Philosoph. Tranoact. \mathscr{N}_{454}. Tab.I

1. 454. TAB.I.

Fig. 4.

Fig.1. Fig. 8.

Fig. A
Fig. C

VI. Some Thoughts and Conjectures concerning the Caule of Elafticity, by J. T. Defaguliers, LL. D. F. R. S.

ATraction and Repulfion feem to be fettled by the Great Creator as firt Principles in Nature ; that is, as the firl of fecond Caufes; fo that we are not folicitous about their Caufes, and think it enough to deduce other Things from them. If Elafticity was admitted as a firf Caufe, (as it is by fome) it is thought we fhould admit of too many principal Caufes in Nature, which is contrary to the Rules of good Philofophy. Philofophers therefore have endeavour'd to deduce Elafticity from Attraction, or from Repulfion, or from both. It is obferv'd, that the fame Particles that repel each other Atrongly,

[176]

will attrade other Particles very ftrongly; as appears by many Chemical Diffolutions, efpecially by the alternate Difolation and Precipitation of Metals in acid Menfruums. The Reverend and Learned Dr. Hales has proved this many Ways, in his Vegetable Statics and Ficomatatics. The Elafticity of Air feems to confift wholly in the repulfive Power of its Particles, which do not touch one another while the Air is in its elaftic State; and if thofe Particles be brought nearer and nearer together, the Effect of their repulfive Force will increafe, the Air's Elafticity being always proportionable to its Denfity by Compreffion, which Property will be preferv'd, though comprefis'd Air be kept a Year or two; notwithftanding Mr. Hauksbee in his Phyfco-mechanical Experiments fays, that Air will lofe part of its Spring by being very much comprefs'd. But the Air with which he try'd ir, muft have been fill'd with moift Vapours ; and it is well known, that the Steam of Liquors will lofe its Elafticity, efpecially where its Heat decays. I have kept feveral Wind-Guns, frongly charg'd, for half a Year together, in which the Air had loft none of its Elafticity: Others have found the Air as ftrong after a Year; and I have been told by a Perfon of Credit, that a Wind Gun having been laid by and forgotten for feven Years, when it was found, difcharg'd its Air as many times, and with as much Force, as it uled to do. Now, though Air, comprefs'd by any external Force, does always increafe in Elafticity, as it diminifhes in Bulk; yet it may, by Fermentation, diminifh its Bulk very much, without gaining any more Elafticity: For if another Fluid, whofe Parts repel one another, but attract the Parts of Air, be mix'd

[177]

mix'd with Air, the Repulfion of any two Particles of Air will be diminifh'd, in proportion as a Particle of the other Fluid, infinuating it ielf between them, attracts them towards it elf on either Side. The fame thing will happen to the other Fluid, in refpect of the Particles of Air, which mixing with its Particles, do in the fame manner deftroy their Repulfion. Thus, if we allow an Attraction ftrong enough between the Parts of two elaftic Fluids, it is poffible, that by Fermentation a Solid may be made out of two elantic Fluids, which would have fill continued fluid without fuch a Mixture. We are taught by Chemiftry, to mix Fluids together, which immediately coalefce into a Solid. When Brimftone Matches are burning, the Effluvia of the Sulphur repel each other to grear Diftances, as may be known by the fulphureous Smell upon fuch an Occafion. Now, though thefe Particles repel each other, they attract the Air very ftrongly, as appears by the following Experiment:

Take a tall Glafs Receiver clos'd at Top, holding about four Quarts of Air, and having put its open End over a Bundle of Brimftone Matches on Fire, ftanding up in the Middle of a large Difh with Water in it, (to keep the Air from coming in at the Bottom of the faid Receiver) you will obferve, that not only as foon as the Matches are burnt out, but a good while before, the Air, inftead of being expanded by the Flame of the Brimftone, will retire into lefs Compafs, the Water beginning to rife from the Difh up into the Receiver, and continuing fo to do till fome time after the Matches are burnt out; fo that there will be in the Receiver only three Quarts of Air, inftead of four (more or lefs, in proZ 2
portion

[178]

portion to the Quantity of Brimfone burnt): And this plainly happens by fome of the Effluvia, or little Parts of the Sulphur, attracting fome of the Particles of the Air, fo as to make an unelaftic Compound, that precipitates into the Water. If the Elafticity of the Air is quite loft when the Repulfion of its Particles is taken off, or fufficiently counteracted, it mult follow, that its Elafticity depends upon Repulfion: And that this is often the Cafe, appears by a great Number of Dr. Hales's Experiments, of which I will mention but a few. The Doctor took a Cubic Inch of Mutton-Bone, anid having put it into his Gun-Barrel Retort, he diftill'd out of it two or three hundred Cubic Inches of Air into a large glafs Bottle, the Weight of which Air, together with the Afhes of the Bone left, weighed as much as the whole Quantity of Bone did at firft. Now the Air had been confin'd in that Bone, together with many fulphureous Particles, in fuch manner, that the mutual Attraction of the Sulphur and the Air had alternately deftroy'd each other's repulfive Force, and brought thofe Subfances into a little Compafs; but the Fire in the Diftillation feparated them from each other, fo as to reftore them, in a great meafure, to their ufual Elafticity. This appear'd by bringing a Candle near the Mouth of the Bottle that held this reviv'd Air; for every time the Candle was brought near, the Air took Fire, and flafh'd out of the Bottle with a fulphureous Smell. The Air may be confolidated in many hard Bodies, fo as to be there quite void of Elafticity, and there do the Office of a Cement, till by the Action of Fire, or fome particular Fermentations, it is again reftor'd to its perfectly elantic State.

This

[179]

This is the Meaning of the Doctor's Words, when he fays, that fome Bodies abforb, and others generate Air; and the fame Bodies do fometimes abiorb, and at other times generate Air. He found more or lefs Air in almoft every folid Subftance that he try'd; but, what was moft remarkable, he found that the Calculus humanus (or Stone taken out of a Man's Bladder) was made up of above half its Weight of Air.

Some have endeavour'd to folve Elafticity by Attraction only; as for Example: If the String $A B$ (Tab. I. Fig. I.) be confider'd as made up of Particles lying over one another in the manner reprefented at $A \mathscr{D} B$; it is plain, that if the Point \mathcal{D} be forcibly brought to C, the Parts will be pull'd from each other; and when the Force, that ftretch'd the String, ceafes to act, the Attraction of Cohefion (which was hinder'd before) will take place, and bring back the String to its former Length and Situation after feveral Vibrations. Now, though this feems to agree pretty well with the Phenomena of a String in Motion, it will by no means folve the Elaticity of a Spring faften'd at one End, and bent cither way at the other, like a Knife or Sword-blade, as in Fig. 2. For if fuch a Spring be bent from A to a, the Particles on the Side C, which now becomes convex, will be farther afunder at F, while the Particles at \mathcal{D}, carricd to the concave Part E, will come clofer together: So that the Attraction, inftead of making the Spring reftore itfelf, will keep it in the Situation in which it is, as it happens in Bodies that have no Elafticity, where perhaps only Attraction obtains. Thus a Plate of Leas, a Plate of Copper, and a Plate of foft Iron, ftands bent,

[180]

But the moft probable way of folving the Elafticity of Springs, is to confider both a repulfive and an attractive Property in the Particles, after the manner of the black Sand, which is attracted by the Loadflone, and has been fhewn by the learned and ingenious Profeffor Petrus van Mufchenírook, to be nothing elfe but a great Number of little Loaditones.

Fig. 3. Let us fuppofe a Row of round Particles touching one another only in the Points c in a Line from A to B. It is plain, from what Philofophers have fhewn, concerning the Attraction of Cohefion, that upon the leaft Shake, or Alteration of the Pofition of a ftrait Line, thefe Particles will run together, and form a Sphere, in which the Globules will have more Points of Contact. But if thefe Particles have Poles like Magnets in the oppofite Places mark'd n, s, fo that all the Poles n, n, n, \&cc. repel one another; and all the Poles $s, s, s, \& c$. do likewife repel one another, the Line $A B$ will continue ftrait; for if by any Force the faid Line $B A$ be put into another Pofition, as into the Curve $b a$, then the Poles $n n, \& c$. being brought nearer together, (while the Poles $s, s, \& c$. are farther afunder) will repel one another more ftrongly, and thereby hinder the Globules from running together towards the concave Part; and the Spring, left to itfelf, (all this while fuppofing one End, as b, B, or β, fix'd) will reftore itfelf, throwing its End a back to A, and fo on to α, by the firf Law: Then being in the Pofition $\alpha \beta$, the Poles $s, s, \& c$. are brought nearer together, whofe Repulfion, thus increas'd, throws back a to A, and fo on forward, the Line of Particles performing feveral Vibrations round B.

[181]

May not a Spring of Steel, or other Springs, confift of feveral Series of fuch Particles, whofe Polarity and Attraction acting at the fame time, will thew why fuch Bodies, when they have been bent, vibrate, and reftore themfelves?

If we take a Plate of Steel, and make it fo hot till it looks white, and then immediately quench it, we thercby fix the Mctal in a State very near Fluidity, fo that the Particles which the Fire had almoft brought to Roundnefs, have but a very imall Contact ; as appears by the Fragility of the Steel thus harden'd, which breaks like Glafs, and has a fhort Grain. Stcel, thus harden'd, is highly elaftic ; for what Workmen call hard, is the moft elaftic: as appears by the Congrefs of high-harden'd Steel Balls, which return, in their Rrbound, the neareft to the Place we let them fall from; and, next to Glafs, have the quickeft Eiafticity of any thing we know.

That we may not be thought to have given an imperfcet Account of the Elafticity of a Steel Spring, becaufe fuch an one as we have deferib'd wants. Toughnefs, and will immediately fly when bent to any Degree; we muft beg Leave to confider farther the Properties of the round Particles, or little Spheres, of Steel, in which we have fuppos'd a Polarity.

Let us fuppote $A B$ (Fig. 4.) to be two little Spheres or component Particles of Steel, in which, at firft, we will fuppofe no Polarity, but only an Attraction of Cohefion. Then, whether the Particles have their Contact at c, d, e, n, or at δ, ε, s, their Cohefion will be the fame; and the leaft Force imaginable will change their Contact from one of thofe Points to another ; becaufe ia the rolling of thefe little Spheres, they

[182]

they do not come into more or lefs Contact in one Situation than another. But if we fuppofe the Point n in each Spherule to be a Pole with a Force to repel all the other Points $i n$ in any other Spherule, and likewife s another Pole, repelling the other Points s; the Spherules will cohere beft, and be at Reft in that Pofition where the Points c, c, are in Contact, and n and s at equal Diftances on either Side. For if the Spherules be turn'd a little, fo as to bring the Points d, d, into Contact, as in Fig. 5. the Poles n, n, being brought nearer, act againft each other with more Force than the Points s, s, which are now farther off, and confequently drive back the Spherules to the Contact at $c_{3} c$, beyond which continuing their Motion, they will go to $\delta \delta$, Fig. 6. and fo backwards and forwards, till at laft they reft at c, c, which we may call the Point of \mathcal{E} quilibrium for Reft in a Spring. Now there are, befides this, two other Points of Equilibrium, beyond which the Spring may break, which are the Points e, e towards n, and ε, ε towards s; fee Fig. 7. that is, when the Spherules have their Poles n, n brought very near together, the mutual Repulfion increafes fo, that the Attraction at the Contact is not able to hold them, and then they mult fly afunder, the Spring breaking. We fuppofe the Points e, e, to be the Points of Contact, beyond which this mult happen; but that if the Contact be ever fo little Thort of it, as between e and d, the Spherules will return to their Contact at c, after fome Vibrations beyond it, as has been already faid. This is the Reafon why I call e, (in one of the Spherules) and its correfpondent Point ε on the other Side c, the Points of \subset Equilibrium; for if the Spring be bent

[183]

bent towards a (Fig. 3.) fo that the Spherules, like A and B, (Fig. 7.) touch beyond e, the Spring will break: Likewife if the Spring be bent the other way, till the Spherules touch beyond ε, then it will break the other way. Now when the Spherules touch at e, e, or at ε, ε, the Spring is as likely to return to its firf Pofition as to break; for which Reafon I have call'd the Points e and ε, Points of Equilibrium, as alfo having known by Experience, that a Spring left bent to a certain Degree, has, after fome time, broke of itfelf.

From all this it appears, that Spherical Particles will never make a tough Spring; therefore the Figure of the Particles muft be alter'd, in order to render it ufeful; and this is what is done in bringing down the Temper of the hard Steel, and letting down a Spring, as it is call'd. What Change ought to be made in the Particles, we fhall firl fhew; and then confider how far that is done by thofe who make Springs.

If the Parts fuppos'd Globules, as in Fig. 3. are now flatten'd at c, where the Contact is, fo as to put on the Shape $n e d c \delta \varepsilon s$, (as in Fig. 8.) the Contact will be much incraasd, and reach from d to δ, fo that in bending the Spring there will ftill remain a great Contact in the Particles, and the Points of © Equilibrium for breaking (viz. e, e above, and ε, ε below) will be remov'd nearer to the Poles n, or s, than when the Particles are round; the Confequence of which will be, that the Spring muft be bent much farther, to be in Danger of breaking, than in the former Suppofition; as may be feen in Fig. 9. where two Particles being open'd about the Point d as a A a

Centre,

[184]

Centre, the attracting Points c, c_{0} and $\delta \delta$, have ftill fome Force to help to bring back the Particles to their whole Contact; becaufe in this Shape of the Particle the attracting Points c, c, δ, δ are remov'd but in Proportion to their Diftance from the angular Point d; whereas if the Particles had been fpherical, and the Line $d \delta$ an Arc of a Circle, the attracting Points c, c, and δ, δ, would have remov'd from one another farther than in Proportion to twice the Square of the Diftance from d, (as in Fig. s.) and fo have afforded very little Help for bringing back the Particles to their Contact. A Row of Particles in the Spring thus condition'd, is to be feen in the natural State at $B A_{y}$ Fig. 10. and bent at $b a$ in the fame Figure. Here it is to be obferv'd, that if in this Figure of the Particles you would bend the Spring to bring the Particles to touch at their Point of breaking © Equilibrium, you muft open them fo much on the contrary. Side, that the Spring will be bent far beyond any Ufes intended to be made of it, as appears by Fig. II. where two Particles are brought to touch at the equilibrating Point e; and by Fig. 12. where many Particles being put into that Condition, the Spring. is brought round quite into a Circle.

Now the common Practice in making Springs is the moft likely to produce this Effect requir'd in the Particles; for the hard Spring, whofe Particles were round, or nearly fo, is heated anew, and whilft it is cooling gently, the mutual Attraction increafes the Contact, fo that the Particles grow flatter in thofe Places where before they had but a fmall Contact ; and left this Contact fhould become too great, the Spring's Softening is ftopp'd by quenching it in Water,

[185]

or Oil, or Greafe. Another way of making Springs, is to begin and fhape them in cold unclaftic Steel, and then having heated them to a fmall Degree, for Example, to a Blood red Heat, immediately to cool them in fome proper Liquors. This alfo fettles the Particles in their oblong Figure, through which they muft pafs before they become round, or nearly fo, in a white Heat. That Particles of Stecl are fix'd in the Figures which they have at the Inftant of dipping will not appear ftrange, when we confider, that difping red-hot Steel in cold Liquors, in a particular Pofition, makes it magnetical. If it be ask'd, How we account for making Springs only with hammering, it is eafily anfwer'd, That we can make Iron and Stect magnetical only with hammering; and if we can give and deftroy Poles in the whole Piece, there is no Improbability to think we can give Poles to little Parts; or rather bring into a particular Situation the Poles which they have; for if the Poles that we have confider'd be plac'd quite irregularly, there will be no Elafticity at all. Agreeable to this, Springs may be made of other Metals than Iron or Steel, though not fo perfect, by Hammering; for it will be fufficient for the little Particles to have Poles that attract and repel one another, driven by the Hammering into a regular Order.
N. B. This, apply'd to the Vibration of a String; will better folve its feveral Cafes than Attraction alone ; and the Elafticity of Glafs is juft the fame as that of a very brittle Steel-Spring.

