \times (10 \div 2) = 378 \times 10 \div 2 \\
& = 3780 \div 2 = 1890.
\end{array}$$

例 2. 求 378×50 的積。

算草 算式

$$\begin{array}{rcl}
2 & 37800 & 378 \times 50 = 378 \times (100 \div 2) = 378 \times 100 \div 2 \\
\hline
& = 37800 \div 2 = 18900.
\end{array}$$

(二) 倘若乘數是 25 或 75, 就先乘以 100 或 300, 然後除以

4, 即得所求的積:

例 1. 求 438×25的積。

算 草 第 式
$$\frac{4 \times 43800}{10950} \quad 438 \times 25 = 438 \times (100 \div 4) = 438 \times 100 \div 4 \\
= 43800 \div 4 = 10950.$$

例 2. 求 367×75 的積。

(三)倘若乘數是 125, 就先乘以 1000, 然後除以 8, 即得所求的積:

例 1. 求 439×125 的精。

(四)倘若乘數是 15, 就先乘以 10, 再加所得的積的一半, 即得所求的積:

例 1. 求 378×15 的精。

算 草 算 式

$$3780$$
 $378 \times 15 = 378 \times (10+5)$
 $+1890$ $=3780+3780+2$
 $=3780+1890=5670$.

(五)倘若乘數是 35, 就先乘以 25, 再加被乘數的 10 倍, 即 得所求的積:

例 1. 求 567×35 的積。

(六)倘若乘數是 45, 以 2 除被乘數的 100 倍與 10 倍的差, 即得所求的積:

例 1. 求 368×45 的積。

第 草 第 式
$$36800 = 368 \times 45 = 368 \times (100 - 10) \div 2$$

$$3680 = (36800 - 3680) \div 2$$

$$2 \overline{\smash{\big)}\ 33120} = 33120 \div 2$$

$$= 16560.$$

例 1. 求 438×997 的精。

算草 算式

$$438000 438 \times 997 = 428 \times (1000 - 3)$$

$$1314 = 438000 - 438 \times 3$$

$$= 438000 - 1314 = 436686.$$

(八)近於 10, 102, 108......的數的自乘簡便算:

例 1. 求 9932 的方。

$$(解) 993^2 = 99 \cdot 2^2 - 7^2 + 7^2 = (993 + 7)(993 - 7) + 49$$
$$= 1000 \times 986 + 49 = 986049.$$

(九)因數分解的簡便算 這個方法比普通乘法可以省卻相 加的手續,并且被乘數愈大愈覺便利:

例 1. 求 37856×25 的精。

(解)
$$37856 \times 25 = 9464 \times 4 \times 25 = 9464 \times 100$$

= 946400 .

例 2. 求 3893×56 的精。

算 草 第 式 $\frac{3893 \times 7}{27251 \times 8}$ $\frac{3893 \times 7}{218008}$ $\frac{3893 \times 56 = 3893 \times 7 \times 8}{218008}$ $= 27251 \times 8$ = 218008.

例 3. 求 73478×135×18 的精。

算。草 算 式 73478×3 $73478 \times 135 \times 18 = 73478 \times 27 \times 5 \times 18$ 220434×9 $=73478 \times 3 \times 9 \times 90$ 198390600 $=1983906 \times (100-10)$ 19839060 =19830600-19839060178551540

=178551540.

(十)乘數當中有一部分數碼是其他數碼的倍數的簡便算:

例 1. 求 43789×369 的精。

算草 算 式 $43789 \times 369 = 43789 \times 360 + 43789 \times 9$ 43789 × 369 $=43789 \times 9 + 43789 \times 9 \times 40$ 394101 $=394101 + 394101 \times 40$ $1576404 = 394101 \times 40$ =394101+157640416158141 =16158141.

這個算法可以比普通乘法省卻一次乘的手續。

例 2. 求 24734×318 的精。

算草 算 式 $24734 \times 318 = 24734 \times 300 + 24734 \times 18$ 318 $=7420200+74202\times6$ 74202 =7420200+445212 $445212 = 2473 \times 3 \times 6$ 7865412 =7865412.

習題

1.
$$3487 \times 250$$

$$2. 37893 \times 991$$

3.
$$73462 \times 125$$

4.
$$43892 \times 15$$

5.
$$83723 \times 75$$

6.
$$34736 \times 5$$

7.
$$73874 \times 35$$

8.
$$578321 \times 324$$

$$9. 438732 \times 328$$

10.
$$45739 \times 832$$

11.
$$992^2$$

§ 62. 簡除法

(一)除數能分解爲因數的簡便算:

例 1. 求 2378÷35 的商。

算草

算 式

例 2. 求 63898÷84 及 68545÷16800 的商。

(二)除數近於 10 的乘方的簡便算: 倘若除數和 10 的乘方相近,譬如下邊所舉的例:除數為 99,於是把 99 寫為 100-1, 先以 100 做除數,求得首位的商為 3,由 357-100×3 餘 57。但這個餘數 57 比實際上以 99 乘 3 由被除數 357 減去所得的餘數來得小,所小的數就是補數 1 和 3 的積 3×1=3,所以第一次實在的餘數是 50,餘類推。

算草	簡單算草	最簡算草
361	361	361
100-1)35789	$100 - 1)\overline{35789}$	$100 - 1)\overline{35789}$
57	3	608
1×3······3	608	149
608	6	50
8	149	
1×66	_1	
149	50	
49		
1×1·····1		
50		

算草二的說明: 第三次商 8,得假餘數為 86,但是真餘數是 86+4×8=118,大於除數 96,所以把商改正為 9,并且由餘數118-96 得餘數為 22.

例 2. 求 45374÷102 及 53478÷501 的商

習題

2. $83417 \div 54$

用簡除法求下列各題的商:

1.
$$43742 \div 42$$

3.	$367894 \div 84$	
a.	OCTORT - ~~	

4.
$$4736923 \div 252$$

5.
$$45389 \div 672$$

6.
$$543732 \div 99$$

7.
$$73432 \div 98$$

8.
$$734567 \div 96$$

9.
$$63473 \div 102$$

10.
$$734834 \div 498$$

第四章 總習題

1. 求下列各數的補數:

4357, 63783, 456789, 321345, 73434.

求下列各題的結果:

- 2. 求 4573+4574+4572+4575+4572+4572 的平均值。
- 3. 求 6342+6343+6336+6339+6341+6350 的平均值。
- 4. 3478 + 5631 4332 948 + 73891 23412 + 6738.
- 5. 73891×5

- 6. 43736×15
- 7. 56346×25
- 8. 36493×75
- 9: 363497×125
- 10. 738924×35
- 11. 89341×999
- 12. 345789×45
- 13. 56347 × 493
- 14.796^2

15. 495^2

- 16. 43893×18
- 17. 437356×32
- 18. 567341×648
- 19. 43212×618
- 20. $437321 \div 21$

21. $14593 \div 45$

22. $457361 \div 72$

23. $213457 \div 97$

24. 83457÷103

25. $347369 \div 495$

第二編 分數(數系擴充之一)

第五章 分數的起源和牠的運算

§ 63. 不連續量和連續量 像一霆的羊,一村的人,一樹的蘋菓,一房子的椅桌……,這些物羣的積,都是彼此分開不相連續的,可以一個一個『數』的,叫做不連續量。在自然界中,除了這種不連續量以外,像一疋布的長,一件衣服的長,或一株樹的長,一張桌的高,一包糖的重,一址田的面積的大小……等,都不是可以數的,必須要用同類的東西做單位來量的。譬如一疋布的長,不是可以數的,必須要用尺來『量』的,這種不能『數』祇可以『量』的東西叫做連續量。

連續量的大小,可任意增減的,譬如一疋布的長,增減一尺或不到一尺都可以的。至於不連續量譬如一村的人,他的增減至少以一人起碼;又如一羣羊的增減,至少也要以一隻起碼,如若增減半隻,所增減的就不是羊乃是羊肉了。羊肉是連續量,牠的重可以任意增減的。

§ 64. 連續量和分數的定義 自然界裏的連續量多得很,

其中可以做牠們代表的莫如線段了。現在研究連續量的大小就 用線段來代表,譬如第三圖的線段AB,我們要知道牠有多少長,

第三圖

就要先決定一個長的單位 PQ,拿 PQ 來量 AB,如量四次恰好 把 AB 量盡,於是 AB 就是單位 PQ 的 4 倍長。這個整數 $\mathbb{F}4$ 见就 是表示用單位 PQ 來量的次數,叫做線段 AB 的度量 (Measure of AB)。

一種連續量如若用單位可以量得盡,那麼牠們的度量祇要用一個整數來計算就夠了。但是事實上,并不如此,譬如第三圖拿單位 PQ 來量 CD,要是量一次就有餘剩,量兩次就不夠,遇到這樣情形,就不得不把原定的單位 PQ 分為若干等份,使得我們取其一份來量CD可以量得盡。譬如分 PQ 為三等份,取其一份來可以量盡,於是這一份叫做盡度部份(Aliquot part)。這個盡度部份是單位三等分之一,我們常稱為『單位三分之一』,或簡稱為『三分之一』,照前面除法的記號可寫為 1÷3 或 1/3。現在用這個盡度部份來量CD,譬如量 4 次恰好量盡,那麼 CD 的度量就是 4 個盡度部份,或 4 個三分之一,即 1/3 × 4 或 1÷3×4。

這個算式 1÷3×4、照乘除運算律也可以寫為1×4÷3 或

 $\frac{4}{3}$,這就是先把單位 PQ 三等分,然後用 4 倍起來和先把單位 PQ 用 4 倍起來成為 EF(如第三圖),然後三等分 EF 都是 CD 的長,即 $\frac{1}{3} \times 4 = \frac{4}{3}$ 。這個記號 $\left[\frac{4}{3}\right]$,叫做分數,讀為 $\left[4$ 個 3 分之一』或 $\left[4$ 除以 3 』或 $\left[4$ 比 3 』。

由是可知分數 ⁴ 有兩種意義: 第一種就是 4 個 ¹ 3 的意思; 第二種就是以 3 除 4 的意思。又連續量 CD 的度量要用兩個整數 4 和 3 來表示,這兩個整數所負的職責是各不相同的,所以我們也要分別的給牠們一個名稱,表示單位等分多少的整數 3,叫做分子,表示測量次數多少的整數 4,叫做分子,分子和分母叫做分數的兩項。

再說一般的說:一個連續量每每不是已定的單位可以量得盡,必須要把已定的單位分為 B 等分,取其一份來量,總可以量 A 次而盡。這個連續量的度量,必須用這個記號 $\frac{A}{B}$ 來表示,也 像整數一樣是表示一個量的大小,所以也是一個數,就是我們所謂分數。

由上面研究的結果,可知要表示連續量的大小,不但要用整數,還要用分數穩行。我們為適應環境的需要起見,數的概念非由整數擴充至分數不可,這種擴充能使分數包含整數(分母為1的分數都是整數),能使數的效用擴大,不但使數能測不連續量,也可以測速續量;并且使除法的運算在非整數時也能適用增加

除法運算的自由,這都是數概念擴充的價值。

習 題

- 1. 連續量和不連續量有什麼不同的地方?
- 2. 爲什麼連續量常用直線做代表,不用別的東西做代表?
- 3. 在日常生活上計算一切的量祇有整數,有沒有困難?
- 4. 什麽叫做盡度部份?
- 5. 一個分數有兩種意義,試說明這兩種意義。
- 6. 分子和分母所負的職責有甚麼不同的地方?
- 7. "什麽叫做分數的兩項?
- \S 65. 近似值 一個分數 $\frac{A}{B}$, 如若是線段 BF 的度量,那 麼照分數第一種意義, $\frac{A}{B}$ 就是 $\frac{1}{B}$ ×A 的意思,換言之,就是把已 定的單位分為 B等分,取其一份來量 EF 恰好量 A 次而量盡的 意思。但是我們要知道:以 $\frac{1}{B}$ 來量 EF 準能量得盡麼,這是不能 一定的,有時候量 A 次有剩餘所,剩的不到 $\frac{1}{B}$,量A+1 次又不夠, 所不夠的也不到 $\frac{1}{D}$,遇着這樣情形, EF 的度量就在 $\frac{A}{B}$ 和 $\frac{A+1}{B}$ 之間,既不是 $\frac{A}{B}$,也不是 $\frac{A+1}{B}$ 。如若拿 $\frac{A}{B}$ 。如若拿 $\frac{A}{B}$ 作為 EF 的 度量,就有誤差,所誤差的都不到 $\frac{1}{B}$,這個差誤 $\frac{1}{B}$ 祇要 B 很大,

就可以小到不必計算,於是我們就拿 $\frac{A}{B}$ 或 $\frac{A+1}{B}$ 作為BI的度量, 叫做 BF 的近似值, $\frac{A}{B}$ 叫做 BF 的近似值過少不到 $\frac{1}{B}$, $\frac{A+1}{B}$ 叫做 BF 的近似值過多不到 $\frac{1}{B}$

近似值在日常生活上非常重要,譬如拿尺來量一件衣服的長,第一步先定這件衣服長的起點及終點,然後從起點量到終點假設量兩次有剩餘,量三次又不夠,於是我們就知道這件衣服是2尺多長,所多的不到1尺,可以用10尺來量,就是拿寸來量。假設量4次有剩餘,5次又不夠,於是我們就知道這件衣服是2尺4寸多長,所多的不到1寸,這個不到1寸的剩餘,又用100尺來量就是用分來量。假設量5次有剩餘,量6次又不夠,於是我們就知道這件衣服是2尺4寸5分長。假設量5次有剩餘,量6次又不夠,於是我們就知道這件衣服是2尺4寸5分長。所多的不到100尺,就是不到一分,不到一分的長,是一般人所不注意的,可以把它略去不計算。所以一般人就說這件衣服是2尺4寸5分長。其實2尺4寸5分并不是這件衣服的準確值,乃是它的近似值,過少不到100尺,即不到1分。

- § 66. 分數的基礎性質 由分數定義可以推出下面幾種 基礎性質:
 - (1) 分數 $\frac{A}{B}$ 就是 $\frac{1}{B} \times A$ 的意思。
 - (2) 分數 $\frac{A}{B}$ 就是 $A \div B$ 的意思。

- (3) 凡分子是 0 的分數都等於 0 (如若分母是 0, 無論照 分數第一種或第二種意義都是無意義的)。
- (4) 兩個相等的分數如若分母相等分子也相等;如若分子相等分母也相等。
- (5) 分母相同的分數以分子最大的一個為最大,以分子 最小的一個為最小。
- (6) 分子相同的分數以分母最小的一個為最大,分母最 ·大的一個為最小。
 - (7) 一個分數的分子如若小於等於或大於分母,這個分數就小於等於或大於¹。
 - § 67. 擴分與約分 凡單位有一定的時候,一種量的度量如若是整數,就祇有一個整數表示牠;如若是分數,就有許多分數可以表示牠。譬如前面所說以單位PQ量線段CD,得CD的度量為 $\frac{4}{3}$,現在是要把單位PQ的盡度部份——分為二等分(如第四圖),使PQ成為 $2\times3=6$ 等分,拿其一份來量CD,就可量

第四圖

P-1-1-10 (1-1-1-10)

 $2\times 4=8$ 次,於是CD的度量又是 $\frac{2\times 4}{2\times 3}$,這兩個分數 $\frac{4}{3}$ 和 $\frac{2\times 4}{2\times 3}$ 都是 拿單位 IQ來量CD 所得的度量,自然的彼此相等即 $\frac{4}{3}=\frac{2\times 4}{3\times 4}$.

由是得一定理如下:

定理 一個分數的兩項同以一數乘之或約之(但是 O除外) 其值不變。

以任意一個整數乘分數的兩項, 使分母和分子都擴大 起來。

以分數兩項的公約數除分子分母,使牠們約小起來,這 種手續叫做約分。

一個分數的兩項照牠的定義,應當都是整數,但是我們旣

然承認分數也是一個數,當然牠也可以做分子或分母如:
$$\frac{2}{3}$$
; $\frac{5}{4}$

$$\frac{9}{7}$$
; $\frac{4}{2}$ 等,叫做繁分數,分子分母都是整數的分數,

叫做簡分數。

一個分數的兩項如若互為質數,這個分數叫做最簡分數,譬如: $\frac{3}{2}$ 是最簡分數,但是 $\frac{9}{6}$ 不是最簡分數,因為 9 和 6 有一個公約數 3

例題 1. 用擴分法使 $\frac{4}{5}$ 的分母變為 35.

〔解〕 因 35÷5=7,

所以要變分母為 35 ,必須用 7 來乘分母,於是得所求的分數為: $\frac{4\times7}{5\times7} = \frac{28}{35}$.

例題 2. 用約分法化 18 為最簡分數。

〔解〕 因為 $\frac{18}{45} = \frac{2 \times 9}{5 \times 9} = \frac{2}{5}$,

所以 $\frac{2}{5}$ 是所求的最簡分數。

例題 3. 化 $\frac{4}{3}$, $\frac{2}{7}$, $\frac{5}{9}$ 為同母分數。

〔解〕 分母 3,7,9 的公倍數為 63,63×2,63×3·······, 以 3,7,9 除 63 得商 21,9,7.

於是以所得的商各乘上列分數的兩項即得: $\frac{4 \times 21}{3 \times 21}$ =

$$\frac{84}{63}$$
; $\frac{2\times9}{7\times9} = \frac{18}{63}$; $\frac{5\times7}{9\times7} = \frac{35}{63}$.

依同樣的道理以 3, 7, 9, 各除 63×2, 得商 21×2, 9×2,7×2,以這些商各乘上列各數的兩項,所得的分數 也是同分母數,餘類推。但是以63為最小公分母。

例題 4. 化假分數²⁴為帶分數。

(解) 因
$$\frac{24}{7} = 24 \div 7 = 3 + \frac{3}{7}$$
,

$$\therefore$$
 所求的帶分數為 $3\frac{3}{7}$.

例題 5. 化帶分數 $4\frac{2}{3}$ 爲假分數。

(解) 因
$$4\frac{2}{3} = 4 + \frac{2}{3} = \frac{4 \times 3 + 2}{3}$$
,

 \therefore 所求的假分數為 $\frac{14}{3}$.

퀄 顠

- 要把單位分為幾等分,可以使某量近似值的差誤不到35 $\frac{1}{67}, \frac{1}{365}$?
- 要量一種連續量,都要先決定要量的起點及終點麼?
- 要決定一種連續量的起點及終點是,很容易的麼? 3.
- 用擴分法使下面各分數變為同母分數: 4.

$$\frac{2}{3}$$
, $\frac{1}{5}$, $\frac{7}{6}$, $\frac{7}{8}$, $\frac{2}{9}$.

5. 用約分法使下面各分數成為最簡分數:

6. 化下面的假分敷為帶分數:

$$\frac{71}{8}$$
, $\frac{84}{23}$, $\frac{96}{47}$, $\frac{77}{56}$.

7. 化下面的帶分數為假分數:

$$4\frac{2}{57}$$
, $3\frac{3}{47}$, $5\frac{2}{43}$, $8\frac{3}{19}$.

8. 化下面的異子分數寫同子分數:

$$\frac{4}{3}$$
, $\frac{5}{4}$, $\frac{9}{7}$, $\frac{27}{34}$, $\frac{20}{61}$.

- § 69. 通分 用擴分法把異母分數變為同母分數,這種 手續叫做通分或通分母。通分以後所得的新分母叫做諸分數的 公分母,這種公分母可以有很多很多;但是在運算上為簡便計, 每每先把諸分數化為簡分數,然後取各分母的最小公倍數作為 諸分數的公分母,這個公分母是公分母中最小的一個叫做最小 公分母。現在舉通分法的步驟如下:
 - I. 化諸 分數為最簡分數。
 - II. 求出諸分母的 L. C. M.。

- III. 以原分母除 L.C.M。
- IV. 以所得的商各乘原分數的兩項。

依同樣的道理把異子分數化為同子分數, 這種手續叫做通 分子。

例題 1. 把 $\frac{2}{9}$, $\frac{14}{21}$, $\frac{261}{414}$ 通分:

I. 諸分數的最簡分數為 $\frac{2}{9}$, $\frac{2}{3}$, $\frac{29}{46}$.

- ∴ 諸分母的 L.C.M.=9×46=414.
- III. 以9,3,46除9×46得商46,138,9.
- § 70. 分數大小的比較法 假設有幾個分數我們要知道 他們的大小, 祇須用下面三種方法之一種來比較就可以斷定:
 - I. 通分母法 用通分法將諸分數化為同母分數,於 是同母分數的諸分子的大小即分數的大小。
 - II. 通分子法 有時因為公分母太大,不便計算,就把 諸分數化為同子分數,於是同子分數中最大的分母 為最小的分數,最小的分母為最大的分數。

III. 和一個定數比較法 有時要斷定諸分數的大小,祇 須和一個定數比較就可以決定,不必用通分母或通 分子,在應用上每每以一為定數,譬如要判斷 $\frac{3}{7}$ 和 $\frac{8}{9}$ 的大小,祇須把這兩個分數和一比較即得 $\frac{3}{7}$ < $\frac{8}{9}$.

習 題

1. 把下面五個分數通分母:

$$\frac{4}{32}$$
, $\frac{3}{21}$, $\frac{9}{432}$, $\frac{8}{72}$, $\frac{7}{14}$.

2. 把下面五個分數通分母:

$$\frac{5}{36}$$
, $\frac{7}{18}$, $\frac{9}{28}$, $\frac{13}{44}$, $\frac{4}{132}$.

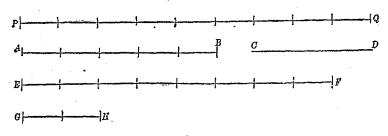
3. 把下面四個分數通分子:

$$\frac{3}{3688}$$
, $\frac{9}{4531}$, $\frac{8}{232}$, $\frac{25}{425}$.

4. 判斷下列各分數的大小:

$$\frac{9}{342}$$
, $\frac{8}{732}$, $\frac{11}{671}$, $\frac{7}{504}$.

5. 判斷下列各分數的大小:


$$\frac{7}{8}$$
, $\frac{8}{9}$, $\frac{2}{13}$.

§ 71. 分數加減法 譬如有兩個同分母數 $\frac{5}{9}$ 和 $\frac{8}{9}$ 要相加

或相減,假設 $\frac{5}{9}$ 是 AB 的度量, $\frac{3}{9}$ 是 CD 的度量(如第五圖),照 分數第一定義 $\frac{5}{9}$ 就是 $\frac{1}{9} \times 5$, $\frac{3}{9}$ 就是 $\frac{1}{9} \times 3$ 的意思,也就是把單 位 PQ 分為 9 等分,取其一份來量 AB 可量 5 次,量 CD 可量 3次的意思。現在要求 AB 與 CD 的和,EF 或差 GH 的度量,即:

$$\frac{5}{9} + \frac{3}{9} = \frac{1}{9} \times 5 + \frac{1}{9} \times 3 = \frac{1}{9} (5 + 3) = \frac{5+3}{9} = \frac{8}{9},$$

第五圖

或 $\frac{5}{9} - \frac{3}{9} = \frac{1}{9}(5-3) = \frac{5-3}{9} = \frac{2}{9}$ 這個分數 $\frac{8}{9}$ 就是已知兩分數的和;又這個分數 $\frac{2}{9}$ 就是已知兩分數的差。

依同樣道理,要求兩個以上的同母分數的和或差,祇須將分子相加或相減,以所得的和或差,作為新分子,取原來公分母為 分母即得。

如若相加或相減的分數不是同母分數,可先用通分法化為 同母分數,然後照上面的方法相加或相減。由是得:

分數加減法則 凡求諸分數的和或差,必須先化諸分數為

同母分數,然後以公分母作為和或差的分母,諸同母分數的分子的和或差,作為所求的和或差的分子。

例題 1. 求
$$2\frac{2}{3}+1\frac{3}{4}+\frac{17}{18}$$
 的和。

(解) 因3,4,18的L.C.M.是36,

$$2\frac{2}{3} + 1\frac{3}{4} + \frac{17}{18} = 2 + 1 + \frac{24}{36} + \frac{27}{36} + \frac{34}{36}$$
$$= 3 + \frac{24 + 27 + 34}{36} = 3\frac{85}{36} = 5\frac{13}{36}.$$

例題 2. 求 $2\frac{7}{8} - \frac{2}{9} + \frac{17}{18} - \frac{17}{12}$ 的結果。

(解) 因為
$$2\frac{7}{8} - \frac{2}{9} + \frac{17}{18} - \frac{17}{12}$$

$$= 2 + \frac{7}{8} - \frac{2}{9} + \frac{17}{18} - \frac{17}{12}$$

$$= 2 + \frac{7}{8} - \frac{2}{9} + \frac{17}{18} - 1 - \frac{5}{12}.$$

又因 8,9,18,12的 L.C.M.是72,

$$2\frac{7}{8} - \frac{2}{9} + \frac{17}{18} - \frac{17}{12}$$

$$= 2 - 1 + \frac{63}{72} - \frac{16}{72} + \frac{68}{72} - \frac{30}{72}$$

$$= 1 + \frac{63 + 68 - 16 - 30}{72} = 1\frac{85}{72} = 2\frac{13}{72}.$$

〔注意1〕 在加減法中如若有假分數,應當先化為帶分數,

然後整數與整數相加減,分數與分數相加減,遇有減數大於被減 數,再取整數的一部份化成假分數來相減。

例題 3. 求
$$8\frac{1}{4} + 3\frac{1}{5} - 4\frac{3}{2}$$
 的結果。

(解)
$$8\frac{1}{4} + 3\frac{1}{5} - 4\frac{3}{2} = (8+3-4) + \left(\frac{1}{4} + \frac{1}{5} - \frac{3}{2}\right)$$

= $7 + \frac{5+4-30}{20} = 5 + \frac{40+9-30}{20} = 5 + \frac{19}{20}$.

習題

求下列各式的結果:

1.
$$\frac{34}{35} + \frac{3}{63} - \frac{11}{77}$$

2.
$$5\frac{3}{4} + 1\frac{5}{6} + \frac{7}{8} + 2\frac{11}{13}$$

3.
$$4\frac{143}{429} + 3\frac{220}{495} + 3\frac{288}{486} + \frac{56}{432}$$

4.
$$\frac{1}{84} + \frac{1}{616} + \frac{1}{1125} + \frac{1}{539}$$

5.
$$4\frac{7}{8} - 3\frac{5}{12}$$

$$6 \quad 3\frac{19}{60} - 1\frac{27}{75}$$

7.
$$7\frac{11}{12} - 3\frac{7}{8}$$

8.
$$2854\frac{258}{516} - 439\frac{13}{18}$$

9.
$$\left(\frac{3}{7} + \frac{5}{49} + \frac{4}{343}\right) + \left(\frac{3}{7} + \frac{2}{49} + \frac{3}{343}\right)$$

10.
$$\left(13\frac{1}{3} - 4\frac{1}{4}\right) - \left(7\frac{1}{4} - 3\frac{1}{5}\right)$$

 \S 72. 分數乘法 以整數乘分數,這是很簡單的,仍舊應用整數乘法的定義,就可以運算。譬如某人每小時走他所要走的全路程 $\frac{2}{15}$,現在走 4 小時就走 34 個 $\frac{2}{15}$, 即:

$$\frac{2}{15} \times 4 = \frac{2}{15} + \frac{2}{15} + \frac{2}{15} + \frac{2}{15} = \frac{2+2+2+2}{15}$$
$$= \frac{2 \times 4}{15} = \frac{8}{15}.$$

如若連走5小時就走了5個 $\frac{2}{15}$, 卽:

$$\frac{2}{15} \times 5 = \frac{2 \times 5}{15} = \frac{2 \times 5}{3 \times 5} = \frac{2}{3}$$
.

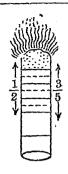
由是得整數乘分數的法則如下:

整數乘分數的法則 以整數乘分數,等於以整數乘分子或約分母,整數乘法的定義可以應用於整數乘分數,但是不能再應用於分數乘分數。譬如某人走了 $\frac{3}{4}$ 小時,我們就不能說他走了全路程 $\frac{3}{4}$ 個 $\frac{2}{15}$ 因為『個』字祇有和整數連起來用,幾有意義,如若

一小時既然走了全路程 $\frac{2}{15}$,於是 $\frac{1}{4}$ 小時就走了一小時所走的路程 $\frac{2}{15\times 4}$ (如圖六),3個 $\frac{1}{4}$ 小時應走了3個 $\frac{2}{15\times 4}$ 卽:

第六圖

 $\frac{2}{15\times4}$ ×3 $-\frac{2\times3}{15\times4}$.由是得分數乘分數的定義及運算法則如下:


定義 以分數 $\frac{A}{B}$ 乘分數 $\frac{C}{D}$,就是把 $\frac{C}{D}$ 分為B等分,以A乘 其一份。

法則 以分數乘分數等於分子乘分子,分母乘分母。

例題 1. 一尺布價值 24 分,問 $\frac{2}{3}$ 尺布價值多少?

[解] 一尺布價值 24 分,3 分之一尺布價值 $\frac{24}{3}$ 分。 兩個 3 分之一尺布價值 $\frac{24}{3} \times 2 = \frac{24 \times 2}{3} = 16$ 分。

例題 2. 有香一枝,每小時燒去 $\frac{3}{5}$,問 $\frac{5}{6}$ 小時燒去多少?

〔解〕 因為
$$\frac{1}{6}$$
小時可燒去 $\frac{3}{5\times 6}$,

所以 $\frac{5}{6}$ 小時可燒去 $\frac{3}{5\times 6} \times 5 = \frac{1}{2}$.

〔注意1〕 兩個以上的分數相乘,就是以第二個分數乘第一個,再以第三個乘所得的結果,依此類推。譬如:

$$\frac{3}{5} \times \frac{1}{4} \times \frac{11}{7} \times \frac{2}{3} = \frac{3 \times 1}{5 \times 4} \times \frac{11}{7} \times \frac{2}{3} = \frac{3 \times 11}{5 \times 4 \times 7} \times \frac{2}{3}$$
$$= \frac{3 \times 11 \times 2}{5 \times 1 \times 7 \times 3} = \frac{11}{70}.$$

〔注意 2 〕 凡帶分數與帶分數相乘,應該先把帶分數化為 假分數,然後相乘。

§ 73. 分數的幂 許多個相同的分數相乘的積,叫做分數的幂。譬如:

$$\frac{3}{7} \times \frac{3}{7} \times \frac{3}{7} \times \frac{3}{7} = \frac{3 \times 3 \times 3 \times 3}{7 \times 7 \times 7 \times 7} = \frac{3^4}{7^4},$$

$$\mathfrak{P}: \left(\frac{3}{7}\right)^4 = \frac{3^4}{7^4}.$$

這個積 $\frac{3^4}{7^4}$ 就是 $\frac{3}{7}$ 的四次幂。

習 題

1. 一個數用什麽數來乘,所得的積可以是原來數6倍大?

- 2. 一個數用什麼數來乘,所得的積可以是原來數 $\frac{2}{3}$ 或 $\frac{5}{7}$ 的大?
- 3. 用什麼樣的最簡分數來乘 $\frac{7}{5}$,可以使所得的積是整數?
- 4. 求證 $\frac{4}{3} \times \frac{7}{5} = \frac{7}{5} \times \frac{4}{3}$,即求證分數乘法是服從對易律的。
- 5. 求證 $\frac{4}{3} \times \frac{7}{5} \times \frac{2}{9} = \frac{4}{3} \times \left(\frac{7}{5} \times \frac{2}{9}\right)$, 即求證分數乘法是服 從結合律的。
- 6. 求證 $\frac{4}{3}(5+7) = \frac{4}{3} \times 5 + \frac{4}{3} \times 7 \mathcal{D} \frac{4}{9} \left(\frac{5}{7} + \frac{2}{3} \right) = \frac{4}{9} \times \frac{5}{7} + \frac{4}{9} \times \frac{2}{3}$, 即求證分數乘法是服從分配律的。
- 7. 以 2 乘一個數, 所得的積是這個數的幾等分之幾?
- 8. 假設有一個積, 牠是含有兩個因數的, 各因數各乘以 3 4 , 間所得新的積是原積幾分之幾?
- 9. 假設有一個積, 牠是含有四個因數的, 每因數各乘以 $\frac{8}{9}$, $\frac{17}{13}$, $\frac{3}{14}$, $\frac{2}{5}$, 問所得結果如何?
- 10. 求 $9\frac{2}{3}$ 與. $7\frac{3}{4}$ 的積。
- 11. 求下列各式的積或器:

(a)
$$\frac{5}{18} \times 6$$
, (b) $\frac{2}{35} \times 3$, (c) $63 \times \frac{2}{3}$,

(d)
$$41 \times \frac{2}{3}$$
, (e) $3\frac{7}{4} \times 2\frac{1}{3}$, (f) $\left(\frac{5}{3}\right)^3 = ?$ (g) $\left(\frac{2}{9}\right)^3 = ?$ (h) $\left(\frac{7}{4}\right)^3 = ?$

§ 74. 倒數 前面講過,一切整數可以看作分母是 1 的分數,所以整數和分數都是分數,可以用 $\frac{A}{B}$ 來代表地。現在把這個分數的分子分母顚倒過來寫為 $\frac{B}{A}$,於是 $\frac{B}{A}$ 叫做 $\frac{A}{B}$ 的倒數,同時 $\frac{A}{B}$ 也是 $\frac{B}{A}$ 的倒數,所以 $\frac{A}{B}$ 與 $\frac{B}{A}$ 互為倒數。譬如: $\frac{2}{3}$ 的倒數是 $\frac{3}{2}$,所以 $\frac{2}{3}$ 和 $\frac{3}{2}$ 互為倒數; $\frac{4}{5}$ 的倒數是 $\frac{5}{4}$,所以 $\frac{4}{5}$ 和 $\frac{5}{4}$ 是 互為倒數。 又 3 的倒數是 $\frac{1}{3}$,因 3 = $\frac{3}{1}$ 的緣故。由是得:

定理 兩數相乘,如若兩數是互為倒數,這個相乘的積是1. §75. 分數除法 上面說過(分數的定義),一個分數,營 如 5 就是 5 除以 7 的意思。現在以整數 4 ,或以分數 2 除 7 ,如 若照這樣意思來講,再由整數除法的運算律,即得:

$$\frac{5}{7} \div 4 = 5 \div 7 \div 4 = 5 \div (7 \times 4) = \frac{5}{7 \times 4}$$

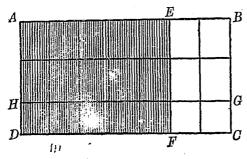
$$\frac{5}{7} \div \frac{2}{9} = (5 \div 7) \div (2 \div 9) = (5 \div 7) \div (2 \times 9) = 5 \times 9 \div 7 \div 2$$

$$= 5 \times 9 \div (7 \times 2) = \frac{5 \times 9}{7 \times 2} = \frac{5}{7} \times \frac{9}{2}.$$
 由是得:

分數除法的法則 以整數除分數,等於以整數乘分母,以分數除分數,等於以除數的倒數乘被除數。

例題 1. 一個西瓜的 2 分給 4 個人, 問每人得多少?

$$(\text{M})$$
 $\frac{1}{2} \div 4 = \frac{1}{2 \times 4} = \frac{1}{8}$.


例題 2. 一坵田的 $\frac{4}{7}$ 分給 3 個人,問每人得多少?

〔解〕
$$\frac{4}{7} \div 3 = \frac{4}{7 \times 3} = \frac{4}{21}$$
.如下圖:

例題 3. 問 $\frac{5}{7}$ 含有幾個 $\frac{2}{3}$?

(解)
$$\frac{5}{7} \div \frac{2}{3} = \frac{5}{7} \times \frac{3}{2} = \frac{11}{14} = 1 \frac{1}{14}$$
.如下圖:

(圖的說明)

ABCD 是單位。

AEFD 是這個單位的 $\frac{5}{7}$.

ABGH 是這個單位的 $\frac{2}{3}$.

問 $\frac{5}{7}$ 含有多少個 $\frac{2}{3}$,就是問 AEFD 是含有多少個 ABGH。 現在 AEFD 等 15 個小正方形,ABGH等於 14 個小正方形。

所以要問 $\frac{5}{7}$ 含有多少個 $\frac{2}{3}$,就是問15含有多少個14,

$$\text{$0:15:14=\frac{15}{14}=1$} = 1\frac{1}{14}.$$

例題 $\stackrel{4}{\cancel{}}$. 問 $\frac{5}{7}$ 是什麼數的 $\frac{2}{3}$?

〔解〕
$$\frac{5}{7} \div \frac{2}{3} = \frac{5}{7} \times \frac{3}{2} = 1 \frac{1}{14}$$
. 如下圖:

(圖的說明)

ABCD 是單位。

AEFD 是這個單位的 $\frac{5}{7}$.

AEFD 也是 AEGH 的 $\frac{2}{3}$.

所以 AEGH 就是所求的數。

現在把單位 ABCD 分為 14 個小方形,取其一個來量 AEGH,即得 AEGH 的度量為 $\frac{1}{14} \times 15 = \frac{15}{14} = 1\frac{1}{14}$.

例題 5. 求 $4\frac{2}{3} \div 7\frac{3}{5}$ 的商。

(解)
$$4\frac{2}{3} \div 7\frac{3}{5} = \frac{14}{3} \div \frac{38}{5} = \frac{14}{3} \times \frac{5}{38} = \frac{35}{57}$$

〔注意〕 在分數除法中,如若有帶分數,最好先化為假分數, 然後相除。

§ 76. 繁分數 一個分數, 照牠的第二種意義來講, 牠的 分子就是被除數, 牠的分母就是除數, 所以上面所講的分數除法,

如
$$\frac{3}{2}$$
÷ $\frac{7}{5}$ 也可以寫爲分數 $\frac{\frac{3}{2}}{\frac{7}{5}}$;又如 $\frac{2}{3}$ ÷5 也可以寫爲 $\frac{\frac{2}{3}}{5}$;像

這樣的分數,分子分母都是分數,或其中一項是分數,叫做繁分數。 前面所講的分數,兩項都是整數,叫做簡單分數。化繁分數為簡. 單分數,常說『簡化某某繁分數』,牠的方法就是應用分數四則的 方法,自下而上,按次化簡即得結果。現在舉例如下:

例題 1. 簡化
$$\frac{\frac{3}{2}}{\frac{7}{5}}$$
•

[解]、依繁分數定義
$$\frac{\frac{3}{2}}{\frac{7}{5}}$$
就是 $\frac{3}{2} \div \frac{7}{5}$,

$$\therefore \frac{\frac{3}{2}}{\frac{7}{5}} = \frac{3}{2} \times \frac{5}{7} = \frac{15}{14} = 1\frac{1}{14}.$$

例題 2. 簡化 $\frac{2}{3+\frac{3}{4}}$.

[解] 原式=
$$\frac{2}{\frac{15}{4}}$$
= $2 \times \frac{4}{15}$ = $\frac{8}{15}$.

例題 3. 簡化
$$\frac{3\frac{6}{11}}{1+\frac{4}{1+\frac{2}{1+\frac{1}{3}}}}$$

(解) 原式 =
$$\frac{3\frac{6}{11}}{1+\frac{4}{1+\frac{2}{10}}} = \frac{3\frac{6}{11}}{1+\frac{4}{1+\frac{3}{5}}} = \frac{\frac{39}{11}}{1+\frac{4}{1+\frac{5}{8}}}$$

= $\frac{39}{11} \times \frac{2}{7} = \frac{78}{77} = 1\frac{1}{77}$.

(注意) 整數運算的三大定律來除運算律,以及四則運算 的次序和括號使用法等,在分數運算中都仍舊有效。

習 題

求下面各組整數除分數的商:(同時須唸上面分數除法的法

則,使得心手相應,運算迅速)。

1.
$$\frac{7}{34} \div 3$$

2.
$$\frac{8}{79} \div 7$$

1.
$$\frac{7}{34} \div 3$$
, 2. $\frac{8}{72} \div 7$, 3. $4\frac{2}{3} \div 2$,

4.
$$7\frac{2}{9} \div 5$$
,

5.
$$3\frac{3}{11} \div 9$$
,

4.
$$7\frac{2}{9} \div 5$$
, 5. $3\frac{3}{11} \div 9$, 6. $456\frac{9}{2} \div 3$.

求下面各組分數除分數的商:

1.
$$\frac{3}{4} \div \frac{2}{7}$$
,

2.
$$3\frac{3}{4} \div 2\frac{1}{3}$$

1.
$$\frac{3}{4} \div \frac{2}{7}$$
, 2. $3\frac{3}{4} \div 2\frac{1}{3}$, 3. $32\frac{7}{3} \div 6\frac{1}{3}$,

4.
$$\frac{3}{56} \div 7\frac{7}{3}$$
,

5.
$$27\frac{1}{2} \div 93\frac{1}{6}$$

4.
$$\frac{3}{56} \div 7\frac{7}{3}$$
, 5. $27\frac{1}{3} \div 93\frac{1}{6}$, 6. $437\frac{3}{8} \div 873\frac{2}{9}$.

簡化下面的繁分數:

1.
$$\frac{3\frac{1}{2}}{\frac{3}{4}}$$
,

2.
$$\frac{3\frac{1}{2}}{1+\frac{3}{2}}$$

1.
$$\frac{3\frac{1}{2}}{\frac{3}{4}}$$
, 2. $\frac{3\frac{1}{2}}{1+\frac{3}{2+\frac{1}{2}}}$, 3. $\frac{\frac{5}{12}+\frac{1}{6}}{3\frac{1}{4}-\frac{2}{7}}$,

4.
$$\frac{2}{2-\frac{2}{2-\frac{1}{2}}} \div 2\frac{2}{5}$$
, 5. $\frac{3\frac{2}{3}-1\frac{1}{7}}{1\frac{1}{3}+1\frac{4}{5}} \div \frac{1-\frac{1}{3}}{2+\frac{4}{11}} \div 1\frac{7}{11}$,

6.
$$\frac{\left(5\frac{1}{5}+3\frac{1}{5}\right)\div2\frac{2}{5}}{3\frac{1}{8}+5\frac{1}{5}-2\frac{3}{5}}, \quad 7. \quad \frac{\left(4\frac{1}{3}-\frac{1}{7}\right)\div\left(\frac{5}{6}-\frac{1}{3}\right)}{1+\frac{3}{7}\div\frac{3}{4}}.$$

第五章 總習題

- 1. 43 1 加甚麼數等於 919?
- 2. 加甚麼數於 $\frac{3}{20}$ 可得其和為 $68\frac{5}{12}$?
- 3. $\frac{2}{73}$ 減去什麼數等於 $\frac{1}{92}$?
- 4. 間 $9\frac{7}{3}$ 是什麽數的 $\frac{3}{4}$?
- 5. 問 9<u>1</u> 是 3 的幾倍?
- 6. 求下列各題的結果:

(1)
$$\frac{34}{\frac{2}{7}}$$
,

(2)
$$\frac{\frac{1}{3} + \frac{3}{4} \div \frac{3}{2}}{6 \div \frac{2}{5}}$$
,

(3)
$$\frac{\left(\frac{5}{4} - \frac{1}{2}\right) \div \frac{2}{9}}{2\frac{1}{3} \div 3\frac{3}{4} - \frac{1}{2}}$$

(3)
$$\frac{\left(\frac{5}{4} - \frac{1}{2}\right) \div \frac{2}{9}}{2\frac{1}{3} \div 3\frac{3}{4} - \frac{1}{2}}$$
, (4) $\frac{\frac{5}{3} + 7 \div 5 + 3}{3\frac{1}{3} \times \frac{1}{7} \div \frac{4}{7} - \frac{4}{3} \div 4}$

(5)
$$\frac{142+3\frac{1}{2}\div\frac{7}{4}-63\frac{1}{2}}{3\times4\div\frac{12}{5}+9\div15}$$
, (6) $\frac{5}{4}\div\left\{\left(\frac{1}{14}+\frac{3}{7}\right)\times\frac{2}{9}\right\}$,

(7)
$$\frac{5}{4} \times \frac{7}{3} + \frac{1}{2} \times \frac{7}{3} + \frac{1}{6} \times \frac{7}{3}$$
.

(8)
$$\left(5\frac{1}{5} + \frac{4}{3} \div 3 - 4\right) \div \left(6\frac{1}{3} - 4 + 3\frac{1}{4} \div 2\right)$$

(9)
$$\frac{\left(3\frac{2}{45} \div \frac{5}{4}\right) - \left(\frac{1}{64} \div \frac{1}{4}\right)}{4 + \frac{1}{3 + \frac{2}{3}}}$$

$$\begin{array}{c|c}
1 & 3 \\
1 + 4 + 2 & 3 \\
\hline
3 + 1 & 3 + \frac{1}{2}
\end{array}$$

(11)
$$\frac{1}{3} \div 4 \div \left(\frac{1}{3} + \frac{1}{2}\right) + \frac{2}{3} \times \frac{7}{5} \div \frac{4}{3} - \frac{1}{9}$$

- 7. 有布 $4\frac{1}{3}$ 尺,值法幣 8 角,問每尺布值多少角?
- 8. 車輪旋轉一周的 $\frac{1}{4}$,車進 2 尺,問車輪旋轉 $7\frac{3}{4}$ 周時,車 進多少尺?
- 9. 某人第一次用去他所有的發 $\frac{1}{3}$,後又用去所餘的 $\frac{5}{6}$,於 是剩餘 14 元,問某人原有多少元?
- 10. 甲有一元法幣 200 元分給乙 $\frac{3}{4}$,乙以所得的 $\frac{2}{5}$ 分給丙,間丙得多少元?

第六章 分數和小數

\$ 77 十進法和十退法 由十進記數法,可知從個位或隨意那一位起,每向左進一位就變為古側一位的 10 倍。同是一個數.碼譬如 6,在個位上是 6 個;在十位上,就是 60=6×10,或 6 的 10 倍;在百位上,就是 600=60×10,或 60 的 10 倍;在千位上就 6000=600×10,或 600 的 10 倍……;所以十進記數法,每左進一位就擴大 10 倍。現在要是反過來一個數碼向右方退,於是每退一位,就縮小 1/10 倍。現在要是反過來一個數碼向右方退,於是每退一位,就是 6000×1/10 = 600; 再向右退一位,在十位上,就是 600×1/10 = 60; 再向右退一位,在個位上,就是 60×1/10 = 6,所以十進記數法,向左看去是十進,向右看去是十退。十進法和十退法原是一種記數法,祇因向左進或向右退兩個方向不同,所以有兩個名稱。

§ 78. 小數的起源及定義 一個有名數,如4丈3尺5寸8分,向左看去是十進記數法,向右看去,又是十退記數法。這種記數法在日常生活上,應用很廣。我們用口來說牠也很能使聽的人覺得十分清楚, 派可惜同時採用多種的單位名稱, 書寫起來或

記算起來都很不方便,所以在我國,早就有人設想,在丈,尺,寸, 分四個單位中,指定一個標準單位,譬如指定尺或寸,為標準單位。把上面的有名數簡寫為:

再用阿拉伯數碼來寫即: 4358 或 4358 尺 寸

這樣縱橫並寫,也不是十分方便,所以又有人改良寫為:

43尺58 或 435寸8.

這個寫法,就把一個有名數分有兩段,從尺或寸起,向左為十進 記數法,向右為十退記數法。尺字的左邊表示整尺的數,右邊表示 不滿一尺的數。這個不滿一尺的數,對於以尺為單位論,就叫做 小數,所以小數就是不滿一單位的數,也可以說:『小於 1 的數叫 做小數』。如若我們指定以寸為標準單位,於是 8 分是小數,435 都是整數。

上面把標準單位夾寫在數碼中間,在運算上還是不方便,所 以又有人寫為: 43.58 尺或 435.8 寸,讀為『4,3,點5,8 尺』或 『4,3,5 點8 寸』。這點『・』叫做小數點,點之左為整數,叫做整 數部;點之右為小數,叫做小數部。 祇有整數部的數就是前面所 講的整數,祇有小數部的數叫做純小數,整數和純小數寫在一起 的數叫做帶小數,純小數如 .74 常在小數點的左側加一個 0,寫 為 0.74, 來表明牠沒有整數部。

上面所講的例都是有名數,以後為研究方便起見,都用不名數,譬如 43.58,這就不管地以太以寸為指定單位,或以石以斗以升為指定單位。總而言之,小數點的右邊是指定單位所量得的整數,用十進法來記的;小數點的右邊是不滿一個指定單位的小數,用十退法來記的。

§ 79. 小數的命名 一切的小數,有了上面那樣的記法和讀法,就都可以用手寫眼看,或口說耳聽了。譬如一個純小數.587 讀為點 5,8,7,原來也是很簡明的,不必再要什麼特別的命名。但是我們的祖先對於小數也像整數一樣的注意,每十退一位都有一個特別的名稱,譬如小數右邊的第一位是單位 10 叫做『分』,第二位是分的 10 叫做『釐』,第三位是釐的 10 叫做『毫』……。現在把整數和小數的命名都排寫在一起,如:

……一十萬,萬,千,百,十,個,·,分,釐,毫,絲,忽,微,纖,沙,塵,埃,渺………。

- § 80. 小數的特性 由上面小數的定義及記法得小數的 特性如下:
 - 1. 任意加 0 於小數的兩端, 牠的值仍舊不變。

譬如 743.25=00743.25000.

又如 0.931=00.931000.

又如 0.0045=000.004530.

- 3. 一個小數以 10 或 100 或 1000 ········· 來除, 其結果就是 把小數點向左移動一位, 或兩位, 或三位········,譬如以 10 除 3.478, 結果就是 0.3478.
- § 81. 通位法 兩個或兩個以上的數,倘若位數不相等, 可以應用小數的性質在諸數的兩端加 0,使牠們位數相同。譬如 這三個數 73.2,8.4,0.375,牠們的位數各不相等,可以寫寫 73.200,08.400,00.375,使小數點的左側都是兩位,右側都是 三位。凡使位數不相等的諸數變為位數相等而原值仍舊不變的 方法叫做通位法。

習題

- 1. 十進法和十退法是兩種不同的記數法麼?
- 2. 什麽叫做小數?
- 3. 小數和整數有什麼不同的地方?
- 4. 小敷的特性如何?
- 5. 說出以 10, 10°, 10°, 10° 各乘小數 3.57496 的結果。

- 6. 寫出以 10, 102, 108, 104 各乘小數 0.0000047 的結果。
- 7. 說出以 10, 102, 108, 104, 105 各除 3.5 的結果。
- 8. 寫出以 10, 10², 10³, 10⁴ 各除 43 的結果 (先把 43 可 寫為 43.0。再根據小數性質即得)。
- 9. 寫出以 10², 10⁸, 10⁴, 10⁵ 各除 573 的結果。
- 10. 說出以 102, 108, 104, 105, 106 各除 49 的結果。
- 11. 用通位法,使下面各數的位數相等:

3.74, 543.2, 0.894, 23.0041.

\$ 83. 十退分數和小數互化法 一個十退分數,如 97451 10000 因為 97451 = 90000 + 7000 + 400 + 50 + 1 = 90000 + 7000 10000 10000 = 10000

$$+\frac{400}{10000} + \frac{50}{10000} + \frac{1}{10000} = 9 + \frac{7}{10} + \frac{4}{100} + \frac{5}{1000} + \frac{1}{10000} = 9 + \frac{1}{10} \times 7 + \frac{1}{100} \times 4 + \frac{1}{1000} \times 5 + \frac{1}{10000}$$
,用小數的記數法得 $\frac{97451}{10000} = 9.7451$. 由是得:

十退分數化為小數的法則 先把分母化為 10 的乘幕,於是這個乘冪的指數是多少,小數部的位數也是多少。

例題 1. 化 $\frac{3}{125}$ 為小數。

[解] 因
$$125=5^3$$
, 所以以 2^8 乘 5^8 即得 $(2 \times 5)^8=10^3$.
由是 $\frac{3}{125} = \frac{3 \times 2^8}{5^3 \times 2^3} = \frac{24}{10^3} = 0.024$.

例題 2. 化⁸⁷ 爲小數。

(解)
$$\frac{37}{16} = 2\frac{5}{16} = 2\frac{5 \times 5^4}{2^4 \times 5^4} = 2\frac{3125}{1\sqrt{4}} = 23125$$
.

例題 3. 化 $\frac{7}{80}$ 為小數。

(解)
$$\frac{7}{80} = \frac{7}{2^4 \times 5} = \frac{7 \times 5^3}{2^4 \times 5 \times 5^3} = \frac{875}{(2 \times 5)^4} = \frac{875}{10^4}$$

= 0.0875.

(注意) 由上面的研究,可知凡分數的分母祇含有2或5的累都是十退分數。由十退分數化來的小數,因牠的位數有限,

所以也叫有限小數。後面還有兩種小數,牠的位數是多至無限的, 叫做無限小數。

一個十退分數既然可以化為有限小數,反過來,一個有限小 數也可以化為十退分數,由是得:

有限小數化為十退分數的法則 將原數的小數點除去來做 分子,以 10 的冪做分母,10 的冪的次數等於小數部的位數。

例題 1. 化0.042 為分數。

〔解〕
$$0.042 = \frac{42}{103} = \frac{42}{1000}$$
,再化為最簡分數即得:
$$0.042 = \frac{21}{500}$$

例題 2. 化73.64 為分數。

(解)
$$73.64 = \frac{7364}{100} = 78\frac{64}{100} = 78\frac{16}{25}$$
.

或
$$73.64 = 73 + .64 = 73 + \frac{64}{100} = 73 \cdot \frac{64}{100} = 78 \cdot \frac{16}{25}$$
.

習 題

- 1. 所有的分數可以分為兩種麼?兩種不同的特性在什麼 地方?
- 2. 化 $\frac{3}{2}$, $\frac{3}{4}$, $\frac{3}{8}$, $\frac{3}{5}$, $\frac{3}{25}$, $\frac{3}{125}$, $\frac{3}{625}$ 為小數(有限小數)。

- 3. 化 $\frac{15}{32}$, $\frac{139}{1250}$, $\frac{1}{128}$ 為小數(有限小數)。
- 4. 化 0.0045, 0.0364, 3.73 為分數。
- 5. 化0.0305, 457.44, 36.0304 為分數。
- § 84. 非十退分數和循環小數 一個非十退分數,因為牠的分母含有 2 或 5 以外的質因數,就不能化為有限小數,譬如 5 22 因為分母含有質因數 11,就不能把牠的分母化為 10 的乘方,因此也不能化為有限小數。如若我們要把牠化為小數,就要照分數的第二種意義以 22 除 5 或以 22 除 50 分。即:

分厘毫 0.227	
22)5U分 44	
60厘 44	
166毫 154	
6	

由是可知以 22 除 5 的商是0.2272727········,即小數點右邊的第一位是 2,以後都是 2 和 7 兩個數碼繼續的循環不止,這樣循環不止的小數叫做循環小數,循環小數是無限小數之一種,牠的位數是寫不完的。我們為方便計,常把 0.22727··········· 寫為 0.227,循環的部分 27 叫做循環節,循環節兩端上面的點是表示循環的起訖,叫做循環點,不循環部分,如 0.2 叫做不循環節,小數部完

全是循環節的純小數,如 0.4378 叫做純循環小數,小數部含有不循環部的純小數,如 0.8794 叫做混循環小數,有循環節的帶小數,如 83.463 叫做帶循環小數。

非十退分數如 5/22, 因為牠不能化為十退分數, 所以不能化為有限位小數。但是何以能循環呢?這是很有趣味而值得可注意的問題。 我們知道以 22 除 5 的餘數是永遠不等於 0, 并且永遠要小於除數 22, 所以 5÷22 的餘數, 不外乎是 1, 2, 3, 4………19, 20, 21 等 21 個數, 就是不同的餘數至多祇有這 21 個, 但是餘數有無限的多, 這自然有了重複了, 有了重複的餘數(即被除數)自然也有了重複的商, 因此發生循環商了。

- § 85. 循環小數的要性 循環小數有幾種重要的性質,可 以由上面的定義導出來,現在摘列於下:
- 1. 循環節的位數,增加到原循環節的兩倍,三倍或任意倍, 都不影響到原來的數值。

譬如 0.4732 寫為 0.4732732或 0.4732732732, 都不影響 於原值。

- 2. 純循環小數,也可以寫為渾循環的形式。 譬如 0.473 可以寫為 0.4734, 或 0.47347, 或 0.473473.
- 3. 有限位小數也可以寫為以 0為循環節的循環小數。 譬如 6.45 就可以寫為 6.450 或 6.4500、

§ 86. 循環小數通位法 兩個或兩個以上的循環小數,如 若各循環節的位數不相等,或不循環部的位數不相等,都可以根 據上面(1)(2) 兩要性化為位數相等,這樣位數不相等化為相等 的手續,叫做通位法。

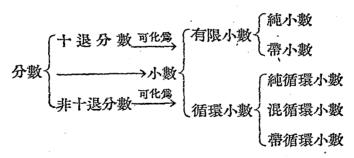
譬如 0.4375 和 0.57283 不循環部的位數,及循環部的位數都各不相等,現在根據上面要性 (2) 得 0.4375=0.44757, 再根據要性(1)得 0.43757=0.437575757。

依同理,化 0.357283=0.357283283,於是牠們不相等的位 數都各相等,由是得:

通位法的法則 先以不循環部位數最多的位數作為新不循環的位數。然後以諸循環節位數的 L. C. M. 為新循環節的位數。

習額

 辨別下列各分數:那幾個可以化為有限小數?那幾個可以化為循環小數?(把凸簡分數的分母分解為質因數的積 就立刻可以辨別出來)。


$$\frac{5}{456}$$
, $\frac{2}{43}$, $\frac{3}{84}$, $\frac{3}{96}$, $\frac{14}{112}$, $\frac{3}{578}$, $\frac{8}{674}$.

2. 把前題所列的分數各化為小數。

- 3. 化 0.3456, 3.476 及 0.073945 為同位數的循環小數。
- 4. 循環小數可分為幾種? 這幾種如何分別?
- 5. 化 0.43658 和 0.237 為同位數的循環小數。

§ 87. 分數種類和小數種類的關係 由上面研究的結果,可知任意一個分數都可以化為小數,因為分數有兩種:十退分數和非十退分數,所以小數也有兩種:有限小數和循環小數(既然是循環小數,自然是無限小數,但是無限小數,不一定準是循環小數,這是很顯明的。不循環的無限小數叫做無理數,將在第四編研究)。現在把他們的關係列表如下:

其中的矢號→係『可化爲』的意思。

§ 88. 化純循環小數為分數法 譬如要化 0.345 為分數, 於是因 345-345.345-·345=0.345(1000-1)=0.345×999.

化純循環小數為分數的法則 以循環節(把循環點撤去)為 分子,照循環節位數的多少繼續寫 9 的多少,作為分母,再約分 即得所求分數。

§ 89. 化混循環小數為分數法 譬如要化 0.4336 為分數 於是因 4336-43=4336.36-43.36=0.4336 (10000-100) = 0.4336×9900 . 所以 $0.4336=\frac{4336-43}{9900}=\frac{4293}{9900}$, 再約分即得

$$0.43\dot{3}\dot{6} = \frac{377}{1100}$$
.

例題 1. 化 56.34578 爲分數。

〔解〕
$$56.34578=56+0.34578=56+\frac{34578-34}{99900}=56$$

$$+\frac{34544}{99900}$$
,再約分卽得: $56.34\overline{5}78=56\frac{8636}{24975}$ · 由是得:

化混循環小數為分數法 以原數(撤去小數點及循環點)減去不循環部所得的差做分子,照循環節位的多少繼續寫 9 的多少,再在 9 後,照不循環部位數的多少繼續寫 0 的多少作為分母再約分即得所求分數。

習 題

1. 所有分數都可以化為小數麼? 由分數化以來的小數有 幾種?

- 2. 有限位小數可化為什麽分數?
- 3. 循環小數可以化為十退分數麼?
- 4. 化下列各循環小數寫分數: 0.47、0.363、0.4169、0.73456、37.596。
- § 90. 有限小數加減法 有限小數加減法,是和整數一樣的,所要注意的就是小數點的位置。

例題 1. 求73.456+0.347+0.0045的和。

 $73.456 \\
0.347 \\
+ 0.0045 \\
\hline
73.8075$

例題 2. 求 83.457-26.0341.

83.4570 -26.0341 57.4229

§91. 循環小數加減法

例題 1. 求 3.046+0.472+0.478 的和。

〔解〕 用通位法,先把這三個循環小數的循環節和不循環部通同然後相加。末位 6,2,4 的和原是 12,但因循環首位 4,7,7 的和是 18,應當有一個 1 進到末位的橫線下寫 3,并在 3 的上面加循環點,餘和有限小數加法相同。

例題 2. 求 43.657+5.367+0.345的和。

例題 3. 求72.3472-34.36的差。

先用通位法,使牠們成為位數相同的循環小數,然後照有限小數 減法相減。循環節末位相減原來是 12-3-9, 但是因右側首位 4-6 時候曾借去 1, 所以末位相減祇是 8. 由是得:

循環小數加減的法則 第一步:用通法使牠們循環節的位數都相同,不循環部的位數也相同。第二步:照有限小數方法來求和或差(同時注意:求和的時候循環節首位所應當進位的數,須加入循環節的末位,求差時候,若減數的循環節首位大於被減數的循環節首位,就應當多減去1),并且照所通得的循環位數記上循環點。

習題

求下列各題的結果:

- 1. 63.4507 + 3.473
- $2. \quad 124.5738 + 3.5743 + 0.412$
- 3. $0.45\dot{4}7\dot{3}+1.03.\dot{8}\dot{5}+31.54\dot{2}3\dot{8}$
- 4. 24.435-16.078
- 5. 334.00789-245.345736
- 6. $2.34\overline{2}57 0.2\overline{3}478$
- 7. 4.987 + 0.3456 + 1.4789
- 8. 7.4786 + 2.34765 + 7.34259
- § 92. 有限小數乘法 有限小數的乘法和整數乘法是一 樣的,其中要注意的祇是小數點。

例題 1. 求 3.045×0.73 的積。

(解) 因為
$$3.045 = \frac{3045}{1000}$$
, $0.73 = \frac{73}{100}$.

所以 $3.045 \times 0.73 = \frac{3045}{1000} \times \frac{73}{100} = \frac{3045 \times 73}{100000}$

$$= \frac{222285}{100000} = 2.22285. 由是得:$$

有限小數施乘的法則 兩個有限小數相乘先照整數乘法求

積,然後決定積的小數位數(積的小數位數等於被乘數與乘數小 數位數的和)。

例題 2. 求 23.72×1.03 的積。

(解)
$$\begin{array}{cccc} 2372 & 23.72 \\ 103 & 1.03 \\ \hline 7116 & 政 & 71.16 \\ 2372 & 2372 \\ \hline 244316 & 244316 \end{array}$$

 $23.72 \times 1.03 = 24.4316$.

§ 98. 有限小數除法, 也和整數除法一樣 所要注意的祇是小數點。

例題 1. 求 0.965÷0.05 的商。

〔解〕 第一法:
$$0.965 \div 0.05 = \frac{965}{1000} \div \frac{5}{100} = \frac{965}{5} \times \frac{100}{1000}$$
$$= \frac{193}{10} = 19.3.$$

第二法: 因
$$0.965 \div 0.05 = \frac{0.965}{0.05} = \frac{96.5}{5}$$
,

[解]

有限小數施除的法則 兩個有限小數相除,第一法:先照整數除法求商,然後決定商的小數位數(商的小數位數等於被除數 與除數小數位數的差);第二法:先將除數與被除數的小數點向右移動,使除數變為整數,然後以整數除小數求商,便得所求的商。

例題 2. 求 208.714848÷5.406 的商。

第一法	第二法
38608	38.608
5406)2u8714s48	5406)208714.848
16218	16218
46534	46534
43248	43248
32868	3: 868
32436	32436
43248	43248
43248	43248
0	0

所求的商=38.608.

習 題

求下列各式的精:

- 1. 37.45×0.391
- $2. \quad 0.00043 \times 0.0032$
- 3. 0.0345×0.0001
- 4. 734.81×21.34
- 5. 39.0043×3.025

求下列各式的商:

6. $628.56 \div 10.8$

7. $227.695 \div 5.65$

8. $35.3976 \div 39.2$

9. $0.092 \div 0.0002$

10. $4.40920 \div 0.365$

§ 94. 循環小數乘除法 循環小數乘除法,雖然也可以仿 前面加減法,先通位後乘除;但是沒有下面的方法來得方便:先 化為分數然後乘除。

例題 1. 求 1.109×0.3的積。

〔解〕 因為
$$1.1\dot{0}\dot{9} = 10 \times 0.11\dot{0}\dot{9} = 10 \times \frac{1109 - 11}{9900}$$

$$=\frac{1109-11}{990}=\frac{1098}{990}=\frac{61}{55}.$$

又
$$0.3 = \frac{3}{9} = \frac{1}{3}$$
.

所以
$$1.109 \times 0.3 = \frac{61}{55} \times \frac{1}{3} = \frac{61}{165} = 0.369$$
.

例題 2. 求 0.577163883054972÷3.462983 的商。

〔解〕 所求的商

577163883054395 3462, 8329832637J

=0.16.

캴 題

求下列各式的精:

- 1. $24.3\dot{2}\dot{9}\times0$ $0\dot{4}\dot{1}$
- 2. 835.7694×2.132
- 3. 0.34578×6.34
- 4. 9347.6382×0.0004

求下列各式的商:

- 5. $0.3 \div 0.227$
- 6. $0.154 \div 0.2$
- 7. $3.478 \div 0.032$

第六章 總習題

1. 把下面各數改為以升為單位:

2.345 石, 278.79 石, 78.9 合,

36.87 斗, 8.3674 斗。

2. 把下面各數改為以尺為單位:

3.49 丈, 84.356 寸, 237.8 分。

- 3. 說出分數化為小數的方法。
- 4. 說出小數化寫分數的方法。

- 5. 舉出循環小數的要性。
- 6. 化分數為小數怎麼會發生循環?
- 7. 說出循環小數加減的法則。
- 8. 說出循環小數乘除的法則。
- 9. 判斷下面的分數: 那幾個化為小數是循環的?

$$\frac{5}{12}$$
, $\frac{3}{14}$, $\frac{3}{50}$, $\frac{7}{25}$, $\frac{3}{625}$, $\frac{3}{64}$, $\frac{6}{15}$, $\frac{9}{48}$.

- 10. 把上面的分數(即第9題所列的分數)化為小數。
- 11. 把下面的小數化為分數:
 - 0.2, 0.1, 0.003, 0.00004, 3.004, 0.000001,
 - 0.000037, 34.073, 5.7436, 0.005736, 0.04579.
- 12. 求下列各式的結果:

$$(0.347)^2 = ?$$

$$0.34 \div 100 + 36.79 \times 3.4 - 4.37 = ?$$

$$0.\dot{3}\dot{7} \times 0.2\dot{6} \div 0.\dot{2}\dot{3} - 0.00\dot{3}\dot{5}\dot{8} = ?$$

$$(3.4597+47.382) \times 0.23 \div 7+32.089=?$$

第三編 數和量的關係

第七章 單位

§ 95. 量數和單位 凡具有大小,輕重,多寡,長短而可以 計算的都叫做量,譬如3斗米,4斤肉,5尺布,34匹馬,56個 桃, 89 枝筆,73 把椅子,這些米,肉,布,馬,桃,筆,椅子,都是量; 3,4,5等叫做量數,斗,斤,尺,匹,個,把等叫做單位,單 位是計算量的大小的標準,量數是表示被量的量等於單位若干 倍的倍數,卽表示以單位測量某量的次數。計算大小一定的量, 每每因所用單位不同而有許多不同的量,譬如40尺長的布,牠 的量數,如以尺為單位就是40,如以丈為單位就是4,以寸為單 位就是400,又如半斤(身斤)等於8兩,這是表示兩量的重相等, 並不是身等於8,這是要注意的。我們討論量的大小輕重長短, 不但要注意牠的量數,還要注意單位,簡言之,就是要注意量的 名數,否則難免有身等於8的謬誤。

習題

1. 量數是名數還是不名數?

- 2. 量數能表示出量的大小麼?
- 3. 連合量數和單位就成為什麼數?
- 4. 表示量的大小要用什麽數?
- 5. 下列各詞句都是對的麼?

1尺等於10寸, 1斤等於16兩, 1小時等於60分,如若認 為是對的,何以1不等於10,或16,或60?試說明緣故。

§ 96. 單位的種類和進率 單位可分為兩大類:卽自然單位和人為單位。如計算人,以一人為單位,馬,以一匹為單位,魚 以一尾為單位,牛羊以隻為單位,書籍以册為單位,椅子以把為單位,這些單位都是由量的自然區分而定的,叫做自然單位。大凡 不連續量的單位都是自然單位。長,他如面積,體積,重量,時間,角度等連續量的所用的單位,可以任意規定的,叫做人為單位。

不連續量除自然單位外,也有人為的單位,譬如 12 個 = 1 打, 12 打 = 1 羅, 12 羅 = 1 大羅, 20 個 = 1 以(Score), 6 個 = 1 套, 2 個 = 1 對, 24 張(紙) = 1 刀, 500 張(紙) = 1 令。

測度一種量的大小,常選擇一個適當的單位作為測度的基本標準,譬如量長常常以公尺為基本標準。一公尺的十分之一叫做公寸,一公寸的長如第六圖的線長,

 公尺的 10 倍叫做公丈,一公丈的 10 倍叫做公引,一公引的 10 倍叫做公里, 這裏的公尺叫做長的基本單位, 其他如里,引,丈,寸,分, 蓋等叫做長的補助單位。

任意取兩個同類單位,大的一個叫做高級單位,小的一個叫 做低級單位。譬如公里和公丈,公里是高級單位,公丈是低級單 位,公里是比公丈高二級的單位,又公丈是比公尺高一級的單位。

凡集合某低級單位若干倍,成為高一級的單位,這個倍數叫做進率,這個方法叫做進法。進法分為十進法和非十進法兩種:譬如上面所舉測長的單位就是十進法,又如測度時間的單位積60 秒算1分,積60分算一小時,這是六十進法。非洲土人在山惠分桃,以5個聚成一小堆,5小堆聚成一中堆,5中堆聚成一大堆,這是逢5而進,就是5進法。英國人測量長度以12 时算1呎,3 呎算1碼,55碼算1桿,320桿算1哩,這樣進率不定叫做雜進法。

§ 97. 度量衡 計算長短叫做度;測量容積叫做量;權衡輕重叫做衡。度量衡的制度,因為各國的習俗不同,亦所以基本單位的大小和進率也各不相同。法國自從大革命之後,根據科學方法,權度*單位的進級都用十進法,計算便利。世界各國,如德,奧

^{*} 測量容積的量,原是根據度制成的,所以量和度可以合起來稱做度,度量衡也簡稱做權度。

此,意,瑞典,那威,丹麥,荷蘭,瑞士,秘魯,巴西,智利,西班牙 ……等三十餘國都改用法國權度制,英,美,日,俄等國因為本 國制度習慣很深,一時不能全改,也准許人民自由採用。法國權 度制,我國會譯做米突制,或米制,或萬國權度通制,民國十七年 七月國民政府宣布我國以米制為權度的標準制,於是採用米制 又多添了一國。

§ 98. 米制的長度單位 米制的度原來是以通過巴黎天文 台子午線四千萬分之一的長作為基礎單位,叫做米(即公尺,舊 譯為狀或米突)。法政府又由子午線測定的結果,製了一米長的白 金棒保存在巴黎,作為測長的原器,度量衡都有一定的標準,定這 個標準的器叫做原器。但是後來發現當時所測子午線的長有點 差誤,因此1872年,萬國權度同盟會在巴黎開會就議決,在針鉑 合金所製的棒上刻出兩劃,當棒的温度4°C.時,兩劃的距離等於 法政府所保存原器的長,作為一公尺,1889年,萬國權度同盟會 又正式承認這個合金棒為公尺的原器, 并且由同盟會保存這個 原器, 所以現在所謂一公尺的長, 就是萬國權度同盟會所保存 的原器當温度 4°C. 時兩劃中間的距離, 并不是地球子午線四 千萬分之一的長。根據最近測定的結果,地球子午線四分之一的 長等於 10002008 公尺,現在再將公尺的補助單位列表如下:

米制長度表

	名	稲	公里	公引	公文	公尺	公寸	公分	公厘
		Ī	斤米	佰米	什米	米	分米	厘米	毫米
-	略	號	Km	Hm	Dm	m	dm	cm	mm
	當	量	10引	10公丈	10公尺	10公寸	10公分	10公厘	
	進	率							

(注意)當量就是某名數多少相當於他名數多少的意思,譬如:

1公尺=10公寸。

例題 1. 問 435 米等於若干佰米?

〔解〕 因為長的單位都是以十進級,每升一級就大10倍, 升兩級就大百倍,所以單位升一級,數值就要少10倍,單位升 兩級,數值就少100倍。根據這個理由,所以:

430 米=4.35 佰米。

習題

- 1. 問 9587 公寸等於若干公尺或公引?
- 2. 問 23 公尺等於若干公里或公引?
- 把下面各數的單位改為公益:
 2公尺, 32公引, 0.004公尺, 3.02公里,
 1.003公引, 0.00093公引。

- 4. 測出教室裏面桌椅的高,有多少公分。
- § 99. 面積的單位 百進法,有長有關的叫做面,面的大小叫做面積。測量面積的單位都由長的單位規定的,譬如一個正方形 PQ (第七圖),各邊的長如若是 1 米,就說牠的面積是一方米,或一方公尺,各邊的長如若是一分米,就說牠是方分米,或一


第七圖

方公寸。又如測量矩形 ABCD 的面積,如若一邊 AB 的長是 3 米,其他一邊的長是 6 米,那麼牠的面積就是正方形 PQ 面積的 $3\times 6=18$ 倍,於是矩形 ABCD 的面積就是 18 平方米,由是得求矩形面積的法則。

先將長和闊的單位化做同名單位,然後以長闊的數值相乘, 即得矩形面積。

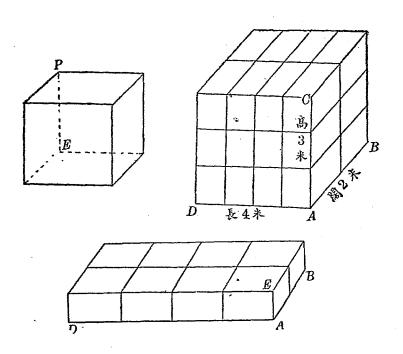
矩形面積=長×闊。

譬如有一矩形, 計長 3 公尺, 闆 24 公寸, 於是牠的面積就是 1 方公寸×30×24=720 方公寸。

一個正方形如若各邊的長是一公尺,或 10 公寸,牠的面積就是一方公尺,或 100 方公寸(因 10×10=100,)如若各邊長是一公寸或 10 公分,牠的面積就是一方公寸,或 100 方公分,所以長的單位如若是以十進級,於是面積的單位就要以百進級。現在列表如下:

米 制 面 積 表

名	#813	方公里	方公引	方公丈	方公尺	方公寸	方公分	方公厘			
73	稱	方仟米	方佰米	方什米	方米	方分米	方厘米	方毫米			
別名(計算地) 積時用)		公頃	公畝	公厘	a					
略	號	Km ²	Hm^2	Dm^2_a	m ² ;	dm^2	cm²	mm²			
當	量	方 10(公 引		一方 10〔公 尺		方 100公 分	方 100公 厘				
進	率		以百進級								


例題 1. 問 436 方公丈等於多少方公里?

〔解〕 因為面積的單位是以百進級,所以 436 方公丈= 0.0436 方公里。

習 題

- 1. 問945 方公寸等於多少方公里?
- 把下面各數的單位都改為方公引:
 347 方公分, 46.3 方公寸, 73 方公釐, 0.63 方公丈,
 0.034 方公里。
- 3. 把下面各數的單位都改為方公寸:
 - 0.036 方公丈, 0.00798 方公引, 3.047 方公丈, 63.0024 方公引。
- 4. 問 34 公頃等於多少公畝?
- 5. 問 6.36 公頃等於多少公畝?
- 6. 長方桌的桌面長1.2公尺, 闊7公寸, 問桌面的面積有 多少方公寸?
 - 7. 長方形運動場的長 84 公丈, 悶 18 公丈, 悶牠的面積有 多少公畝?
- § 100. 體積的單位千進法 有長有關又有高的叫做體, 體的大小叫做體積。測量體積的單位也像面積一樣的可以由長

的單位導出來,譬如一個正方體 P E (第八圖),如若各邊的長都是 1 米,就說牠的體積是一立方米,或一立方公尺;如若各邊的長都是 1 公寸,就說牠是 1 立方公寸,或一立方分米。又如測量長方體 A B C D 的體積,如若長是 4 米, 問是 2 米,高是 3 米,於是最低一層 A B E D 的體積就 4×2=8 倍於 P E,即8 立方米;總共有三層,長方體 A B C D 的體積就 (4×2)×3=28 倍於 P E,即24立方米。由是得:

求長方體體積的法則 先將長闆高的單位化做同名單位, 然後以長閥高的數值相乘即得體積。

長方體的體積=長×闊×高。

譬如有一長方體高 24 分米, 闊 1 米, 高 8 分米, 牠的體積就 是 24×10×8=1920 立方分米。

一個正方體,如若各積的長是1公尺,或10公寸,牠的體積就是1立方公尺,或1000立方公寸(因10×10×10=1000);如若各積的長是1公寸,或10公分,牠的體積就是1立方公寸,或1000立方公分。所以長的單位如若是以十進級,體積的單位就要以1000進級。現在把體積的單位列表如下:

立方公里立方公引立方公丈立方公尺立方公寸立方公分立方公厘 名 立方仟米 立方佰米 立方什米 立方米 立方分米 立方厘米 立方毫米 別名(計算容) 公秉 公升 公提 Km^3 Hm^3 Dm^3 啓 m^3 dm^3 cm^3 mm^3 600 cm3 1000Hm3 1000Dm3 1000 m3 1000 dm3 當 $1.00mm^{3}$ 101 U.c.c. 進 級 各單位以干進級

米 制 體 積 表

例題 1. 問 3784 立方公寸等於多少立方公丈?

〔解〕 因為各單位以千進級,所以3784立方公寸=3.784 立方公尺=0.003784 立方公丈。

習題

- 把下面各單位改為立方公引:
 567800 立方公尺, 3.45 立方公丈, 746.35 立方公寸, 4700 立方公分。
- 2. 把下面各單位改為立方公分:87.5 立方公引, 0.0372 立方公尺, 0.38 立方公丈,0.9783 立方公尺, 3.402 立方公引。
- 3. 問長7公尺, 關6.2公尺, 高9.3公尺的教室, 能容空 氣多少立方公尺?
- § 101. 米制的容量單位 以一立方公寸的容量作為容量 的基本單位叫做公升,其餘補助單位,都以十進級。列表如下:
- 〔注意〕 面積,體積及容積的單位都由長的單位導出,因此 這三種單位,可叫導出單位,而表的單位叫做基本單位。

	名	- 稱	公秉	公石	公斗	公升	公合	公勺	公损				
1	73	· 115-	仟升	佰升	什升	升	分升	厘升	亳升				
,	咯	號	Kl	Hl	Dl	L	dl	cl	ml				
1	 當	. <u>A</u>	10公石	10公斗	10公升	10公合	10公勺	10公报					
1	Œ	率		各單位以十進級									

米 制 容 量 表

§ 102. 米制的重量單位 最初法國政府原來是以一公升 的水當溫度4°C.時的重,作為測重的基本單位,叫做公斤,同時製 了一坑白金法碼和這一公升的水重相等,作為測重的原器;後來 萬國權度同盟會議決採用米制,又用鉄鉑合金製了一坑法碼等 于一公斤的重,作為米制測重的原器。公斤的補助單位列表如下:

											·
ľ	de ess	公噸	公蜂	公衡	公斤	公兩	公錢	公分	公厘	公亳	公絲
	名稱	噸			仟克	们克	什克	克	公克	厘克	毫克
ľ	略號	T	Q	Mg	K6	Hg	Dg	g	dg	cg	mg
	量當	10 Q	1 Mg	10Kg	1)Hg	1 Dg	10 g	10 dg	10 cg	1 mg	
ľ	進率		=	各單位	形以十岁	生級					

米 制 重 量 表

習題

- 1. 把下面各名數的單位改為公合:
 - 0.0047 公秉, 3.07 公石, 5.403 公斗, 0.0035 公石,
 - 0.00089 公斗, 0.000073 公秉, 4.0036 公斗。
- 2. 把下面各名數的單位改為公石:

534.39 公升, 3579.02 公合, 693.45 公勺, 43459.5 公损, 7936.709 公勺, 84.065 公升。

- 3. 把下面各名数的單位化為公斤:
 - 0.0047 公噸, 3.049 公衡, 734.96 公擔, 86.47 公錢,

24.36 公毫, 0.037 公分, 36 公雨。

4. 把下面各名數的單位化為公衡:

367.89 公斤, 4738.67 公雨, 83.06 公錢,

943.78 公絲, 736.092 公分, 0.36 公雨。

§ 103. 我國現行權度制 我國權度舊制因地域的不同和時代的變遷,每每同名的單位,實際的大小並不相等(參考實業部全國度量衡局製的: 歷朝長度標準變遷圖,容量,重量變遷標準圖,中國各地長度變遷圖,各地容量重量變遷圖)。國民政府成立以後,覺得統一權度是國家一件要政,於是在民國十七年七月公布權度標準方案,以米制為我國權度標準制,並暫設輔制,叫做市用制,市用制以三分之一的公尺作為長的基本單位,叫做市尺、簡稱尺;以一公升作為容量的基本單位,叫做市升,簡稱升;以二分之一的公斤作為重量的基本單位,叫做市斤,簡稱斤。標準制的基本單位:合是市用制基本單位的三,一,二倍,所以牠們的關係也是很容易記憶的。市用制其他補助單位列表如下:

布用制長度表名称 | 里 | 引. | 文 | 尺 | 寸 | 3

名稱	里	引.	艾	尺	寸	分	「」「」	~~~	
本制當显	15 5 [1: 丈	10尺.	10寸	10牙	10厘	10毫		
合標準制	12公里			3公尺					
進 率 除里外其餘都以十進級									

〔注意〕 當未填的地方由學生自填。

市用制面積表

名稱	方里	方引	方丈	方尺	方寸	方分	方厘	方毫			
本制當量	225方引	100方丈	100万尺	100方寸	100方分	100方厘	100方章				
合標準 制的當 量		-		$\frac{1}{g}$ 方公尺				\$			
進率		除方里以外都是以 1:0 進級									

市用制地積表

	名 稱	頃	畝	分	厘	毫					
A CONTRACTOR	本制當量	- 100 畝	10 芬	10 厘	10 毫						
***********	進率	除	除頃以外都是以十進位								
	面積當量		600方尺		* .						

市用制體積表

名 稱	立方丈	立方尺	立方寸	立方分
本制當量	1000立方尺	1000立方寸	1000立方分	
進 率	各位	位都以 1000	進級 .	-
合標準制當量		$\frac{1}{27}$ 立方公尺	·	

市用制容量表

名稱	石	斗	升	合	勺	摄			
本制當量	1(斗	10升	1(合	10勺	10撮				
進率	進 率 各單位以十進級								
合標準制當量	1 公石	1 公斗	1 公升	1 公合	1 公勺	1 公报			

名 稱	擔	厅	兩	錢"	分	厘		
本制當量	105斤	16兩	10錢	10分	10厘			
進率	除着和斤以外其餘都是以十進級							
合標準制 的當量		12公斤						

市用制重量表

我國度量衡的原器 是根據萬國權度同盟會的原器製成的 由實業部保管,實業部依原器再製造副原器,分存國民政府各院 部會各省及各市政府;又依副原器製造地方標準器,由各省市發 給各地方,作為各地檢定製造的標準。副原器每隔十年,照原器 檢定一次,地方標準器每隔五年,照副原器檢定一次。

習 題

- 1. 上面所列各表,其中合標準制當量一欄,有空白未填的地方,都把牠算出來填上。
- 2. 光的速度每秒鐘行30萬公里,問合多少里?
- 3. 有土 $\frac{1}{4}$ 公噸,分4人挑,問每人須挑多少斤?
- 4. 兩合斤的當量,在日常生活上應用很廣,譬如一斤白糖價3角4分,問一兩白糖的價是多少?就要用當量乘3角4分來求,即每兩白糖價=0.625×34分=2.115分。商人買賣為免除臨時計算的麻煩,曾編了一個歌訣,叫做兩

求斤歌(即1兩等於0.0625斤,2兩等於0.125斤……)。

兩求斤歌

1					سنكبر فانتخاص مستور		
1.	退 625	2.	125	3.	1875	4.	25
5.	3125	6.	375	7.	4375	8.	5
9.	5625	10.	625	11.	6875	12.	75
13.	8125	14.	875	15.	9375	16.	爲一斤

試用除法核對這個歌,所列的當量有無錯誤?

- 5. 應用兩求斤的歌訣,解求下列各題的答案:
 - 1. 白糖每斤2角8分,間3兩白糖要多少分?
 - 2. 肉每斤定價3角5分,問9兩肉要多少錢?
 - 3. 食鹽每斤1角7分,問11兩食鹽要多少錢?
 - 4. 黄魚每斤2角7分,問13兩黃魚要多少錢?
- 6. 市用制的標準制有完全相等的地方沒有?

英美制面積表

原	名	square		square	square	square	square
	7 21	mile	acre	rod	yard	foot	inch
略	號	sq. mi.	ac.	sq. rd.	sq. yd.	sq. ft.	sq. in.
譯	名	方哩	噈	方悍	方碼	方呎	方吋
本制	當量	640墩	160方桿	30 1 方碼	9方呎	144方时	

- 1 方呎=0.0929 方公尺=0.8361 方尺。
- 1 呦=40.47 公畝=6.0705 畝
- 1 方哩=2.5900 方公里=10.3594 方里

原名 cubic yard cubic foot cubic inch
略號 cu. yd. cu. ft. cu. in.

| 译名 立方碼 立方呎 立方叶

1728立方时

27立方呎

本制當量

英美制體積表

§ 104. 外國權度制 米制雖然是萬國通制,採用的國家 很多,但是英美日本各國因為習慣很深,到現在還仍舊用牠們自 己的權度制。英美權度制在世界貿易上佔着重要的地位,日本和 我們是隣國,關係密切,所以現在把這三國的權度制列表如下:

英美長度制

原	名	Mile	Rod	Yard	Foot	inch
略	號	mi	rd	yd	ft	in
霹	名	哩	桿	碼	映	叶
本制	當量	320 桿	5.5 碼	3 呎	12 時	
合標準	制當量	1.609公里			0.305公尺	
合市用	制當量	3.219里			0.914尺	

英美容量制

*	Ą	別		液		量			乾	量			
原		名	Barre.	Gallon	Quart	Pint	Gin	Bushe	Peck	Quart	Pint		
略	•	號	bbl gal qt		pt	. gi	bu	pk	qt	Pt			
牌	1	名	桶	嗧	咵	呏	吧	噼	卧	咵	呏		
本	制官	量當	31.3嗧	4 咵	2 呏	4吧		4四 8時 2明					
合	標準	阜制	英1嗧	=277.	2 立方	吋=4.	544公子	r(重升)					
P	支市	制	美1%	美1									
			英1%	英1									
			美1旁	=2150	.42立力	5时=3	5.24公	升(或升)					

英美衡制

類	別	常		衡	粗	重	衡			
原	名	Ton	Pound	Ounce	Ton	Pound	Ounce			
略	號	T	lb .	oz	T	lb				
譯	名	噸	磅响		蠖	磅	瘤			
本制	當量	2240磅	16喃		2000磅	16哺				
合標	準制	1 啢=0.2	2.35 公雨 =0.9672 兩				·			
及市	用制	1磅=0.4	1磅=0.4536 公斤 =0.9072 斤							

[注意] 尋常1英噸(long ton)=2240磅。

1美噸(short ton)=2000磅。

金衡: 12 啢=1 磅。

日本權度制

	名稱	里	町	丈	間	尺	া শু	矛	厘	毛
長度制	當量	36HJ	363 [†] :	10尺	6尺	10寸	10分	1C厘	10毛	1日尺= ¹⁰ 公尺
容量制	名稱	石	斗	升	合	勺				
谷里叫	當量	10斗	1C升	10合	10句		}			
金具柳	名稱	貫	斤	タ	分	厘	毛	-		
重量制	、當量	64.斤	160次	10分	1C厘	1(毛		1貫	=3.76	5 公斤

日本制面積體積表

類	別		面		積			紀 日 記	積	
名	稱	町		畝	坪	方尺	立方町	立方間	立方尺	立方寸
本制	當量	16	10畝	30坪	36方尺		2.16.6 立方間	≥16 立方尺	166c 立方で	

注意: 1日方尺=0.691827方公尺。

1坪=0.03306 公畝。

$$1$$
立方且尺 = $\left(\frac{10}{33}\right)^3$ 立方公尺。

[注意] <u>日本</u>權度的名稱大概和我國相同,為免除混淆 起見,可在單位名稱前加一日字,譬如尺寫為日尺。

習 題

- 1. 1公尺等於多少呎?
- 2. 1公里等於多少哩?

- 3. 1 哩等於多少呎?
- 4. 5 哩等於多少时?
- 5. 31 嗧等於多少啥?
- 6. 四分之一英噸等於多少磅?
- 7. 五分之二美噸等於多少磅?
- 8. 兩日石等於多少公石?
- 9. 3日斤等於多少市斤?
- 10. 1 間等於多少公尺?

用正方形面積等於邊長自乘的道理來計算高低級單位的當量。

11. 問一畝等於多少公畝?

§ 105. 主幣,輔幣 交易的媒介物叫做貨幣,貨幣的基本 單位叫做主幣,其餘輔助單位叫做輔幣,譬如一圓是我國的主幣, 其他角,分,都是輔幣。又如鎊是英國的主幣,其餘先令,便士,都 是英國的輔幣。

§ 106. 我國現行幣制 我國向來以銀為本位,行「銀兩制」:以銀鑄成1兩,5兩,10兩,50兩的錠形,或馬蹄形,或各種散塊。自從外國通商以後,墨西哥銀圓*(俗名洋錢或鷹洋),逼行

^{*} 因為這種銀區來自外洋,所以俗名洋錢,因上面印有鷹形又叫鷹洋,因此連帶關係把龍國門龍洋或大洋,銀角叫小洋。

全國,前清光緒為抵制墨幣起見,又兼行「銀圓制」,設立造幣廠, 鑄造銀圓,叫做龍圓、俗名龍洋),作為銀圓制的王幣,又鑄造銀 角、俗名小洋),銅元(俗名銅板或銅子),作為輔幣。

龍圓本來規定折合銀兩7 錢 2 分, 折合銀角十角或銅元百 枚,但因幣制漲落不定,龍圓一元兌換銀角11角多或 12 角或,銅 元一百三四十枚,三百多枚,都隨時隨地而變。

前清末年,外國銀行又在通商大埠發行紙幣(即鈔票)來替代銀圓,一般商民因銀圓攜帶不便,都採用外國紙幣,清政府為挽回權利起見,也准許各省官錢局和大清銀行(就是現在的中國銀行)發行紙幣。民國成立以後,官私銀行發行紙幣更多,種類有1元,5元,10元,10元,1 角,2 角,2 角5分,5 角等。

銀圓或紙幣不但免換銀角或銅元,價格不一定,幷且牠自己的價值也隨時隨地而不同 譬如廣東省銀圓一元,或銀角一角,拿到江浙就不能作一元或一角計算,廣西紙幣折合上海銀圓祇值七八角,幣制情形十分繁亂,日常生活很覺不便,國民政府為適應世界經濟潮流起見,於民國二十四年十一月四日宣佈改革幣制,規定改革辦法如下:

- 1. 自民國二十四年十一月四日起,以中央,中國,交通三銀行所發行之鈔票定為法常,不得行使現金,違者至數沒收。
 - 2. 中中交三行以外,曾經財政部核准發行之銀行鈔票現

在流通者,准其照常行使,其發行數額,即以截至十一月三日止流 通之總額爲限,不得增發,并由財政部約定限期逐漸以<u>中央</u>鈔票 換回。

- 3. 凡銀錢行號商店及其他公私機關或個人,持有銀本位 幣或其他銀幣生銀等銀類者,應自十一月四日起向政府所指定 銀行兌換法幣。
- 4. 為使法幣對外匯價穩定起見,<u>由</u>中中交三行無限制買 賣外匯。

這幾條辦法宣布以後,財政部又規定法幣一元派准免換銀 角12角,銅元300枚,不得增減;幷且為完成幣制改革起見,鑄 造五分,一角,兩角鎳質輔幣三種,半分,一分銅質輔幣兩種。

§ 107. 外國幣制 各國各名本國通行的幣制,如若一一列 舉,不但很麻煩,并且沒有這個必要,現在祇將英,美.德,法,且, 俄六國在世界市場上佔有地位的列表如下:

		英國	幣 制 表	
原	名	Pound	Shiding	Penny
略	號	£.	s.	d.
鐸	名	金 鎊	先 令	便 土
笣	是	29 S.	12 d.	

_	-	عبدون والمسمورة فعيدائي		
1		美	國 幣 制 表	
原	名	Dollar	Dime	Cent
略	- 號	\$		¢或ct.
霉	名	金圓或弗	角或達姆	分耳仙
當	量	10角	10分	

	德	國	幣	制	表		
1馬克(Mark)=100	分尼(I	fem	aigs)	 }			
或 1 M.=100 Pi	:			٠			

	法	國	幣	制	表	
1 法郎(Franc)=100	參(Ce	ntin	ies)			
或 1 fr.=100 c.						

H	本	幣	制	表	
	1 圓=	=100	錢		

·	餓	國	幣	制	表					
1 虚布(Ruble)=100 戈比(Kopeks)。										
或 1 R.=100 Ko.										

§ 108. 國幣和外幣的比較 國幣以銀為本位,外幣以金 為本位,價格不同所以匯兌率也漲落不定,國際貿易,十分困難。 自從國民政府宣佈改革幣制以後,中央銀行就准令實行穩定外 匯,第一次公布電匯買賣價格的折合如下: 倫敦每國幣 1 元=1 先令 2.5 便士。

紐約每國幣 100 元=29.75美元。

巴黎每國幣 100 元=450 法郎。

柏林每國幣 100 元=735 馬克。

日本每國幣 100 元=103 日元。

香港每國幣 100 元=71 港元。

上面所列的匯兌率,從中央銀行宣布以後,到了我編這本書 完工之日為止,經過七八月之久,始終沒有變動過,由此可知我 國幣制改革,不但國內金融已能統一穩定,就是外匯也把握得很 穩定。

習題

- 1. 問5分,1角,2角的鎮幣各8個,合法幣多少元?
- 2. 問1 / 2 / 角, 2.5 / 角的紙幣各 24 張, 合法幣多少元?
- 3. 國幣 50 元可買多少法郎?
- 4. 國幣 3 元可換銀角多少? 銅元多少?
- 5. 國幣 30 元可換美金若干元?
- § 109. 時間的單位 使我們覺得有久暫的叫做時間,時間的基本單位叫做日。

從今天太陽當頂到明天太陽當頂的時間,叫做『太陽日』,一

太陽日的長短稍有不同,譬如12月22日比9月15日就差不多要長一分。就一年所有的太陽日平均起來,作為時間的單位,叫做平均太陽日,簡稱做『日』。其他補助單位列表如下:

時 間 單 位 表

名	稱	,	閏年	平年	月	星期	日	時	分	秒
當	量	160	365 H	365日	28日29日 30日31日	7日	24時	60分	60秒	
				_	-					

一日就是地球自轉一周的時間,地球繞太陽公轉一周的經 過 365 日 5 時 48 分 46 秒,即 365.2422 日。我們為實用便利起 見,取整數 365 日作為一年,叫做平年,所餘 0.2422 日積至四年 就有 0.9688 日,約合一日,加到第四年的二月去,所以第四年有 366 日,這樣的年,叫做閏年。凡尋常年數可以 4 整除和逢百的 年數可以 400 整除的都是閏年,其他都不是閏年,譬如 1936 年, 2000.1600 年都是閏年,但 1935 年,1900 年都不是閏年。

習 題

- 1. 火車每時走80公里,問一日能走多少公里?
- 2. 下面所列的年份那幾年是閏年?那幾年是平年? 1932年, 1914年, 1912年, 1800年, 1200年。
- 3. 脈搏每分鐘 75 次, 問每時若干次?

4. 從 1865 年到 1987 年中間有多少閏年?

第七章 總習題

- 1. 不名數能表示出量的大小麼?
- 2. 標準制度量衡的基本單位叫什麼名稱?
- 3. 我國權度制分為標準制和市用制,問這兩制的基本單位的關係如何?
- 4. 市用制的權度單位除那幾個以外其餘都是十進的?
- 5. 長度的單位如若是十進,面積和體積的單位仍舊是十 進廠?
- 6. 地球子午線四千萬分之一的長恰好等於一米麽?
- 7. 1日尺比1市尺小麼? 1日升比1升大麼?
- 8. 英美日本長度單位的進率有一定的麼?
- 9. 我國幣制改革以後,所用輔幣是那幾種?
- 10. 時間的單位:時,分,秒,是六十進法,其他單位是什麼進法?

第八章 複名數運算

- § 110. 單名數,複名數 帶有單位名稱的數叫做名數,祗帶一個單位名稱的名數叫做單名數,帶有幾個單位名稱的名數叫做複名數,譬如 3 尺 4 寸 5 分, 2 斗 7 升, 2 斤 3 兩, 25 斗, 3.7 石都是名數,前三個都是複名數,後兩個都是單名數,因為單位的進級有十進的,也有非十進的,所以複名數也分為十進複名數和非十進複名數兩種。譬如標準制 即米制)度量衡和貨幣的數都是十進複名數,市用制的度衡就有一部分是非十進複名數。
- § 111. 十進複名數的通法和命法 變複名數為單名數的 方法叫做通法;變單名數為複名數的方法叫做命法。 十進複名 數的通法和命法都很簡單,舉例如下:
 - 例題 1. 通5公里 4公引6公文8公尺為公文。
 - 〔解〕 原來的複名數=50公引+4公引+6公丈+8公 尺
 - =54公引+6公丈+8公尺
 - =540 公丈+6 公丈+8 公尺
 - =560.8公文.

例題 2. 通5公里6公丈3公寸爲公尺。

[解] 原來的複名數=500公式+6公丈+3公寸

=506 公 丈+3 公寸

=5060 公尺+3公寸

=5060.3 公尺.

由例題1和2得

十進複名數通法的法則:

第一步 把複名數依着單位的法定等級排起來,譬如例題 2,應 當排作 5 公里,0公引,6公丈,0公尺,3公寸。

例題 3. 命 5468 公尺為複名數。

公公公公 里引丈尺

[解] 5468公尺=5468=5公里4公引6公丈8公尺。

習題

- 1. 通下列各複名數為公尺:
 - a. 4公里, 8公丈, 3公寸。 b. 8公引, 5公寸, 4公分。
- 2. 通下列各複名數寫市寸:
 - a. 8引7丈3寸。
- b. 8引3丈6分。
- c. 4引6 丈9釐。
- d.5引3尺5分。

- 3. 通下列各複名數為釐:
 - a. 5 畝 3 分 8 釐。
- b. 2 畝 3 毫。
- c. 7畝6釐5臺。
- d. 4兩3錢2分。
- e. 9兩2分3盤。
- f. 5雨2分。
- 4. 通下列各複名數為斗:
 - .a. 5石3斗2升5合。
- b. 6石3合。
- 5. 命下列各數為複名數:

437.5 公尺, 503.91 公丈, 9300 公尺, 9.43 兩,

3.45 畝, 537.9 升, 73.5 寸。

§ 112. 非十進複名數的通法

例題 1. 34 桿 4 碼 2 呎合多少呎?

(注意) 在不名數的運算中,我們知道 5.5×34=34×5.5, (×191=191×3;何以這裏 8×191 不寫為 191×3? 是不是因為 191×3 在說理上有說不通的地方? 但是學生為求運算迅速起見, 可以把 5.5×34 寫為 34×5.5 來算。

例題 2. 問 34 桿 2 碼 2 呎 3 时合多少桿?

§ 113. 非十進複名數命法

例題 1. 命 58479 市寸為複名數。

〔解〕 市用制長度單位的寸,尺,丈,引,都是以十進級,所 引丈尺寸 以 53479 市寸=53 47 9 =53 引, 4 丈, 7 尺, 9 寸。

例題 2. 命 4358.5 碼為複名數。

〔解〕 一種量,用碼計算既然有小數,可知用複名數來計算一定有比碼小的單位呎,吋等,所以本題要分為整數部和小數部來算。

習題

- 1. 通3里12引8丈9尺為里的單名數。
- 2. 通4擔76斤8兩5錢為擔的單名數。
- 3. 通3鎊12先令6便士爲鎊的單名數。
- 4. 通3解2叫5咵為咵的單名數。
- § 114. 非十進複名數加減法

例題 1. 有糖 4 擔 32 斤 12 兩 8 錢,又 7 擔 86 斤 13 兩 4 錢,問一共有糖多少?

〔解〕 演草:

擔	斤	兩	鍐
4	32	12	8
7	86	13	4
12	13	10	2

答12擔19斤10兩2錢。 由是得

複名數相加的法則:

第一步 把各單位的數順序排列,同單位的數同在一行,上 下都對整齊。

第二步 從最低級單位依次相加,遇着所得的和大於進率, 就倂入上級單位數去計算。

例題 2. 有布 4碼 1 呎 8 吋, 剪去 2碼 2 呎, 10 吋, 問剩多少? 〔解〕 算草

碼	呎	时
4	1	8
2	2	10
1	1	. 10

答1碼1呎10时。 由是得

複名數相減的法則:

第一步 和加法一樣。

第二步 從最低級的單位依次相減,遇着被減數小於減數時, 就取一個上級單位化為低級單位數,倂入被減數相減。

§ 115. 非十進複名數乘法 複名數乘法有兩種情形:(一) 兩個同制複名數相乘,(二)兩個異制複名數相乘。現在舉例如下:

例題 1. 游泳池長 112 碼 2 呎 9 时,寬 32 碼 1 呎 6 时,問 這個池的面積多少?

〔解〕 先把兩數化為單名數,然後相乘。

112碼2呎9时=336呎+2呎+
$$\frac{9}{12}$$
呎

=338.75 呎.

$$32$$
 碼 1 呎 6 吋=96 呎+1 呎+ $\frac{1}{2}$ 呎=97.5 呎.

例題 2. 游泳池長 112 碼 2 呎 9 吋,有人在池中往返游泳 共 4 次,問這個人遊了多少路?

例題 3. 設有茶葉 3 擔 17 斤 12 兩賣與<u>英</u>商,說好每斤價 2 先令 7 便士,問英商應付多少英幣?

〔解〕 先化為單名數,然後相乘。

820 先令	41 鎊
12)9850.25便士	20)820 先令
96	80
$\frac{-25}{25}$	20
24	20
10.25 便士	0
. 1	

答 41 鎊 10-1/4 便士。 由是得

複名數相乘的法則:

- (一)兩個同制複名數相乘(如例題1)須先化為同名數,然 後相乘,再改積為複名數。
- (二)兩個異制複名數相乘(如例題 1.2) 須先化為單名數相乘,再改積為複名數。
- § 116. 非十進複名數除法 複名數除法也像乘法一樣有 兩種情形:(一)同制複名數相除,(二)異制複名數相除。舉例如下;
- 例題 1. 有人每小時能走 8 里 13 引 2 丈,問這個人走 38 里 7 引 2 丈的路要多少時間?

(解) 先化為單名數

答4時20分。

例題 2. 茶4斤值英幣1鎊7先令2便士,問每斤值<u>英</u> 醫多少?

〔解〕 照算草一或二來求都可以。

演算一

1 鎊 7 先令 2 便士=27 先令 2 便士。

答每斤6 先令 $9\frac{1}{2}$ 便士。

演算二·

1 鎊 7 先令 2 便士=326 便士。

答每斤6 先令 9 1 便士。

例題 3. 7立方呎 432 立方吋的純水,重 453 磅 2 啢, 問 每立方呎的純水有多少重?

(解) 先化兩數為單名數。

因 7 立方呎
$$432$$
 立方时 = $\left(7 + \frac{432}{1728}\right)$ 立方呎 = 7.25 立方呎。

答每磅純水重62磅8辆。 由是得

複名數相除的法則:

- (一)兩個同制複名數相除(如例題1),須先化為同名數,然 後施除。
- (二)兩個異制複名數相除(如例題1及2),須把除數化為 單名數,就可以施除(被除數或化或不化都可以)。

習 題

- 1. 光的速度很快,每秒鐘可繞地球約7圈,問一日可繞地 球幾圈?
- 2. 某茶棧上午賣去茶 34 擔 26 斤 7 兩, 又 63 擔 72 斤 9 兩,下午賣去 27 擔 32 斤 13 兩,問全日共賣茶多少?

- 3. 某翁有田,除自己留1頃4分5釐外,其餘分給長子1頃48畝4分,次子三子各1頃38畝3分,問某翁有田多少?
- 4. 買猪一頭,價14圓3角7分,付5圓紙幣3張,問應找回多少?
- 5. 甲乙丙丁四塊地互相連接,甲地面積 4 方里 3 方引 93 方丈 4 方尺,乙地面積 7 方里 193 方引 41 方丈 93 方尺, 丙地 6 方里 154 方引 6 方丈 19 方尺,丁地 12 方里 228 方引 84 方丈 72 方尺,問這四塊地連成一塊能有多少面積?
- 6. 某校運動場面積 24 方里 183 方引 94 方丈,因建築游泳池用去面積 143 方引 96 方丈 72 方尺,問這個運動場還剩面積多少?
- 7. 光每秒鐘行299860公里,聲音每秒鐘行340公尺,現在 有人先見電光,隔 12分鐘聽到雷聲,問這個人離電雲的 距離多少?
- 8. 地球離太陽的平均距離約149×106公里,問太陽上面 發出的聲音須隔多少年可以達到地球?又問日光從太陽 到地面要多少分鐘?
- 9. 某船每時速度 14 里 13 引 7 丈, 問 5 時可走多少路?

- 10. 某教室地板長5碼2呎3吋,闊4碼1呎6吋,問地板 的面積多少?
- 11. 南京某區地價每方丈25 圓,現在地長2里13引4丈, 闊1里12引8丈3尺,問這塊地值多少圓?
- 12. 某人有田23頃8分分給兒子,各得5頃75畝2分,間 某人有子幾人?

第八章 總習顯

1. 指出下面各單名數的意義:

34.52 圓, 7.03 兩, 42.03 公斤。

- 2. 通3公引4公丈6公分爲公丈。
- 3. 通下列各複名數為市尺:
 - a. 12 里 3 引 7 丈 5 寸, b. 3 里 8 尺 9 寸。
 - c. 4公里5公引9公分, d. 3公里5公引7公文。
- 4. 萬里長城長 6648450 尺, 合多少里?
- 地球公轉一週合 365.2422 日,化為複名數。 5.
- 6. 時鐘在18時內快6分54秒,問平均每時要快幾秒?
- 7. 京滬鐵路借款350萬鎊,照中央銀行所宣佈的兌換率每 國幣1元合英幣1先令2.5便士來計算,這一項的借款 合國幣多少圓?

- 8. 有一長方形的箱高3呎3吋,長7呎2吋,闊2呎9吋,間2架9吋,間2箱的容積有多少?
- 9. 地一方引月租4角5分, 間地長4里5引, 闊1里8丈, 月租多少?
- 10. 農夫每日作工八小時,可耕田1畝3分,問作工33時47分可耕田多少?
- 11. 設有包裹縱 3 尺 4 寸, 橫 2 尺 1 寸, 高 1 尺, 託轉運公司轉運, 說好每 1 立方尺運送 5 里路付運費 2.5 角, 現在問這個包裹如若運送 78 里 12 引 3 丈要多少運費?

第九章 省略算(近似計算)

- § 117. 近似值在日常生活上的重要 近似值的意義已在 第五章裏面講過,牠在日常生活上是很重要的,如若舉例真是舉 不際舉,現在為學者容易明瞭起見,再舉幾個例如下:
- 1. 假設有兩個隣居,都說:他們的家離學校有一里半路, 試問這兩個人的話誰是對的?
- 2. 甲乙丙三人在路上遇到丁。丁問:你們三人在什麼時候見着我的大哥?甲答:上午九點鐘,乙答:上午九點一刻,丙答:上午九點十分,試問這三個答案究竟那一個是對?在日常生活上每每以第二答案為最明瞭適用,但第二答案是準確的答案 麼?
- 3. 用尺來量課桌的長,假設量1尺有剩餘,於是把所餘的 拿寸來量,假設量3寸又有剩餘,於是把所餘的又拿分來量,假 設量過6分又有剩餘,因為這次的剩餘已經小到俗眼不很覺得, 也不是平常市尺可以量得出來,就說這張桌的長是1尺3寸6 分,試問桌的準確長度填是13.6寸麼?
 - 4 假設有一塊豬肉,由下列各人來稱:

· · · · · · · · · · · · · · · · · · ·	
廚子用廚房的秤來稱得,4兩	誤差不到1兩
學校的學生用平來稱得,4兩7錢	誤差不到1錢
物理教員用天平稱得,4兩7錢3分	製差不到1分
物理教員用精密的天平來稱,4兩7錢3分5盤	誤差不到1釐

重量不到一釐的誤差已經不很能辨別出來,更小的毫更是 辨別不出來了。既然辨別不出,準確的重量怎麽能求得出來呢? 所以日常所用的數量,可以說:差不多都是近似值,不過準確度 各有不同罷了。

§ 118. 近似值的選擇 像上面所舉的第4例,一塊肉有四個不同的近似值,究竟選定那一個穩算是對呢?這就要看求肉重的目的如何而定了。譬如廚子要知道肉重,祇須準確到兩就够了所以用第一近似值就成了。至於化學家因為分析肉的成分,希望準到分,就用第三個近似值,希望準確到釐,就用第四個近似值。再像上面的第二例,所說的時間問題,如若問上海到南京的特別快車什麼時候開?就要準確到分纔行,如若準確到時,就覺得太不準確,如若準確到秒,就覺得太準確沒有用處;但是計算賽跑的時間,譬如計算百米賽跑的時間,就要準確到秒纔行。所以近似值,應當準確到什麼程度,這就要隨用的目的而定。現在舉出三點注意於下:

1. 選擇單位的注意 單位的大小應隨量的大小而定,響

如量布的長,宜用尺,寸(用引就覺太大,用分釐就覺太小);計算 道路的長,宜用里,若用尺寸就覺太小,量倉裹的米宜於用石,量 甕裏的米,又宜於用升。

- 2. 計算量數的注意 單位既然定了,量數應當算到那一位也應當特別注意,譬如計算道路的長,用里做單位,祇須算到小數點後一位就够了,計算布匹的長,用尺做單位,也祇須算到小數點後一位就夠了。至於計算衣服的長,用尺做單位,就要計算到小數點後二位幾行。
- 3. 過於準確數的處置法的注意 有時候,因為一個數過 於準確,運用起來反覺不便,在習慣上用下面三種方法來處置, 使牠簡便。譬如叫物理教員求得肉重是 4.735 兩的數,給肉舖的 帳房去算肉價,不但帳房不願意算這個麻煩的數,就是買客也覺 得這樣算是多事,肉舖計算肉重最精密也不過算到錢為止,錢以 下的數,就有下面三種處置法:
 - a. 捨棄法 把錢以下的數完全不要,就是以4.7 雨作為4.735 雨。
 - b. 收入法 * 把錢以下的數作為1 錢,進到錢位,就是以 4.8 兩作為4.735 兩。
- c. 四捨五入法 錢的下一位數碼倘若是4或4以下的數碼,就用捨棄法,倘若是5或5以上的數就用收入法。

第一第二兩法的誤差都不到一錢,第三法的誤差不到¹錢 要比前兩法來得小,所以普通都用四捨五入法,這是應當注意的,

§ 119 近似值和零記號 在小數裏面,我們知道,任何小數的右端,都可以任意加『0』,譬如34.6尺=34.60尺。但是在近似值裏面的小數就不能任意加『0』,因為34.6尺的誤差是不到1寸的,34.60的誤差是不到1分,又如8公尺和8.000公尺的意義是不相同的,前一個數是表示誤差不到1公尺,後一個數是表示誤差不到1公尺,後一個數是表示誤差不到1公產,所以『0』在近似值的右端是有効用的,不是可以任意增減的。

又如有人說:昨日到會約七百人,這個數『七百』就是誤差不到一百的近似值。像這樣的近似值,如若寫為700人,就很易令人 誤會以為沒有誤差,所以現在有一部分算學家主張拿疑問號『?』 替代 0,寫為 7? ? 人。

§ 120. 絕對誤差相對誤差 絕對誤差,相對誤差或準確 度準確値和絕對值相差的數,叫做絕對誤差或誤差,譬如一個學 校,學生確數是 508人,如若說是五百人,即 5 ? ? 人,這個差數 8 就是絕對誤差。

絕對誤差雖然能標出全量誤差的多少,但是不能標出這個 誤差可否拾去不算,即不能標出測量的準確度。譬如京滬鐵路全 線的長,照火車時間表上所載是 311.04 公里,這個數自然是近 似值, 牠的絕對誤差不到 0.01 公里或 10 公尺。不到 10 公尺的誤差,就測量道路講,已經很精密,可以不算;但是就測量房子的高或衣服的長講,就不能不算了,否則一件衣服的長要誤差好幾尺,如何能穿呢?因此在工程方面或其他應用方面討論誤差,都求出每單位的誤差來表示測量準確度每單位的誤差, 叫做相對誤差,或準確度。像京滬路測量的相對誤差是不到 0.01 = 1 104. 假設有人測得他自己衣服長的近似值是 3 尺 4 寸,於是這個測量的相對誤差或準確度就是 1/34.

測量京滬鐵路長的絕對誤差,雖然比測量衣服長的絕對誤 差來得大,但是準確度或相對誤差卻是相反。

相對誤差= ____絕對誤差 ____

習題

- 1. 日常生活上所用的數值大部分都是近似值麼? 試舉出 若干個例證來; 并且說明我們所以測不出準確值的原因。
- 2. 過於準確數的處置法有幾種? 這幾種方法在日常生活 上都是常用的廠?那一種方法的絕對誤差比較來得小?
- 8. 說出下面各近似值絕對誤差和相對誤差的最大數:

43.009, 253.01? 25, 0.025, 0.0025, 2.5, 2.50.

- 4. 有肉20斤,3個人均分,問每人得多少兩?(算到錢為止)
- 5. 有布 32 尺,7個人均分,問每人得多少尺?(算到小數 點後兩位為止)。
- § 121. 省略算 使計算的結果能達到相當的準確度的一種簡便算,叫做省略算,省略算就是求近似值的方法,所以也叫做近似計算。這種方法在日常生活和自然科學上都很重要,而所以發生的原因有三: (一)因為微末的量,無關大體,可以把牠略去,祇計算近似值,以圖簡速,(二)因為直接測量總不能精密,不得已祇測近似值,(三)因為近似值加減乘除的結果得不出更精密的數,也祇得求近似值的結果。前兩種情形上面已經講過,現在再討論第三種情形於下:

§ 122. 省略加法

例 1. 三個近似值 31.428, 7.825, 14.642 絕對誤差各 小於 0 001, 試求牠們和的近似值。

〔解〕 算草
31.428
7.825
14:642
53.895
(答)所求近似值為 53.895.
親美不到 0 003

說明

所求近似值應當在53.895-0.003=53.892 及 53.895+0.003 =53.898兩數之間,其中一定不變 的數碼是 53.89.如若以53.89作 為所求的近似值,就準確到第二 位小數、誤差不到0.01;如若以53.895為近似值,誤差就不到0.003.

例 2. 求 357.367+23.45283+15.63749 和的近似值準 確到第二位小數。

〔解〕 算靖	Ė	說明:
357.36	73	比準確位數多取兩位數碼,捨
357.36 23.45 15.63	28 74	去其餘數碼,照普通加法求和,把
	96.45 75	和的末兩位捨去,卽得所求近似值
1	1	為396.45.這裏所以要多取兩位數

碼相加,為的要防止進位的影響。依同樣的原因,十個以上的數相加,就要多取三位數碼來求和。

〔注意1〕 上面的近似值 396.45 既然可以準確到第二位小數,那麼牠的誤差必小於0.01.如若我們還要誤差來得更小,就可以用四捨五入法,把7進到上位,成為396.46.

〔注意 2〕 求和的近似值也可以用四捨五入法,在各數 所要準確的小數位的右側多取一位,然後照普通加法相加,所 得和的末位再用四拾五入法歸倂,即得所需要的近似值。

§ 123. 省略減法、省略減法、也和省略加法相似、舉例如下:

例 1. 兩個近似值 31.428 和 7.825 的絕對誤差各小於 0.001, 問兩數差的近似值是多少?

〔解〕 算草

例 2. 求 $73.\overline{2}94-\frac{11}{13}$ 的差,準確到第三位小數。

〔解〕 算草

$$73.\overline{294} = 73.29429$$

 $11 = 0.849$
 72.448
 (答)所求的近似值為 72.448 .

〔注意〕 省略減法,也像省略加法一樣,可以運用四捨五 入法,使所求的近似值更準確更簡便。

習 題

求下面 1, 2, 3 各題的近似和準確到第三位小數, 并且 用四捨五入法, 使所得和的誤差更來得小:

- 1. $36.4981 + 0.057 + \frac{8}{7}$.
- 2. $\frac{7}{12} + \frac{1}{3} + \frac{3}{4} + 21.789 + 44.3756$.
- 3. 7.36978? +4.537898? +57.3894.
- 4. 四個近似值: 36.045?, 0.137?, 573.006?, 78.693?. 絕對誤差各小於 0.001, 試求牠們和的近似值, 幷求相對 誤差。

- 5. 求 $\frac{3}{7}$ + $\frac{5}{8}$ +3.495 近似和, 誤差不到 0.0001.
- 6. $<math> \frac{2}{3} 2378$ 的近似值準確到第二位小數。
- 7. 求 38.45736-2.3789 的近似值準確到第四位小數。
- § 124. 省略乘法
- 例 1. 甲生量得長方形紙片的長 57 釐米(cm.), 闊 23.5 釐米, 並且知道兩數的絕對誤差都不到 0.5 釐米, 問這個紙片的 面積是多少?
 - 〔解〕 由測量的結果,得紙片的面積=28.5×57 方釐米=1839.5 方釐米。

由上面所說誤差的限度可知: 紙面的面積大於 23×56.5 方釐米=1299.5 方釐 米。

紙面的面積小於 24×57.5 方釐米=1380 方釐米。 現在如若以四捨五入法應用於 1339.5,以1340 方釐米作為 紙片的面積,於是誤差就不到 40 方釐米。

所以紙片面積的近似值=1340方釐米, 誤差不到 40 方釐米, 即紙片的面積=1340 方釐米。

(解) 4	草草	說明
$ \begin{array}{r} 3.753 \\ 15.01 \\ .37 \\ 7 \\ 2 \\ \hline 15.48 \end{array} $	53 506 2518	照普通乘法,求出部分的積來,第一個部分積 15.012 的末位 2,因為乘法進位的緣故,不是準確的數碼,所以第一列積的可信數
	•	要义为为了1010日的大臣,1111日日10

(答)桌的面積為15.48方分米。

誤差不到 0.01 方分米。

這種不可信的數碼留下來,也是沒有價值的,所以把牠捨去, 就拿 15.48 作為所求的積。

由上面的例,可知積的兩因數各有四位可信數碼;於是積也有四位可信數碼。

但是積的兩因數,其中一個雖有四位以上的可信數碼,如若 其他一個祇有四位可信數碼,這個積仍舊祇有四位可信數碼,譬 如:

例 3. 求 3.1416?×454?的積。

(解) 兩個因數中,其中一個有三位以上的可信數碼,其他一個祇有三位,照普通乘法,即 3.1416×454=1426.2864,這個積的準確值是在 454.5×3.1416 及 453.5×3.1416 兩數之間。設 2=3.1416×45/=1426.2864,於是所求積的準確值

就在 $\frac{454.5}{454}$ α 及 $\frac{453.5}{454}$ α 之間,因此所求積之誤差為 $\frac{1}{2}$ α 之間,因此所求積之誤差為 $\frac{1}{454}$,即不到 $\frac{728.1432}{454}$,即誤差約一單位,所以所求的積 1426.2864 祇有三位可信數碼。

例 4. 求 32.7?×3.1416?的積。

〔解〕 因為兩因數中,其中一個的準確位數最少是三位, 所以積的可信位數也祇有三位,由是得求積的簡法如下:

第章一 第章二 413 32.7
$$\times$$
 3.14 3 2.7 \times 3.14 = 98.1? = 98.1 3.2 1.309 = 1.3

算草二,為簡便計,把不可信的數碼都省略去*,所以第一次以3乘32.7,就在7上面寫一個較小的數碼3,第二次以1乘32,就在2上面寫一個較小的數碼1,第三次以4乘3,就在3上面寫一個較小的數碼4,再用四捨五入法,得積為103.這樣乘法,叫做縮乘法(contracted multiplication)。

^{*} 此法係 Lodge 教授所建議; 會載在 Mathematical Gozette Vol. IV p. 17; 又Grummann教授也做了一篇编乘縮除法的討論, 登載在1936 年四月份的School Science an Mathematics Vol. XXXVI, No. 4.

例 5. 求 73.594? ×32.746? 的積。

〔解〕 因為因數都有五位可信的數碼,所以所求的積也 祇有五位可信的數碼,其餘不可信的數碼算出來,也是勞而無 功的,所以這裏就用縮乘法。算如下:

算草

因 73.594×32.746=735.94×3.2746.

∴ 64723

735.94×3.2746 2207.82 147.18 51.45 .42 2406.9

例 6. 求 3.141592×2.718281的積, 祇須有四位準確數碼 〔解〕 所求的積, 雖然可以有七位可信數碼, 但是因為祗 要求四位準確數碼, 所以照省略算的現則祗要多取兩位相乘 就夠了。卽:

 $3.14159 \times 2.71828 = 8.53972$.

再用四捨五入法,得所求的積為8540.

§ 125. 省略除法

例 1. 已經知道長方形桌的長是 3.423? 公尺, 面積是 859?方公尺, 問牠的闊是多少公尺?

(解)

除數和被除數都有四位可信的數 普通算草 2.296 碼;所以商數也應當有四位可信的數 3.423) 7.859 碼,照普通除法求得商數為 2.296. 但 6.846 1.6130 是這樣除法,從第一餘數1.013以後,每 .6846 除一次就要加一個[0],好像以3.423 .32840.308)7 除7.859000似的,其實被除數末三位 20330 20538 的0都是?,都不是確定的數碼,與其每 縮除算草 除一次就在被除數左端加上一個0,不 2.2如把除數的左端捨去一個數碼來得方 3.423) 7.859 6 846 便,所以有左列的縮除法。 1.013 685 (以3.42 為除數) 328 308 (以3.4 為除數) 20 20 (以 3 為除數)

第十章 比和比例

§ 126. 比和除法 前面講過,兩個整數相除,有兩種意義,即求倍數和均分的意義。譬如以4除36.照前一種意義講,就是求. 36 是 4 的幾倍; 照後一種意義講,就是均分 36 為 4 份。但是均分一個數,每每不能得到整商,譬如4個人均分34個梨,就得不到整商,不得已創立分數 34 ,以表示均分的結果。求倍數也像均分一樣,有時得不到整數倍,譬如 34 尺布是 4 尺的幾倍長,就得不到整數倍,不得已創立一個新算式 34 : 4 來表示這個倍數。這個算式 34 : 4 叫做比,讀為『34比4』,這個符號:,叫做『比號』,讀為『比』。34 叫做比的前項,4 叫做比的後項,以4 除 34 所得的商8.5 叫做比率。由是得比率和前後兩項的關係如下:

§ 127. 比的種類、比有三種:比率大於1的,如13:16 叫做優比,小於1的,如17:31 叫做劣比,等於1的,叫做平比。

§ 128. 比的特性 比的前後兩項如若是名數,那麽這兩個數非要同名數不可,否則就無意義。譬如樹高 54 尺; 房高 18 尺 = 54 尺: 18 尺 = 54 : 18 = 54 ÷ 18 = 3, 這是有意義的,即樹高是房高的 3 倍,或樹高是房高 18 分之 54 倍。如若樹長 54 尺: 18個人重,這就沒有意義,但是 54 尺長的樹 18 個人均分,這又有意義了,不過這是均分的意思,即 54尺長 = 54 ÷ 18 = 每人 8 尺。

由這樣研究的結果,可知比也是分數,但是分數不一定是比, 現在把比的特性列舉如下:

- 1. 比要同類量可以相比,否則就無意義(第一特性)。
- 2. 凡比率都是不名數(第二特性)。

但是,如若所研究的數都是不名數,那麼比和分數或除法就可以看作是完全相同,所以:

$$a: b=a \div b = \frac{a}{b}$$
.

例如 $15:3=15\div 3=\frac{15}{3}$.

叉如
$$7:2=7\div 2=\frac{7}{2}$$
.

這三種算式 a:b, $a \div b$, $\frac{a}{b}$, 牠們的意義雖有差別, 但是運算卻是相同。由是得比的第三特性如下:

8. 在運算上,比,分數,和除法,名雖異而實卻同。

〔注意〕 分數不能以 0為分母, 所以比也不能以 0做後項。

§ 129. 比的運算律 無論所討論的數是名數或不名數, 一切的比都可以看作是分數; 所以分數的運算律都可以看作是 比的運算律。譬如分數有擴分約分定律, 比也有擴比約比定律。 擴比定律: 比的前後項, 用同一的數來乘, 比率不變。

例如 7斗:8斗=21斗:24斗=56斗64斗(根據擴分 定律即得)。

約比定律: 比的前後項,用同一的數來除,比率不變。

例如 56 斤:64 升=7斤:8 斤。

習 題

- 1. 說明比和分數的異同,比和除法的異同。
- 2. 5斤能和9尺相比麼?
- 3. 3斤能和4兩相比麼?
- 4. 判别下列各比的優劣:

34 斗:16 斗, 19:17, 23:14, 1斤:16 雨。

5. 求下列各比的比率:

$$3:4$$
, $\frac{4}{3}:\frac{7}{9}$, 7 $F:8$ \overline{m} , $3\frac{1}{4}:\frac{7}{5}$, $\frac{3\frac{1}{4}}{12}:\frac{2}{7}$.

6. 比較下列各比的大小:

4:3, 1:4,
$$\frac{1}{3}:\frac{4}{9}$$
 7:2, 9:5.

7. 問鐘錶上時針和分針旋轉速度的比是多少?

- 8. 茶葉 5 斤的價值和酒 2 斤的價值相等,問 1 斤茶葉的價和 1 斤酒的價的比是多少?
- 9. 已知比率是 0.7, 前項是 9, 問後項是多少?
- 10. 已知比率是 1.3, 後項是 6, 問前項是多少?
- 11. 24 和某數的比是 $\frac{2}{9}$,問這個某數是多少?
- 12. 某數和37的比是0.3, 問這個某數是多少?

§130. 正比反比 前後兩項對易所得的兩比,叫做互為 反比,譬如4:3是3:4的反比,3:4也是4:3的反比。互為 反比的兩個比,其中一個若稱為其他一個的反比,於是其他一個 就叫做正比,譬如4:3是3:4的反比,於是3:4就叫做正比。

〔注意〕1. 正比和反比就是互為倒數的兩個分數,正比的倒數就是正比的反比。

[注意] 2. 因為 $\frac{1}{a}:\frac{1}{b}=\frac{b}{a}=b:a$,而b:a是a:b的反比,所以 $\frac{1}{a}:\frac{1}{b}$ 是a:b的反比,由是又得反比的定義如下:a的倒數和b的倒數的比,叫做a:b的反比。

[注意] 3. 反比的比率等於正比比率的倒數。

§ 131. 單比 複比 假設有三個比: 3:5, 7:6, 8:9 這三個比的前項相乘的積 3×7×8 比後項相乘的積 5×6×9 即 3×7×8:5×6×9,叫做原來諸比的複比,而原來諸比叫做單比, 諸單比的複比常寫為:

$$3:5
7:6
= \frac{3 \times 7 \times 8^{4}}{5 \times 6 \times 9} = \frac{28}{45} = 28:45.$$
8:9

由是得複比的三要性如下:

- 1. 複比可以化為單比。
- 2. 複比的比率等於諸單比比率的連乘積。
- 3. 複比的前後項如若有公因數可以約去。

例題1. 已知甲乙兩量的比是5:7,乙丙兩量的比是9:4 間甲丙兩量的比是多少?

(解) 因
$$\frac{\Pi}{Z} = \frac{5}{7}$$
 $\frac{Z}{R} = \frac{9}{4}$,
 $\therefore \frac{\Pi}{Z} \times \frac{Z}{R} = \frac{5}{7} \times \frac{9}{4}$ 即 $\frac{\Pi}{R} = \frac{45}{28}$,
或 Π : Π : Π =45:28.

所以甲丙的比是甲乙比和乙丙比的複比。

§ 132. 連比 三個或三個以上的數連續相比,所得的比式叫做連比。譬如 A:B=4:7,B:C=7:3,於是 A:B:C=4:7:3,這個比式 4:7:3 就是 A,B,C,三數的連比。又若 G:D=3:5,於是 4:7:3:5 就是 A,B,C,D 四數的連比。 例題 1. 設 A,B 兩數的比為 5:6; B,C 兩數的比為

例題 1. 設 A, B 兩數的比為 5:0; B, C 兩致時比為 7:4. 問 A, B, C 三數的連比如何?

〔解〕 根據連比的定義,必須把5:6的後項和7:4的前 項先化為相同的數,纔可以寫出所求的連比來,由是:

$$A: B=5: 6=5\times7: 6\times7=35: 42.$$

$$B: C=7: 4=7\times 6: 4\times 6=42: 24.$$

所以 A:B:C=35:42:24.

例題 2. 設 A, B 兩數的比為 5:6; B, C 兩數的比為 7:4, 問 A, C 兩數的比是多少?

〔解一〕 因
$$\frac{A}{C} = \frac{A}{B} \times \frac{B}{C} = \frac{5}{6} \times \frac{7}{4} = \frac{35}{24}$$
,
所以 $A: C = 35: 24$.

〔解二〕 先求出 A, B, C 的連比為 35:42:24, 即得 A, C 的比為 35:24.

習頭

1. 問下列各比的反比是多少?

$$5:7$$
, $8:9$, $\frac{4}{5}:\frac{5}{3}$, $2\frac{5}{12}:1\frac{3}{7}$, $0.32:0.04$.

- 2. 問下列各組的複比是多少?
 - (a) 4:7, 5:7, 6:5, 3:5.
 - (b) 3.2:3, $2\frac{1}{2}:3$, $3:7\frac{1}{3}$.
 - (c) $0.34:3\frac{1}{4}$, 7:31.4.

- 3. 問下列諸比的連比是多少?
 - (a) 13:9, 9:8, 16:11.
 - (b) 34:7, 11:3, 4:5.
 - (c) $1\frac{1}{3}:4\frac{2}{3}$, 3:2, $2\frac{1}{2}:3\frac{1}{2}$ °
- 4. 甲生每小時能寫正楷字 645 個,乙生能寫 215 個,問甲 乙兩生寫字能力之比是多少?
- 5. 京滬鐵路三四等慢車從南京到上海須開 11 小時,首都 快車祇要開 4 小時 50 分,間兩種車平均速度的比是多少?
- 6. 在錶面上時針和分針旋轉速度的比是多少?
- § 133. 比重 兩種同體積物品的重相比,所得的比率叫做比重。在物理學上,因為水到處都有,取捨方便,所以物理學家就以溫度 4°C 的水為比重的標準,把其他一切物質的重都一一和同體積的水重相比,所得的比率叫做其他物質的比重。

例如一公升的水重一公斤,一公升的金重 19.26 公斤,兩公 升的銀重 21 公斤,三公升的火酒重 2.37 公斤,所以:

金的比重=
$$\frac{19.26 \text{ 公斤}}{1 \text{ 公斤}}$$
=19.26.

銀的比重=
$$\frac{21 \text{ 公斤}}{2 \text{ 公斤}}$$
=10.5.

火酒的比重=
$$\frac{2.37 \, \text{公斤}}{3 \, \text{公斤}} = 0.79$$
.

[注意] 任何物品比重的值都是不名數。

習。題

- 1. 4公升的水銀重 54.4公斤,5公升的煤油重 4.45 公斤,7公升的海水重 13.3公斤,問水銀,煤油及海水比重 各若干?
- 2. 鋅的比重是7.1, 問11 立方公分的鋅有多少重?
- 3. 鉛的比重是 11.5, 問 12 立方公分的鉛有多少重?
- 4. 已知鐵的比重是7.5, 問15公斤的鐵的體積是多少?
- § 134. 比例 根據擴比定律,可知一個比,譬如 4:7 寫 23 12:21, 牠們的比率仍舊相等,即:

4:7=12:21.

於是我們就說 4,7,12,21 四個整數成比例。而表示這四個數成比例的等式叫做比例式。第一第四兩數叫做外項,第二第三兩數叫做內項。

a:b=c:d.

a, d 就是外項, b, c 就是內項。

§ 135. 比例的基本定理 根據比的運算律,可知a:b=。: d, 也可以寫為 $\frac{a}{b} = \frac{c}{d}$, 以 b d 乘這個等式的兩邊,即得:

$$ad = bc$$
.....(1)

即从項×外項=內項×丙項……(2)

由是得:

定理 1. 比例式中,內項相乘的積等於外項相乘的積,由 上面(2)式可知:

由是得:

定理 2. 比例式中任意一內項等於其他內項除兩外項相 乘的積;任意一外項等於其他外項除兩內項相乘的積。

〔注意〕 根據這個定理,可知比例式中,隨便知道三項, 其餘一項就可以求出來,這所求的一項叫做『未知項』,求比 例式的未知項,叫做解比例式,從前的人,稱比例式為三項律 (rule of three),也就是知道三項可以求出其他一項的緣故。

例 1. 解比例式 4:7=x:3.

(解)
$$x = \frac{4 \times 3}{7} = \frac{12}{7}$$
.

例 2. 放大圖,實長 1 寸的畫 6 寸,問實長 3 寸的應畫幾寸?

[解] 1:6=3:x. ∴ x=18, 卽實長3寸應畫18寸。

習 題

1. 下列各組的數能成比例的,列成比例式:

3,4,6,8; 3,5,6,10; 2,3,8,10;

2,3,4,6; 12,15,16,20; 13,15,39,5.

2. 解下列各比例式:

$$x:8=15:2;$$

$$8: x = 2\frac{1}{2}: 7\frac{3}{4}:$$

$$3:5=x:7\frac{1}{4};$$

$$4\frac{2}{3}:1\frac{3}{4}=6:x.$$

- 3. 問4尺與若干尺的比等於5兩與8兩的比?
- 4. 如若比例的四項都是名數,這些名數是否都要同類?一 二兩項是否要同類?二三兩項是否要同類?三四兩項是否 要同類?
- 放大圖,實長1分的畫五分,問實長1尺2寸的應畫多 少分?
- 6. 結小圖,實長4分的畫1分,問實長2尺3寸的隱畫多 少分?
- 7. 已知 x:6=y:7, 問 x:y 是多少?
- 8. 3元買布5尺、問7元可買同樣的布若干尺?

§ 136. 正比例正變 買書一本,價一元三角,於是買書二 本的總價值就要兩元六角,三本就要三元九角,四本就要五元二 角……, 書的本數增大幾倍, 牠的總值也增大幾倍; 本數縮小幾 倍、總值也縮小幾倍,總值隨書本的本數而變,幷且前後本數的

比等於前後總量的比, 即:

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{2}$ $\frac{3}{5}$ $\frac{3}$

這樣兩種量,在數學的術語上,就說這兩種量成正比例。

上面的比例式也可以寫為分數式如下:

$$\frac{2}{1} = \frac{2.6}{1.3}, \quad \frac{3}{2} = \frac{3.9}{2.6}, \quad \frac{4}{3} = \frac{5.2}{3.9}, \quad \vec{\mathbb{R}}$$

$$\frac{1.3}{1} = \frac{2.6}{2} = \frac{3.9}{3} = \frac{5.2}{4}$$

現在設 x 代表書的本數,y 代表書的總值,x 由 1 而 2 而 3 而 4 的變,y 就由 1.3 而 2.6 而 3.9 而 5.2 的變。無論如何變 y 與 x 的比永遠等於一個常數。於是我們就說 y 對於 x 成正比例,或 y 因 x 正變。

如若 y 對於 x 成正比例或 y 因 x 正變, 於是 y 和 x 就有下式的關係:

$$\frac{y}{x} = k$$
 $\vec{y} = kx$.

這裏的 k 就是比例常數,像上面書的總值與本數相比的常數是 1.8,所以 k=1.3.

日常事物成正變的很多,現在舉些種例如下:

- 1. 工價一定 人數和工錢成正變。
- 2. 速度一定 時間和行程成正變。

- 3. 時間一定 速度和行程成正變。
- 4. 物價一定 購物的錢數和購得的物數成正變。
- 5. 比重一定的物質 重量和體積成正變。
- 6. 體積一定的物質 重量和比重成正變。

§ 137. 反比例反變 假設有一種工程,12人合做,24日 可以做成;於是6人合做,就要48日可以做成;3人合做,就要 96日可以做成。人數減少幾倍,做工日數就增大幾倍,前後人數 的比等於前後日數的反比,即:

$$\frac{12 \text{ } }{6 \text{ } } = \frac{48 \text{ } }{24 \text{ } }, \qquad \frac{6 \text{ } }{3 \text{ } } = \frac{96 \text{ } }{48 \text{ } }$$

這樣兩種量,在數學的術語上,就說這兩種量成反比例。

上面的比例式也可以寫為:

$$\frac{12}{6} = \frac{48}{24}, \quad \frac{6}{3} = \frac{96}{48},$$

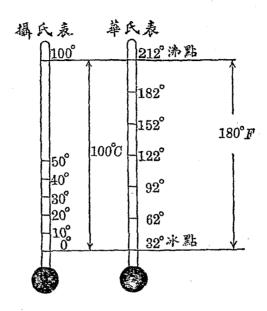
$$\frac{12}{\frac{1}{24}} = \frac{6}{\frac{1}{48}} = \frac{3}{\frac{1}{96}} = 288.$$

現在設作工人數為y,作工日數為x,x 由 24 而 48 而 96 的 變,y 就由 12 而 6 而 3 的變。無論x,y 如何的變,y 與x 的反比永遠等於一個常數。于是我們就說y 對於x 成反比例,或y 因x 反變,或y 因 $\frac{1}{x}$ 正變。由是得 $y=k\frac{1}{x}$ · 這裏的 k 也是比例常數,像上面所舉作工人數與日數的例,k=288 .

日常事物成反變的很多,現在舉幾種例如下:

- 1. 一定的工程 工作的人數工作時間成反變。
- 2. 一定的路程 行路速度和所需時間成反變。
- 3. 由物理實驗 知道温度一定時氣體壓力和氣體體積成 反變。
- 4. 銀數有一定 買物的價格和買得的物數成反變。
- 5. 食物的多少有一定 食物的人數和食物的時間成反變,
- § 138. 比例的應用 在日常生活上或科學上,應用比例 的地方很多,現在舉例如下:

(一)物理學上的應用

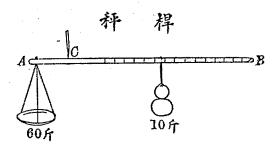

- 例1. 某種氣體在3氣壓(氣壓是量氣體壓力的單位)時的體積為15公升,問5氣壓時的體積是多少?
 - 〔解〕 設某氣體在5氣壓時的體積為 x; 於是因壓力與 體積成反比例,得比例式如下:

3氣壓:5氣壓=&公升:15公升,

$$\therefore x = \frac{3 \times 15}{5} = 9 \text{ 公升}.$$

(答)在5氣壓時的體積為9公升。

例 2. 身體康健的人的體温,用攝氏表來量是 37°C, 若 用華氏表來量是多少度?


[解] $100^{\circ}C:37^{\circ}C=180^{\circ}F:x^{\circ}F$

$$\therefore x = \frac{180}{100} \times 37 = 66.6,$$

$$66.6 + 32 = 98.6.$$

(答)用華氏表來量康健的人的體溫是 98.6°F.

- 例 3. 有一桿秤 AB 長 12 市尺, 鍾重 20 市斤, A 端懸重 物 60 市斤, 該重物離支點 C2 市尺, 問錘和重物平衡時錘離支 點多少尺?
 - 〔解〕 由實驗的結果,知道支點一定的時候,物重和重臂 的長(即重物雜支點的距離)成反比例,所以:

60斤:20斤=x尺:2尺,

$$∴ x = \frac{60 \times 2}{20} = 6 \, \text{R}.$$

(答)錘離支點的距離為6尺。

(二) 化學上的應用

例 4. 18 斤的水分解為氫氧兩氣,得 16 斤氧,問 45 斤的水分解得氧多少斤?

例 5. 食鹽是由鈉和氯化合成的,23克的鈉都和氯化合 為食鹽,須要 35.5克的氯,間 47克的鈉和氯化合為食鹽,須氯 若干?

〔解〕
$$23:47=35.5:x$$
,
 $x=\frac{47\times35.5}{23}=72.5$ 克。

(答) 47克的鈉都和氯化合須要72.5克的氯。

(三) 其他方面的應用

例 6. 18 人合做 12 天可以做成的工程,限 4 天做成,需 要多少人?

例7. 11尺長的桿, 直立地面上, 影長 4尺, 問影長 28尺 的塔有多少高?

[解] 因為物長和物影的長成正比例,所以:

4尺:23尺-11尺:0尺,

$$\therefore x = \frac{23 \times 11}{4} = 63.25 \, \text{尺}.$$
(答) 塔高 63.25 尺。

習題

- 1. 有糧可供 1500 人 10 個 月之用, 現在增加 300 人, 問可 支持幾個月?
- 2. 有一工程 36 人作 7 天可成, 經過 8 天以後減少 9 人, 問還要幾天可成?
- 3. 强走8步的距離,大走6步可到,周犬走96步的距離,

桑須走幾步?

- 4 里子3人的食量等於女子5人的食量,今有男子12人, 女子7人,是供27天的食料,專供女子15人食用,可支 持総天?
- 聲音 5 秒鐘 1705 公尺, 今遙望某艦開砲, 見光 12 秒後 始聞砲聲。問距兵艦多少遠?
- 6. 有一工程 14 人合作, 24 日可成, 若要早 3 日趕成, 應 添幾人?
- 7. 從甲鎭到乙鎭行三時半,走去全路的 $\frac{7}{0}$,問尙須多少時, 總到乙錠?
- § 139. 歸一法 上面所舉例題的解,也可以用此法來說 明,所以成比例的原因。譬如(例6)及(例7)可說明於下:

[用歸一法說明例6的解] 某種工程,限12天做成,就要 18個工人,於是限1天做成,就要12×18個工人。

現在限 4 天做成,所以要 $\frac{12\times18}{4}=54$ 工人。

旬 12天:4天=54人:18人。

[用歸一法說明例7的解] 影長4尺, 桿長11尺, 於是 影長1尺,桿長11尺。

現在影長 28 尺, 所以塔高11 × 28 尺 = 63.25 尺。

旬 4尺:23尺=11尺:63.25尺。

§ 140. · 複比例

例 1. 工友 7 人做 4 天的工, 得工資 8.4 元, 問工友 11 人做 6 天的工, 應得工資多少?

〔解〕 先用歸一法來解:

工友7人做4天的工得工資8.4元,

於是,工友7人做1天的工得工資 $\frac{8.4}{4}$ 元,

工友1人做1天的工得工資 $\frac{8.4}{4\times 1}$ 元,

所以,工友11人做1天的工得工資 $\frac{8.4}{4\times7}$ ×11元,

現在工友 11 人做 6 天的工應得工資 $\frac{8.4}{4\times7}$ × 11 × 6 元,

設應得工資為x, 則 $x = \frac{8.4}{4 \times 7} \times 11 \times 6$ 元 = 19.8 元。

這個等式若寫為比例:

爽

$$\begin{array}{c} 7:11 \\ 4:6 \end{array} \} = 8.4:x.$$

因其中含有複比, 所以數學家就叫牠為複比例。

像這樣的問題,用歸一法來求雖然十分清楚明白,但是會

寫字句頗咸不便,所以遇到這樣問題,普通都用複比例的方法來算。

用複比例的方法來解這樣問題,最好先把題中各數列戊 下表,免得發生混亂或錯誤:

4天─→6天

8.4 元→ ∞元

$$\begin{array}{c} :. & 7:11 \\ 4:6 \end{array} \} = 8.4:2.$$

例 2. 7人每日工作 8 小時, 18 日可耕田 252 畝, 若 6 人 20 日內要耕田 270 畝, 問每天須作工幾小時?

7人→→6人 人數對於工作時間成反比例。

8 時→ * 時

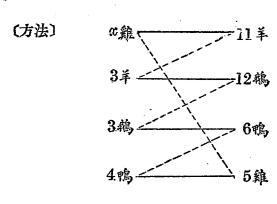
18 天——20 天 天數對於工作時間成反比例。

252 畝—→270 畝 能耕畝數對於工作時間成正比。

得方程式:

$$\begin{array}{c}
6:7 \\
20:18 \\
252:270
\end{array} = 8:x,$$

 $x = \frac{7 \times 18 \times 270 \times 8}{20 \times 6 \times 252} = 9 \text{ BB}.$ (答)每天須作工 9 小時。


習題

用歸一法解下面的題:

- 1. 甲3日的工作,乙須4日完成,今甲作工九日,每日作工7小時,得工資36元,乙作工14日,得工資54元,問每日工作幾小時?
- 2. 重 250 噸之貨,45 里之運費為 15.75 元,如以同一比例 運 665 噸之貨,運費為 50.274 元時,問運送之里程如何? 下面各顯用複比例解之:
- 3. 掘長 120 丈闊 1 丈深 5 尺之溝,用工人 9 名,每日工作 8 時 5 日可成,如掘長 315 丈闊 2 丈深 3 尺之溝,用工人 14 名,欲於 6 日竣工,每日須工作幾時?
- 4. 男工8人與女工4人,每日工作10時,15日可成之事,如單用男工10人,每日工作8時,問須幾日可以竣工?但 男工一人與女工一人之力之比為5:3.
- 5. 飼養牛 30 匹, 羊 48 匹, 12 日間需草料 432 斤, 牛 24 匹, 羊 60 匹, 10 日間需草料 315 斤,如照此比例, 7 日間 飼牛 32 匹, 羊 27 匹時, 問需草料若干?

§ 141: 連鎖法 多種的量,因為知道挨次兩量的比,而求 得首兩量的比,這種方心叫做連鎖法,或連鎖比例。

例 1. 5 雞換 4 鴨, 6 鴨換 3 鴉, 12 鴉換 3 羊, 問 11 羊換 幾雞?

∴
$$x = \frac{11 \times 12 \times 6 \times 5}{3 \times 3 \times 4} = 110 \, \text{m}$$
.

〔理由〕
$$1$$
 鴨換 $\frac{5}{4}$ 雞, 6 鴨換 $\frac{6\times5}{4}$ 雞,或 3 鴉換 $\frac{6\times5}{4}$ 雞, 1 鴉換 $\frac{6\times5}{4\times3}$ 雞,

12鵝(或 3 羊)換
$$\frac{6 \times 5}{4 \times 3} \times 12$$
雞,

$$1 羊換\frac{6 \times 5 \times 12}{4 \times 3 \times 3} 難,$$

11羊換 $\frac{6 \times 5 \times 12 \times 11}{4 \times 5 \times 5}$ =110 郎 110 雞。

[法則] 命未知項為 x, 列在左邊; 然後將等價的量並列在 右邊, 與右邊同種的量斜列在左邊, 如此挨次列出的量, 於是把 左行已知項的連乘積除右行諸已知項的連乘積, 即得未知項 x。

習題

- 1. 柿3個與橘4個同價,橘5個與蘋果3個同價,問蘋果8個與柿幾個同價?
- 2. 於 280 碼之競走,如甲讓乙先發 14 碼,則無勝敗,又於 570 碼之競走,如乙讓丙先發 24 碼,則無勝敗,今於 1100 碼競走,甲如讓丙先發 80 碼時,問甲可勝若干碼?
- 3. 有甲乙丙丁戊五個工人,甲工5日之工作,乙工6日成之,乙工8日之工作,丙工10日成之,丙工4日之工作, 丁工3日成之,丁工6日之工作,戊工8日成之,今有甲乙二工15日間可成之工作,如僅以戊工為之,問須幾日可成?
- 4. 甲6天,乙7天,丙8天,丁9天, 其工資相等, 今甲3 天, 乙5天, 丙12天,丁7天,共得工資24元6角4分, 問各得多少?

§ 142. 配分法 按一定的比,把一種量劃分為幾部分,這 隨方法叫做配分法,或配分比例。

例 1 接 $\frac{3}{4}$: $\frac{2}{5}$: $\frac{1}{3}$ 的比,分 623 元于甲乙丙三人,求各人所得之元數。

〔解〕 先把分數比化為整數比,即以4,5,3的 L.C.M. 乘各項,得:

$$\frac{3}{4}:\frac{2}{5}:\frac{1}{3}=45:24:20.$$

 \therefore 45+24+20=89, \therefore 甲乙丙三人對於總數應得的 比率各為 $\frac{45}{89}$, $\frac{24}{89}$, $\frac{20}{89}$ · 由是:

乙得
$$623 \times \frac{24}{89} = 168$$
 元,

丙得
$$623 \times \frac{20}{89} = 140$$
 元。

習 題

- 1. 金36527元分為5與6與7之比時,問各得若干?
- 2. 有兄弟三人,長男生 20 年 3 個月,次男 15 年 3 個月,幼男 10 年 6 個月,照此年齡分配其父之遺產 47060 元,問各得若干?

- 3. 有銀 465 元分配於甲乙丙丁四人,欲使甲與乙之比為 7 與 6 ,乙與丙與丁之比為 4 與 5 與 7 時,問丁所得若干?
- 4. 甲乙二人,甲投資 2500 元,乙 4000 元,共營商業,一年 後決算共損失 520 元,然於此時丙投資 4500 元,與甲乙 聯合繼續經商,更一年得 2358 元之利益,問甲乙丙三人應 得若干? 但損益照投資之金額分配,丙不與前回之損失。
- § 143. 混合法 將幾種價格不同,分量不等的物品攙和 起來,求出牠們的平均價或混合量,這叫做混合法。

關於混合法的問題,大概可以分為兩類:

- (一) 已知各物的分量和價格,求混合後的平均價。
- 例1. 上中下三種茶,每斤價格各為4.8元,3.21元,
- 2.4元, 問上茶 3 斤, 中茶 5 斤, 下茶 7 斤, 混合後賣價若干?

 - (答)平均價應賣 3.15 元。
 - 【法則〕 先求出總量及總價,以總價除以總量,即得平均價。 : 平均價=<u>總價</u>。
 - (二) 已知各物的價格和平均價,求混合量。
 - 例1. 上酒每斤36分,下酒每斤22分,現在把這兩種酒

混合起來,每斤賣26分,問混合量之比爲何?

1	平均價	原	價	損	益	混合』	混合量的比		
	28分	上酒	36分	10分		4	2		
		下酒	: 2分		4分	10	5		

(答)兩種酒的混合比為2:5.

〔法則〕 先求損益,再取其反比,即得混合量的比。

例2. 上中下三種米,每斗價格各為9角1分,8角,7 角5分,現在混合成每斗賣7角9分,求這三種米混合量的比, 又求混合米54斤所含各種的分量。

〔解〕	平均價	原	價	損	益	配	合	混合量的比
		上米	91.分.	12分		1		1
	79分	中米	89 分	1分		3	4	4
		下米	75 分		4分	12	1	4

(答)三種未混合量的比為1:4:4.

- 1+4+4=9,
- 混合米中含有上米 ¹/₉ × 54 = 6 斤。
 混合米中含有中米 ⁴/₉ × 54 = 24 斤。
 混合米中含有下米 ⁴/₉ × 54 = 24 斤。

習題

- 1. 每元5升1合之米5元, 與每元5升七合之米3元相 混時, 問可得每元幾何之米?又如以5斗與3斗之比相混 時如何?
- 2. 有甲乙二種之銀塊,甲中有純銀95%,乙中有純銀86%, 今欲以此二種銀塊,作重量百兩之銀塊,使其中有純銀 90%時,問各種銀塊須各取幾兩?
- 3. 鶴與龜合計 15 頭,其足合計 48,問鶴與龜各幾頭?
- 4. 有甲乙丙丁之茶四種,其價每斤甲4角3分,乙4角, 丙3角7分,丁3角6分,今將此四種之茶相混,欲得每 斤3角9分之茶百斤,問須丁幾斤?但甲與乙與丙為4與 7與3之比。

第十章 總習題

- 有甲乙兩組工人,甲組人數 48 人,男女之比例為 5:3, 乙組男女之比例為 5:9, 今兩組相合,其中男女人數相 等 問乙組之人數若何?
- 2. 男工2人所成之工作,女工須3人方能完成,今有男工 5人,女工9人,15日間可成之工作,如用男工7人,女

工12人時,問須若干日可成?

- 3. 有甲乙丙丁四種工人,各一人之能力依次為3:4:5:6 之比,今用甲工20人,乙工25人,丙工30人,丁工35 入,每日甲乙各工作10時,丙丁各12時,於43日築成一 堤,若用甲工35人,乙工30人,丙工25人,丁工20人, 每日甲丙各工作12時,乙丁各10時,問須幾日始能築成 3倍於前之堤?
- 4. 有茶商以129元購茶300斤,以每斤6角2分之茶與5角1分之茶混合,使成500斤,每斤出售6角,而得二成五之利益,問其後所加二種之茶各若干斤?
- 5. 帽一個之價上等 4 元 2 角,中等 3 元 6 角,下等 2 元 5 角,三種相混共買 56 個,出銀 200 元,其中上等之帽多於下等 9 個,問各買幾個?
- 6. 上等布 27 正之價與下等布 40 正之價相等,上等布 75 正之價與絲綢 64 正之價相等,今以下等布 28 正與絲綢 交換,損失 4 元 6 角 5 分,問各種布帛一正之價若干?
- 7. 汽車行6里時,馬車行1里,馬車行5里時,人力車行4里,如自由車是人力車的兩倍,問汽車行45里時,自由車行幾里?
- 8. 甲乙丙三人分銀 1000 元,甲所得的 $\frac{1}{2}$ 等於乙所得的 $\frac{1}{3}$

- 乙所得的 $\frac{1}{7}$ 等於丙所得的 $\frac{1}{5}$,問各得銀幾元。
- 9. 某人有銀 700 元給三子,長子以其所得買田 12 畝,倚餘 5 元,次子買田 7 畝適盡,幼子買田 9 畝,尚欠 33 元,間當時三人各得若干?

第十一章 百分法(percentages)

§ 144. 問題 1. 假設甲杯盛有清水 4 斤,醬油 1 斤;乙 杯盛有清水 23 斤,醬油 2 斤;丙杯清水 47 斤,醬油 3 斤。問這三 杯的液體那一杯最鹹?那一杯最談?

(解) 各杯醬油重量和全杯液體重量的比,各為 1/5,25,30. 現在要知道這三杯液體的鹹淡,就要比較這三個分數的大小。前面已經講過,比較分數的大小有三種方法: (一)化為同母分數來比較,(二)化為同子分數來比較,(三)和一定數來比較。這三種方法最通用的要算第一種,尤其把分母都化為100,更顯得醒目清楚。凡是把所要比較的分數,都化為以160為分母的分數來比較,這種方法,叫做百分法。百分法在科學上及日常生活上應用很廣,所以本章特別提出來討論。上面三杯液體,倘若用百分法來表示牠們所含醬油的多少,那麼上面三個分數變為20,8/100,100,100,100,100,100

§ 145. 問題 2. 硫黄 2 公斤,木炭 3 公斤,硝石 15 公斤,

可製造火藥 20 公斤, 問火藥的成分如何?

〔解〕 火藥的成分為硫黃 $\frac{2}{20}$ 或 $\frac{1}{10}$,木炭 $\frac{3}{20}$,硝石 $\frac{15}{20}$ 或 $\frac{3}{4}$,

倘若用百分法來表示,即硫黃 $\frac{10}{100}$,木炭 $\frac{15}{100}$,硝石 $\frac{75}{100}$

§ 146. 百分法百分率 甲乙兩數的比,常用百分之幾的分數來表示這樣表示法叫做百分法。比的前項叫做子數,後項叫做母數。 比的比率叫做百分率,譬如研究火藥的成分,計木炭佔有全量百分之 15, 這裏的 15 就是子數, 100 就是母數, 15 就是百分率。

§ 147. 符號 因為 15 = 1 100 × 15,就是 15 個 1 100,所以 100 是百分率的單位。這個單位 100 常用 『%』表明,讀作『百分』;又因 100 = 0.01,所以也讀作『釐』。譬如 15 寫作 15%,讀作『15 個百分』或『15 釐』或『1分 5 釐』。

習題

1. 讀出下面的百分率:

34%, 17%, $7\frac{1}{3}\%$, 5.3%, 43%, $82\frac{1}{2}\%$.

2. 用百分符號寫出下列各數:

6分, 34 釐, 7釐 3 毫, 3 分 4 釐 5 毫。

§148. 化小數為百分率的法則

6) 1.
$$0.31 = \frac{31}{100} = 31\%$$
.

例 2.
$$0.125 = \frac{12.5}{100} = 12.5\%$$
.

例 3.
$$0.04 = \frac{4}{100} = 4\%$$
.

根據這三個例, 即得下列的法則:

法則 化小數為百分率,祇須把小數點向右移兩位,再加上 至分符號%即得。

§ 149. 化分數為百分率的法則

例 1.
$$\frac{2}{5} = \frac{40}{100} = 40\%$$
.

例 2.
$$\frac{1}{4} = \frac{25}{100} = 25\%$$
.

例 3.
$$\frac{56}{1400} = \frac{56 \div 14}{1400 \div 14} = \frac{4}{100} = 4\%$$
.

例 4.
$$\frac{1}{8}$$
=0.125=12.5%.

由是得法則如下:

法則 化分數為百分率,可分為兩種情形:(一)分子分母同以一數乘之或除之,使分母變成100,再用百分符號%代替 100 即得。(二)先把分數化為小數,再照小數化法去做。

習 題

1. 化下列各分數或小數為百分率:

$$\frac{3}{5}$$
, $\frac{3}{8}$, $\frac{1}{16}$, $\frac{3}{4J}$, $\frac{1}{32}$, $\frac{2}{7}$, 0.003, 0.1247, 3.04, 1.312.

§ 150. 百分率和子數母數的關係 由百分率的定義,得 百分率和子母兩數的關係如下式:

由這個公式,可知其中任意兩個數若已知道,則其他一數,就可以照這公式求出來。

- 例1. 某校招生,投考生共 325 人,錄取 156 人,間錄取的百分率?
 - 〔解〕 325 是母數, 156 是子數, 由公式(1)即得所求

百分率=
$$\frac{156}{325}$$
= $\frac{156}{13\times25}$ = $12\times\frac{1}{25}$ = $48\times\frac{1}{160}$ = 48% .

- (答)錄取的百分率為 48%, 即每一百人投考有 48人 錄取。
- 例 2. 火藥中含有硝石 75%, 木炭 15%, 硫黃 10%, 現在要製造火藥四千斤, 問需要硝石, 木炭, 硫黃各若干斤?
 - 〔解〕 4000 斤是母數,75% 是百分率,由公式(1)即得

$$75\% = \frac{所求子數}{4000}$$

: 所求子數= $4000 \times \frac{75}{100} = 3000$ 斤。

依同理所需木炭=40×15=600 斤。

所需硫黄=40×10=400斤。

〔別解〕 本題採用的單位為斤,所以火藥中含有硝石 75%,即每斤的火藥需要硝石 75%或 0.75斤,由題 4000斤的火藥應需硝石為 0.75×4000=3000斤,餘同理。

例 3. 某處的沙含有純金 0.05%, 現欲淘得純金 4 公兩, 問需沙多少?

〔解〕 0.05%是百分率, 4是子數,由公式(1)得

所求的母數= $\frac{4}{0.05\%}$ = $\frac{4}{0.0005}$ 公兩=8000公兩=8公擔,

[別解] 本題採用的單位是公兩,所以 0.05% 是表示每公雨的沙中有純金 0.05% 公兩,由是得比例式:

 $1 \cdot x = 0.05\% : 4$,

 $\therefore x = \frac{4}{0.00\%}$ 公兩 = 8 公擔。

例 4. 上月米價每石 10 元 6 角,本月比上月漲 12%,問本月米價每石若干元?

〔解〕 每石米應漲 10.6×12%=1.272元, 所以本月米價=10.6+1.272=11.872元,

習 題

- 1. 某數的 12 1 % 是 342 元, 問某數是多少?
- 2. 問 374 的 9% 是多少?
- 3. 空氣的成分,氧佔 20%,氮佔 79.9%,問 539 立方尺的 空氣,含有氧氮各若干?
- 4. 雞蛋的成分,水佔73.7%,脂肪10.5%,蛋白質14.8%。 確物質1%,問56斤雞蛋含有上列成分各若干?
- 5. 純水所含氫氧重量的比為 1;7.94, 問氫氧對於水的百分率?
- 6. 牛奶的成分是水 87%, 脂肪 4%, 蛋白質 3.3%, 炭水 化合物 5%, 礦物質 7%, 現欲由牛奶中取出蛋白質 13.2 公兩, 問需要牛奶多少? 又問由所需牛奶中所得脂肪, 炭水礦物質各若干?
- 7. 某校女生人數佔全校學生數 17%, 現該校有女生 119 人, 問該校學生人數若干?
- § 151. 百分法的應用 百分法的應用很廣,現在隨便舉 五類應用,分別說明如下:
- § 152. 佣錢 托人處理錢財貨物,提出其中百分之幾作 為酬勞,此種酬勞費叫做佣錢或回佣或酬金。

以物價除佣錢所得的商,叫做佣率或酬率,佣率多少,概由 各關係人商定。

例1. 代人經賣住宅一所,實價64500元,問按成3破2的例(即買主出百分之3,賣主出百分之2),買主應付出多少元? 賣主可得多少元?中人可得佣錢多少?

〔解〕 買主付出的錢=實價+佣錢。

$$=64500+64500\times3\%$$

$$=64500+1935$$

$$=64500-64500\times2\%$$

$$=64500-1290$$

$$=63210$$
 元。

佣錢=64500×5%=3225元。

例 2. 托人買物一宗,連馮錢 4%, 共付國幣1144 元,求物價?

〔解〕 1144÷(1+004)=1144÷1.04=1100元。

習題

1. 某甲替人賣去房屋一所,照例抽手續費5%,現某甲得

佣金 2335 元, 問這所房屋賣價多少?

- 2. 經紀人替某商人售出白糖 328 斤,每斤價 3 角 4 分,佣 率 3 1 2 %,問商人及經紀人各得國幣若干元?
- 3. 托經紀買來紅茶 500 斤, 佣錢 5%, 共付國幣 1050 元, 間每斤紅茶的售價是多少?
- § 153. 折扣連折扣 就所定的價或應付的款內減去若干, 叫做折扣。折扣常用百分計算,這種百分率叫做折扣率。

譬如定價 90 元的書,若付 72 元可以清賬,中國市場就說 『照定價八折計算』。但在歐美各國說『扣 20%』,所以折扣的說法, 有中外兩種的不同:

- (一)在我國市場都照折淨的百分率計算,譬如說八折,七五 折等,都指折淨的數而講。
- (二)歐美各國都照扣去的百分率計算,如說『扣 20%』,不說 『八折』,又如『扣 25%』,不說『七五折』。

先就定價打一個折扣,再就所得的數又打一個折扣,這叫做 連折扣。

譬如定價 90 元的書,先打八折,就是 72 元,再打八折,就是 57.6 元,照定價連續的打兩次的八折,叫做『雙八折』。

例1. 有書一批,定價41.4元,照批發價七折計算,再扣去5%,牠的實價是多少?

例 2. 某人買書一本,照定價八折計算,須付國幣 1.36 元,問該書定價是多少?

[解]
$$1.36 \div 80\% = \frac{13.6}{3} = 1.7$$
 元。
(答)該書定價 1.7 元。

例3. 國藥店賣藥一宗,碼銀36.5元,問照碼八折九扣, 應付實價多少?

[解]
$$36.5 \times 80\% \times 90\% = 36.5 \times 0.8 \times 0.9$$

= $36.5 \times 0.72 = 26.21$ 元。

(答)應付實價 26.21 元。

§ 154. 賺賠 經營商業,得到盈餘叫做賺,虧了本錢叫做 賠。賺或賠對於本錢的百分比叫做賺率或賠率。譬如米一袋,原價 10 元,賣價 12 元,牠的賺率是 $\frac{12-10}{10} = \frac{20}{100} = 20\%$,即每百元可賺 20 元。

§ 155. 保險。承保生命財產的危險,用金錢來賠償損失, 叫做保險,保險公司和受保人所訂的合同,叫做保單,單上寫明 公司承保賠償的金額,叫做保險額,受保人按期所納的費,叫做 保險費,保險費對於保險額的百分比,叫做保險率。 保險的種類很多,大概可分為對物保險和對人保險兩種:對 人保險,有人壽保險,養老保險,不測保險,殘廢保險,失業保險, 健康保險等,對物保險,有火險水險兵險盜險汽車保險牲畜保險 等。

例1. 某甲年 48 歲, 他的兒子 24 歲, 向保險公司各保 8000 元及 6000 元,保險率各計 8.03% 及 5.9%,問某甲父子二人全年應繳保險費多少?

〔解〕 甲全年應繳保險費= $8.03 \times \frac{8000}{100} = 642.4$ 元。

(答)全年應繳保險費996.4元。

例 2. 某甲向公司保壽險 15年,訂明保險額 8000元,年 納保險率 5.1%,問期限滿後,照保險額收回,可得利多少?

習題

1. 某甲有一所住宅,向保險公司保火險,訂明保險額4600

元,年納保險率 2.1%,不到一年,住宅被焚,問保險公司 損失若干?

- 2. 有米 1200 袋, 由漢口運到上海,每袋價 11 元,照實價八 折保水險,保險率 12%, 中途沉沒 800 袋, 問公司和商人 各損失多少?
- 3. 某人有船一艘,照造價7折向公司保險,以保險率 2.3. %計算,應付保險費 920 元,問船的造價是多少?
- § 156. 賦稅 政府依法律的規定,向人民徵收銀錢,充作 行政費用,叫做賦稅或租稅。

稅款由地方政府徵收的,叫做地方稅,由中央政府徵收的, 叫做國家稅。地方稅和國家稅種類很多,現在分別解釋如下:

(甲) 地方税

(一) 田賦 就土地徵收的税叫做田賦,土地分為五等: (1)田,(2)山田;(3)地,(4)蔼,(5)山。因土有肥瘠,地有 大小,民有豐嗇,所以每畝每年所納的稅率各省不同。

古時田賦,祇納糧米,後來因為運輸不便,改行銀錢,所以田賦又叫做錢糧,繳納錢糧叫做『完糧』。明時除田賦外,又有人丁稅,前清把人丁稅幷入田賦一道徵收,總稱『地丁』。地丁的稅率並不是按百分法計算的,所以這裏不再多說了。

(二) 契稅 房屋地皮的賣契,照法律規定,應由買主於立

契之日起,在六個月內向所在地政府登記納費,所納的費叫做契稅,契稅的稅率各地不同,大概照契紙所載價格徵收2%至6%。

- (三) 房捐 就房屋徵收的税,叫做房捐,房捐的税率因各 地生活程度高低而不同,大概照每月房租(或估價)徵收百分之 幾。譬如上海市房捐係徵收12%,上海法租界房捐係徵收18%。
- (四) 營業稅 就商店的營業徵收的稅,叫做營業稅,營業 稅的稅率由各省自定,所以各地不同。譬如<u>江蘇</u>省政府規定係照 0.5%,0.8%,1%分別徵收。
 - (乙) 國定稅 下面四種稅,都是國家稅收入的大宗:
- (一) 關稅 設立機關於通商口岸,向通過的貨物徵稅,這機關叫做海關,所徵收的稅叫做關稅。關稅包括三種: (1)就國外運來貨物所徵的稅,叫做進口稅。(2)就國內運出貨物所徵收的稅,叫做出口稅。(3)就國內甲口岸運到乙口岸所徵收的稅,叫做轉口稅。徵稅方法叫做稅則。海關規定稅則有三種方法:
 - (a) 從價稅 照物品價值徵收百分之幾 這叫做從價稅。譬如大豆,豌豆都是照價值徵收 10%, 生皮 $7\frac{1}{2}\%$ 。
 - (b) 從量稅 依貨物的數量徵稅,叫做從量稅。譬如 棉花進口,每擔徵收 2.12 金單位。
 - (c) 免稅 不徵收稅款,叫做免稅,譬如五穀,書報的 進口和綢緞漆器的出口,都是免稅的。

- (二) 鹽稅 就食鹽徵稅,叫做鹽稅,鹽稅不依百分率計算。
- (三) 統稅 就貨物出廠時徵收一次的稅,叫做統稅。統稅 分為捲菸,棉紗,麥粉,火柴,水泥及薰菸六種,稅率祇分等級,也 不按百分率計算。
- (四) 所得稅 就個人或法人所得而徵收的稅,叫做所得稅, 所得稅創自英國,現在世界各國做行的如美,法,德,意,稅,比, 日本等,不下五十多國。我國舉辦所得稅的提議,遠在前濟末年, 但因種種困難,未能實行。民國二十五年八月,國民政府行政院 會議決定,自十月一日起,先從公務員薪給報酬的所得及公債存 款的所得徵稅,并公布所得稅暫行條例及施行細則。

所得稅的稅率詳載於所得稅暫行條例中,本書因限於篇幅, 不再詳述。

第十一章 總習題

- 1. 讀出下面的百分率:
 - 59%, 12.3%, 3%, 12.93%.
- 2. 用百分符號寫出下列各數:

87 釐, 3 釐 5 毫, -4 分 2 釐, 5 分 3 釐 1 毫。

3. 化下列小數或分數為百分率:

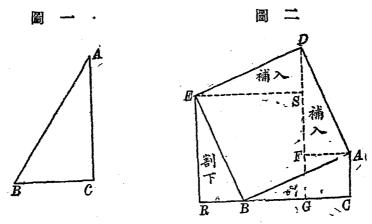
 $\frac{2}{15}$, $\frac{5}{32}$, $\frac{3}{17}$, .021, .315, .008.

- 4. 某種合金內含銅 9 兩,銀 27 兩,共成合金 36 兩,問該合金之成分如何?
- 5. 某校招考新生,錄取人數共187人,恰佔投考人數之84%, 問該校投考新生入數若干?
- 6. 某洋行掮客向人銷貨,共得佣金 259.5 元,該項貨物售 價計共 4825 元,問該掮客所得回佣率若干?
- 7. 某書定價 52.8 元,現為優待顧客起見,特定雙八折出售,如圖書館購買,則再扣去 5%,問該書售與圖書館實價若干?
- 8. 某汽車向保險公司投保金額 2000 元,年納保險費 95 元,問保險率若干?
- 9. 某商店資本 5000 元,一年後計本息共 5125 元,按此賺 率,則 3 年後該商店可賺利金共若干?
- 10. 某人有房十二所,每所月租54元,每月房捐按12%繳納,該捐由房東及房客共同負擔,若此十二所房屋中,六所租出一年半,四所租出八個月,兩所租出五個月,問在一年半中,此房東共繳房捐若干?(注意該房未租出時不繳捐)
- 11. 棉花 500 擔,每擔計價 32 元,用輪船運至某地出售,中 途貨遭水漬,損失 85 擔,但售出價格每擔計價 46 元,問 該貨赚率若干?
- 12. 純硫酸之比重約為1.84,現買到一種比重僅有1.46 之硫酸一瓶,問該種硫酸含水及純酸各佔之百分率若干?

第四編 無理數(數係擴充之二)

第十二章 開方 無理數的近似值求法

§ 157. 乘冪開方 冪,根和指數的意義,以及牠們相互的 關係,都在§ 17-裏講過,這裏不再說明了。


由根和指數來求冪,這方法叫做乘幂或乘方。由冪和指數來 求根,這方法叫做開方。求平方根的方法叫做開平方。求立方根 的方法叫做開立方。

§ 158. 根的記號 64 的平方根寫作《64·立方根寫作》64 這個記號『〈一』叫做根號。根號左上角的數碼 3,叫做根指數。 平方根的指數是 2,64 的平方根本來應當寫為2/64,但是 2 是最 低的根指數,有 〈一根號,已經能與其他的根分別,所以這裏就 省略了。

§ 159. 開平方的應用 開平方的應用很多,現在舉兩個例如下:

(一)求正方形的邊長 如若知道正方形的邊長是3,於是 牠的面積就是3的平方或9;反過來,如若知道正方形的面積是 9,於是牠的邊長就是 $\sqrt{9}$ 或 3. 所以正方形面積的平方根就是 牠的邊長,譬如正方形的面積是 2,於是牠的邊長就是 $\sqrt{2}$.

(二)求直角三角形的邊長 平面上,三條直線所圍成的形 叫做三角形。三角形有一角是直角,如圖一,就叫做直角三角形, 直角兩旁的邊,短邊 BC 叫做勾,長邊 CA 叫做股。直角對邊 BA 叫做弦,勾股弦長短的關係,遠在三千年前,周人商高就已經知 道 $\overline{BC} + \overline{CA} = \overline{BA}$,因此有一個商高定理:勾方加股方等於弦方。 譬如 BC = 3,CA = 4,於是 $BA = \sqrt{3^2 + 4^2} = 5$;又如 BC = CA = 1 於是 $BA = \sqrt{2}$.

商高定理可用 引補的方法來證明

如圖二,要說明 \overline{BG} + \overline{GA} = \overline{BA} ,就是要說明正方形 \overline{CAFG} 的面積加上 \overline{GSER} 的面積等於 \overline{ADEB} 的面積。於是照圖上所示把 [割下部份]與在『補入部份』即證明。

§ 160. 無理數 - 由開平方的應用,可知 ~ 2 也像整數分數一樣的作用, 牠是度量 『量』的 『量數』。但牠不是整數, 也不是分數; 牠是新發生的數, 牠是在兩個分數中間的一個數。

因為
$$1^2 < 2$$
 $2 < 2^2$ \therefore $1 < \sqrt{2} < 2$. 因為 $1.4^2 < 2$ $2 < 1.5^2$ \therefore $1.4 < \sqrt{2} < 1.5$. 因為 $1.41^2 < 2$ $2 < 1.42^2$ \therefore $1.41 < \sqrt{2} < 1.42$.

由此可知√2是在1與2之間的一個數;也是在1.4與1.5 之間的一個數; …… 即在下面兩個數列中上下相對兩 數之間的一個數。

- 1; 1.4; 1.41; 1.414; 1.4142; 1.41421;
- 2; 1.5; 1.42; 1.415; 1.4143; 1.41422;

√2是永在兩個分數中間的, 牠是新發生的數; 現在要使牠和舊的數有區別起見, 把舊的整數和分數叫做有理數, 這個新發生的數叫做無理數。有理數可以用分數寫出來, 所以也叫做命分數; 無理數不能用分數寫出來, 所以也叫做非命分數。

永遠在兩個分數中間的。如若我們要把牠寫成分數或小數,祇能寫出牠的近似值,牠的準確值是寫不完的,無限位小數,這種無限位小數,不像循環數那樣的可以化為分數。譬如1.414就是 $\sqrt{2}$ 的近似值,過少不到 $\frac{1}{1000}$;1.4142就是 $\sqrt{2}$ 的近似值,過多不到 $\frac{1}{1000}$.

習頭

- 1. 什麽叫做無理數?
- 2. 有理數和無理數有什麽分別?
- 3. 什麼是 $\sqrt{2}$ 的近似值過少不到 $\frac{1}{100000}$?
- § 162. 開平方 把自然敷和牠的平方寫成下面兩個數列:
 - (I) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
- (II) 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144···· (II) 列各數都是(I) 列各數的完全平方, 所以(II) 列各數叫做完方。

設 x 是任意一個整數,於是求 x 的平方根就發生兩款:

1. 如若x 所代表的整數是載在數列(II)裏面,那麼x 的 平方根,可以由數列(I)裏面查出來,譬如x=121,於是 $\sqrt{x}=11$.

2. 如若x 所代表的整數不是載在數列裏面,譬如x=7, 於是 \sqrt{x} 就在2 與3 之間,即:

$$2^2 < 7 < 3^2$$
 或 $2^7 < 7 < (2+1)^2$.

由上面研究的結果,可知一個整數 a 的平方根,不是等於整數,就等於整數與整數之間或小數與小數之間的一個數,設 a 為整數,即得:

$$a = \sqrt{x_{|}}$$
或 $a < \sqrt{x} < a+1$
或 $\frac{a}{10} < \sqrt{x} < \frac{a+1}{10}$

$$\frac{a}{100} < \sqrt{x} < \frac{a+1}{100}$$

$$\frac{a}{10^{p}} < \sqrt{x} < \frac{a+1}{10^{p}}$$

根據這樣的討論,可知要求 2 的平方根近似值,過少不到 $\frac{1}{10}$ (即算到小數點後一位止),祇要寫出下式:

由是得:
$$\frac{a}{10} \le \sqrt{a} < \frac{a+1}{10}.$$

$$\frac{a^2}{100} \le 2 < \frac{(a+1)^2}{100},$$

$$a^2 < 200 < (a+1)^2.$$

但 200 的根是 14 和 15 之間; 卽:

$$14^2 \le 200 < 15^2$$

$$1.4 < \sqrt{2} < 1.5.$$

例 1. 求 $\sqrt{3}$ 的近似值,過少不到 $\frac{1}{10}$.

〔解〕因
$$\frac{a}{10} \le \sqrt{3} < \frac{a+1}{10}$$
, 所以 $a^2 \le 300 < (a+1)^2$, 即 $17 \le 300 < 18^2$.

(答) 1.7 是 $\sqrt{3}$ 的近似值,過少不到 $\frac{1}{10}$

例 2. 求 $\sqrt{5}$ 的近似值,過多不到 $\frac{1}{100}$ 。

[解] 因
$$\frac{a}{100} \le 50000 < (a+1)^2$$
,

查乘幂開方表即得:

$$223^2 \le 50000 < 224^2$$
.

(答) 2.24 是 $\sqrt{5}$ 的近似值,過多不到 $\frac{1}{100}$ ·

例 3. 求 $\sqrt{1.96}$ 的近似值,過少不到 $\frac{1}{100}$ 。

〔解〕 上面所說的 # 雖是代表整數,但是代表小數或分數也可以照上面方法來求牠的平方根,因為小數或分數的平方根也常常在兩個小數之間的,由是得:

$$\frac{9}{100} \le \sqrt{1.96} < \frac{a+1}{100},$$
即 $a^2 \le 19600 < (a+1)^2.$

查乘冪開方表即得: a=140,

$$\therefore \sqrt{1.96} = \frac{a}{100} = \frac{140}{100} = 1.4.$$

(答) 1.96 是完方, 牠的平方根準確值是 1.4.

例 4. 求
$$\sqrt{\frac{22}{7}}$$
 的近似值,過多不到 $\frac{1}{10}$.
(解) 因 $\frac{a}{10} < \sqrt{\frac{22}{7}} < \frac{a+1}{10}$,
卽 $a^2 < \frac{2200}{7} < (a+1)^2$,
卽 $a^2 < 314$ $< (a+1)^2$,
所以 $a=17$.
(答) $\sqrt{\frac{22}{7}}$ 的近似值過少不到 $\frac{1}{10}$ 是 1.7.

習題

- 1. 有四個正方形,牠們的面積各為5平方尺,8平方寸, $\frac{3}{4}$ 平方尺, $1\frac{1}{4}$ 平方寸,試求各正方形邊長的近似值,過少不到1分。
- 2. 設直角三角形的勾長為 α, 股長為 b, 弦長為 c, 已知 a, b, c, 三數中的兩數求第三數:

(1)
$$a=12$$
 $b=9$. (2) $c=13$ $a=5$. (3) $c=4$ $b=2$.

§ 163. 開立方 上面所說開平方的方法,不但可以應用於 開立方,也可以應用於一切的開方,但是這些開方都是很麻煩的 所以物理學家,化學家,工程師……以及數學家為避免這種麻煩 起見,就把自然數的平方根和立方根列成一個開方表,我們祇須 檢查這個表,就可以得到所求的根。現在因限於篇幅,僅將1至

100的數的平方,立方,平方根和立方根列表如下:

乘幂開方表

	:								
數	平方	立方	平方根	立方根	數	平方	立方	平方根	立方根
-	. 4	1	1.000	1.000	51	2,601	132,651	7.141	3.708
1	1	1	1.414	1.260	52	2,704	140,608	7.211	3.733
1 2	4	8	1,732	1.442	53	2,809	148,877	7.280	3.756
3	9	27		1.587			157,464	7.348	3.780
4	16	64	2.000		54	2,916	166,375	7.416	3.803
5	25	125	2.236	1.710	55	3,025		7.483	3.826
6	36	216	2.449	1.817	56	3,136	175,616	7.550	3.849
00045679	49	343	2.646	1,913	57	3,249	185,193	7.616	3.871
8	64	512	2.828	2.000	58	3,364	195,112	7.681	3.893
9	81	729	3.000	2.080	59	3,481	205,379		9.090
10	100	- 1,000	3.162	2.154	60	3,600	216,000	7.746	3.915
11	121	1,331	3.317	2.224	61	3,721	226,981	7.810	3.936
12.	144	1,728	3.464	2.289	62	3,844	238,328	7.874	3.958
13	169	2,197	3.606	2.351	63	3,969	250,047	7.937	3.979
14	196	2,744	3.742	2.410	64	4,096	262,144	8:000	4.000
15	225	3,375	3.873	2.466	65	4,225	274,625	8.062	4.021
116	256	4,096	4.000	2.520	66	4,356	287,496	8.124	4.041
17	289	4,913	4.123	2.571	67	4,489	300,763	8.185	4.062
18	324	5,832	4.243	2.621	68	4,624	314,432	8.246	4.082
19	361	6,859	4.359	2.668	69	4,761	328,509	8.307	4.102
20	400	8,000	4.472	2.714	70	4,900	343,000	8.367	4.121
21	441	9,261	4.583	2,759	71	5,041	357,911	8.426	4.141
22	484	10,648	4.690	2.802	72	5,184	373,248	8.485	4.160
23	529	12,167	4.796	2.844	73	5,329	389,017	8.544	4.179
24	576	13,824	4.899	2.884	74	5,476	405,224	8.602	4.198
25	625	15,825	5.000	2.924	75	5,625	421,875	8.660	4.217
26	676	17,576	5.099	2.962	76	5,776	438,976	8.718	4.236
27	729	19,683	5.196	3,000	77	5,929	456,533	8.775	4.254
28	784	21,952	5.292	3.037	78	6,084	474,552	8.832	4.273
29	841	24,389	5.385	3.072	79	6,241	493,039	8.888	4.291
30	900	27,000	5.477	3.107	80	6;400	512,000	8.944	4.309
31	961	29,791	5.568	3.141	81	6,561	531,441	9.000	4.327
32	1,024	32,768	5.657	3.175	82	6,724	551,368	9.055	4.344
83	1,089	35,937	5.745	3.208	83	6,889	571,787	9.110	4.362
34	1,156	39,304	5.831	3.240	84	7,056	592,704	9.165	4.380
35	1,225	42,875	5.916	3.271	85	7,225	614,125	9.220	4.397
36	1,296	46,656	6.000	3.302	86	7,396	636,056	9.274	4.414
37	1,369	50,653	6.083	3.332	87	7,569	658,503	9.327	4.431
38	1.444	54.872	6.164	3.362	88	7,744	681,472	9.381	4.448
39	1,521	59,319	6.245	3.391	89	7,921	701,969	9.434	4.465
40	1,600	64.000	6.325	3.420	90	8,100	729,000	9.487	4.481
41	1,681	68,921	6.403	3.448	91	8,281	753,571	9.539	4.498
42	1,764	74,088	6.481	3.476	92	8,464	778,688	9.592	4.514
48	1,849	79,507	6.557	3.503	83	8,649	804,357	9,644	4.531
44	1,936	85,184	6.633	3.530	94	8,836	830,584	9.695	4.547
45	2,025	91,125	6.708	3.557	95	9,025	857,375	9.747	4.563
48	2,116	97,336	6.782	3.583	96	9,216	884,736	9.798	4.579
47	2,209	103,823	6.856	3.609	97	9,409	912,673	9.849	4.595
48	2,304	110,592	6.928	3.634	98	9,604	941,192	9.899	4.610
49	2,401	117,649	7.000	3.659	99	9,801	970,299	9.950	4.626
50	2,500	125,000	7.071	3.684	100	10,000	1,000,000	10.000	4.642
					-				السيسين

中中 華華 民民 國國 三十五年 九一 學簡 月月三初 版版 發 即 發 藴 第 (印刷堆點外另加運費界 一册 定價 國幣 捌 刷 行 行 纂 算 入 者 所 所 商 印商 陳 (本書校對者章德宣) Ŀ 務 角 ·海 五 印 刷印 宣河 藎 南 册 鲁 路 厰館 館 龔 民

