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PREFACE.

THIS book is intended to form a companion volume to my

edition of the treatise of Apollonius on Conic Sections
lately published. If it was worth while to attempt to make the
work of “the great geometer” accessible to the mathematician
of to-day who might not be able, in consequence of its length
and of its form, either to read it in the original Greek or in a
Latin translation, or, having read it, to master it and grasp the
whole scheme of the treatise, I feel that I owe even less of an
apology for offering to the public a reproduction, on the same
lines, of the extant works of perhaps the greatest mathematical
genius that the world has ever seen.

Michel Chasles has drawn an instructive distinction between
the predominant features of the geometry of Archimedes and
of the geometry which we find so highly developed in Apollo-
nius. Their works may be regarded, says Chasles, as the origin
and basis of two great inquiries which seem to share between
them the domain of geometry. Apollonius is concerned with
the Geometry of Forms and Situations, while in Archimedes
we find the Geometry of Measurements dealing with the quad-
rature of curvilinear plane figures and with the quadrature
and cubature of curved surfaces, investigations which “gave
birth to the calculus of the infinite conceived and brought
to perfection successively by Kepler, Cavalieri, Fermat, Leibniz,
and Newton.” But whether Archimedes is viewed as the
man who, with the limited means at his disposal, nevertheless
succeeded in performing what are really integrations for the
purpose of finding the area of a parabolic segment and a
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spiral, the surface and volume of a sphere and a segment
of a sphere, and the volume of any segments of the solids
of revolution of the second degree, whether he is seen finding
the centre of gravity of a parabolic segment, calculating
arithmetical approximations to the value of =, inventing a
system for expressing in words any number up to that which
we should write down with 1 followed by 80,000 billion
ciphers, or inventing the whole science of hydrostatics and at
the same time carrying it so far as to give a most complete
investigation of the positions of rest and stability of a right
segment of a paraboloid of revolution floating in a fluid, the
intelligent reader cannot fail to be struck by the remarkable
range of subjects and the mastery of treatment. And if these
are such as to create genuine enthusiasm in the student of
Archimedes, the style and method are no less irresistibly
attractive. One feature which will probably most impress the
mathematician accustomed to the rapidity and directness secured
by the generality of modern methods is the deliberation with
which Archimedes approaches the solution of any one of his
main problems. Yet this very characteristic, with its incidental
effects, is calculated to excite the more admiration because the
method suggests the tactics of some great strategist who
foresees everything, eliminates everything not immediately
conducive to the execution of his plan, masters every position
in its order, and then suddenly (when the very elaboration of
the scheme has almost obscured, in the mind of the spectator,
its ultimate object) strikes the final blow. Thus we read in
Archimedes proposition after proposition the bearing of which is
not immediately obvious but which we find infallibly used later
on; and we are led on by such easy stages that the difficulty of
the original problem, as presented at the outset, is scarcely
appreciated. As Plutarch says, “it is not possible to find in
geometry more difficult and troublesome questions, or more
simple and lucid explanations.” But it is decidedly a rhetorical
exaggeration when Plutarch goes on to say that we are deceived
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by the easiness of the successive steps into the belief that anyone
could have discovered them for himself. On the contrary, the
(studied simplicity and the perfect finish of the treatises involve
at the same time an element of mystery. Though each step
depends upon the preceding ones, we are left in the dark as to
how they were suggested to Archimedes. There is, in fact,
much truth in a remark of Wallis to the effect that he seems
“as it were of set purpose to have covered up the traces of his
investigation as if he had grudged posterity the secret of his
method of inquiry while he wished to extort from them assent
to his results.” Wallis adds with equal reason that not only
Archimedes but nearly all the ancients so hid away from
posterity their method of Analysis (though it is certain that
they had one) that more modern mathematicians found it easier
to invent a new Analysis than to seek out the old. This is no
doubt the reason why Archimedes and other Greek geometers
have received so little attention during the present century and
why Archimedes is for the most part only vaguely remembered
as the inventor of a screw, while even mathematicians scarcely
know him except as the discoverer of the principle in hydro-
statics which bears his name. It is only of recent years that
we have had a satisfactory edition of the Greek text, that of
Heiberg brought out in 1880-1, and I know of no complete
translation since the German one of Nizze, published in 1824,
which is now out of print and so rare that I had some difficulty
in procuring a copy.

The plan of this work is then the same as that which I
followed in editing the Contcs of Apollonius. In this case,
however, there has been less need as well as less opportunity for
compression, and it has been possible to retain the numbering
of the propositions and to enunciate them in a manner more
nearly approaching the original without thereby making the
enunciations obscure. Moreover, the subject matter is not so
complicated as to necessitate absolute uniformity in the notation
used (which is the only means whereby Apollonius can be made
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even tolerably readable), though I have tried to secure as much
uniformity as was fairly possible. My main object has been to
present a perfectly faithful reproduction of the treatises as they
have come down to us, neither adding anything nor leaving out
anything essential or important. The notes are for the most
part intended to throw light on particular points in the text or
to supply proofs of propositions assumed by Archimedes as
known ; sometimes I have thought it right to insert within
square brackets after certain propositions, and in the same type,
notes designed to bring out the exact significance of those
propositions, in cases where to place such notes in the Intro-
duction or at the bottom of the page might lead to their being
overlooked.

Much of the Introduction is, as will be seen, historical ; the
rest is devoted partly to giving a more general view of certain
methods employed by Archimedes and of their mathematical
significance than would be possible in notes to separate propo-
sitions, and partly to the discussion of certain questions arising
out of the subject matter upon which we have no positive
historical data to guide us. In these latter cases, where it is
necessary to put forward hypotheses for the purpose of explaining
obscure points, I have been careful to call attention to their
speculative character, though I have given the historical evidence
where such can be quoted in support of a particular hypothesis,
my object being to place side by side the authentic information
which we possess and the inferences which have been or may
be drawn from it, in order that the reader may be in a position
to judge for himself how far he can accept the latter as probable.
Perhaps I may be thought to owe an apology for the length of
one chapter on the so-called vevaecs, or inclinationes, which goes
somewhat beyond what is necessary for the elucidation of
Archimedes; but the subject is interesting, and I thought it
well to make my account of it as complete as possible in
order to round off, as it were, my studies in Apollonius and
Archimedes.
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I have had one disappointment in preparing this book for
the press. I was particularly anxious to place on or opposite
the title-page a portrait of Archimedes, and I was encouraged
in this idea by the fact that the title-page of Torelli’s edition
bears a representation in medallion form on which are endorsed
the words Archimeduis effigies marmorea tn vetert anaglypho
Romae asservato. Caution was however suggested when I
found two more portraits wholly unlike this but still claiming to
represent Archimedes, one of them appearing at the beginning
of Peyrard’s French translation of 1807, and the other in
Gronovius’ Thesaurus Graecarum Antiquitatum ; and I thought
it well to inquire further into the matter. I am now informed
by Dr A.S. Murray of the British Museum that there does
not appear to be any authority for any one of the three, and
that writers on iconography apparently do not recognise an
Archimedes among existing portraits. I was, therefore, re-
luctantly obliged to give up my idea.

The proof sheets have, as on the former occasion, been read
over by my brother, Dr R. S. Heath, Principal of Mason College,
Birmingham ; and I desire to take this opportunity of thanking
him for undertaking what might well have seemed, to any one
less genuinely interested in Greek geometry, a thankless task.

T. L. HEATH.

March, 1897,
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INTRODUCTION.

CHAPTER L
ARCHIMEDES,

A LFE of Archimedes was written by one Heracleides*, but
this biography has not survived, and such particulars as are known
have to be collected from many various sourcest. According to
Tzetzes} he died at the age of 75, and, as he perished in the sack
of Syracuse (B.c. 212), it follows that he was probably born about
287 B.c. He was the son of Pheidias the astronomer§, and was
on intimate terms with, if not related to, king Hieron and his

* Eutocius mentions this work in his commentary on Archimedes’ Measure-
ment of the circle, &s gpnow "Hpakheldns év 76 *Apxuhdovs Bly. He alludes to it
again in his commentary on Apollonius’ Conics (ed. Heiberg, Vol. 1. p. 168),
where, however, the name is wrongly given as ‘HpdkAewos. This Heracleides is
perhaps the same as the Heracleides mentioned by Archimedes himself in the
preface to his book On Spirals.

t An exhaustive collection of the materials is given in Heiberg’s Quaestiones
Archimedeae (1879). The preface to Torelli’s edition also gives the main points,
and the same work (pp. 363—370) quotes at length most of the original
references to the mechanical inventions of Archimedes. Further, the article
Archimedes (by Hultsch) in Pauly-Wissowa's Real-Encyclopidie der classischen
Altertumswissenschaften gives an entirely admirable summary of all the available
information. See also Susemihl’s Geschichte der griechischen Litteratur in der
Alexandrinerzeit, 1. pp. 728—1733.

1 Tzetzes, Chiliad., 11. 35, 105.

§ Pheidias is mentioned in the Sand-reckoner of Archimedes, Tdv mporépwy
doTpoNdywy Boddgov.. . Pedla 8¢ Tob duol warpos (the last words being the correction
of Blass for rof ’Akovmarpos, the reading of the text). Cf. Schol. Clark. in
Gregore Nazianz. Or. 34, p. 355 a Morel. ®edlas 70 uév yévos Ww Zupaxéoios

Y

daTpoNbyos & "Apxwuhdovs marip.
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son Gelon. It appears from a passage of Diodorus* that he spent
a considerable time at Alexandria, where it may be inferred that
he studied with the successors of Euclid. It may have been at
Alexandria that he made the acquaintance of Conon of Samos
(for whom he had the highest regard both as a mathematician
and as a personal friend) and of Eratosthenes. To the former
he was in the habit of communicating his discoveries before their
publication, and it is to the latter that the famous Cattle-problem
purports to have been sent. Another friend, to whom he dedicated
several of his works, was Dositheus of Pelusium, a pupil of Conon,
presumably at Alexandria though at a date subsequent to Archi-
medes’ sojourn there,

After his return to Syracuse he lived a life entirely devoted
to mathematical research. Incidentally he made himself famous
by a variety of ingenious mechanical inventions. These things
were however merely the ‘““diversions of geometry at play +,” and
he attached no importance to them. In the words of Plutarch, “he
possessed so high a spirit, so profound a soul, and such treasures
of scientific knowledge that, though these inventions had obtained
for him the renown of more than human sagacity, he yet would
not deign to leave behind him any written work on such subjects,
but, regarding as ignoble and sordid the business of mechanics
and every sort of art which is directed to use and profit, he placed
his whole ambition in those speculations in whose beauty and
subtlety there is no admixture of the common needs of lifef.” In
fact he wrote only one such mechanical book, On Sphere-makings,
to which allusion will be made later.

Some of his mechanical inventions were used with great effect
against the Romans during the siege of Syracuse. Thus he contrived

* Diodorus v. 87, 8, ofs [rods koxAlas] *Apxiuhdns 6 Svpaxéoios epev, dre
wapéBaley els Alyvmrrov.

+ Plutarch, Marcellus, 14.

T ibid, 17.

§ Pappus vim. p. 1026 (ed. Hultsch). Kdpmros 8¢ mov ¢now 6 "Avrioxeds
" Apxuhdn Tov Svpaxboiov & udvor BiBAiov gurteTayévar pmxavicdy TS katd ThY
opaporoitay, Tdy §¢ dAN\wy o0dey fEiwkévar ovvrdar. xalrot mwapa Tols woANois émri
pxaviky dofacfels kal peyaopuils Tis yevbuevos 6 Bavpastds éxelvos, dore Siauelvar
wapd wiow dvbpdmwors dmrepBarhbyTws Uuvolueros, TOY TE WPONYOUREVWY YeEWUETPLKT]S
kal dpedunricfis éxouévaw Oewplas T& Bpaxirara doxolvra elvar omovdalws suvéypager
8s galverar Tas elpnuévas émorhuas olirws dyawfjoas os unddy Ewlev tmoudvew
atrais émewrdyew.
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catapults so ingeniously constructed as to be equally serviceable:
at long or short ranges, machines for discharging showers of
missiles through holes made in the walls, and others consisting
of long moveable poles projecting beyond the walls which either
dropped heavy weights upon the enemy’s ships, or grappled the
prows by means of an iron hand or a beak like that of a crane,
then lifted them into the air and let them fall again*. Marcellus
is said to have derided his own engineers and artificers with the
words, “Shall we not make an end of fighting against this geo-
" metrical Briareus who, sitting at ease by the sea, plays pitch and
toss with our ships to our confusion, and by the multitude of
missiles that he hurls at us outdoes the hundred-handed giants of
mythology %+”; but the exhortation had no effect, the Romans being
in such abject terror that ‘“if they did but see a piece of rope
or wood projecting above the wall, they would cry ‘there it is
again,’ declaring that Archimedes was setting some engine in motion
against them, and would turn their backs and run away, insomuch
that Marcellus desisted from all conflicts and assaults, putting all
his hope in a long siege}.”

If we are rightly informed, Archimedes died, as he had lived,
absorbed in mathematical contemplation. The accounts of the
exact circumstances of his death differ in some details. Thus
Livy says simply that, amid the scenes of confusion that followed
the capture of Syracuse, he was found intent on some figures which
he had drawn in the dust, and was killed by a soldier who did
not know who he was§. Plutarch gives more than one version in
the following passage. ‘ Marcellus was most of all afflicted at
the death of Archimedes ; for, as fate would have it, he was intent
on working out some problem with a diagram and, having fixed
his mind and his eyes alike on his investigation, he never noticed
the incursion of the Romans nor the capture of the city. And
when a soldier came up to him suddenly and bade him follow to

* Polybius, Hist. v, 7—8 ; Livy xx1v. 34; Plutarch, Marcellus, 15—17.

+ Plutarch, Marcellus, 17.

1 dbid. .

§ Livy xxv. 31. Cum multa irae, multa auaritiae foeda exempla ederentur,
Archimedem memoriae proditum est in tanto tumfultu, quantum pauor captae
urbis in discursu diripientium militum ciere poterat, intentum formis, quas in
puluere descripserat, ab ignaro milite quis esset interfectum ; aegre id Marcellum
tulisse sepulturaeque curam habitam, et propinquis etiam inquisitis honori
praesidioque nomen ac memoriam eius fuisse.

H. A. b
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Marcellus, he refused to do so until he had worked out his problem
to a demonstration; whereat the soldier was so enraged that he
drew his sword and slew him. Others say that the Roman ran
up to him with a drawn sword offering to kill him; and, when
Archimedes saw him, he begged him earnestly to wait a short time
in order that he might not leave his problem incomplete and
unsolved, but the other took no notice and killed him. Again
there is a third account to the effect that, as he was carrying to
Marcellus some of his mathematical instruments, sundials, spheres,
and angles adjusted to the apparent size of the sun to the sight, some
soldiers met him and, being under the impression that he carried
gold in the vessel, slew him*.” The most picturesque version of the
story is perhaps that which represents him as saying to a Roman
soldier who came too close, “Stand away, fellow, from my diagram,”
whereat the man was so enraged that he killed him+. The addition
made to this story by Zonaras, representing him as saying wapd
kepalav kai uq wopd vypappdy, while it no doubt recalls the second
version given by Plutarch, is perhaps the most far-fetched of the
touches put to the picture by later hands.

Archimedes is said to have requested his friends and relatives
to place upon his tomb a representation of a cylinder circumseribing
a sphere within it, together with an inscription giving the ratio
which the cylinder bears to the sphere}; from which we may
infer that he himself regarded the discovery of this ratio [On the
Sphere and Cylinder, 1. 33, 34] as his greatest achievement. Cicero,
when quaestor in Sicily, found the tomb in a neglected state and
restored it§.

Beyond the above particulars of the life of Archimedes, we
have nothing left except a number of ‘stories, which, though perhaps
not literally accurate, yet help us to a conception of the personality
of the most original mathematician of antiquity which we would
not willingly have altered. Thus, in illustration of his entire
preoccupation by his abstract- studies, we are told that he would
forget all about his food and such necessities of life, and would
be drawing geometrical figures in the ashes of the fire, or, when

* Plutarch, Marcellus, 19.

+ Tzetzes, Chil. 11. 35, 185 ; Zonaras I1x. 5.
1 Plutarch, Marcellus, 17 ad fin.

§ Cicero, Tusc. v. 64 sq.
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anointing himself, in the oil on his body*. Of the same kind is
the well-known story that, when he discovered in a bath the
solution of the question referred to him by Hieron as to whether
a certain crown supposed to have been made of gold did not in
reality contain a certain proportion of silver, he ran naked through
the street to his home shouting elpnka, efpykat.

According to Pappusi it was in connexion with his discovery
of the solution of the problem 7o move a given weight by a given
Jorce that Archimedes uttered the famous saying, *“ Give me a
place to stand on, and I can move the earth (8¢s wor mod 074 kai
kwd v yiv).,” Plutarch represents him as declaring to Hieron
that any given weight could be moved by a given force, and
boasting, in reliance on the cogency of his demonstration, that, if
he were given another earth, he would cross over to it and move
this one. “And when Hieron was struck with amazement and asked
him to reduce the problem to practice and to give an illustration
of some great weight moved by a small force, he fixed upon a ship
of burden with three masts from the king’s arsenal which had
only been drawn up with great labour and many men ; and loading
her with many passengers and a full freight, sitting himself the
while far off, with no great endeavour but only holding the end
of a compound pulley (roMjorasros) quietly in his hand and pulling
at it, he drew the ship along smoothly and safely as if she were
moving through the sea§.” According to Proclus the ship was one
which Hieron had had made to send to king Ptolemy, and, when all
the Syracusans with their combined strength were unable to launch
it, Archimedes contrived a mechanical device which enabled Hieron
to move it by himself, insomuch that the latter declared that
“from that day forth Archimedes was to be believed in every-
thing that he might say|.”* While however it is thus established
that Archimedes invented some mechanical contrivance for moving
a large ship and thus gave a practical illustration of his thesis,
it is not certain whether the machine used was simply a compound

* Plutarch, Marcellus, 17.

+ Vitruvius, drchitect. 1x. 3. For an explanation of the manner in which
Archimedes probably solved this problem, see the note following On floating
bodies, 1. 7 (p. 259 &q.).

+ Pappus vir. p. 1060.

§ Plutarch, Marcellus, 14.

I| Proclus, Comm. on Eucl. 1., p. 63 (ed. Friedlein).
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pulley (moAdomacros) as stated by Plutarch; for Athenaeus*, in
describing the same incident, says that a heliz was used. This
term must be supposed to refer to a machine similar to the xoyAias
described by Pappus, in which a cog-wheel with oblique teeth
moves on a cylindrical helix turned by a handlet. Pappus, how-
ever, describes it in connexion with the BapovA«ds of Heron, and,
while he distinctly refers to Heron as his authority, he gives no
hint that Archimedes invented either the BapovAxds or the par-
ticular xoyAias; on the other hand, the woAdoracros is mentioned
by Galen}, and the rpiomacros (triple pulley) by Oribasius§, as one
of the inventions of Archimedes, the 7plomacros being so called
either from its having three wheels (Vitruvius) or three ropes
(Oribasius). Nevertheless, it may well be that though the ship
could easily be kept in motion, when once started, by the 7pi-
omaoros or wodlowasros, Archimedes was obliged to use an appliance
similar to the xoyAias to give the first impulse.

The name of yet another instrument appears in connexion with
the phrase about moving the earth. Tzetzes’ version is, * Give
me a place to stand on (wd B&), and I will move the whole earth
with a xapioriwv|”; but, as in another passage¥ he uses the word
tpiowaoros, it may be assumed that the two words represented one
and the same thing**.

It will be convenient to mention in this place the other
mechanical inventions of Archimedes. The best known is the

* Athenaeus v. 207 a-b, karackevdoas yap Eka T TyAikoDTOY oKdpos els THY
fdNacoay kariyaye: mpidros 8 Apxuuhdns elpe Thv Ths E\kos karackeviy. To the
same effect is the statement of Eustathius ad II, 111 p. 114 (ed. Stallb.) Aéyerac
8¢ E\it kal To unxavis eldos, 8 mp@ros ebpiw 6 Apxtundys ebdokiunaé, pact, & adrod.

+ Pappus viir. pp. 1066, 1108 sq.

1 Galen, in Hippocr. De artic., 1v. 47 (=xvur p. 747, ed. Kiihn).

§ Oribasius, Coll. med., xLix. 22 (1v. p. 407, ed. Bussemaker), 'AreA\(Sovs %
" Apxwpidous Tplomwaaror, described in the same passage as having been invented
wpos Tds 7Y wAolwy kahorkds.

|| Tzetzes, Chil, 1. 130.

o Ibid., 11. 61, 6 yijy dvacwdy unxavy T4 TpiordaTy Body: Swa B kal cakelow
T x0bva.

** Heiberg compares Simplicius, Comm. in Aristot. Phys. (ed. Diels, p. 1110,
L 2), ravry 8¢ 79 dvakoyle Tob Kkwolvros xal Tob Kkiouuévov kal Tob diasTiuaros
7 orabuorikdy  Spyavor Tdv Kalobpevor xaporiwva cvoTioas 6 'Apxiuhdns s
péxpe wavrds Ths dvahoylas mpoxwpolons éxbumwacer éxetvo TO w& B xal Kwd Taw
~av.
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water-screw * (also called koxAlas) which was apparently invented
by him in Egypt, for the purpose of irrigating fields. It was
also used for pumping water out of mines or from the hold of
ships.

Another invention was that of a sphere constructed so as to
imitate the motions of the sun, the moon, and the five planets
in the heavens. Cicero actually saw this contrivance and gives a
description of itf, stating that it represented the periods of the
moon and the apparent motion of the sun with such accuracy that
it would even (over a short period) show the eclipses of the sun
and moon. Hultsch conjectures that it was moved by water].
We know, as above stated, from Pappus that Archimedes wrote
a book on the construction of such a sphere (wepi opaiporodas),
and Pappus speaks in one place of “those who understand the
making of spheres and produce a model of the heavens by means
of the regular circular motion of water.” In any case it is certain
that Archimedes was much occupied with astronomy. Livy calls
him “unicus spectator caeli siderumque.” Hipparchus says§$,
“From these observations it is clear that the differences in the
years are altogether small, but, as to the solstices, I almost
think (ovk dweAmwi{w) that both I and Archimedes have erred to
the extent of a quarter of a day both in the observation and in the
deduction therefrom.” It appears therefore that Archimedes had
considered the question of the length of the year, as Ammianus
also states|. Macrobius says that he discovered the distances of
the planetsY. Archimedes himself describes in the Sand-reckoner
the apparatus by which he measured the apparent diameter of the
sun, or the angle subtended by it at the eye.

The story that he set the Roman ships on fire by an arrange-
ment of burning-glasses or concave mirrors is not found in any

* Diodorus 1. 34, v. 37; Vitruvius x. 16 (11); Philo 1. p. 330 (ed. Pfeiffer);
Strabo xvir. p. 807; Athenaeus v. 208 f.

. + Cicero, De rep., 1. 21-22; Tusc., 1. 63; De nat. deor., 11. 88. Cf. Ovid,
Fasti, v1. 277 ; Lactantius, Instit., 1. 5, 18; Martianus Capella, 11. 212, vi.
583 sq.; Claudian, Epigr. 18 ; Sextus Empiricus, p. 416 (ed. Bekker).

1 Zeitschrift f. Math. u. Physik (hist. litt. Abth.), xx11. (1877), 106 sq.
§ Ptolemy, odvrafis, 1. p. 153.

|| Ammianus Mareell., xxvr. i. 8.

9 Macrobius, in Somn. Scip., 11. 3.
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authority earlier than Lucian*; and the so-called loculus Archi-
medius, which was a sort of puzzle made of 14 pieces of ivory of
different shapes cut out of a square, cannot be supposed to be his
invention, the explanation of the name being perhaps that it was
only a method of expressing that the puzzle was cleverly made,
in the same way as the wpofAqua Apxyujdeov came to be simply
& proverbial expression for something very difficult .

* The same story is told of Proclus in Zonaras xiv. 3. For the other
references on the subject see Heiberg’s Quaestiones Archimedeae, pp. 39-41.
+ Cf. also Tzetzes, Chil. x11. 270, 7dv *Apxiundovs unxavwv xpelav Exw.



CHAPTER IL

MANUSCRIPTS AND PRINCIPAL EDITIONS—ORDER OF
COMPOSITION—DIALECT—LOST WORKS.

THE sources of the text and versions are very fully described
by Heiberg in the Prolegomena to Vol. 111. of his edition of Archi-
medes, where the editor supplements and to some extent amends
what he had previously written on the same subject in his dis-
sertation entitled Quaestiones Archimedeae (1879). It will there-
fore suffice here to state briefly the main points of the discussion.

The MSS. of the best class all had a common origin in a MS.
which, so far as is known, is no longer extant. It is described
in one of the copies made from it (to be mentioned later and dating
from some time between a.p. 1499 and 1531) as ‘most ancient’
(malasordrov), and all the evidence goes to show that it was written
as early as the 9th or 10th century. At one time it was in the
possession of George Valla, who taught at Venice between the
years 1486 and 1499 ; and many important inferences with regard
to its readings can be drawn from some translations of parts of
Archimedes and Eutocius made by Valla himself and published
in his book entitled de expetendis et fugiendis rebus (Venice, 1501).
It appears to have been carefully copied from an original belonging
to some one well versed in mathematics, and it contained figures
drawn for the most part with great care and accuracy, but there
was considerable confusion between the letters in the figures and
those in the text. This MS., after the death of Valla in 1499,
became the property of Albertus Pius Carpensis (Alberto Pio,
prince of Carpi). Part of his library passed through various hands
and ultimately reached the Vatican; but the fate of the Valla
MS. appears to have been different, for we hear of its being in
the possession of Cardinal Rodolphus Pius (Rodolfo Pio), a nephew
of Albertus, in 1544, after which it seems to have disappeared.
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The three most important MSS. extant are:

F (=Codex Florentinus bibliothecae Laurentianae Mediceae
plutei xxvii 4to.).

B (=Codex Parisinus 2360, olim Mediceus).
C (=Codex Parisinus 2361, Fonteblandensis).

Of these it is certain that B was copied from the Valla MS,
This is proved by a note on the copy itself, which states that the
archetype formerly belonged to George Valla and afterwards to
Albertus Pius. From this it may also be inferred that B was
written before the death of Albertus in 1531; for, if at the date
of B the Valla MS. had passed to Rodolphus Pius, the name of
the latter would presumably have been mentioned. The note re-
ferred to also gives a list of peculiar abbreviations used in the
archetype, which list is of importance for the purpose of com-
parison with F and other MSS.

From a note on C it appears that that MS. was written by
one Christophorus Auverus at Rome in 1544, at the expense of
Georgius Armagniacus (Georges d’Armagnac), Bishop of Rodez,
then on a mission from King Francis I. to Pope Paul ITI. Further,
a certain Guilelmus Philander, in a letter to Francis I. published
in an edition of Vitruvius (1552), mentions that he was allowed,
by the kindness of Cardinal Rodolphus Pius, acting at the instance
of Georgius Armagniacus, to see and make extracts from a volume
of Archimedes which was destined to adorn the library founded
by Francis at Fontainebleau. He adds that the volume had been
the property of George Valla, We can therefore hardly doubt
that C was the copy which Georgius Armagniacus had made in
order to present it to the library at Fontainebleau.

Now F, B and C all contain the same works of Archimedes
and Eutocius, and in the same order, viz. (1) two Books de sphaera
et cylindro, (2) de dimensione circuli, (3) de conoidibus, (4) de
lineis spiralibus, (5) de planis aeque ponderantibus, (6) arenarius,
(7) quadratura parabolae, and the commentaries of Eutocius on
(1) (2) and (5). At the end of the quadratura parabolae both
F and B give the following lines:

ebrvxolns Aéov yedperpa

woldovs els AvxdBavras lois moAv pilrare poloas.
F and C also contain mensurae from Heron and two fragments
mepi orafudv and wepl pérpov, the order being the same in both
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and the contents only differing in the one respect that the last
fragnient wepi wérpwv is slightly longer in F than in C.

A short preface to C states that the first page of the archetype
was so rubbed and worn with age that not even the name of
Archimedes could be read upon it, while there was no copy at
Rome by means of which the defect could be made good, and
further that the last page of Heron’s de mensuris was similarly
obliterated. Now in F the first page was apparently left blank
at first and afterwards written in by a different hand with many
gaps, while in B there are similar deficiencies and a note attached
by the copyist is to the effect that the first page of the archetype
was indistinct. In another place (p. 4 of Vol. 11, ed. Heiberg)
all three MSS. have the same lacuna, and the scribe of B notes
that one whole page or even two are missing.

Now C could not have been copied from F because the last
page of the fragment mepi pérpwv is perfectly distinet in F'; and,
on the other hand, the archetype of F must have been illegible
at the end because there is no word réhos at the end of F, nor any
other of the signs by which copyists usually marked the completion
of their task. Again, Valla’s translations show that his MS. had
certain readings corresponding to correct readings in B and C
instead of incorrect readings given by F. Hence F cannot have
been Valla’s MS. itself.

The positive evidence about F is as follows. Valla's trans-
lations, with the exception of the few readings just referred to,
agree completely with the text of F. From a letter written at
Venice in 1491 by Angelus Politianus (Angelo Poliziano) to Lau-
rentius Mediceus (Lorenzo de’ Medici), it appears that the former
had found a MS. at Venice containing works by Archimedes and
Heron and proposed to have it copied. As G. Valla then lived
at Venice, the MS. can hardly have been any other but his, and
no doubt F was actually copied from it in 1491 or soon after.
Confirmatory evidence for this origin of F is found in the fact
that the form of most of the letters in it is older than the 15th
century, and the abbreviations etc., while they all savour of an
ancient archetype, agree marvellously with the description which
the note to B above referred to gives of the abbreviations used
in Valla’s MS. Further, it is remarkable that the corrupt passage
corresponding to the illegible first page of the archetype just takes
up one page of F, no more and no less.
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The natural inference from all the evidence is that F, B and
C all had their origin in the Valla MS.; and of the three F is
the most trustworthy. For (1) the extreme care with which the
copyist of F kept to the original is illustrated by a number of
mistakes in it which correspond to Valla’s readings but are cor-
rected in B and C, and (2) there is no doubt that the writer of
B was somewhat of an expert and made many alterations on his
own authority, not always with success.

Passing to other MSS., we know that Pope Nicholas V. had
a MS. of Archimedes which he caused to be translated into Latin.
The translation was made by Jacobus Cremonensis (Jacopo Cas-
siani*), and one copy of this was written out by Joannes Regio-
montanus (Johann Miiller of Konigsberg, near Hassfurt, in Fran-
conia), about 1461, who not only noted in the margin a number
of corrections of the Latin but added also in many places Greek
readings from another MS. This copy by Regiomontanus is pre-
served at Niirnberg and was the source of the Latin translation
given in the editio princeps of Thomas Gechauff Venatorius (Basel,
1544); it is called N by Heiberg. (Another copy of the same
translation is alluded to by Regiomontanus, and this is doubtless
the Latin MS. 327 of 15th c. still extant at Venice.) From the
fact that the translation of Jacobus Cremonensis has the same
lacuna as that in F, B and C above referred to (Vol. mr, ed.
Heiberg, p. 4), it seems clear that the translator had before him
either the Valla MS. itself or (more likely) a copy of it, though
the order of the books in the translation differs in one respect
from that in our MSS,, viz. that the arenarius comes after instead
of before the quadratura parabolae.

It is probable that the Greek MS. used by Regiomontanus was V
(= Codex Venetus Marcianus ccov. of the 15th ¢.), which is still extant
and contains the same books of Archimedes and Eutocius with the
same fragment of Heron as F has, and in the same order. If the
above conclusion that F dates from 1491 or thereabouts is correct,
then, as V belonged to Cardinal Bessarione who died in 1472, it
cannot have been copied from F, and the simplest way of accounting
for its similarity to F is to suppose that it too was derived from
Valla’s MS.

* Tiraboschi, Storia della Letteratura Italiana, Vol. vi. Pt. 1 (p. 858 of the
edition of 1807). Cantor (Vorlesungen iib. Gesch. d. Math., 11. p. 192) gives the
full name and title as Jacopo da S. Cassiano Cremonese canonico regolare.
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Regiomontanus mentions, in a note inserted later than the
rest and in different ink, two other Greek MSS., one of which he
calls “exemplar vetus apud magistrum Paulum.” Probably the
monk Paulus (Albertini) of Venice is here meant, whose date was
1430 to 1475; and it is possible that the “exemplar vetus” is
the MS. of Valla,

The two other inferior MSS,, viz. A (= Codex Parisinus 2359,
olim Mediceus) and D (=Cod. Parisinus 2362, Fonteblandensis),
owe their origin to V.

It is next necessary to consider the probabilities as to the MSS.
used by Nicolas Tartaglia for his Latin translation of certain of
the works of Archimedes. The portion of this translation published
at Venice in 1543 contained the books de centris gravium vel de
aequerepentibus I-11, tetragonismus [parabolae], dimensio circuli
and de tnsidentibus aquae I; the rest, consisting of Book II de
insidentibus aquae, was published with Book 1 of the same treatise,
after Tartaglia’s death in 1557, by Troianus Curtius (Venice, 1565).
Now the last-named treatise is not extant in any Greek MS. and,
as Tartaglia adds it, without any hint of a separate origin, to the
rest of the books which he says he took from a mutilated and
almost illegible Greek MS., it might easily be inferred that the
Greek MS. contained that treatise also. But it is established, by
a letter written by Tartaglia himself eight years later (1551) that
he then had no Greek text of the Books de insidentibus aquae, and
it would be strange if it had disappeared in so short a time without
leaving any trace. Further, Commandinus in the preface to his
edition of the same treatise (Bologna, 1565) shows that he had
never heard of a Greek text of it. Hence it is most natural to
suppose that it reached Tartaglia from some other source and in the
Latin translation only*.

The fact that Tartaglia speaks of the old MS. which he used
as “fractl et qui vix legi poterant libri,” at practically the same
time as the writer of the preface to C was giving a similar de-
scription of Valla’s MS., makes it probable that the two were

* The Greek fragment of Book 1. mepl rdw Udare éprrauévwr 7 wepl T@y
dxovuévwr, edited by A. Mai from two Vatican MSS. (Classici auct. 1. p. 426-30;
Vol. 1. of Heiberg's edition, pp. 356-8), seems to be of doubtful authenticity.
Except for the first proposition, it contains enunciations only and no proofs.
Heiberg is inclined to think that it represents an attempt at retranslation into
Greek made by some mediaeval scholar, and he compares the similar attempt
made by Rivault.
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identical ; and this probability is confirmed by a considerable agree-
ment between the mistakes in Tartaglia and in Valla’s versions.

But in the case of the quadratura parabolae and the dimensio
circuli Tartaglia adopted bodily, without alluding in any way to
the source of it, another Latin translation published by Lucas
Gauricus “JIuphanensis ex regno Neapolitano” (Luca Gaurico of
Gifuni) in 1503, and he copied it so faithfully as to reproduce most
obvious errors and perverse punctuation, only filling up a few
gaps and changing some figures and letters. This translation by
Gauricus is seen, by means of a comparison with Valla’s readings
and with the translation of Jacobus Cremonensis, to have been
made from the same MS. as the latter, viz. that of Pope Nicolas V.

Even where Tartaglia used the Valla MS. he does not seem
to have taken very great pains to decipher it when it was
not easily legible—it may be that he was unused to deciphering
MSS.—and in such cases he did not hesitate to draw from other
sources. In one place (de planor. equilib. 11. 9) he actually
gives as the Archimedean proof a paraphrase of Eutocius some-
what retouched and abridged, and in many other instances he
has inserted corrections and interpolations from another Greek
MS. which he once names. This MS. appears to have been a copy
made from F, with interpolations due to some one not unskilled
in the subject-matter; and this interpolated copy of F was ap-
parently also the source of the Niirnberg MS. now to be mentioned.

N* (= Codex Norimbergensis) was written in the 16th century
and brought from Rome to Niirnberg by Wilibald Pirckheymer.
It contains the same works of Archimedes and Eutocius, and in
the same order, as F, but was evidently not copied from F direct,
while, on the other hand, it agrees so closely with Tartaglia’s
version as to suggest a common origin. N® was used by Vena-
torius in preparing the editio primceps, and Venatorius corrected
many mistakes in it with his own hand by notes in the margin
or on slips attached thereto; he also made many alterations in
the body of it, erasing the original, and sometimes wrote on it
directions to the printer, so that it was probably actually used
to print from. The character of the MS. shows it to belong to
the same class as the others; it agrees with them in the more
important errors and in having a similar lacuna at the beginning.
Some mistakes common to it and F alone show that its source was
F, though at second hand, as above indicated.
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It remains to enumerate the principal editions of the Greek
text and the published Latin versions which are based, wholly or
partially, upon direct collation of the MSS. These are as follows,
in addition to Gaurico’s and Tartaglia’s translations.

1. The editio princeps published at Basel in 1544 by Thomas
Gechauff Venatorius under the title Archimedis opera quae quidem
exstant omnia nunc primum graece et latine in lucem edita. Adiecta
quoque sunt Hutocii Ascalonitae commentaria item graece et latine
nunquam antea excusa. The Greek text and the Latin version in
this edition were taken from different sources, that of the Greek
text being N* while the translation was Joannes Regiomontanus’
revised copy (NP®) of the Latin version made by Jacobus Cremo-
nensis from the MS. of Pope Nicolas V. The revision by
Regiomontanus was effected by the aid of (1) another copy of
the same translation still extant, (2) other Greek MSS., one of
which was probably V, while another may have been Valla’s MS.
itself.

2. A translation by F. Commandinus (containing the following
works, eirculs dimensio, de lineis spiralibus, quadratura parabolae,
de conoidibus et sphasroidibus, de arenae mumero) appeared at
Venice in 1558 under the title Archimedis opera monnulla in
latinum conversa et commentariis tllustrata. For this translation
several MSS. were used, among which was V, but none preferable
to those which we now possess.

3. D. Rivault’s edition, drchimedis opera quae exstant graece
et latine movis demonstr. et comment. tllustr. (Paris, 1615), gives
only the propositions in Greek, while the proofs are in Latin and
somewhat retouched. Rivault followed the Basel editio princeps
with the assistance of B.

4. Torelli’s edition (Oxford, 1792) entitled *Apxiumijdovs 6. cw-
{opeva perd tév Edrokiov ’Ackalwvirov dmouvudrwv, Archimedis
quae supersunt ommnia cwm Kutocti Ascalonitae commentariis ex
recensione J. Torelli Veronensis cum nova versione latina. Acced-
unt lectiones wariantes ex codd. Mediceo et Parisiensibus. Torelli
followed the Basel editio princeps in the main, but also collated
V. The book was brought out after Torelli’s death by Abram
Robertson, who added the collation of five more MSS., F, A, B, C, D,
with the Basel edition. The collation however was not well done,
and the edition was not properly corrected when in the press.
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5. Last of all comes the definitive edition of Heiberg (drchi-
medis opera omnia cum commentariis Eutocit. E codice Florentino
recensuit, Latine uertit notisque llustrauit J. L. Heiberg. Leipzig,
1880—1).

The relation of all the MSS. and the above editions and trans-
lations is well shown by Heiberg in the following scheme (with
the omission, however, of his own edition):

Codex Uallae saee. 1x—x

Cod. Nicolai V F Tartalea v B C
c. 1453 c. 1491 a. 1543 saec. XV c. 1500 a. 1544
S——— —
Cod. Tartaleae 11 { Ed. Riualti
a. 1615
N2 saec. xvI —
| A, D Commandinus
Ed. Basil. 1544 saec. XvI 1558

Torellius 1792

A

Gauricus Cremonensis ¢. 1460
A

Cod. Uenet. 327 Nb, c. 1461
saec. Xv

The remaining editions which give portions of Archimedes in
Greek, and the rest of the translations of the complete works or
parts of them which appeared before Heiberg’s edition, were not
based upon any fresh collation of the original sources, though some
excellent corrections of the text were made by some of the editors,
notably Wallis and Nizze. The following books may be mentioned.

Joh. Chr. Sturm, Des unvergleichlichen Archimedis Kunstbiicher,
ubersetzt und erldutert (Nirnberg, 1670). This translation em-
braced all the works extant in Greek and followed three years
after the same author’s separate translation of the Sand-reckoner.
It appears from Sturm’s preface that he principally used the edition
of Rivault.

Is. Barrow, Opera Archimedis, Apollonii Pergaei conicorum libri,
Theodosii sphaerica methodo movo illustrata et demonstrata (London,
1675).

Wallis, Archimedis arenarius et dimensio circuli, Eutocit in hanc
commentarii cum wversione et notis (Oxford, 1678), also given
in Wallis’ Opera, Vol. 111. pp. 509—546.

Karl Friedr. Hauber, Archimeds zwei Biicher wber Kugel und
Cylinder. Ebendesselben Kreismessung. Uebersetzt mit Anmerkungen
u. 8. w. begleitet (Tiibingen, 1798).
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F. Peyrard, Buvres d'Archiméde, traduites littéralement, avec
un commentaire, sutvies d'un mémoire du traducteur, sur un nouveau
marowr ardent, et d'un autre mémoire de M. Delambre, sur Uarith-
métique des Grecs. (Second edition, Paris, 1808.)

Ernst Nizze, Archimedes von Syrakus vorhandene Werke, aus dem
Griechischen tibersetzt und mit erliduternden und kritischen Anmer-
kungen begleitet (Stralsund, 1824).

The MSS. give the several treatises in the following order.

1. wepl oaipas kai kvhivdpov o' [, two Books On the Sphere
and Cylinder.

2. «ikhov pérpyos*, Measurement of a Circle.

3. mepl kwvoedéwy kal odpapoedéwy, On Conoids and Spheroids.

4. mwepi é\ikwv, On Spirals.

5, émurédwv looppomav o B't, two Books On the Equilibrium
of Planes.

6. Yappirys, The Sand-reckoner.

7. Terpayoviopos wapafBolis (a name substituted later for that
given to the treatise by Archimedes himself, which must
undoubtedly have been rerpaywniopos 77s Tob  Gpfoywriov
kdvov Toumst), Quadrature of the Parabola.

To these should be added

8. wepl dyovpévwv §, the Greek title of the treatise On floating
bodsies, only preserved in a Latin translation.

* Pappus alludes (1. p. 312, ed. Hultsch) to the kvkhov pérpyois in the words
& 7§ wepl This ToD kUKoY TepLpepelas.

+ Archimedes himself twice alludes to properties proved in Book 1. as
demonstrated & Tois unyavikois (Quadrature of the Parabola, Props. 6, 10).
Pappus (viir. p. 1034) quotes 7a Apxiundovs wepl iroppomdv. The beginning of
Book 1. is also cited by Proclus in his Commentary on Eucl. 1., p. 181, where the
reading should be 7o & {roppomiiv, and not rdv dvicoppomusy (Hultsch).

1 The name ‘ parabola’ was first applied to the curve by Apollonius. Archi-
medes always used the old term ‘section of a right-angled cone.,” Cf. Eutocius
(Heiberg, vol. 111., p. 342) 3édetkrar év T mepl Tijs Tob dpfoywriov kdvov Touds.

§ This title corresponds to the references to the book in Strabo 1. p. 54
CApxuhdns év Tois wepl TGy Sxovuévwy) and Pappus viu. p. 1024 (ds’Apxiuidns
dxovuévois). The fragment edited by Mai has a longer title, wepl 7y Udar:
ébioTauévwy 7 mepl Tdy dxovuévwy, where the first part corresponds to Tartaglia’s
version, de insidentibus aguae, and to that of Commandinus, de iis quae vehun-
tur in aqua. But Archimedes intentionally used the more general word vypéy
(fluid) instead of #dwp; and hence the shorter title mwepl éxovuévwv, de iis quae
in humido vehuntur (Torelli and Heiberg), seems the better.
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The books were not, however, written in the above order; and
Archimedes himself, partly through his prefatory letters and partly
by the use in later works of properties proved in earlier treatises,
gives indications sufficient to enable the chronological sequence
to be stated approximately as follows :

1. On the equilibrium of planes, 1.
Quadrature of the Parabola.

On the equilibrium of planes, II.
On the Sphere and Cylinder, I, II.
On Spirals.

On Conoids and Spheroids.

On floating bodies, 1, IL.
Measurement of a circle.

The Sand-reckoner.

It should however be observed that, with regard to (7), no
more is certain than that it was written after (6), and with regard
to (8) no more than that it was later than (4) and before (9).

In addition to the above we have a collection of Lemmas (Liber
Assumptorum) which has reached us through the Arabic. The
collection was first edited by 8. Foster, Miscellanea (London, 1659),
and next by Borelli in a book published at Florence, 1661, in
which the title is given as Liber assumptorum Archimedis interprete
Thebit ben Kora et exponente doctore Almochtasso Abilhasan. The
Lemmas cannot, however, have been written by Archimedes in
their present form, because his name is quoted in them more than
once. The probability is that they were propositions collected by
some Greek writer* of a later date for the purpose of elucidating
some ancient work, though it is quite likely that some of the
propositions were of Archimedean origin, e.g. those concerning
the geometrical figures called respectively dpBylost (literally

© M NS oo

* It would seem that the compiler of the Liber Assumptorum must have
drawn, to a considerable extent, from the same sources as Pappus. The
number of propositions appearing substantially in the same form in both
collections is, I think, even greater than has yet been noticed. Tannery (La
Géométrie grecque, p. 162) mentions, as instances, Lemmas 1, 4, 5, 6; but it
will be seen from the notes in this work that there are several other coin-
cidences.

+ Pappus gives (p. 208) what he calls an ‘ancient proposition’ (dpxaia
wpbracis) about the same figure, which he describes as xwplov, 8 &) xahobaw
dpByrov. Cf, the note to Prop. 6 (p. 308). The meaning of the word is gathered
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‘shoemaker’s knife’) and odAwov (probably a ‘salt-cellar’¥*), and
Prop. 8 which bears on the problem of trisecting an angle.

from the Scholia to Nicander, Theriaca, 423 : dpBnlot Néyovrar 76 Kkuk\oTepH
addhpa, ofs ol okvroréuor Téuvovst kal Eover T4 Séppara. Cf. Hesychius,
avdpBnha, Ta pi) éfeocuéva dépuara‘ EpBnlot yap Ta ouiMa.

* The best authorities appear to hold that in any case the name sdAwor was
not applied to the figure in question by Archimedes himself but by some later
writer. Subject to this remark, I believe cdAwov to be simply a Graecised
form of the Latin word salinum. We know that a salt-cellar was an essential
part of the domestic apparatus in Italy from the early days of the Roman
Republic. ““All who were raised above poverty had one of silver which
descended from father to son (Hor., Carm. 1. 16, 13, Liv. xxvi. 36), and
was accompanied by a silver patella which was used together with the salt-
cellar in the domestic sacrifices (Pers. 1. 24, 25). These two articles of
silver were alone compatible with the simplicity of Roman manners in the
early times of the Republic (Plin., H. N. xxxm1. § 153, Val. Max. 1v. 4, § 3).
...In shape the salinum was probably in most cases a round shallow bowl”
[Dict. of Greek and Roman Antiquities, article salinum]. Further we have
in the early chapters of Mommsen’s History of Rome abundant evidence
of similar transferences of Latin words to the Sicilian dialect of Greek. Thus
(Book 1., ch. xiii.) it is shown that, in consequence of Latino-Sicilian com-
merce, certain words denoting measures of weight, libra, triens, quadrans,
sextans, uncia, found their way into the common speech of Sicily in the third
century of the city under the forms Aérpa, Tpuds, rerpds, étds, odykla. Similarly
Latin law-terms (ch. xi.) were transferred; thus mutuum (a form of loan)
became uoirov, carcer (a prison) xdpkapov. Lastly, the Latin word for lard,
arvina, became in Sicilian Greek dpBivn, and patina (a dish) wardvy. The last
word is as close a parallel for the supposed transfer of salinum as could be
wished. Moreover the explanation of cd\wov as salinum has two obvious
advantages in that (1) it does not require any alteration in the word, and

(2) the resemblance of the lower curve to an ordinary type of salt-cellar is

evident. I should add, as confirmation of my hypothesis, that Dr A. S. Murray,

of the British Museum, expresses the opinion that we cannot be far wrong in

accepting as a salinum one of the small silver bowls in the Roman ministerium
H. A. c
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Archimedes is further credited with the authorship of the
Cattle-problem enunciated in the epigram edited by Lessing in
1773. According to the heading prefixed to the epigram it was
communicated by Archimedes to the mathematicians at Alexandria
in a letter to Eratosthenes*. There is also in the Scholia to Plato’s
Charmides 165 E a reference to the problem “called by Archimedes
the Cattle-problem” (r0 kAnbev im 'Apxipuridovs Boewkov mpofAnua).
The question whether Archimedes really propounded the problem,
or whether his name was only prefixed to it in order to mark the
extraordinary difficulty of it, has been much debated. A complete
account of the arguments for and against is given in an article
by Krumbiegel in the Zeutschrift fiir Mathematik und Physik
(Hist. litt. Abtheilung) xxv. (1880), p. 121 sq., to which Amthor
added (ibid. p. 153 sq.) a discussion of the problem itself. The
general result of Krumbiegel's investigation is to show (1) that

at the Museum which was found at Chaourse (Aisne) in France and is of a
section sufficiently like the curve in the Salinon.

The other explanations of ¢d\wor which have been suggested are as follows.

(1) Cantor connects it with sd\os, *‘das Schwanken des hohen Meeres,”
and would presumably translate it as wave-line. But the resemblance is
not altogether satisfactory, and the termination -wov would need explanation.

(2) Heiberg says the word is ‘‘sine dubio ab Arabibus deprauatum,” and
suggests that it should be séhwov, parsley (“‘ex similitudine frondis apii”).
But, whatever may be thought of the resemblance, the theory that the word is
corrupted is certainly not supported by the analogy of dpSnhos which is correctly
reproduced by the Arabs, as we know from the passage of Pappus referred to in
the last note.

(8) Dr Gow suggests that sd\wor may be a ‘sieve,” comparing sdlaé. But
this guess is not supported by any evidence.

* The heading is, IIpéBAnua 8mep *Apxtundns év émvypdupacw evpiv Tols év
* ANebavpelg mepl Tadra mpayuarevouévors {nrely dwéoreker év T wpds ‘Eparoshévny
rov Kvpnraiov émwsrony. Heiberg translates this as ‘‘the problem which
Archimedes discovered and sent in an epigram...in a letter to Eratosthenes.”
He admits however that the order of words is against this, as is also the use of
the plural émvypdupacw. It is clear that to take the two expressions év
émvypdupacw and év émorory as both following dméoreer is very awkward. In
fact there seems to be no alternative but to translate, as Krumbiegel does, in
accordance with the order of the words, ‘‘a problem which Archimedes found
among (some) epigrams and sent...in his letter to Eratosthenes ”; and this sense
is certainly unsatisfactory. Hultsch remarks that, though the mistake mpay-
uarovuévois for mpayparevouévors and the composition of the heading as a whole
betray the hand of a writer who lived some centuries after Archimedes, yet he
must have had an earlier source of information, because he could hardly have
invented the story of the letter to Eratosthenes.
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the epigram can hardly have been written by Archimedes in its
present form, but (2) that it is possible, nay probable, that the
problem was in substance originated by Archimedes. Hultsch* has
an ingenious suggestion as to the occasion of it. It is known that
Apollonius in his wkvrdkior had calculated a closer approximation to
the value of = than that of Archimedes, and he must therefore have
worked out more difficult multiplications than those contained in
the Measurement of a circle. Also the other work of Apollonius
on the multiplication of large numbers, which is partly preserved
in Pappus, was inspired by the Sand-reckoner of Archimedes; and,
though we need not exactly regard the treatise of Apollonius as
polemical, yet it did in fact constitute a criticism of the earlier
book. Accordingly, that Archimedes should then reply with a
problem which involved such a manipulation of immense numbers
as would be difficult even for Apollonius is not altogether outside
the bounds of possibility. And there is an unmistakable vein of
satire in the opening words of the epigram *“Compute the number
of the oxen of the Sun, giving thy mind thereto, if thou hast a
share of wisdom,” in the transition from the first part to the
second where it is said that ability to solve the first part would
entitle one to be regarded as “not unknowing nor unskilled in
numbers, but still not yet to be numbered among the wise,” and
again in the last lines. Hultsch concludes that in any case the
problem is not much later than the time of Archimedes and dates
from the beginning of the 2nd century B.c. at the latest.

Of the extant books it is certain that in the 6th century a.p.
only three were generally known, viz. On the Sphere and Cylinder,
the Measurement of a circle, and On the equilibrium of planes. Thus
Eutocius of Ascalon who wrote commentaries on these works only
knew the Quadrature of the Parabola by name and had never seen
it nor the book On Spirals. Where passages might have been
elucidated by references to the former book, Eutocius gives ex-
planations derived from Apollonius and other sources, and he
speaks vaguely of the discovery of a straight line equal to the
circumference of a given circle “by means of certain spirals,”
whereas, if he had known the treatise On Spirals, he would have
quoted Prop. 18. There is reason to suppose that only the three
treatises on which Eutocius commented were contained in the

* Pauly-Wissowa’s Real-Encyclopidie, 11, 1, pp. 534, 5.
c2
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ordinary editions of the time such as that of Isidorus of Miletus,
the teacher of Eutocius, to which the latter several times alludes.

In these circumstances the wonder is that so many more books
have survived to the present day. As it is, they have lost to a
considerable extent their original form. Archimedes wrote in the
Doric dialect*, but in the best known books (On the Sphere and
Cylinder and the Measurement of a circle) practically all traces
of that dialect have disappeared, while a partial loss of Doric forms
has taken place in other books, of which however the Sand-
reckoner has suffered least. Moreover in all the books, except the
Sand-reckoner, alterations and additions were first of all made by
an interpolator who was acquainted with the Doric dialect, and
then, at a date subsequent to that of Eutocius, the book On the
Sphere and Cylinder and the Measurement of a circle were completely
recast.

Of the lost works of Archimedes the following can be identified.

1. Investigations relating to polyhedra are referred to by
Pappus who, after alluding (v. p. 352) to the five regular polyhedra,
gives a description of thirteen others discovered by Archimedes
which are semi-regular, being contained by polygons equilateral
and equiangular but not similar.

2. A book of arithmetical content, entitled dpyai Principles
and dedicated to Zeuxippus. We learn from Archimedes himself
that the book dealt with the naming of numbers (xatovipaéis Tév
dpfpdv)t and expounded a system of expressing numbers higher

* Thus Eutocius in his commentary on Prop. 4 of Book 11. On the Sphere
and Cylinder speaks of the fragment, which he found in an old book and which
appeared to him to be the missing supplement to the proposition referred to,
as ‘‘preserving in part Archimedes’ favourite Doric dialect” (év uéper 8¢ Tiw
*Apxemder pidgy Awplda yYNdooar dréoswov). From the use of the expression ér
wépe. Heiberg concludes that the Dorie forms had by the time of Eutocius
begun to disappear in the books which have come down to us no less than in
the fragment referred to.

+ Observing that in all the references to this work in the Sand-reckoner
Archimedes speaks of the naming of numbers or of numbers which are named or have
their names (¢pfuol xaTwvouacuévo, T& Svbuara Exorres, Tav karovopatior Exovres),
Hultsch (Pauly-Wissowa’s Real-Encyclopidie, 11. 1, p. 511) speaks of xarovd-
pafs Tov dpbucr as the name of the work; and he explains the words rwas 7év
& dpxals <dplbudv> Ty karovouatlav éxbvrwr as meaning ‘“‘some of the
numbers mentioned at the beginning which have a special name,” where *at
the beginning ” refers to the passage in which Archimedes first mentions r&»
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than those which could be expressed in the ordinary Greek no-
tation. This system embraced all numbers up to the enormous
figure which we should now represent by a 1 followed by 80,000
billion ciphers; and, in setting out the same system in the Sand-
reckoner, Archimedes explains that he does so for the benefit of
those who had not had the opportunity of seeing the earlier work
addressed to Zeuxippus.

3. mept Luydv, On balances or levers, in which Pappus says (viII.
p. 1068) that Archimedes proved that * greater circles overpower
(katakparoior) lesser circles when they revolve about the same
centre.” It was doubtless in this book that Archimedes proved
the theorem assumed by him in the Quadrature of the Parabola,
Prop. 6, viz. that, if a body hangs at rest from a point, the centre
of gravity of the body and the point of suspension are in the same
vertical line.

4. «xevrpoBapikd, On centres of gravity. This work is mentioned
by Simplicius on Aristot. de caelo 11. (Scholia in Arist. 508 a 30).
Archimedes may be referring to it when he says (On the equilibrium
of planes 1. 4) that it has before been proved that the centre of
gravity of two bodies taken together lies on the line joining the
centres of gravity of the separate bodies. In the treatise On
Sloating bodies Archimedes assumes that the centre of gravity of a
segment of a paraboloid of revolution is on the axis of the segment
at a distance from the vertex equal to Zrds of its length. This
may perhaps have been proved in the xevrpoBapwd, if it was
not made the subject of a separate work.

Doubtless both the mept lvydv and the kevrpoBapicd preceded
the extant treatise On the equilibrium of planes.

5. «karomwrpixd, an optical work, from which Theon (on Ptolemy,
Synt. 1. p. 29, ed. Halma) quotes a remark about refraction.
Cf. Olympiodorus in Aristot. Meteor., 11. p. 94, ed. Ideler.

99’ audv karwropacuévwy Goudy kal évdedoulvwy év Tois worl Levfurmov yeypaju-
uévois. But év dpyais seems a less natural expression for * at the beginning”
than év dpxp or xar’ dpxds would have been. Moreover, there being no
participial expression except karovopatiav éxérrwy to be taken with é dpxais in
this sense, the meaning would be unsatisfactory ; for the numbers are not
named at the beginning, but only referred to, and therefore some word like
elpyuévwr should have been used. For these reasons I think that Heiberg,
Cantor and Susemihl are right in taking dpyal to be the name of the treatise.
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6. mepi opupomoitas, On sphere-making, a mechanical work on
the construction of a sphere representing the motions of the
heavenly bodies as already mentioned (p. xxi).

7. épddiov, a Method, noticed by Suidas, who says that Theo-
dosius wrote a commentary on it, but gives no further information
about it.

8. According to Hipparchus Archimedes must have written
on the Calendar or the length of the year (cf. p. xxi).

Some Arabian writers attribute to Archimedes works (1) On
a heptagon in a circle, (2) On circles touching one another, (3) On
parallel lines, (4) On triangles, (5) On the properties of right-
angled triangles, (6) a book of Data; but there is no confirmatory
evidence of his having written such works. A book translated
into Latin from the Arabic by Gongava (Louvain, 1548) and en-
titled antiqui scriptoris de speculo comburente concavitatis parabolae
cannot be the work of Archimedes, since it quotes Apollonius.



CHAPTER IIIL
THE RELATION OF ARCHIMEDES TO HIS PREDECESSORS.

AN extraordinarily large proportion of the subject matter of
the writings of Archimedes represents entirely new discoveries of
his own. Though his range of subjects was almost encyclopaedic,
embracing geometry (plane and solid), arithmetic, mechanics, hydro-
statics and astronomy, he was no compiler, no writer of text-
books ; and in this respect he differs even from his great successor
Apollonius, whose work, like that of Euclid before him, largely
consisted of systematising and generalising the methods used, and
the results obtained, in the isolated efforts of earlier geometers.
There is in Archimedes no mere working-up of existing materials ;
his objective is always some new thing, some definite addition to
the sum of knowledge, and his complete originality cannot fail
to strike any one who reads his works intelligently, without any
corroborative evidence such as is found in the introductory letters
prefixed to most of them. {These introductions, however, are emi-
nently characteristic of the man and of his work ; their directness
and simplicity, the complete absence of egoism and of any effort
to magnify his own achievements by comparison with those of
others or by emphasising their failures where he himself succeeded :
all these things intensify the same impression. Thus his manner
is to state simply what particular discoveries made by his pre-
decessors had suggested to him the possibility of extending them
in new directions; e.g. he says that, in connexion with the efforts
of earlier geometers to square the circle and other figures, it
occurred to him that no one had endeavoured ‘to square a parabola,
and he accordingly attempted the problem and finally solved it.
In like manner, he speaks, in the preface of his treatise On the
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Sphere and Cylinder, of his discoveries with reference to those
solids as supplementing the theorems about the pyramid, the cone
and the cylinder proved by Eudoxus. He does not hesitate to
say that certain problems baffled him for a long time, and that
the solution of some took him many years to effect; and in one
place (in the preface to the book On Spirals) he positively insists,
for the sake of pointing a moral, on specifying two propositions
which he had enunciated and which proved on further investigation
to be wrong. The same preface contains a generous eulogy of
Conon, declaring that, but for his untimely death, Conon would
have solved certain problems before him and would have enriched
geometry by many other discoveries in the meantime,

In some of his subjects Archimedes had no fore-runners, e.g.
in hydrostatics, where he invented the whole science, and (so
far as mathematical demonstration was concerned) in his me-
chanical investigations. In these cases therefore he had, in laying
the foundations of the subject, to adopt a form more closely re-
sembling that of an elementary textbook, but in the later parts
he at once applied himself to specialised investigations.

Thus the historian of mathematics, in dealing with Archimedes’
obligations to his predecessors, has a comparatively easy task before
him. But it is necessary, first, to give some description of the use
which Archimedes made of the general methods which had found
acceptance with the earlier geometers, and, secondly, to refer to
some particular results which he mentions as having been previously
discovered and as lying at the root of his own investigations, or
which he tacitly assumes as known.

§1. Use of traditional geometrical methods.

In my edition of the Conics of Apollonius*, I endeavoured,
following the lead given in Zeuthen’s work, Die Lehre von den
Kegelschnitten im Altertum, to give some account of what has been
fitly called the geometrical algebra which played such an important
part in the works of the Greek geometers. The two main methods
included under the term were (1) the use of the theory of pro-
portions, and (2) the method of application of areas, and it was
shown that, while both methods are fully expounded in the Elements
of Euclid, the second was much the older of the two, being
attributed by the pupils of Eudemus (quoted by Proclus) to the

* Apollonius of Perga, pp. ci sqq.
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Pythagoreans. It was pointed out that the application of areas,
as set forth in the second Book of Euclid and extended in the
sixth, was made by Apollonius the means of expressing what he
takes as the fundamental properties of the conic sections, namely
the properties which we express by the Cartesian equations

y* = p,
2 —sz
Y =pr¥ G

referred to any diameter and the tangent at its extremity as axes;
and the latter equation was compared with the results obtained in the
27th, 28th and 29th Props. of Euclid’s Book v1, which are equivalent
to the solution, by geometrical means, of the quadratic equations

ax+ gm’z:D.

It was also shown that Archimedes does not, as a rule, connect his
description of the central conics with the method of application of
areas, as Apollonius does, but that Archimedes generally expresses
the fundamental property in the form of a proportion

2

Yy _ Y
x.x, o .ax)’
and, in the case of the ellipse,
y2 b?
.z, @’
where x, z, are the abscissae measured from the ends of the diameter
of reference.

It results from this that the application of areas is of much less
frequent ocqurrence in Archimedes than in Apollonius. It is
however used by the former in all but the most general form. The
simplest form of ‘“applying a rectangle” to a given straight line
which shall be equal to a given area occurs e.g. in the proposition On
the equilibrium of Planes 11. 1; and the same mode of expression
is used (as in Apollonius) for the property »°= pz in the parabola,
px being deseribed in Archimedes’ phrase as the rectangle “applied
t0” (rapamirrov mapd) a line equal to p and “having at its width”
(mAdros &ov) the abscissa (x). Then in Props. 2, 25, 26, 29 of the
book On Conoids and Spheroids we have the complete expression
which is the equivalent of solving the equation

ax + x* = b,

“let a rectangle be applied (to a certain straight line) exceeding by

2
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a square figure (raparerroxére xwplov tmepBdAhov elder Terpayuvy)
and equal to (a certain rectangle).” Thus a rectangle of this sort
has to be made (in Prop. 25) equal to what we have above called
x.x, in the case of the hyperbola, which is the same thing as
z(a+x) or ax+x", where @ is the length of the transverse axis.
But, curiously enough, we do not find in Archimedes the application
of a rectangle « falling short by a square figure,” which we should
obtain in the case of the ellipse if we substituted z(a —=) for . z;.
In the case of the ellipse the area x.x; is represented (On Conotids
and Spheroids, Prop. 29) as a gnomon which is the difference
between the rectangle %.A%, (where %, &, are the abscissae of the
ordinate bounding a segment of an ellipse) and a rectangle applied
to i, — /4 and exceeding by a square figure whose side is & —«; and
the rectangle 4. A, is simply constructed from the sides 4, #,. Thus
Archimedes avoids* the application of a rectangle falling short by a
square, using for « .z, the rather complicated form

beohy—{(hy= D) (h— ) + (h—x)?}.
It is easy to see that this last expression is equal to z.w,, for it
reduces to

h.hy— by (h—x)—x (b - )}

=x (b +h) -,

=ax — 2°, since b, +h=a,

=x. 2.

It will readily be understood that the transformation of rectangles
and squares in accordance with the methods of Euclid, Book 11, is
Jjust as important to Archimedes as to other geometers, and there is
no need to enlarge on that form of geometrical algebra.

The theory of proportions, as expounded in the fifth and sixth
Books of Euclid, including the transformation of ratios (denoted by
the terms componendo, dividendo, etc.) and the composition or
multiplication of ratios, made it possible for the ancient geometers
to deal with magnitudes in general and to work out relations
between them with an effectiveness not much inferior to that of
modern algebra. Thus the addition and subtraction of ratios could
be effected by procedure equivalent te what we should in algebra

* The object of Archimedes was no doubt to make the Lemma in Prop. 2
(dealing with the summation of a series of terms of the form a .rz + (rx)?, where r
successively takes the values 1, 2, 8, ...) serve for the hyperboloid of revolution
and the spheroid as well.
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call bringing to a common denominator. Next, the composition or
multiplication of ratios could be indefinitely extended, and hence
the algebraical operations of multiplication and division found easy
and convenient expression in the geometrical algebra. As a par-
ticular case, suppose that there is a series of magnitudes in continued
proportion (i.e. in geometrical progression) as a,, @y, @, ... @,, so that

Ay _ O _ Ay -1

@ Gy Ay,

We have then, by multiplication, -

@zcgﬁor@=" @
a  \a @ @,

It is easy to understand how powerful such a method as that of
proportions would become in the hands of an Archimedes, and a few

instances are here appended in order to illustrate the mastery with
which he uses it.

1. A good example of a reduction in the order of a ratio after
the manner just shown is furnished by On the equilibrium of Planes
1. 10. Here Archimedes has a ratio which we will call a®/b% where
a’/?=c¢/d; and he reduces the ratio between cubes to a ratio
between straight lines by taking two lines @, ¥ such that

c_z_d
z d y’
2 2
Tt follows from this that (f) _Lo
x d b
or a_=o¢,
bz’
a® e\> ¢c xd ¢
and hence F_<a_c> =a_c'a-l'§~g_/'

2. In the last example we have an instance of the use of
auxiliary fixed lines for the purpose of simplifying ratios and
thereby, as it were, economising power in order to grapple the more
successfully with a complicated problem. With the aid of such
auxiliary lines or (what is the same thing) auxiliary fixed points in
a figure, combined with the use of proportions, Archimedes is able to
effect some remarkable eliminations.

Thus in the proposition On the Sphere and Cylinder 11. 4 he obtains
three relations connecting three as yet undetermined points, and
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proceeds at once to eliminate two of the points, so that the problem
is then reduced to finding the remaining point by means of one
equation. Expressed in an algebraical form, the three original
relations amount to the three equations

3a—x y
Qa—x wx
at+x =

z  Za-w’
y_m

2z n

and the result, after the elimination of y and 2 is stated by
Archimedes in a form equivalent to
m+n a+x_ 4a®
n " a  (20—x)
Again the proposition On the equilibrium of Planes 11. 9 proves
by the same method of proportions that, if a, b, ¢, d, «, y, are straight
lines satisfying the conditions

%=S=§’ (a>b>c>d)
4_ =
a-d 2(a-c)’
and 20+4b+6c+3d g }
5a +10b+10c+5d a—c’
then x+y = Za.

The proposition is merely brought in as a subsidiary lemma to the
proposition following, and is not of any intrinsic importance ; but a
glance at the proof (which again introduces an auxiliary line) will
show that it is a really extraordinary instance of the manipulation
of proportions.

3. Yet another instance is worth giving here. It amounts to
the proof that, if

@y
@t ph
then 2a+w y”(a,—x)+Qa—w.yz(a-;-m):mb’.
a+x’ a—x

4, A’ are the points of contact of two parallel tangent planes to a
spheroid ; the plane of the paper is the plane through 44’ and the
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axis of the spheroid, and PP’ is the intersection of this plane with
another plane at right angles to it (and therefore parallel to the
tangent planes), which latter plane divides the spheroid into two
segments whose axes are AN, A’N. Another plane is drawn through

the centre and parallel to the tangent plane, cutting the spheroid
into two halves. Lastly cones are drawn whose bases are the
sections of the spheroid by the parallel planes as shown in the
figure.

Archimedes’ proposition takes the following form [On Conoids
and Spheroids, Props. 31, 32].

APP' being the smaller segment of the two whose common base
is the section through PP’ and x, y being the coordinates of P,
he has proved in preceding propositions that

(volume of) segment APP’ 24+

(Volume Of) cone APP, = @t e (a),
half spheroid ABB" _
and come A BB = 23 e (B),

and he seeks to prove that

segment 4A'PP’ 2a-x

cone /PP’ ~— ag-u’
The method is as follows.

We hav. cone ABB' a ¥  «a a’
e cone APP' " a-z'y* a—-x a’—a?
If we suppose g: a,_fa_c .............................. )

. 20
the ratio of the cones becomes ——
a® —
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Next, by hypothesis (),

cone APP'  a+wx
segmt. APP' ™ 2a+a’

Therefore, ex aequali,
cone ABB' 2a
segmt. APP'~ (a—x) (2a+x)"
It follows from (B) that

spheroid 420
segmt. APP' ™~ (a-x) (2a +2)’

segmt. A'PP'  4za— (a—x) (2a +x)

segmt. APP'~  (a—x)(2a +x)

whence

_ (20 —x)+(2a+x) (2 —a —x)
(a—x) (20 + ) ’

Now we have to obtain the ratio of the segment 4'PP’ to the cone
A’PP’, and the comparison between the segment APP' and the cone
A’PP’' is made by combining two ratios ex aequali. Thus
segmt. APP'  2a+x
cone APP' ~ a+ux’ by (a),
and cone APP' a-=x
cone A'PP' " a+x’

Thus combining the last three proportions, ex aequali, we have

segmt. A'PP' _ z(2a—2)+(2a+2) (z—a—2x)

cone A’ PP’ ~ a® + 2ax + x®
_#(Za—a)+(Za+z)(s—a-z)
T z(e-2)+Q2a+x)x
since a*=z(a—x), by (y).

[The object of the transformation of the numerator and denominator
of the last fraction, by which z(2a —x) and z (¢ — ) are made the

. . 20— . . .
first terms, is now obvious, because is the fraction which

— T
Archimedes wishes to arrive at, and, in order to prove that the
required ratio is equal to this, it is only necessary to show that
20— z—(a—x) ]
a—wx x ’
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Now 2a—m=1+ @
a—x a—x
z
:1+;, by (‘y),
_a+2
T a

=22 (Gividendo),

segmt. A'PP' 20—z
cone A'PP" ~ a—2

so that

4. One use by Euclid of the method of proportions deserves
mention because Archimedes does not use it in similar circumstances.
Archimedes (Quadrature of the Parabola, Prop. 23) sums a particular
geometric series

at+a()+ad)+.. +a@)
in a manner somewhat similar to that of our text-books, whereas
Euclid (1x. 35) sums any geometric series of any number of terms by
means of proportions thus.

Suppose @, g, ... Ay, Gy to be (n+1) terms of a geometric
series in which a,,, is the greatest term. Then

Cpns1_ B _ A _ Y
@y, Ap_1 Ay 4]
iy =Gy Gy — Gy a—a
Therefore nAl_m o Tm__Tmel =2
@y, @y _1 ()

Adding all the antecedents and all the consequents, we have

Oni1 — O _ T
O+ Ayt g+ ... + @y, a

)

which gives the sum of n terms of the series.

§ 2. Earlier discoveries affecting quadrature and cuba-
ture.

Archimedes quotes the theorem that circles are to one another as
the squares on their diameters as having being proved by earlier
geometers, and he also says that it was proved by means of a certain
lemma which he states as follows: “Of unequal lines, unequal
surfaces, or unequal solids, the greater exceeds the less by such a
magnitude as is capable, if added [continually] to itself, of exceeding
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any given magnitude of those which are comparable with one another
(rév wpos dAAyAa Aeyopévwv).” We know that Hippocrates of Chios
proved the theorem that circles are to one another as the squares on
their diameters, but no clear conclusion can be established as to the
method which he used. On the other hand, Eudoxus (who is
mentioned in the preface to The Sphere and Cylinder as having
proved two theorems in solid geometry to be mentioned presently)
is generally credited with the invention of the method of exhaustion
by which Euclid proves the proposition in question in x11. 2. The
lemma stated by Archimedes to have been used in the original proof
is not however found in that form in Euclid and is not used in the
proof of x11. 2, where the lemma used is that proved by him in
X. 1, viz. that ¢ Given two unequal magnitudes, if from the greater
[a part] be subtracted greater than the half, if from the remainder
[a part] greater than the half be subtracted, and so on continually,
there will be left some magnitude which will be less than the lesser
given magnitude.” This last lemma is frequently assumed by
Archimedes, and the application of it to equilateral polygons in-
seribed in a circle or sector in the manner of x11. 2 is referred to as
having been handed down in the Elements*, by which it is clear
that only Euclid’s Elements can be meant. The apparent difficulty
caused by the mention of fwo lemmas in connexion with the theorem
in question can, however, I think, be explained by reference to
the proof of x. 1 in Euclid. He there takes the lesser magnitude
and says that it is possible, by multiplying it, to make it some time
exceed the greater, and this statement he clearly bases on the 4th
definition of Book v. to the effect that “magnitudes are said to bear
a ratio to one another, which can, if multiplied, exceed one another.”
Since then the smaller magnitude in x. 1 may be regarded as the
difference between some two unequal magnitudes, it is clear that the
lemma first quoted by Archimedes is in substance used to prove the
lemma in x. 1 which appears to play so much larger a part in the in-
vestigations in quadrature and cubature which have come down to us.

¥The two theorems which Archimedes attributes to Eudoxus
by namet are

(1) that any pyramid s one third part of the prism which has
the same base as the pyramid and equal height, and

* On the Sphere and Cylinder, 1. 6.
+ ibid. Preface.
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v (2) that any cone is one third part of the cylinder which has

the same base as the cone and equal height.

The other theorems in solid geometry which Archimedes quotes
as having been proved by earlier geometers are*:

(3) Cones of equal height are in the ratio of their bases, and
conversely.

(4) If a cylinder be divided by a plane parallel to the base,
cylinder is to cylinder as axis to axis.

(5) Cones which have the same bases as cylinders and equal
height with them are to one another as the cylinders.

(6) The bases of equal comes are reciprocally proportional to
their heights, and conversely.

(7) Cones the diameters of whose bases have the same ratio as
their axes are in the triplicate ratio of the diameters of their bases.

In the preface to the Quadrature of the Parabola he says
that earlier geometers had also proved that

(8) Spheres have to one another the triplicate ratio of their
diameters ; and he adds that this proposition and the first of those
which he attributes to Eudoxus, numbered (1) above, were proved
by means of the same’blemma., viz. that the difference between
any two unequal magnitudes can be so multiplied as to exceed
any given magnitude, while (if the text of Heiberg is right) the
second of the propositions of Eudoxus, numbered (2), was proved
by means of “a lemma similar to that aforesaid.” As a matter
of fact, all the propositions (1) to (8) are given in Euclid’s twelfth
Book, except (5), which, however, is an easy deduction from (2);
and (1), (2), (3), and (7) all depend upon the same lemma [x. 1]
as that used in Euecl. x1. 2.

The proofs of the above seven propositions, excluding (b), as
given by Euclid are too long to quote here, but the following sketch
will show the line taken in the proofs and the order of the propo-
sitions. Suppose 4BCD to be a pyramid with a triangular base,
and suppose it to be cut by two planes, one bisecting 4B, AC,
4D in F, @, E respectively, and the other bisecting BC, BD, BA
in H, K, F respectively. These planes are then each parallel to
one face, and they cut off two pyramids each similar to the original

* Lemmas placed between Props. 16 and 17 of Book 1. On the Sphere and
Cylinder.

H. A. d
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pyramid and equal to one another, while the remainder of the
pyramid is proved to form two equal prisms which, taken together,

are greater than one half of the original pyramid [xm. 3]. It is
next proved [x11. 4] that, if there are two pyramids with triangular
bases and equal height, and if they are each divided in the
manner shown into two equal pyramids each similar to the whole
and two prisms, the sum of the prisms in one pyramid is to the
sum of the prisms in the other in the ratio of the bases of the
whole pyramids respectively. Thus, if we divide in the same
manner the two pyramids which remain in each, then all
the pyramids which remain, and so on continually, it follows
on the one hand, by x. 1, that we shall ultimately have
pyramids remaining which are together less than any assigned
solid, while on the other hand the sums of all the prisms
resulting from the successive subdivisions are in the ratio of
the bases of the original pyramids. Accordingly Euclid is able
to use the regular method of exhaustion exemplified in xi1. 2,
and to establish the proposition [x11. 5] that pyramids with the
same height and with triangular bases are to one another as their
bases. The proposition is then extended [x11. 6] to pyramids with the
same height and with polygonal bases. Next [x11. 7] a prism with
a triangular base is divided into three pyramids which are shown
to be equal by means of x11. 5; and it follows, as a corollary, that
any pyramid is one third part of the prism which has the same
base and equal height. Again, two similar and similarly situated
pyramids are taken and the solid parallelepipeds are completed,
which are then seen to be six times as large as the pyramids
respectively ; and, since (by x1. 33) similar parallelepipeds are in
the triplicate ratio of corresponding sides, it follows that the same
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is true of the pyramids.[x11. 8]. A corollary gives the obvious
extension to the case of similar pyramids with polygonal bases,
The proposition [x11. 9] that, in equal pyramids with triangular
bases, the bases are reciprocally proportional to the heights is
proved by the same method of completing the parallelepipeds and
using XI. 34; and similarly for the converse. It is next proved
[xm. 10] that, if in the circle which is the base of a cylinder a
square be described, and then polygons be successively described
by bisecting the arcs remaining in each case, and so doubling the
number of sides, and if prisms of the same height as the cylinder
be erected on the square and the polygons as bases respectively,
the prism with the square base will be greater than half the
cylinder, the next prism will add to it more than half of the
remainder, and so on. And each prism is triple of the pyramid with
the same base and altitude. Thus the same method of exhaustion
as that in x11. 2 proves that any cone is one third part of the
cylinder with the same base and equal height. Exactly the same
method is used to prove [xi11. 11] that cones and cylinders which
have the same height are to one another as their bases, and
[x11. 12] that similar cones and cylinders are to one another in
the triplicate ratio of the diameters of their bases (the latter
proposition depending of course on the similar proposition xi1. 8
for pyramids). The next three propositions are proved without
fresh recourse to x. 1. Thus the criterion of equimultiples laid
down in Def. 5 of Book v. is used to prove [x11. 13] that, if a
cylinder be cut by a plane parallel to its bases, the resulting
cylinders are to one another as their axes. It is an easy deduction
[x1. 14] that cones and cylinders which have equal bases are
proportional to their heights, and [x11. 15] that in equal cones
and cylinders the bases are reciprocally proportional to the heights,
and, conversely, that cones or cylinders having this property are
equal. Lastly, to prove that spheres are to one another in the
triplicate ratio of their diameters [x11. 18], a new procedure is
adopted, involving two preliminary propositions. In the first of
these [x11. 16] it is proved, by an application of the usual lemma
X. 1, that, if two concentric circles are given (however nearly
equal), an equilateral polygon can be inscribed in the outer circle
whose sides do not touch the inner ; the second proposition [x11. 17]
uses the result of the first to prove that, given two concentric
spheres, it is possible to inscribe a certain polyhedron in the outer

d2
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so that it does not anywhere touch the inner, and a corollary adds
the proof that, if a similar polyhedron be inscribed in a second
sphere, the volumes of the polyhedra are to one another in the
triplicate ratio of the diameters of the respective spheres. This
last property is then applied [x1. 18] to prove that spheres are
in the triplicate ratio of their diameters.

§ 3. Conic Sections.

In my edition of the Comics of Apollonius there is a complete
account of all the propositions in conics which are used by Archi-
medes, classified under three headings, (1) those propositions
which he expressly attributes to earlier writers, (2) those which
are assumed without any such reference, (3) those which appear to
represent new developments of the theory of conics due to Archi-
medes himself.  As all these properties will appear in this
volume in their proper places, it will suffice here to state only
such propositions as come under the first heading and a few under
the second which may safely be supposed to have been previously
known.

Archimedes says that the following propositions “are proved
in the elements of conics,” i.e. in the earlier treatises of Euclid
and Aristaeus.

1. In the parabola

(@) if PV be the diameter of a segment and QVq the
chord parallel to the tangent at P, then QV= Vy;

(b) if the tangent at @ meet VP produced in 7', then
PV=PT;

(¢) if two chords @Vq, @'V'q’ each parallel to the tangent
at P meet the diameter PV in V, V' respectively,

PV :PV'=QV*:Q'V"™

2. If straight lines drawn from the same point touch any
conic section whatever, and if two chords parallel to the respective
tangents intersect one another, then the rectangles under the
segments of the chords are to one another as the squares on the

parallel tangents respectively.

¥ 3. The following proposition is quoted as proved ““in the conics.”
If in a parabola p, be the parameter of the principal ordinates,
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@@’ any chord not perpendicular to the axis which is bisected in V
by the diameter PV, p the parameter of the ordinates to PV, and
if @D be drawn perpendicular to PV, then

RV :QD*=p : p,
[On Conoids and Spheroids, Prop. 3, which see.]

The properties of a parabola, PN*=p,. AN, and QV:=p.PV,
were already well known before the time of Archimedes. In fact
the former property was used by Menaechmus, the discoverer of
conic sections, in -his duplication of the cube.

It may be taken as certain that the following properties of the
ellipse and hyperbola were proved in the Conics of Euclid.

1. For the ellipse
PN?: AN . A'N=P'N'* : AN' . A’N'=CB* : 04°®
and QV*: PV.PV=QV'*:PV'.PV' =CD*:CP°.
(Either proposition could in fact be derived from the proposition

about the rectangles under the segments of intersecting chords
above referred to.)

2. For the hyperbola
PN : AN . A'N=P'N'®: AN’ . A'N
and QV*:PV.P'V=Q'V: PV'.PV,
though in this case the absence of the conception of the double
hyperbola as one curve (first found in Apollonius) prevented Euclid,

and Archimedes also, from equating the respective ratios to those
of the squares on the parallel semidiameters.

3. In a hyperbola, if P be any point on the curve and PXK,
PL be each drawn parallel to one asymptote and meeting the

other,
PK. PL=(const.)

This property, in the particular case of the rectangular hyperbola,
was known to Menaechmus.

K1t is probable also that the property of the subnormal of the
parabola (VG =%p,) was known to Archimedes’ predecessors. It
is tacitly assumed, On floating bodies, 11. 4, etc.

From the assumption that, in the hyperbola, 47 < AN (where
X is the foot of the ordinate from P, and 7' the point in which the
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tangent at P meets the transverse axis) we may perhaps infer
that the harmonic property

TP :TP'=PV:P'V,
or at least the particular case of it,

TA:TA'=AN : A'N,
was known before Archimedes’ time.

Lastly, with reference to the genesis of conic sections from
cones and cylinders, Euclid had already stated in his Phaenomena
that, “if a cone or cylinder be cut by a plane not parallel to the
base, the resulting section is a section of an acute-angled cone
[an ellipse] which is similar to a fupeds.” Though it is not probable

that Euclid had in mind any other than a right cone, the statement
should be compared with On Conoids and Spheroids, Props. 7, 8, 9.

§4. Surfaces of the second degree.

Prop. 11 of the treatise On Conoids and Spheroids states without
proof the nature of certain plane sections of the conicoids of revo-
lution. Besides the obvious facts (1) that sections perpendicular
to the axis of revolution are circles, and (2) that sections through
the axis are the same as the generating conic, Archimedes asserts
the following.

1. In a paraboloid of revolution any plane section parallel to
the axis is a parabola equal to the generating parabola.

2. In a hyperboloid of revolution any plane section parallel
to the axis is a hyperbola similar to the generating hyperbola.

3. In a hyperboloid of revolution a plane section through the
vertex of the enveloping cone is a hyperbola which is not similar
to the generating hyperbola.

4. In any spheroid a plane section parallel to the axis is an
ellipse similar to the generating ellipse.

Archimedes adds that “the proofs of all these propositions
are manifest (pavepal).” The proofs may in fact be supplied as
follows.

1. Section of a paraboloid of revolution by a plane parallel
to the axis.
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Suppose that the plane of the paper represents the plane section
through the axis 4 ¥V which intersects the given plane section at right
angles, and let 4’0 be the line of intersection. >
Let POP’ be any double ordinate to AN in the
section through the axis, meeting 40 and AN
at right angles in O, &V respectively. Draw 4'M
perpendicular to AXN.

Suppose a perpendicular drawn from O to
A'0 in the plane of the given section parallel to
the axis, and let ¥ be the length intercepted by
the surface on this perpendicular.

Then, since the extremity of y is on the
circular section whose diameter is PP,

y'=P0.0P'.

If 4’0 =2, and if p is the principal parameter of the generating
.parabola, we have then

y*=PN*- ON*
= PN*—A'M*
=p (AN — AM)
= pa,

so that the section is a parabola equal to the generating parabola.

2. Section of a hyperboloid of revolution by a plane parallel to

the aaxis.
Take, as before, the plane section through the axis which intersects

[¢]
=
\-o

N

the given plane section at right angles in 4’0. Let the hyperbola



Ivi INTRODUCTION.

PAP' in the plane of the paper represent the plane section through
the axis, and let C' be the centre (or the vertex of the enveloping
cone). Draw CC’ perpendicular to C4, and produce 04’ to meet it
in C'. Let the rest of the construction be as before.
Suppose that
CAd=a, C'Ad=a’, C'0=x,
and let ¥ have the same meaning as before.
Then y*=P0.0P =PN*- A" M=
And, by the property of the original hyperbola,
PN®: ON?—-CA*>=A'M? : CM?—- (C4* (which is constant).
Thus A'M?: CM?—CA*=PN?:CN*-C4*
=PN*—A'M*?: CN°—-CM*
= y2 - a,2,

whence it appears that the section is a hyperbola similar to the
original one.

3. Section of a hyperboloid of revolution by a plane passing
through the centre (or the vertex of the enveloping cone).

I think there can be no doubt that Archimedes would have proved
his proposition about this section by means of the same general
property of conics which he uses to prove Props. 3 and 12—14 of
the same treatise, and which he enunciates at the beginning of
Prop. 3 as a known theorem proved in the ‘“‘elements of conics,” viz.
that the rectangles under the segments of intersecting chords are as
the squares of the parallel tangents.

Let the plane of the paper represent the plane section through
the axis which intersects the given plane passing through the
centre at right angles. Let C'A’O be the line of intersection, ¢
being the centre, and A4’ being the point where C4'0 meets the
surface. Suppose CAMN to be the axis of the hyperboloid, and
POp, P'0O’p’ two double ordinates to it in the plane section through
the axis, meeting C4'0 in O, O’ respectively ; similarly let 4'M be
the ordinate from 4’. Draw the tangents at 4 and 4’ to the
section through the axis meeting in 7}, and let @Og, Q'0'q’ be the
two double ordinates in the same section which are parallel to the
tangent at 4’ and pass through O, O’ respectively.

Suppose, as before, that y, »’ are the lengths cut off by the
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surface from the perpendiculars at O and O’ to OC in the plane of
the given section through C4'0, and that

CO=x, 00'=2', CA=a, C4d’'=a’.

Q
Q
P/
P
0/ o’
c’ A U
T
A
c (W N N’
ql

[ 2N

Then, by the property of the intersecting chords, we have, since
Q0 =0y,
PO.Op:Q0°=T4A*:T4"

=P'0".0p :Q0"
Also y2=P0O . Op, y'°=P'0". 0,
and, by the property of the hyperbola,
QO? :x*~a?=Q'0"? : " —a'"
It follows, ex acquali, that
yiiat—at=y? w0t (a),
and therefore that the section is a hyperbola.

To prove that this hyperbola is not similar to the generating
hyperbola, we draw CC’ perpendicular to C4, and C’'4’ parallel to
C4 meeting CC’ in ¢’ and Pp in U.

If then the hyperbola () is similar to the original hyperbola, it
must by the last proposition be similar to the hyperbolic section
made by the plane through ¢’4’U at right angles to the plane of
the paper.

Now CO*-CA”=(C'U*-C'4A")+(CC'+0U)*--CC"*

>C'U-C'4A",
and PO .Op<PU. Up.



1viii INTRODUCTION.

Therefore PO . Op:CO0*—-CA*<PU.Up:C'U*-C'4"?,

and it follows that the hyperbolas are not similar*.

4.  Section of a spheroid by a plane parallel to the axis.

That this is an ellipse similar to the generating ellipse can of
course be proved in exactly the same way as theorem (2) above
for the hyperboloid.

* 1 think Archimedes is more likely to have used this proof than one on the
lines suggested by Zeuthen (p. 421). The latter uses the equation of the
hyperbola simply and proceeds thus. If y have the same meaning as above,
and if the coordinates of P referred to C4, CC’ as axes be z, x, while those of O
referred to the same axes are z, 2/, we have, for the point P,

2=y (2%~ a?),
where « is constant.
Also, since the angle 4’C4 is given, 2’ =az, where a is constant.

Thus =12~ 5"?=(k - a?) 2% — ka®
Now z is proportional to CO, being in fact equal to Jitad and the equation
becomes
2o K79 hhe e 1
—-1+a2.00 K2 iiiiiiiniiiiiinieirnnnn (1),

which is clearly a hyperbola, since a?<«.

Now, though the Greeks could have worked out the proof in a geometrical
form equivalent to the above, I think that it is alien from the manner in which
Archimedes regarded the equations to central conics. These he always expressed
in the form of a proportion

2 2 2
z_f:g = ?z{_az |:= g‘i in the case of the ellipse] ,
and never in the form of an equation between areas like that used by
Apollonius, viz.

yi=pzx d:ga?.

Moreover the occurrence of the two different constants and the necessity
of expressing them geometrically as ratios between areas and lines respectively
would have made the proof very long and complicated ; and, as a matter of fact,
Archimedes never does express the ratio y?/(22 — a?) in the case of the hyperbola
in the form of a ratio between constant areas like b?/a®. Lastly, when the
equation of the given section through C4’0 was found in the form (1), assuming
that the Greeks had actually found the geometrical equivalent, it would still
have been held necessary, I think, to verify that

C42= M . a2
k- a? ’
before it was finally pronounced that the hyperbola represented by the equation
and the section made by the plane were one and the same thing.
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‘We are now in a position to consider the meaning of Archimedes’
remark that “the proofs of all these properties are manifest.” In
the first place, it is not likely that ‘“manifest” means “known” as
having been proved by earlier geometers; for Archimedes’ habit is
to be precise in stating the fact whenever he uses important
propositions due to his immediate predecessors, as witness his
references to Eudoxus, to the Elements [of BEuclid], and to the
“elements of conics.” When we consider the remark with reference
to the cases of the sections parallel to the axes of the surfaces
respectively, a mnatural interpretation of it is to suppose that
Archimedes meant simply that the theorems are such as can easily
be deduced from the fundamental properties of the three conics now
expressed by their equations, coupled with the consideration that
the sections by planes perpendicular to the axes are circles. But I
think that this particular explanation of the “manifest” character
of the proofs is not so applicable to the third of the theorems
stating that any plane section of a hyperboloid of revolution
through the vertex of the enveloping cone but not through the axis
is a hyperbola. This fact is indeed no more ““manifest” in the
ordinary sense of the term than is the like theorem about the
spheroid, viz. that any section through the centre but not through
the axis is an ellipse. But this latter theorem is not given along
with the other in Prop. 11 as being “manifest” ; the proof of it is
included in the more general proposition (14) that any section of a
spheroid not perpendicular to the axis is an ellipse, and that parallel
sections are similar. Nor, seeing that the propositions are essen-
tially similar in character, can I think it possible that Archimedes
wished it to be understood, as Zeuthen suggests, that the proposition
about the hyperboloid alone, and not the other, should be proved
directly by means of the geometrical equivalent of the Cartesian
equation of the conic, and not by means of the property of the
rectangles under the segments of intersecting chords, used earlier
[Prop. 3] with reference to the parabola and later for the case of
the spheroid and the elliptic sections of the conoids and spheroids
generally. This is the more unlikely, I think, because the proof
by means of the equation of the conic alone would present much
more difficulty to the Greek, and therefore could hardly be called
“ manifest.”

It seems necessary therefore to seek for another explanation,
and I think it is the following. The theorems, numbered 1, 2, and
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4 above, about sections of conoids and spheroids parallel to the axis
are used afterwards in Props. 15—17 relating to tangent planes;
whereas the theorem (3) about the section of the hyperboloid by a
plane through the centre but not through the axis is not used in
connexion with tangent planes, but only for formally proving that a
straight line drawn from any point on a hyperboloid parallel to any
transverse diameter of the hyperboloid falls, on the convex side of
the surface, without it, and on the concave side within it. Hence
it does not seem so probable that the four theorems were collected
in Prop. 11 on account of the use made of them later, as that they
were inserted in the particular place with special reference to the
three propositions (12—14) immediately following and treating of the
elliptic sections of the three surfaces. The main object of the whole
treatise was the determination of the volumes of segments of the
three solids cut off by planes, and hence it was first necessary to
determine all the sections which were ellipses or circles and therefore
could form the bases of the segments. Thus in Props. 12-14
Archimedes addresses himself to finding the elliptic sections, but,
before he does this, he gives the theorems grouped in Prop. 11 by
way of clearing the ground, so as to enable the propositions about
elliptic sections to be enunciated with the utmost precision. Prop.
11 contains, in fact, explanations directed to defining the scope of
the three following propositions rather than theorems definitely
enunciated for their own sake; Archimedes thinks it necessary to
explain, before passing to elliptic sections, that sections perpen-
dicular to the axis of each surface are not ellipses but circles, and
that some sections of each of the two conoids are neither ellipses nor
circles, but parabolas and hyperbolas respectively. It is as if he had
said, “ My object being to find the volumes of segments of the three
solids cut off by circular or elliptic sections, I proceed to consider
the various elliptic sections ; but I should first explain that sections
at right angles to the axis are not ellipses but circles, while sections
of the conoids by planes drawn in a certain manner are neither
ellipses nor circles, but parabolas and hyperbolas respectively. With
these last sections I am not concerned in the next propositions, and
I need not therefore cumber my book with the proofs ; but, as some
of them can be easily supplied by the help of the ordinary properties
of conics, and others by means of the methods illustrated in the
propositions now about to be given, I leave them as an exercise for
the reader.” This will, I think, completely explain the assumption
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of all the theorems except that concerning the sections of a spheroid
parallel to the axis; and I think this is mentioned along with the
others for symmetry, and because it can be proved in the same way
as the corresponding one for the hyperboloid, whereas, if mention of
it had been postponed till Prop. 14 about the elliptic sections of a
spheroid generally, it would still require a proposition for itself, since
the axes of the sections dealt with in Prop. 14 make an angle with
the axis of the spheroid and are not parallel to it.

At the same time the fact that Archimedes omits the proofs of
the theorems about sections of conoids and spheroids parallel to the
axis as “manifest” is in itself sufficient to raise the presumption
that contemporary geometers were familiar with the idea of three
dimensions and knew how to apply it in practice. This is no matter
for surprise, seeing that we find Archytas, in his solution of the
problem of the two mean proportionals, using the intersection of a
certain cone with a curve of double curvature traced on a right
circular cylinder*. But, when we look for other instances of early
investigations in geometry of three dimensions, we find practically
nothing except a few vague indications as to the contents of a lost
treatise of Euclid’s consisting of two Books entitled Surfuce-loci
(témor wpds émpavela)t. This treatise is mentioned by Pappus
among other works by Aristaeus, Euclid and Apollonius grouped
as forming the so-called dmos dvaluduevos}. As the other works in
the list which were on plane subjects dealt only with straight lines,
circles and conic sections, it is @ priori likely that the surfuce-loci of

* Cf. Eutocius on Archimedes (Vol. 111. pp. 98—102), or dApollonius of Perga,
pp. xxii.—xxiii.

+ By this term we conclude that the Greeks meant *loci which are surfaces”
as distinet from loci which are lines. Cf. Proclus’ definition of a locus as
“a position of a line or a surface involving one and the same property”
(ypauuds 5 émipavelas Béais mowoboa & kal TalTdv cUumTWMA), P. 394. Pappus
(P pp. 660—2) gives, quoting from the Plane Loci of Apollonius, a classification of
loci according to their order in relation to that of which they are the loci. Thus,
he says, loci are (1) épexrkol, i.e. fized, e.g. in this sense the locus of & point is
a point, of a line a line, and 80 on; (2) diefodukoi or moving along, & line being in
this sense the locus of a point, a surface of a line, and a solid of a surface;
(3) dvacrpopuol, turning backwards, i.e., presumably, moving backwards and
forwards, a surface being in this sense the locus of a point, and & solid of a line.
Thus a surface-locus might apparently be either the locus of a point or the
locus of a line moving in space.

1 Pappus, pp. 634, 636.
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Euclid included at least such loci as were cones, cylinders and
spheres. Beyond this, all is conjecture based upon two lemmas
given by Pappus in connexion with the treatise.

First lemma to the Surface-loci of Euclid*.

The text of this lemma and the attached figure are not satisfac-
tory as they stand, but they have been explained by Tannery in a
way which requires a change in the figure, but only the very slightest
alteration in the text, as followst.

“If AB be a straight line and CD be parallel to a straight line
given in position, and if the ratio 4D . DB : DC* be [given], the
point C lies on a conic section.

If now 4B be no longer given in
position and 4, B be no longer
given but lie on straight lines

AE, EB given in position, the c
point C raised above [the plane 4 \
containing AE, EB] is on a
surface given in position. And
this was proved.”

According to this interpretation, it is asserted that, if 48 moves
with one extremity on each of the lines 4, EB which are fixed,
while DC is in a fixed direction and 4D . DB : DC? is constant,
then O lies on a certain surface. So far as the first sentence is
concerned, 4B remains of constant length, but it is not made
precisely clear whether, when 4B is no longer given in position, its
length may also vary§. If however 4B remains of constant length
for all positions which it assumes, the surface which is the locus of
C would be a complicated one which we cannot suppose that Euclid
could have profitably investigated. It may, therefore, be that
Pappus purposely left the enunciation somewhat vague in order to
make it appear to cover several surface-loci which, though belonging
to the same type, were separately discussed by Euclid as involving

E

D

* Pappus, p. 1004.

+ Bulletin des sciences math., 2¢ Série, vi. 149.

4+ The words of the Greek text are yévprac 8¢ mpds Oécew ebbela Tals AE, EB,
and the above translation only requires evfefais instead of evfela. The figure in
the text is so drawn that ADB, AEB are represented as two parallel lines, and
CD is represented as perpendicular to 4DB and meeting AEB in E.

§ The words are simply *if AB be deprived of its position (crepnfy Tis
0ésews) and the points 4, B be deprived of their [character of] being given”
(oTepn0p 100 Sofévros elvar).
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in each case somewhat different sets of conditions limiting the
generality of the theorem.

It is at least open to conjecture, as Zeuthen has pointed out*,
that two cases of the type were considered by Euclid, namely, (1)
that in which 48 remains of constant length while the two fixed
straight lines on which 4, B respectively move are parallel instead
of meeting in a point, and (2) that in which the two fixed straight
lines meet in a point while 4B moves always parallel to itself
and varies in length accordingly.

(1) In the first case, where the length of AB is constant and
the two fixed lines parallel, we should have a surface described by a
conic moving bodilyt. This surface would be a cylindrical surface,
though it would only have been called a “ cylinder ” by the ancients
in the case where the moving conic was an ellipse, since the essence
of a “cylinder” was that it could be bounded between two parallel
circular sections. If then the moving conic was an ellipse, it would
not be difficult to find the circular sections of the cylinder; this
could be done by first taking a section at right angles to the axis,
after which it could be proved, after the manner of Archimedes,
On Conoids and Spheroids, Prop. 9, first that the section is an ellipse
or a circle, and then, in the former case, that a section made by
a plane drawn at a certain inclination to the ellipse and passing
through, or parallel ‘to, the major axis is a circle. There was
nothing to prevent Euclid from investigating the surface similarly
generated by a moving hyperbola or parabola; but there would
be no circular sections, and hence the surfaces might perhaps not
have been considered as of very great importance.

(2) In the second case, where A¥, BE meet at a point and
4B moves always parallel to itself, the surface generated is of
course a cone. Some particular cases of this sort may easily have
been discussed by Euclid, but he could hardly have dealt with the
general case, where DC has any direction whatever, up to the
point of showing that the surface was really a cone in the sense
in which the Greeks understood the term, or (in other words)
of finding the circular sections. To do this it would have been
necessary to determine the principal planes, or to solve the dis-

* Zeuthen, Die Lehre von den Kegelschnitten, pp. 425 8qq.
+ This would give a surface generated by a moving line, diefodikds ypauuds
a8 Pappus has it.
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criminating cubic, which we cannot suppose Euclid to have done.
Moreover, if Euclid had found the circular sections in the most
general case, Archimedes would simply have referred to the fact
instead of setting himself to do the same thing in the particular
case where the plane of symmetry is given. These remarks apply
to the case where the conic which is the locus of C is an ellipse ;
there is still less ground for supposing that Euclid could have
proved the existence of circular sections where the conic was a
hyperbola, for there is no evidence that Euclid even knew that
hyperbolas and parabolas could be obtained by cutting an oblique
circular cone.

Second lemma to the Surface-loci.

In this Pappus states, and gives a complete proof of the propo-
sition, that the locus of a point whose distance from a given point
18 n a given ratio to its distance from a fixed line is a conic
section, which is an ellipse, a parabola, or a hyperbola according
as the given ratio is less than, equal to, or greater than wnity*.
Two conjectures are possible as to the application of this theorem
by Euclid in the treatise referred to.

(1) Consider a plane and a straight line meeting it at any angle.
Imagine any plane drawn at right angles to the straight line and
meeting the first plane in another straight line which we will call
X. If then the given straight line meets the plane at right angles
to it in the point .S, a conic can be described in that plane with
S for focus and X for directrix ; and, as the perpendicular on X
from any point on the conic is in a constant ratio to the per-
pendicular from the same point on the original plane, all points
on the conic have the property that their distances from § are in
a given ratio to their distances from the given plane respectively.
Similarly, by taking planes cutting the given straight line at right
angles in any number of other points besides S, we see that the locus
of o point whose distance from a given straight line is in a given
ratio to its distance from a given plane is a cone whose vertex 18
the point in which the given line meets the given plane, while the
plane of symmetry passes through the given line and ts at right
angles to the given plane. If the given ratio was such that the
guiding conic was an ellipse, the circular sections of the surface

* See Pappus, pp. 1006—1014, and Hultsch’s Appendix, pp. 1270—1273 ; or
cf. Apollonius of Perga, pp. Xxxvi.—Xxxviii,
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could, in that case at least, be found by the same method as
that used by Archimedes (On Conoids and Spheroids, Prop. 8) in
the rather more general case where the perpendicular from the
vertex of the cone on the plane of the given elliptic section does
not necessarily pass through the focus.

(2) Another natural conjecture would be to suppose that, by
means of the proposition given by Pappus, Euclid found ¢ke locus
of a point whose distance from a given point is in a given ratio
to its distance from a fived plane. This would have given surfaces
identical with the conoids and spheroids discussed by Archimedes
excluding the spheroid generated by the revolution of an ellipse
about the minor axis. We are thus brought to the same point as
Chasles who conjectured that the Surfuce-loci of Buclid dealt with
surfaces of revolution of the second degree and sections of the
same*. Recent writers have generally regarded this theory as
improbable. Thus Heiberg says that the conoids and spheroids
were without any doubt discovered by Archimedes himself ; other-
wise he would not have held it necessary to give exact definitions
of them in his introductory letter to Dositheus; hence they could
not have been the subject of Euclid’s treatisef. I confess I think
that the argument of Heiberg, so far from being conclusive against
the probability of Chasles’ conjecture, is not of any great weight.
To suppose that Euclid found, by means of the theorem enunciated
and proved by Pappus, the locus of a point whose distance from
a given point is in a given ratio to its distance from a fixed plane
does not oblige us to assume either that he gave a name to the
loci or that he investigated them further than to show that sections
through the perpendicular from the given point on the given plane
were conics, while sections at right angles to the same perpendicular
were circles ; and of course these facts would readily suggest them-
selves. Seeing however that the object of Archimedes was to
find the volumes of segments of each surface, it is not surprising
that he should have preferred to give a definition of them which
would indicate their form more directly than a description of them
as loci would have done; and we have a parallel case in the dis-
tinction drawn between conics as such and conics regarded as loci,
which is illustrated by the different titles of Euclid’s Conics and
the Solid Loci of Aristaeus, and also by the fact that Apollonius,

* Apercu historique, pp. 273, 4.
+ Litterargeschichtliche Studien iiber Euklid, p. 79.
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though he speaks in his preface of some of the theorems in his
Conics as useful for the synthesis of ¢solid loci’ and goes on to
mention the ‘locus with respect to three or four lines,” yet enun-
ciates no proposition stating that the locus of such and such a point
is a conic. There was a further special reason for defining the
conoids and spheroids as surfaces described by the revolution of
a conic about its axis, namely that this definition enabled Archi-
medes to include the spheroid which he calls ‘flat’ (émurdatd
o¢apoedés), ie. the spheroid described by the revolution of an
ellipse about its minor axis, which is not one of the loci which
the hypothesis assumes Euclid to have discovered. Archimedes’
new definition had the incidental effect of making the nature of
the sections through and perpendicular to the axis of revolution
even more obvious than it would be from Euclid’s supposed way
of treating the surfaces; and this would account for Archimedes’
omission to state that the two classes of sections had been known
before, for there would have been no point in attributing to Euclid
the proof of propositions which, with the new definition of the
surfaces, became self-evident. The further definitions given by
Archimedes may be explained on the same principle. Thus the
axis, as defined by him, has special reference to his definition of
the surfaces, since it means the awxis of revolution, whereas the
axis of a conic is for Archimedes a diameter. The enveloping cone
of the hyperboloid, which is generated by the revolution of the
asymptotes about the axis, and the centre regarded as the point
of intersection of the asymptotes were useful to Archimedes’ dis-
cussion of the surfaces, but need not have been brought into
Euclid’s description of the surfaces as loci. Similarly with the
axts and vertex of a segment of each surface. And, generally, it
seems to me that all the definitions given by Archimedes can be
explained in like manner without prejudice to the supposed dis-
covery of three of the surfaces by Euclid.

I think, then, that we may still regard it as possible that
Euclid’s Surface-loci was concerned, not only with cones, cylinders
and (probably) spheres, but also (to a limited extent) with three
other surfaces of revolution of the second degree, viz. the paraboloid,
the hyperboloid and the prolate spheroid. Unfortunately however
we are confined to the statement of possibilities; and certainty
can hardly be attained unless as the result of the discovery of
fresh documents.
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§ 5. Two mean proportionals in continued proportion.

Archimedes assumes the construction of two mean proportionals
in two propositions (On the Sphere and Cylinder 11. 1, 5). Perhaps
he was content to use the constructions given by Archytas,
Menaechmus*, and Eudoxus. It is worth noting, however, that
Archimedes does not introduce the two geometric means where
they are merely convenient but not necessary ; thus, when (On the

1

Sphere and Cylinder 1. 34) he has to substitute for a ratio (g) ,

where B>y, a ratio between lines, and it is sufficient for his
N

purpose that the required ratio cannot be greater than (g) but

may be less, he takes two arithmetic means between 8, y, as §, ¢,
and then assumest as a known result that

g _B

& v
* The constructions of Archytas and Menaechmus are given by Eutocius
[4rchimedes, Vol. m. pp. 92—102]; or see dpollonius of Perga, pp. xix—xxiii.

+ The proposition is proved by Eutocius; see the note to On the Sphere
and Cylinder 1. 34 (p. 42).

e2



CHAPTER 1IV.
ARITHMETIC IN ARCHIMEDES.

Two of the treatises, the Measurement of a circle and the
Sand-reckoner, are mostly arithmetical in content. Of the Sand-
reckoner nothing need be said here, because the system for expressing
numbers of any magnitude which it unfolds and applies cannot be
better described than in the book itself; in the Measurement of a
circle, however, which involves a great deal of manipulation of
numbers of considerable size though expressible by means of the
ordinary Greek notation for numerals, Archimedes merely gives the
results of the various arithmetical operations, multiplication, extrac-
tion of the square root, etc., without setting out any of the operations
themselves. Various interesting questions are accordingly involved,
and, for the convenience of the reader, I shall first give a short
account of the Greek system of numerals and of the methods by
which other Greek mathematicians usually performed the various
operations included under the general term Aoyworucj (the art of
calculating), in order to lead up to an explanation (1) of the way in
which Archimedes worked out approximations to the square roots of
large numbers, (2) of his method of arriving at the two approximate

values of »/3 which he simply sets down without any hint as to how
they were obtained*.

* In writing this chapter I have been under particular obligations to Hultsch’s
articles Arithmetica and Archimedes in Pauly-Wissowa's Real-Encyclopédie, 11.
1, as well as to the same scholar’s articles (1) Die Nikerungswerthe irrationaler
Quadratwurzeln bei Archimedes in the Nachrichten von der kgl. Gesellschaft der
Wissenschaften zu Gottingen (1893), pp. 367 sqq., and (2) Zur Kreismessung des
Archimedes in the Zeitschrift fiir Math. u. Physik (Hist. litt. Abtheilung) xxxix.
(1894), pp. 121 sqq. and 161 sqq. I have also made use, in the earlier part
of the chapter, of Nesselmann’s work Die Algebra der Griechen and the histories
of Cantor and Gow.
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§ 1. Greek numeral system.

It is well known that the Greeks expressed all numbers from 1
to 999 by means of the letters of the alphabet reinforced by the
addition of three other signs, according to the following scheme, in
which however the accent on each letter might be replaced by a
short horizontal stroke above it, as a.

o, B,v,8, ¢ ¢, 0,7, 0 are 1,2, 3, 4, 5, 6,7, 8 9 respectively.
e N Y, E T, G, 10,20, 30, ... 90 ”
e, o, TV, b, X, ¥, o, A, 100, 200, 300,...... 900 ”

Intermediate numbers were expressed by simple juxtaposition
(representing in this case addition), the largest number being placed
on the left, the next largest following it, and so on in order. Thus
the number 153 would be expressed by pvy’ or pvy. There was no
sign for zero, and therefore 780 was y’, and 306 +¢' simply.

Thousands (x:\ddes) were taken as units of a higher order, and
1,000, 2,000, ... up to 9,000 (spoken of as x{Awot, ioxiAwor, k.7.)1.) Were
represented by the same letters as the first nine natural numbers
but with a small dash in front and below the line ; thus e.g. 8 was
4,000, and, on the same principle of juxtaposition as before, 1,823 was
expressed by awky’ or awky, 1,007 by ,af’, and so on.

Above 9,999 came a myriad (uvpuds), and 10,000 and higher
numbers were expressed by using the ordinary numerals with the
substantive uvpuddes taken as a new denomination (though the words
uipio, Swmipioy, Tpiopvpoy, k.7 are also found, following the
analogy of xi\wot, Surxiior and so on). Various abbreviations were
used for the word pvpds, the most common being M or Mv; and,
where this was used, the number of myriads, or the multiple of
10,000, was generally written over the abbreviation, though some-

times before it and even after it. Thus 349,450 was ﬁ/@vv’ *,
Fractions (Aewrrd) were written in a variety of ways. The most
usual was to express the denominator by the ordinary numeral with
two accents affixed. When the numerator was unity, and it was
therefore simply a question of a symbol for a single word such as
* Diophantus denoted myriads followed by thousands by the ordinary signs
for numbers of units, only separating them by a dot from the thousands. Thus

for 8,069,000 he writes 7s.,0, and Ay. ayos for 331,776. Sometimes myriads
were represented by the ordinary letters with two dots above, as p =100 myriads
{1,000,000), and myriads of myriads with two pairs of dots, as ¥ for 10 myriad-
myriads (1,000,000,000).
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Tpitov, %, there was no need to express the numerator, and the
symbol was y”; similarly ¢”=3, «"=.%, and so on. When the
numerator was not unity and a certain number of fourths, fifths,
etc., had to be expressed, the ordinary numeral was used for the
numerator ; thus 6 w’ =2, ¢ 0a”’=3$. In Heron’s Geometry the
denominator was written twice in the latter class of fractions; thus
2 (8Yo wéumwra) was B'¢"e", 23 (Aewrd TpakooTdTpira ky' or eikogirpia
Tpiakootérpira) was ky' Ay” Ay”. The sign for 3, smov, is in
Archimedes, Diophantus and Eutocius L”, in Heron C or a sign
similar to a capital S*.

A favourite way of expressing fractions with numerators greater
than unity was to separate them into component fractions with
numerator unity, when juxtaposition as usual meant addition. Thus
$ was written L"8"=}+1; 18 was C8'y'vw’=%+1+3+;
Eutocius writes L."¢8” or § + 4 for 32, and so on. Sometimes the
same fraction was separated into several different sums; thus in
Heron (p. 119, ed. Hultsch) 1832 is variously expressed as

(@) 3+3+Fr+1ie+oim
®) ++¥+5+r+1im
and (€ 3+5+3r+ 11w +oin

Sexagesimal fractions. This system has to be mentioned because
the only instances of the working out of some arithmetical operations
which have been handed down to us are calculations expressed in
terms of such fractions; and moreover they are of special interest
as having much in common with the modern system of decimal
fractions, with the difference of course that the submultiple is 60
instead of 10. The scheme of sexagesimal fractions was used by the
Greeks in astronomical calculations and appears fully developed in
the odvraéis of Ptolemy. The circumference of a circle, and along
with it the four right angles subtended by it at the centre, are
divided into 360 parts (turjpara or woipar) or as we should say degrees,
each uoipa into 60 parts called (first) siatieths, (wpdra) énxoord,
or manutes (Aerrd), each of these again into Sevrepa éénroord (seconds),
and so on. A similar division of the radius of the circle into 60

* Diophantus has a general method of expressing fractions which is the

exact reverse of modern practice; the denominator is written above the
Y K€ a . wis

numerator, thus e=5/3, xa =21/25, and p«{. ¢&y =1,270,568/10,816. Some-

times he writes down the numerator and then introduces the denominator

with & uoply or uoplov, e.g. 75 . 0 pop. Ny. agos =3,069,000/331,776.



ARITHMETIC IN ARCHIMEDES. Ixxi

parts (tpwjpara) was also made, and these were each subdivided into
sixtieths, and so on. Thus a convenient fractional system was
available for general arithmetical calculations, expressed in units of
any magnitude or character, so many of the fractions which we
should represent by 44, so many of those which we should write
()% (g%)° and so on to any extent. It is therefore not surprising
that Ptolemy should say in one place “In general we shall use the
method of numbers according to the sexagesimal manner because of
the inconvenience of the [ordinary] fractions.” For it is clear that
the successive submultiples by 60 formed a sort of frame with fixed
compartments into which any fractions whatever could be located,
and it is easy to see that e.g. in additions and subtractions the
sexagesimal fractions were almost as easy to work with as decimals
are now, 60 units of one denomination being equal to one unit of
the next higher denomination, and “carrying” and “borrowing”
being no less simple than it is when the number of units of one
denomination necessary to make one of the next higher is 10 instead
of 60. In expressing the units of the circumference, degrees, poipar
or the symbol & was generally used along with the ordinary numeral
which had a stroke above it ; minutes, seconds, etc. were expressed
by one, two, etc. accents affixed to the numerals. Thus & B=2°
popv pl uB ' =47°42'40”. Also where there was no unit in any
particular denomination O was used, signifying obdeula poipa, obdev
éénroordv and the like ; thus O o' 870" =0°1"2"0". Similarly, for
the units representing the divisions of the radius the word rujuara
or some equivalent was used, and the fractions were represented as
before ; thus rpnpdrov EL8 ve' =67 (units) 4’ 55"

§ 2. Addition and Subtraction.

There is no doubt that, in writing down numbers for these
purposes, the several powers of 10 were kept separate in a manner
corresponding practically to our system of numerals, and the
hundreds, thousands, etc., were written in separate vertical rows.
The following would therefore be a typical form of a sum in addition ;

avkd = 1424
p Y 103
MBora 12281
M XN 30030
B

Mywh vy 43838
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and the mental part of the work would be the same for the Greek as
for us.

Similarly a subtraction would be represented as follows :

I\"J,yx/\s" =93636
f&;yv 6 23409
1\{4: okl 70227

§ 3. Multiplication.

A number of instances are given in Eutocius’ commentary on
the Measurement of a circle, and the similarity to our procedure is
just as marked as in the above cases of addition and subtraction.
The multiplicand is written first, and below it the multiplier preceded
by éni (=“into”). Then the highest power of 10 in the multiplier
is taken and multiplied into the terms containing the separate
multiples of the successive powers of 10, beginning with the highest
and descending to the lowest ; after which the next highest power
of 10 in the multiplier is multiplied into the various denominations
in the multiplicand in the same order. The same procedure is
followed where either or both of the numbers to be multiplied
contain fractions. Two instances from Eutocius are appended from
which the whole procedure will be understood.

1 ' 780
ey’ x 780
0 e -
MM ¢ 490000 56000
M, v 56000 6400
- Mes 56000 6400
opod M/ sum 608400
(2)
iy L8 30134 } [= 3013%]
oy LS x 3013} 1
k)
MM 6 agy/ 9,000,000 30,000 9,000 1500 750
MpAéB L 30,000 100 30 5 2}
aga L LS 9,000 30 9 13 3+1
‘ad'da’ L8y 1,500 5 13 12
lllvlﬁl L," L"3"1;”:.§‘” 750 2% % +i %_ Ti

A
[éu08] M Byrfis” [9,041,250 + 30,1374 + 9,041} + 1506+ + 1 + 1
+753+3+3+ &)
= 9,082,689
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One instance of a similar multiplication of numbers involving
fractions may be given from Heron (pp. 80, 81). It is only one of
many, and, for brevity, the Greek notation will be omitted. Heron
has to find the product of 432 and 782, and proceeds as follows :

4.7=28,
62 248
4.31=%%
33 7 _231
g1 =%
33 62 _2046 1 _ 31, 62
8L 61~ 64 8L 6L T 6L B4

The result is accordingly
284+ 810182 1 —928+T+82+82. 4
— 35+ 83+ 4551
The multiplication of 37° 4’ 55” (in the sexagesimal system) by

itself is performed by Theon of Alexandria in his commentary on
Ptolemy’s odvraéis in an exactly similar manner.

§ 4. Division.

The operation of dividing by a number of one digit only was
easy for the Greeks as for us, and what we call “long division” was
with them performed, mutatis mutandis, in the same way as now
with the help of multiplication and subtraction. Suppose, for
instance, that the operation in the first case of multiplication given

above had to be reversed and that 1\6{[/1]1:' (608,400) had to be divided
by ¢z’ (780). The terms involving the different powers of 10 would
be mentally kept separate as in addition and subtraction, and the
first question would be, how many times will 7 hundreds go into 60
myriads, due allowance being made for the fact that the 7 hundreds
have 80 behind them and that 780 is not far short of 8 hundreds?
The answer is 7 hundreds or ', and this multiplied by the divisor

v8 £
ya' (780) would give M s’ (546,000) which, subtracted from M’

(608,400), leaves the remainder B;/I/Bv’ (62,400). This remainder has
then to be divided by 780 or a number approaching 8 hundreds, and
8 tens or #' would have to be tried. In the particular case the
result would then be complete, the quotient being yx' (780), and
there being no remainder, since =’ (80) multiplied by y=’ (780) gives

the exact figure illﬂv' (62,400).



Ixxiv INTRODUCTION.

An actual case of long division where the dividend and divisor
contain sexagesimal fractions is described by Theon. The problem
is to divide 1515 20" 15" by 25 12’ 10”, and Theon’s account of the
process comes to this.

Divisor Dividend Quotient
25 12’ 10” 1515 200 15" First term 60
o 25 . 60 = 1500
Remainder 15 = 900’
Sum 920’
12'.60 = 720’
Remainder 200’
10”. 60 = 10’
Remainder 190/ Second term 7’
25.7 = 175
15" = 900"
Sum 915"
12,7 84"
Remainder 831"
10”.7 1710
Remainder 829” 50" | Third term 33"
25.33"” 825"
Remainder 4750 =290
12/ ,33" 396"

(too great by) 106

Thus the quotient is something less than 60 7' 33”. It will be
observed that the difference between this operation of Theon’s and

that followed in dividing l\éil'qv' (608,400) by =’ (780) as above is
that Theon makes three subtractions for one term of the quotient,
whereas the remainder was arrived at in the other case after ome
subtraction. The result is that, though Theon’s method is quite
clear, it is longer, and moreover makes it less easy to foresee what
will be the proper figure to try in the quotient, so that more time
would be apt to be lost in making unsuccessful trials.

§ 5. Extraction of the square root.

‘We are now in a position to see how the operation of extracting
the square root would be likely to be attacked. First, as in the case
of division, the given whole number whose square root is required
would be separated, so to speak, into compartments each containing
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such and such a number of units and of the separate powers of 10.
Thus there would be so many units, so many tens, so many hundreds,
etc., and it would have to be borne in mind that the squares of
numbers from 1 to 9 would lie between 1 and 99, the squares of
numbers from 10 to 90 between 100 and 9900, and so on. Then the
first term of the square root would be some number of tens or
hundreds or thousands, and so on, and would have to be found in
much the same way as the first term of a quotient in a “long
division,” by trial if necessary. If 4 is the number whose square
root is required, while a represents the first term or denomination of
the square root and x the next term or denomination still to be
found, it would be necessary to use the identity (@ + z)*=a? + 2az + a*
and to find  so that 2ax +a® might be somewhat less than the
remainder 4 — % Thus by trial the highest possible value of
satisfying the condition would be easily found. If that value were
b, the further quantity 2ab + % would have to be subtracted from
the first remainder 4 — @°, and from the second remainder thus left
a third term or denomination of the square root would have to be
derived, and so on. That this was the actual procedure adopted is
clear from a simple case given by Theon in his commentary on the
ovvrafis. Here the square root of 144 is in question, and it is
obtained by means of Eucl. 1. 4 The highest possible denomina-
tion (i.e. power of 10) in the square root is 10 ; 10? subtracted from
144 leaves 44, and this must contain not only twice the product of
10 and the next term of the square root but also the square of that
next term itself. Now, since 2. 10 itself produces 20, the division
of 44 by 20 suggests 2 as the next term of the square root; and
this turns out to be the exact figure required, since

2.20+2°=44.

The same procedure is illustrated by Theon’s explanation of
Ptolemy’s method of extracting square roots according to the
sexagesimal system of fractions. The problem is to find approxi-
mately the square root of 4500 wotpar or degrees, and a geometrical
figure is used which makes clear the essentially Euclidean basis of
the whole method. Nesselmann gives a complete reproduction of
the passage of Theon, but the following purely arithmetical represen-
tation of its purport will probably be found clearer, when looked at
side by side with the figure.

Ptolemy has first found the integral part of ~/4500 to be 67.
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Now 67%=4489, so that the remainder is 11. Suppose now that
the rest of the square root is expressed by means of the usual
sexagesimal fractions, and that we may therefore put

N4500= 672+ 11 = 67 + —

60 60”
2.67x
where z, y are yet to be found. Thus @ must be such that 60
. 11.60
is somewhat less than 11, or # must be somewhat less than 2 67

or 36—7~, which is at the same time greater than 4. On trial, it
turns out that 4 will satisfy the conditions of the problem, namely
that (67 + 60)2 must be less than 4500, so that a remainder will
be left by means of which y may be found.

a 7 K b
670 4 55"
4489 268 | S
-
%
3
w
‘ ¢
4 268 16”
0 )
55" 3688" 40"
B 4
Now 11 — 2.67.4_ i>2 is the remainder, and this is equal to
60 60
11.60°-2.67.4.60—-16 7424
60° T 60° C
4\ vy . 7424
Thus we must suppose that 2 (67 +§(_)> 60° approximates to 507

or that 8048y is approximately equal to 7424 . 60.
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Therefore y is approximately equal to 55. We have then to

subtract
4\ 55 551* 442640 3025
2(67+ 56)50: + (60) » o "o * o
from the remainder 7;334 above found.
442640 7424 2800 46 40
T tracti — — ZIVeS ——, OF —my + 2= ;
he subtraction of 607 from 607 81VeS g5 OF 5 * 5ge s
2
but Theon does not go further and subtract the remaining g’O—O?,
instead of which he merely remarks that the square of 205;
approximates to Goe t é—g—a As a matter of fact, if we deduct the
3025
608 from 2—%?, so as to obtain the correct remainder, it is
164975
found to be 607

To show the power of this method of extracting square roots by
means of sexagesimal fractions, it is only necessary to mention that
Ptolemy gives 103 +§ + 2 as an approximation to /3, which

60 ~ 60*  60° ’
approximation is equivalent to 1-7320509 in the ordinary decimal
notation and is therefore correct to 6 places.

But it is now time to pass to the question how Archimedes
obtained the two approximations to the value of /3 which he
assumes in the Measurement of a circle. In dealing with this
subject I shall follow the historical method of explanation adopted
by Hultsch, in preference to any of the mostly a priori theories
which the ingenuity of a multitude of writers has devised at
different times.

§ 6. Early investigations of surds or incommensurables.

From a passage in Proclus’ commentary on Eucl. 1.* we learn
that it was Pythagoras who discovered the theory of irrationals
(7 7dv aAdywv mpayuareia). Further Plato says (Theaetetus 147 o),
“On square roots this Theodorus [of Cyrene] wrote a work in

* p. 65 (ed. Friedlein).
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which he proved to us, with reference to those of 3 or 5 [square] feet
that they are incommensurable in length with the side of one square
foot, and proceeded similarly to select, one by one, each [of the other
incommensurable roots] as far as the root of 17 square feet, beyond
which for some reason he did not go.” The reason why /2 is not
mentioned as an incommensurable square root must be, as Cantor
says, that it was before known to be such. We may therefore
conclude that it was the square root of 2 which was geometrically
constructed by Pythagoras and proved to be incommensurable with
the side of a square in which it represented the diagonal. A clue
to the method by which Pythagoras investigated the value of ~2
is found by Cantor and Hultsch in the famous passage of Plato
(Rep. viiL. 546 B, ¢) about the ‘geometrical’ or ‘nuptial’ number.
Thus, when Plato contrasts the pnmj and dppyros Suduerpos Tis
mepmados, he is referring to the diagonal of a square whose side
contains five units of length ; the dppnros dudperpos, or the irrational
diagonal, is then /50 itself, and the nearest rational number is
N50—1, which is the pyry Swiperpos. We have herein the
explanation of the way in which Pythagoras must have made the
first and most readily comprehensible approximation to »/2; he
must have taken, instead of 2, an improper fraction equal to it but
such that the denominator was a square in any case, while the
numerator was as near as possible to a complete square. Thus

0 .
, and the first approximation to /2 was

5
Pythagoras chose 35

accordingly g, it being moreover obvious that \/§>—;—. Again,

Pythagoras cannot have been unaware of the truth of the
proposition, proved in Eucl. 11. 4, that (a+ b)* = o’ + 2ab + b*, where
a, b are any two straight lines, for this proposition depends solely
upon propositions in Book 1. which precede the Pythagorean
proposition 1. 47 and which, as the basis of 1. 47, must necessarily
have been in substance known to its author. A slightly different
geometrical proof would give the formula (a-b5)"=a’—2ab+??,
which must have been equally well known to Pythagoras. It could
not therefore have escaped the discoverer of the first approximation

NB50—1 for o/50 that the use of the formula with the positive sign

would give a much nearer approximation, viz. 7 + i% , which is only
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S 2
greater than /50 to the extent of (1170 . Thus we may properly

assign to Pythagoras the discovery of the fact represented by
: 1 -
7 11 V50 > 7.

The consequential result that /2> % V50=1 is used by

Aristarchus of Samos in the 7th proposition of his work On the
size and distances of the sun and moon ¥,

With reference to the investigations of the values of /3, /5,

Ve, ...... V17 by Theodorus, it is pretty certain that /3 was
geometrically represented by him, in the same way as it appears

* Part of the proof of this proposition was a sort of foretaste of the first part
of Prop. 3 of Archimedes’ Measurement of a
circle, and the substance of it is accordingly A K
appended as reproduced by Hultsch.

ABEK is a square, KB a diagonal, £ HBE
=32 KBE, t FBE=3°and AC is perpendicu-
lar to BF so that the triangles ACB, BEF are

similar. H
Aristarchus seeks to prove that
AB:BC >18:1, ol ¢
If R denote a right angle, the angles KBE,
HBE, FBE are respectively 3R, 3R, %R. B E

Then HE : FE > t HBE : L FBE.
[This is assumed as a known lemma by Aristarchus as well as Archimedes.]

Therefore HE:FE>15:2. . ..cccoovviniiiiiinnnnnnnn, (a).
Now, by construction, BK?*=2BE?,
Also [Eucl. v1. 3] BK : BE=KH : HE;
whence KH=~2HE.
And, since N2 > §02—;1 ,
KH:HE >17:5,
so that KE :EH>12:5 coooiiviiereeeieereeeennans (8).

From (a) and (8), ex aequali,
KE:FE >18:1.
Therefore, since BF > BE (or KE),

BF: FE >18:1,
8o that, by similar triangles,
AB :BC> 18 : 1.
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afterwards in Archimedes, as the perpendicular from an angular
point of an equilateral triangle on the opposite side. It would
thus be readily comparable with the side of the “1 square foot”
mentioned by Plato. The fact also that it is the side of three
square jfeet (tpimovs Svvapis) which was proved to be incommensurable
suggests that there was some special reason in Theodorus’ proof for
specifying feet, instead of units of length simply; and the ex-
planation is probably that Theodorus subdivided the sides of his
triangles in the same way as the Greek foot was divided into
halves, fourths, eighths and sixteenths. Presumably therefore,

exactly as Pythagoras had approximated to /2 by putting §9

25
for 2, Theodorus started from the identity 3 = i4—§ It would then

be clear that
48+1 . T
A/3 < \/ 16 , Le. Z .

To investigate »/48 further, Theodorus would put it in the form

result would be
JE (= JAI L) <T - 1.

‘We know of no further investigations into incommensurable
square roots until we come to Archimedes.

§7. Archimedes’ approximations to /3.

Seeing that Aristarchus of Samos was still content to use the
first and very rough approximation to ~/2 discovered by Pythagoras,
it is all the more astounding that Aristarchus’ younger contemporary
Archimedes should all at once, without a word of explanation, give
out that

1351, 265
780~ V3> 153"

as he does in the Measurement of o circle.

In order to lead up to the explanation of the probable steps by
which Archimedes obtained these approximations, Hultsch adopts
the same method of analysis as was used by the Greek geometers in
solving problems, the method, that is, of supposing the problem
solved and following out the necessary consequences. To compare
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265 and }—3—51 , we first divide both denominators

153 780
into their smallest factors, and we obtain

780=2.2.3.5.13,
153=3.3.17.
We observe also that 2.2.13 =52, while 3.17 =51, and we may
therefore show the relations between the numbers thus,
780=3.5.52,
153 =3.51.

For convenience of comparison we multiply the numerator and

denominator of 265 by 5; the two original fractions are then

153
1351 . 1325
15.52 "¢ 15.51°

so that we can put Archimedes’ assumption in the form

1351 1325
5> 163> 5,
and this is seen to be equivalent to

the two fractions

1 - 1
26_5§>15J3>26_a.

A
Now 26—512= \/ 26°—-1 +(5~12) , and the latter expression
is an approximation to ~/26°— 1.

‘We have then 26 — 1

5§>~/261—1.

As 26—-51—2 was compared with 154/3, and we want an ap-

proximation to J3 itself, we divide by 15 and so obtain
1 1 )
= = \>— Jog_

(26 52>> 5 26T 1.

15
R 676 -1 675 o .
But T5~/26 -1= 995 = §§5—J3’ and it follows
that 1 (26 _-1-> > J3
15 52 )

The lower limit for /3 was given by

o 1
J3>E(26—ﬁ>,
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and a glance at this suggests that it may have been arrived at by
simply substituting (52 — 1) for 52.

Now as a matter of fact the following proposition is true. If
a® + b is a whole number which is not a square, while o® is the nearest
square number (above or below the first number, as the case may be),
then

b — b
a;i-_%> Ja ib>ai2—a—g.

Hultsch proves this pair of inequalities in a series of propositions
formulated after the Greek manner, and there can be little doubt
that Archimedes had discovered and proved the same results in
substance, if not in the same form. The following circumstances
confirm the probability of this assumption.

(1) Certain approximations given by Heron show that he
knew and frequently used the formula

—_— b
«/aﬁibwa_—t,——,
2a

(where the sign co denotes ‘“is approximately equal to”).

Thus he gives '\/56 T+ 1—14-,
N63c0 8 - L
16’
= 11
JTBeo8 4+ 0.
(2) The formula No'+beoa+ 27—-[11 is used by the Arabian
Alkarkhi (11th century) who drew from Greek sources (Cantor,
p- 719 sq.).

It can therefore hardly be accidental that the formula
b — b
+— * 4+ +
aty-> Ja "b>a"2u-_l;1
gives us what we want in order to obtain the two Archimedean
approximations to /3, and that in direct connexion with one
another*, ' -

* Most of the @ priori theories as to the origin of the approximations are
open to the serious objection that, as a rule, they give series of approximate
values in which the two now in question do not follow consecutively, but are
separated by others which do not appear in Archimedes. Hultsoh’s explanation
is much preferable as being free from this objection. But it is fair to say that
the actual formula used by Hultsch appears in Hunrath’s solution of the puzzle
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We are now in a position to work out the synthesis as follows.

From the geometrical representation of /3 as the perpendicular
from an angle of an equilateral triangle on the opposite side we

obtain v/2°—1=4/3 and, as a first approximation,
2— % > /3.
Using our formula we can transform this at once into

1 1
J§>2~Z—1, or 2—.

Archimedes would then square (2 ——%), or —35—, and would obtain

-

%—) , which he would compare with 3, or 27 ; ie. he would put

9
\/ 25+2 and would obtain

;’( ) ~/3 ie. —>J3

To obtain a still nearer approximation, he would proceed in the

g;g , with 3, or g;i , whence it

= 26°—1
would appear that J3=,/° 75

and therefore that 11—5 (26 — ———) N3 3,

same manner and compare (15> or

. 1351
that is, w30 V3.

The application of the formula would then give the result

5z 1 1
N/3>-— (26—'5—2—~:1>,

1326 -1 265
15.51 * & 153
The complete result would therefore be
1351 265
750 7 V3> T8

(Die Berechnung irrationaler Quadratwurzeln vor der Herrschaft der Decimal-
briiche, Kiel, 1884, p. 21; of. Ueber das Ausziehen der Quadratwurzel bei
Griechen und Indern, Hadersleben, 1883), and the same formula is implicitly
used in one of the solutions suggested by Tannery (Sur la mesure du cercle
& Archimede in Mémoires de la société des sciences physiques et naturelles de
Bordeaux, 2° série, 1v. (1882), p. 313-337).

that is, V3> —

72
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Thus Archimedes probably passed from the first approximation
7 5, 26 26 . 1351

bo 3, fro m 3 to 15 and from 15 directly to 780 °
apprommation of all, from which again he derived the less close

the closest

approximation 265
Ppro 153"
nearer approximation than 17%61 is probably that the squaring of
this fraction would have brought in numbers much too large to be
conveniently used in the rest of his calculations. A similar reason

The reason why he did not proceed to a still

g instead of %; if he had

used the latter, he would first have obtained, by the same method,
N3 \/49 1, and thence -

will account for his having started from

T-tr, V3, or —> ~3; the squaring

4
2
of 5 6 would have given /3 _:/—9—;6—1 , and the corresponding
approximation would have given 5—16-8—81%)2 , Where again the numbers

are inconveniently large for his purpose.
§ 8. Approximations to the square roots of large
numbers.

Archimedes gives in the Measurement of a circle the following
approximate values:

(1) 30132 > /9082321,
(2) 18382 > ~/3380929,
(3) 1009} > /1018405,
(4) 2017} > /40692844,
(5) 5914 < /349450,

6 1172} < /137394333,
() 23391 < W/5472132.%.

There is no doubt that in obtaining the integral portion
of the square root of these numbers Archimedes used the method
based on the Euclidean theorem (a+3)®=a®+ 2ab +b* which has
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already been exemplified in the instance given above from Theon,

where an approximation to v/4500 is found in sexagesimal fractions.
The method does not substantially differ from that now followed ; but
whereas, to take the first case, v/9082321, we can at once see what
will be the number of digits in the square root by marking off pairs
of digits in the given number, beginning from the end, the absence
of a sign for 0 in Greek made the number of digits in the square
root less easy to ascertain because, as written in Greek, the number

Mﬂrm’ only contains six signs representing digits instead of seven.
Even in the Greek notation however it would not be difficult to see
that, of the denominations, units, tens, hundreds, etc. in the square
root, the units would correspond to xa’ in the original number, the

)
tens to Br, the hundreds to 1;'4, and the thousands to M. Thus it
would be clear that the square root of 9082321 must be of the form

1000 + 100y + 102 + w,

where 2, y, z, w can only ‘have one or other of the values 0,1,2,...9.
Supposing then that « is found, the remainder & — (1000x)%, where
N is the given number, must next contain 2.1000xz.100y and
(100y)*, then 2(1000x+100y).10z and (10z)°, after which the
remainder must contain two more numbers similarly formed.

In the particular case (1) clearly x=3. The subtraction of
(3000)* leaves 82321, which must contain 2.3000.100y. But, even
if y is as small as 1, this product would be 600,000, which is greater
than 82321. Hence there is no digit representing Aundreds in the
square root. To find 2, we know that 82321 must contain

2.3000. 10z + (102)%,

and z has to be obtained by dividing 82321 by 60,000. Therefore
¢=1. Again, to find w, we know that the remainder

(82321 -2.3000.10~10%),

or 22221, must contain 2.3010w +w? and dividing 22221 by
2.3010 we see that w=3. Thus 3013 is the integral portion of
the square root, and the remainder is 22221 —(2.3010.3 +3%), or
4152.

The conditions of the proposition now require that the approxi-
mate value to be taken for the square root must not be less than
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the real value, and therefore the fractional part to be added to 3013
must be if anything too great. Now it is easy to see that the

2
fraction to be added is greater than % because 2.3013 .%+ (%) is

less than the remainder 4152. Suppose then that the number
required (which is nearer to 3014 than to 3013) is 3014—%,

and g has to be if anything too small.

Now (3014)*=(3013) + 2. 3013 + 1 = (3013)* + 6027
= 9082321 — 4152 + 6027,
whence 9082321 = (3014)" - 1875.

By applying Archimedes’ formula V@' +b<a + 2b—a , We obtain

1875
3014 — g 3014>J9082321

The required value 2 o has therefore to be not greater than —— 1875

6028 °
It remains to be explained why Archimedes put forg the va,luel

4
(15 Og; In the first place, he evidently preferred
fractions with unity for numerator and some power of 2 for
denominator because they contributed to ease in working, e.g. when
two such fractions, being equal to each other, had to be added.

which is equal to

1 .
% and g are to be explained by
exceptional circumstances presently to be mentioned.) Further, in
the particular case, it must be remembered that in the subsequent

work 2911 had to be added to 3014—%’ and the sum divided by 780,

(The exceptions, the fractions

or2.2.3.5.13. It would obviously lead to simplification if a
factor could be divided out, e.g. the best for the purpose, 13. Now,
dividing 2911 + 3014, or 5925, by 13, we obtain the quotient 455,

and a remainder 10, so that 10-§ remains to be divided by 13.

Therefore “ has to be so chosen that 10q — p is divisible by 13, while

& approxxmates to, but is not greater than, é—g-Z—g The solution

p=1, ¢=4 would therefore be natural and easy.
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(2) +/3380929.

The usual process for extraction of the square root gave as the
integral part of it 1838, and as the remainder 2685. As before, it
was easy to see that the exact root was nearer to 1839 than to 1838,
and that

/3380929 = 1838 + 2685 = 1839* — 2. 1838 — 1 + 2685
=1839* — 992.
The Archimedean formula then gave

992 S
— 9
1839 51839~ ~/3380929.

It could not have escaped Archimedes that 71—
39(%28 or ;g—gé, since i ;ggz ; and i would have satisfied

the necessary condition that the fraction to be taken must be less

Wwas a near approxima-

tion to

than the real value. Thus it is clear that, in taking ﬁ as the

approximate value of the fraction, Archimedes had in view the
simplification of the subsequent work by the elimination of a factor.

If the fraction be denoted by g’ the sum of 1839—6 and 1823, or

3662 — 5, had to be divided by 240, i.e. by 6.40. Division of 3662

by 40 gave 22 as remainder, and then p, ¢ had to be so chosen that
22 —g was conveniently divisible by 40, while %’ was less than but

992
approximately equal to _——— 3678

seen to satisfy the conditions.

- The solution p=2, ¢=11 was easily

(3) ~/1018405.
The usual procedure gave 1018405=1009°+324 and the ap-

proximation

324 —
1009 o0s > ~1018405.

324
It was here necessary that the fraction to replace 018 should be

greater but approximately equal to it, a,nd 3 satisfied the conditions,

while the subsequent work did not require any change in it.
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(4) 40692847
The usual process gave 40692841 =2017% + 995,L.; it followed
that
36.995+1

D, L
2017 + 369 2017 /4069284 %,

and 2017} was an obvious value to take as an approximation
somewhat greater than the left side of the inequality.

(5) ~/349450.

In the case of this and the two following roots an approximation
had to be obtained which was less, instead of greater, than the true
value. Thus Archimedes had to use the second part of the formula

b o b
ai%>Ja“ib>ai 2@:*'_”1 .
In the particular case of ,/349450 the integral part of the root is
591, and the remainder is 169. This gave the result

169 169
591+2 591>\/‘349400>591+2 Bl 1

and since 169=13% while 2.591+1=7.13% it resulted without
further calculation that

349450 > 5911.
‘Why then did Archimedes take, instead of this approximation,
another which was not so close, viz. 59117 The answer which the

subsequent working and the other approximations in the first part of
the proof suggest is that he preferred, for convenience of calculation,

to use for his approximations fractions of the form 1 —only. But he
could not have failed to see that to take the nea.rest fraction of this

form, %, instead of % might conceivably affect his final result and

make it less near the truth than it need be. As a matter of fact,
as Hultsch shows, it does not affect the result to take 5911 and to
work onwards from that figure. Hence we must suppose that
Archimedes had satisfied himself, by taking 591} and proceeding on
that basis for some distance, that he would not be introducing any
appreciable error in taking the more convenient though less accurate
approximation 5913.
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(6) A/137394333.

In this case the integral portion of the root is 1172, and the
remainder 3593%. Thus, if R denote the root,

35933
B>+ o4
359 .o
> 1172+2 117251 a fortiors.
Now 2.1172 +1=2345; the fraction accordingly becomes 2%543,
and % (: %) satisfies the necessary conditions, viz. that it must

be approximately equal to, but not greater than, the given fraction.
Here again Archimedes would have taken 1172} as the approximate
value but that, for the same reason as in the last case, 1172} was
more convenient.

() 54721324,
The integral portion of the root is here 2339, and the remainder

12114, so that, if R is the exact root,

1211
2.2339+1

> 2339}, a jfortiori.

A few words may be added concerning Archimedes’ ultimate
reduction of the inequalities

B>2339 +

6671 2841
3+ 467337 ™ 3+ o17d
to the simpler result 3 ; >r>3 %)
As a matter of fact 667% so that in the first fraction it was
77 46725

only necessary to make the small change of diminishing the de-

nominator by 1 in order to obtain the simple 3%.

284} 1137 and
20174~ 8069 *

Hultsch ingeniously suggests the method of trying the effect of
increasing the denominator of the latter fraction by 1. This

As regards the lower limit for w, we see that
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éo_z) 23g9i’0; and, if wo divide 2690 by 379, the quotient
is between 7 and 8, so that
18719 1
772690 8
Now it is a known proposition (proved in Pappus vir. p. 689)

@ a+c
that, 1fb>d, then 3 hrd

Similarly it may be proved that

produces

ate_¢
b+d™ d’
It follows in the above case that

379 379+1 1
2690 2690+8° 8’

which exactly gives % > !
10, 379
and 1 is very much nearer to - --= 3690 than

Note on alternative hypotheses with regard to the
approximations to 3.

For a description and examination of all the various theories put
forward, up to the year 1882, for the purpose of explaining Archimedes’
approximations to 4/3 the reader is referred to the exhaustive paper by
Dr Siegmund Giinther, entitled Die quadratischen Irrationalititen der Alten
und deren Entwickelungsmethoden (Leipzig, 1882). The same author gives
further references in his Abriss der Geschichte der Mathematik und der Natur-
wissenschajften v Altertum forming an Appendix to Vol. v. Pt. 1 of Iwan von
Miiller'’s Handbuch der klassischen Altertums-wissenschaft (Miinchen, 1894).

Giinther groups the different hypotheses under three general heads :

(1) those which amount to a more or less disguised use of the
method of continued fractions and under which are included the solutions
of De Lagny, Mollweide, Hauber, Buzengeiger, Zeuthen, P. Tannery (first
solution), Heilermann ;

(2) those which give the approximations in the form of a series

of fractions such as a + 1 + 1 + 1
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solutions of Radicke, v. Pessl, Rodet (with reference to the Qulvasitras),

Tannery (second solution);

+...; under this class come the
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(3) those which locate the incommensurable surd between a greater
and lesser limit and then proceed to draw the limits closer and closer.
This class includes the solutions of Oppermann, Alexejeff, Schonborn,
Hunrath, though the first two are also connected by Giinther with the
method of continued fractions,

Of the methods so distinguished by Giinther only those need be here
referred to which can, more or less, claim to rest on a historical basis
in the sense of representing applications or extensions of principles laid
down in the works of Greek mathematicians other than Archimedes which
have come down to us. Most of these quasi-historical solutions connect
themselves with the system of side- and diagonal-numbers (mhevpixol and
diaperpikol dpifpoi) explained by Theon of Smyrna (c. 130 A.D.) in a work
which was intended to give so much of the principles of mathematics as
was necessary for the study of the works of Plato.

The side- and diagonal-numbers are formed as follows, We start with
two units, and (@) from the sum of them, (b) from the sum of twice
the first unit and once the second, we form two new numbers ; thus

1.1+1=2, 2.1+1=3.

Of these numbers the first is a side- and the second a diagonal-number
respectively, or (as we may say)

a,=2,  dy=3.
In the same way as these numbers were formed from a;=1, d;=1, suc-
cessive pairs of numbers are formed from a,, d,, and so on, in accordance

with the formula
an+1=an+dm dn+1=2an+dm
whence we have
az=1.2+3=5, dg=2.243="7,

a=1.6+7=12, d,=2.5+7=17,
and so on.

Theon states, with reference to these numbers, the general proposition
which we should express by the equation

d2=2a,2+1.
The proof (no doubt omitted because it was well-known) is simple. For
we have
A~ 20, =20y +dp— )~ 2(An—y + iy y)?

=20, _2~d,_2

== (duy? - 202, %)

= +(d,_? — 2a,-,%), and so on,
while d;?—2a,2= —1; whence the proposition is established.

Cantor has pointed out that any one familiar with the truth of this
proposition could not have failed to observe that, as the numbers were
successively formed, the value of d,2/a,? would approach more and more
nearly to 2, and consequently the successive fractions d,/a, would give
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nearer and nearer approximations to the value of 4/2, or in other words that
13 7 17 41
1’ 2, 51 12’ 29, ......
are successive approximations to A/2. Tt is to be observed that the third
of these approximations, %, is the Pythagorean approximation which

appears to be hinted at by Plato, while the above scheme of Theon,
amounting to a method of finding all the solutions in positive integers of
the indeterminate equation
2t~ yl=+1,

and given in a work designedly introductory to the study of Plato,
distinctly suggests, as Tannery has pointed out, the probability that even
in Plato’s lifetime the systematic investigation of the said equation had
already begun in the Academy. In this connexion Proclus’ commentary
on Eucl. 1. 47 is interesting. It is there explained that in isosceles
right-angled triangles “it is not possible to find numbers corresponding to
the sides; for there is no square number which is double of a square
except in the sense of approwimately double, e.g. 72 is double of 5% les<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>