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PKEFACE

That teachers and students of the Calculus have shown such a gen-

erous appreciation of Granville's "Elements of the Differential and

Integral Calculus " has been very gratifying to the author. In the last

few years considerable progress has been made in the teaching of the

elements of the Calculus, and in this revised edition of Granville's

" Calculus" the latest and best methods are exhibited,— methods that

have stood the test of actual classroom work. Those features of the

first edition which contributed so much to its usefulness and popu-

larity have been retained. The introductory matter has been cut down

somewhat in order to get down to the real business of the Calculus

sooner. As this is designed essentially for a drill book, the pedagogic

principle that each result should be made intuitionally as well as

analytically evident to the student has been kept constantly in mind.

The object is not to teach the student to rely on his intuition, but, "in

some cases, to use this faculty in advance of analytical investigation.

Graphical illustration has been drawn on very liberally.

This Calculus is based on the method of limits and is divided into

two main parts,— Differential Calculus and Integral Calculus. As

special features, attention may be called to the effort to make per-

fectly clear the nature and extent of each new theorem, the large

number of carefully graded exercises, and the summarizing into

working rules of the methods of solving problems. In the Integral

Calculus the notion of integration over a plane area has been much

enlarged upon, and integration as the limit of a summation is con-

stantly emphasized. The existence of the limit e has been assumed

and its approximate value calculated from its graph. A large num-

ber of new examples have been added, both with and without

answers. At the end of almost every chapter will be found a col-

lection of miscellaneous examples. Among the new topics added are

approximate integration, trapezoidal rule, parabolic rule, orthogonal
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trajectories, centers of area and volume, pressure of liquids, work

done, etc. Simple practical problems have been added throughout;

problems that illustrate the theory and at the same time are of

interest to the student. These problems do not presuppose an ex-

tended knowledge in any particular branch of science, but are based

on knowledge that all students of the Calculus are supposed to have

in common.

The author has tried to write a textbook that is thoroughly modern

and teachable, and the capacity and needs of the student pursuing a

first course in the Calculus have been kept constantly in mind. The

book contains more material than is necessary for the usual course of

one hundred lessons given in our colleges and engineering schools

;

but this gives teachers an opportunity to choose such subjects as best

suit the needs of their classes. It is believed that the volume con-

tains all topics from which a selection naturally would be made in

preparing students either for elementary work in apphed science or

for more advanced work in pure mathematics.

WILLIAM A. GRANVILLE
Pennsylvania College

Gettysburg, Pa.
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DIFFERENTIAL CALCULUS

CHAPTER I

COLLECTION OF FORMULAS

1. Formulas* for reference. For the convenience of the student we

give the following list of elementary formulas from Algebra, Geome-

try, Trigonometry, and Analytic Geometry.

1. Binomial Theorem (n being a positive integer)

:

(a + 6)" = a» + na'-i6 -^Vll^tZ^a—^V' ^.
'^(^ -!)("- 2) ^^.^^s + . .

.

[2 [3

n(„-l)(,»-2)...(rt-r + 2)^„_^,,,,^_,

\r-l

2; ji! = [)i = l-2-3.4-.-(n-l)n. - . .

3. In the quadratie .equation ax^ + bx + c = 0,

when V — 4.ac > 0, the roots are real and unequal

;

when 6^ — 4 ac = 0, the roots are real and equal

;

when 6^ — 4 ac < 0, the roots are imaginary.

4. When a quadratic equation is reduced to the form x^ + px + q = 0,

p = sum of roots with sign changed, and q = product of roots.

'

6. In an arithmetical series,

I = a + (n -l)d ; s = 1(a + T) = ^[2a + (n -l)d].

6. In a geometrical series,

rl— a a (r» — 1)
'-

Z = ar«-i: s = = —

^

'-
,

r — l r — 1

7. log a& = log a + log 6. 10. logVa = -loga. 13. log- =- log a.

8. log - = log a — log 6. 11. Iogl:t0. 14. Circumference of circle=2 irr.

9. log a» = n log o. 12. loga a = 1. 15. Area of circle = irr^.

* In formnlas 14-25, r denotes radius, a altitude, B area of base,' and s slant height.

1



DIFFEEENTlAL CALCULUS

16. Volume of prism = Ba.

17. Volume of pyramid = J Ba.

18. Volume of right circular cylinder = irr^a.

19. Lateral surface of right circular cylinder = 2 irra.

20. Total surface of right circular cylinder = 2irr(r + a).

21. Volume of right circular cone = \irr^a.

22. Lateral surface of right circular cone = irrs.

23. Total surface of right circular cone = 7rr(r + s).

24. Volume of sphere = ^trfi-

25. Surface of sphere = iirr^.

26. sin X = : cos x = ; tan x = —-—

.

cscx seox cotx

sinx ^ cosx
27. tanx = —— ; cotx = -:

cos X sm X 1

28. sin^x + oos^x = 1 ; 1 + tan^x = sec^x ; 1 +" cot^x = csc'x.

/ir \ 31. sin (x + 2/) = sin X cos 2/ + cosx sin y.
29. smx = cos( xh

32. sin (x — 2/) = sin X cos 2/ — cosx sin y.

cos X = sin ( X I

:

. .

\2 / 33. cos(x ±y) = cosx cos?/ ^ sinx sm^.

tanx = cot(--x). „. , . tanx + tanj/
\2 / 34. tan(x + 2/)

= —
1 — tan X tan y

30. sin (ir — x) = sin x

;

cos (tt — x) =— cosx: „,- , , ^ tan x — tan

«

^ ' '
35. tan (x — y) = —

tan (ir— x) = — tan X. 1 + tanxtany

3. sin2x = 2sinxcosz; cos2x = cos^x — sin^x; tan2x:
1 — tan^x

„_. n.a; X „x .,x^ 2tanlx
37. sm X = 2 sin - cos- ; cos x = cos-' sin'' - : tan x = =

2 2' 2 2 l-tan2Jx

38. cos^x = J + J cos 2 X ; sin^x = J — | cos 2 x.

39. 1 + cos X = 2 cos^ - ; 1 — cos x = 2 sin^ -

.

2' 2

.„ . X /l — cos X X /l + cos X X /l — (

40. sii)- = ±-\ : cos-=±-\ ; tan- = + -v/
2 \ 2 ' 2 \ 2 ' 2 \H-,

41. sinx + sin2/ = 2sin^(x + 2/) cos J (x — y).

42. sinx — sin 2/ = 2cosJ{x + y)sin^(x — y).

43. cos X + cos 2/ = 2 cos J (x + y) cos ^(x — y).

44. cos X — cos 2/ = — 2 sin i(x + y) sin J (x — 2/).

^,. <"' & c ^ „ „.
45. -:—- — -—- = -^—- : Law of Sines,

sin .4 sinB sinC

46. a2 = 62 + c2 - 2 6c coSyl ; Law of Cosines.

47. d = V(Xi - x^y + {y^ - y^Y ; distance between points (Xj, y^ and (x,^

Ax 4- Bv A- C
48. d =—'

,
^ ^- ; distance from line 4x + JSi^ + C = to (x,, « •>

±VA2 + B2
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5. Logarithms of numbers and trigonometric functions.

Table of Mantissas of the Common Logarithms of Numbers

No.



CHAPTER n

VARIABLES AND FUNCTIONS

6. Variables and constants. A variable is a quantity to which an

unlimited number of values can be assigned. Variables are denoted

by the later letters of the alphabet. Thus, in ,the equation of a

straight line,

5 + 1 = 1,
a b

X and y may be considered as the variable coordinates of a point

moving along the line.

A quantity whose value remains unchanged is called a constant.

Numerical or ahsolute constants retain the same values in all prob-

lems, as 2, 5, Vy, tt, etc.

Arbitrary constants, or parameters, are constants to which any one

of an unlimited set of numerical values may be assigned, and they

are supposed to have these assigned values throughout the inves-

tigation. They are usually denoted by the earlier letters of the

alphabet. Thus, for every pair of values arbitrarily assigned to a

and 6, the equation

- + ! = !
a b

represents some particular straight line.

7. Interval of a variable. Very often we confine ourselves to a

portion only of the nuraber system. For example, we may restrict

our variable so that it shall take on only such values as lie between

a and b, where a and h may be included, or either or both excluded.

We shall employ the symbol [a, 5], a being less than Sj to represent

the numbers a, h, and all the numbers between them, unless otherwise

stated. This symbol [a, 6] is read the interval from a to b.

8. Continuous variation. A variable x is said to vary continuously

through an interval [a, 6], when a; starts with the value a and increases

until it takes on the value b in such a manner as to assume the value
6
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of every number between a and 6 in the order of tbeir magnitudes.

This may be illustrated geometrically as follows

:

The origin being at 0, lay off on the straight line the points A and

B corresponding to the numbers a and b. Also let the point F corre-

spond to a particular value of the variable x. Evidently the interval

[a, 6] is represented by the segment AB. Now as a; varies continuously

from a to 5,inclusive, i.e. through the interval [«, 6], the point P gen-

erates the segment AB.

9. Functions. When two variables are so related that the value of the

first variable depends on the value of the second variable, then the first

variable is said to be a function of the second variable.

Nearly all scientific problems deal with quantities and relations

of this sort, and in the experiences of everyday life we are con-

tinually meeting conditions illustrating the dependence of one quan-

tity on another. For instance, the weight a man is able to lift

depends on his strength, other things being equal. Similarly, the

distance a boy can run may be considered as depending on the

time. Or, we may say that the area of a square is a function of

the length of a side, and the volume of a sphere is a function of

its diameter.

10. Independent and dependent variables. The second variable, to

which values may be assigned at pleasure within limits depending on

the particular problem, is called the independent variable, of argument

;

and the first variable, whose value is determined as soon as the value

of the independent variable is fixed, is called the dependent variable,

or function.

Frequently, when we are considering two related variables, it is in

our power to fix upon whichever we please as the independent variable;

but having once made the choice, no change of independent variable

is allowed without certain precautions and transformations.

One quantity (the dependent variable) may be a function of two

or more other quantities (the independent variables, or arguments).

For example, the cost of cloth is a function of both the quality and

quantity ; the area of a triangle is a function of the base and altitude;

the volume of a rectangular parallelepiped is a function of its three
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11. Notation of functions. The symbol /(x) is used to denote a

function of a-, and is read f of x. In order to distinguish between

different functions, the prefixed letter is changed, as F(x), ^(^)»

f'(x), etc.
,

During any investigation the same functional symbol always indi-

cates the same law of dependence of the function upon the variable.

In the simpler cases this law takes the form of a series of analytical

operations upon that variable. Hence, in such a case, the same func-

tional symbol will indicate the same operations or series of operations,

even though applied to different quantities. Thus, if

f(x) = x'-'dx + 14.,

then fiy-) = f-9y + U.

Also /(«) = «'- 9 a +14,

/(6+l) = (6 + iy-9(i+l) + 14 = J^-7S+6,

/(0) = 0^-9 0+14=14,

/(-l) = (-iy-9(-l) + 14 = 24,

/(3) = 3^-9-3+14=-4,

/(7) = 7'-9-7+ 14 = 0, etc.

Similarly, ^ (.r, ^) denotes a function of x and y, and is read ^ of

X and y.

If 4> {x, y') = sin (x + y),

then (^ (a, J) = sin (a + 5),

and ^(-' OJ=sin^=l.

Again, if F(x, y, z)=2x+ 3 y —12z,

then FQn, — m, m}= 2 m — Bni —12 m= — lSm,

and i?'(3, 2, 1)= 2-3 + 3- 2-12-1=0.

Evidently this system of notation may bo extended indefinitely.

12. Values of the independent variable for which a function is defined.

Consider the functions

a:^—2x+ 5, sin a;, arc tan a:

of the independent variable x. Denoting the dependent variable in

each case by y, we may write

y = x^—2x+5, y = sinx, ?/ = arctana;.
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In each case y (the value of the function) is known, or, as we
say, defined, for all values of x. This is not by any means true of all

functions, as the following examples illustrating the more common
exceptions will show.

' (1) y = :

"

h

Here the value of y (i.e. the function) is defined for all values of x

except x = b. When x.= h the divisor becomes zero and the value of y
cannot be computed from (1).* ' Any value might be assigned to the

function for this value of the argument.

(2) y=^.
In this case the function is defined only for positive values of x.

Negative values of x give imaginary values for y, and these must be

excluded here, where we are confining ourselves to real numbers only.

(3) y = \og^x. a>0
Here y is defined only for positive values nf x. For negative values

of X this function does not exist (see § 19).

(4) y = arc sin a;, y = arc cos x.

Since sines and cosines cannot become greater than + 1 nor less

than — 1, it follows that the above functions are defined for all values

of x ranguig from — 1 to + 1 mclusive, but for no other values.

EXAMPLES

1. Given f(x) = x^ - lOx^ + six - 30 ; show that

/(0)=-30, f(y) = y'-10y' + 31y-30,

/(2) = 0, f{a) = aS - 10 a2 + 31 a - 30,

/(8) = /(5), f(yz) = 2/%' - 10 2/%2 + 31 yz- 30,

/(I) >/(_ 3), f(x - 2) = x^ - 16x2 + 83x - 140,

/(-I) =-6/(6).

2. If f(x) = X' - 3x + 2, fliid/(0), /(I), /(- 1), /(- i), /(IJ).

3. If fix) = x3 — lOx^ + Six — 30, and (x) = x* — 55x2 _ 2i0x — 216, show that

/(2) = .^(-2), /(3) = 0(-3), /(5) = 0(-4), /(0) + 0(0) + 246 = 0.

4. If ^(x) = 2^ find F(0), F(- 8), F(i), F(- 1).

5. Given F(x) = x(x- 1) (x + 6) (x - ^) (x + f) ; show that

^(0) = F{1) = F(- 6) = F(i) = F{- i) = 0.

* See § 14, p. 12.
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6. If f(m,) =
^~

, show that
m^ + l

1 +f(m,i)f(m^) 1 + OTiWij

7. If 1^ (x) = a»^, show that <l>(y)-<t> (z) =.^ (y + z).

J X
8. Given 0(x) = log ; show that

0(x) + 0(3/) = 0(fJ^).

9. If f(<t>) = cos 0, show that

/(*) =/(- 0) = -/(t - 0) = -/(T + *)

.

10. If F(S) = tan 6, show that

11. Given ^ (x) = x^" + x^"* + 1 ; show that

12. If /(x) = ^^^ , find /(V2). ^ns. - .0204.

X + 7
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CHAPTER III

THEORY OF LIMITS

13. Limit of a variable. If a variable v takes on successively a series

of values that approach nearer and nearer to a constant value I in such

a manner that |v — Z|* becomes and remains less than any assigned arbi-

trarily small positive quantity, then v is said to approach the limit I, or

to converge to the limit I. Symbolically this is written

limit V = 1, or, v = I.

.The following familiar examples illustrate what is meant:

(1) As the number of sides of a regular inscribed polygon is indefi-

nitely increased, the limit of the area of the polygon is the area of the

circle. In this case the variable is always less than its limit.

(2) Similarly, the limit of the area of the circumscribed polygon is

also the area of the circle, but now the variable is always greater, than

its limit.

(3) Consider the series

The sum of any even number (2 w) of the first terms of this series is

^"2 4 8 2^"-^ 2^"-^

J--1
9?^ 2 1

(5) ^^„=__^ = --^-^5^. By6, p. 1

Similarly, the sum of any odd number (2 w+1) of the first terms of

the series is 111 11
'^2''+i~ 2'*"4~8'' 2^"^'*' 2^'

-J—

1

921+1 o -1

(C^ S =—= = - +—— By6, p. 1

* To be read the numerical value of the difference between v and I.

11
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Writing (5) -and (C) in the foriiiis

we have

and

limit f^_ a

„ = 00 U ^
limit

n = cc
S..

I^a variable, it is seen that both

a limit as the number of

Hence, by definition of the

S„, and ^2n+i ^^6 variables ap

icreases without limit.

ling up the first two, ti^ggj^our, e^^ terms of (^), the sums

by (jB) and (C) tOD^»a4^CTfea4gly^s and greater than |,

illustratiijg the case when the vanable^'^i^^is case the sum of the terms

)dtemateli/ less and greater than wi^mit.

In the emmples shown WSS^^Me^jiever Caches its limit. This is

not by any ^eans always the case5^^^®«ithe definition of the limit

^of a variable it is cmar that the essenN^^Obe*definition is simply that

; numerical vg/luaolthe difference beW^en the variable and its limit

dmately'WcpmeSiiid remaJH"less thaj^Miy positive number we

may choosS?*ba^ever small.

(4) As an "^""^p*i=^?'|'>*"»t.^.of^jj^^ <^t.^ fact that the variable may reach

its limit, consider the folros«£g!**T9B€«aBBBftBies of regu^lar polygons

be inscribed in a aijjgl&the numtJstof sides increasing indefinitely.

Choosing any oJW^of tnS8j*|SftnsteiiCT**the circumscribed polygon

whose sides touch \Btei^circle atrfeeyettiseg/oS^e inscribed polygon.

Let p^ and i^ be th\peSmeters of n»e inscnbed and circumscribed

polygons of n sides, and C the circumfertoce of the circle, and sup-

pose the values of a variable x to,be as foi^ws

_
^? ^to +1' ^n + 2' ^1^' '" -i-o, etc.^„.

Then, evidently,

and the limit is reachea^y the variable, every thirS value of the variable

being C.

14. Division by zero excluded. - is in^i^erminaie. For the quotient

of two numbers is that number which mulclWiedr by the divisor will

give the dividend. But any number whatever maltiplied by zero gives



THEORY OF LIMITS 13

zero, and the quotient is indeterminate ; that is, any number whatever

may be considered as the quotient, a result which is of no value.

- has no meaning, a being different from zero, for there exists no

number such that if it be multiplied by zero, the product will equal a.

Therefore division hy zero is not an admissible operation.

Care should be takeu not to divide by zero inadvertently. The following fallacy

is an illustration.

Assume that a = 6.

Then evidently ab = a'.

Subtracting b^, ab-b^ = a^- b^.

Factoring, 6 (a — 6) = (a + 6) (a — 6).

Dividing by a — 6, 6 = a + 6.

But o = 6,

therefore 6 = 26,

or, 1 = 2.

The result is absurd, and is caused by the fact that we divided by a — 6 = 0.

15. Infinitesimals. A variable v whose limit is zero is called an

infinitesimal.* This is written

limit V = 0, or, i; = 0,

and means that the successive numerical values of v ultimately become

and remain less than any positive number however small. Such a

variable is said to leeome indefinitely small or to ultimately vanish.

If limit v = l, then limit (y — l')=Q;

that is, the difference between a variable and its limit is an infinitesimal.

Conversely, if the difference between a variable and a constant is an

infinitesimal, then the variable approaches the constant as a limit.

16. The concept of infinity (oo). If a variable v ultimately becomes

and remains greater than any assigned positive number however large,

we say v increases without limit, and write

limit w = + oo, or, v = + co.

If a variable v ultimately becomes and remains algebraically less

than any assigned negative number, we say v decreases without limit,

and write
limit t) = -oo, or, v = -x.

* Hence a constant, no matter how small it may be, is not an infinitesimal.



14 DIFFERENTIAL CALCULUS

If a variable v ultimately becomes and remains in numerical value

greater than any assigned positive number however large, we say v,

.in numerical value, increases without limit, or v becomes infinitely great,*

and write
U^^i^. ^ ^ ^ ^ ^^^ ^ ^ ^ _

Infinity (oo) is not a number; it simply serves to characterize a

particular mode of variation of a variable by virtue of which it

increases or decreases without limit.

17. Limiting value of a function. Given a function /(a;).

If the independent variable x takes on any series of values such that

limit x = a,

and at the same time the dependent variable /(x) takes on a series of

corresponding values such that

limit /(a;)=^,

then as a single statement this is written

and is read the limit off(x), as x approaches the limit a in any manner,

is A.

18. Continuous and discontinuous functions. A function /(a;) is said

to be continuous for x = a ii the limiting value of the function when x

approaches the limit a in any manner is the value assigned to the

function for x= a. f[n symbols, if

then f(x) is continuous for x = a.

The function is said to be discontinuous for a; = a if this condition

is not satisfied. For example, if

the function is discontinuous for a; = a.

The attention of the student is now called to the following cases

which occur frequently.

*Oii account of the notation used and for the sake of uniformity, the expression
I) = +00 is sometimes read v approaches the limit phis infinity. Similarly, i> = - oo is read
V approaches the limit minus infinity, and w =s= oo is read w, in numerical value, approaches
the limit infinity.

While the ahove notation is convenient to use in this connection, the student must not
forget that infinity is not a limit in the sense in which we defined a limit on p. 11, for
infinity is not a number at all.
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Case I. As ^ example illustrating a simple case of a function con-
tinuous for a particular value of the variable, consider the function

/(^) = x-2
For a; = 1, 'f(x) =f(l) = 3. Moreover, if x approaches the limit 1

in any manner, the function f(x) approaches 3 as a limit. Hence the

function is contiuuous for x = \.

Case II. The definition of a continuous function assumes that

the function is already defined for x= a. If this is not the case, how-
ever, it is sometimes possible to assign such a value to the function for

x= a that the condition of continuity shall be satisfied. The following

theorem covers these cases.

Theorem. Iff(x) is not defined for x = a, and if

then fQt) will be continuous for x = a, if B is assumed as the value of

f^x) for x=a. Thus the function

x-2
is not defined for a; = 2 (since then there would be division by zero).

But for every other value of x,

X— 2

and
.

li-i*(.+
2) = 4;

therefore ^^l^^4.x=2 x-2

Although the funttion is not defined for a;= 2, if we arbitrarily assign

it the value 4 for a; = 2, it then becomes continuous for this value.

A function f(x) is said to he continuous in an interval when it is

continuous for all values of x in this interval.*

* In this book we shall deal only with functions which are in general continuous, that is,

continuous for all values of x, with the possible exception of certain isolated values, our
results in general being understood as valid only for such values of x for which the function
in question is actually continuous. Unless special attention is called thereto, we shall as a
rule pay no attention to the possibilities of such exceptional values of x for which the function
is discontinuous; The definition of a continuous function /(i) is sometimes roughly (but

imperfectly) summed up in the statement that a small change in x shall produce a small
change inf(x) . We shall not consider functions having an infinite number of oscillations

in a limited region.
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19. Continuity and discontinuity of functions illustrated by their

graphs.

(1) Consider the function 3?, and let

If we assume values for x and calculate the corresponding values

of y, we can plot a series of points. Drawing a smooth line free-hand

tlirough these points, a good representation of the gen-

eral behavior of the function may be obtained. This

picture or image of the function is called its graph.

It is evidently the locus of all points satisfying

equation (^).

Such a series or assemblage of points is also called

a curve. Evidently we may assume values of x so near

together as to bring the values of y (and therefore the points of the

curve) as near together as we please. In other words, there are no

breaks in the curve, and the function 3? is continuous for all values of x.

(2) The graph of the continuous

function sin a; is plotted by draw-

ing the locus of

y = sin X.

It is seen that no break in the curve occurs anywhere.

.

(3) The continuous function e" is of very frequent occurrence in

the Calculus. If we plot its graph from

y = e', (e = 2.718 • • )

we get a smooth curve as shown. From this it is

clearly seen that,

(a) when x = 0,
^™'t y^^^-^^^.

(b) when x>Q, y(= e") is positive and increases

as we pass towards the right from the origin

;

(c) when x<0, y (= e"^) is still positive and decreases as we pass
towards the left from the origin. y

(4) The function log^a; is closely related to the

last one discussed. In fact, if we plot its graph "o'

f^«°^
2/ = log.:.,

it will be seen that its graph has tha same rela-

tion to OX and OY as the graph of e'' has to F and OX.
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Here we see the following facts pictured

:

(a) For x = l, log^a; = log^ 1=0.
(b) For x>l, log^x is positive and increases as x increases.

(c) For 1 > 2:> 0, log^a; is negative and increases in numerical value

as X diminishes, that is, ^'^'' log a; =— 00

.

(d) For a; s 0, log^a; is not deiined ; hence the entire graph lies to

the right of OY.

(5) Consider the function -> and set
X

1

If the graph of this function be plotted, it

will be seen that as x approaches the value

zero from the left (negatively), the points of

the curve ultimately drop down an infinitely great distance, and as x

approaches ' the value zero from the right, the curve extends upward

infinitely far.

The curve then does not form a continuous branch from one side

to the other of the axis of Y, showing graphically that the function

is discontinuous for x=0, but continuous for all other values of x.
,

(6) From the graph of

y = 1-a?

it is seen that the function

: ± 1, but continuous for all

r

l-x"

is discontinuous for the two values x

other values of x.

(7) The graph of

y = td.nx

shows that the function tana; is dis-

continuous for infinitely many values

of the independent variable x, namely,

x=^— , where n denotes any odd positive or negative integer.

(8) The function
arc tan *
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has infinitely many values for a given value of x, the graph of equation

y = arc tan x

consisting of infinitely many branches. If, however, we confine our-

selves to any single branch, the function is continuous. For instance,

if we say that y shall be the arc of smallest numeri-

cal value whose tangent is x, that is, y shall take

on only values between — ^ and ^) then we are

limited to the branch passing through the origia,;

and the condition for contiauity is satisfied.

4-7r

X

(9) Similarly,
arc tan -

,

X

is found to be a many-valued function. Confining ourselves to one

branch of the graph of i° ^ V = arc tan-,

we see that as x approaches zero from the left, y approaches the

limit - 1, and as x approaches zero from the right, y approaches the

Ylimit +

1

-S
2

^ Hence the function is discon-

tinuous when x=0. Its value for x=
can be assigned at pleasure.

" Functions exist which are discontinuous

for every value of the independent vari-

able within a certain range. In the ordinary applications of the Cal-

culus, however, we deal with functions which are discontinuous (if

at all) only for certain isolated values of the independent variable;

such functions are therefore in general continuous, and are the only

ones considered in this book.

20. Fundamental theorems on limits. In problems involving limits

the use of one or more of the following theorems is usually implied.

It is assumed that the limit of each variable exists and is finite.

Theorem:. The limit of the algebraic mm of a finite number of vari-

ables is equal to the like algebraic sum of the limits of the sever4
variables. .

Theorem II. The limit of the product of a finite number of variablei

is equal to the product of the limits of the several vanables.
]

Theorem III. The limit of the quotient of two variables is equal to the

quotient of the limits of the separate variables, provided the limit of the

denominator is not zero.
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Before proving these theorems it is necessary to establish the fol

lowing properties of infinitesimals.

(1) The sum of a finite numher of infinitesimals is an infinitesimal.

To prove this we must show that the numerical value of this sum can

be made less than any small positive quantity (as e) that may be

assigned (§ 15). That this is possible is evident, for, the limit of each

infinitesimal being zero, each one can be made numerically less than

- (n being the number of infinitesimals), and therefore their sum can

be made numerically less than e.

(2) The product of a constant c and an infinitesimal is an infinitesimal.

For the numerical value of the product can always be made less than

any small positive quantity (as e) by making the numerical value of

the infinitesimal less than -.

c

(3) Theproduct ofanyfinite numher ofinfinitesimals is an infinitesimal]

For the numerical value of the product may be made less than any

small positive quantity that can be assigned. If the given product

contains n factors, then since each infinitesimal may be assumed less

than the mth root of e, the product can be made less than e itseK.

(4) Ifv is a variable which approaches a limit I different from zero,

then the quotient of an infinitesimal hy v is also an infinitesimal. For if

limit v = l, and k is any number numerically less than I, then, by defini-

tion of a limit, v will ultimately become and remain numerically greater

than &, Hence the quotient -, where e is an infinitesimal, will ulti-
V

mately become and remain numerically less than -, and is therefore

by (2) an infinitesimal.

Proof of Theorem I. Let v^, v^, v^, be the variables, and l^, l^, l^, ••

their respective limits. We may then write

"l-
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Since the right-hand member is an infinitesimal by (1), p. 19, we

have, from the converse tlieorem on p. 18,

hmit (y^+v,+ v^+ • ) = ^1+ l,+ l,+ ---,

or, limit (y^+ v^+ v^-\ ) = limit v^+ limit v^+ limit v^A ,

which was to be proved.

Proof of Theorem II. Let v^ and v^ be the variables, \ and l^ their

respective limits, and e^ and e^ infinitesimals; then





10. DIFFERENTIAL CALCULUS

If now X approaches the limit zero,

limit X

a; = sin a;

limit
must lie between the constant 1 and

limit a;

Therefore ^""''' -^ = 1, or, „
a; = U sm

x

x=v

x=0 cos X

limit sin x

X

5 which is also 1.

1. Th. Ill, p. 18

It is interesting to note the behavior of this function from its graph,

the locus of equation •

gjj^ ^

Although the function is not defined for a; = 0, yet it is not discon-

tinuous when a; = if we define

sin
~0~ = L Case II, p. 15

23. The number e. One of the most important limits in the Cal-

culus is
limit ,^ _^

.i _ 2.71828 ••• = «.

a;= 0^ ^

To prove rigorously that such a limit e exists, is beyond the scope

of this book. For the present we shall content ourselves by plotting

the locus of the equation i

y = (\+xy

and show graphically that, as a; = 0, the function (1 + a;)»=(= y)

"/
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As a; == frbih the left, y decreases and approaches « as a limit. As
a: 4 from the right, y increases and also approaches e as a hmit.

As a; =b 00, 2/ approaches the limit 1 ; and as a; ==— 1 from the right,

y injereases without limit.

In Chap. XVIII, Ex. 15, p. 233, we will show how to calculate the

value of e to wa.j number of decimal places.

Natural logarithms are those which have the number e for base.

These logaritluns play a very important rSle in mathematics. When
the base is not indicated explicitly, the base e is always understood

in what follows in this book. Thus log^v is written simply log v.

Natural logarithms possess the following characteristic property:

If a;— in any way whatever,

,. ., logCl + ar) 1

lunit _EJi_ L = limit log (1+ x'yi = log e = 1.

24. Expressions assuming the form ^ • As oo is not a number, the

.expression go -f- oo is indeterminate. To evaluate a fraction assuming

this form, the niimerator and denominator being algebraic functions,

we shall find useful the following

Rule. Divide both numerator and denominator by the highest power of

the variable occurring in either. Then substitute the value of the variable.

1 17 1 t Hmit 2a:8- 3x^ + 4
Illustrative Example 1. Evaluate ^ _ 7 i ir-^

•

Solution. Substituting directly, we get "™'' —— = ^ , which is indeter-
x = oo5x — x^ — 7x2 oo

minate. Hence, following the above rule, we divide both numerator and denominator

by x'. Then

2-5 + 4
limit 2x8-3x^ + 4 ^ limit z x^ _ i ^^
x = QO 5x — x2 — 7x3 ^ = <»5_1_ 7

t2 r.

EXAMPLES
Prove the following

:

^ limit /x + l\ _ J
x = co\ X /

_ . limit /a; + 1\ limit /, ,
1\

p«»*- x=«,(-^j=x=«(i+5;

_ limit ,j- limit /1\ Th. I, p. 18
X = 00 '• ' X = 00 \X,

=1+0=1
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2 limit /z'' + 2a:\ 1

,1 +
-'

limit /x^ + 2x\ ^ limit | 1

\a;''

[Dividing both numerator and denominator by x^.}

limit / 2\

j; = 00 \ ^ xj

imit /^ _ „\limit

X

limit i-t\ ,
limit /2'

X = 00 ^ '
"'"

X = QC ^x,

limit

X
imit /^\ _ limit ,„,

= 00 \j;2/ X = 00 ^ '

Th. Ill, p. 18

Th. I, p. 18

_ l+0 _ 1

~0-3~ 3'

3 limit x^-2x+5 ^1 limit a | -
^. „

4 limit 3xS + 6xg _ _ 2 j^ limit 2x3 + Sa"

x = 02a;4-l5x2^ 5' x-=0 a;S *•

P limit x' + l _ jg limit 5xg-2x ^
2;=-2a; + 3~ •x = co x

6.
1'°"''

(3 0x2 - 2 Ax + 5 ^2) = 3 ^^.s. jg. "'"'* ^^ = 1.

7. i^™'' (ax2 + 6x + c) = 00. 17 limit njn + V, ^ ^"
' n = <»(n + 2){n + 3)

„ limit (x-A:)2-2fcx3 ^ ,. . „s 1
8. i._o-^^ , , ,,

= 1.
-iQ

limit s'-l „«-" x(x + i;) 18. ^^j—-^ = 3.

limit X^ + 1 1 1- -4. /^ _L l\n ^nQ = -. in limit (X + /l)» — x"
»• x = co3j;2 + 2x-1 3 ^^-^ = 0^

1
= 'M"-i-

^Q limit 3 + 2x— = 0. on limit r la ,
,>sin7i"| ^

5x 20. ^^q|cos(^ + /i)-^I = oos(9.

,, limit cos(a — a) ^ limit 4 ir^ _ -r 4
11. a_ir ^^ ^=— tana. 2I =

2 cos (2 a: — a) 'x = oo4 3J.2
3'

j^2
limit ox' + 6x + c _ a limit 1 - cos g _ 1

^ = «'dx2 + ex+/ d' -^ = g2 -2'

„„ limit 1 .... . . , ,

X = a x — a
=~ "") " ^ IS mcrgasing as it approaches the value a.

„. limit 1 , « J . . , ,

**•
X = a X — a

= + ">" ^ 's decreasing as it approaches the value a.



CHAPTER IV

DIFFERENTIATION

25. Introduction. We shall now proceed to investigate the man-

ner in which a function changes in value as the independent variable

changes. The fundamental problem of the DifPerential Calculus is to

establish a measure of this change in the function with mathematical

precision. It was while investigating problems of this sort, dealing

with continuously varying quantities, that Newton* was led to the

discovery of the fundamental principles of the Calculus, the most

scientific and powerful tool of the modern mathematician.

26. Increments. The increment of a variable in changing from one

numerical value to another is the difference found by subtracting the

first value from the second. An increment of x is denoted by the

symbol A.x, read delta x.

The student is warned against reading this symbol delta times x,

it having no such meaning. Evidently this increment may be either

positive or negative ^ according as the variable in changing is increas-

ing or decreasing in value. Similarly,

Ay denotes an increment of «/,

A(/> denotes an increment of (j),

A/(a;) denotes an increment of /(a;), etc.

If in 1/ —f(x) the independent variable x takes on an increment Aa;,

then Ay is always understood to denote the corresponding increment

of the function /(a;) (or dependent variable «/).

The increment Ay is always assumed to be reckoned from a definite

initial value of y corresponding to the arbitrarily fixed initial value of x

from which the increment Ax is reckoned. For iaistance, consider the

function y = jcl

* Sir Isaac Newton (1642-1727), an Englishman, was a man of the most extraordinary-

genius. He developed the science of the Calculus under the name of Fluxions. Although

Newton had discovered and made use of the new science as early as 1670, his first published

work in which it occurs. is dated 1687, having the title Philosophiae Naturalis Principia

Mathematica. This was Newton's principal work. Laplace said of it, '" It will always remain

preeminent above all other productions of the human mind." See frontispiece.

t Some writers call a negative increment a decrement.

25
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Assuming a; = 10 for the initial value of x fixes y — 100 as the initial
,

value of y.

Suppose X increases to a; = 12, that is, Aa;=2;

then y increases to y = 144, and Ay = 44.

Suppose X decreases to x = 9, that is. As; =— 1

;

then y decreases to z/ = 81, and Ay =— 19.

It may happen that as x increases, y decreases, or the reverse ; in

either case Ax and Ay will have opposite signs.

It is also clear (as illustrated in the above example) that if y =f(x)

is a continuous function and Ax is decreasing in numerical value, then

Ay also decreases in numerical value.

27. Comparison of increments. Consider the function

Assuming a fixed initial value for x, let x take on an increment Ax.

Then y will take on a corresponding increment Ay, and we have

y + Ay = (x + Axf,

or, y + Ay = x^+2x-Ax + (^Axy.

Subtracting (^), y =0?

(B) ^ Ay= 2 a; Az + (Axy

we get the increment'Ay in terms of x and Ax.

To find the ratio of the increments, divide (5) by Ax, giving

^=22; + Aa:.
Ax

If the initial value of x is 4, it is evident that

limit Ay _ g
Aa; = Aa:

Let us carefully note the behavior of the ratio of the increments of

X and y as the increment of x diminishes.

Initial
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It is apparent that as Ax decreases, Ay also diminishes, but their

ratio takes on the successive values 9, 8.8, 8.6, 8.4, 8.2, 8.1, 8.01

;

Ay
illustrating the fact that —^ can be brought as near to 8 in value as

Ax
we please by making Ax small enough. Therefore

limit ^ ^ g *
Aa; = Aa;

*

28. Derivative of a functioii of one variable. The fundamental

definition of the Differential Calculus is

:

The derivative ^ of a function is the limit of the ratio of the increment

of the function to the increment of the independent variable, when the lat-

ter increment varies and approaches the limit zero.

When the limit of this ratio exists, the function is said to be differ-

entiable, or to possess'a derivative.

The above definition may be given in a more compact form symbol-

ically as follows : Given the function

(^) y=fi^\
and consider x to have a fixed value.

Let x take on an increment Ax; then the function y takes on an

increment Ay, the new value of the function being

(E) y+Ay=f(x + Ax~).

To find the increment of the function, subtract (^) from (JB), giving

(0 Ay =f(x + Ax-) -fix).

Dividing by the increment of the variable. Ax,- we get

Ay _ f{x + A^)-f(x)
^ ^ Aa; ' Aa;

The limit of this ratio when Aa; approaches the limit zero is, from our

definition, the derivative and is denoted hy the symbol -^- Therefore

,„ dy _ limit f(x-\-Ax)-f{x)

defines the derivative of y[orf(x)'\ with respect to x.

*The student should guard against the common error of concluding that because the

numerator and denominator of a fraction are each approaching zero as a hmit, the limit of

the value of the fraction (or ratio) is zero. The limit of the ratio may take on any numerical

value. In the above example the limit is 8.

t Also called the differential coefficient or the derivedfunction.
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From CD) we also get^ * dy^ limit Ay

dx Ajr = OAj:'

The process of finding the derivative of a function is called differ-

entiation.

It should be carefully noted that the derivative is the limit of the

ratio, not the ratio of the limits. The latter raj:io would assume the

form — , which is indeterminate (§ 14, p. 12).

29. Symbols for derivatives. Since Ay and Ax are always finite and

have definite values, the expression

Ay
Ax

is really a fraction. The symbol
dy

dv'

however, is to be regarded not as a fraction but as the limiting value of

a fraction. In many cases it will be seen that this symbol does possess

fractional properties, and later on we shall show how meanings may

be attached to di/ and dx, but for the present the symbol -— is to be

considered as a whole.

Since the derivative of a function of x is in general also a function

of X, the symbol /'(a;) is also used to denote the derivative of /(a;).

Hence, if ^ =/(a:),

we may write — =f'(x'),

which is read the derivative of y with respect to x equals f prime of x

The symbol ^

dx

when considered by itself is called the differentiating operator, and
indicates that any function written after it is to be differentiated with

respect to x. Thus

^ or — y indicates the derivative of y with respect to x ;

^/(«) mdicates the derivative oif(x) with respect to x;

— (2x'+ 5) indicates the derivative of 2a;^+ 5 with respect to x.dx
dy

y' is an abbreviated form of —

.

dx
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The symbol D^ is used by some writers instead of— If then
ax

y =/(^)'
we,may write the identities

30. Differentiable functions. From the Theory of Limits it is clear

that if the derivative of a function exists for a certain value of the

independent variable, the "function itself must be continuous for that

value of the variable.

The converse, however, is not always true, functions having been

discovered that are continuous and yet possess no derivative. But

such functions do not occur often in applied mathematics, and in this

hook only differentiable-functions are considered, that is, functions that

.possess a derivative for all values of the independent variable save at

most for isolated values.

31. General rule for differentiation. From the definition of a deriv-

ative it is seen that the process of differentiating a function y =f(x)
consists m taking the following distinct steps

:

General Rxilb for Differentiation*

First Step. In the function replace x by x + Ax, giving a new value

of the function, y + i^y.

Second Step. Subtract the given value of the function from the new

value in order to find A?/ (the increment of the function^.

Third Step. Divide the remainder At/ (the increment of the function)

by Aa; (the increment of the independent variable).

Fourth Step. Find the limit of this quotient, when Ax (the increment

of the independent variable) varies and approaches the limit zero. This

is the derivative required.

The student should become thoroughly familiar with this rule by

applying the process to a large number of examples. Three such

examples will now be worked out in detail.

Illustrative Example 1. Differentiate Sx^ + 5.

Solution. Applying the successive steps in the General Rule, we get, after placing

y = Sx^ + 5,

First step. y + Ay = 3(x +Axy + 5

= 3x2 + 6a;.Aa; + 3(Ax)2 + 5.

• Also called the Four-step Rule.
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Second step. y + A?/ = Sa;^ + 6a; • Ax + 3(Aa;)2 + 5

y =3x"- -l-_5

Ay = 6x-Ax + 3(Ax)^.

Third stgj. :^ = 6 a; + 3 • Ax.
Ax

dy
Fourth step. — = 6x. Ajis.

dx
We may also write this

— (3x2 + 5) = 6x.

iLLnsTRATivE ExAMFLE 2. Differentiate x' — 2x + 7.

Solution. Place y = x^ — 2x + 7.

First step. y + Ay = (x + Ax)" - 2 (x + Ax) + 7

= x' + 3 x2 . Ax + 8 X • (Ax)2 + (Ax)3 -2x-2.Ax + 7.

Second step. y + Ay = x^ + Sx'' . Ax + Sx (AxY + (Ax)" — 2x-2-Aa; + 7

y =x" — 2x +7
Ay= 3x2Tax+"3xT(Ax)2"4~(Ax)8 — 2 • Ax.

Third stej). — = 3.^2 + 3 x Ax J- (Ax)^ - 2.

Fourth step. — = 3 x^ - 2. Ans.
dx

Or, — (x'-2x+'7) = 3x2-2.
dx

Illustrative Example 3. Difierentiate —
x"

Solution. Place y =—
x^

Krsi step. 7j + Ay =:

Second step. y + Ay =

y =

(X + Ax)2

c

(X + Ax)2

c

Aj/:
c^ _ — c Ax (2 X + Ax)

(X + Ax)2 x2 x2 (X + Ax)2

Third step. ^=-c 2"= + ^^

Fourth step.

Or,

Ax x2 (X + Ax)2

#__ 2x
(fe~ ' x2 (x)2

=
r- • ^TIS.

x"

dx\xV xT'
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EXAMPLES

Use the General Rule, p. 29, in differentiating the following functions

:

1. v = Sx^.
.

2. y = x^ + 2.

3. y = 5-

4. s = 2i2.

4x.

Ans. ^:
dx

dy

dx

dy

dx

:.6x.

= 2x.

= -4.

5. y = -
X

e.y = X + 2

dt

dy

dx

dy

dx

= it.

2^

'

x^'

7. y = x'

8. y = 2x^-3.

9. 2/ = 1-2x3.

10. p=a9^.

11. 1/

12. 2/

Ans. ^-.
dx

3x2

2^

x2

x2_i

^2/ ,-i = 4x.
dx

^=-6x^
dx

dy ___4
cfcc x^

dy

dx

6x

13. y = 7 x2 + X.

14. s = aP-2bi.

15. r = 8< + 3i2.

16.. = i.

17. s = --

18. y = bx^ — ex.

19. p = 3^3 -2^2.

20. 2/ = fx^ — Jx.

.

21. y =
X

22. p:

(X2 - 1)2

23. y = ix2^2x.

24. z = 4x-3x2.

25. p = Z9 + e^.

ax + h
26. 2/ = :

1+^
27. 2 =

x''

x3 + 2

Ans. y' = 2x — 3.

s' = 4i + 5.

p' = 156l2-2.

y' = 2 ax + 6.

2i + 3

28. 2/ = x2-3x + 6.

29. s = 2i2 + 54-8.

30. p = 56^-20+6.

31. 2/ = as'' + 6a; + c.

32. Applications of the derivative to Geometry. We shall now

consider a theorem which is fundamental in all applications of the

Differential Calculus to Geometry. Let 3,

(A) 2/=/(^)

be the equation of a curve AB.

Now differentiate (^) by the G-eneral Rule

and interpret each step geometrically.

First Step.

Second Step.

Third Step.

y + ^y =fQc + Aa;)

y + £^y=f(x-ir^x)

y =f(P)
A^ =f(x + Ace) -fix) = BQ.

A.y _ fix + ^x•) -f(x) ^RQ _BQ
Ax Aa; MN PB

= tdiXL BPQ = tdjx (\>

= slope of secant line PQ.
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Fourth Step.

(-B)

limit A^^ limit /(a: + Aa;)—/(:t /

Aa; = Aa; Aa; = Aa;

= -^ = value of the derivative at P.
dx

But when we let Aa; = 0, the point Q will move along the curve and

approach nearer and nearer to P, the secant will turn about P and

approach the tangent as a limiting position, and we have also

"°^t ^=,^°^* tan</, = tanT
Aa; = Aa; Aa; = ^

(C) = slope of the tangent at P.

Hence from (5) and (C),

— = slope of the tangent line FT. Therefore
dx

Theorem. The value of the derivative at any point of a curve is equal

to the slope of the line drawn tangent to the curve at that point.

It was this tangent problem that led Leibnitz * to the discovery of

the Differential Calculus.
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If then we have the product of n functions

we may write

d ^ . dv. d . .

dx^^-" "^ dx dx^^" "''

dv dv d
= (V V V )

_dx dx dx^ '* "''

~
'"l '"l V4 • • "»

dv^ dv^ dv^ dv„

dx dx dx dx=— +— +— +•• +
V, V„ V, V.

Multiplying both sides by v^v^ '»„, we get

. ^ N dv^

The derivative of the product of a finite number offunctions is equal

to the gum of all the products that can he formed hy multiplying the

derivative of each function hy all the other functions.

40. Differentiation of a function with a constant exponent. If the

n factors in the above result are each equal to v, we get

£("' t= n
v" V

tf ^ ,s „-i dv
VI .•. — (v"y = nv" ^—

dx dx

When V = x this becomes

dx^ '

We have so far proven VI only for the case when w is a positive

integer. In § 46, however, it will be shown that this formula holds true

for any value of w, and we shall make use of this general result now.

The derivative of a function with a constant exponent is equal to the

product of the exponent, the function with the exponent diminished hy

unity, and the derivative of the function.
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41. Differentiation of a quotient.

Let y = --> V -^v.
V

By the General Rule,

u + Am
First Step. «/ + A«/ =

Second Step. A?/ =
u + Am u _v- Am — u-^v

V +^v V v(v + Aw)

Third Step.

Am Av
V u—

Ay _ Ax Ax

Ax v(y + Av')

du dv

Fourth Step. c^y
"^ dx "" dx

dx v^

[Applying Theorems II and III, p. 18.]

du dv
V u—

d /u\ dx dx
VII ••• — - =

1
dx\v/ v"

The derivative of a fraction is equal to the denominator times the

derivative of the numerator, minus the numerator times the derivative

of the denominator, all divided by the square of the denominator.

When the denominator is constant, set w = c in VII, giving

du

d /u\ dx
Vila _ _ =_.

dx \c/ c

rsinoe*=*= 0.1
L dx dx 1

We may also get VII a from IV as follows

:

du

d /m\ _ldu _dx
dx\c I c dx

The derivative of the quotient of a function hy a constant is equal to

the derivative of the function divided hy the constant.

All explicit algebraic functions of one independent variable may be

differentiated by following the rules we have deduced so far.
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EXAMPLES*
Differentiate the following

:

1. y = a;'.

Solution, f =£W = 3X^ Ans. By VI

a

[» = 3.]

2. y = ax^ — bx^.

= 4aa;S — 26s. 4ns. By Via

3. y = xi + 5.

'''"*^"- l = |("'> + |(') i^yin

= |si Ans. By VI a and I

= ^xt + |x H 2^x-^. Ans. By IV and VI a

5. 2/ = (i2 - 3)5

dx dx
Solution. — = 6(a;2-3)*— (x2-3) bv VI

[w = a;2 - 3 and n = 5.]

= 5(x2-3)*.2s = 10x(x2_3)4. Ans.

We might have expanded this function by the Binomial Theorem and then applied

III, etc., but the above process is to be preferred.

6. 2/=Va2_x2.

Solution. — = — (a2-z2)* = i(o2-x2)-*— (a2-i2) by VI

[j; = a' - x^ and n = }.]

= l(a2_j.2)-J(_2x) = ^
Am.

2 Va2 - x2

7. 2^ = (3x2 + 2)Vl + 5l2.

Solution. — = (3 x2 + 2)— (1 + 5 x2)* + (1 + 5 x^)*-^ (3 x^ + 2) by V
dx dx dx

[u = 3x^ + 2, and » = (1 + 5 a;^)^]

= (3x2 + 2)1(1 + 5x2)-i — (1 + 5xn + (i + 5x2)*6x by VI, etc.
2 dx

= (3x2 + 2)(l + 5x2)"*5x + 6x(l+ Sx^)*

5x(3x2 + 2) „ n r-J 45x3 + 16x=—
;

' + 6xVl + 5xg = ~ Ans.
Vl + 5x2 Vl + 5x2

*'When learning to differentiate, the student should have oral drill in differentiating

simple functions.
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a' + ifl

y/a" - x2

(0= - a;2)* i. (a2 + a;S) _ (a« + a^)— (a^ - s^)*
(2x cia;

8. y:

Solution, -i = by VII
dx a' — x^

_ 2x{a^ - x^) + x{a^ + x^)

[Multiplying both numerator and denominator by (a? — a:*)*.]

3 aH - x'

(a2 _ a;2)i

4jis.

9. 2/ = 5x* + 3a;2 _ 6. -^ = 20a;3 + 6a;.
cZx

10. y = 3cx^-8dx+ 6e. — = 6cx—8d.
dx

11. 2/ = x'+i: ^ = (a + 6)s'' + i'-i.

(ix

12. y = x" + nx + n. — = 7ia;»-i + n.
ax

13. /(z) = |x' - I x" + 5. /'(x) = 2x2 - 3j._

14. /(x) = (a + 6)x2 + ex + d. f{x) = 2 (a + 6)x + c.

15. —(a + bx + ex') = 6 + 2cx. 21. — (2x' + 5) = 6x2.
dx dx

16. ^{5r'-3^ + 6) = 5m2/"—1-3. 22. — (Si^ - 2«2) = 15<< - 4<.
ay dt

17. -^(2x-2+3x-3) =-4x-3-9x-*. 23. ^(ad^ + 6i9) = 4a(?8 + 6.

18. |-(3.s-'-s)=-12s-''-l. 24. — (5-2a2)=_3ar2.

19. -^(4x* + x2) = 2x"* + 2x. 25. — (9tt + i-i) = 154! _

ds 'da

,-_ ,_, , .„. — --vJ«^ + «-i) = 15if-<-^.
dx di

20. ^(y-^-iy-^ = -2y-'' + 2y-l. 26. -^(2xi2 - x') = 24x" - 9x8
d2/ dx '

27. r = 06*8 + d^2 ^. g|9_ ^ V'=3ce2 + 2de + e.

28. 2/ = 6x^ + 4xJ + 2xi j/'=21xi + 10xi +3xi

29. 2/=V3x + v^ + i. ^'=__!_. + .
^ 1

X 2V3x 3v^ a;'*

a + 6s + cx2 a
X "

X2

(x — V\^
31. 2/ = i—-i-. y'=|xJ-5xt + 2i-s- + J x"J.

X

- X - x^ + a
, 2x^+x + 2x^-3c32. y =

"'-----^"
. ,'=:

^^ 2xi

33. 2/ = (2 xS + x2 - 5)3. ,/= 6 X (3 z + 1) (2 x^ + x2 _ 5)2,
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34. f(x) = (a + 6x2)i f{x) =^ (« + to^)!

.

35. f(x) = (1 + 4x3) (1 + 2x2). f\x) = 4a;(l + 3a; + 10s').

36. /(i) = (a + a;)Va — x.

37. /(s) = (a + x)'»(6 + x)».

38. y = --
a?"

39. 2/ = X (a2 + x2)Va2.-x2.

40. Differentiate the following functions

(a) — (2xS-4x + 6).

(b) I(at7 + 6J5_9).
at

(c) A(3(9i-26'H6e).
etc/

(d) |-(2x' + x)i
ax

A->
2x*

41. y

42. y =

43. s'=

f'ix\
""^"^
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/— f-i , Va + 3 c0
52. r=Va0 + cV0'. r'=

1)0 + jjtf 1)0-1 Dii—

1

63. M = ^^ • u'=-— +

55. Differentiate tlie following functions

:

Vg-1

rentiati

d / 1 + a: \ d V4-2a;3 d /T+l^

42. Differentiation of a function of a function. It sometimes happens

that y, instead of being defined directly as a function of x, is given as

a function of another variable v, which is defined as a function of x.

In that case y is a function of x through v and is called a function of

a function.

i or example, it «/

and w = 1— ar',

then «/ is a function of a function. By eliminating v we may express y

directly as a function of x, but in general this is not the best plan

when we wish to find -^•
dx

If y =f(v} and w = <^ (a;), then y is a function of x through v. Hence,

when we let x take on an increment Aa;, v will take on an increment Av

and 1/ will also take on a corresponding increment Ay. Keeping this

in mind, let us apply the General Rule simultaneously to the two

functions
y =/(i') and ^=<^(x).

First Step, y ^ Ay =f(y + Av) v+ Av=^(x + Ax)

Second Step.^/ + A«/ =/(w + Aw) v+ Av = (I)(x + Ax)

^y=f(y+^v)~f(y), Av=(j)(x + Ax) — <})(x)

Third Step.
Ay _ f(v + Av)-f(v) Av _ <l>(x+Ax)~<j>(x)

Av Av Ax Ax
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The left-hand members show one form of the ratio of the incremen ,-

of each function to the increment of the corresponding variable, and

the right-hand members exhibit the same ratios in another form. Before

passing to the limit let us form a product of these two ratios, choos-

ing the left-hand forms for this purpose.

This gives —
5 which equals — •

Av ^x Ax

Write this ^ =^-~
Ax Av Ax

Fourth Step. Passing to the limit.

This may also be written

^^^y.dv
Th.II,p.l8

^ ^ dx dv dx

(B) ^=f'(V)-i>'(x).
dx

If y =f(v') and V = 4> (of), the derivative of y with respect to x equals

the product of the derivative of y with respect to v and the derivative of v

with respect to x.

43. Differentiation of inverse functions. Let y be given as a function

of x by means of the relation y —f(x').

It is usually possible in the case of functions considered in this book

to solve this equation for x, giving

x = <i>(y');

that is, to consider y as the independent and x as the dependent

variable. In that case f(x) and ^ («/)

are said to be inverse functions. When we wish to distinguish between'

the two it is customary to call the first one given the direct function

and the second one the inverse function. Thus, in the examples which

follow, if the second members in the first column are taken as the

direct functions, then the corresponding members in the second column

will be respectively their inverse functions.

y = x^ + l, a;=±Vy-l.

«/ = a% x = log„y.

y = sm.x, x = arc sin y.

Let us now differentiate the inverse functions

y=f(x) and x = ^(y')

simultaneously by the G-eneral Rule.
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First Step. y+Ay=f(x+Ax) a:+Aa;= (^ («/+At/)

Second Step. y+Ay=f(x+Ax) a;+Aa;= («/+A«/)

.y =/(«:) ^ =4>iy')

Ay=f(x+Ax)-f(x)' Ax= <f>(i/+Ai/-)-<l>{y)

thxkbStep. %^/C^+a;)-/(-)
,

A.^ K,y+Ay)-Ky)
Aa; Aa; Ay Ay

Taking the product of the left-hand forms of these ratios, we get

Ay Aa; _ ^

Aa; Ay

or, ^=J_.
Aa; Ax

^y

FouitTH Step. Passing to the limit,

dy .1

dy
or.

The derivative of the inverse function is equal to the reciprocal of the

derivative of the direct function.

44. Differentiation of a logarithm.

Let y = log„v.*

Differentiating by the General Rule, p. 29, considering v as the

independent variable, we have

First Step. y + Ay = log„ (y + A«).

Second Step. Ay = log„(v + Av') — log„v t •j

-H.("-±^)..o,.(x+^).

[By 8, p. 1.]

* The student must not forget that this function is defined only for positive values of the

base o and the variable v.
^

t If we take the third and fourth steps without transforming the right-hand member,
there results:

Third step. ^ = log<.(» + A«)-log„»
At) A«

fourth step. -^=7.' ^'^'"'^ '^ indeterminate. Hence the limiting value of the right-hand

member in the third step cannot be found by direct substitution, and the above transfor-

mation is necessary.
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V

= -log fl +— .•

V X V /

rDmding the logarithm by v and at the same time multiplying the exponent of the]

. [parenthesis by v changes the form of the expression but not its value (see 9, p. !) J

Fourth Step. — = — loff.e,
dv V .,.

V

[
When Ao,= 0,— = 0. Therefore J'"" n (^ '*' ~~) ^^= «. *roni P- 22, placing a;=— • 1

Hence
d d / \ 1

Since v is a function of x and it is required to differentiate log„a

with respect to x, we must use formula (A), § 42, for differentiating

a function of a function, namely,

dy _dy . dv

dx dv dx

Substituting value of -^ from (J), we get

dy , 1 dv
-2. = log„e —

•

dx V dx

A;

d ^, s , dx
vm .-. — (log„i') = log<,e

dx V

When a = e, log„e = log^e =1,' and Till becomes

dv^

d ,-, . dx
Villa — G°Si') =—

dx V

The derivative of the logarithm of a function is equal to the product

of the modulus * of the system of logarithms and the derivative of the

function, divided by the function.

* The logarithm of e to any base a (= logae) is called the modulus of the system whose

base is a. In Algebra it is shown that we may find the logarithm of a nmnber N to any

base a by means of the formula

logaN= loga e • logeiV=^^ •

The modulus of the common or Briggs system with base 10 is

log,oe=.434294 ••.
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45. Diiferentiation of the simple exponential function.

Let «/ = *"• a >

Taking the logarithm of both sides to the base e, we get

\ogy = v\oga,

log V
or, V = —2-^

log a

Differentiate with respect to y by formula Villa,

*! = _!_ i-
dy log a y

and from (C), § 43, relating to inverse functions, we get

dy

or.

^^
= loga.y,

Since w is a function of x and it is required to differentiate a" with

respect to x, we must use formula (.4.), § 42, for differentiating a

function of a function, namely,

dy _ dy dv

dx dv dx

Substituting the value of -^ from (^), we get

dv , , dv-~ = log«- a"
dx dx

IX .-. — (a") = log a a"-— .

dx^ -" dx

When a = e, log a = log e = 1, and IX becomes

IIa —(€"') = e«—.
dx^ ^ dx

The derivative of a constant with a variable exponent is equal to the

product of the natural logarithm of the constant, the constant with, the

variable exponent, and the derivative of the exponent.
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46. Differentiation of the general exponential function.

Let -" —- »'" *

Taking the logarithm of both sides to the base e,

log,i^= V log.M,

or, y = e';'"^".

DifEerentiating by formula IX a,

= m" - -— + log M-— •

\u ax axI

I .-. — (a'') = iw-^ t-logu-u"

—

dx dx dx

The derivative of a function with a variable exponent is equal to the

sum of the two results obtained by first differentiating by VI, regarding

the exponent as constant; and again differentiating by II, regarding the

function as constant.

Let v = n, any constant ; then X reduces to

d , ^^ „ ,du
—-(u") = nu''-^-^-
dx dx

But this is the form differentiated in § 40; therefore VI holds true

for any value of n.

Illustrative Example 1. Difierentiate y = log(x2 + a).

— {x' + a)

Solution. .

^^dx
by VIII a

dx x' + a

[v = afl + a.]

2x

x^ + a
Ans.

Illusteative Example 2. DifEerentiate y = logVl — x^^.

- (1 - x2)^Afl-x=l*

Solution. $- = — by VIII a
dx

(1 _ 3.2)J

i(l-xif)-*(-2x)

(1-X2)
X

_X2)*

Atis.

by VI

X2-1

• u can here assume only positive values.
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Illlstkative Example 3. Differentiate y = a'^.

' Solution. — = logaa'"^— (Sa^) by IX
dx 4 <ir

= 6xloga-o''^. Ans.

Illustrative Example 4. Differentiate y = bef='+'^-

Solution. ^ = b^{e^-^^) ,
by IV

dx dx

= 6e<^ + x«A(c2 + i2) bylXa
dx

= 2bxei^+^. Ans.

Illustrative Example 5. Differentiate y = x''.

Solution. — = e'W^ -^ — (x) + x^logx—ie') by X
dx dx dx

= efx^-'- + a"* logx • e»

= e^^l- + logx\. Ans.

47. Logarithmic differentiation. Instead of applying Vin and Villa

at once in differentiating logarithmic functions, we may sometimes

simplify the work by first making use of one of the formulas 7-10

on p. 1. Thus above Illustrative Example 2 may be solved as follows:

Illustrative Example 1. Differentiate y = log Vl — x^.

Solution. By using 10, p. 1, we may write tliis in a form free from radicals as

follows

:

2/ = ilog(l-s2).

— (1 - x")

Then f =l±^-- by Villa
dx 2 1 — x*

1 — 2x x
Ans.

2 l-x" x2-l

Illustrative Example 2. Differentiate y = log-y/ "^ ^

\l — x'

Solution. Simplifying by means of 10 and 8, p. 1,

y = i [log (1 + x") - log (1 - x2)]

.

dy 1

dx'^2

|(l + x^) 1(1 -x^l

l + x" l-l" J
by Vin a, etc.

l + x« l-x" 1-x*
Atis.
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In difEerentiating an exponential function, especially a variable

with a variable exponent, the best plan is first to take the logarithm

of the function and then differentiate. Thus Illustrative Example 5,

p. 50, is solved more elegantly as follows:

Illustrative Example 3. Differentiate y = xf^.

Solution. Taking the logarithm of both sides,

log y,= e' log X. By 9, p. 1

Now differentiate both sides with respect to x.

— = e^— (log X) + log s4 (e^) by VIII and V
y dx ax

= e=" h logs- e==,

| = e'.j.(l + logx)

= e»ia;«*(- + logs! • Ans.

Illustkative Example 4. Differentiate y = (4 1^ — J)2
+Vx!-«.

Solution. Taking the logarithm of both sides,

log y = (2 + Va;2 _ 5)log (4 x^-1).

Differentiating both sides with respect to x,

_ ^ = (2 + VS?ir5)_fJi_ + log(4x2 - 7) •—^

dx

I r8(2+Vi2_5) log(4a;2-7)'I .

= a;(4zg-7)i'+-v^^^ r'- 7,% -' + ^\ '
\. Aim.

In the case of a function consisting of a number of factors it is some-

times convenient to take the logarithm before differentiating. Thus,

Ux - 1) (s - 2)

Illustrative Example 5. Differentiate y =-^ g, . _^,
-

Solution. Taking the logarithm of both sides,

logy = i[log(x-l) + log(a;-2)-log(s-3)-log(a;-4)].

Differentiating bot^ sides with respect to x,

l^_ir 1 1 1 1 1

ydx 2La;-l a;-2 x-3 x-i\

2a'' -10a + 11
'^~

(a -1) (a -2) (a -3) (a -4)'

dy^ 2a' -10a -11 ^^
' " da (a;_l)i(s-2)^(a-3)t(z-4)4
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EXAMPLES

Difierentiate the following

:

1. y = log{x + a).

2. y = log(ax + b).

4. y = log(x^ +x).

5. 2/ = log(x5-2x + 5).

e. y = \og,(2x+x>). a^ = i°g°«-
2^'^a.3

-

7. v = xloga. V'=logx + l.

8. /(x) = logx'. ^'^^^ =
x'

8 loe^ X
9. /(x) = log« X. f(x) =—I

—

Hint. logS z = (log x)s. Use first VI, « = log x, re = 3 ; and then VIII a.

10. /(x) = log^!^- /'(a:) =

dv



28.
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60. Difierentiate the following functions

:

(a) ^aj'logx. (f) ^^e'loga;. (k) i- log (a» + 6*)

ax ax ax

(b) 4-(^'- !)* fe) T "^ ^- W r ^°Sio (** + 5 '')

ox ox ox

(c) —log ^—

.

(h) ; (m)
^ ' dx ^x + 3 ^'dxxlogx ^ ' dx e""^

(d) i.logA^£.. (i) i-logx«Vl + x«. (n) |-(x2 + a2)e-' + «-.

<^ Vl + x "* '"^

= (^ + 1)' ^ =: _ (z + l)(Sx' + 14x + 5)

^'^(x + 2)»(x + 3)«' dx (x + 2)*(x + 3)«

Hint. Take logarithm of both sides before differentiating in this and the following

examples. , ,

_ (X - 1)8 dy _ (x-l)a(7x'+30x-97)

(x-2)i{x-3)* ^ 12(x-2)J(x-3/i

CO A /i , X ''2' 2 + x — 5x'
63. y = xvl — x(l + x). — =

—

.

<^ 2VI-X
x(l + x2) d2^ H-3x2-2x*

64. y = -

.

— =
Vl-x2 <^ (l-x2)t

55. y = x5(a + 3i)»(a-2x)2. ^ = 5x*(a + 3x)2(a-2x)(a2 + 2ai-12x2).

48. Difierentiation of sin v.

Let y = sin ti.

By General Rule, p. 29, considering v as the independent variable,

we have

First Step. y +Ay = sin (w + Av).

Second Step. At/ = sin (v + Av) — sin v*

o / ,
Av\ . Av += 2 cos / 1)+— \ • sm— .T

*If we take the third and fourth steps without transforming the right-hand member,
there results :

Third step. ^ = «'°(» + A")-sin«

.

, Ac Av
Fourth step. ^^7,> winch is Indeterminate (see footnote, p. 46).

tLet A = v + Av A = v + Av
and B^v B=v

Adding, A + B^iv + Av Subtracting, A-B = Av

Therefore -{A + B)=v + —- -(A-B-i^—.2' '

2 2^ ' 2
Substituting these values oiA,B,i{A + S),HA-B)hi terms of » and A» in the formula

from Trigonometry (42, p. 2)

,

sin 4 - sinB =• 2 008 1 (-4 + iB) sin i (^ - B),

weget sin(j; + Aii)-8in«=.2cos (u +— I sin—

•

\ 2 / 2
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(sin—

^

Av
2

Fourth Step. -^ = cos v.
av

s™«« l'"Jo(-Sr-) = ''''y522.p.21. and lSoo8(« +f)-co8 ..

Since t» is a function of x and it is required to differentiate sinw

with respect to x, we must use formula (A"), § 42, for differentiating

SLfunction of a function, namely,

di/ _ dy dv

dx ' dv dx

Substituting value -j- from Fourth Step, we get

dy dv
-^ = cost)-—

•

dx dx

d dv
XI .*. — Csin w) = cos »

—

dx^ ^ dx

The statement- of the corresponding rules will now be left to the

student.

49. Differentiation of cos i;.

Let y = cos v.

By 29, p. 2, this may be written

y = sin/|-A

Differentiating by formula XI,

dy Iv \ d lir \

= eos(|-.)(-|)

dv
t— smv-;—

dx

rsJnoe coa^j-o J-slno, by 29, p. a
I

d dom .*. — Ccosw) = — sm»—

•

dx^ ^ dx
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50. Differentiation of tan v.

Let y = tan v.

By 27, p. 2, this may be written

sint;
w = .

cosw

Differentiating by formula VII,

c? , . . . d . ,

cos V —- (sm v) — 8m.v-—- (cos v)
dy _ dx^ ^ dx^ ^

dx cos^w

„ dv , . „ dv
cos V -- + sm « -—

dx dx
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Differentiating by formula VII,

dy
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Differentiating,

dy dv
-f- — s,va.v -—•
dx dx

d ^ . dv
TTii .•. — rversi') = smi;^-'^*"

dx dx

In the derivation of our formulas so far it has been necessary to

apply the amerai Rule, p. 29 (i.e. the four steps), only for the

following

:

d du dv dw . 1 , •

III ^(u + v-iv) =— +—-^- Algebraic sum.
dx dx dx dx

d ^ ^ dv du T) J j-V — (uv^ = u— + v—— Product.
dx dx dx

du dv
V- U-—

d /u\ dx dx ^ ,. i
VII -7-(-)= 5 Quotient.

dx\v/ V

dv

/7 dx
VIII — (log„ v} = log„ e— • Logarithm.

ax V

vr d . . ^ dv o-XI -rr (sm V) = cos v —- • ome.
dx dx

XXV -^ = -f--—-- Function of a functioa
dx dv dx

XXVI -s- = --. Inverse functions.

Not only do all the other formulas we have deduced depend

on these, but all we shall deduce hereafter depend on them as

well. Hence it follows that the derivation of the fundamental

formulas for differentiation involves the calculation of only two

limits of any difficulty, viz.,

limit sinv ^ u b oo oi

« = 0-r = ^ by §22, p. 21

and i^'S(l + ^)" = «. By §23, p. 22

dy

dx~



Differentiate the following

:

1. y = sinaa;'.
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EXAMPLES

| = cosax2|(ax») by XI

[v= ax'.}

= 2(ixcosax^.

2. 2^ = tan Vl — a;.

- = sec= VrrS_.(l _ ^)i-
by XIII

[»=Vl_j>.]

= sec2 Vl — a; • i (1 — x)"*(— 1)

sec" Vl — a;

2 Vl - a"
S. y = cos'a;.

This may also be written

y = (oosz)'.

— = 3 (cos x)^—- (cos X) by VI
ax ax

[»= cos a; and »= 3.]

= 3 cos^a; (— sin x) by XII
= — Ssinxcos^x.

4. y = sin nx sin'x.

dy . d . . d—- = sin nx— (sm x)» + sin»x— (sm nx)
"

by V
ox ax dx

[«= sinna; and v= sin"^.]

= sin nx n (sin x)» -i— (sin x) + sin»x cos nx— (nx) by VI and XI
dx dx

= n sin nx • sin" -1X cos X + n sin''x cos nx

= n sin« -1 X (sin nx cos x + coS nx sin x)

= nsin»-ixsin(n + l)x.

e dy
o. y = sec ax. Ans. — = a sec ox tan ax. '

(ix

d?/
6. y = tan (ax + 6). — = a sec^ (ox + 6).

dx

ds
7. s = cos 3 ox. — =— 3a sin 3 ax.

dx

dx
8. s = cot(2i2 + 3). —--4tcsc^{2t^ + 3).

9. /(y) = sin2y cos2^. /'(j^) = 2 cos22/ cosy — sin2y siny

10. J'(x) = cot25x. f"(x)=-10cot5xcsc2 5x.

11. F(e) = tB.n0-d. J"(fl) = tan'tf.

12. /(0) = sin + cos 0. /' (0) = cos 0.

13. /(O = sln»«cos«. /'(«) = Bin=i(3cos2<-sina<).

dr
14. r = aoos2^. —-=— 2asin2S.

dff
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i-fi., .„ „„ d a a . a
15. — sin^x = sin2a;. 23. — cos- = — sin--

dx dt t V' t

16. — cos=a;2 __ ea;(;og2x2sinx2. , 24. —sin — = — — cos— .

dx dff e^ e^ e^

d t^ f- i^ d
17. — CSC - = — i cso — cot —

.

25. — e '""^^ = e ™»' cos x.
dt 2 2 2 dx

io <^ / TT asm2s no ^ n s
cos(loga;)

18. — avcos2s = • 26. — sm(loga) = •

ds Vcos2s ^"^ *

19. Aa(l-cos(9) = asin(9. 27. — tan(logx) = ^^°'''°^^\

d9 dx ^ ' X

20. — (log cos x) =— tan x. 28. — a sin^ - = a sin^ - cos -
dx^ ^ ' (to 3 3 3

21. — (log tan x) = -^ 39. — sin (cos or) = — sin a: cos (cos a)
dx sin2x da

— (log sin^x) = 2 cotx. 30. — -
dx dx sec x

no "^ /I > \ n i n/v <i tanx —

1

22. — (log sm^x) = 2 cotx. 30. = sinx + cosx.

31. y = log /l±_!E^ . ^ -^ ^_ .

Vl — sinx dx cosx

32. y = logtan0 + |V
dx cosx

33. /(x) = sin(x + a)cos(x— a). f'(x) = cos2x.

34. 2/ = a'*"'". y'— na^^'^ "=' sec^ nx log a.

35. y = e^osx sin x. 2/' = ecosi (cosx — sin^x).

36. 2/ = e^ log sin X. j/' =e»^ (cotx + log sinx).

37. Differentiate the following functions :

(a) —sin 5x2 nx _osc(logx). (k) —e>-b<:o!.t_
dx dx dt

(b) - cos (o - 6s). (g)
A sin3 2 x. (1) ^ sin - cos^ - •

^•^^ £'""? (h)|cosMlogx). (-)|<=°t^-

(d)— cotV^. (i) |-tan2Vl-x2. (n) Avi + cosV-"X ox dd>

dx"- ^" ^-sv-"-;. w-1(e) seoes-.
(j) |-log(sin2ax). (o) ^logVl- 2sin2s.

38. — (x'e""^) = x"-iesmi(„ ^. j. cosx).
dx

dx
~

39. ^ (e<^ cos mx) = e<" (a cosmx — to sin mx)

.

40./«?) = l±^. ^.(^)^
2sin^

1-cosS -^ ^
'

(l-cos(9)2

^1 j-/.\ e»* (a sin — cos 0)
•^(*) =

a^ + i

-
f'(t>) =^ sin 0.

42. /(s) = (s cot s)2. /'(s) = 2 s cot s (cot s - s csc^ s).
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dr

61

dO
tan* e.

44. y = x""^.

45. y = (sin a;)":.

46. y = (sin k)'«".

-« -r. f^
. dv

47. Prove — cosu = - sin b— , using the General Rule.
ux dx

48. Prove — cot d = - osc^ « -^ by replacing cot v by
°°^-"

.

ax ax sin

»

55. Differentiation of arc sin v.

Let «/ = arc sin v -,

then w = sin y.

Differentiating with respect to y by XI,

dy .;„,/sina;
, , \

y' = (sin o;)^ [log sin a; + x cot x]

.

y' = (sin x)>^^ »(1 + sec^ x log sin x).

.*

therefore

dv-— = cos y

:

dy
^

dy_^ 1

c?v cos ?/

By (C), p. 46

But since v is a function of x, this may be substituted in

dy _ dy dv

dx dv dx
{A), p. 45

giving
dy _ \ dv

dx cos «/ dx

1 (?«

Vl— t)^ dx

[cosy="\/l — sin2^ = v'l — v^ the positive sign of the radical being taken,"]

since cos 2/ is positive for all values of y between — ^ and ^ inclusive. I

A;

IVIII .
•
. — (arc sin v) =

dir Vl- z/"

* It should be remembered that this function is defined only for values of v

between — 1 and + 1 inclusive and that y (the function) is many-valued, there
being infinitely many arcs whose sines all equal v. Thus, in the figure (the

locus of ^= arc sin u), when v= OM, y = MPi, MP^, MP^,, MQi, MQ2,
In the above discussion, in order to make the function single-valued, only

values of y between - - and - inclusive (points on arc QOP) axe considered

;

that is, the arc of smallest numerical value whose sine is v.
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56. Differentiation of arc cos v.

Let y = arc cos V

;

then v = cos y.

Differentiating with respect to y by III,

dv

dy

^^ 1

dv

--—smy;

therefore By (C), p. 46

But since

formula

givmg

sm^

w is a function of x, this may be substituted in the

dy _ dy dv

dx

dy

dx

dv dx

1

(A), p. 45

sm.y

1

dv

dx

dv

^/l— v^dx

XIX

[sin y=^1- cos* y =Vl- v\ the plus sign of the radical heing taken,

since sin y is positive for all values of y betveen and n- inclusive.

dv

d ^ , dx
.". — Care cos »)= •

dx^ Vl-ir"

Differentiation of arc tan v.

y = arc tan v ;
^

V = tan y.

Differentiating with respect to y by IIV,

dv „— = sec'y;
dy

:]

therefore ^ =dy^ 1

c?v sec^t/
By (C), p. 46

* This function is defined only for values of « between -1 and +1 inclu-

sive, and is many-valued. In the figure (the locus oiy = arc cos a), when
V = OM, y= MPx, MP2,, MQp MQ2,

In order to make the function single-valued, only values of y between
and T inclusive are considered; that is,

the smallest positive arc whose cosine is v.

Hence we confine ourselves to arc QP of

the graph,

t This function is defined for all values of v, and is many-
valued, as is clearly shown by its graph. In order to make it

single-valued, only values of y between - — and yr are con-

sidered ; that is, the arc of smallest numerical value whose
tangent is v (branch AOB).

Y



liULEiS FOE, DIFFERENTIATING . (i;j

But since w is a function of x, this may be substituted in the formula

giving ^=J_.*:
dx sec'i/ dx

1 dv

XI

1 + v^dx

[sees
J,
= 1 + tau2 y = 1 + j;!.]

A;

.. — (aictanv)=
dx^ ^ l + ir"

58. Differentiation of arc cot v.*

Following the method of the last section, we get

dv

XXI
'^ , * N dx— (arc cot V) =
dx^ ^ l+v"

59. Differentiation of arc sec v.

Let y = arc sec v ;
^

then V — sec y.

* This function is defined for all values of a, and is many-valued, as is seen from its

graph (Fig. a). In order to make it single-valued, only values of y between and tt are
considered ; that is, the smallest positive arc whose cotangent is v. Hence we confine our-
selves to branch AB.

=-ii;:|j
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Differentiating with respect to y by XV,

dv
-z- = sec y tan y

;

dy

therefore
dy _ By (C), p. 46
dv sec y tan y

But since « is a function of x, this may be substituted in the formula

(^), p. 45

givmg

nil

dy _ dy dv

dx dv dx

dy _ 1 ^
dx sec y tan y dx

1 dv

v^/v^— l dx

sec y = », and tan )/ = Vsec^ j/ - 1 = Vj)2 - 1, the plus sign of the

radical heing taken, since tan y is positive for all values of y

between and— and between — ir and > including and — tt.

do

d . , Ix
.-. — (arcseci;) =— •

dx vy/v^-l

60. Differentiation of arc esc v.*

Let

then

y = arc esc v ;

V = CSC y.

Differentiating with respect to y by IVI and following the method

of the last section, we get

dv

mil — (arc CSC v) =
,

•

dx v\'v^ - 1

* This function is defined for all values of v except those
lying between -1 and +1, and is seen to be many-valued. To
make the function single-valued, y is taken as the are of small-
est numerical value whose cosecant is v. This means that if v is

positive, we confine ourselves to points on the arc AB (Fig. a), y

2[l
may be included

|
; and

-HIT

Fis. a

taking on values between and

if V is negative, we confine ourselves to points on the arc CD, y

taking on values between - ir and - t (- — may be included).
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61. Differentiation of arc vers v.

Let y = arc vers v ;
*

then V = vers «/.

Differentiating with respect to y by IVII,

dv- = sm2,;

^ = J_.
cZ?> sin «/

65

therefore By (C), p. 46

;he formula

(^), p. 45

But since v is a function of x, this may be substituted in the formula

dy _ dy dv

dx dv dx

dy 1 dvgivmg -^ = —
dx sin y dx

_ 1 dv

["sin !/- Vi _ cos2 y = Vi-(i- vers j/)2=V2 «-»!!, the plus sign of the radicall
Lheing taken, since sin y is positive for all values of y between and ir inclusive.!

—
dx

IXTF — Care vers v) = , V

EXAMPLES
Differentiate the following

:

1. y = arc tan ax^

Solution.

Solution.



60 DIFFERENTIAL CALCULUS

, x^ + 1
3. V = arc sec

d /x2 + 1'

\)dy dxV — 1/ !,„ TVTT
Solutjon. -^ =

,
= Dy XXII
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25. /(0) = arc tan^ /l-cos» f, /w,\ = 1

.

\l + cos0' ^ ' 2

26. p = e>"=t«'7.
dy^ e-^f-?

-, . e" — e-

"

du 2
27. u=arctan-

2 dv e" + e-'

e'— e-' ds 2
28. s = arc cos

e«+e-* dt e'+e-«

29. y = a;a«Bma:. y, ^ 3..„ri„^ /aTcsinx ^ logz \

V a; Vl - a;2/

30. j/ = e^arctana. 2/' = e^ ^ + a;"^ arc tan x(l+ logs) 1

31. y = arc sin (sin a;). y' = \.

on ^ 4 sins 4
32. y = arc tan

3 + 5cosa; 5 + 3cose

33. y = arc cot- + log,

/

^-"
. y' = _if^

.

a; \x + a a^ - a*

34. y = log(- 1 arc tan a;.

\1 — a;/ 2

a'

S'
=

l-aji

35. 2/ = Vl -x" arc sin a; - a;. ^, ^ _ a: arc sing

Vl-a;2

36. Differentiate the following functions

:

(a) -— arcsin2a;2. (f) — i^ arc sin -

.

(k) — arcsinVl — y==.

ax at. Z dy

(b) — arctana^s. (g) —e^" «''»'.
(1) — arc tan (log 3 az).

da; dt dz

(c) — arc sec - (h) — tan d>^ arc tan (hi. (m) — (a^ + s^) arc sec -

.

da; a ^ ' dif ^ ds^
'

2

,-,, d •,., d .8 , ^ (^ i2a
(Q) — a; arc cos a;. (i) — arc sin a . (n) — arc cot
^ ' da;

^' d9 ^ ' da 8

(e) — a;2 arc cot eta;. (j)
—-arctan Vl + 8'^. (o) — Vl — i^ arc sin t.

da; d9 dt

Formulas (A), p. 45, for differentiating a function of a function, and (C), p. 46,

for differentiating inverse functions, have been added to the list of formulas at the

beginning of this chapter as XXV and XXVI respectively.

dy dv
In the next eight examples, first find — and — by differentiation and then

dv dx
substitute the results in

^ = ^.^ by XXV
dx dv dx

to find
^'
da;

* As was pointed out on p. 44, it might be possible to eliminate v between the two given

expressions so as to find y directly as a function of x, but in most cases the above method
is to be preferred.
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In general our results should he expressed explicitly in terms of the independent

variable : that is, — in terms of x, — in terms of y, — in terms of 0, etc.

dx dy dff

37. 2/ = 2»2 — 4, M = 3a;2 + 1.

— = iv; — = 6x; substituting in XXV,
dv dx

^ = 4v-6x = 2ix(3x' + l).

dx

38. J/
= tan 2b, D = arctan(2x — 1).

^ = 2 sec2 2 1! ; — =
; substituting in XXV,

dv dx 2x^-2x + l

dy _ 2 sec2 2 » _ tan^ 2 d + 1 _ 2x^-2x4-1
da~2a;2_2a; + l~ 2x^-2x + l~ 2{x-xY[2a: — 1 1

Since 11= arc tan (21 — 1), tanti = 2a;-l, tan2» = ^

—

—•> -i

'

39. 3/ = 3 1)2 - 4 B + 5, « = 2 a;3 - 5. -^ = 72 a;^ _ 204 a;2.

40. y =

dx

2 1) a; dy

3»-2 2x-l (Ja;(x-2)2

41. y = log (a'' — i)^), B = a sin X. — = — 2 tan x.
(2x

dy e^
42. y = arc tan (a + v),v = e^.

dx 1 + (a + e^)2

dr
43. r = e2« +'e», s = log (t - «2). _ = 4 fs _ g ja + i.

di

dx .

In the following examples first find — by diiferentiation and then substitute in
dy

dy^l_
dx dx

to find ^. dy
dx

by XXVI

.. /TT— dy 2Vl + y ) 2x
44. X = 2/vl + !/. — = -+ i—^=

dx 1+3^ 22/ + 32/2

. c fr~, dy 2 Vl + cos y 2
45. X = vl + cosj/. -i = ^ " =

(ix sin y ^2-x^

46. x = dy _{l + \ogyy
1 + logy dx logy

47. x = alog^±^^«^HZ. dy^_y_V^^
y dx a'

48. X = r arc vers V2 ry — y^. —
r dx

V2r-

49. Show that the geometrical significance of XXVI is that the tangent makes
complementary angles with the two coordinate axes.
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62. Implicit functions. When a relation between x and y is given

by means of an equation not solved for y, then y is called an implidt

function of x. For example, the equation

x'-Ay=0
. defines y as an implicit function of x. Evidently x is also defined by
means of this equation as an implicit function of y. Similarly,

x' + f + g'-a' =

defines any one of the three variables as an implicit function of the

other two.

It is sometimes possible to solve the equation defining an implicit

function for one of the variables and thus change it into an explicit

function. For instance, the above two implicit functions may be solved

for y, giving ^
^=4

and y = ± '^a^ — ^^ — 2^

;

the first showing y as an explicit function of x, and the second as an

explicit function of x and 2. In a given case, however, such a solution

may be either impossible or too complicated for convenient use.

The two implicit functions used in this article for illustration may

be respectively denoted by yz-g.^ v) =

and F(x, y, z) = 0.

63. Differentiation of implicit functions. When y is defined as an

implicit function of x by means of an equation in the form

it was explained in the last section how it might be inconvenient to

solve for y in terms of x ; that is, to find y as an explicit function of x

so that the formulas we have deduced in this chapter may be applied

directly. Such, for instance, would be the case for the equation

(^) aa;'+ 2a;V — /» — 10 = 0.

We then follow the rule

:

Differentiate, regarding y as a function of x, and put the result equal

to zero.* That is, /

(C) / |/(-^^) = o.

» This process will be justified In § 7. Only corresponding values of x and y which

satisfy the given equation may be substituted in the derivative.
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Let us apply this rule in finding -j- from (5).

-^(ffla:'+2a;=«/-2^'a;-10) = 0; by (C)
ax

6 aa^+1o^^ + 6 a;V -y'-7xf^ = 0;
ax ax

(2 3?-7xy'')^ =y- 6 ax'- 6 a:''?/;

dy _y''— 6 ax''— 6 x'y .

dx" 2a?—7xy^

The student should observe that in general thg result will contain

both X and y.

EXAMPLES

Differentiate the following by the above rule :

1. y^ = ipz.

2. x2 + y« = r2.

3. 62x2 + a?yi. = a2ft2

4. 3/S-32/ + 2aa; = 0.

5. K* + J/* = a*.

6. s^ + !/^ = a^.

'©'HI)'-'-
8. 2/2-2a;3/ + 62 = 0.

9. x» + y8 - 3 asv = 0.

10. xf = y.

11. p2 = a2cos2S.

12. /o2cosff=a2sin3e.

13. cos (uo) = a>.

14. *=cos(S + 0). _
d<t> 1 + sin (5 + <t>)

dy_
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15. Find — from the following equations

:

(a) s" = ay. (f) xy + y^ + ix = 0. (k) tanx + j^ = 0.

(b) a;2 + 4j/« = 16. (g) ys^ -y» = 5. (1) cosy + Sa;" = 0.

(c) 62a;2 _ a8j,3 = a^fiz. (h) x^ -ix' = y>. (m) xcoty + y=0.
(d) 2/2 = x« + a. (i) xV + 4 y = 0. (n) y" = log a.

(e) s2 - y2 = 16.
(j) 2/2 = sin 2a;. (o) 6==" + 2j/» = 0.

16. A race track has the form of the circle x^ + y^ = 2500. The directions OX and
OY are east and north respectively, and the unit is 1 rod. If a runner starts east at

the extreme north point, in what direction will he be going

(a) when 25V2 rods east of Oy ? Ans. Southeast or southwest.

(b) when 25 V2 rods north of OX ? Southeast or northeast.

(o) when 30 rods west of Or ? E. 36° 52' 12" N. or W. 36° 52' 12" N.

(d) when 40 rods south of OX?
(e) when 10 rods east of OY?

17. An automobile course is elliptic in form, the major axis being 6 miles long and
running east and west, while the minor axis is 2 miles long. If a car starts north at

the extreme east point of the course, in what direction will the car be going

(a) when 2 miles west of the starting point ?

(b) when J mile north of the starting point ?

MISCELLANEOUS EXAMPLES

Differentiate the following functions

:

1. arc sin Vl — 4x2. Ans.
-2

Vl-4a;2

v2. xe^. e^(2a;2+l).

o , " 1 t"
3. logsin-- -cot-.^2 2 2

a a
4. arc cos-.

y V2/2 _ a^

X a2

Va2 - x2 (a2 - x2)t

log a:

6
^

1 + logX (l + l0gX)2

7. log sec (1-2 X). -2tan(l-2x).

g_ a;2e2-3^. xe2-3a:(2 — 3x).

9. logvs
— COS i

.

CSC t.

cost

10. arcsinVj(l-cosx). i-

2s
11. arc tan

12. (2x

(l-5s2)Vs2-l

7 + 4x »/ 2

3(1 + x) Vl + i

x' arc sin x (x2 + 2) VI — x"
, x2arcsinx.

Xo. r I
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„0 , ,6 31. (log tan3- xV-
14. tan'^ + logsec^-.

i i'
3 3

^^
2-3i^+iti + t\

15. arotanJ(e2=: + e-2=:).
'

t

/Sy^ 33
(l + a)(l-2a)(2 + a;)

16- y • (3 + a;)(2-3x)

17 ajtana:. 34. arc tan (log 3 x)

.

(x + 2)J (x2 - 1)^ 35. -5/(6 -OX"-)".
18. *

21.
oosz

26.

27.

x* 36. logV(a2-te2)n

19. gsced-Sx).

37. log /y' + i

20. arc tan Vl — x^. "Vj/i

Z^ 38. gaTCBec29_

39 ;(2-3x)8
22. e'">< \ l + 4x "

23. logsin^i^. -y^iTT^

24. e<" log sin ox. ' cosx

25. sin=0cos(^. 41. e^^ log sin x.

J5 42. arc sin

-

X

2V(6-cx")'» Vl + x^

771 + X gm arc tana: 4o. arC tan tt^.

1 + ™ Vl + x2 44. a'™'''^.

28. tan^x-logsec^x. 45. cotS(logax).

29
31og(2cosx + 3sinx) + 2x 46. (1 - 3 x^) gS.

30. arc cot - + logJ-—- 47. log
X ° _\x + a VT+X3



CHAPTER VI

SIMPLE APPLICATIONS OF THE DERIVATIVE

64. Direction of a curve. It was shown in § 32, p. 31, that if

is the equation of a curve (see figure), then

dx
::tanr = slope of line tangent to the curve at any point P.

The direction of a curve at any point is defined to he the same as

the direction of the line tangent to the curve at that point. From

this it follows at once that

— = tanr = slope of the curve at any point P.
dx

At a particular point whose coordinates are known we write

[— = slope of the curve (or tangent) at point (x^, y^.
dx\^=,,^

At points such as Z>, F, H, where the curve (or tangent) is parallel

to the axis, of X, j

r = 0°
; therefore — = 0.

dx

At points such as A, B, G, where the curve (or tangent) is per-

pendicular to the axis of X,

du
T = 90°

; therefore — = oo.

dx

73
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At points such as E, where the curve is rising,*

r = an acute angle ; therefore — = a positive number.
dx

The curve (or tangent) has a positive slope to the left of B,

between D and F, and to the right of G.

At points such as C, where the curve is falling*

r = an obtuse angle ; therefore — = a negative number.
dx

The curve (or tangent) has a negative slope between B and

D, and between F and G.

Illustrative Example 1. Given the curve y = — — x^ + 2

(see figure).

„ X' (a) Find t when a; = 1.

O H^ ^ (b) pind T when a; = 3.

(o) Find the points where the curve is parallel to OX.

(d) Find the points where r = 45°.

(e) Find the points where the curve is parallel to the line

2a;-3y = 6 (line 4 B).

Solution. Differentiating, — = x^ — 2 x = slope at any point,
dx

(a) tan t =

(b) tan T

:

= 1 - 2 = - 1 ; therefore t = 135°. A-M.
ar=l

= 9 — 6 = 3: therefore t = arc tan 3. Ans.

(c) T = 0°, tan T = — = ; therefore x^ — 2 x = 0. Solving this equation, we'ftnd
dx '

that X = or 2, giving points C and D where the curve (or tangent) is parallel to OX

(d) T = 45°, tan T =— = 1 ; therefore x^ — 2 x = 1. Solving, we get x = 1 ± V2,
dx

giving two points where the slope of the curve (or tangent) is unity.

(e) Slope of line = f ; therefore x^ — 2 x = |. Solving, we get x = 1 ± V|, giving

points E and F where curve (or tangent) is parallel to line AB.

Since a curve at any point has the same direction as its tangent at

that point, the angle between two curves at a common point will be

the angle between their tangents at that point.

Illustrative Example 2. Find the angle of intersection of the circles

(A) x2 + j^s-4» = l,

(B) x» + y2-2i/ = &.

* When moving from left to right on curve.
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Solution. Solving simulteneously, we find the points of intersection to be (8, 2) and

dy 2 — X
• from (4). By§63, p. 69 ^

dx y

dy X

dx \ — y
from (B). By § 63, p. 69

!/=2

= — i = slope of tangent to (^1) at (3, 2).

: — 3 = slope of tangent to (B) at (3, 2).
]X= 8
j,= 2

The formula for finding the angle between two lines whose slopes ?Lre m, and m„ is

tan e = —J ?- • 55, p. 3
1 + m,m„

Substituting, tan 6 = —5-!— = 1 ; therefore 9 = 45°. Ans. - -

1 + 1
This is also the angle of intersection at the point (1, — 2).

I

EXAMPLES

The corresponding figure should be drawn in each of the following examples :

Find the slope ofy — at the origin. Ans. 1 = tan t.
1 + x^

2. What angle does the tangent to the curve x^y^ = a^{x + y) at the origin make
with the axis of X ? Ans. t = 13-5°.

3. What is the direction in which the point geti6rating the graph of y = 3x^ — x

tends to move at the instant when x = l? Ans. Parallel to a line whose slope is 6.

dy
4. Show that -^ (or slope) is constant for a straight line.

dx

6. Find the points where the curve y = x^ — Sx^ — 9x+5is parallel to the axis

of JT. Ans. X = 8, x = — 1.

V 6. At what point on y^ = 2 x^ is the slope equal to 3 ? Ans. (2, 4).

7. At what points on the circle ifi + y^ = r^ is the slope of the tangent line equal

to -I? , / 3r 4r\* Ans. (±^ -> '
/ 3r 4r\

8. Where will a point moving on the parabola y = x^ — 7x + She moving paral-

lel to the line 2/ = 51+ 2 ? .4ns. (6,-3).

9. Find the points where a particle moving on the circle x^ + y^ = 169 moves per-

pendicular to the line 52 -|- 122/ = 60. ^"«- (±12, +5).

10. Show that all the curves of the system y = log fa have the same slope ; i.e. the

slope is independent of k.

11. The path of the projectile from a mortar cannon lies on the parabola y =
2 a; — X? ; the itnit is 1 mile, OX being horizontal and OY vertical, and the origin

being the point of projection. Find the> direction of motion of the projectile

(a) at instant of projection
;

(b) when it strikes a vertical cliff IJ miles distant.

(c) Where will the path make an inclination of 45°'with the horizontal ?

(d) Where will the projectile travel horizontally ?

Ans. (a) arc tan 2; (b) 13.5°; (c) (J, J); (d) (1, 1).
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12. If the cannon in the preceding example was situated on a hillside of inclination:^

45°, at what angle would a shot fired up strike the hillside ? -4™s- 45°.

13. At what angles does a road following the line 3y — 2x — 8 = intersect a rail-

way track following the parabola y^ = 8x. Ans. arc tan J, and arc tan
J.

14. Find the angle of intersection between the parabola y^ = Sx and the circle

x^ + y^ = 16. ^'^- ^^^ tan f Vs.

x^ 2/2

15. Show that the hyperbola x^ — y^ = 5 and the ellipse r^ + -5- = 1 intersect at
lo O

right angles.

16. Show that the circle x^ + y^ = 8ax and the cissoid y^
2a — X

(a) are perpendicvilar at the origin
;

(b) intersect at an angle of 45° at two other points.

17. Find the angle of intersection of the parabola x^ = iay and the witch

y = ^"
Ans. arc tan 3 = 71° 33'.9,

"
a;2 + 4 a2

18. Show that the tangents to the folium of Descartes x^ + y^ = 3 axy at the points

where it meets the parabola y'^ = ax are parallel to the axis of Y.

19. At how many points will a particle moving on the curve y = x^ — ix^ -{ x — i

be moving parallel to the axis of -Z" ? What are the points ?

Ans. Two ; at (1, - 4) and (J,
-

Y?*)-

20. Find the angle at which the parabolas y = Zx'^ — I and y = 2x'^ + Z intersect.

Ana. arc tan ^.

21. Find the relation between the coefficients of the conies a^K^ + h^y^ = 1 and

a^^ + 622/" = 1 when they intersect at right angles. , 1 1 _ 1 1

Oj 6^ flj \

65. Equations of tangent and normal, lengths of subtangent and

subnormal. Rectangular coordinates. The equation of a straight

line passing through the point (a;^, y^) and having the slope m is

y — y^=m(x — x^). 54, (c), p. 3

j^ If this line is tangent to the curve AB at the

point P(x^-, «/j), then from § 64, p. 73,

JII N X :tanT=r^l =^*.

Hence at point of contact I^Cx^, y^ the equation of the, tangent

line TJl is

* By this notation is meant that we should first find— , then in the result substitute x-i

dx ,

for X and y^ for y. The student is warned against interpreting the symbol -^ to mean tlm

derivative of y-^ with respect to x-^, for that has no meaning whatever, since ij and y^ are

both constants.
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The normal being perpendicular to tangent, its slope is

-^ =-^- By 55, p. 3

And since it also passes through the point of contact ^(z^, y ), we
have for the equation of the normal ^iV"

(2) y-y, = -p:(^x-x,y

That portion of the tangent which is intercepted between the point
of contact and OX is called the length of the tangent (= TiJ), and its

projection on the axis of Xis called the length of the mhtangent (=TM).
Similarly, we have the length of the normal (= ^iV") and the length of
the subnormal (= MIT).

In the triangle TI^M, tan t =—3- ; thereforeTM
MP dx

(3) ^iW* =^ = ^1^ = length of subtangent.

In the triangle ilfi^iV, tan t = ; therefore

(4) MN^ = MI^ tan T= ^1 -^ = length of subnormal.
dXj^

The length of tangent (= T^) and the length of normal (= ^iV)
may then be found directly from the figure, each being the hypotenuse

of a right triangle having the two legs known. Thus

TF^=VTM'+ MI^' =
^(y^^J+Cy;)^

(5) = Ui^|(^) + 1 = length of tangent.

Ji^=y/Mll'+ M2^' = ^(y^y+L^J
(6) =y^^i + 1 J^

J

= length of normal.

The student is advised to get the lengths of the tangent and of

the normal directly from the figure rather than by using (5) and (6).

Whai the length of subtangent or subnormal at a point on a curve

is determined, the tangent and normal may be easily constructed.

* If subtangent extends to the right of T, we consider it positive ; if to the left, negative,

t If subnormal extends to the right of M, we consider it positive ; if to the left, negative.
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EXAMPLES

1. Find the equations of tangent and normal, lengths of subtangent, subnormal

tangent, and normal at the point (a, a) on the cissoid y^ =

Solution.

2a —

X

dy _ 3 ax^ — x^

dx~ y{2a — xY'

^ = r^] = _Scfi-^ ^ 2 = slope of tangent.
dx-f L*i;Jx=a a(2a— a)2

Substituting in (1) gives

y = 2x — a, equation of tangent.

Substituting in (2) gives

2y + x = Sa, equation of normal.

Substituting in (3) gives

TM = - = length of subtangent.

Substituting in (4) gives

MN = 2 a = length of subnormal.

Also FT = V(TM)^ + (MP)^=^^^ ^ a^- ^ ^^^^^ ^^ ^^^^^^^^

and FN = V{MN)^ + {MP)^ = VIoMT^ = a Vs = length of normal.

2. Find equations of tangent and normal to the ellipse x" + 2 j^'^ — 2 X2/ — x = at

the points where x = 1. Ans. At (1, 0), 2 y = x — 1, ^ + 2 x = 2.

At (1,1), 2y = x + l,y + 2x = B.

3. Find equations of tangent and normal, lengths of subtangent and subnormal

at the point (x^, y^) on the circle x^ + y^ = r^.* 2

Ans. XjX + y^y = r^, x^y — y^x = 0, -, —x^.
Xj

4. Show that the subtangent to the parabola y^ = 4 px is bisected at the vertex,

and that the subnormal is constant and equal to 2p.

5. Find the equation of the tangent at (Xj, j/j) to the ellipse 1- — = 1.

y 6. Find equations of tangent and normal to the witch y = at the point

where x = 2 o. 4 a^ + x=

Ans. x + 2y = 4:a, y = 2x — Sa.
X _x

7. Prove that at any point on the catenary y = -(fe«+ e °) the lengths of sub-
2x _2£ 2 2

normal and normal are-(e'' — e ») and — respectively.

8. Find equations of tangent and normal, lengths of subtangent and subnormal, to

each of the following curves at the points indicated :

Aa) 2/ = x^ at (I, \). (e) 2/ = 9 - x^ at (- 3, 0).

i^b) 2/2 = 4x at (9, - 6). (f) x^ = &y where x =- 6.

(c) x2 + 5^2_i4^1iere2/ = l. (g) x^-xj/ + 2x- 9= 0, (3, 2).

(d) x2 + 2/2 = 25 at (- 3, - 4). (h) 2x2 - yi ^ 14 ^t (3, _ 2).

• In Exs. 3 and 6 the student should notice that if we drop the subscripts in equations oJ

tangents, they reduce to the equations of the curves themselves.
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9. Prove that the length of subtangent toy = a^ is constant and equal to .

log a

10. Get the equation of tangent to the parabola y^ = 20x which makes an angle

of 45° with the axis of X. Arts, y = a + 5.

Hint. First find point of contact by method of Illustrative Example 1, (d), p. 74.

11. Find equations of tangents to the circle x' + y^= 52 which are parallel to the

line 2a; + 32/ = 6. Arts. 2a; + 32/ ± 26 = 0.

12. Find equations of tangents to the hyperbola ix^—9y^ + 36 = which are

perpendicular to the line 2y + 5x = 10. • Ans. 2a;—5^±8 = 0.

13. Show that in the equilateral hyperbola 2xy = a^ the area of the triangle

formed by a tangent and the coordinate axes is constant and equal to a?.

14. Find equations of tangents and normals to the curve y^ = tix^ — x' at the

points where X = 1. .4ns. At (1, 1), 2?/ = x + 1, ^ + 2a; = 3.

At (1, — 1), 2 2/ = — a; - 1, 2/ - 2x = — 3.

15. Show that the sum of the intercepts of the tangent to the parabola

xi + yi = ai

on the coordinate axes is constant and equal to a.

16. Find the equation of tangent to the curve x^ (x + y) = a^ (x — y) at the origin.

Ans. y = x.

17. Show that for the hypocycloid xs + j/s = a^ that portion of the tangent

included between the coordinate axes is constant and equal to a.

X

18. Show that the ciirve y = a^ has a constant subtangent.

66. Parametric equations of a curve. Let the equation of a curve be

If a; is given as a function of a third variable, t say, called 2iparam-

eter., then by virtue of (^) y is also a function of t, and the same func-

tional relation (A) between x and y may generally be expressed by

means of equations in the form

ryi

each value of t giving a value of x and a value of y. Equations {E)

are called 'parametric equations of the curve. If we eliminate t between

equations (5), it is evident that the relation {A)

must result. For example, take equation of circle

s^ + f = r», ory = V7^-a^.

Let x = rcost; then

y = r sin <, and we have

x = r cos t.

^ ^ I -< = r sm t.

as parametric equations of the circle in the figure, t being the parameter.
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If we eliminate t between equations (C) by squaring and add-

ing the results, we have

x' + y^^ r" (cos" t + sin'' f) = r",

the rectangular equation of the circle. It is evident .that if t varies

from to 2 TT, the point P (x, y) will describe a complete circumference.

In § 71 we shall discuss the motion of a point P, which motion

is defined by equations such as

We call these the parametric equations of the path, the time t being

the parameter. Thus in Ex. 2, p. 93, we see that

x==v^ cos a t,

are really the parametric equations of the trajectory of a projectile,

the time t being the parameter. The elimination of t gives the rectan-

gular equation of the trajectory

9^
y = x tan a

2 v^ cos" a

Since from (5) y is given as a function of t, and i as a function of

X, we have j j j^ay _ ay at

dx dt dx

dy 1

dt

that is,

dy _dt _<I>'(J)
(P~) dx dx fi(V)

dt

Hence, if the parametric equations of a curve are given, we can find

equations of tangent and normal, lengths of subtangent and subnor-,

mal at a given point on the curve, by first finding the value of ^ at

dx
that point from (D) and then substituting in formulas (1), (2), (3),

(4) of the last section.
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Illustrative Example 1. Find equations of tangent and normal, length? of
subtangent and subnormal to the ellipse

(E)

at the point where (p =

r X = a cos ip,

\y = bsin^,*

dx
Solution. The parameter being 0, — = — a sin 0,

dy ,^ = 6 cos <

dy

dip

6cos0
Substituting in (D), — =

dx a sin
= slope at any point.

Substituting = - in the given equations (E), we get/-^, —^) as the point of
^ VV2 V2/contact. Hence

Substituting in (1), p. 76, y —

or.

Substituting in (2), p. 77, y —

dy^ __ b

da;, a

V2 "V V2/'

bx + ay = \/2 ab, equation of tangent.

6

V2'

or, V2 {ax — by) = a' — 6^, equation of normal.

Substituting in (3) and (4), p. 77,

—=
(

) = = length of subnormal.
V2\ o,/ .aV2

V^
) = = length of subtangent.

6/ V2

*As in the figure draw the major and minor auxiliary circles of the ellipse. Through
two points S and C on the same radius draw lines parallel to the axes of coordinates.

These lines will intersect in a point P (x, y) on the

ellipse, because

a; = OA = OB cos 1^ = a cos

and y = AP= OD=OCs,\n<l) = l>sia.<p,

or, - = co8 0andr = sin0.
a b

Now squaring and adding, we get

^ + |5-cos20 + sin20 = l,
a^ 0^

the rectangular equation of the ellipse. is sometimes
called the eccentric angle of the ellipse at the point P.

Y
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Illubtkativk Example 2. Given equation of the cycloid * in parametric form

("» = a{6 — sin 5),

[2/ = o(l — cos^,

8 being the variable parameter; find lengths of subtangent, sabnormal, tangent,

and normal at the point where S =—

Solution. ^ = a(l - cosfl),'^ = asinS.
de dO

Substituting in (D), p. 80,
dy sin

- = slope at any point.
ilx 1 — cos

Since = —, the point of contact is I
— a, a], and —-t = 1.

2 \ ^ / CuCj

Substituting in (3), (4), (5), (6) of the last section, we get

length of subtangent = a, length of subnormal = a,

length of tangent = aV2, length of normal =aV2. Ans.

EXAMPLES

Find equations of tangent and normal, lengths of subtangent and subnormal to

each of the following curves at the point indicated

:

Tangent Normal Subt. Svbn.

z-42/+l=0, 8x + 2y-9 = 0, 2, J.

12x-y-16 = 0, x + 12y-98 = 6, |, 96.

Sx-2y-l = 0, 2i + 3y-5 = 0, |, |.

x + 2y-4: = 0, 21- J/- 3 = 0, -2, -\.

1. x = P,2y = t; t = l.

2. a; = i, !/ = iS
; i = 2.

3. x = i^,y = i^; t = l.

4. x = 2e', i/ = e-'; t = 0.

6. x = smt,y = coa2t; « = -. 2 y +4 x — 3 = 0, 4y — 2i — 1 = 0, —J,
6

• 1.

* The path described by a point on the circumference of a circle which rolls without

sliding on a fixed straight line Is called the cycloid . Let the radius of the rolling circle be a, P
the generating point, and M the point of contact with the fixed line OX, which is called tlie

base. If arc Pit equals OMin length, then P will touch at if the circle is rolled to the left.

We have, denoting angle PCM by B,

X -= OM-NM= ae- a sin e- a (9 - sin 9)

,

yPN-'MC-AC-'a-acose'-'aO.-coae),
the parametric equations of the cycloid, the angle ff through which the rolling circle turns
being the parameter. 0I>= 2 iro is called the base of one arch of the cycloid, and the point 7
is caUed the vertex. Eliminating 0, we get the rectangular equation

3;= a arc cos(^)-^^ay-y^
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6. X = l-t,y = t^; t = 3.

8. s = t«, v = «; « = 2.

9. 1 = t», J/
= t2; «=_1.

10. s = 2-i, 2/ = 3t2; t = l.

11. a; = cos «, y = sin 2 « ; < = -

.

3

12. £ = 3e^', 2/ = 2e«; t = 0.

13. a; = sini, y = 2cost; « = -.
4

14. x = 4cos<, j/ = 3sin«; t = -.

15. x = log(« + 2), y = i; t = 2.

In the following curves find lengths of (a) subtangent, (b) subnormal, (c) tangent,
(d) normal, at any point

:

Cx = a (cos t'+ t sin t), ja
16. The curve

(sint — ioosi).

ns. (a)

a; = 4 a cos' t,

Ans. (a) ycott, (b) y tani, (c) -^, (d)-^-
sin t cos t

.

^ 3/ ^^ 4 CK cos' t

17. The hypocycloid (astroid) i
'

Ly = 4asin^i.

Ans. (a) -ycoti, (b) -j/tani, (c) -^, (d) -i^.
sin t cos t

18. The circle

19. The cardioid

20. The folium

x = r cos t,

r sin i.

rx = a(2 cost — cos2i),

\y = a(2sin t — sin2i).

St
'

1 + to'

'

1 + «8

'

21. The hyperbolic spiral

a! = - cos t,

t

y = -sm t.

67. Angle between the radius vector drawn to a point on a curve

and the tangent to the curve at that point. Let the equation of

the curve in polar coordinates be p =f(Q').

Let P be any fixed point (/?, ^) on the curve. i^^.

If 0, which we assume as the independent vari-

able, takes on an increment A^, then p will

take on a corresponding increment A^o. Denote

by Q the point (jp + A/d, Q + A^). Draw PR perpendicular to OQ.

Then OQ^p + t^p, PR = p sin A^, and OB = p cos A^. Also,

'-^«^ = l| = o/''
/J sin A^

0^ p + Ap — p cos A^
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Denote by yjr the angle between the radius vector OP and the

tangent FT. If we now let A0 approach the limit zero, then

(a) the point Q will approach indefinitely near P

;

(b) the seeant PQ will approach the tangent PT as a limiting pod-

tion ; and

(c) the angle PQR will approach yjr as a limit.

Hence
, , ^ limit p sin. Ad
^^'^ A0 = O p + Ap — pcosAd

5^/ _ limit psinA^

2psin^— +A/3

I Since from 39, p. 2, p — pcosA0= p (1 — cos A9) = 2psin2— • I

p sin A^

^ limit Ae

Ad '^ Ad

tDiTiding both numerator and denominator by Aff.]

sin A0
limit

^' Ad
Ae = Q a5

sm—

—

. A^ 2 Ap
''^"^T-^^ + A^

c- limit /Ap\ dp , limit/- A6\ . , limit /sin A^'
S"^^^ A^=o(Aij=i "'^^

A^=o(^"^TJ=^'
^^^° A^=o(^r

. A6I
sm—

and ^^^^——=1 by § 22, p. 21, we havg-

T

de

From the triangle OPT we get

=1
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Having found t, we may then find tan t, the slope of the tangent

to the curve at P. Or since, from (5),
, i ^a . ,-s tan 6 + tan -^ir

tan T = tan (9 + -ylr) = — i_

,

^ ^^ 1- tan ^ tan i|r

we may calculate tan i/r from (A) and substitute in the formula

(C) slope of tangent = tan r = r-^ £-

.

^ ^ ^
1 - tan fl tan ^

Illustrative Example 1. Find ^ and t in the cardioid p = a(l — costf). Also

find the slope at ^ = — .

6
dp

Solution. -C = o sin 9. Substituting in (A) gives

Q
2 a sin^ -

p a(l - cos S) 2 ^ „ „„

.

tan i/- = X. = _i
.

^ = = tan - . By 39, p. 2, and 37, p. 2

-!- 2asm-cos-
d9 2 2

9 9 ti '\ R
Since tan ^ = tan -, f = -. Ans. Substituting in (B), t = 9 + - = Ans.

tanT = tan- = l. Ans.
4

To find the angle of intersection of two curves C and C" whose

equations are given in polar coordinates, we may proceed as follows :

angle TPT' = angle OPl"— angle OFT,

or, ^ = yjr' — -^Jr. Hence

(D) tan m = 1- i—

,

1 + tan^'tan^

where tan i^' and tan -</r are calculated by

(A) from the two curves and evaluated

for the point of intersection.

Illustrative Example 2. Knd the angle of

intersection of the curves p = a sin 2 S, p = a cos 2 9.

Solution. Solving the two equations simultaneously, we get at the point of inter-

section tan 2 ^ = 1, 2 S = 45°, 6 = 22\°-

From the first curve, using (A),

tan ^f-' = J tan 2 61 = J, for 9 = 22J°.

From the second curve,

tan.^ =- J cot25 =- ^, for 9 = 22^°.

Substituting in (X>), i i j.

tan
<t>
= ' = |. .•.

<t>
= arc tan |. Ans.
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68, Lengths of polar subtangent and polar subnormal. Draw a line

NT through the origin perpendicular to the radius vector of the

point P on the curve. If PT is the tangent and' PiV

the normal to the curve at P, then

0T= length ofpolar subtangent,

and 0-ZV= length ofpolar subnormal

of the curve at P.

OT
In the triangle OPT, tan ^jr = Therefore

OT= D tan -«|r= /)"— = length of polar subtangent.*
dp

In the triangle OPN, Un-f = --^- Therefore

(8) 0N=—^— =— = length of polar subnormal.
tani/r d6

The length of the polar tangent (=PT} and the length of the polar

normal (=P-ZV") may be found from the figure, each being the hypot-

enuse of a right triangle.

Illtjstkative Example 3. Find lengths of polar subtangent and subnormal to the

lemniscate p^ = a^ cos2d.

Solution. Differentiating the equation of the curve as an implicit function witli

respect to 0,

2p^ = -2a.'sm2e,
'^ de

dp a' sin 26
09= -p

Substituting in (7) and (8), we get

length of polar subtangent

:

length of polar subnormal = —

a? sin 2 6

a^sinSfl

If we wish to express the results in terms of 8, find p in terms of 6 froni the given

equation and substitute. Thus, in the above, p = ±aVcos2^; therefore length of

polar subtangent = ± a cot 2S Vcos2S.

de
* When 6 increases with p,— is positive and ^ is an acute angle, as in the above flgnie.

Then the subtangent T is imsitive and is measured to the right of an observer placed at and

dB
looking along OP. When — Is negative, the subtangent is negative and is measured to the

left of the observer.
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EXAMPLES

1. In tlie circle p = r sinS, find f and t in terms of 9. Ans.
\l/
= 6, t=26.

a
2. In the parabola p = a sec' - > show that t + ^ = ir.

3. In the curve p^ = a? cos 2^, show that 2^' = w + 45.

4. Show that \j/ is constant in the logarithmic spiral p = ef^. Since the tangent

makes a constant angle with the radius vector, this curve is also called the equi-

angular spiral.

5. Given the curve p= a sin' - , prove that r = 4 ^.
o

6. Show that tan ^ = 5 in the spiral of Archimedes p = aO. Find values of f
when 9=2-ir and 4 it. Ans. f = 80° 57' and 85° 27'

7. Find the angle between the straight line p cosS=2a and the circle p =
6 a sin S. , Ans. arc tan j.

6
8. Show that the parabolas p= a seo^ - and p = b csc^ - intersect at right angles.

9. Find the angle of intersection of p= a sin d and p = a sin 2 0.

Ans. At origin 0° ; at two other points arc tan3 VS.

10. Find the slopes of the following curves at the points designated

:

(a) p= a(l — oosd). 9 = —- Ans. —1.

(b) p=as&c^e. p = 2a. 3.

(c) p=:asin45. origin. 0, 1, oo, — 1.

(d) p^ = a^ sin 4 9. origin. 0, 1, oo, — 1.

(e) p = a sin 3 9. origin. 0, Vs, — Vs.

(f

)

p = acosS9. origin

.

(g) p=acos20. origin.

(h) p = asm29. ^ = 7-

a

(i) p=asm30. ^^r'

(i) p = <^ff- « = \-

(^)p9=a. S = |-

(I) p = ffi. 9=0.

11. Prove that the spiral of Archimedes p = a9, and the reciprocal spiral P = i

'

intersect at right angles.

12. Find the angle between the parabola p = a sec^ - and the straight line

p sine= 2a. ^ns. 45°.

13. Show that the two cardioids p = o(l + cos^ and p = o(l — cos 5) cut each'

other perpendicularly.

14. Find lengths- of subtangent, subnormal, tangent, and nonnal of the spiral of

Archimedes p = oB. ^^ ^^^t. = f! , tan. = ? V^T?,
a a,

subn. = a, nor. = VaT^^.

The student should note the fact that the subnormal is constant.
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15. Get lengths of subtangent, subnormal, tangent, and normal in the logarithmic

spiral p = a«.
Arts. subt. = —^ I tan. = p -t /l +

logo Vlog a \ log2 o

subn. = p log a, nor. = p Vl + log^ a.

When a = e, we notice that subt. = subn., and tan. = nor.

16. Find the angles between the curves p = a(l + cos 5), p = h{l — co&6).

Ans. Oand-.
Oj 2

17. Show that the reciprocal spiral /o = - has a constant subtangent.
9

18. Show that the equilateral hyperbolas p'' sin 2^ = a^, p^ cos2^ = 6'' intersect at

right angles.

69. Solution of equations having multiple roots. Any root which

occurs more than once in an equation is called a multiple root.

Thus 3, 3, 3,-2 are the roots of

(A) a;"- 7 a;* +9 a;' +27 a; -54 = 0;

hence 3 is a multiple root occurring three times.

Evidently QA) may also be written in the form '

(a;-3)'(a:+2)=0.

Let /(a;) denote an integral rational function of x having a multiple

root a, and suppose it occurs m times. Then we may write

(-B) f(x) = (x~ay<l>ix),

where ^(a;) is the product of the factors corresponding to all the roots

of /(a;) differing from a. Differentiating (5),

f(x) = (x — a)"'^'(a;) + ^{x')m(x — a;)'"-\

'

(<7) f(x) = (x- ay-^ l(x - a) 4>'(x') + <i>(x) w].

Therefore /'(a;) contains the factor (x — a) repeated m — 1 times

and no more ; that is, the highest common factor (H.C.F.) of f(x)

and /'(a;) has m — 1 roots equal to a.

In case /(a;) has a second multiple root /3 occurring r times, it is

evident that the H.C.F. would also contain the factor (a; — /3)''~^, and

so on for any number of different multiple roots, each occurring once

more in /(a;) than in the H.C.F.

We may then state a rule for finding the multiple roots of an equation

fQc) = as follows

:

First Step. Findf'(x').

Second Step. Find the KQ.F. off(x) andf{x).
Third Step. Find the roots of the K O.F. Fach different root of the

H.Q.F. will occur once more inf(x) than it does in the M.O.F.
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If it turns out that the H.C.F. does not involve x, then f(x) has

no multiple roots and the above process is of no assistance in the

solution of the equation, but it may be of interest to know that the

equation has no equal, i.e. multiple, roots. /
'

'i

Illustkative Example 1. Solve the equation a;^ — Sx^ + 13 a; — 6 = 0.

Solution. Place f[x) = x^ — %x'^-\-\Zx-Q.

First step. f'{x) = 3 x^ - 16 a; + 13.

Second step. H.C.r. = x — 1.

Third step. x — 1 = 0. .. x = 1.

Since 1 occurs once as a root in the H.C.F. , it will occur twice in the given equa-
tion ; that is, (X — 1)2 will occur there as a factor. Dividing x^ — Sx^ + 13x — 6 by
(X — 1)2 gives the only remaining factor (x — 6), yielding the root 6. The roots of

our equation are then 1, 1, 6. Drawing the graph of the function, we see that at

the double root x = 1 the graph touches OX but does not cross it.*

EXAMPLES

Solve the first ten equations by the method of this section

:

Ans. 2, 2, 3.

-1,-1,-1,3.
3, 3, 3, - 2.

3, 3, 3, - 4.

1, 1, - 4, - 4.

3, 3, - 1, 4.

2, 2, 1±V3.
-1,-1,-1, 2, 2}

2, 2, 2, - 3, - 3.

-1,-1, -1, 3±V=1.

1. x» - 7x2 + 16x- 12 = 0.

2. x*-6x2-8x-3 = 0.

3. X* - 7x3 +'9x2 + 27x- 54 = 0.

;4. X* - 5x5 - 9x2 + 81 x - 108 = o.

5. x^ + 6x3 + a;2 _ 24x + 16 = 0.

6. X* - 9x3 + 23x2 - 3x - 36 = o.

7. X*- 6x3 + 10x2-8 = 0.

8. x5 - X* — 5x3 + x2 + 8x + 4 = 0.

9. x5 - 15x3 + 10x2 + 60x- 72 = 0.

10. x^ — Sx^— 5x3 + 13x2 + 24x + 10 = 0.

Show that the following four equations have no multiple (equal) roots

:

11. x3 + 9x2 + 2 X - 48 = 0. -

12. x« - 15x2 _ lox + 24 = 0.

13. x«-3x3-6x2 + 14x + 12 = 0. "

14. x» — a» = 0.

15. Show that the condition that the equation

x' + 3 gx + )• =

shall have a dotible root is 4 g3 + r? = 0.

16. Show that the condition that the equation

x3 + 3px2 + r =

shall have a double root is r (4p3 + y) = 0.

* Since the first derivative vanishes for every multiple root, it

follows that the axis of -X"is tangent to the graph at all points corre-

sponding to multiple roots. If a multiple root occurs an even number
of times, the graph will not cross the axis of X at such a point (see

figure) ; if it occurs an odd number of times, the graph will cross.
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70. Applications of the derivative in mechanics. Velocity. Recti-

linear motion. Consider the motion of a point P on the straight line

AB. Let 8 be the distance meas-

u —2 -^p 5 ured from some fixed point as A

to any position of P, and let t

be the corresponding elapsed time. To each value of t corresponds

a position of P and therefore a distance (or space) s. Hence « wUl

be a function of t, and we may write

Now let t take on an increment A< ; then » takes on an increment

As,* and
As

rA') — = the average velocity

of P during the time interval At If P moves with uniform motion,

the above ratio will have the same value for every interval of time

and is the velocity at any instant.

For the general case of any kind of motion, uniform or not, we

define the velocity (time rate of change of «) at any instant as the

As
limit of the ratio — as A< approaches the limit zero; that is,

At

_ limit As
"' At=^QAt

or,

(9) i; =—

.

dt

The velocity is the derivative of the distance (= space') with respect

to the time.

To show that this agrees with the conception we already have of

velocity, let us find the velocity of a falling body at the end of two

seconds.

By experiment it has been found that a body falling freely from rest

in a vacuum near the earth's surface follows approximately the law

(5) « = 16.1f,

where « = space fallen in feet, t — time in seconds. Apply the Q-en-

eral Ride, p. 29, to (£).

» As being the space or distance passed over in the time A*.
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First Step. s+ ^8 = 16.1(t+ Aty=16.ie+ S2.2t-At+ lQ.l(Aty.

Second Step. A8= 3-2.2 «-A< + 16.1 (A0°-

As
Third Step. — = S2,2t+lQ.l At = average velocity throughout

the time interval At.

Placing < = 2,

As
(<?) — = 64.4+16.1 Ai = average velocity thrmjughmit the

time interval At after two seconds offalling.

Our notion of velocity tells us at once that (C) does not give us

the actual velocity at the end of two seconds ; for even if we take At

very small, say ^^^ or -^-^-^-^ of a second, (C) still gives only the

average velocity during the corresponding small interval of time. But

what we do mean by the velocity at the end of two seconds is t?te

limit of the average velocity when At diminishes towards zero; that is,

the velocity at the end of two seconds is from (C), 64.4 ft. per second.

Thus even the everyday notion of velocity which we get from experi-

ence involves the idea of a limit, or in our notation

The above example illustrates well the notion of a limitiug value.

The student should be impressed with the idea that a limiting value

is a definite, fixed value, not something that is only approximated.

Observe that it does not make any difference how small 16.1 At may

be taken ; it is only the limiting value of

64.4 + 16.1 At,

when At diminishes towards zero, that is of importance, and that

value is exactly 64.4.

71. Component velocities. Curvilinear motion. The coordinates x

and y oi & point P moving in the XZ-plane are also functions

of the time, and the motion may be defined by means of two

equations,
^^^^^^^ 2^ = <^(0.*

These are the parametric equations of the path (see § 66, p. 79).

* The equation of the path in rectangular coordinates may be found by eliminating t

between these equations.
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The horizontal component v^ oi v* is the velocity along OX of the

projection M of P, and is therefore the -time rate of change of x.

Hence, from (9), p. 90, when s is replaced by x, we get

dx^^ (10) v,= -r-
»>»^_ at

•M^<r
^^^\P(.x,y) In the same way we get the vertical com-

"/
\ ponent, or time rate of change of y,~^ ^ (11) v^ = f-at

Representing the velocity and its components by vectors, we have

at once from the figure

v' = v^' + v,\

or,

'-fr-WW'
giving the magnitude of the velocity at any instant.

If r be the angle which the direction of the velocity makes with

the axis of X, we have from the figure, using (9), (10), (H),

dy dx dy

.» . v., dt V dt v„ dt
(13) sin T = -5! = — ; cos r = -i = — ; tan r = ^ =—

V ds V ds v^ dx

n It m
72. Acceleration. Rectilinearmotion. In general, ?; will be a function

of t, and we may write ^ _ ^ /-^\

Now let t take on an increment Ai, then v takes on an increment

Ai;, and
Aw— = the average acceleration of P during the time interval Ai.

"We define the acceleration a at any instant as the limit of the ratio

Aw— as At approaches the limit zero ; that is,

„_ limit /Ad\

(14) a = ^1.

dt

The acceleration is the derivative of the velocity with respect to the time.

* The direction of v is along tlie tangent to the path.
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73. Component accelerations. Curvilinear motion. In treatises on
Mechanics it is shown that in curvilinear motion, the acceleration is

not, like the velocity, directed along the tangent, but toward the
concave side of the path of motion. It may be resolved into a tan-

gential component, a„ and a normal component, a„, where

„A .
dv v"

"^

(-B is the radius of curvature. See § 103.)

The acceleration may also be resolved into components parallel to

the axes of the path of motion. Following the same plan used in § 71
for finding component velocities, we define the component accelerations

parallel to OX and OY,

(15) a.= §r; a,= '^. Also,
at at

which gives the magnitude of the acceleration at any instant.

EXAMPLES

1. By experiment it has been found that a body falling freely from rest in a vac-

uum near the earth's surface follows approximately the law s = 16.1 i^, where s = space
(height) in feet, t = time in seconds. Knd the velocity and acceleration (a) at any
instant

;
(b) at end of the first second

; (o) at end of the fifth second.

Solntion. (A) s=16.1J2.

(a) Differentiating, (B) ^ = 32.2 i, or, from (9), v = 32.2 i ft. per sec.

dv
Differentiating again, (G) — = 32.2, or, from (14), a = 32.2 ft. per (sec.)^,

which tells us that the acceleration of a falling body is constant ; in other words, the

velocity increases 32.2 ft. per sec. every second it keeps on falling.

(b) To find V and a at the end of thC; first second, substitute i = 1 in (B) and (C)
;

V = 32.2 ft. per sec, a = 32.2 ft. per (sec.)^.

(c) To find V and a at the end of the fifth second^ substitute i = 5 in (B) and (C)
;

V = 161 ft. per sec, a = 32.2 ft. per (sec.)^.

2. Neglecting the resistance of the air, the equations of motion for a projectile are

I = Dj cos f, 2/ = "i sin • i — 16.1 i^

;

y
where tij = initial velocity, (p = angle of projection with hori- ^
zon, t = time of flight in seconds, x and y being measured in j>

feet. Find the velocity, acceleration, component velocities, -q^^—

and component accelerations (a) at any instant
;

(b) at the end

of the first second, having given v-^ = 100 ft. per sec, = 30°
;

(c) find direction of

motion at the end of the first second.
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Solution. From (10) and (11),

(a) Vx = »j cos ; v^ = v^Bm<p — 32.2 1.

Also, from (12), v = Vui" - 64.4 tv^ sin </, + 1036.8 V.

From (15) and (16), a^ = 0; ay = - 32.2 ; a = - 32.2.

(b) Substituting '

t = 1, Dj = 100, = 30° in these results, we get

Vx = 86.6 ft. per sec. a^ = 0.

By = 17.8 ft. per sec. o^b ^ - 32.2 ft. per (Beo.)2.

V = 88.4 ft. per sec. a = - 32.2 ft. per (seo.)^.

(c)

17.8
T = arc tan -" = arc tan—^ = 11° 36'.6 = angle of direction
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Find (a) velocity and acceleration at any instant; and, if b,= 300 ft. per sec, find

velocity and aoceleration (b) at end of 2 seconds; (c) at end of 16 seconds. Eesist^

KQoe of air is neglected. Ans. (a) » = Oj — 32.2 1, a = — 32.2

;

(b) » = 236.6 ft. per sec. upwards,

or = 82.2 ft. per (sec.)* dovimwards;

(c) = 183 ft. per sec. dovmvyards,

a = 32.2 ft. per (sec.)* downwards.

6. A cannon ball is fired vertically upwards with a muzzle velocity of 644 ft. per

sec. Find (a,) its velocity at the end of 10 seconds
;

(b) for how long it will continue

to. rise. Conditions same as for Ex. 5. Ans. (a) 322 ft. per sec. upwards;

(b) 20 seconds.

7. A train left a station and in t hours was at a distance (space) of

s = t8 + 2«2 + 3t

miles from the starting point. Find its acceleration (a) at the end of t hours
;
(b) at

the end of 2 hours. Ans. (a) a = 6 1 + 4

;

(b) a = 16 miles per (hour)*.

8. In t hours a train had reached a point at the distance of J t* — 4 i' + 16 i* miles

from the starting point, (a) Find its velocity and acceleration, (b) When will the

train stop to change the direction of its motion ? (o) Describe the motion during the

firstlOhours. Ans. (a) b = i' - 12i* + 324, a = 3t*~ 24S + 32;

(b) at end of fourth and eighth hours

;

(c) forward first 4 hours, backward the next

4 hours, forward again after 8 hours.

9. The space in feet described in t seconds by a point is expressed by the formula

s = 48t-16<*.

Find the velocity and acceleration at the end of 1^ seconds.

Ans. !) = 0, a = — 82 ft. per (sec.)*.

10. Find the acceleration, having given

(a) B = <* + 2i; i = 3. Ans.a=8.-
(b) 1) = 8 J - iS ; < = 2. a = -9.

(c)» = 48in-;<=: — a = Vs.
^

'
2 3

(d) t) = a cos 3 < ; i = - • a =— 3 o.
\ I '6
(e) n= 5e2'; i = 1. a:=10e*.

11. At the end of t seconds a body has a velocity of 3 4* + 2t ft. per sec; find its

acceleration (a) in general
;

(b) at the end of 4 seconds.

Ans. (a) a=6t + 2tt. per (sec.)*
;

(b) a = 26 ft. per (sec.)*

12. The vertical component of velocity of a point at the end of t seconds is

Dy = 3t* - 2< + 6 ft. per sec.

Find the vertical component of acceleration (a) at any instant
;

(b) at the end of 2

seconds. Ans. (a) a,= 6J — 2; (b) 10 ft. per (sec.)*

13. If a point moves in a fixed path so that

s=VJ,

show that the acceleration is negative and proportional to the cube of the velocity.
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14. If the space described is given by

s = ae' + be-',

show that the acceleration is always equal in magnitude to the space passed over.

15. If a point referred to rectangular coordinates moves so that

X = a cos t + b, and y = a sin t + c,

show that its velocity has a constant magnitude.

16. If the path of a moving point is the sine curve

fa; = at,

\y = 6sinai,

show (a) that the s-component of the velocity is constant
;

(b) that the acceleration

of the point at any instant is proportional to its distance from the axis of X.

17. Given the following equations of curvilinear motion, find at the given instant

Bx, "», " ; <^i, cTj), o:
;
position of point (coordinates) ; direction of motion. Also find

the equation of the path in rectangular coordinates.

{a) x = t^,y = t; t = 2. (g) X = 2 smt, y = S cost ; t = IT.

(b) x = t,y = t^; t = l. (^. x = smt,y = cos2t; « = ^.
(c) x = t',y = t^;t = 3.

^ '
4

(d) x = 2t,y = t^ + 3;t = 0. W ^ = 24, y = 3e'; t = 0.

(e) x = l-t^,y = 2t; t = 2. Q) x = 3t, y = logt; t = l.

(f) X = asini, y = aoost; t = (k) x = t,y = 12i-i; t = 3.



CHAPTER VII

SUCCESSIVE DIFFERENTIATION

74. Definition of successive derivatives. We have seen that the

derivative of a function of x is in general also a function of x. This

new function may also be differentiable, in which case the derivative

of the first derivative is called the second derivative of the original

function. Similarly, the derivative of the second derivative is called

the third derivative; and so on to the wth derivative. Thus, if

dy_
dx
= 12i

U^4\ = mx\
ax \dxj

dx

d Idy

dx\dx
= 72 X, etc.

75. Notation. The symbols for the successive derivatives are

usually abbreviated as follows:

dx\dx] dx^

L
dx

' d Idy

dx \dx

,±(d^\^^^
dx\dx''/ dx"'

liy

d /d''-^y\_d''y

_

' dx\dx"-^j d3?

—f(x), the successive derivatives are also denoted by

f'Qo-), /"(^), /"'(^). /X^). • • •' /'"'(^);

y', y", y"\ r. ,/»).

or, #/(-)' S/(-)' l^/(-)' |i/(^)' ••' ;£^(-)
dx dx- dx"''

^"^'
dx*'

97
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76. The nth derivative. For certain functions a general expression

involving n may be found for the nth derivative. The usual plan is to

find a number of the first successive derivatives, as many as may be

necessary to discover their law of formation, and then by induction

write down the wth derivative.

Spy
Illustrative Example 1. Given y = e^, find

Solutun.
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If u and V are functions of x, we have, from V,

d . . du dv
-(uv-) =— v + u--

Differentiating again with respect to x,

d^ . - _ ^u dudv^ dudv d^v _ d^u ^dudv d%
do? d7? dx dx dx dx dx^ dx'' dx dx da?

Similarly,

c?' . _ d\ d^u dv „ d^u dv ^du d^v du d^v dh
di? d^ di? dx da? dx dx dx' dx da? da?

_ d^u o d^u dv „du cPv d%
da? da? dx dx da? dx^

However far this process may be continued, it will be seen that the

numerical coefficients follow the same law as those of the Binomial

Theorem, and the indices of the derivatives correspond to the expo-

nents of the Binomial Theorem.* Reasoning then by mathematical

induction from the >nth to the (to + l)th derivative of the product,

we can prove Leibnitz s Formula

d" , d"a (p-'^udv n(n-i) d''-^u<Pv
(17) — (uv) =— v + n h—S r

—

--\

du d''-H d'v
\-n h u

dxdx"-^ dx"

Illustrative Example 1. Given y = e^loga;, find -— by Leibnitz's Formula.
dx'

Solution. Let

then

U = g',
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Illustrative Example 2. Given y = x^eP^, find— by Leibnitz's Formula.
etc"

Solution, Let u = x^, and v = e^;

du „ dv
then -— = 2x, -— = ae^,

dx dx

dx^ dx^

d'u _ d'v

dx' ' da;'

•^'" = 0, ^ = a3e-,

d"u „ d»!)— = 0, — = a"e»^.

Substituting in (17), we get

— = x2a»e<" + 2na"-ixe<" + n(n — l)a"-2e'«-r = (i'"-2e°^[x2a2 + 2 nox + n(n - 1)1.
dx"

78. Successive differentiation of implicit functions. To illustrate the

process we shall iind —^ from the equation of the hyperbola

Differentiating with respect to a;, as in § 63, p. 69,

dx
or,

QA)
dy^^_
dx a^y

Differentiating again, remembering that ?/ is a function of x,

, a^^-Wxa'^
d y _ dx

dx^ ay

Substituting for -^ its value from (^),
dx

a^-'y - a^-'xC'^

dx' ay ay

But from the given equation, b^x'— ay= a'b'.

d^_ b^

aydx' "^-^
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EXAiyiPLES
Difflerentiate the following

:

2. f{x) = :

~"
/iv(a;) =
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Use Leibnitz's Formula in the next four examples

:

24. y = x^a^. — = oi»(loga)»-2[(a;loga + n)^ - n]
dx"

dx"

26. /(x) = e' sill X. /'"'(») = (v^"e'sin (x + ^V

27. f(0) = cos aS cos 6(?. /<»)(«) = ^±±-^ cos r(a + b) 6* + ^1
(a - 6)»

+ ^^ '- cos
2

'

28. Show that the formulas for acceleration, (14), (15), p. 92, may be written

d^s dH d^y
a =— . aa; =— , a„ = —- •

29. y^^iax.

30. 62^2 ^ ^22,2 = a262.

31. X2 + 2/2 _ ^2_

32. 2/2 + ^ = 1=.

33. 0x2 + 2 te2^ + fjy2 - 1

34. j/2-2xj/ = a2. _ , _
dx2 (2/-x)s' dx8 (y-xf

„, ^ ^ (Pe tan20 — tan^A
35. sec0cos» = c. = -.

d<p^ tan^tf

36. ^ = tan(0 + (?). gg ^_ 2 (5 + Sg^ + 3g^)

d4,« e>

37. Find the second derivative in the following

:

(a) log(u + ») = «-«. (e) 2/S + xS-3ax2/ = 0.

(b) e« + u = e" + i). (f) j,2 _ 2mx2^ + a;2 _ „ ^ 0.

(c)s = l + te'. (g) y = sin(x + 2/).

(d) e» + St - e = 0. (h) e' + y = xy.

iPy__4^
dx^ y^

d2^___6«_
_
d^y _ 36°x

(ix2 yS

d^y _ 24 X

dxs ~ (1 + 23^)='

d2y_ A2-a6
(1x2

^
(Ax + 6j/)3

'

d^y _ a2 dSj/ Sa^x



CHAPTER Vin

MAXIMA AND MINIMA. POINTS OF INFLECTION. CURVE TRACING

79. Introduction. A great many practical problems occur where

we have to deal with functions of such a nature that they have a

greatest (maximum) value or a least (minimum) value,* and it is

very important to know what particular value of the variable gives

such a value of the function. For instance, suppose that it is required

to find the dimensions of the rectangle of greatest area that can be

inscribed in a circle of radius 5 inches. Consider the circle in the

following figure

:

Inscribe any rectangle, as BD.

Let CD = X ; then BE= VlOO — a;^, and the area of the rectangle is

evidently

(1) ' A = x^\^(i-x\

That a rectangle of maximum^ area must exist may be seen as follows

:

Let the base CD (= x) increase to 10 inches (the diameter) ; then

the altitude i>^=VlOO— a;^ will decrease to

zero and the area will, become zero. Now let

the base decrease to zero ; then the altitude

will increase to 10 inches and the area will

again become zero. It is therefore intuitionally

evident that there exists a greatest rectangle.

By a careful study of the figure we might sus-

pect that when the rectangle becomes a square

its area would be the greatest, but this would at best be mere guess-

work. A better way would evidently be to plot the graph of the

function (1) and note its behavior. To aid us in drawing the graph

of (1), we observe that

(a) from the na.ture of the problem it is evident that x and A must

both be positive ; and

(b) the values, of x range from zero to 10 iaclusive.

* There may be more than one of each, as illustrated on p. 109.

103
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Now construct a table of values and draw the graph.

What do we learn from the graph?

X



Solving,

MAXIMA AND MINIMA

a;=5V2.

105

Substituting back, we get DE = VlOO — x"" = 5 V2.

Heiice the rectangle of maximum area inscribed in the circle is a

square of area

A = CD X DE= 5V2 X 5V2 = 50 square inches. The length of

HT is therefore 50.

Take another example. A wooden box is to be built to contain

108 cu. ft. It is to have an open top and a square base. What must

be its dimensions in order that the amount of material required shall

be a minimum ; that is, what dimensions will make the cost the least ?

Let a;=length of side of square base in feet,

and y = height of box.

Since the volume of the box is given, how-

ever, y may be found in terms of x. Thus

volume = x\ = 108 ; .'.«/ =—^ •

ar

We may now express the number (= Jf) of square feet of lumber

required as a function of a; as follows

:

area pf base = a^ sq. ft..

y= 108

and area of four sides = 4 a;?/ = 432

(2)

.V
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What do we learnfrom the graph f

(a) If carefully drawn, we may measure the ordinate correspond-

ing to any length (= x) of the side of the square base and so deter-

mine the number of square feet of lumber required.

(b) There is one horizontal tangent (^BS). The ordinate from its

point of contact T is less than any other ordinate. Hence this dis-

covery: One of the boxes evidently takes less lumber than any of the

others. In other words, we may infer that the function defined by

(2) has a minimum value. Let us find this point on the graph ex-

actly, using our Calculus. Differentiating (2) to get the slope at any

point, we have ^j^ 4.32

dx x^

At the lowest point T the slope will be zero. Hence

that is, when a; = 6 the least amount of lumber will be needed.

Substituting in (2), we see that this is

il/= 108 sq.ft.

The fact that a least value of M exists is also shown by the follow-

ing reasoning. Let the base increase from a very sm.all square to a

very large one. In the former case the height must be very great and

therefore the amount of lumber required will be large. In the latter

case, while the height is small, the base will take a great deal of

lumber. Hence M varies from a large value, grows less, then

increases again to another large value. It follows, then, that the

graph must have a " lowest " point corresponding to the dimensions

which require the least amount of lumber, and therefore would involve

the least cost.

We will now proceed to the treatment in detail of the subject of

maxima and minima.

80. Increasing and decreasing functions.* A function is said to be

increasing when it increases as the variable increases and decreases as

the variable decreases. A function is said to be deereadng when it

decreases as the variable increases and increases as the variable

decreases.

*The proofs given here depend chiefly on geometric intuition. The subject ol Maxima
and Minima will be treated analytically in § 108, p. 1R7.
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The graph of a function indicates plainly whether it is increasing

or decreasing. For instance, consider the function ar° whose graph

(Fig. a) is the locus of the equation

y = a''. a > 1

As we move along the curve from left to right the curve is rising ;

that is, as x increases the function (= y) always increases. Therefore (f

is an increasing function for all values of x.

\

Fig. a Pig. 5

On the other hand, consider the function (a — a;)' whose graph

(Fig. J) is the locus of the equation

y=(o- xy.

Now as we move along the curve from left to right the curve is

faMng ; that is, as x increases, the function (= y") always decreases.

Hence (a — xf is a decreasing function for all

values of x.

That a function may be sometimes increas-

ing and sometimes decreasing is shown by the

graph (Fig. c) of

As we move along the curve from left to right pio. c

the curve rises until we reach the point A, then

it falls from A to B, and to the right of B it is always rising. Hence

(a) from x = —<Ktox — \the. function is increasing

;

(b) from x = l to x=2 the function is decreasing ;

(c) from x=2tox = + oo the function is increasing.
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The student should study the curve carefully in order to note the

behavior of the function vi^hen x = l and x = 2. Evidently A and B

are turning points. At A the function ceases to increase and com-

mences to decrease ; at B, the reverse is true. At A and B the tan-

gent (or curve) is evidently parallel to the axis of X, and therefore

the slope is zero.

81. Tests for determining when a function is increasing and when

decreasing. It is evident from Fig. o that at a point, as C, where a

function ., ^

is increasing, the tangent in general makes an acute angle with the

axis of X; hence

dope = tan t = -^ =f'(p) = <^ positive number.

Similarly, at a point, as D, where a function is decreasing, the tan-

gent in general makes an obtuse angle with the axis of X; therefore

slope = tan t = -=^ =f'(x) = a negative number.*

In order, then, that the function shall change from an increasing to

a decreasing function, or vice versa, it is a necessary and sufficient

condition that the first derivative shall change sign. But this can only

happen for a continuous derivative by passing through the value zero.

Thus in Fig. c, p. 107, as we pass along the curve the derivative

(= slope) changes sign at A and B where it has the value zero. In

general, then, we have at turning points

(18) | = /'(;c) = 0.

The derivative is continuous in nearly all our important applica-

tions, but it is interesting to note the case when the derivative

(= slope) changes sign by passing through ocf This would evidently

*ConTersely, for any given value of x,

iffix) = +, thenf{x) is increasing

;

Vf'(.x) = -, thenf{x) is decreasing.

When/'(x) = 0, we cannot decide without further investigation whether/(a;) is mcreas-
ing or decreasing.

t By this is meant that its reciprocal passes through the value zero.
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happen at the points B, E, G in the following figure, where the

tangents (and curve) are perpendicular to the axis of X. At such

exceptional turning points

l=^«' :co;

or, what amounts to the same thing,

1

/'(^)
= 0.

82. Maximum and minimum values of a function. A maximum

value of a function is one that is greater than any values immediately

preceding or following.

A minimum value of a function is one that is less than any values

immediately preceding or following.

Fig. d

For example, in Fig. c, p. 107, it is clear that the function has a

maximum value MA (= «/ = 2) when x = l, and a minimum value NB
(= y = 1) when a; = 2.

The student should observe that a maximum value is not neces-

sarily the greatest possible value of a function nor a minimum value

the least. For in Fig. c it is seen that the function (= «/) has values

to the right of B that are greater than the maximum MA, and values

to the left of A that are less than the minimum NB.

A function may have several maximum and minimum values.

Suppose that the above figure represents the graph of a function

/(^)-

At B, D, G, I, K the function is a maximum, and at C, E, H, J &

minimum. That some particular minimum value of a function may

be greater than some particular maximum value is shown in the figure,

the minimum values at C and H being greater than the maximum

value at K.
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At the ordinary turning points C, D, H, I, J, K the tangent (or

curve) is parallel to OX; therefore

slope = ^=f'(x)=0.

At the exceptional turning points B, E, G the tangent (or curve) is

perpendicular to OX, giving

ilope. =
-J- =f'{x) = CO.

One of these two conditions is then necessary in order that the

function shall have a maximum or a minimum value. But such a con-

dition is not sufficient ; for at F the slope is zero and at A it is infinite,

and yet the function has neither a maximum nor a minimum value at

either point. It is necessary for us to know, in addition, how the

function behaves in the neighborhood of each point. Thus at the

points of maximum value, B, D, G, I, K, the function changes from an

increasing to a decreasing function, and at the points of minimum value,

C, E, H, J, the function chaTiges from a decreasing to an increasing func-

tion. It therefore follows from § 81 that at maximum points

slope =— =/'(«) must change from + to —

,

and at minimum points

slope = —^ = f'(x) must change from — to +

when we move along the curve from left to right.

At such points as' A and F where the slope is zero or infinite, but

which are neither maodmum nor minimum, points,

slope = —^ =f(x) does not change sign.

We may then state the conditions ingeaeMiS'fcr maximum and

minimum values oif(x) for certaia-V^niesof the vljriable as follows:

(19) f(x) is a maximum if f<{x) = 0, and f'{x) Sjianges from +
to-.

(20) /(Jf) is a minimum if /'(jr) = 0, and /'(at) ch^ges from -
to +

.

The values of the variable at the turning points of a fVnction are

called critical values ; thus x = l and x=2 are the critical, values of
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the variable for the function whose graph is shown in Fig. c, p. 107.

The critical values at turning points where the tangent is parallel to

OX are evidently found by placing the first derivative equal to zero

and solving for real values of x, just as under § 64, p. 73.*

To determine the sign of the first derivative at points near a par-

'tieulac turning point, substitute in it, first, a value of the variable just

a little less than the corresponding critical value, and then one a

little greaterJ If the first gives + (as at L, Fig. d, p. 109) and the

second — (as at Jf), then the function (= y) has a maximum value in

that interval (as at Z).

If the first gives — (as at P) and the second + (as at iV), then the

function (= y') has a minimum value in that interval (as at C).

If the sign is the same in both cases (as at Q and iJ), then the

function (= y) has neither a maximum nor a minimum value in that

interval (as at F^.t

We shall now summarize our results into a compact working rule.

83. First method for examining a function for maximum and mini-

mum values. Working rule.

First Step. Find the first derivative of the function.

Second Step. Set the first derivative equal to zero § and solve the

resulting equation for real roots in order to find the critical values of the

variable.

Third Step. Write the derivative in factor form ; if it is algebraic,

write it in linear form.

FouETH Step. Considering one critical value at a time, test the first

derivative, first for a value a trifle less and then for a value a trifle greater

than the critical value. If the sign of the derivative is first+ and then —

,

the function has a maximum valuefor that particular critical value of the

variable ; but if the reverse is true, then it has a minimum value. If the

sign does not change, the function has neither.

* Similarly, if we wish to examine a function at exceptional turning points where the tan-

gent is perpendicular to OX, we set the reciprocal of the first derivative equal to zero and
solve to find critical values.

t In this connection the term " little less," or " trifle less," means any value between the

next smaller root (critical value) and the one under consideration ; and the term " little

greater," or " trifle greater," means any value between the root under consideration and
the next larger one.

t A similar discussion will evidently hold for the exceptional turning points B, E, and A
respectively.

I When the first derivative becomes infinite for a certain value of the independent vari-

able, then the function should be examined for such a critical value of the variable, for it

may give maximum or minimum values, as at B, E, or A (Fig. d, p. 109) . See footnote on

p. 108.
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In the problem worked out on p. 104 we showed by means of the

graph of the function

that the rectangle of maximum area inscribed in a circle of radius

5 inches contained 50 square inches. This may now be proved ana-

lytically as follows by applying the above rule.

Solution. f(x) = X VlOO - x^

^,, , 100-2x2
First step. / (x)

:

VlOO - x2

100 — 2x2
Second step. —^=^= = 0,

VlOO - x2

X = 5V2,

which is the critical value. Only the positive sign of the radical is taken, since, from

the nature of the problem, the negative sign has no meaning.

Tkirastep.
^.(^^^2(5V2-xK5V2 + x)_

V(10~- X) (10 + X)

Fourth step. When x < 5 Vi, f'{x) =
^ '^'^'>^~^) = +

.

V(+)(+)

Whenx>5V2, /'(x) = -^^^Mi]= = -.
V(+)(+)

Since the sign of the first derivative changes from + to — at x = 5 V2, the function

has a maximum value

/(5V2) = 5V2.5V2 = 50. Ans.

84. Second method for examining a function for maximum and mini-

mum values. From (19), p. 110, it is clear that in the vicinity of a

maximum value of /(a), in passing along the graph from left to right,

/'(a;) changes from + to to —

.

^ Hence /'(a;) is a decreasing function, and by § 81

we know that its derivative, i.e. the second deriv-

^F ative [=/"(2;)] of the function itself, is negative

or zero.

Sunilarly, we have, from (20), p. 110, that in the vicinity of a

minimum value of /(a;)

/'(a;) changes from ~ to to +.

Hence /'(a;) is an increasing function and by § 81 it follows that

/"(a;) is positive or zero.
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The student should observe that/"(2;) is positive not only at mini-

mum points (as at A) but also at points such as P. For, as a point

passes through P in moving from left to right,

slope= tan T=
-f-

=f'Qc) is an increasingfunction.

At such a point the curve is said to be concave

upwards.

Similarly, /"(«) is negative not only at maximum points (as at JS)

but also at points such as Q. For, as a point passes through Q,

dtt
slope = tan t = -r^ =/'(«) is a decreasing function.

At such a point the curve is said to be concave downwards.*

We may then state the(^fficieirr]bonditions for maximum and mini-

mum values oifCx) for certain values of the variable as foUovs^s

:

(21) f(x') is a maximum ii/'(jr) = and/"(jr) = a negative number.

(22) f(x) is a minimum if /'(x) = and /"(jr) = a positive number.

Following is the corresponding working rule.

First Step. Find the first derivative of the function.

Second Step. Set the first derivative equal to zero and solve the result-

ing equationfor(^e^^oots in order to find the critical values of the variable.

Third Step. Find the second derivative.

Fourth Step. Substitute each critical value for the variable in the

second derivative. If the result is negative, then the function is a maximum

for that critical value; if the result is positive, the function is a minimum.

When /"(a;) = 0, or does not exist, the above process fails, although

there may even then be a maximum or a minimum ; in that case the

first method given in the last section still holds, being fundamental.

Usually this second method does apply, and when the process of find-

ing the second derivative is not too long or tedious, it is generally the

shortest method.

Let us now apply the above rule to test analytically the function

X

found in the example worked out on p. 105.

' * At a point where the curve is concave upwards we sometimes say that the curve has a

positive bending, and where it is concave downwards a negative bending.
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Solution.
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(c) To the resulting function of a single variable apply one of our two

rules for finding maximum and minimum values.

(d) In practical problems it is usually easy to tell which critical value

will give a maximum and which a minimum value, so it is not always

necessary to apply the fourth step of our rules.

(e) Draw the graph of thefunction (p. 104) in order to check the work

PROBLEMS

1. It is desired to make an open-top box of greatest possible volume from a sqviare

piece of tin whose side is a, by cutting equal squares out of the corners and then fold-

ing up the tin to form the sides. What should be the length of a side of the squares
cut out ?

Solution. Let x = side of small square = depth of box
;

then a — 2x = side of square forming bottom of box,

and volume is V= {a— 2xYx;

which is the function to be made a maximum by varying »;

Applying rule,

dV
First step. — = (a -2x)2 — 4x (a - 2x) = a^ _ 8 ax + 12x2.

dx

Second step. Solvins,' a- — Sax -\- 12x^ = gives critical values x = - and —

.

°
2 6

It is evident from the figure that z = - must give a minimum, for then all the tin

would be cut away, leaving no material out of which to make a box. By the usual

test, X = - is found to give a maximum volume Hence the side of the square to

be cut out is one sixth of the side of the given square.

The drawing of the graph of the function in this and the following problems is

left to the student.

2. Assuming that the strength of a beam with rectangular cross section varies

directly as the breadth and as the square of the depth, what are the dimensions of

the strongest beam that can be sawed out of a round log whose diameter is d ?

Solution. If X = breadth and y = depth, then the beam will have

maximum strength when the function xy^ is a maximum. From the

figure, y^ = d^ — x^ ; hence we should test the function

f(x) = x{d^-x^).

First step. f'{x)=-2x'' + d^-x' = d^-3x^.

Second step, d^ — 3x^ = 0. .: x = = critical value which gives a maximum.

Therefore, if the beam is cut so that

depth = Vf of diameter of log,

and breadth ^V^^ of diameter of log,

the beam will have maximum strength.
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3. What is the width of the rectangle of maximum area that can be inscribed in

a given segment OAA' of a parabola ?

Hint. If OC=h, JBC=h-x and FP'= 2 y ; therefore the area

of rectangle FDD'P' is

But since P lies on the parabola y''=2px, the function to he

tested is

2(ft-a;)V2pi.
Ana. Width = I A.

4. Find the altitude of the cone of maximum volume that can be inscribed in a

sphere of radius r.

Hint. Volume of cone = i irx^y. Batx^= BC x CD=y (2r- y) ;
there-

tore the function to be tested is

f(.y) = ~yH2r-y).

Ans. Altitude of cone = ^r.

5. Find the altitude of the cylinder of maximum volume that can be inscribed in

a given right cone.

Hint. Let ^IC- ;• and BC = /i,. Volume of cylinder = Tra:^?/.

But from similar triangles ABC and BBG

I r:x::h:h-y.

Hence the function to be tested is

r (h - ?/)

h

"^ Ans. Altitude = J ft.

6. Divide a into two parts such that their product is a maximum.
Ans. Each part = -

7. Divide 10 into two such parts that the sum of the double of one and square of

the other may be a minimum. Ans. 9 and 1.

8. Find the number that exceeds its square by the greatest possible quantity.

Ans. \.

9. What number added to its reciprocal gives the least possible sum ? Ans. 1.

10. Assuming that the stiffness of a beam of rectangular cross section varies directly

as the breadth and the cube of the depth, what must be the breadth of the stiffest beam

that can be cut from a log 16 inches in diameter ? Ans. Breadth = 8 inches.

11. A water tank is to be constructed with a square base and open top, and is to

hold 64 cubic yards. If the cost of the sides is SI a square yard, and of the bottom

$2 a square yard, what are the dimensions when the cost is a minimum 1 What is

the minimum cost ? Ans. Side of base = 4 yd., height = 4 yd., cost $96.

^ 12. A rectangular tract of land is to be bought for the purpose of laying out a

quarter-mile track with straightaway sides and semicircular ends. In addition a

strip 35 yards wide along each straightaway is to be bought for grand stands, training

quarters, etc. If the land costs •'?200 an acre, what will be the maximum cost of

the land required ? ^l„s. $856.
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13. A torpedo boat is anchored 9 miles from the nearest point of a beach, and it is

desired to send a messenger in the shortest possible time to a military camp situated

15 miles from that point along the shore. If he can walk 5 miles an hour but row only

4 miles an hour, required the place he must land. Ans. 3 miles from the camp.

14. A gas holder is a cylindrical vessel closed at the top and open at the bottom,

where it sinks into the water. "What should be its proportions for a given volume to

require the least material (this would also give least weight) ?

Ans. Diameter = double the height.

15. What should be the dimensions and weight of a gas holder of 8,000,000 cubic

feet capacity, built in the most economical manner out of sheet iron -j^j of an inch

thick and weighing 2J lb. per sq. ft. ?

Ans. Height = 137 ft., diameter = 273 ft., weight = 220 tons.

^ 16." A sheet of paper is to contain 18 sq. in. of printed matter. The margins at the top

and bottom are to be 2 inches each and at the sides 1 inch each. Determine the dimen-

sions of the sheet which will .require the least amount of paper. Ans. 5 in. by 10 in.

*17. A paper-box manufacturer has in stock a quantity of strawboard 30 inches by
14 inches. Out of this material he wishes to make open-top boxes by cutting equal squares

out of each corner and then folding up to form the sides. Find the side of the square

that should be cut out in order to give the boxes maximum volume. Ans. 3 inches.

18. A roofer wishes to make an open gutter of maximum
capacity whose bottom and sides are each 4 inches wide and

whose sides have the same slope. What should be the width

across the top ? Ans. 8 inches.

19. Assuming that the energy expended in driving a steamboat through the water

varies as the cube of her velocity, find her most economical rate per hour when steam-

ing against a current running c miles per hour.

Hint. Let v = most economical speed

;

then av^ = energy expended each hour, a being a constant depending upon the partic-

ular conditions,

and v-c= actual distance advanced per hour.

Hence -^^ is the energy expended per mile of distance advanced, and it is therefore the

function whose minimum is wanted. . _ s „

20. Prove that a conical tent of a given capacity will require the least amount of

canvas when the height is V2 times the radius of the base. Show that when the caayas

is laid out flat it will be a circle with a sector of 152° 9' cut out. A bell tent 10 ft.

high should then have a base of diameter 14 ft. and would require 272 sq. ft. of canvas.

21. A cylindrical steam boiler is to be constructed having a capacity of 1000 cu. ft.

The material for the side costs S2 a square foot, and for the ends $3 a square foot.

Find radius when the cost is the least. , 10 ^^

22. In the corner of a field bounded by two perpendicular roads a spring is situated

6 rods from one road and 8 rods from the other. How should a straight road be run

by this spring and across the corner so as to cut off as little of the field as possible ?

Ans. 12 and 16 rods from comer.

What would be the length of the shortest road that could be run across ?

.4ns. (6^-1- 8^)'"roda
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23. Show that a square is the rectangle of maximum perimeter that can be inscribed

in a given circle.

24. ' Two poles of height a and 6 feet are standing upriglit and are c feet apart. Find

the point on the line joining their bases such that the sum of the squares of the distances

from this point to the tops of the poles is a minimum. Ans. Midway between the poles.

AYhen will the sum of these distances be a minimum ?

25. A conical tank with open top is to be built to contain V cubic feet. Determine

the shape if the material used is a minimum.

26. An isosceles triangle has a base 12 in. long and altitude 10 in. Find the rec-

tangle of maximum area that can be inscribed in it, one side of the rectangle coincid-

ing with the base of the triangle.

27. Divide the number 4 into two such parts that the sum of the cube of one part

and three times the square of the other shall have a maximum value.

28. Divide the number a into two parts such that the product of one part by the

fourth power of the other part shall be a maximum.

29. A can buoy in the form of a double cone is to be made from two equal circular

iron plates of radius r. Find the radius of the base of the cone when the buoy has the

greatest displacement (maximum volume). Ans. rVf.

30. Into a full conical wineglass of depth a and generating angle a there is care-

fully dropped a sphere of such size as to cause the greatest overflow. Show that the

radius of the sphere is d gjn a

sin a + cos g a

31. A wall 27 ft. high is 8 ft. from a house. Find the length of the shortest ladder that

vrill reach the house if one end rests on the ground outside of the wall. Atis. 18 Vl3.

32. A vessel is anchored 3 miles offshore, and opposite a point 5 miles further

along the shore another vessel is anchored 9 miles from the shore. A boat from the

first vessel is to land a passenger on the shore and then proceed to the other vessel.

"What is the shortest course of the boat ? Ans. 13 miles.

33. A steel girder 25 ft. long is moved on rollers along a passageway 12.8 ft. wide

and into a corridor at right angles to the passageway. Neglecting the width of the

girder, how wide must the corridor be ? Ans. 5.4 ft.

34. A miner wishes to dig a tunnel from a point A to a, point B 300 feet below

and 500 feet to the east of A. Below the level of A it is bed rock and aboveA is soft

earth. If the cost of tunneling through earth is SI and through rock S3 per linear foot,

find the minimum cost of a tunnel. Ans. S1348.53.

35. A carpenter has 108 sq. ft. of lumber with which to build a box with a square

base and open top. Find the dimensions of the largest possible box he can make.

Ans. 6x6x3.
36. Find the right triangle of maximum area that can be constructed on a line of

length h as hypotenuse. ft

Ans. —= = length of both legs.

V2
37. What is the isosceles triangle of maximum area that can be inscribed in a

given circle ? Ans. An equilateral triangle.

38. Find the altitude of the maximum rectangle that can be inscribed in a right

triangle with base b and altitude h.
"

^
Ans. Altitude = - •
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39. Find the dimensions of the rectangle of maximum area that can be inscribed

in the ellipse Vhfl + a^y^ = a^l^. Ans. a V2 and 6 V2 ; area = 2 ab.

40. Find the altitude of the right cylinder of maximum volume that can be inscribed

in a sphere of radius r. 2 r
Ans. Altitude of cylinder =

Vi
41. Find the altitude of the right cylinder of maximum convex (curved) surface

that can be inscribed in a given sphere. Ans. Altitude of cylinder =,r V2.

42. What are the dimensions of the right hexagonal prism of minimum surface

whose volume is 36 cubic feet ? A-ns. Altitude = 2 V3 ; side of hexagon = 2.

• 43. Find the altitude of the right cone of minimum volume circumscribed about a

given sphere. Ans. Altitude = 4r, and volume = 2 x vol. of sphere.

44. A right cone of maximum volume is inscribed in a given right cone, the vertex

of the inside cone being at the center of the base of the given cone. Show that the

altitude of the inside cone is one third the altitude of the given cone.

45. Given a point on the axis of the parabola v^ = 2px at a distance a from the

vertex ; find the abscissa of the point of the curve nearest to it. Ans. x = a — p.

46. What is the length, of the shortest line that can be drawn tangent to the ellipse

Vx^ + aV = a,^^ and meeting the coordinate axes ? Ans. a + b.

47. A Norman windovT consists of a rectangle surmounted by a semicircle. Given

the perimeter, required the height and breadth of the window when the quantity of

light admitted is a maximum. Ans. Radius of circle = height of rectangle.

48. A tapestry 7 feet in height is hung on a wall so that its lower edge is 9 feet

above an observer's eye. At what distance .from the wall should he stand in order to

obtain the most favorable view ? Ans. 12 feet.

Hint. The vertical angle subtended by the tapestry in the eye of the observer must be
at a maximum.

49. What are the most economical proportions of a tin can which sliall have a

given capacity, making allowance for waste ?

2 Vs
Ans. Height = x diameter of base.

IT

Hint. There is no waste In cutting out tin for the side of the can,

but for top and bottom a hexagon of tin circumscribing the circular

pieces required is used up.

Note 1. If no allowance is made for waste, then height = diameter.

Note 2. We know that the shape of a bee cell is hexagonal, giving a certain

capacity for honey with the greatest possible economy of wax.

50. An open cylindrical trough is constructed by bending a given sheet of tin of

breadth 2 a. Find the radius of the cylinder of which the trough forms a, part when

the capacity of the trough is a maximum.
2 a

Ans. Rad. =— ; i.e. it must be bent in the form of a semicircle.
IT

51. A weight Wis to be raised by means of a lever with the force F at one end and

the point of support at the other. If the weight is suspended from a point at a distance

a from the point of support, and the weight of the beam is w pounds

^ ^ J. per linear foot, what should be the length of the lever in order that

w/M/MJM/MMm'///M tiie force required to lift it shall be a minimum ? r—777

Ji Ans. X = -*/ feet.
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52. An electric arc light is to be placed directly over the center of a circular plot

of grass 100 feet in diameter. Assuming that the intensity of light varies directly as

the sine of the angle under which it strikes an illuminated surface, and inversely

as the square of its distance from the surface, how high should the light be hung

in order that the best possible light shall fall on a walk along the

circumference of the plot? ^ ^'^ * +
U3.715. — leet.

V2
53. The lower corner of a leaf, whose width is a, is folded over so

as just to reach the inner edge of the page, (a) Find the width of the

part folded over when the length of the crease is a minimum, (b) Find

the width when the area folded over is a minimum. Ans. (a)fa;(b)Ja.

54. A rectangular stockade is to be built which must have a, certain area. If a

stone wall already constructed is available for one of the sides, find the dimensions

which would make the cost of construction the least.

Ans. Side parallel to wall = twice the length of each end.

55. A cow is tethered by a perfectly smooth rope, a

slip noose in the rope being thrown over a large square

post. If the cow pulls the rope taut in the direction

shown in the figure, at what angle will the rope leave

the post ? Ans. 30°.

56. When the resistance of air is taken into account, the inclination of a pendulum
to the vertical may be given by the formula

d = ae- *' cos (nt + e)

.

Show that the greatest elongations occur at equal intervals — of time.
n

57. It is required to measure a certain unknown magnitude x with precision.

Suppose that n equally careful observations of the magnitude are made, giving the

results „ „ „ . . . „

The errors of these observations are evidently

X— ttj, X— flji * — "^si
••. x—a„,

some of which are positive and some negative.

It has been agreed that the most probable value of x is such that it renders the

sum of the squares of the errors, namely

(X - ai)2 + (X - 02)2 + (X - ag)^ + . . . + (x _ a„)2,

a minimum. Show that this gives the arithmetical mean of the observations as the

most probable value of x.

58. The bending moment at B of a beam of length I, uniformly
loaded, is given by the formula

M = i wlx — i wx^,

where w = load per unit length. Show that the maximum bending moment is at the

center of the beam.

59. If the total waste per mile in an electric conductor is

r
where c = current in amperes, r = resistance in ohms per mile, and t = a constant
depending on the interest on the investment and the depreciation of the plant, what
is the relation between c, r, and t when the waste is a minimum ? Ans. cr = t.



MAXIMA AND MIli^IMA 121

60. A submarine telegraph cable consists of a core of copper wires with a covering

made of nonconducting material. If x denote the ratio of the radius of the core to the

'thickness of the covering, it is known that the speed of signaling varies"as

x^ log - •

X
1

Show that the greatest speed is attained when x = ~p
ve

61. Assuming that the power given out by a voltaic cell is given by the formula

(r + Rf

where E = constant electromotive force, r = constant internal resistance, B = exter-

nal resistance, prove that P is a maximum when r = B.

62. The force exerted by a circular electric current of radius a qn a small magnet

whose axis coincides with the axis of the circle varies as

X

{a? + x2)t

where x = distance of magnet from plane of circle. Prove that the force is a maxi-

mum when a; = - •

2

63. We have two sources of heat at A and B with intensities a and 6 respectively.

The total intensity of heat at a distance of x from A is given by the formula

Show that the temperature at P will be the lowest when %-_-.«--lJ- a «'

(Z — X _ v'fe

that is, the distances BP and AP have the same ratio as the cube roots of the corre-

sponding heat intensities. The distance of P from A is

64. The range OX of a projectile in a vacuum is given by the formula

v^ sin 2
.

P R

^'i \ where u^ = initial velocity, g = acceleration due to grav-

-^ ity, = angle of projection with the horizontal. Find the

angle of projection which gives the greatest range for a given initial velocity.

Ans. = 48°.

65. The total time of flight of the projectile in the last problem is given by the

formula

^ _ 2 ti, sm
~

g

At what angle should it be projected in order to make the time of flight a maximum ?

Ans. = 90°.
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66. The time it takes a ball to roll down an inclined plane AB is given by the

foniiula —
\gs\n%(t>

Neglecting friction, etc., what must be the value of to make the

quickest descent ? Ans.
<t>
= 45°.

67. Examine the function (x — l)2(x + l)^ for maximum and minimum values.

Use the first method, p. 111.

Solution. f(x) = (X - 1)2 (x + 1)'.

First step. f'(x) = 2(x - l)(x + 1)3 + 3(x - l)Hx + 1)" = (x - l)(x + l)2{5x - 1).

Second step, (x - 1) (x + 1)^ (5 x - 1) = 0,

X = 1, — 1, J, which are critical values.

Third step. f'(x) = 5 (x - 1) (x + 1)^ (x - i)

.

Fourth step. Examine first for critical value x = 1 (C in

^S^^^)- whenx<l,/'(x) = 5(-)(+)2(+)=-.

Whenx>l,/'(x) = 5(+)(+)2(+)= +.

Therefore, when x = 1 the function has a minimum value/(l)= (= ordinate of C).

Examine now for the critical value x = ^ (B in figure).

Whenx<i,/'(x) = 5(-)(+)2(-)= +
Whenx>J,/'(x) = 5(-)(+)2(+)=-.

Therefore, when x = J the function has a maximum value /(J) = 1.11 (= ordinate

of B).

Examine lastly for the critical value x =— 1 (A in figure).

Whenx<-l,/'(x) = 5(-)(-)2(-)= +.

Whenx>-l,/'(x) = 5(-)(+)2(-)=+.

Therefore, when x = — 1 the function has neither a maximum nor a minimum value.

68. Examine the function a — b(x — c)' for maxima and minima.

Solution. /(x) = (X — 6 (x — c)*.

f{x)= -
3 (x - c)*

Since x = c is a critical value for which /'(x) = oo, but for

which /(x) is not infinite, let us test the function for maximum
and minimum values when x = c.

When X < c, /'(x) = +

.

When X > c, /'(x) = —

.

Hence, when x = c = OM the function has a maximum value /(c) :

Examine tlie following functions for maximum and minimum values

:

69. (x — 3)2(x — 2). Ans. x = J, gives max. = ^7

;

X = 3, gives min. = 0.

70 (x - 1)S (x - 2)2. X = f ,
gives max. = .03456

;

X = 2, gives min. =
;

X = 1, gives neither.

:MP.
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71. (x- 4)5(2 + 2)*. Ans. x =- 2, givos max.;

^ = h gives it|in.;

S = 4, gives neither.

72. (x-2)^{2x + l)K a; =- J, gives max.;

X = }J, gives min.;

a; = 2, gives neither.

73. (X + l)*(x - 5)2. x=i, gives max.;

s = — 1 and 5, give min.

74. (2x — a)*(x — a)f. x =— , gives max.;
o

X = a, gives min.;

X = - , gives neither.

75. x(x — 1)2 (x + 1)'. a; = J, gives max.;

X = 1 and — 1^, give min.;

X =— 1, gives neither.

76. X (a + x)'' (a — x)'. x=— a and -, give max.;
o

a
X = , gives min.

;

X = a, gives neither.

77. 6 + c (x — a)^. X = a, gives min. = 6.

78. a — 6(x — c)^. • No max. or min.

x2 _ 7 X + 6 • . .

79. X = 4, gives max.;
x-10

(a — x)^

x'^

X = 16, gives min.

a
80. i '— x = -, gives mm.

a— 2x 4

1 T. 4- x^
81 t— ^ . X = J, gives min.

1 + X — s^

gg
xg-3x + 2_ x=V2, givesmin. = 12V2-17;
x^ + Sx + 2 r- r

X = — V2, givesmax. =— 12 V2 — 17;

X =— 1, — 2, give neitliev.

(x — a) (6 — x) 2 a6 . (a - 6)^

83_ ^ •'

'

ZL. x = . gives max. = -^^ '—•

+ 6 4ab

84.— + -- a; =—--, gives mm.

;

X a — X <!•

a'
-, gives max.

a + 6
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85. Examine x^ — 3x^ — 9x + 5 for maxima and minima. Use the second method,

p. 113.

Solution. /(x) = x^ — 3 x^ — 9 X + 5.

First step. /'(x) = 3 x^ - 6 x - 9.

SecOTid step. .
3x2-6x-9 = 0;

hence the critical values are x = — 1 and 3.

Third step. f"(x) = Qx-6.

Fourth step. /"(- 1) =- 12.

.-. /(_ 1) = 10 = (ordinate of A) = maximum value,

/"(3) = + 12. .-. /(3) = — 22 (ordinate of B) = minimum value.

86. Examine sin^x cosx for maximum and minimum values.

Solution. f(x) = sin^x cosx.

First step, /'(x) = 2 sinx cos^x — sin^x. y
Second step. 2 sin x cos^ x — sin' x = ;

hence the critical values are x = n-Tr

and x = TiTT ± arc tan V2 = tmt ± or.

Third step. f"{^) = cos x (2 cos^ x — 7 sin^ x)

.

Fourth step. /"(O) = + • /(O) = = minimum value at 0.

/"(•jr) = — . . . /(tt) = = maximum value at C.

f"(a) = — . .'. /(or) = maximum value at A.

f"{tr — or) = + . .•. /(-n- — or) = minimum value at B, etc.

Examine the following functions for maximum and minimum values.

Ans. X = — 1, gives max. = 45

;

X = 3, gives min. =—51.

X = 1, gives max. = — 3

;

F X

87. 3x8-9x2-27x + 30.

88. 2 x' - 21 x2 + 36 X - 20.

X = 6, gives mill. 128.

89.
X''

3

90, 2x3.

2x2 + 3a; + i.

-15x2 + 36x + 10.

91. x3-9x2 + 15x-3.

92. x' - 3x2 + 6x + 10.

93. x5- 5x« + 5x^ + 1.

94. 3x5 _ 125 x" + 2160X.

95. 2x'-3x2-12.r + 4.

96. 2 x' - 21x2 + 3(j3. _ 20.

97. X*- 2x2 + 10,

X = 1, gives max. = f ;

X = 3, gives min. = 1.

X = 2, gives max. = 38

;

X = 3, gives min. = 37,

X = 1, gives max. = 4;

X = 5, gives min. =— 28,

No max, or min.

X = 1, gives max. = 2-,

X = 3, gives min. =— 26

;

X = 0, gives neither.

X = — 4 and 3, give max.;

X =— 3 and 4, give min,

98, x*-4.

99, x3 - 8.

100, 4-x''.
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101, sina;(l + cosa;). Ans. a; = 2n7r + -, give max. = -VS;
3 ' 4

x = 2mr , give min. = VS;
3 4

X = nir, give neither.

x = e, gives min. = e

;

x=l, gives neither.

103. log cosx. x = 2mr, gives max.

104. ae*^ + 6e- »».
a; = 1 log J^ , gives min. = 2 V^.

«; \a
105. x''. X = -, gives min.

106. x=^. X = e, gives max.

107. cos X + sin X. x = - , gives max. = V2 •

4
'

Sir , /-
X = —— , gives mm. = — v2.

4

108. sin 2 X — X. x = - , gives max.

;

X = , gives mm.
6

109. X + tan x. No max. or min.

110. sin»x cosx. x = jitt + -, gives max. = -?-V3-
3 '^ 16 '

TT . . 3 /-
x = mr , gives mm. = V3

;

3 "^ 16 '

X = nir, gives neitlier.

X = cot X, gives max.

X = arc sin \, gives max.;

z = — , gives mm.

X = — , gives max.
4

s = — , gives max.
4

X = cosx, gives max.;

x=— cosx, gives min.

85. Points of inflection. Definition. Points of inflectiori sepa,va.te urcfi

concave upwards from arcs concave downwards.* Thus, if a curve

1/ =f(x) changes (as at i?) from concave upwards (as at A") to con-

cave downwards (as at C), or the reverse, then such a point as B is

called a point of inflection.

* Points of inflection may also be defined as points where

(a) —h: = and -—I changes sign,
Ox^ 0,7?

cPx (^X
or (b) —^ = Oand —- changes sign.

Oy- ay'-

111.
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From the discussion of § 84 it follows at once that at A, fix) = +,

and at C, f'/(x) = — . In order to change sign it must pass through

the value zero ; * hence we have

(23) at points of inflection, f\x) = 0.

Solving the equation resulting from (23) gives the abscissas of the

points of inflection. To determine the direction of curving or direc-

tion of bending in the vicinity of a point of in-

flection, test /"(a;) for values of x, first a trifle

less and then a trifle greater than the abscissa

at that point.

lif'Qjc) changes sign, we have a point of in-

flection, and the signs obtained determine if the curve is concave

upwards or concave downwards in the neighborhood of each point

of inflection.

The student should observe that near a point where the curve is

concave upwards (as at A) the curve lies above the tangent, and at

a point where the curve is concave downwards (as at C) the curve

lies below the tangent. At a point of inflection (as at -B) the tangent

evidently crosses the curve.

Following is a rule for finding points of inflection of the curve whose

equation is y =f(x'). This rule includes also directions for examining

the direction of curvature of the curve in the neighborhood of each

point of inflection.

First Step. Find f" (x).

Second Step. Setf"(x)= 0, and solve the resulting equation for real

roots.

Third Step. Write f'Qc) in factor form.

Fourth Step. Test f"(x) for values of x, first a trifle less and then a

trifle greater than each root found in the second step. If f"(x') changes

sign, we have a point of inflection.

When f"(x) = +, the curve is concave upwards vix--

1

Whenf"(x) = —, the curve is concave downwards -^"ZT^.

* It is assumed that /'(a:) and /"(a) are continuous. The solution of Ex. 2, p. 127, shows
how to discuss a case where /'(a:) and /"(a;) are both infinite. Evidently salient points (see

p. 258) are excluded, since at such points /'(a;) is discontinuous.

t This may be easily remembered if we say that a vessel shaped like the curve where
it is concave upwards will hold (+) water, and where it is concave downwards will spill

(-) water.
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EXAMPLES

Examine the following curves for points of inflection and direction of bending.

1. y = 3x*- 4x3 + 1

Solution.

First step.

Second step.

/(x) = 3x*- 4x8 + 1.

/"(x) = 36x2- 24 X. '

36x2-24x =
X = I and X = 0, critical values.

/"(x) = 36x(x-|).Third step.

Fourth step. When x < 0, f"(x) = + ; and when x > 0, f"(z)— —

.

.-. curve is concave upwards to the left and concave downwards to the right of x

(A in figure)
. -wiien x < |, f"(x) = -; and when x > f , f"{x) = +

.

.-. curve is concave downwards to the left and concave upwards to the right of

X = I (JB in figure)

.

The curve is evidently concave upwards everywhere to the left of A, concave down-

wards betweenA (0, 1) and B (f, J^), and concave upwards everywhere to the right of B.

2. (2/-2)3 = (x-4).

y = 2 + {x — 4)^. ySolution.

First step.
dy 1,-^ = - (x
dx 3^

dx2
9^^'

4)-

4)-

Second step. When x = 4, both first and second derivatives are infinite.

Third step.
d^v d^v

When X <4, —^ — + : but when x > 4, —4 =

dx' dx^

We may therefore conclude that the tangent at (4, 2) is perpendicular to the axis

of X, that to the left of (4, 2) the curve is concave upwards, and to the right of (4, 2)

it is concave downwards. Therefore (4, 2) must be considered a point of inflection.

Z. y = x^. Ans. Concave upwards everywhere.

4- y = 5-

B. y = X?

2x — x2.

.

y = x3-3x2-9x + 9.

y = a + {x — by.

8. ah/ = - ax^ + 2 a'.

9. y = x*.

10. y = x*-12x« + 48x2

11. y = sinx.

50.

Concave downwards everywhere.

Concave downwards to the left and concave up-

wards to the right of (0, 0).

Concave downwards to the left and concave up-

wards to the right of (1, — 2).

Concave downwards to the left and concave up-

wards to the right of (6, a).

Concave downwards to the left and concave up-

wards to the right of (o^) -bi-

concave upwards everywhere.

Concave upwards to the left of x = 2, concave

downwards between x = 2 and x = 4, concave

upwards to the right of x = 4.

Points of inflection are x= nir, n being any integer.
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12. y = tanx. Arts. Points of inflection are x= rvn;n being any integer.

13. Show that no conic section can have a point of inflection.

14. Show that the graphs of e= and log x have no points of inflection.

86. Cuxve tracing. The elementary method of tracing (or plotting)

a curve whose equation is given in rectangular coordinates, and oise

with which the student is already familiar, is to solve its equation for

y (or x), assume arbitrary values of x (or y"), calculate the correspond-

ing values of y (or x), plot the respective points, and draw a smooth

curve through them, the result being an approximation to the required

curve. This process is laborious at best, and in case the equation of

the curve is of a degree higher than the second, the solved form of

such an equation may be unsuitable for the purpose of computation,

or else it may fail altogether, since it is not always possible to solve

the equation for y or x.

The general form of a curve is usually all that is desired, and the

Calculus furnishes us with powerful methods for determining the

shape of a curve with very little computation.

The first derivative gives us the slope of the curve at any point

;

the second derivative determiaes the intervals within which the curve

is concave upward or concave downward, and the points of inflection

separate these intervals ; the maximum points are the high points and

the minimum points are the low points on the curve. As a guide in

his work the student may follow the

Rule for tracing curves. Rectangular coordinates.

First Step. Find the first derivative ; •place it equal to zero ; solving

gives the abscissas of maximum and minimmn points.

Second Step. Find the secmtd derivative; place it equal to zero; solv-

ing gives the abscissas of the points of inflection^

Third Step. Calculate the corresponding ordinates of the points whose

abscissas were found in the first two steps. Calculate as many more points

as may be necessary to give a good idea of the shape of the curve. Fill out

a table such as is shown in the example worked out.

Fourth Step. Plot the points determined and sketch in the curve to

correspond with the results shown in the table.

If the calculated values of the ordinates are large, it is best to

reduce the scale on the T-axis so that the general behavior of the

curve will be shown within the limits of the paper used. Coordinate

plotting paper should be employed.
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EXAMPLES

Trace the following curves, making use of the above rule. Also find the equations

of the tangent and normal at each point of inflection.

\.y =
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8. i/
= a;S_3a;2_9a; + 9.

9. 23/ + x3- 9x + 6 = 0.

10. y = »» - 6z2 _ I6i + 2.

11. y(l + x'') = x.

12. 2/ =

13. V = er'*.

15. y = {x + l)*(a; - 5)2.

a; + 2
16. y = —V-x'

17. y = x'-Sx^-2ix.

18. v = 18 + 36i-3x2_2x8.

19. y = x — 2 cos X.

20. y = Sx-x'.

21. ?/ = a;3_9x2 + 15s -3

22. s2y = 4 + x.

23. 4y = !*- 6x=+ 5.

24. y = ?
x^ + Sa'

25. y = sinz H

27. y = 5x-2z2- Jx3

28.. = 1±^.
2x

29. 2/ = X — 2 sin X.

30. y = log cos X.

31. y = log(l + x2).



CHAPTER IX

DIFFERENTIALS

87. Introduction. Thus far we have represented the derivative of

.y=f(x) by the notation ^^

dx̂
=/'(-)•

We have taken special pains to impress on the student that the

symbol

d̂x

was to be considered not as an ordinary fraction with dy as numerator

and dx as denominator, but as a single symbol denoting the Umit of

the quotient ^y
Air

as Aa; approaches the limit zero.

Problems do occur, however, where it is very convenient to be able

to give a meaning to dx and-cZ?/ separately, and it is especially useful

in applications of the Integral Calculus. How this may be done is

explained in what follows.

88. Definitions. If f'(x) is the derivative of f(x) for a particular

value of X, and Aa; is an arbitrarily chosen increment of x, then the differ-

ential off(x), denoted by the symbol d/Qc}, is defined by the equation

(A) • df(x-)=f'Cx-)AT.

If now /(a-) = X, then /'(a;) = 1, and (^) reduces to

dx = Ax,

showing that when x is the independent variable, the differential of

x(= dx) is identical with Aa;. Hence, if y =/(a;), (A) may in general

be written in the form

(S) dy=r(x)dx* .

y
* On account ol the position which the derivative f'(z) here oconpies, it is sometimes

called the differential coefficient.

The student should observe the important fact that, since dx may be given any arbi-

trary value whatever, dx is independent of x. Hence, dy is a function of two independeiit

variables x and dx.

131
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The differential of a function equals its derivative multiplied hy the

differential of the independent variable.

Let us illustrate what this means geometri-

P'\ cally.

p/\dy Let /'(a;) be the derivative of y=f{oS) at P.

--^f^'!^ Take ia; = J'Q, then

/ M M'X' dy =f'(x) dx = tanT-PQ==^-PQ = QT.

Therefore dy, or df(x), is the increment (= QT^ of the ordinate of

the tangent corresponding to dx*

This gives the following interpretation of the derivative as, a fraction.

If an arbitrarily chosen increment of the independent variable x for

a point P (x, y') on the curve y =f(x) be denoted by dx, then in the

derivative

-^=f'(x) = tanT,
dx

dy denotes the corresponding increment of the ordinate drawn to the

tangent.

89. Infinitesimals. In the Differential Calculus we are usually con-

cerned with the derivative, that is, with the ratio of the differentials

dy and dx. In some applications it is also useful to consider dx as

an infinitesimal (see § 15, p. 13), that is, as a variable whose values

remain numerically small, and which, at some stage of the investiga-

tion, approaches the limit zero. Then by (5), p. 131, and (2), p. 19,

dy is also an infinitesimal.

In problems where several infinitesimals enter we often make use

of the following

Theorem. In problems involving the limit of the ratio of two infinites-

imals, either infinitesimal may be replaced by an infinitesimal so related

to it that the limit of their ratio is unity.

Proof. Let a, /3, a', /3' be infinitesimals so related that

( C) limit - = 1 and limit^ = 1.
^ ^ a /3

* The student should note especially that the differential (= dy) and the increment (= &y)
of the function corresponding to the same value of dx (= Ax) are not in general equal. For,
in the figure, dy = QT, but Ay=QP'.
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We have — = —. — .— identically,

limit -, limit^ Th. II, p. 18
a' p

. 1 . 1. By (C)

aad limit— = limit —
-,

/3 ^'

= limit—
/3'

' cc cc

(D) . limit— = limit -- Q. E. D.

p /3'

Now let us apply this theorem to the two following important limits.

For the independent variable x, we know from the previous section

that Aa; and dx are identical.
\x

Hence their ratio is unity, and also limit — = 1. That is, by the
clx

above theorem,

(^) In the limit of the ratio of Aa; and a second infinitesimal, Ak

mdy- he replaced hy dx.

On the contrary it was shown that, for the dependent variable y, Az/

and dy are in general unequal. But we shall now show, however, that

in this case also Aw
limit =^=1.

dy

Since .
^™^

^ —^=fCx'), we way write
Aa; = Aa; ^

If
=/'(.) + .

where e is an infinitesimal which approaches zero when Aa; = 0.

Clearing of fractions, remembering that Aa; = dx,

. A?/ =f{x) dx + e- Aa;,

or Ay = dy + €- Ax. (B), p. 131

Dividing both sides by Ay,

^ dy ,
Ax

Ay Ay

. limit '^y ^1
' ' Ax = Ay

and hence }^^^r. ^ =1. That is, by the above theorem,
Aa; = dy

(F') In the limit of the ratio ofAy and a second infinitesimal. Ay may

he replaced hy dy.



134 DIFFERENTIAL CALCULUS

90. Derivative of the arc in rectangular coordinates. Let s be the

length* of the arc AP measured from a fixed point A on the curve.^

Q. Denote the increment of « (= arc PQ) by A^.

0^£^y' The definition of the length of arc depends on

yihx', the assumption that, as Q approaches P,

1 I

limit
/5l^2£dZe\i.

If we now apply the theorem on p. 132 to this, we get

((?) In the limit of the ratio of chord PQ and a second infinitesimal,

chord PQ may he replaced hy arc P§(=As).

From the above figure

{H') (chord PQf^ (Aa:)'+ (Az/)^

Dividing through by (Aa;)^, we get

(:'^)-Ht}
Now let Q approach P as a limiting position ; then Aa; = and we

\dx) \dxj

r«i„„» limit /•chord PQ\ limit /As\ ds l

Similarly, if we divide (-H") by (^Ay^ and pass to the limit, we get

(25) ^=aI(^^Vi.&_ WdxV

dy~^\dy)

Also, from the above figure,

a Ax . a Ay
cos a = — , sm p = f

chord P^ chord PQ
Now as Q approaches P as a limiting position ==r, and we get

dx . du
(26) cosr =—

,

sinr =—

.

ds ds

[since from («) limit —-^£-—= limit—= ^, and limit ^ = limit ^' =^ .1
L ahoriPQ As ds chordPQ As dt 1

* Defined in § 209.
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Usmg the notation of differentials, formulas (25) and (26) may be

written

(27)

(28)

ds dx.

dy.

Substituting the value of ds from (27) in (26),

(29) cos r =

.

h(l)'

sin r ==:

.

dx

'+^f]K"'!

An easy way to remember the relations (24)-(26) between the

differentials dx, dy, ds is to note that they are

correctly represented by a right triangle whose

hypotenuse is ds, whose sides are dx and dy,

and whose angle at the base is t. Then

Y

/
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Passing to the limit as A^ diminishes towards zero, we get

'

ds

dd) ^'^W'

(30)
de M'^ \do)

In the notation of differentials this becomes

(31) ds = p'+{'4
-,1
2

These relations between p and the differentials ds, dp, and d6

are correctly represented by a right triangle

Ijjj whose hypotenuse is ds and whose sides are

dp and pd6. Then

"P -^ ds = V(^pddy+(^dpy,

-^ and dividing by d8 gives (30).

Denoting by -yjr the angle between dp and cZs, we get at once

de
tan "^ = p

which is the same as (-4), p. 84.

dp

iLLnsTRATiVE ExAiMPLE 1. Find the differential of tlie arc of tlie circle x^ + y^ = /*.

Solution. Differentiating, -2. =
dx y

To find ds in terms of x we substitute in (27), giving

L yH L y^ J W'\ -vA^iTT^

To find ds in terms of y we substitute in (28), giving

Illustrative Example 2. Eind the differential of the arc of the cardioicl p =
a (1 — cos 9) in terms of 6.

Solution. Differentiating, — = a sin 9.

Substituting in (31), gives

ds = [a2(l - cos^)2 + a? sin^^J^di? = a [2 - 2 cos^J^dS = a r4sin2 -l*d^ = 2 a sin - dj9.

, limit chord PQ _ Uniit As ^ ds

limit sinAS^

By (ff), p. 134

By §22, p. 21

2 31^2
Aff ^^^

limit Ll^osAS limit ?._ limit „;_, A9 2^ n i n R^™ o .j«oo oiA9=o ^9 A9=o 49 -A9=oS™-^
Afl~°

By 39, p. 2, and §22, p. 21
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KXAMPLES

Find the differential of arc in eacli of the following curves :

2. y = ax'.



138 DIFFERENTIAL CALCULUS

Via d(3f) = nx''-''dx.

,-.-, v/mX vdu — udv
VII d{-\= ;

Vila dC^^^^-

VIII d(\og„v') = log„e^ •

IX d(<f)= a" log a (^«.

IX a dCf) = e" dv.

X <;?(«'') = um''~^<^m + log m-m"- £?». .

XI <^(sin t)) = cos V dv.

XII (;?(cos t)) = — sin V dv.

XIII t?(taii v) = sec''w<^w, etc.

XVIII c^Carc sin v) =
,

i etc.

The term "differentiation" also includes the operation of finding

diff-erefftlalsr^

In finding differentials the easiest way is to find the derivative as

usual, and then multiply the result by dx.

~iX,i.v 8TKATIVE^-ExA-MPtE-lv PrndTEEe differential of

X + 3

solution. ay = d (^±1) = ^^^^ + ^^'^^^ + 3) - (x + S)d(x- + 3)

\x2 + 3/ {x^ + 3)2

_ (a' + S)dx - {x + 3)2xdx _ (3-6x-x^)dx~
(x2 + 3)2

~
(x3 + 3)2

Ii.i.usTKATivK Example 2. Find Ay from

62x2 _ a2y2 = a262.

Solution. 2 \fix(ix — 2 (^ydy = 0.

.-.dy = ——dx. Ans.
a?y

Illustrative Exami'le 3. Find dp from

p2 = a2cos2e.

Solution.
_

2 pdp = — a2 sin 2 ^ • 2 dS.

. . dp = — dB.
P

Illustrative Example 4. Find d[arcsin(3 1 — 4t'')].

Solution. d [arc sin (3 1 - 4 1-)] = '^i^'--*'-^) ^ ^"^^
. ^^^

Vl-(3t-4«s)2 Vl-«2
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93. Successive differeatials. As the differential of a function is in

general also a function of the independent variable, we may deal with

its differential. Consider the function

y =f(p)-

d(dy) is called the second differential of y (or of the function) and

is denoted by the symbol ^2

Similarly, the third differential of y, d[d(dyy\, is written

d%
and so on, to the wth differential of y,

d"y.

Since dx, the differential of the mdependent variable, is independ-

ent of X (see footnote, p. 131), it must be treated as a constant when

differentiating with respect to x. Bearing this in mind, we get very

simple relations between successive differentials and successive deriva-

tives. For dy=f'(x)dx,

and d^y=f"(x){dxy,

since dx is regarded as a constant.

Also, d^y=f"'(x)idx~)\

and in general d^y =f'-"\x') (dx)"-

Dividing both sides of each expression by the power of dx occur-

ring on the right, we get our ordinary derivative notation

Powers of an infinitesimal are called infinitesimals of a higher order.

More generally, if for the infinitesimals a and /3,

limit -=0,
a

then /8 is said to be an infinitesimal of a higher order than a.

Illustrative Example 1. Find the third differential of

y = a;5 _ 2 x^ -(- 3 a; — 5.

Solution. dy = (bx* -Qx^ + S)dx,

d2y = (20x=-12x)(dx)2,-

d^y = (mx'^-Vi){dxf. Ans.

Note. This is evidently the third derivative of the function multiplied by the cube

of the differential of the independent variable. Dividing through by (dxf, we get the

third derivative «„
r:-i = 60a;2_i2.



140 DIFFERENTIAL CALCULUS

EXAMPLES

Differentiate the following, using differentials

:

1. y = oa,^ — hj? -It ex + d. Ana. dy = (Z ax^ — ihx +^ c)ix.

2. y = 2x^-3x^ + 6a;-i + 5. dy = {bx^ — ix"^ - 6x-^)dx.

3. y = (a^ — x'^y. dy=—10x {a? — x^ydx.

X
4. y =Vl + x^. dy = ——^^dx.

Vl + a;2

5. y
(1 + a;2)n

6. y = log Vl — K*.

7. y = {e' + er^^.

8. y = e^logs.

e' — e-'
9. s = «

e' + e-'

10. p = tan 4> + sec 0.

11. r = JtanS^ + tan^.

12. /(x) = (loga;)8.

13. 0(i) = -

dy =



CHAPTER X

RATES

94. The derivative considered as the ratio of two rates. Let

be the equation of a curve generated by a moving point P. Its coordi-

nates X and y may then be considered as functions of the time, as

explained iu § 71, p. 91. Differentiating y^

with respect to i, by IIV, we have

(32) ^ = /'(;c)--
dt ^ ''

dt

At any instant the time rate of change ^

of y (or the function) equals its derivative multiplied hy the time rate of

change of the independent variable.

Or, write (32) in the form

dy

(33)

dx ^ -^ dx

dt

The derivative measures the ratio of the time rate of change of y to

that of X.

ds— being the time rate of change of length of arc, we have from

(12), p. 92,

(34)
ds

dt-A^HW
which is the relation indicated by the above figure.

As a guide ia solving rate problems use the following rule

:

FiEST Step. Draw afigure illustrating the problem. Denote by x, y, z,

etc., the quantities which vary with the time.

Second Step. Obtain a relation between the variables involved which

will hold true at any instant.

141
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Third Step. Differentiate with respect to the time.

Fourth Step. Make a list of the given and required quantities.

Fifth Step. Substitute the hnown quantities in the result found by

differentiating (third step), and solve for the unknown.

EXAMPLES

1. A man is walking at the rate of 5 miles per hour towards the foot of a tower

60 ft. high. At what rate is he approaching the top when he is 80 ft. from the foot

of the tower ?

Solntian. Apply the above rule.

First step. Draw the figure. Let x = distance of the man from the foot and y = his

distance from the top of the tower at any instant.

Second step. Since we have a right triangle,

2/Z = a" + 3600.

Third step. Differentiating, we get

„ dy „ dx
2y-^ = 2s— 1 or,

dt dt '

., dy xdx
(A) — = 1 meaning that at any instant whatever

dt y dt

{Eate of change ofy) = (-) {rale of change of'x).

Fourth step. a; = 80, — = 5 miles an hour,
dt

= 6 X 5280 ft. an hour

y = -Vx^ + 3600 dy _ ^

= 100. dJ
~ '

Fifth step. Substituting back in {A),

dy 80— = — X 5 X 5280 ft. per hour
dt 100

= 4 miles per hour. Ans.

2. A point moves on the parabola dy = x^ in such a way that when a; = 6, the

abscissa is increasing at the rate of 2 ft. per second. At what rates are the ordinate

and length of arc increasing at the same instant ?

Solution. First step. Plot the parabola.

Second step. 6y = x^.

Third step.
„dy dx6-i = 2x— , or,
dt dt

'

dy _x dx

'dt~3 '

Tl'

This means that at any point on the parabola

(Rate of change of ordinate) -. -
1 (rote of change of abscissa).
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Fourth step. — =2 ft. per second.
dt

x = 6. ^ = ?
1 dt

y = — =&. — = ?
6 (it

Fifth step. Substituting back in (JB),

dy 6
-- = - X 2 = 4 ft. per second. Ana.
dt Z

Substituting in (34), p. 141,

ds— = V(2)2 + (4)2 = 2 VS ft. per second. Ans.
at

From the first result we note that at the point P (6, 6) the ordinate changes twice

as rapidly as the abscissa.

If we consider th? point P' (— 6, 6) instead, the result is— = — 4 ft. per second, the
dt

minus sign indicating that the ordinate is decreasing as the abscissa increases.

3. A circular plate of metal expands by heat so that its radius increases miiformly

at the rate of .01 inch per second. At what rate is the surface increasing when the

radius is two inches ? •

Solution. Let x = radius and y = area of plate. Then

y = ir'3?.

dv dx
(C) =^ = 27rx—
^ ' dt dt

Thai is, at any instant the area of the plate is increasing in

square inches 2irx times as fast as the radius is increasinj?

in linear inches.
dx dy

X = 2, _ = .01, -^ = 1
' dt dt

Substituting in (C),

— = 27r X 2 X .01 = .04 7rsq. in. per sec. Ans.

4. An arc light is hung 12 ft. directly above a straight horizontal walk on which

a boy 5 ft. in height is walking. How fast is the boy's shadow lengthening when he

is walking away from the light at the rate of 168 ft. per minute ?

Solution. Let x = distance of boy from a point directly

under light X, and y = length of boy's shadow. From the

figure,

y.y + x:: 6:12,

or y = ^x.

T»-i» ^. i. dy 6dx
Diflerentiatine, — =

; .» ._^'
dt 7 dt «r M

i.e. the shadow is lengthening f as fast as the boy is walking, or 120 ft. per minute.

5. In a parabola y^ — 12 x, if x increases uniformly at the rate of 2 in. per second,

at what rate is y increasing when x — 3 in. ? Ans. 2 in. per sec.



ds_

dt"
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22. An elevated car is 40 ft. immediately above a surface car, their tracks inter-

secting at right angles, li the speed of the elevated car is 16 miles per hour and of

the surface car 8 miles per hour, at what rate are the cars separating 5 minutes after

they meet ? Ans. 17.9 miles per hour.

23. One ship v^as sailing south at the rate of 6 miles per hour ; another east at the

rate of 8 miles per hour. At 4 p.m. the second crossed the track of the first where the

first was two hours before
;

(a) how was the distance between the ships changing at

3 P.M. ? (b) how at 5 p.m. ? (c) when was the distance between them not changing ?

.4ns. (a) Diminishing 2.8 miles per hour

;

(b) increasing 8.73 miles per hour
;

(c) 3 : 17 P.M.

24. Assuming the volume of the wood in a tree to be' proportional to the cube of

its diameter, and that the latter increases uniformly year by year when growing,

show that the rate of growth when the diameter is 3 ft. is 36 times as great as when
the diameter is 6 inches.

25. A railroad train is running 15 miles an hour past a station 800 ft. long,

the track having the form of the parabola

y^ = 600 X,

and situated as shown in the figure. If the sun is just rising in the east, find how fast

the shadow S of the locomotive L is moving along the wall of the station at the instant

it reaches the end of the wall.

Solution. y'2 -600 a;.

dx

kNorth

2j^^ = 600
dt dt

dz _ y dy
'

dt
~ 300 dt

'

Substituting this value of — in
dt

ds

Tt'

W
Now

/dsy- ^ /y_ dyV
, (^Y

\dt) \300 dt) \dtj

we get

da

di'
: 15 miles per hour

= 22 ft. per sec.

: 400 and ^ = ?
dt

Substituting back in (D), we get

dy

dt
= 13J ft. per second. Ans.

26. An express train and a balloon start from the same point at the same instant.

The former travels 50 miles an hour and the latter rises at the rate of 10 miles an hour.

How fast are they separating ? ^ns. 61 miles an hour.
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27. A man 6 ft. tall walks away from a lamp-post 10 ft. high at the rate of 4 miles

an hour. How fast does the shadow of his head move ? Arts. 10 miles an hour.

28. The rays of the sun make an angle of 30" with the horizon. A ball is thrown

vertically upward to a height of 64 ft. How fast is the shadow of the ball moving

along the ground just before it strikes the ground ? Ans. 110.8 ft. per sea

29. A ship is anchored in 18 ft. of water. The cable passes over a sheave on the

bow 6 ft. above the surface of the water. If the cable is taken in at the rate of 1 ft.

a second, how fast is the ship moving when there are 30 ft. of cable out ?

Ans. If ft. per sec.

30. A man is hoisting a chest to a window 50 ft. up by means of a block and tackle.

If he pulls in the rope at the rate of 10 ft. a minute while walking away from the

building at the rate of 5 ft. a minute, how fast is the chest rising at the end of the

second minute ? Ans. 10.98 ft. per min.

31. Water flows from a faucet into a hemispherical basin of diameter 14 inches

at the rate of 2 ou. in. per second. How fast is the, water rising (a) when the water

is halfway to the top ? (b) just as it runs over ? (The volume of a spherical segment

= ^ Trr^ A 4- ^ ir ^5, where h = altitude of segment.)

32. Sand is being poured on the ground from the orifice of an elevated pipe, and

forms a pile which has always the shape of a right circular cone whose height is equal

to the radius of the base. If sand is falling at the rate of 6 cu. ft. per sec, how fast

is the height of the pile increasing when the height is 5 ft. ?

33. An aeroplane is 528 ft. directly above an automobile and starts east at the

rate of 20 miles an hour at the same instant the automobile starts east at the rate of

40 miles an hour. How fast are they separating ?

34. A revolving light sending out a bundle of parallel rays is at a distance of ^ a

mile from the shore and makes 1 revolution a minute. Find how fast the light is

traveling along the straight beach when at a distance of 1 mile from the nearest point

of the shore. Ans. 15.7 miles per min.

35. A kite is 150 ft. high and 200 ft. of string are out. If the kite starts drifting

away horizontally at the rate of 4 miles an hour, how fast is the string being paid out

at the start ? Ans. 2.64 miles an hour.

36. A solution is poured into a conical filter of base radius 6 cm. and height 24 cm.

at the rate of 2 cu. cm. a second, and filters out at the rate of 1 cu. cm. a second.

How fast is the level of the solution rising when (a) one third of the way up ? (b) at

the top? Ans. (a) .079 cm. per sec;

(b) .009 cm. per sec.

37. A horse runs 10 miles per hour on a circular track in the center of which is an

arc light. How fast will his shadow move along a straight board fence (tangent to the

track at the starting point) when he has completed one eighth of the circuit ?

Ans. 20 miles per hour.

38. The edges of a cube are 24 inches and are increasing at the rate of .02 in. per

minute. At what rate is (a) the volume increasing ? (b) the area increasing ?

39. The edges of a regular tetrahedron are 10 inches and are increasing at the rate

of .3 in. per hour. At what rate is (a) the volume increasing ? (b) the area increasing?

40. An electric light hangs 40 ft. from a stone wall. A man is walking 12 ft. per

second on a straight path 10 ft. from the light and perpendicular to the wall. How fast

is the man's shadow moving when he is 30 ft. from the wall ? Ans. 48 ft. per sec.
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41. The approach to a drawbridge has a gate whose two arms rotate about the

same axis as shown in the figure. The arm over the driveway is 4 yards long and

the arm over the footwalk is

3 yards long. Both arms ro-

tate at the rate of 5 radians

per minute. At what rate is

the distance between the ex-

tremities of the arms chang-

ing when they make an angle

of 45° with the horizontal ? Ans. 24 yd. per min.

42. A conical funnel of radius 3 inches and of the same depth is filled with a solu-

tion which filters at the rate of 1 cu. in. per minute. How fast is the surface falling

when it is 1 inch from the top of the funnel ? , 1
Ans.

i-ir
111. per min.

43. An angle is increasing at a constant rate. Show that the tangent and sine are

increasing at the same rate when the angle is zero, and that the tangent increases

eight times as fast as the sine when the angle is 60°.



CHAPTER XI

CHANGE OF VARIABLE

95. Interchange of dependent and independent variables. It is some-

times desirable to transform an expression involving derivatives of y
with respect to x into an equivalent expression involving instead deriv-

atives of X with respect to y. Our examples will show that in many

cases such a change transforms the given expression into a much

simpler one. Or perhaps x is given as an explicit function of y in a

problem, and it is found more convenient to use a formula involving

dSj ui J (m11 Cm U
-T-' ^r-;» etc., than one involvinsr -^i -r4) etc. We shall now proceed
dy dy^ dx dx^

^

to find the formulas necessary for makuag such transformations.

Given y =/(.-r), then from IXTI we have

<^^'i^
dy 1 dx

(35) _ =_

,

3- =^ ^
dx dx ay

Ty
dii dx

giving -^ in terms of —- Also, by XXV,
dx dy '

dly^^d^/dy\^d^/dy\dy^
dx' dx \dxj dy \dx) dx

or

^^±n\dy^
da? dy\dx\ dx

\dyj-

d^x

But ^ l-^\ = - --^; and ^ = i- from (35).
dxV dx dx

dy) dy

Substituting these in (^), we get

d^x

d^y dy^
(36)

dx^ /dry

[dyj
148
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. . d^y . , . dx , d^x c.. ., -,

giving -7^ in terms of — and— Similarly,

d^y_ dy' dy W)

and so on for higher derivatives. This transformation is called changing

the independent variable from x to y.

Illustrative Example 1. Change the independent variable from x to y in the

equation
3 /^Y_ ^^ _^ /'^Y=
\dxV dx dx' dx^ \dx)

Solution. Substituting from (35), (36), (37),

dy^
I / 1 \ I

^y^ ^y
~ V—V I (—11 /'—

V

\dyj I \dy/
^ W

Eeducing, we get

d^x dH _
dy^ dy^

a much simpler equation.

96. Change of the dependent variable. Let

and suppose at the same time y is a function of z, say

TT7- ii dy d^y
. . ^ dz d^z

,We may then express -j-, -y|» etc., m terms 01 — » --^> etc., as

follows.

In general, s is a function of y by (B), p. 45 ; and since y is a func-

tion of X by (-4), it is evident that g is a function of x. Hence by

XXV we have
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Similarly for higher derivatives. This transformation is called

changing the dependent variable from y to 2, the independent variable

remaining x throughout. We will now illustrate this process by

means of an example.

Illustrative Example 1. Having given the equation

change the dependent variable from y to z by means of the relation

{F) y — tan z.

Solution. From {F),

dy „ dz d^y , dH
^

. . ^ /dzV
-^ = sec^z— >

—^ = sec^'z h 2sec2ztanz(— 1 •

dx dx dx^ dx^ \dx/

Substituting in (E),

„ d^z
, „ . ^ IdzV

, ,
2(l + tanz)/ „ dzV

sec^z f- Ssec^ztanzl— ) = 1 H—^

—

^(seo^z— | ,

dx^ \dx/ l + tan^z \ dxJ

dPz /dz\^
and reducing, we get —- — 2 I— ) = cos%. Ans.

CuC \uX/

97. Change of the independent variable. Let 3/ be a function of -x,

and at the same time let x (and hence also ^) be a function of a new

variable t. It is required to express

dy d^y

dx dx^

in terms of new derivatives having t as the independent variable.

^^y^^ dy^dydx^^^
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dx d^y dy d^x

d^y_dt'^~'Jt'dF

and so on for higher derivatives. This transformation is called changing

the independent variable from x to t. It is usually better to work out

examples by the methods illustrated above rather than by using the

formulas deduced.

Illustrative Example 1. Change the independent variable from i to f in the

equation.

(C)
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98. Simultaneous change of both independent and dependent variables.

It is often desirable to change both variables simultaneously. An im-

portant case is that arising in the transformation from rectangular to

polar coordinates. Since

x=p cos 6 and y = psm6,
the equation

f(x,y')=(i

becomes by substitution an equation between p and d, defining /j as a

function of 6. Hence p, x, y are all functions of Q.

Illustrative Example 1. Transform the formula for the radius of curvature

(A) R:

into polar coordinates.

Solution. Since In (A) and (B), pp. 150, 151, t is any variable on which x and y

depend, we may in this case let t = 0, giving

dy

(B)

{C)

dy d9 .— = — , and
dx 6x

d9

dx d^y dy d^x

d'y _ ded£^~d0de^
d^

~
/di\3

W/-
Substituting (B) and (C) in (A), we get

\21? dx d^y dy dH

m

R.

R.

d9 dff^ de (

/dxV

dx d^y dy d'^x

MWde m
But since x= p cos9 and y = p sin 5, we have

^; = -psin^+cos^|;g = pcos^+sin^|;
dx

dff

g=-pcos.-.sin.g,cos.g;g = -,sin..2cos.g

Substituting these in (D) and reducing.

,d'P

p^ + 2
\d9/

2 d^p
P—-

Ans.
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EXAMPLES

Change the independent variable from xtoy in the four following equations

:

d^ dH_

dH dx „_2y— = 0.
dy^ dy

dx^ \dx/ dx dy^ \dyl

\ dx I \dxy \ dx J dxdx" \dy^/ \dy / dy^

Change the dependent Variable from y to z in the following equations

:

. ,
,

^.dH dz d^z
, „

, „Ans. (z + 1)—: = + 2^ + 22.
^

' dx^ dxdx2

da;2 1 + 2/2 \dxj
'

(ii2 \dxj

7.,.£!|_(3v^ + 2x,2)J| + |2(^y+2x,? + 3xv|? + x3,3 = 0,2/ = e^
(Ja;3 \ dx I dx^ y_ \dx/ dx j dx

. d'z ^ d'z
, „ „dz

, , .

Ans. 2x \-3x^ l-x' = 0.

dx' dx^ dx

Change the independent variable in the following eight equations

:

8.^ ^^ + _J^ = 0, x = cosi. ^„s. ^ + 2/ = 0.

(to2 l-x^cfe l-x^ ' di2 "

9. (i_x^)^_x^ = 0, x = cos.. ^ = 0.
^

'dx2 dx dz-

10. (1 _ y2)^ _ y^ + a^M = 0, y = sinx. ^' + a^u = 0.

dy^ dy dx-

U.x^^ + 2x^ + ^, = 0, x = l.
§^r + «^^ = 0.

dx2 dx x2 z dz2

12.,3^ + 3x2^ + xf^+« = 0, x = .« S + « = 0-

dx3 dx2 dx (i«^

13.^ +^^^ +_^_ = 0, x = tan^. S + '-^ = «•

dx2 1 + x2 dx (1 + x2)2 d52

14. ^ + sit— + sec^s = 0, s = arc tan i.

ds^ ds (j2 „ dii
Ans. (1 + i2) ^- + (2 1 + M arc tan <)— + 1 = 0.

d2j/ 1 , d'^y 2 dy .

15.x^g + a2, = 0, . = -. An. -+-- + a2. = 0.
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111 the following seven examples the equations are given in parametric foim.

Find — and —- in each case

:

dx dx''

16. x = 7 + P, y = S + i^-Si*. Ans. ^ = 1 - 6*2, ^ =- 6.

dx ax'

17. X = cott, y = sinH. Ans. — = - SsinHcost, —^=SBin^t(4— 6mnH).
dx da?

dy d?y 1
18. I = a(cosJ + isini), 2/ = a(smt — icosi). Ans. -^ = tant, — =

^ " ^ '

dx dx^ atcosH

19. X = , y =
1+t 1+t

20. x = 2t, y = 2- P.

21. x = l-t', y = t".

22. X = o cos t, y = b sin t.

dy

23. Tran.sform — - by assuming x = p cos^, y = p sin 6.

aRI Atis.

24. Let f{x, y) = be the equation of a curve. Find an expression for its

slope
I
— ) in terms of polar coordinates. pcosO + sitid—
\dx/ ^ dy

'^

dff
Ans. -^

— psinff + costf—



CHAPTER XII

CURVATURE. RADIUS OF CURVATURE

99. Curvature. The shape of a curve depends very largely upon

the rate at -which the direction of the tangent changes as the point of

contact describes the curve. This rate of change of direction is called

curvatute and is denoted by K. "We now proceed to find its analytical

expression, first for the simple case of the circle, and then for curves

in general.

100. Curvature of a circle. Consider a circle of radius It. Let

T = angle that the tangent at P makes with OX, and

T + At = angle made by the tangent at a neighboring point P'.

Then we say

At = total curvature of arc PP'-

If the point P with its tangent be

supposed to move along the curve to

P', the total curvature (= At) would

measure the total change in direction,

or rotation, of the tangent; or, what

is the same thing, the total change in

direction of the arc itself. Denoting by s the length of the arc of

the curve measured from some fixed point (as ^)to P, and by As

the length of the arc PP', then the ratio

At
As

measures the average change in direction per unit length of arc*

Since, from the figure, \g=R At

At 1
or — = —

'

As B

* Thus, if At = - radians (= 30°) , and As = 3 centimeters, then -^ = ^ radians per centi-

meter = 10° per centimeter = average rate of oliange of direction.

155
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it is evident that this ratio is constant everywhere on the circle. This

ratio is, by definition, the curvature of the circle, and we have

(38) K=-.

The curvature of a circle equals the reciprocal of its radius.

101. Curvature at a point. Consider any curve. As in the last

At = total curvature of the arc PP',
section,

and
At— = average curvature of the arc PP'.

More important, however, than the notion of the average curvature

of an arc is that of curvature at a point. This is obtained as follows.

Imagine P' to approach P along the curve ; then the limiting value of

the average curvature
(
=— I as P' ap-

proaches P along the curve is defined as

the curvature at P, that is.

Curvature at a point = . „ (— 1 =— .^ As = \^As/ ds

„ dr
(39) ..K=— = curvature.

ds

Since the angle At is measured in radians and the length of arc A«

in units of length, it follows that the unit of curvature at a point is

one radian per unit of length.

102. Formulas for curvature. It is evident that if, in the last sec-

tion, instead of measuring the angles which the tangents made

with OX, we had denoted by t and t 4- At the angles made by the

tangents with any arbitrarily fixed line, the different steps would

in no wise have been changed, and consequently the results are

entirely independent of the system of coordinates used. However,

since the equations of the curves we shall consider are all given

in either rectangular or polar coordinates, it is necessary to deduce

formulas for K in terms of both. We have

or

tan t =— 5

dx

T = arc tan

32, p. 31

dx
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Differentiating with respect to x, using XX

(^) -T-
= TT^o- Also

157

^^(S

(^) From (24), p. 134

Dividing (^) by (£) gives

dr

dx

But

(40)

s h(i)T
t^2;_ dr

ds ds

dx

K=.

-- K. Hence

1 +

If the equation of the curve be given in polar coordinates, K may

be found as follows

:

From (5), p. 84,
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Substituting (J») in (C), we get

(^)

(F)

d0
p'+

(dp

\de^

dd Y ^\ddj

Also

From (30), p. 136

Dividing (^) by (F) gives

dd'

dp

dd

But

(41)

de

de

— = -— = if. Hence
ds ds

HP

de

K=
P -P—^ + 2' -

P' +m
iLLnsTEATivE ExAMPLp; 1. Find the curvature of the parabola y^ = ipx at the

upper end of the latus rectum.

dy _2p d?v _ 2p dy _ ip^

dx~ y ' dxi' y^ dx y^

4p2

Solution.

Substituting in (40), K = ~
{y" + 4p2)l

giving the curvature at any point. At.the upper end of the latus rectum (p, 2p)

ip- _ 4j)2 _ 1K =- Ans.

(4j,2 + 4p2)5 leVip' 4V2p

Illustrative Example 2. Find the curvature of the logarithmic spiral p = e"'

at any point.

Solution. — = ae'^ = ap ; —^ = a^e"' = a^p.

Substituting in (41),

d^p

dd^
'

1

pVT+c^
Ans.

* While in our work: it is generally only the numerical value of K that is of importance,

yet we can give a geometric meaning to its sign. Throughout our work we have taken the

pdsitive sign of the radical

. cPy
,

'dx^
downwards.

yhW- Therefore K will be positive or negative at the same

time asi^^ < that is (§ 85, p. 125), according as the curve is concave upwards or concave
dx^
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In laying out the curves on a railroad it will not do, on account of

the high speed of trams, to pass abruptly from a straight stretch of

track to a circular curve. In order to make the change of direction

gradual, engineers make use of transition curves to connect the straight

part of a track with a circular curve. Arcs of cubical parabolas are

generally employed as transition curves.

Illustrative Example 3. The transition curve on a railway^track has the shape

of an arc of the cubical parabola y = \x^. At what rate is a car on this track changing

its direction (1 mi. = unit of length) when it is passing through (a) the point (3, 9) ?

(b) the point (2, f) ? (c) the point (1, \) ?

Solution. ^ = j:2, ^ = 2 x.
ax dx^

2 X
Substituting in (40), K =

(1 + x*)2

(a) At (3, 9), K = radians per mile = 28' per mile.

(82)t

4
(b) At (2, I), K = radians per mile = 3° 16' per mile. Ans.

(17)t

2 1
(c) At (1, I), K — = radians per mile = 40° 30' per mile. Ans.

(2)t V2

103. Radius of curvature. By analogy with the circle (see (38),

p. 156), the radius of curvature of a curve^ at a point is defined as the

reciprocal of the curvature of the curve at that point. Denoting the

radius of curvature by J?, we have

K
or, substituting the values of K from (40) and (41),

him
(42) R= -

(43) R =
k-(g

*^ '^ d9^^ \dBJ

* Hence the radius of curvature will have the same sign as the curvature, that is, + or

-, according as the curve is concave upwards or concave downwards.

t In § 98, p. 152, (43) is derived from (42) by transforming from rectangular to polar

coordinates.
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Illustrative Example 1. Find the radius of curvature at any point of the cate-

nary y = -(e" + e ")

.

Solution.

Substituting in (42),

dy 1,^ -2 cPy \ /- -5

n-.

1 +

e" + e

2a

/.fio + e
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104. Circle of curvature. Consider any point P on the curve C.

The tangent drawn to the curve at P has the same slope as the curve

itself at P (§ 64, p. 73). In an analogous man-

ner we may construct for each point of the curve

a circle whose curvature is the same as the cur- /

vature of the curve itself at that point. To do I

this, proceed as follows. Draw the normal to the \
curve at P on the concave side of the curve. Lay
off on this normal the distance PC = radius of

curvature (= K) at P. "With C as a center draw the circle passing

through P. The curvature of this circle is then

R

which also equals the curvature of the curve itself at P. The circle

so constructed is called the circle of curvature for the point P on

the curve.

In general, the circle of curvature of a curve at a point will

cross the curve at that point. This is illustrated in the above

figure.

Just as the tangent at P shows the direction of the curve at P, so

the circle of curvature at P aids us very materially in forming a geo-

metric concept of the curvature of the curve at P, the rate of change

of direction of the curve and of the circle being the same at P.

In a subsequent section (§ 116) the circle of curvature will be

defined as the limiting position of a secant circle, a definition analo-

gous to that of the tangent given in

§' 32, p. 31.

Illustrative Example 4. Find the radius

of curvature at the point (3, 4) on the equilat-

eral hyperbola xy = 12, and draw the corre-

sponding circle of curvature.

dx x' dx' x^
Solution.

Eor(3,4), |. dx^'

[1+^_125_

' The circle of curvature crosses the curve at two points.
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EXAMPLES

1. Find the radius of curvature for each of the following curves, at the point indi-

cated ; draw the curve and tlic corresponding circle of curvature :

(a) 62x2 + aV= a'b-, ("., 0).
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14. The triseotrix p = 2 a cos (? - a. Am. R = "(^-^cos^)^
.

11-6 cos e

15. The equilateral hyperbola p^ cos 2 S = a^. Ans. R = ^

16. The conicp =^0^^. ^„,. ^ _ '^(l - e^) (1 - 2ecosg + e^)t

1-ecosff (l-ecos^)s

\y = 3t-i«. 1 = 1. Ans. R = 0.

ID nM 1 1 1 r^ = acos^i,
18. Ihe liypocycloid < . .

'

1^2/ = asin^i. t = Jj. ^jis. B = 3 asin tj cos ij.

i„ „„ fa; = a(cost + isint),
19. The curve J. ,•,,«, ir-

^ „ Ta
I jf = a(sini — tcosi). i = —

.

^ns. R =— .

2 2

„„ „„ fx = aimcost + cos mi),
20. The curve , \ > it

\^y = a(m sm i — sin ml), i = J,

17. The curve

.
"' _ 4.ma . /m + 1\ ^Ans. R = sm '— t„.m-1 \ 2 /

°

21. rind the radius of curvature for each of the following curves at the point

indicated ; draw the cuiTe and the corresponding circle of curvature :

(a) x = f,2y = t; J = 1. (e) x-= t,y = 6«-i;
t = 2.

{h) x = f,V = fi; t = l. {i) x = 2e>,y = e-'; t = 0.

(c) X = sint, y = cos2t; t = - (g) x = smt,y = 2cost; t = —
{d) x = l-t,y = 't^;t = 3. ^ (h) x = t^,y = t^ + 2t; t = l.^

22. An automobile race track has the form of the ellipse x^ + 16y^ = 16, the unit

being one mile. At what rate is a car on this track changing its direction

(a) when passing through one end of the major axis ?

(b) when passing through one end of the minor axis ?

(c) when two miles from the minor axis ?

(d) when equidistant from the minor and major axes ?

Ans. (a) 4 radians per mile
;

(b) ^ radian per mile.

23. On leaving her dock a steamship moves on an arc of the semicubical parabola

iy^ = x^. If the shore line coincides with the axis of y, and the unit of length is one

mile, how fast is the ship changing its direction when one mile from the shore ?

Ans.
-f^-g

radians per mile.

24. A battleship 400 ft. long has changed its direction 30° while moving through

a distance equal to its own length. What is the radius of the circle in which it is

moving ? Ans. 764 ft.

25. At what rate is a bicycle rider on a circular track of half a mile diameter

changing his direction ? Ans. 4 rad. per mile = 43' per rod.

26. The origin being directly above the starting point, an aeroplane follows

approximately the spiral p = 6, the unit of length being one mile. How rapidly is the
i

aeroplane turning at the instant it has circled the starting point once ?

27. A railway track has curves of approximately the form of arcs from the follow-

ing curves. At what rate will an engine change its direction when passing through

the points indicated (1 mi. = unit of length)

:

(a) y = x", (2, 8) ? (d) j/ = e'-,x = 0?
^

(b) y = x=, (.3, 0) ? (e) 2/ = cosx, x = -?

(c) x^- 2/2 =8, (.3,1)? (t) pe = i,e = i



CHAPTER XIII

THEOREM OF MEAN VALUE. INDETERMINATE FORMS

(.b.o)

105. RoUe's Theorem. Let y =f(£) be a continuous single-valued

function of x, vanishing for x= a and x = h, and suppose that f'(x)

changes continuously when

X varies from a to 6. The

function will then be rep-

X resented graphically by a

continuous curve as in the

figure. Geometric intuition

shows us at once that for

at least one value of x be-

tween a and h the tangent is parallel to the axis of X (as at P);

that is, the slope is .zero. This illustrates Rolle's Theorem

:

If f(£) vanishes when x = a and x = b, and f(x) and f'(x) are con-

tinuous for all values of x from x= a to x = b, then f'{x) will be zero

for at least one value of x between a and b.

This theorem is obviously true, because as x increases from a to J,

/(x) cannot always increase or always decrease as x increases, since

f(a) = and /(&) = 0. Hence for at least one value of x between a

and 6, f(x) must cease to increase and begin to decrease, or else cease

to decrease and begin to increase ; and for that particular value of x

the first derivative must be zero (§ 81, p. 108).

That Rolle's Theorem does not apply when f(x) or f'(x) are discontinuous is illus-

trated as follows

:

Fig. a shows the graph

of a function which is

discontinuous (= co) for

a; = c, a value lying be-

tween a and h. Pig. 6

shows a continuous func-

tion whose first deriyative

is discontinuous (= oo)

for such an intermediate Fig. a Fig. 6

value X = c. In either case it is seen that at no point on the graph hetween a; = a

and x = h does the tangent (or curve) become parallel to OX
164
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106. The Theorem of Mean Value.* Consider the quantity Q defined

bv the equation

(^) /(5)-/(a)-(6-a)a=0.

Let F(^x') be a function formed by replacing 6 by a; in the left-hand

member of (5) ; that is,

((7) F(a:-) =/(x) -/(a) - (^x - «) Q.

From (5), F(b-) = 0, and from (C), F(a) = ;

therefore, by Rolle's Theorem (p. 164) F'Qc) must be zero for at least

one value of x between a and h, say for x^. But by differentiatuig (C)

we get

Therefore, since

and

F'(x)=f(x)-Q-

F'(x^-) = 0, then also /'(a:) - § = 0,

Substituting this value of Q in (^), we get the Theorem of Mean

Value,

(44)

/(&)-/(a)
^f,^^^-^^ a<x^<h

where in general all we know about x^ is that it lies hetween a and h.

The Theorem of Mean Value Interpreted Geometrically. Let the curve

in the figure be the locus of

Take OC = a and OB = l\ then

/(a) = CA and /(6) = BB, giving

AE = l-a and EB =f(h')-f(a).

Therefore the slope of the chord

ABh
EB fChy-fCa)

(D) t.nEAB =^y-^^-
There is at least one point on the curve between A and B (as P)

where the tangent (or curve) is parallel to the chord AB. If the

abscissa of P is x^, the slope at P is

(i?) tan t =f'(Xi) = tan EAB.

Y
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Equating (D) and (-£), we get

b — a ^

which is the Theorem of Mean Value.

The student should draw curves (as the one on p. 164) to show

that there may be more than one such point in the interval; and

curves to illustrate, on the other hand, that the theorem may not be

true if /(«) becomes discontinuous for any value of x between a and

h (Fig. a, p. 164), or \if'(x') becomes discontinuous (Fig. h, p. 164).

Clearing (44) of fractions, we may also write the theorem in the form

(45) f(b-)=f<ia) + (b-d)f'(x,).

Let5 = a + Aa; then h — a=A.a, and since x^ is a number lying

between a and i, we may write

x^= a + 6 Aa,

where ^ is a positive proper fraction. Substituting in (45^, we get

another form of the Theorem of Mean Value.

(46) f(a + Aa) - /(a) = Aa/'(a + 5 • Aa) . < 61 < 1

107. The Extended Theorem of Mean Value.* Following the method

of the last section, let R be defined by the equation

(-0 f(p~) -fQa) - (6 - a)f(a) - K* - «)'^ = 0-

' Let F(x) be a function formed by replacing 5 by a; in the left-hand

member of (^) ; that is,

(B) F(x-) =f(x) -f{a) -(X- a)f'ia~) -\ix- af R.

From {A), F{b} = ; and from (5), F(cC) = ;

therefore, by Rolle's Theorem (p. 164), at least one value of x between

a and h, say x^, will cause F'(x) to vanish. Hence, since

P'(P) =/'(^) -/'(«) -(x-a) R, we get

F'Cx,} =fXx,-) -/'(a) -(^x^-a}R = 0.

Since F'^x^} = and F'(a) = 0, it is evident that F'^x) also satisfies

the conditions of Rolle's Theorem, so that its derivative, namely F"(x),

must vanish for at least one value of x between a and x^, say a-.,, and

therefore x^ also lies between a and b. But

F%x:) =f\x) -R ; therefore F"(x^) =f"(x^) - ii = 0,

and R =f\x^).

* Also called the Kxlended Lmii of the Mean.
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Substituting this result in (J j, we get

(C) /(6)=/(a) + (J-a)/'(a) + ^(J-a)y"(:.^). a<r^<b

In the same manner, if we define S by means of the equation

f(b) -/(«) -(f>- «)/'(«) - 4 (^' - «)V"(") - ^ (^ - ^ys= 0,

we can derive the equation

(I)) f(h) =fia) + (h- a-)/'(a) + 4 (* - «)V"(«)

+ ri(6-«y/"'(a;3), a<x^<b

where a;^ hes between a and b.

By continuing this process we get the general result,

where a;^ lies between a and 6. (i?) is called the Extended Theorem of

Mean Value.

108. Maxima and minima treated analytically. By making use of

the results of the last two sections we can now give a general discussion

of maxima and minima offunctions of a single independent variable.

Given the function f(x). Let Ji be a positive number as small as

we please ; then the definitions given in § 82, p. 109, may be stated

as follows

:

If, for all values of x different from a in the interval [a — h, a + li\,

(^A) yC^) ~/(*) = "^ negative number,

then/(:<') is said to be a iitiuiiiiiun wlieii .r = a.

If, on the other liand,

(£) /(*) ~/(^) = '^ positive iiiiiitber,

then /(a;) is said to be a mininmin when x— <i.

Consider the following eases :

I. Letf'(a)-h().

From (45), p. 166, replacing S by a; and transposing /(a),

((7) /(^)-/(«) = C''-«)./'(3-i).
a<,-^<x
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Since f'(a) #= 0, and /'(») is assumed as continuous, h may be chosen

so small that /'(a:) will have the same sign as /'(a) for all values of x

in the interval [a — A, a + K]. Therefore fQc^ ^^ ^^^ ®^"^® ^^^^ ^
f'(a) (Chap. III). But x— a changes sign according as a; is less or

greater than a. Therefore, from (C), the difference

f(x)-fia)

will also change sign, and, by {A) and (S), /(a) will be neither a

maximum nor a minimum. This result agrees with the discussion in

§ 82, where it was shown that for all values of x for which f(x) is a

maximum or a minimum, the first derivative f'(x) must vanish.

II. Letf'(a)=^,a.ndf"(a)=^Q.

From (C), p. 167, replacing hhj x and transposing /(a),

(i))
• f(x)~f{.a^ = ^^^^f"Qc^). a<x^<x

Since /"(«) =5^ 0, and /"('») is assumed as continuous, we may choose

our interval [a — A, a + A] so small that f"(x^ will have the same sign

as /"(a) (Chap. III). Also (a; — a)^ does not change sign. Therefore

the second member of (X>) will not change sign, and the difference

f(x)-fia')

will have the same sign for all values of x in the interval [a — h,

a + A], and, moreover, this sign will be the same as the sign off"(a').

It therefore follows from our definitions (^) and (5) that

(^) f(a) is a maximum iff'(ci) = andf"(a') = a negative number;

(i^) f{a) is a minimum iff'(a~) = andf"(a') = a positive number.

These conditions are the same as (21) and (22), p. 113.

III. Letf'(a)=f"(a)=^, and f'^a) ^ Q.

From (X>), p. 167, replacing b hj x and transposing /(a),

(G) fix-) -f(a-) = ,1 (x - ayf'\x^). - a<x^<x

As before, f"(x^ will have the same sign as f"(a)- But (x — a)'

changes its sign from — to + as a; increases through a. Therefore

the difference /(a=)-/(a)

must change sign, and/(«) is neither a maximum nor a minimum.
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IV. Xe« /'(«)=/"(«) = ---=/^" -''(a) =0, andf''\a)^0.

By continuing the process as illustrated in I, II, and III, it is seen

that if the first derivative of /(a;) which does not vanish for a; = a is

of even order (= tz), then

(47) f(a) is a maximum if /W(a) = a negative number;

(48) /(a) is a minimum if /W(a) = a positive number.*

If the first derivative of f(x) which does not vanish for a; = a is of

odd order, then f(a) will be neither a maximum nor a minimum.

Illustrative Example 1. Examine x^ — 9^^ + 24x — 7 for maximum and mini-

mum values.

Solution. /(k) = x' - 9 x2 + 24 X - 7.

/'(x) = 3x2-18x + 24.

Solving 3 x2 - 18 X + 24 =
gives the critical values x = 2 and x = 4. .-. /'(2) = 0, and /'.(4) = 0.

Difierentiating again, /"W = 6 x — 18.

Since/" (2) =— 6, we know from (47) that/(2) = 13 is a maximum.
Since/" (4) = + 6, we know from (48) that/(4) = 9 is a minimum.

Illustrative Example 2. Examine e" + 2 cos x + e- == for maximum and minimum
values.

Solution. /(x) = e^ + 2 oosx + e-^,

f'{x) = e^ — 2 sinx — e-^ = 0, for x = 0,t

f"{x) = e^ — 2 oosx + e-=" = 0, for X = 0'

/"'(x) = e^ + 2 sinx — e-'^ = 0, for x = 0,

f"{x) = &= + 2cosx + e-^ = 4, for x = 0.

Hence, from (48), /(O) = 4 is a minimum.

EXAMPLES

Examine the following functions for maximum and minimum values, using the

method of the last section :

1.3x* — 4x^ + 1. Ans. x = 1 gives min. = ;

X = gives neither.

2. x^ — 6x2 4- 12 X + 48. x = 2 gives neither.

3. (x — l)2(x + 1)^. X = 1 gives min. = ;

x = \ gives max.

;

X =— 1 gives neither.
4. Investigate x^ — 5x* + 5x' — 1, at x = 1 and x = 3.

5. Investigate x^ — 3 x^ + 3 x + 7, at x = 1.

6. Show that if the first derivative of /(x) which does not vanish for x = a is of

odd order (= n), then fix) is an increasing or decreasing function when x = a, accord-

ing as/W(a) is positive or negative.

* As in § 82, a critical value a; = a is found by placing the first derivative equal to zero and
solving the resulting equation for real roots.

t X = is the only root of the equation e^ - 2 sin a; - e- === 0.
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109. Indeterminate forms. When, for a particular value of the

independent variable, a function takes on one of the forms

^, ^, o.oo, 00-^, 0", 00°, r,

it is said to be indeterminate, and the function is not defined for that

value of the independent variable by the given analytical expression.

For example, suppose we have

y F(x)
'

where for some value of the variable, as x = a,

/(a)=0, i?'(a)=0.

For this value of x our function is not defined and we may there-

fore assign to it any value we please. It is evident from what has

gone before (Case II, p. 15) that it is desirable to assign to the

function a value that will make it continuous when x^a whenever

it is possible to do so.

110. Evaluation of a function taking on an indeterminate form. If

when x = a the function fix) assumes an indeterminate form, then

is taken as the value off(x) for x = a.

The assumption of this limiting value makes /(a;) continuous for

x = a. This agrees with the theorem under Case II, p. 15, and also

with our practice in Chapter III, where several functions assuming the

indeterminate form - were evaluated. Thus, for . a; = 2 the function

.T^—

4

' assumes the form — , but
X —z

limit a; — 4 _ I

Hence 4 is taken as the value of the function for x = 2. Let us

juiw illustrate graphically the fact that if we assume 4 as the value

of the function for .r = 2, then the function is continuous for .? = 2.

Let t/ =
.V — -J.

This equation may also be written in the form

y/(.r-2) = (..-2)(.r + 2);

or, (» - 2) («/ - .-B - 2) = 0.

« The calculation of this limiting value is called evaluating the indeterminate form.
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B

Placing .each factor separately equal to zero, we have

a: = 2, and y = x + 2.

In plotting, the loci of these equations are found to be the two

lines AB and CD respectively. Since there are infinitely many nomte
on the line AB having the abscissa 2, it is clear that wheix a- = 2

(= OJf), the value of y (or the function) may be taken as ^-ny num-
ber whatever ; but when x is different from 2, it is seer/ from the

graph of the function that the correspond-

ing value of y (or the function) is always

found from

y = -'- + 2,

the equation of the line CD. Also, on CD,

when x= 2, we get

which we saw was also the limiting' value of y (or the function)

for x=2; and it is evident from /geometrical considerations that if

we assume 4 as the value of the frunction for x—2, then the function

is continuous for x=2. '

^

Similarly, several of the ex'amples given in Chapter III illustrate

how the limiting values of 'many functions assuming indeterminate

forms may be found by en/ploying suitable algebraic or trigonometric

transformations, and ho^" in general these limiting values make the

corresponding functions' continuous at the points in question. The

most general methods,/ however, for evaluating indeterminate forms

depend on differentiation.

111. Evaluation of' the indeterminate form g- Given a function of

/(a;)
the form ^ ^ such that /(a) = and

F{x) ^ '

; that is, the function takes on
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Applying the Theorem of Mean Value to. each of these functions

(replacing h by a;), we get

F(3;^^F(a) + (x-a)F'(x^). a<x<.x

Sinbe /(a) = and F(a) = 0, we get, after canceling out (x - a).

Now let a;V a ; then x^= a, x^= a, and

,49,
limit /W^/V). i.'(a)^0

^*''' x = aF(^x) F'{a)

Rule for evaluating tife indeterminate form - • Differentiate the

numerator for a new nwmermm- arid the denominator for a new denom-

inator.* The value of this new fraction for the assigned value ^ of the

variable will he the limiting value of the original fraction.

In case it so happens that

/'(a) = and F'{a) = 0,

that is, the first derivatives also vanish for x=a, then we still have

the indeterminate form -) and the theorem can be applied anew to

the ratio
f(x^

F'{x)
'

ffiving us
limit/(a^)^ /"(a)

.

x=a F(x) F"(^a)

When also /"(a) = and i^"(a) = 0, we get n\i the same manner

limit /(rg)_^ /'"(«)
_

x=aF(x) F'"{ay
and so on.

It may be necessary to repeat this process sever il times.

* The student is warned against the very careless but common 1 iistalie of differentiating

the whole expression as a fraction by VII.

t If (T= t», the substitution x = - reduces the problem to the e\( aluation of the limit foi

„, limit /W_^ limit \^/
^^

^ limit \^/ ^ limit .f'(^)

,2/ Z-

Therefore the rule holds in this case also.
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Illustrative Example 1. Evaluate LL-L = X when x = 1.

\ F(x) x^ -x^-x + 1

= ,* /(l) X-3X + 2 ] 1-3 + 2 ..^ .

Solution. —^ = — = = - . .-. indeterminate.
F(l) x8-x2-x -1-11=1 l-l-l-t-l
/'(!) _ 3x^-3 1 _ 3-3 _
F'(l) 7~3x2-2x-l_L=i~3-2-l~6'

F"(l) 6x-2j:„=,i 6-2 2

limit e^ — e-^ — 2x

, indeterminate.

Illustrative Example 2. Evaluate „ _ n
X — sm X

o , . /(O) 6^-6-=" -2x1 1-1-0 .,^ . ^
Solution, t^^-^ = = = - . .-. indeterminate.

F(0) x-sinx ic=o 0-0
f'{0) _ ^+e-^-2-| _ l-Hl-2 _

1.
+ e-x_2-| l-f-1-2 . , ^— = —' = - .-. indeterminate.

F'(0) 1-COSX Ja:=o 1-1

-—i-^ = = -^ = - . . . indeterminate.
F"{0) sinx Ja;=o

Jx

£I(2I = ?l±^n =1+^ = 2. Ans.
F"'(0) cosx

EXAMPLES

Evaluate the following by differentiation :
*

limit x^-16 . . ^„^_ 1 9. iin,it ^- arc sing ^^_ _1
x = 4:x2 + x-20 9 19 = smsg 6

2.
liiiiit^^±. 1. limit sinx- sin

» = lx»-l » l"-x = x-0 *

limit log a'
1

^•x = 1^T::I
'

ix_
limit e^ + smy-l

' =
4 limit e^—e-

_ ^^

log(l + 2/)

a; = sinx
'

j^g
limit tang-fsecg-1

^ limittanx-x „
"

(? = Otang - sec(9 -|-

1

x = X — sm X
-3 limit sec2 - 2 tan 1

limit log sinx _1 0=^ l+cos40 " 2

x = ^(7r-2x)2 • 8" *
^

limit oz — z^

7_
limit alu^. log" 1^-

z = a ^Tir^^i^Ti^^^^^ '
"^

"'

x = X 6

limit r^-af'- a?r + a^ „ ,5 limit {^ - e"^?
Qe*.

'*-r = a ;^3^i • x = 2(x-4)e^-|-e2x

,« limit xM^x-^ ,„ limit siii2x li^jt log cos (x - 1)
_

''•x^l „»-i '^•x = X ^^x = l ^_^.^^
2

,„ limit x^ + 8 19 limit x-sinx li^it tan x - sin x
_

"•x=-2^5Tf^- '''•x = a;3
x = sm^x

* After differentiating, the student should in every case reduce the resulting expression

to its simplest possible form before substituting the value of the variable.
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112. Evaluation of the indeterminate form g, Jn order to find

limit f(x)
x = a F(x)

when
•

^™-'„/(.) = ^ and ^^^ F^x) = a,,

that is, when for x = a the function

fM.
F(x)

assumes the indeterminate form
00
56'

we follow the same rule as that given on p. 172 for evaluating the

indeterminate form —• Hence

Rule for evaluating the indeterminate form 2. Differentiate the

numerator for a new numerator and the denominator for a new denomi-

nator. The value of this new fraction for the assigned value of the vari-

able will he the limiting value of the original fraction.

A rigorous proof of this rule is beyond the scope of this book and

is left for more advanced treatises.

'

loff iC

Illustrative Example 1. Evaluate —2_ for x = 0.
cscx

/(O) logs! —00
Solntion. = = .•.indeterminate.

F(0) CSOxJa; = |)
«>

1

lin^xl _0
cosx_L:=o

1

/'(O) x_

x=0F'(0) — cscx cot X.

/"(O) 2 sin X cos x "1

~ — ' — - = 0. Ans.

. indeterminate.

xjiF"(0) cos X — X sin x]x= o I

113. Evaluation of the indeterminate form Ooo. If a function

f{x) ^(x) takes on the indeterminate form • oo for a; = a, we write

the given function

/(a;)-^(;i) =-^ or = i:i_Z
1 r 1

so as to cause it to take on one of the forms 77 or ^, thus bruaging it

under § 111 or § 112.
^
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Illustrative Example 1. Evaluate sec 3 a; cos 5 x for a; =-

.

•
.

2
Solution. .sec3«cos5x"| „ = oo • 0. ..indeterminate.

Substituting for ,seo 3 x, the function becomes = ^-^

.

cos3x cosSx F{x)

f(-)
\2/ cos 5x1 „ . ,

, mdeteruunate.
_/7r\ cos3x

\2/

ft
— sinSx

1 =«. ...h-

i=^

•3l=5~ 3'

sin 5 X • 5~1 5
Ans.

114. Evaluation of the indeterminate form » — oo. It is possible in

general to transform the expression into a fraction which will assume

either the form j. ov ^
Illustrative Example 1. Evaluate secx — tanx for x = - .

2
Solution, sec X — tanx] „ = oo — oo. .-.indeterminate.

_ _. ^ ,
1 sin X I— sin X fix)

By Trigonometry, sec x — tan x — = = —^-^

.

cosx eosx cosx F{x)

f(-)
\2 l-sinx1 1-10 . ^ ^= = = - • .-. indeterminate.
/7r\ cosx X„!:

%)
f'(-)W_-cosx-| ^_0_^o. ^n..

i^
sin X

EXAMPLES

Evaluate the following expressions by differentiation :
*

1 limit ^1+^. j^^ a
6.

limit'ogsin2x ^^^^
x_oocx'' + (J c X — V log sin x

2

limit

-9 limit cot X 7 limit -°..^^
3^^ = 0i^-

-"• ^•^ = ^tan3^

3 limit logx
^

X = CO x" " 8. .^^-Z tan (^

d limit ^^
n ,

*•
x = o=>i;-

^-
9 limit logx

x = Ocotx

S. "!!!'lr^- »• 10. "'""xlogsinx. 0.
X _ CO log X . X = °

* In solving the remaining examples in this chapter it may be of assistance to tlie student

to refer to §24, pp. 23, 24, where many special forms not indeterminate are evaluated.
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1 ta limit r ^ 1 An') —-

0. 19 limit r_l ^1. _i.
a;=iLlogx logxj

11. ^™'^xcot™.

j^o limit y
' y = cDgay

limit ,. .

13. , _ E (t - 2 z) tan X. 2. 20. "™'i. fsec 6 - tan ^]

.

0.

14. "™*xsin^.
X = 00 X

, _ limit .1 r •*• T A ^ = Lsin^ * 1 — cos ^

J

2
15. _f,X"log'X. [re positive.] " i_ v- t-j

21 limit r_J 1 1
' ^ = Lsin^ 1 — cos J

limit 22.
limit r_^ ?-1. 1

16. ^ ^ £ (1 - tan ^) sec 2 e. 1. 2/ = 1 Lz/ - 1 log2/J 2

17. li™'(a^-0^)tan!^. ^. 23. "'"'!;[f- ^ ,

^ ,1 \

115. Evaluation of the indeterminate forms 0°
,
1", oo°. Given a func-

tion of the form
/('a;)*^.

In order that the function shall take on one of the above three

forms, we must have for a certain value of x

/(x) = 0, </.(;») = 0, giving 0°;

or, /(a;) =1, <^ (2;) = co, giving 1"

;

or, f(x') = co, ^(x')=0, giving oc".

Let 2/=/(a;)*^"';

taking the logarithm of both sides,

log 2/ =</>(«) log/(a;).

In any of the above cases the logarithm of y (the function) will

take on the indetermiaate form
0.00.

Evaluating this by the process illustrated in § 113 gives the limit

of the logarithm of the function. This being equal to the logarithm

of the limit of the function, the limit of the function is known.*

Illustkative Example 1. Evaluate x^ when x = 0.

Solution. This function assumes the indeterminate form 0° for s = 0.

Let y = x^;

then logj/ = xlogx = 0- — 00, when x = 0.

By§n3, p. 174, log2/ = i2ii = ZLi5, when x = 0.
1 00

X

* Thus, if limit logey=a, then ?/ = e».
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By § 112, p. 174, logy = -£- = - » = 0, when a; = 0.

Since 2/ = x"', this gives log,x» = ; i.e., a;^ = 1. Ans.

1

Illustrative Example 2. Evaluate (1 + s)^ when x = 0.

Solution. This function assumes the indeterminate form 1" for x = 0.

1

Let 2/ = (1 + x)i

;

tlien log2/ = -log(l + x)= oo-O, when x = 0.

By § 113, p. 174, logy = ^^0- + ^) ^ ^ ^^^^ ^^^
X

1

By § 111, p. 171, logy = —tI.= = x, when x = 0.
1 1 + X

1 11^
Since y = (l + x)^, this gives loge(l + x)=" = 1 ; i.e. (1 + x)^ = e. Ans.

Illustrative Example 3. Evaluate (cot x)=™«' for x = 0.

Solution. This function assumes the indeterminate form oo" for x = 0.

Let y = (cotx)»™^;

then logy = sin X log cotx = • oo, when x = 0.

By § 113, p. 174, log y = i^^^^ = ^

,

when x = 0.
CSC X CO

— cso'^x

„ „ , , „ , »

,

n
cot X sin X „ ,By § 112, p. 174, logy = =—— = 0, when x = 0.— CSC X cotx cos^x

Since y = (cotx)»'"=', this gives loge(cotx)'™^ = 0; i.e. (cotx)'™== = 1. Ans.

EXAMPLES

Evaluate the following expressions by difierentiation :

1- ^Z\ ^^- Ans.
l-

7. ^™'* (e- + xf. Ans. eK

„ limit /lY"""
1

8. "™^* (ootx)i5f5. I.

a; = \x/ .1 ^

limit ^- i™ (1 + "^)''- ^•
3. ^™';(sine)fne. 1.

^-"
„*•

^ = ¥ 10.
J™*

(tan ^y'"^. 1.

^•"=^(1%-)"- - 11.^^-^* (cosJ)^. I-^«-.

^•x = o(l + *'"^)°°'" ^- 12. ^™^ (cotx)-. 1.

6_
limit /ay

^,
limit / xy.n|L:

^|_



CHAPTER XIV

CIRCLE OF CURVATURE. CENTER OF CURVATURE

116. Circle of curvature.* Center of curvature. If a circle be drawn

through three points P^, ij, -^ on a plane curve, and if JJ and ij be

made to approach i^ along the curve as a limiting position, then the

circle will in general approach in magni-

tude and position a limiting circle called

the circle of curvature of the curve at the

point P^. The center of this circle is

called the center of curvature.

Let the equation of the curve be
P„(.!IC2,Vs)

(1) y =fQo') ;

PiC»v'yi">
and let x^, x^, x^ be the abscissas of the

points ^, Py, P^ respectively, (a', yS') the coordinates of the center,

and R' the radius of the circle passing through the three points.

Then the equation of the circle is

and since the coordinates of the points ij, ij, P^ must satisfy this equa-

tion, we have

(2)

'(^o-«T+(2/o-/3'y-^"=0,

Xx-ay+(jj-^y-R<-'=<).

Now consider the function of x defined by

Fix) = (x-a'y+Qy-^y- R'\

in which y has been replaced hj f(x) from (1).

Then from equations (2) we get

* Sometimes called the osculating circle. The circle ol curvature was defined from
another point of view on p. 161.

178



CIECLE AND CENTER. OP CURVATUEE 179

Hence, by RoUe's Theorem (p. 164), F'^x) must vanish for afc least

two values of x, one lying between x^ and x^, say x', and the othfet

lying between x^ and x^, say x" ; that is,

F'(x') = 0, F'(x":) = 0.

Again, for the same reason, F"(x) must vanish for some value of

x between x' and x", say x^ ; hence

F"(x^)^0.

Therefore the elements a', /8', R' of the circle passing through the

points ij, -^, JJ must satisfy the three equations

F(x^) = 0, F'C^') = 0, F"(x^=0.

Now let the points J^ and i^ approach -^ as a limiting position ; then

x^, x^, a/, x", x^ will all approach
aj^i

as a limit, and the elements a, /3, B
of the osculating circle are therefore determined by the three equations

FCx^) = 0, n^„) = 0, F"Cx;)=0;

or, dropping the subscripts, which is the same thing,

(5) (a: - a) + (2/ - /3)^ = 0, differentiating (A).

Solving (5) and (C) for x— a and y — ^, we get ( -j4 =5^=

^[l + Z^M
cZa; L \dxj

(^)

a;— a; = '

dx""

y-^=- ^-C

hence the coordinates of the center of curvature are

(^) a = x—
ih(i; 1+

dx"

; p = y + dx^
^0
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Substituting the values oi x — a and y — ^ from (D) in (^), and

solving for B, we get

Mm
i? = ±:

which is identical with (42), p. 159. Hence

Theorem. The radius of the circle of curvature equals the radius of

curvature.

117. Second method for finding center of curvature. Here we shall

make use of the definition of circle of

curvature given on p. 161. Draw a

figure showing the tangent line, circle

of curvature, radius of curvature, and

center of curvature (a, /8) corresponding

to the point P(^, «/) on the curve. Then

a=0A=01>-AD=0D-BP=x-BP,

^=AC=AB+BC=DP+BC= y+BC.

But BP = Rsm.T, BC=R cos r. Hence

{A) a = x—BsmT, /3 = y+iJ cost.

From (29), p. 135, and (42), p. 159,

dy

SU1T= ^, COST

y>
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Therefore, by (40), p. 157, the curvature K= ; and from (42),

p. 159, and (50), p. 180, we see that in general a, /3, R increase

without limit as the second derivative approaches

zero. That is, if we suppose P with its tangent

to move along the curve to P\ at the point of

inflection Q the curvature is zero, the rotation of

the tangent is momentarily arrested, and as the

direction of rotation changes, the center of cur-

vature moves out indefinitely and the radius of

curvature becomes infinite.

Illustrative Example 1. Find the coordinates of the

center of curvature of the parabola y' = ipx corresponding

(a) to any point on the curve
;

(b) to the vertex.

Solution.
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Now consider the function of x defined by

f

in which y has been replaced by /(a;) from QA).

Then equations (5) show that

0(a;„)=O, </.(^,)=0.

But then, by RoUe's Theorem (p. 164), <^'(a;) must vanish for some

value of X between «„ and x^, say x'. Therefore a' and y8' are deter-

mined by the two equations

<^(a;„)=0, <^'(a;')=0.

If now ij approaches ^ as a limiting position, then x' approaches x^,

giving <i>(x,~)=0, (t>Xx,)=0;

and C'(^a', /8') will approach as a limiting position the center of cur-

vature C(a, /3) corresponding to ^ on the curve. For if we drop the

subscripts and write the last two equations in the form

^-(l)'-(-«3-'
it is evident that solving for a' and /3' will give the same results as

solving (5) and (C), p. 179, for a and /S. Hence

Theorem. The center of curvature C corresponding to a point P on a

curve is the limiting position of the intersection of the normal to the curve

at P with a neighboring normal.

119. Evolutes. The locus of the centers of curvature of a given

curve is called the evolute of that curve.

Consider the circle of curvature corre-

sponding to a point P on a curve. If

P moves along the given curve, we may
suppose the corresponding circle of curva-

ture to roll along the curve with it, its

( ^'^)^-'''\^^~)'/Pi
° ^^^^^ varying so as to be always equal to

\v \
\'-^yP^ t^s radius of curvature of the curve at the

^—J<>Pi pomt P. The curve CC, described by the

center of the circle is the evolute of PH;.

It is instructive to make an approximate construction of the evolute

of a curve by estimating (from the shape of the curve) the lengths
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of the radii of curvature at different points on the curve and then

drawing them in and drawing the locus of the centers of curvature.

Formula (£), p. 179, gives the coordinates of any point (a, /8) on

the evolute expressed in terms of the coordinates of the corresponding

point (x, y) of the given curve. But «/ is a function of x ; therefore

a = x-
v-m

dy_

dx

dx"-

^=y^

dx""

give us at once the. parametric equations of the evolute in terms of the-

parameter x.

To find the ordinary rectangular equation of the evolute we elimi-

nate X between the two expressions. No general process of elimination

can be given that will apply in all cases, the method to be adopted

depending on the form of the given equation. In a large number of

cases, however, the student can find the rectangular equation of the

evolute by taking the following steps

:

General directions for finding the equation of the evolute in rectangular

coordinates.

First Step. Find a and ^ from (50), p. 180.

Second S^ep. Solve the two resulting equations for x and y in terms

of a and /8.

Third Step. Substitute these values of x and y in the given equation.

This gives a relation between the variables a and /3 which is the equation

of the evolute.

Illusteatite Example 1. Find the equation of the evolute of the parabola y'-'= ipx.

Solution.

First step.

Second step.

Third step

dy

dx

2p d^y

y da?

(4p2/S)S = 4p(-
a-_^y

PP^ = -{oc-2py

Eemembering that a denotes the abscissa and p the

ordinate of a rectangular system of eoSrdinates, we see

that the evolute of the parabola AOB is the semicubical parabola DC'E; the centers

of curvature for 0, P, Pj, Pj being at C, C, Cjj G^ respectively.
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Illustkative Example 2. Find the equation of the evolute of the ellipse

Solution.
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the parametric equations of the evolute. Assuming values of the parameter t, we cal-

culate x,y; a, p from (B) and (C) ; and tabulate the results as follows

:

Now plot the curve and its evolute.

The point (J, 0) is common to the given curve

and its evolute. The given curve (semicubical

parabola) lies entirely to the right and the evo-

lute entirely to the left of a; = J-.

The circle of curvature at A (J, J), where

< = 1, will have its center at A' (— J, |) on

the evolute and radius = AA'. To verify our

work find radius of curvature at A. From

(42), p. 159, we get

^(1 + i

-= V2, when t = 1.B =

This should equal the distance

t
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Note. If we eliminate t between equations (D), there results the rectangular equa^

tion of the evolute OO'Q,'' referred to the axes Cor and CjS. The coordinates of with

respect to these axes are (— ira, —2a).
Let us transform equations (D) to the

new set of axes OX and OT. Then

a = x — ira, p = y — 2a,

Substituting in (D) and reducing, the

equations of the evolute become

fx = a(if — sini'),

i(l — cosi^.

fx = a

iy = a

Since (E) and (C) are identical in form, we have :

The eoolvie of a cycloid is itself a cycloid whose geTierating circle equals that of the

given cycloid.

120. Properties of the evolute. From (A), p. 180,

(u4) a = a; — ^sinT, ^ = y +B cos t.

Let us choose as independent variable the lengths of the arc on the

given curve ; then x, y, B, t, a, /3 are functions of s. Differentiating

(^) with respect to s gives

(C)

da dx „ dr
^- = -; B cos T -—
as ds as

SUIT

tZ/3 dv T^ • dr
,—- = -p- — -Ksinr—- + cos r

as ds ds

dB
ds

dB

But —- = cosT, ^ = sinT, from (26), p. 134; and — =—

,

ds ds \ y r
ds B

(38) and (39), p. 156.

Substituting in (5) and (C), we obtain

from

(D)

(^)

da 1 . dB
-z—= COST— jffi COST smT :

ds B ds
sm.T

dB
ds

d^ . „ . 1
, dB dB-— = smT—^smT- — + C0ST— = cost

ds B ds ds

Dividing (-E) by (Z>) gives

(i?) -^=— COtT = :

da tan t

1_

dy

dx
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But— = tan t'= slope of tangent to the evolute at C, and

-J-
= tan T = slope of tangent to the given curve at the corre-

sponding point F(x, y).

Substituting the last two results in QF), we get

1
tanT'=-

tanr

Since the slope of one tangent is the negative reciprocal of the

slope of the other, they are perpendicular. But a line perpendicular

to the tangent at J" is a normal to the curve. .Hence

A normal to the given curve is a tangent to its evolute.

Again, squaring equations (i>) and (-E') and addiag, we get

• m-m- /d£Y
\ds)'

But if «' = length of arc of the evolute, the left-hand member of

ds'
(G) is precisely the square of -— (from (34), p. 141, where t= s,

(XS

s =«', x=a, y = y8). Hence (D) asserts that

(fj= \ds/' ds ds

That is, the radium of curvature of the given curve increases or decreases

as fast as the arc of the evolute increases. In our figure this means that

JJCi-PC=arcCCj.

The length of an arc of the evolute is equal to the difference between

the radii of curvature of the given curve which are tangent to this arc

at its extremities.

Thus ia Illustrative Example 4, p. 186, we observe that if we fold

Q'P''(= 4 a) over to the left on the evolute, P^ will reach to 0', and

we have

:

The length of one arc of the cycloid (as OO'Q"} is eight times the length

of the radius of the generating circle.

121. Involutes and their mechanical construction. Let a flexible

ruler be bent in the form of the curve C^C^, the evolute of the curve

^i^, and suppose a string of length B^, with one end fastened at C,, to
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be wrapped around the ruler (or curve). It is clear from the results

of the last section that when the string is unwound and kept taut,

the free end will describe the curve

j^^. Hence the name evolute.

The curve ^I^ is said to be an invo-

lute of C^C^. Obviously any point on

the string will describe an involute,

so that a given curve has an infinite

number of involutes but only one

evolute.

The involutes P^P^, P^'Pj, P^"P," are

ca&%A. parallel curves since the distance

between any two of them measured

along their common normals is con-

stant.

The student should observe how the parabola and ellipse on pp. 183,

184 may be constructed in this way from their evolutes.

EXAMPLES

Find the coordinates of tlie center of curvature and the equation .of the evolute of

each of the following curves. Draw the curve and its evolute, and draw at least one

circle of curvature.

1. The hyperbola ?- _ ^ = l
a? 6^

Ans.
(a? + b^) x^

P--

(a2+ 62)3/8

a* 6*

evolute (aa)i - (6;8)i- = (a" + b^)i.

Ans. cz = X + 3xiy^, p = y + Zxiyi>

evolute (a + /3)l- + (a - jS)f = 2 ai.

3. Find the coordinates of the center of curvature of the cubical parabola y^ = a^x.

2. The hypocycloid xt +yi = ai.

Ans. a = a* + 15y*
P--

a*2/ — 9^'

6 aV 2 a*

4. Show that in the parabola xi + yi-=: ai we have the relation a + p = 3{x + y).

5. Given the equation of the equilateral hyperbola 2xy = a^; show that

a + ^-- .
{y + xY

, a — tl — (y - xY

From this derive the equation of the evolute (or + |8)f — (a — /3)l- = 2 ai.

Find the parametric equations of the evolutes of the following curves in terms

of the parameter t. Draw the curve and its evolute, and draw at least one circle

of curvature.

6. The hypocycloid

7. The curve

(x = a oos^ t,

\y = a sin' J.

X = 3 i2,

y = St- i3.

. ( a = a cos' t + 3 a cos t sirfi,

1^
/3 = 3 a oos'^ i sin i + a sin' t.

\ (3 = -4<3.
•<*),
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8. The curve

9. The curve

10. The curve

11. The curve

12. The curve

13. The curve

14. The curve

15. The curve

16. The curve

X = a (cost + isint),

y = a(smi — icosJ).
Ans.

( a = a cos (,

\ ^ = o sin t.

:3i,

P-6.

'x =

\v =
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PARTIAL DIFFERENTIATION

122. Continuous functions of two or more independent variables.

A function f(x, «/) of two independent variables x and y is defined

as continuous for the values (a, V) of (a-, y) when

limit

x = af(x, y^=f(a, J),

y = h

no matter in what way r and y approach their respective limits a

and I. This definition is sometimes roughly summed up in the state-

ment that a very small change, in one or both of the independent variahleg

shall produce a very small change in the value of the function.*

We may illustrate this geometrically by considering the surface

represented by the equation ^ _ ^^^ n

Consider a fixed point P on the surface where x = a and y = h.

Denote by Ax and Ay the increments of the independent variables

X and y, and by Az the corresponding increment of the dependent

variable z, the coordinates of P' being

(x + Ax, y + Ay, z + Az}.

At P the value of the function is

z =f(a, b) = MP.

If the function is continuous at P, then however

Ax and Ay may approach the limit zero, A^ will

also approach the limit zero. That is, M'P' will approach coincidence

with MP, the point P' approaching the point P on the surface from

any direction whatever.

A similar definition holds for a continuous function of more than

two independent variables.

In what follows, only values of the independent variables are

considered for which a function is contmuous.

* This will be better understood if the student again reads over § 18, p. 14, on eontinuou?

functions of a single variable.

190
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123. Partial derivatives. Since x and y are independent in

X may be supposed to vary while y remains constant, or the reverse.

The derivative of z with- respect to x when x varies and y remains

constant * is called the partial derivative of z with respect to x, and is

dz
denoted by the sjrmbol — We may then write

dx

/•i^ ?!.- li^it lf(.^ + '^^' y) -/(^' y) 1
<^^^ g2=~A2;=0L Ax I

Similarly, when x remains constant* and y varies, the partial

derivative of z with respect to y is

^""^
Sy Ay=0l Ay J"

— is also written — f(x, y), or — •

dx dx^ ^ ^' dx

Similarly, — is also written

—

f(x, tf), or — •

dy dy dy

In order to avoid confusion the round d ^ has been generally

adopted to indicate partial differentiation. Other notations, however,

which are in use are

(i)' \£)'' ^^^''' ^^' ^^^*'' ^^' ^-^'^' ^)' •^^^^' ^^' •^-'^' ^''^' ^-' ""

Our notation may be extended to a function of any number of

independent variables. Thus, if

u = F(x, y, g),

then we have the three partial derivatives

du du du. dF dF dF— ) — 5 — 5 or, — J — )
—

dx dy dz dx dy oz

Illustkative Example 1. Find the partial derivatives of z = ox^ + 2 6xj/ + cy^.

dz
Solution. — = 2ax + 2by, treating y as a constant,

dx

— = 2bx + 2cy, treating a; as a constant.
dy

* The constant values are substituted in the function before differentiating.

t Introduced by Jacobi (1804-1851).
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Illustkative Example 2. Find the partial derivatives of m = sin (ax + by 4- cz).

Solution. — = a cos (ax + by + cz), treating y and z as constants,
Bx

— = 6 cos {ax + iy + cz), treating x and z as constants,
sy

— = c cos {ax + by + cz), treating y and x as constants.
dz

Again turning to the function

8z
we have, by (A), p. 191, defined — as the limit of the ratio of the

Bx

increment of the function (y being constant) to the increment of x, as

tlie increment of x approaches the hmit zero. Similarly, (.B), p. 191,

dz
has defined :—

• It is evident, however, that if we look upon these

partial derivatives from the point of view of § 94, p. 141, then

8z

dx

may be considered as the ratio of the time rates of change of z and

X when y is constant, and gg

dy

as the ratio of the time rates of change of z and y wlien x is constant.

124. Partial derivatives interpreted geometrically. Let the equa-

tion of the surface shown in the figure be

2 ^fQe, y)-

Pass a plane EFGH through the

point P (where x= a and y — V) on

the surface parallel to the XO-Z^-plane.

Since the equation of this plane is

y = i,

the equation of the section JPK cut

out of the surface is

2 =f(x, J),

if we consider EF as the axis of Z and EH as the axis of X. In this

plane -- means the same as —-? and we have
ox dx

dz— = tanMTP
ox
= slope of section JK at P.
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Similarly, if we pass the plane BCD through P parallel to the

rO^-plane, its equation is x = a
8z dz

and for the section DPI, — means the same as -^ • Hence
dy dy

3z dz— = -r- =— tan MT'P = slope of section DI at P.
dy dy ^ -^

j;2 y2 ^
Illustrative Example 1. Given the ellipsoid 1- — ^— = 1 ; find the slope

of the section cf the ellipsoid made (a) by the plane j/ = 1 at the point where x = 4

and z is positive
;

(b) by the plane x = 2 at the point where y = Z and z is positive.

Solntian. Considering y as constant,

2 X 2 z 3z „ dz X= 0, or — =
24 6 3x ax 4z

2 ?/ 2 z dz dz yWhen X is constant, —^H = 0, or — = ——
12 6 ay Sy 2z

(a) When y =1 and x = 4, z = -»/- • .-. — = — -\\- Ans.
\ ^ ox \ o

(b) When X = 2 and 2/ = 3, z = ^. .-. — = V2. Avs.
^ '

V2 5y 2

EXAMPLES

1. u = x' + 3xV — ^- -^™s- — = 3x^ + 6x2/;
3x

— = 3x2-3^2.
Sy

2. u = Ax^ + Bxy + Cy'^ + Dx + Ey + F. — = 2Ax + By + D;
8x

du
Bx + 2Cy + E.

sy

Z. u = {ax2 + hy^ + cz^Y-

X
4. tt = arc sin - -

Su
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7. M = vh/'- — 2xy* + SxV ; show that x [ y— = 5m.
dx dy

8. M = ; show that x \- y— = u.
X + y dx dy

9. u= (y — z) (z — x) (x — y); show that 1 1 = 0.
dx dy dz

10. u = log (e^ + e*) ; show that — -\
=1.

dx dy

11. !t = ; show that = (z + « — 1) u.
e'+en dx dy

12. u = xi'j/^'; show that a; 1- y— = (x + 2/ + \ogu)u.
dx dy

13. u = log (x* + v' + z^ — 3x«z) ; show that 1 1 =
dx dy dz x + y + z

14. u = e^'siny + efsinx
; show that

/— ) + (— ) = e^^ + e^y + 2e=» + i'sin (x + y):

15. M = log (tanx + tan j/ + tanz) ; show that

. „ du du cm „sm 2 X f- sin 2y f- sin 2 z— = 2.

3x Sj/ 3z

16. Let y be the altitude of a right circular cone and x the radius of its base.

Show (a) that If the base remains constant, the volume changes \ in? times as fast as

the altitude
;

(b) that if the altitude remains constant, the volume changes \my times

as fast as the radius of the base.

X^ Ip"
17. A point moves on the elliptic paraboloid z = \-— and also in a plane par-

9 4
allel to the XOZ-plane. When x = 3 ft. and is increasing at the rate of 9 ft. per

second, find (a) the time rate of change of z
;
(b) the magnitude of the velocity of •

the point
;

(c) the direction of its motion.

Am. (a) Mj = 6 ft. per sec.
;

(b) u = 3 Vl3 ft. per sec.

;

(c) T = arc tan |, the angle made with the XOY-plane.

18. If, on the surface of Ex. 17, the point moves in a plane parallel to the plane

YOZ., find, when 2/ = 2 and increases at the rate of 5 ft. per sec, (a) .the time rate

of change of z
;

(b) the magnitude of the velocity of the point
;

(c) the direction of

its motion.
' Am. (a) 5 ft. per sec.

;
(b) 5V2 ft. per sec.

;

IT
(c) T = - , the angle made with the plane XOY.

125. Total derivatives. We have already considered the differ-

entiation of a function of one function of a single independent

variable. Thus, if

y=^f(y) and t; = ^(a;),

it was shown that

dy _ dy dv

dx dv dx
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We shall next consider a function of two variables, both of which

depend on a single independent variable. Consider the function

where x and y are functions of a third variable t.

Let t take on the increment Ai, and let Aa;, Aj/, Am be the corre-

sponding increments of x, y, u respectively. Then the quantity

Am =f(x + Ax, y + Ay) -/(«, y)

is called the total increment of u.

Adding and subtracting f(x, y + A«/) in the second member,

(A) Au=[f(x+Ax, y+Ay-)-f(x, y+Ay)^+ lfCx, y+Ay-)-f(x, j^)].

Applying the Theorem of Mean Value (46), p. 166, to each of

the two differences on the right-hand side of (^), we get, for the

first difference,

(5) fCx + Ax,y + Ay') -fix, y -I- Ay) ^fX^ + e^.Ax,y + Ay~)Ax.

ra=x, Aa= Aa;, and since x varies while y + Ay remains'!

[constant, -we get the partial derivative -with respect to a:. J

For the second difference we get

(C) fCx, y + Ay-) ~f(x, y-) =fjCx, y + d^- Ay) Ay.

[a= yt Aa= Ay, and since y varies while x remains con-l

stant, we get the partial derivative with respect to y.J

Substituting (5) and (C) in (A) gives

(D) Am =fj(x + e^. Ax, y + Ay) Ax +fj(ix, y + 6^. Ay) Ay,

where 6^ and 6^ are positive proper fractions. Dividing (X>) by At,

(^) ^^=f:(x + e^.Ax,y + Ay)^^+fXx,y + d,Ay)^^.

Now let At approach zero as a limit, then

[Since Ax and Ay converge to zero with At, we get

/^(x, y) anAfy'{x, y) heing assumed continuous.

Replacing /(a;, y) by m in {F), we get the total derivative

du du dx du dy
^"^ H^dxH^'dyW
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In the same way, if

w =f(,x, y, s),

and a;, y, z are all functions of t, we get

du du dx du dy du dz
<^^^ di^dxdi'^'dydi^didi'

and so on for any number of variables.*

In (51) we may suppose t = z; then «/ is a function of x, and u is

really a function of the one variable rr/ giving

du du du dy
^^^^ di^si-^-^di'

In the same way, from (52) we have

du du du dy du dz
^^*^ '^'"Vx^Vy'dx^Vzdx

The student should observe that — and -- have quite different
ox ax

du
meanings. The partial derivative — is formed on the supposition that

dx

the particular, variable x alone varies, while

du limit /Am\

dx Aa;:

where Am is the total increment of u caused by changes in all the vari-

ables, these increments being due to the change Ax in the independent

variable. In contradistinction to partial derivatives, — i — are called
dt dx

total derivatives with respect to t and x respectively.^

* This is really only a special case ol a general theorem which may be stated as follows

:

If u is a function of the independent variables x, y, z, ., each of these in turn being a

function of the independent variables r, s, t, • ., then (with certain assumptions as to

continuity) du^duSx_^SuSy_^Sudz_^^_

dr dx dr dy dr dz 3r

, . ., • , , , , S« 3m
and similar expressions hold for— i— , etc.

t It should be observed that— has a perfectly definite value for any point (x,y), while —-

depends not only on the point {x,y), but also on the particular direction chosen to reach that

point. Hence '

g— is called a point function ; while

du .— is not called a point function unless it is agreed to approach
"^ the point from some particular direction.
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Illustrative Example 1. Given u = sin-, x = e' y = f; find —

.

y dt

,,,.. 3ul X du X X dx . dy „Solution. — = - cos - , — = cos - ; — = e*, — = 2 i.

dx y y By y^ y dt dt

Substituting in (51), _ = (t _ 2) - cos- • Ans.

Illustrative Example 2. Given u = e"^ {y — z), y = a sinx, z = cosx ; find —

.

Solution. — = ae^(y — z), — = e<", ^ =_ e<^; J^ = acosi, — =— sins.
8x dy dz dx dx

Substituting in (54),

du— = ae^ (V — z) + ae^ cos k + e°»^ sin x = e^(a^ + 1) sin x. Ans.

Note. In examples like the above, u could, by substitution, be found explicitly in

terms of the independent variable and then differentiated directly, but generally this

process would be longer and in many cases could not be used at all.

Formulas (51) and (52) are very useful in all applications involv-

iag time rates of change of functions of two or more variables. The
process is practically the same as that outliaed in the rule given on

p. 141, except that, instead of differentiating with respect to t (Third

Step), we find the partial derivatives and substitute in (51) or (52).

Let us illustrate by an example.

Illustrative Example 3. The altitude of a circular cone is 100 inches, and
decreasing at the rate of 10 inches per second ; and the radius of the base is 50 inches,

and increasing at the rate of 5 inches per second. At what rate is the volume changing ?

Solution. Let X = radius of base, y = altitude ; then u = -^ mc^y = /^
volume, — = -'TXy, — = -ttx^. Substitute in (51),

du 2 dx 1 „dy— = - irxy 1- - TTX'
dt 3 dt 3 dt

But X
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are called partial differentials. These partial differentials are some-

times denoted by dji, d^u, d^u, so that (56) is also written

du = d^u + d^ + djiL.

y
Illustkative Example 1. Given u = arc tan - , find du.

X
du y Su X

Solution.
~ ~

Sx x" + y^ dy x^ + y'^

Substituting in (55),

, xdy — ydx .

du = Ans.
X2 + 2/2

iLLnSTRATivE EXAMPLE 2. The base and altitude of a rectangle are 5 and 4 inches

respectively. At a certain instant they are increasing continuously at the rate of 2

inches and 1 inch per second respectively. At what rate is the area of the rectangle

increasing at that instant ?

Solution. Let x = base, y = altitude ; then u = xy = area, — = y, — = i.
Sx Sy

.

Substituting in (51),

... du dx
^

dy
(A) — = y \- x-^.
^ ' dt dt dt

But 1 = 5 in., y = i in., — = 2 in. per sec, — = 1 in. per sec.
dt dt

.-. — = (8 + 5) sq. in. per sec. = 13 sq. in. per sec. Ans.
dt

Note. Considering du as an Infinitesimal increment of area due to the infinitesimal

increments dx and dy, du is evideatly the sum of two thin strips added on to the two

.sides. For, in du = ydx + xdy (multiplying (A) by dt),

ydx = area of vertical strip, and dy i

xdy = area of horizontal strip.

But the total increment Au due to the increments dec and V
dy is evidently Au = ydx + xdy + dxdy.

Hence the smaU rectangle in the upper right-hand comer

(= dxdy) is evidently the difference between Au and du.

This figure illustrates the fact that the total increment and the total differential of a

function of several variables are not in general equal.

127. Differentiation of implicit functions. The equation

defines either a; or «/ as an implicit function of the other.* It repre-

sents any equation containing x and y when all its terms have been

transposed to the first member. Let

,, du du
,
du dy . \ ^r,„

* We assume that a small change in the value of x causes only a small change in the

value of y-
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du

dx

dtt
But from (^), f(x, y) = 0. .. m = and — = ; that is,

-' to dy dx

Solving for -^* we get
tu

(57) 1^ = -^, ^=^0

a formula for differeutiating implicit functions. This formula in

the form (C) is equivalent to the process employed in § 62, p. 69,

for differentiating implicit functions, and all the examples on p. 70

may be solved by using formula (57). Since

(-D) /(^, y)=0
for all admissible vaMes of x and y, we may say that (57) gives the

relative time rates of change of x and y which keep f(x, y~) from changing

at all. Geometrically this "means that the point (x, «/) must move on

the curve whose equation is (J>), and (57) determines the direction

of its motion at any instant. Since

•w =/(a^> «/)>

we may write (57) in the form ^y

(57a) ^=._^. ^^0

„ , dy
Illustrative Example 1. Given x^?/* + sin y = 0, find—

•

Solution. 'Letf(x,y) = x^y* + smy.

— = 2xy*, ^=4a;V + oosy. . . from (57 a), -^ = - ^ „ -^f
Ans.

dx ey » ^ " ^ " dx ixV + cosy

Illustrative Example 2. If x increases at the rate of 2 inches per second as it

passes through the value x = 3 inches, at what rate must y change when y = l inch,

in order that the function 2xy^ — 3 x^y shall remain constant ?

Solution. Let/(x, 2/) = 2X2/2 — Sx^y; then

^=2y^-exy, ^=4x2/ -3x2.
dx dy

Substituting in (57 a), ^y

dy _ 2y^-&xy ^^'di _ 2y^-&xy By (33), p. 141

dx ixy-3x^ dx^ ixy-Bx^
di

But X = 3, y = 1, — = 2. •• ^ = - 2,% ft- per second. Ans.
dt at

du 8u
* It is assumed that t— and -r- exist.

ox By
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Let P be the point (x, y, z) on the surface given by the equation
,

(^) u = F(x, y, z) = 0,

and let PC and AP be sections made by planes through P parallel to

the YOZ- and XO^-planes respectively. Along the curve AP, y is

constant; therefore, from (^), z is an im-

plicit function of x alone, and we have,

from (57 a),

(58)
dz

dx'

dF
'dx

W
dz

/ /
s

giving the slope at P of the curve AP, § 122, p. 190.

"dz dz .— is used instead of -- in the first member, since z was origmally,
dx dx

from (jE'), an implicit function of x and y, but (58) is deduced on the

hypothesis that y remains constant.

Similarly, the slope at P of the curve PC is

SF

(59) '^=Jy..
dy dF

'dz

EXAMPLES

Find the total derivatives, using (51), (52), or (53), in the following six examples:

1. It = z^ + )/2 + zj/, 2 = sin s, 2/ = e^. Ans. — = Se^a: -|- e^(sinx + cosx) + sin2a;.
dx

2. u = arc tan (xy), y = g^.

3. u = log(a^— p'), p = a sin 5.

4. u = v'^-\-iiy,v = log s,y = e-'.

5. It = arc sin (r — s), r = 3 i, s = 4t^.

gaxly _ g\
e. u =—;f -, y = asmx, z = cosx.

a^ + 1

du e^(l + x)
Ans. ~=—^——'-

dx 1 + x^e^''

du

~de

dM _ 2 ?) +
ds s

du 8

2 tan 5.

dt Vl - P'

du— = e"^ sm X.
dx

Using (55) or (56), find the total differentials in the next eight examples:

7. M = hyH +cx^ + gy^ + ex. Ans. du = {hy^ + 2cx + e)dx + {2byx + 3gy^)dy.

S. u = logx". du = -dx + log axly.
X
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9. u = y^':. Ans. du = y''^^ log y cos xdx + -?^^^dy.
yCOVCTSX

10. u = x^o,,. du = u(^-2lldx+ ^-^^dy\

.

11. « = i±i. du = ^Ml^^.
s-t (s-i)^

12. M = sin {pq)

.

'

du = cos (pq) {qdp + pd/j]

.

IZ. u = xy. du^xu"-^ (yzdx + zx, log xdy + X2^ log xdz).

14. M = tan^^tan^StanV- tiw = 4u ('-^ + ^^ + _*L_\

.

\sm 2 sin 2 ^ sin 2 fj

15. Assuming the characteristic equation of a perfect gas to be

vp — Rt,

where v = volume, p = pressure, t = absolute temperature, and B a constant, what is

the relation between the difierentials dv, dp, dt ? 4ns. vdp + pdv = Edt.

16. Using the result in the last example as applied to air, suppose that in a given

case we have found by actual experiment that

t = 300° C, p = 2000 lb. per sq. ft., v = 14.4 cubic feet.

Pind the change inp, assuming it to be uniform, when t changes to 301° C, and v

to 14.5 cubic feet. B = 96. Ans. — 7.22 lb. per sq. ft.

17. One side of a triangle is 8 ft. long, and increasing 4 inches per second ; another

side is 5 ft., and decreasing 2 inches per second. The included angle is 60°, and

increasing 2° per second. At what rate is the area of the triangle changing ?

Aivs. Increasing 71.05 sq. in. per sec.

18. At what rate is the side opposite the given angle in the last example increasing ?

Ains. 4.93 in. per sec.

19. One side of a rectangle is 10 in. and increasing 2 in.' per sec. The other side

is 15 in. and decreasing 1 in. per sec. At what rate is the area changing at the end of

two seconds ? Avs. Increasing 12 sq. in. per sec.

20. The three edges of a rectangular parallelepiped are 3, 4, 5 inches, and are each

increasing at the rate of .02 in. per min. At what rate is the volume changing ?

21. A boy starts flying a kite. If it moves horizontally at the rate of 2 ft. a sec.

and rises at the rate of 5 ft. a sec, how fast is the string being paid out ?

Ans. 5.38 ft. a sec.

22. A man standing on a dock is drawing in the painter of a boat at the rate of 2

ft. a sec. His hands are 6 ft. above the bow of the boat. How fast is the boat moving

when it is 8 ft. from the dock ? Ans. \ ft. a sec.

23. The volume and the radius of a cylindrical boiler are expanding at the rate

of 1 cu. ft. and .001 ft. per min. respectively. How fast is the length of the boiler

changing when the boiler contains 60 cu. ft. and has a radius of 2 ft. ?

Am. .078 ft. a min.

24. Water is running out of an opening in the vertex of a conical filtering glass,

8 inches high and 6 inches across the top, at the rate of .005 cu. in. per hour. How
fast is the surface of the water falling when the depth of the water is 4 inches ?
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25. A covered water tank is made of sheet iron in the form of an inverted cone

of altitude 8 ft. surmounted by a cylinder of altitude 5 ft. The diameter is 6 ft. If

the sun's heat is increasing the diameter at the rate of ;002 ft. per min., the altitude

of the cylinder at the rate of .003 ft. per min., and the altitude of the cone at the rate

of .0025 ft. per minute, at what rate is (a) the volume increasing
;

(b) the total area

increasing ?

In the remaining examples find— , using formula (57 a)

:

26. (a;» -\- y^Y - a^ (k^ - 2/^) = o. 4ns. ^ = - "^ '^^^ -+ ^'^ ~ "'

27. e* — e=» + X2/ = 0.

da; 2^ 2 (a;2 + y^) + a*

dy _ (?^—y

dx e« + x

dy y fcos (xy) — ef^— 2 a;l

28. sin (xy) - e»T - x^j/ = 0. — =^ 5__»Z

—

^ Ifl.
dx X [x + e^ — cos {xy)]

128. Successive partial derivatives. Consider the function

then, in general,

du , dv,— and —
dx dy

are functions of both x and y, and may be differentiated again -with

respect to either independent variable, giving successive partial deriva-

tives. Regarding x alone as varying, we denote the results by

d'u
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129. Order of differentiation immaterial. Consider the function

/(a;, y). Changing x into x-\-b.x and keeping y constant, we get from

the Theorem of Mean Value, (46), p. 166,

{£) f(x+Lx,y-)-f(^x,y-)=^x.fl(ix+d.^x,yy Q<e<l
ra= :ir, Aa= Aa:, and since a; varies while y remains con- T

Lstant, we get tlie partial derivative with respect to x.\

If we now change y to y +Ay and keep x and Ax constant, the

total increment of the left-hand member of (^) is

(B), lAx+ Ax, y+Ay} -f(x, y+ Ay-)-\ - Ifix+Ax, y-) ~f(x, t/)].

The total increment of the right-hand member of {A) found by the

Theorem of Mean Value, (46), p. 166, is

((7) Axf!^(x + e.Ax,y^-Ay-)-Axfl(x+e.Ax,y~) 0<e^<l
= AyAxf^^ Cx + e^. Ax, y + O^- Ay). < ^^< 1

ra=y, Aa= Ay, and since y varies while x and Aa: remainl
[constant, we get the partial derivative with respect toy.]

Since the increments (5) and (C) must be equal,

(D) lf(x+ Ax, y + Ay-)-f{x,y+ Ay)-\^lf(x+ Ax, y')-f(x,yy\

= AyAxfJ^ (^x + e^. Ax, y + 0^. Ay).

In the same manner, if we take the increments in the reverse order,

W LfC^ +A«, y+ A«/) -f(x+ Ax, 2/)] - [/(x, y+ Ay) -f(x, y)]

=AxAyf^ (x+e^. Ax, y + 0^- Ay},

0^ and 0^ also lying between zero and unity.

The left-hand members of (J3) and (^) being identical, we have

(P) flL {^+0,- ^^ y.+^,- A2/) =/." Q»+s.- A^, y+e,- Ayy

Taking the limit of both sides as Aa; and Ay approach zero as limits,

we have

since these functions are assumed continuous. Placmg

u=f(x, y'),

(G) may be written

(60)
dydx dxdy

That is, the operations of differentiating -with respect to x and with

respect to y are commutative.
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This may be easily extended to higher derivatives. For instance,

since (58) is true,

8°M a / gV \ d'u _ d^ /du\ _ g" /eu\ d^u

dx^dy dx\dxdy) dxdydx dxdy\dx) dydx\dx) dyda?

Similarly for functions of three or more variables.

Illustrative Example 1. Given u = x^y — 3 x^y^ ; verify = .

dydx dxdy

Solution. —=3x^y-e xy^, = 3 a;^ - 18 xy^,
dx dydx

du d^u— = K^ — 9 x^y^, = 3 x^ — 18 xy^ ; hence verified.
dy czdy

EXAMPLES

verify =
SySx dxdy

., d^u dH
verify =

dydx dxdy

., BH d^u
verify =

dydx dxdy

.„ dH dH
verify =

dr^ds dsdr^

.„ dH dH
verify -

1.



CHAPTER XVI

ENVELOPES

130. Family of curves. Variable parameter. The equation of a

curve generally involves, besides the variables x and y, certain con-

stants upon which the size, shape, and position of that particular

curve depend. For example, the locus of the equation

is a circle vfhose center lies on the axis of X at a distance of a from

the origin, its size depending on the radius r. Suppose a to take on

a series of values ; then we shall have a

corresponding series of circles differing

in their distances from the origin, as

shown in the figure.

Any system of curves formed in this . ,= , -,

•^ "^ O envelope

way is called a family of curves, and the

quantity a, which is constant for any one curve, but changes in pass-

ing from one curve to another, is called a variable parameter.

As will appear later on, problems occur which involve two or more

parameters. The above series of circles is said to be a family depending

on one parameter. To indicate that a enters as a variable parameter it

is usual to insert it in the functional symbol, thus

:

131. Envelope of a family of curves depending on one parameter.

The curves of a family may be tangent to the same curve or groups

of curves, as in the above figure. In that case the name envelope of

the family is applied to the curve or group of curves. We shall now
explain a method for finding the equation of the envelope of a family

of curves. Suppose that the curve whose parametric equations are

(A) x = <j)(a), y=^\r(a)

touches (i.e. has a common tangent with) each curve of the family

(5) f(x,y,a-)=0,
205



206 DIFFERENTIAL CALCULUS

the parameter a being the same in both cases. The slope of (A) at

any point is

and the slope of (-B) at any point is

(D) ^ =-§?^. (57 a), p. 199
^ ^ dx flQc, y, a)

Hence if the curves (A) and (5) are tangent, the slopes (C) and

(D) will be equal (for the same value of a), giving

t'(«) _ fx^^ y^ "')

or

By hypothesis {A} and (B) are tangent for every value of a ; hence

for all values of a the point (x, y) given by {A) must lie on a curve

of the family {B). If we then substitute the values of x and y from

(^) in (5), the result will hold true for all values of a ; that is,

(iT) /[.^(a), -f («),«] = 0.

The total derivative of (i^) with respect to a must therefore vanish,

and we get

where x = ^ (a), 2/ = ^^ («)•

Comparing (E') and (G) gives

(5-) /i(x, «/,«)= 0.

Therefore the equations of the envelope satisfy the two equations

(5) and (-ff), namely,

(/) /(», «/, a) = and /i(a;, y, a) = ;

that is, the parametric equations of the envelope may be found by

solving the two equations (J) for x and y in terms of the parameter a.

General directions for finding the envelope.

FiKST Step. Differentiate with respect to the variable parameter, con-

sidering all other quantities involved in the given equation as constants.

Second Step. Solve the result and the given equation of the family of

curves for x and y in terms of the parameter. These solutions will he the

parametric equxdions of the envelope.
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Note. In ease the rectangular equation of the envelope is required we

may either eliminate the parameter from the parametric equations of the

envelope, or else eliminate the parameter from the given equation (IT) of

the family and the partial derivative (H').

Illustrative Example 1. Find the envelope of the family of straight lines

s cos a + y sin a = p, a being the variable parameter.

Solution. (A) X cos a + ysma = p.

First step. DifEerentiating {A) with respect to a,

(B) —xsina + y cos a = 0.

Second step. Multiplying {A) by cos a and (B) by sin a and subtracting, we get

x — p cos a.

Similarly, eliminating x between (A) and (B), we get

y = psin a.

The parametric equations of the envelope are therefore

'x=p cos a,

' = p sin a,

a being the parameter. Squaring equations (C) and add-

ing, we get
a;2-l- 2/2=^)2,

the rectangular equation of the envelope, which is a circle.

Illustrative Example 2. Find the envelope of a line of constant length a, whose

extremities move along two fixed rectangular axes.

Solution. Let AB = a in length, and let

(A) X cos a + ysina—p =

be its equation. Now as AB moves always touching the two axes, both a and p
will vary. But p may be found in terms of a. For AO = AB oosa = a cos a, and

p = A sin or = a sin a cos a. Substituting in {A), ^
(B) X cos a + J/ sin a: — a sin or cos a = 0,

•where a is the variable parameter. Differentiating (B)

with respect to a,

(C) —xsina + ycosa+'a sin^ a — a cos^ a = 0.

Solving (B) and (C) for x and y in terms of a, we get

(C)

m (x = asin^or,

\y = acos^a.

the parametric equations of the envelope, a hypocycloid.

The corresponding rectangular equation is found from equations (D) by eliminat-

ing a as follows :
•

i. i. o^' xt = at sm^ a.

yi = ai CDs' x.

Adding, xi + yi = of,

the rectangular equation of the hypocycloid.



208 DIFFERENTIAL CALCULUS

Illhstrativb Example 1. Find the rectangular equation of the envelope of the

V
straight line y = mx + — , where the slope m is the variable parameter.

Solution.

First step.

y = ma; + ;

= x-

'» = ±A--
P.

Solving,

Substitute in the given equation,

y=±^l.X±-yjyp=±2V^,

and squaring, y^ = ipx, a parabola, is the equation of the envelope. The family of

straight lines formed by varying the slope m is shovyn in the figure, each line being
n

tangent to the envelope, for we know from Analytic Geometry that y = mx H— is

the tangent to the parabola y^ = ipx expressed in terms of its own slope m.

132. The evolute of a given curve considered as the envelope of its

normals. Since the normals to a curve are all tangent to the evolute,

§ 118, p. 181, it is evident that the evolute of a

curve may also he defined as the envelope of its

Twrmals ; that is, as the locus of the ultimate

intersections of neighboring normals. It is also

interesting to notice that if we find the para-

metric equations of the envelope by the method

of the previous section, we get the coordinates

X and y of the center of curvature ; so that we
have here a second -method for finding the coor-

dinates of the center of curvature. If we then eliminate the variable

parameter, we have a relation between x and y which is the rectan-

gular equation of the evolute (envelope of the normals).

Illdstkative Example 1. Find the evolute of the parabola y^ = ipx considered

as the envelope of its normals.

Solution. The equation of the normal at any point (x', y^ is

from (2), p. 77. As we are considering the normals all along the curve, both i' and if

will vary. Eliminating x' by means of y-^ = i^px', we get the equation of the normal to be

'''en cur«^

.(^) V — y = — —

.

Sp^ 2p
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Considering y' as the variable parameter," we wish to find the envelope of this

family of normals. Differentiating (A.) with respect to y\

l = it-^
and solving for x.

X

2p'

Sy'^ + 8p^

4p

Substituting this value of x in (A) and solving for y,

(C) y= —
4p2

(B) and (C) are then the coSrdinates of the center of curvature of the parabola.

Taken together, (B) and (C) are the parametric equations of the evolute in terms of

the parameter y'. Eliminating y' between (B) and (C) gives

27^)2/2 = 4 (x-2p)3,

the rectangular equation of the evolute of the parabola. This is the same result we
obtained in Illustrative Example 1, p. 183, by the first method.

133. Two parameters connected by one equation of condition. Many
problems occur where it is convenient to use two parameters con-

nected by an equation of condition. For instance, the example given

in the last section involves the two parameters x' and y' which are

connected by the equation of the curve. In this case we ehminated

a;', leaving only the one parameter y'.

However, when the elimination is difficult to perform, both the

given equation and the equation of condition between the two param-

eters may be differentiated with respect to one of the parameters,

regarding either parameter as a function of the other. By studying

the solution of the following problem the process will be made clear.

Illustrative Example 1. Find the envelope of the family of ellipses whose axes

coincide and whose area is constant.

Solution. {A) + ^- = 1

is the equation of the ellipse where a and

b are the variable parameters connected by

the equation

(B) TTob = k,

Tcah being the area of an ellipse whose semi-

axes are a and 6. • Differentiating (A) and

(B), regarding a and 6 as variables and x and

y as constants, we have, using differentials,

- + = 0, from (A),

and bda + adb : 0, from {B).
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Transposing one term in each to the second member and dividing, we get

x2 ^ yi

x^ 1 ,V^\
Therefore, from (4), — = - and — = -

,

giving a = ± » V2 and 6 = ± 2/ V2.

Substituting these values in (B), we get the envelope

A;

X2^ = ±— .

a pair of conjugate rectangular hyperbolas (see last figure).

EXAMPLES

1. Find the envelope of tlie family of straight lines y = imx + m*, m being the

variable parameter. Am. x =— 2m?, y =— 3m* ; ot Wy^ + 27x* = 0.*

2. Find the envelope of the family of parabolas y^ = a(x — a), a being the

variable parameter. ^tis. x = 2a,y = ±a; ovy = ±^x.

3. Find the envelope of the family of circles x'' + (y — pf = r^, /3 being the

variable parameter. Ans. x = ±r.

4. Find the equation of the curve having as tangents the family of straight lines

y = mx ± ^a^nfi + V^, the slope m being the variable parameter.

A-ns. The ellipse ft^x^ + aV = a^^-

5. Find the envelope of the family of circles whose diameters are double ordi-

nates of the parabola y^ — ipx. Ans. The parabola y^ = 4p{p + x).

6. Find the envelope of the family of circles whose diameters are double ordi-

nates of the ellipse 6^x2 + aV = a^*^- . rr,, „. x^ y^
Ans. The ellipse 1- _ = 1.

7. A circle moves with its center on the parabola y^ = 4ax, and its circumference

passes through the vertex of the parabola. Find the equation of the envelope of the

circles. Ans. The cissoid y^ (x + 2 a) + x' = 0.

8. Find the curve whose tangents are y = lx ± VoP + bl + e, the slope I being

supposed to vary. Ans. i(ay^ + bxy + cx^) = iac — V.

9. Find the evolute of the ellipse 6^x2 + a^y^ = a^lfi, taking the equation of nor-

mal in the form
b^/ = ax tan - (a2 _ ft2) gjn ^^

the eccentric -angle <fi being the parameter.

Ans. X = cos' (p,y =—-— sm' ^ ; or (ax)* + (6^^)* = (a2 - 62)t.

10. Find the evolute of the hypocycloid xi + y^ = a^, the equation of whose
"°™^1'^ J/cosr-xsinr = acos2r,

T being the parameter.^ Ans. (x + y)i + {x-y)i = 2a^.

* When two answers are given, the first is in parametric form and the second in rec-
tangular form.



ENVELOPES 211

11. Find the envelope of the circles which pass through the origin and have
their centers on the hyperbola -3? — y'' = &.

Ans. The lemniscate (x" + y')^ = ic^(x^ — y^).

12. rind the envelope of a line such that the sum of its intercepts on the axes

equals c. Ans. The parabola x^ + yi = c^.

13. Find the equation of the envelope of the system of circles x^ + y^ — 2{a + 2)x

+ a^ = 0, where a is the parameter. Draw a figure illustrating the problem.

Ans. y^ = ix.

14. Find the envelope of the family of ellipses Wx"^ + a?y^ = a?b^, when the sum
of its semiaxes equals c. Ans. The hypocycloid s* + y^ = c*.

15. Find the envelope of the ellipses whose axes coincide, and such that the dis-

tance between the extremitres-of~the major and minor axes is constant and equal to I.

Ans. A square whose sides are (a; ± yY = P.

16. Projectiles are fired from a gun with an initial velocity u„. Supposing the gun
can be given any elevation and is kept always in the same vertical plane, what is the

envelope of all possible trajectories, the resistance

of the air being neglected ? y
Hint. The equation of any trajectory is

2/ = a: tan a ^ ,

o: being the variable parameter. „

^n QX^
Ans. Thfe parabola y = s ^—5

2 ff 2 i!|f

17. Find the equation of the envelope of each of the following family t)f curves,

t being the parameter ; draw the family and the envelope

:

(a) (x-tY + y''=l- P. (i) {x - ty + y^ = it.

(b) x^ + {y-tY=2t. (j) a;2 + (v-02 = 4-i2.

(c) (x-i)2 + 2/2 = ^*2-1. (k) (x-tf + {y-tf = t^.

(d) x-' + iy- tf = \ P. (1) (X - Q2 + (y + i)2 ^ i2.

(e) v = tx + 42. (m) y = Px + t.

(f) X = 2iy + <*. (ri) y = t(z- 2«).

(S)V = te, + \- (o)x = '^ + f.

(h)y^ = t(x + 2t). '
(p) (x-«)2 + 42/2 = t.



CHAPTER XVII

SERIES

134. Introduction. A series is a succession of separate numbers

which is formed according to some rule or law. Each number is

called a term of the series. Thus

1, 2, 4, 8, ..., 2»-^

is a series whose law of formation is that each term after the first is

found by multiplying the preceding term by 2 ; hence we may write

down as many more terms of the series as we please, and any particu-

lar term of the series may be found by substituting the number of that

term in the series for n in the expression 2"~^, which is called the

general or n\h term of the series.

• EXAMPLES
In the following six series :

(a) Discover by inspection the law of formation
;

(b) write down several terms more in each
;

(c) find the nth or general term.

Series nth term

1. 1, 3, 9, 27, •••. 3--1.

2. — a, + a^, —a", + a*, •

.

(— a.)".

3. 1, 4, 9, 16, • •

.

n=.

x" l' X* X"
4. X, —,—,—, . —

2 3 4 n

5. 4, -2, -1^1, -1. ... 4(-^)»-i.

6. —
2 ' 5 ' 10 '

""
b2 + 1

y".

Write down the first four terms of each series whose nth or general term is given

below :

riih term Seiies

7- n^x".
j;, ix2, 9x\ 16 x«.

8.
X X'' x»

9.

1+V^ 2'
1 + V2' 1 + V3' i+Vi

n' + l 2' 9' 28' 6§'

212
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10 — 1 ? ? A
2»' 2' i' 8' 16'

11.
(loga)''g" logg-a: loggg-s^ loggg-a^ log^a-a;*

E 1 ' 2 " 6 24

^2
(_l)»-lE2n-2 1 ^3.2 3.4 ^3.6

•^2n-l • r [3' [5' [7-

135. Infinite series. Consider the series of n terms

(4) 1, -' T' -'
2 4 8 '

2»-i'

and let ;5^„ denote the sum of the series. Then

Evidently S^ is a function of n, for

when w = 1, (S'j = 1 =1,

when 71=2, 'Sr,= l+
|

=1^,

when n=3, ^,= l + i + l =13,

whenn = 4, S=l + \ + \ + \
=1|,

when w = w, ;Sf„=l + i + i + 3 + ---+^ =2--'-
2 4 8 2"-i 2"-'-

Mark off points on a straight line whose distances from a fixed

point correspond to these different sums. It is seen that the point

'
k—i-i^"

corresponding to any sum bisects the distance between the preceding

point and 2. Hence it appears geometrically that when n increases

without limit limit S„= 2.

We also see that this is so from arithmetical considerations, for

limit „ _ hmit (2 _ ^ \ =2 ^

n = oD " n = oo\ 2""^'

Since when n increases -witliout limit —— approaches zero as a limit.

* Found by 6, p. 1, for the sum of a geometric series.

t Such a result is sometimes, for the sake of brevity, called the sum of the series ; but

the student must not forget that 2 is not the sum but the limit of the sum, as the number of

terms increases without limit.
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We have so far discussed only a particular series (^) when the

number of terms increases without limit. Let us now consider the

general problem, using the series

((7) Mj, M^, M3, M^, •••,

whose terms may be either positive or negative. Denoting by S^ the

sum of the first n terms, we have

S^= u^+ u^+ u^ -i h w„,

and S^ is a function of n. If we now let the number of terms (= n)

increase without limit, one of two things may happen : either

Case I. S„ approaches a limit, say u, indicated by

l™it ,<?=„; or71=00" '

Case II. S„ approaches no limit.

In either case (C) is called an infinite series. In Case I the infinite

series is said to be convergent and to converge to the value u, or to have

the value u, or to have the sum u. The infinite geometric series dis-

cussed at the beginning of this section is an example of a convergent

series, and it converges to the value 2. In fact, the simplest example

of a convergent series is the infinite geometric series

a, ar, ar'^, ar^, ar*, • • •

,

where r is numerically less than unity. The sum of the first n terms

of this series is, by 6, p. 1,

a(l — r") _ a ar""S='
\—r 1—r 1—r

If we now suppose n to increase without limit, the first fraction on

the right-hand side remains unchanged, while the second approaches

zero as a limit. Hence
limit a

w = CO 1 — r

a perfectly definite number in any given case.

In Case II the infinite series is said to be nonconvergent* Series

under this head may be divided into two classes.

First Class. Divergent series, in which the sum of n terms increases
'

indefinitely in numerical value as n increases without limit ; take for

example the series

8^=1+2 + 2, + . ..+n.

* Some writers use divergent as equivalent to nonconvergent.
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As n increases without limit, S^ increases without limit and there-

fore the series is divergent.

Second Class. Oscillating series, of which

-S„=l-l + l^l+--. + (-l)-i

is an example. Here S^ is zero or unity according as n is even or odd,

and although 8^ does not become infinite as n increases without limit,

it does not tend to a limit, but oscillates. It is evident that if all the

terms of a series have the same sign, the series cannot oscillate.

Since the sum of a converging series is a perfectly definite number,

while such a thing as the sum of a nonconvergent series does not ex-

ist, it follows at once that it is absolutely essential in any given prob-

lem involving infinite series to determine whether or not the series is

convergent. This is often a problem of great difficulty, and we shall

consider only the simplest cases.

136. Existence of a limit. When a series is given we cannot in

general, as in the case of a geometric series, actually find the number

which is the limit of S^. But although we may not know how to

compute the numerical value of that hmit, it is of prime importance

to know that a limit does exist, for otherwise the series may be non-

convergent. When examining a series to determine whether or not it

is convergent, the following theorems, which we state without proofs,

are found to be of fundamental importance.*

Theorem I. If S^ is a variable that always increases as n increases,

but always remains less than some definite fixed number A, then as n

increases without limit, S„ will approach a definite limit which is not

greater than A.

Theorem II. If *S„ is a variable that always decreases as n increases,

hut always remains greater than some definite fixed number B, then as n

increases without limit, S„ will approach a definite limit which is not less

than B.

Theorem III. The necessary and sufficient condition that S^ shall

approach some definite fixed number as a limit as n increases without

limit is that
^^^^^_

for all values of the integer p.

* See Osgood's Introduction to Infinite Series, pp. 4, 14, 64.
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137. Fundamental test for convergence. Summing, up first n and

theii n+p terms of a series, we have

Subtracting (^) from (J?),

From Theorem III we know that the necessary and sufficient condi-

tion that the series shall be convergent is that

for every value of p. But this is the same as the left-hand mem-

ber of (C) ; therefore from the right-hand member tlie condition

may also be written

(D) ^^l K+1+ "„+.+ • + ^„+.) = 0.

Since (X*) is true for every value of p, then, letting jo= 1, a necessary

condition for convergence is that

limit ^„, N A

.

or, what amounts to the same thing,

Hence, if the general (or wth) term of a series does not approach

zero as n approaches infinity, we know at once that the series is non-

convergent and we need proceed no further. However, (^) is not a

sufficient condition ; that is, even if the nth term does approach zero,

we cannot state positively that the series is convergent ; for, consider

the harmonic series 111 1

*-' o' q' 7' ' ~"
z d 4 n

Here "-"it
(m„) = l™it

f
1^ = ;

that is, condition (^) is fulfilled. Yet we may show that the harmonic

series is not convergent by the following comparison

:

W i + K[i + i] + [t + K^ + i] + [K---TV] + ---
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We notice that every term of (G) is equal to or less than the cor-

responding term of (i^), so that the sum of any number of the first

terms of (i^) will be greater than, the sum of the corresponding terms

of ((?). But since the sum of the terms grouped in each bracket in

(G} equals ^, the sum of ((?) may be made as large as we please by

taking terms enough. The sum ((?) increases indefinitely as the num-

ber of terms increases without limit; hence (G*), and therefore also

(J^), is divergent.

We shall now proceed to deduce special tests which, as a rule, are

easier to apply than the above, theorems.

138. Comparison test for convergence. In many cases, an example of

which was given in the last section, it is easy to determine whether or

not a given series is convergent by comparing it term by term with

another series whose character is known. Let

be a series of positive terms which it is desired to test for convergence. If

a series of positive terms already known to he convergent, namely,

(-B) a^+a^+a^+---,

can he found whose terms are never less than the corresponding terms in

the series (A) to he tested, then (J) is a convergent series and its sum

does not exceed that of (-B).

Proof. Let s„= u^+ u^+ u^-\ \-u^,

and -S„= «j+ a^-^a^-\ h «„

;

and suppose that ^_ ^S^= A.

Then, since 'Sn<^ and s„^<S„,

it follows that s„<A. Hence, by Theorem I, p. 215, s„ approaches a

limit ; therefore the series (A) is convergent and the limit of its sum

is not greater than A.

Illustrative Example 1. Test the series

iC) i + | + ^ + i + P + ---

Solution. Eacli term after the first is less than the corresponding term of the geo-

metric series

m l + --H^ + ^ + ^+---,

which is known to be convergent ; hence (C) is also convergent.
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Following a line of reasoning similar to that applied to (^) and

(-B), it is evident that, if

(-©) Ml+ M,+ «,+ ••

is a series of positive terms to be tested, which are never less than the

corresponding terms of the series of positive terms, namely,

known to he divergent, then (-&) is a divergent series.

Illustrative Example 2, Test the series111
V2 V3 Vi

Solution. This series is divergent, since its terms are greater than the corresponding

terms of the harmonic series , ^
^

1 + - + - + -..;

which is known (pp. 216, 217) to be divergent.

iLLusTitATivE ExAMPLB 3. Tcst the foUowing series (called the p series) for dif-

ferent values otp:
^ ^ ^

Solution. Grouping the terms, we have, when p > 1,

— + — — + — - — -_!_
2p Sp 2p 2p~ 2p~ 2p-^'

1+1+1+1 <1+1+1+1^1^/J_V
ip bP &p IP ip ip ip 4.P 4p \2p-^/11 1 1 1 1 1 1 1 18/1\3

Sp 15p 8p 8^ 8* 8p 8? 8^ "'"
8p

"*"

8p ~ 8p ~ \2p^/ '

and so on. Construct the series

'-> ^-^,H^:}'H^)'*
When p>l, series (H) is a geometric series with the common ratio less than unity,

and is therefore convergent. But the sum of (G) is less than the sum of (J?), as shown
by the above inequalities ; therefore (G) is also convergent.

When p = l, series (G) becomes the harmonic series which we saw was divergent,
and neither of the above tests apply.

When p<l, the terms of series (G) will, after the first, be greater than the corre-
sponding terms of the harmonic series ; hence (G) is divergent.

139. Cauchy's ratio test for convergence. Let

be a series of positive terms to be tested.
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Divide any general term by the one that immediately precedes it

;

It

Le. form the test ratio -^^ •

u„

As n increases without limit, let -^^ = p.
n = cc u„ '^

I. When p < 1. By the definition of a limit (§ 13, p. 11) we can

choose n so large, say n = m, that when n = m the ratio -s^*^ shall

differ from p by as little as we please, and therefore be less than a

proper fraction r. Hence

and so on. Therefore, after the term m„, each term of the series (J)

is less than the corresponding term of the geometrical series

(B) uj-+uy+uy + --:

But since r < 1, the series (jB), and therefore also the series (^),

is convergent.*

II. When p> 1 (or /a = oo). Following the same line of reasoning

as in I, the series (A) may be shown to be divergent.

III. When p= l, the series maybe either convergent or divergent;

that is, there is no test. For, consider the p series, namely,

l+2; + 3^ + 4; + '"'+^+(w+l)i'"'"""'

The test ratio is ^^^ =/^L^Y=( 1- ^)"n+lj \ n +

^^ limit fu^\ limit L 1 y^(i^.^l^_ ).

Hence /> = 1, no matter what value p may have. But on p. 218 we

showed that
^^^^^ p>l, the series converges, and

when ^ ^ 1, the series diverges.

Thus it appears that p can equal unity both for convergent and for

divergent series, and the ratio test for convergence fails. There are other

tests to apply in cases like this, but the scope of our book does not

admit of their consideration.

* When examining a series lor convergence we are at liberty to disregard any finite

number of terms; the rejection of such terms would affect the value but not the existence

of the limit.
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Our results may then be stated as follows

:

Given the series of positive terms

M1+M2+M8+ +"«+""+!+'

find the limit
limit /«^
w = co\ u

I. When /><!,* the series is convergent.

II. When /3 > 1, the series is divergent.

III. When p=l, there is no test.

140. Alternating series. This is the name given to a series whose

terms are alternately positive and negative. Such series occur fre-

' quently in practice and are of considerable importance.

If Mj-1(,,+ M3- «,+ ••

is an alternating series whose terms never increase in numerical value,

and if
^^"""^ M„ = 0,

then the series is convergent.

Proof. The sum of 2 n (an even number) terms may be written in

the two forms

{A) S^^ = (u^-u^) + (u^-u^) + (u^-u^)+---+(u^^_-,-u^,), or

Since each difference is positive (if it is not zero, and the assump-

tion ™ "„= excludes equality of the terms of the series), series (A)

shows that S,^^ is positive and increases with w, while series (5) shows

that S^^ is always less than u^; therefore, by Theorem I, p. 215, 62„'must

approach a limit less than u^when n increases, and the series is convergent.

Illustrative Example 4. Test the alternating series 1
1

!-•

Solution. Since each term is less in numerical value than the preceding one, and

71 = 00 ^^' »i = CO \^ri/

the series is convergent.

141. Absolute convergence. A series is said to be absolutely^ or

unconditionally convergent when the series formed from it by making

all its terms positive is convergent. Other convergent series are said

* It is not enough that Un + i/Un becomes and remains less than unity for all values of n,

but this test requires that the limit of Wn + i/un shall be less than unity. For instance, in the

case of the harmonic series this ratio is always less than unity and yet the series diverges as

we have seen. The limit, however, is not less than unity but equals unity.

t The terms of the new series are the numerical (absolute) values of the terms of the

given series.
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to be not absolutely convergent or conditionally convergent. To this

latter class belong some convergent alternating series. For example,

the series 1111
22 ^33 44 -t-

56

is absolutely convergent, since the series (C), p. 217, namely,

is convergent. The series

1+22 + 38 + 44+55 + -

2^3 4^5

is conditionally convergent, since the harmonic series

i+-2n+i4+-
is divergent.

A series with terms of different signs is convergent if the series deduced

from it by making all the signs positive is convergent.

The proof of this theorem is omitted.

Assuming that the ratio test on p. 219 holds without placing any

restriction on the signs of the terms of a series, we may summarize

our results in the following

General directions for testing the series

«!+ "2+ M3+ M^H 1- 1«„+ w„+iH •

When it is an alternating series whose terms never increase in numer-

ical value, and if limit
, . _ n

n. = CO " '

then the series is convergent.

In any series in which the above conditions are not satisfied, we deter-

mine the form of u^ and m„^i and calculate the limit

limit /m„ + i\

n = c\ u„ j

I. When\p\<\, the series is absolutely convergent.

II. When 1/3 1
> 1) the series is divergent.

III. When |p|= l, there is no test, and we should compare the series

with some series which we know to be convergent, as

a + ar -\- ar^ -\- ar"^ -\ ; r < 1, {geometric series)

l+^ +^ +
i-,
+ '--; F>1' (i> series)
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or compare the given series with some series which is known to be

divergent, as 1,1. 1 + 1-1... .• (harmonic series)
"^2 3 4

'

l4-i--|-— 4-— +•••; p<l- (^series)"

iLMiBTRATivE EXAMPLE 1. Test the serfes

1 _ 1

Solution. Here "n = i

——:, ^ + ^^\n'

limit/"» + i\_ limit /_^.\ limitA^\ limit /l\o(^)_
n = <x{lir)'~n = o=\ 1 -n = co\^ [n / n = co\nJ

and by I, p. 221, the series is convergent.

11 12 [3

Illustbative Example 2. Test the series
3^ + ][^

+
Yo«

+ ' '

'

•

^ _ l7t+l
Solution. Here """^10^' '*" + '" lO^+i'

limit/?Wi\_ limit /l!;i±1^10"\_ limit/n + l\ .^. -

n = <x\ it„ }~n = <x>\lOn-i-i JnJ n = a>\ 10 /

and by II, p. 221, the series is divergent.

Illustrative Example 3. Test the series

1,1,1,
(^) 1:2 + 3:4 + 5:6+•
Solution. Here ^ = —-1^^, ,^ + , = __^^^^-^

.

limit /y^ + i\ ^ limit [" (2m-l)2rt 1 ^ co

'" = «'\'tn/ " = «=L(2n + l)(2Ti + 2)J 00

This being an indeterminate form, we evaluate it, using the rule on p. 174.

limit /Sn — 2\ oo
Difierentiatxng,

^L-^t^ (__) = _

.

Differentiating again, ^^™'^Q = 1 (= p)

.

This gives no test (III, p. 221). But if we compare series (C) with (G), p. 218,

making p = 2, namely,

W ^ +
i5
+ 3i + 5 + ---'

we see that (C) must be convergent, since its terms are less than the corresponding

terms of (D), which was proved convergent.
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EXAMPLES

.Show that the following ten series are convergent

;

12 22 32

' 2
"*"

22
"*"

28
"""

2^
"^
"

'•r2 + 3^ + 5^ + '

1 1^3 1,3^
3 3-6 3.6.9

^| +
[|
+ [?+--

6. 1 + -!= +^ + -^ +
2V2 3V3 4Vi

7.i-Jt+JL-JL + JL_....

8.1-1. 1 + 1. l_l.i + .

2 2 22 3 2' 42*

9. JL_J_ +J .

log 2 log 3 log 4

10.1+1+1 + ....
22 32 42

Show that the following four series are divergent

:

11.1 + 1 + 1+....
2 4 6

i2.a + l±A + l±l + l±l + .

1 + ! 1 + 32 1 + 42

2 3 [i
13. ^ + i=i + -b. + .

10 102 103
^

14.1 + 1 + 1 + 1 + ..

3 5 7

142. Power series. A series of ascending integral powers of a vari-

able, say X, of the form

\ (.4) a^+ a^z + a^x''+ a^ -\ ,

where the coefficients a^, a^, a^, are independent of x, is called a

power series in x. Such series are of prime importance in the further

study of the Calculus.

In special cases a power series in x may converge for all values of x,

but in general it will converge for some values of x and be divergent for

other values of x. We shall examine (^) only for the case when the

coefficients are such that
limit /^+i
w = 00 \ a,

where X is a definite number. In (A)

limit /m„ + i\ limit /a„ + i^

= i,

= ^^^('^\.x=Lx.
n=cc\ a

Referring to tests I, II, III, on p. 221, we have in this case p = Lz,

and hence the series (^) is

I. Absolutely convergent when
|

ia;
|
< 1, or

|

a;
|

< —

II. Divergent when
|

ia;
|
> 1, or

|
a;

|
> —

III. No test when I ia; I
= 1, or \x\ =
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We may then write clown the following

General directions for finding the interval of convergence of the

power series,

(^) a„+ "i'' + «2* + «s«= +

FiKST Step. Write down the series formed hy coefficients, namely,

a„+ai+«2+«3+ • + «„+«„ + ! + ••

Second Step. Calculate the limit

limit /«„ + !

w = CO I a.

L.

Third Step. Then the power series (A) is

I. Absolutely convergent for all values of x lying between

and +

II. Divergentfor all values ofx less than —
1

III. No test when x= ±

or greater than +

; but then we substitute these two values of

X in thepower series (^A) and apply to them the general directions on p. 221.

Note. When L = 0, ± — =±qo and the power series is ahsolutely
J-/

convergent for all values of x.

Illustrative Example 1. Find the interval of convergence for the series

(B)
X'- a;= X'

22 '32 42
^

Solution. Firssl step. The series formed by the coefficients is

1
(C)

11-
1

1
1-..

22 32 42
^

Second step.
"'"'t (?:^ = l™it

[
n=_ 1 ^ „

i = <»\a„/ n=coL (w + l)2j 00

Differentiating, 1™'* / ^" \ = fE.
n = <x>\ 2(ji + l)/ "

Differentiating again, ^'°"*
( — _ 1 = — 1 f= il

7l = ao\ 2/
'

Third step.
\L\ 1-1

= 1.

By I the series is absolutely convergent when x lies between — 1 and + 1.

By II the series is divergent when x is less than — 1 or greater than + 1.

By III there is no test when x = ± 1.
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Substituting x = 1 in {B), we get

l_iH.i_i +
22 ^32 42

^

which is an alternating aeries that converges.

Substituting a; = — 1 in (B), we get

22 32 42 '

which is conrergent by comparison with the p series (p>l).

The series m "the above example is said to have [— 1, 1] as the interval of conver-

gence. This may be written — 1 ^ s ^ 1, or indicated graphically as follows

:

J^

EXAMPLES

Per what values of the variable are the following series Graphical representations of

. n intervals of convergence *
convergent ? .

15. 1 + x + x^ + x' -\
. Ans. -l<a;<l. Q I ®

-1 +1

3.2 3.3 3.4
I

16. a;-- + ---- + ---. Ans. -Kx^l. @ 1

2 3 4 -1.0+1

17. x + x* + x« + x^^ + Ans. - 1< a: < 1.

-1 +1

18. a; +— +— H . Ans. - 1 ^ a; < 1.

V2 V3 -1 +1

X^ X^ ^ A 11 1 T -<=°
I +=••--- '"—'----of a;. -e 1 *-19. 1 + x + i l-i—!-••. Ans. All values

[2 [3

20. 1 - ^ + ^ _
f! + . .

.

.

Ans. All values of &. -£ | ^
^-^[I-[6-

21. _ p + .r— p_ ^ . .
.

.

Ans. All values of 0. .^f | ^[3+^-!T + --

„ sin a sin 3 a sin 5 or -» I -*^

12' 32 52

^ns. All values of a.

* End points that are not included in the interval of convergence have circles drawn

about them.
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1 xs 1-3 £= 1.3.5 a;''
,

26. X + --- + -—;• — + ———. —

+

GrapMcal representations ot

intervals of convergence *

„„ cosx , cos2x ,
cos3x

, a ^ n I +oo
23. . Ans. x>0. I T~

Hint. Neither the sine nor cosine can exceed 1 numer-
ically.

24. l + xlog» +-^ + -jg- + ....
, ^

J
^

Ans. All values of x.

2B. 1 1 H . Ans. x > 1. 1 ® »
l + xl + x^l + x' o-tl

2 3 2-4 5 2-4.6 7 -1 +i

.4ns. — l=x^l.

27. 1 + X+ 2x2 + 3xs + ---.

28.x-^ + ^-^ + ....
3 5 7

29. lOx + 100x2 + lOOOxS + • •.

30. 1 + X + [2x2 + |3x' + • •

.

* End points that are not included in the interval of convergence have circles drawn
about them. ,



CHAPTER XVIII

EXPANSION OF FUNCTIONS

143. Introduction. The student is already familiar with some
methods of expanding certain functions into series. Thus, by the

Binomial Theorem,

(A-) (a + xy=a'+4. a'x + 6 aV+ 4 ax'+x',

giving a finite power series from which the exact value of (a + x")*

for any value of x may be calculated. Also by actual division,

(-B) -J—=l + x + x'+x'+-..+x''-' + (-l-)3^,
i —X \l—x/

we get an equivalent series, all of whose coefficients except that

of 3f are constants, n being a positive integer.

Suppose we wish to calculate the value of this function when

x= .5, not by substituting directly in

1

T^x'

but by substituting a; = .5 in the equivalent series

((7) (l + x + x'+x'+.-. + x'^-'y + L-^x^.

Assuming w = 8, ((7) gives for x = .5

(m -^ = 1.9921875 + .0078125.
1—x

If we then assume the value, of the function to be the sum of

the first eight terms of series (C), the error we make is .0078125.

However, in case we need the value of the function correct to two

decimal places only, the number 1.99 is as close an approximation

to the true value as ifve care for, since the error is less than .01.

It is evident that if a greater degree of accuracy is desired, all we

need to do is to lise more terms of the power series

(^) l + x + x^+ x'+--..

227
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Since, however, we see at once that

LI — a;Jx=.5

there is no necessity for the above discussion, except for purposes

of illustration. As a matter of fact the process of computing the

value of a function from an equivalent series into which it has

been expanded is of the greatest practical importance, the values

of the elementary transcendental functions such as the sine, cosiue,

logarithm, etc., being computed most simply in this way.

So far we have learned how to expand only a few special forms into

series ; we shall now consider a method of expansion applicable to an

extensive and important class of functions and called Taylor's Theorem.

144. Taylor's Theorem * and Taylor's Series. Replacing J by a;

in (-2^), p. 167, the extended theorem of the mean takes on the form

(61) /(x) =/(a) +^^fXd) + l£^V"(a) + (£^V'"(a) + • • •

Li Lf If

where x^ lies between a and x. (61), which is one of the most far-

reaching theorems in the Calculus, is called Taylor s Theorem. We
see that it expresses /(j-) as the sum of a finite series in (a; — a).

^^ (jr\^

The last term in (61), namely -^-j

—

—/^"Xx^}, is sometimes called

I!!:

the remainder in Taylor's Theorem after n terms. If this remainder

converges toward zero as the number of terms increases without limit,

then the right-hand side of (61) becomes an infinite power series

called Taylor's Scries.'^ In that case we may write (61) in the form

(62) fCx)^f(a) + ^^/'(a) + ^^^/"(a) + (£^/"'(a) + . .

.

,

and we say that the function has been expanded into a Taylor's Series.

For all values of .; for which the remainder approaches zero as n

increases without limit, this series converges and its sum g'ives the

exact value of /(a;), because the difference (= the remainder) between
the function and the sum of n terms of the series approaches the

limit zero (§ 15, p. 13).

* Also known as Taylor'a Formula.

t Puljlished by Dr. Brook Taylor (1685-1731) in his Methodus Incrementorum. London,
1715.
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If the series converges for values of x for which tlie remainder

does not approach zero as n increases without hmit, then the Hmit

of the sum of the series is not equal to the function /(x).

The infinite series (62) represents the function for those values of x,

and those only, for which the. remainder approaches zero as the num-

ber of terms increases without limit.

It is usually easier to determine the interval of convergence of

the series than that for which the remainder approaches zero ; but in

simple cases the two intervals are identical.

When the values of a function and its suecessive derivatives are

known for some value of the variable, as x = a, then (62) is used

for iinding the value of the function for values of x near a, and (62)

is also called the expansion off(x') in the vicinity of x = a.

Illustrative Example 1. Expand log a; in powers of (a; — 1).

Solution. /(z) = log X, /(I) = ;

f'(x) =
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EXAMPLES *

1. Expand & in powers otx-2. Ans. eF = e^ + e^ (x - 2) + r^(x - 2f +

2. Expand x' — 2x2 + 5a; — 7 in powers of a; — 1.

Ans. - 3 + 4(s - 1) + (a; - 1)'' + (E - 1)3.

3. Expand 32/2 _Uy^j in powers of y - 3. Ans. -8 + 4(y - 3) + S{y - 3)2.

4. Expand 6z^ + 7z + 3 in powers of z - 2. Ans. 31+ 27(« - 2) + 6(z - 2)2.

5. Expand 4x= — 17x2 + n x + 2 in powers of x — 4.

6. Expand by* + 6y^ — 17 2/2 + ISy — 20 in powers of y + 4.

7. Expand e^ in powers of x + 1.

8. Expand sin x in powers of x — a.

9. Expand cosx in powers of x — a.

10. Expand cos (a + x) in powers of x.
2 8

Ans. COS (a + x) = cos o — x sin a — r— cos o + i— sin a + • •

.

11. Expand log (x + ft) in powers of X.
2 s

Ans. log(x + ft) = logft +|-^ +^ + ....

12. Expand tan (x + ft) in powers of ft.

Ans. tan (x + ft) = tanx + ft sec2x + ft2 sec2x tanx + • •

.

13. Expand tlie following in powers of ft.

(a) (X + ft)» = x» + 7ia;»-ift + ??^^?p^x«-2ft2 + '^('^-l)("-2) ^„_3^s + . . ..

(b) e»+* = 6="/ 1 + ft + 1^ + 1^ +.. = .(l+. + | + |^...).

145. Maclaurin's Theorem and Maclaurin's Series. A particulax ease

of Taylor's Theorem is found by placing a = in (61), p. 228, giving

(64) /(a:) =/(0) + jf/'(O) + JLV"(0) + ^/"'(O) + • • •

+ r^r"-''(o) + r-f'"\xj,n-l F
where a;^ lies between and x. (64) is called Maclaurin's Theorem.

The right-hand member is evidently a series in x in the same sense

that (61), p. 228, is a series in a; — a.

Placing a = IQ (62), p. 228, we get Maclaurin's Series,^

(65) ^ /(^)=/(0) + j^/'(0) +
J^/"(0)

+ ^/'"(0) + ...,

* In these examples we asstune that the functions can he developed into a power series,

t Named after Colin Maclaurin (1698-1746), heing first published in his Treatise of
Fluxions, Edinburgh, 1742. The series is really due to Stirling (1692-1770).
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a special case of Taylor's Series that is very useful. The statements

made concerning the remainder and the convergence of Taylor's Series

apply with equal force to Maclaurin's Series, the latter being merely

a. special case of the former.

The student should not fail to note the importance of such an

expansion as (65). In all practical computations results correct to a.

certain number of decimal places are sought, and since the process

in question replaces a function perhaps difficult to calculate by an

ordinary polynomial with constant coefficients, it is very useful in sim-

plifying such computations. Of course we must use terms enough to

give the desired degree of accuracy.

In the case of an alternating series (§ 139, p. 218) the error made

by stopping at any term is numerically less than that term, since the

sum of the series after that term is numerically less than that term.

Illustrative Example 1. Expand cose into an infinite power series and determine

for what values of x it converges.

Solution. DifEerentiating first and then placing x = 0, we get

/(a;) = coss, /(O) = 1,

/(x)=-sina;, /'(O) = 0,

/"(»)•=- cos X, /"(0)=-l,
/'"(x) = sinx, /'"(0) = 0,

/'''(x) = cosx, /i''(0) = l,

p(x)=-smx, /^(0) = 0,

/ri(x) = - cos X, /^(O) = - 1,

etc., etc.

Substituting in (65),
T 3! IE

(4) eosx = l-^ + j^-^+....

Comparing with Ex. 20, p. 225, we see ihat the series converges for all values of x.

In the same way for sinx.
x" . X';5 y^

which converges for all values of x (Ex. 21, p. 225).*

*Since here/<'"(a:) = sin(a; +— j and/C'Caii) =siiija;i + ^|' we have, by substituting

in the last term of (64) , p. 23i, » / \
remainder =|— sin I a!i+—

V

0<a;i<K
\n \ 2 )

But sin/xi + —\ can never exceed unity, and from Ex. 19, p. 225, ^^'^ ^ = ° *°'' *"

values of K. Hence limit 52 gin /a: +—Wo?i=« [re I ^ 2 /

for all values of x ; that is, in this ease the limit of the remainder is for all values of x for

which the series converges. This is also the case for all the functions considered in this book.



232 DIFFEKEISTTIAL CALCULUS'

Illustkative Example 2. Using the series (B) found in the last example, calcu-

late sin 1 correct to four decimal places.

Solution. Here x = 1 radian ; that is, the angle is expressed in circular measure.

Therefore, substituting x = 1 in (B) of the last example,

. , , 1 1 1
sm 1 = 1 — 1

—

f-| I—!-•••
\3 n n

Summing up the positive and negative terms separately,

1 = 1.00000- • ri = 0.16667.

ri = 0.00833 • ri = 0.00019 •

1.00833..- 0.16686- ••

Hence sin 1 = 1.00833 - 0.16686 = 0.84147. .

.,

which is correct to four decimal p]aces, since the error made must be less than,—
;

i.e. less than .000003. Obviously the value of sin 1 may be calculated to any desired

degree of accuracy by simply including a sufficient number of additional terms.

EXAMPLES

Verify the follovfing expansions of functions into povrer series by Maclaurin's

Series and determine for vphat values of the variable they are convergent

:

a;2 -J.3
^4

1. e^ = l-|-x + |— + |—- + 1— + --.. Convergent for all values of s.

3j2 3.4 /gC 2;8

2. cosx = 1 — p- + r— — |— + r— — ... Convergent for all values of i.
[2 [4 |_6 [8

3. a='=l + xlogaH ^f h—-f
1 . Convergent for all values of x.

Jc^X'^ ic^Ou^ A.""x

"

4. sin fcs = fcr - -j— + -j- j— + - .

.

Convergent for all values of z,

— '- '— k being any constant.
k-x^ fc'x' ifc^x*

5. e-'^ = l — kx + -J- 1— + — Convergent for all values of x.
|2 L§ li k being any constant.

6. log(l-l-x) = x- — + |--^ + ^ . Convergent if - 1< x ^ 1.

X^ X^ X^ T"^
7. log(l-x)=-x--------- Convergent if - 1 ^ x < 1.2 3 4 o

1 x' 1 . 3 x^
8. arc sinx = X + —— + + -

.

Convergent if - 1^ x^ 1.

9. arctanx = x-|- + ^-^ + |- . Convergent if - 1 ^ x s 1.

2 X* 32 x**

10. sin'x = x2 - -j^ + -r^ + . .
.

.

Convergent for all values of x.

11. c«in* = 1 + + _ _ ^ + ...

,

Convergent for all vahiesof 0.

12. e^smO = d + 0- + --j^ . Convergent for all values of 6.
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13. Find three terms of the expansion in each of the following functions

:

(a) tana. (b) secx. (o) ef"'":. (d) cos 2 a;. (e) arc cos a;. (f) o-''.

14. Show that logs cannot be expanded by Maclaurin's Theorem.

Compute the values of the following functions by substituting directly in the equiv-

alent power series, taking terms enough until the results agree with those given below.

15. e = 2.7182....

Solution. Let a; = 1 in series'of Ex. 1 ; then

^ = ^ +
^+[l + [l

+ @ +
[|
+ --

First term = 1.00000

Second term = 1.00000

Third term = 0.50000

Fourth term = 0. 16667 • •

.

pividing third term by 3.)

Fifth term = 0.04167 •
.

• (Dividing fourth term hy 4.)

Sixth term = 0.00833- • pividing fifth term by 5.)

Seventh term = 0.00139 . • (Dividing sixth term by 6.)

Eighth term = 0.00019 • • • , etc. (Dividing seventh term by 7.)

Adding, e = 2.71825- • Ans.

16. arc tan (|) = 0.1973 • • - ; use series in Ex. 9.

17; cos 1 = 0.5403 • ; use series in Ex. 2.

18. cos 10° = 0.9848 • - • ; use series in Ex. 2.

19. sin.l = .0998- • - ; use series x—, f-rr — r^H •

H H H
20. arc sinl = 1.5708 • • • ; use series in Ex. 8.

21. sin- = 0.7071 - • • ; use series {B), p. 231.
4

22. sin .5 = 0.4794. - - ; use series (B), p. 231.

22 2'
23. e2 = l + 2 + |-+rr + --- = 7.3891.

[2 1^

^^•^=^+i+24"'4^"-='-''''-

In more advanced treatises it is shown that, for values of x within

the interval of convergence, the sum of a power series is differentiable

and that its derivative is obtained by differentiating the series term

by term as in an ordinary sum. Thus from (5), p. 231,

x^ x^ x'
,

S}nX = X— r-r + r- — r=-\ •

Differentiating both sides, we get

1„2 -i -,6
tiL/ wl/ iMj

— rK + rT~r7r + "

[2-[4-[6-
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wiiich is the series of Ex. 2, p. 232. This illustrates how we may

obtain a new power series from a given power series hy differentiation.

Differentiating the power series of Ex. 6, p. 232, we obtain

-i- =l-x + x'- x^+ x' ,

1 + x

In the same way from Ex. 8, p. 232,

1
-, ,1 , ,

1-3
4 ,

1-3-5 6,

y/\~^ '2 2-4 2-4-6

146. Computation by series. I. Alternating series. Exs. 15-24 of

the last exercise illustrate to what use series may be put for pur-

poses of computation. Obviously it is very important to know the

percentage of error in a result, since the computation must necessarily

stop at some term in the series, the sum of the subsequent terms

being thereby neglected. The absolute error made is of course equal to

the limit of the sum of all the neglected terms. In some series this

error is difficult to find, but in the case of alternating series it has

been shown in § 140, p. 220, that the sum is less than the first of

these terms. Hence the absolute error made is less than the first term

neglected. Fortunately a large proportion of the series used for com-

putation purposes are alternating series, and therefore this easymethod

for finding the upper limit of the absolute error and the percentage of

error is available. Let us illustrate by means of an example.

Illustrative Example 1. Determine the greatest possible error and percentage

of error made in computing the nvimerical vahie of the sine of one radian from the

sine series, , , ,
. X'' x» x'

sni a; = X —
I hi i

1- • - -

;

\i \i H
(a) when all terms beyond the second are neglected

;

(b) when all terms beyond the third are neglected.

Solution. Let x = 1 in series ; then.,,111
sinl = l — ,

—

\-

1

1

—

\- •.
II H n

(a) Using only the first two terms,

sinl = l-J = | = .8333,

the absolute error is less than r-; i.e.<-— (= .0083), and the percentage of error Is

less than 1 per cent.* L

* Since .0083 -i- .8333= .01.
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(b) Using only the first three terms,

sinl = l-J + TiTj=-8«666,

the absolute error is less than t— ; i.e.< (= .000198), and the percentage of error
[7 5040

is less than ^^ of 1 per cent.*

Moreover, the exact value of sin 1 lies between .8333 and .841666, since for an alter-

nating series S„ is alternately greater and less than _ S„.

EXAMPLES

Determine the greatest possible error and percentage of error made in computing

the numerical value of each of the following functions from its corresponding series

(a) when aU terms beyond the second are neglected

;

(b) when all terms beyond the third are neglected.

1. CQsl. 4. arc tan 1. 7. e~^.

2. sin 2. 5. e-^. 8. arc tan 2.

3. cost. 6. sin-. 9. sinl5».
^ 3

II. The computation of it hy series.

From Ex. 8, p. 232, we have

arc sm.x = x + -^—^ +
2-3 2-4-5 2-4-6.7

Since this series converges for values of x between —1 and +1,

we may let a; = J,
giving

6"~2^2'3\2/ 2-4 5\2/\'z/ 'z-i oyz/

or 77= 3.1415 • • -.

Evidently we might have used the series of Ex. 9, p. 232, instead.

Both of these series converge rather slowly, but there are other series,

found by more elaborate methods, by means of which the correct value

of TT to a large number of decimal places may be easily calculated.

III. The eomputation of logarithms by series.

Series play a very important role in making the necessary calcula-

tions for the construction of logarithmic tables.

From Ex. 6, p. 232, we have
x^ a;8 /g* x^

(^) logO- + x-) = x-- + -^--^ + -^---.

* Since .000198 -^ .841666= .00023.



236 DIFFERENTIAL CALCULUS

This series converges for x = l, and we can find log 2 by placing

a; = l in (^), giving

log2=l-^ + i-i + i-i + .--.

But this series is not well adapted to numerical computation, because

it converges so slowly that it would be necessary to take 1000 terms

in order to get the value of log 2 correct to three decimal places. A
rapidly converging series for computing logarithms will now be

deduced.

By the theory of logarithms,

(B) 'log^=log(l + a;)-log(l-:r). By 8, p. 2

Substituting in (5) the equivalent series for log(l + 2;) and

log (1—2;) found in Exs. 6 and 7 on p. 232, we get*

((7) log^-_=2|_. + - + - + - +
...J,

which is convergent when x is numerically less than unity. Let

(D) =— J whence x = ?

^ ' 1-x N M+N
and we see that x will always be numerically less than unity for all

positive values of M and N. Substituting from (X)) into (C), we get

M
(E) log— == log Jf— logN

-[
M-N 1 /M-NV 1 /M-JVV
M+ AT 3\M+ n) "*"

5W+N
a series which is convergent for all positive values of M and N; and

it is always possible to choose M and A'' so as to make it converge

rapidly.

Placing M= 2 and A"= l in (^), we get

log2 = 2[i + i.i + l.i + l.l^
[3 3 3'^ 5 3^^ 7 3'

+ = 0.69314718 •••

[since log 2t^- log 1 = 0, and ^1—^ = 1.1

* The student should notice that we have treated the series as if they were ordinary
sums, but they are not; they are limits of sums. To justify this step is beyond the scope of

this book.
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Placing Jf= 3 and iV= 2 in (^), we get

W3 = W2 + 2ri + i— + 1.1
5 + - = 1.09861229 •

It is only necessary to compute the logarithms of prime numbers in

tliis way, the logarithms of composite numbers being then found by

using theorems 7-10, p. 1. Thus

log 8 = log 2'= 3 log 2 = 2.07944154 • • •,

log 6 = log 3 + log 2 = 1.79175947 • •.

All the above are Napierian or natural logarithms, i.e. the base is

e = 2.7182818. If we wish to find Briggs^s or common logarithms, where

the base 10 is employed, all we need to do is to change the base by

means of the formula i

^1° log, 10

In the actual computation of a table of logarithms only a few of

the tabulated values are calculated from series, all the rest being

found by employing theorems in the theory of logarithms and various

ingenious devices designed for the purpose of saving work.

EXAMPLES

Calculate by the methods of this article the following logarithms

:

1. logeS = 1.6094- ••. 3. log,24 = 3.1781- ••.

2. Iogel0 = 2.3025---. 4. logn, 5 = 0.6990- - -.

147. Approximate formulas derived from series. Interpolation. In

the two preceding sections we evaluated a function from its equivalent

power series by substituting the given value of a:: in a certain number

of the first terms of that series, the number of terms taken depending

on the degree of accuracy required. It is of great practical importance

to note that this really means that we are considering the function as

wpproximately equal to an ordinary polynomial with constant coefficients.

For example, consider the series

x^ x^
;"

(A) sin -r = a; - r- + rp - ^ + • -.

[3-[5-[7-
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This is an alternating series for both positive and negative values

of X. Hence the error made if we assume sin x to be approximately

equal to the sum of the first n terms is numerically less than the

(M + l)th term (§139, p. 218). For example, assume

(£) sin x = x,

and let us find for what values of x this is correct to three places of

decimals. To do this, set

(^) < .001.

This gives x numerically less than V.006(=.1817); i.e. (-B) is cor-

rect to three decimal places when x lies between +10.4° and —10.4°.

The error made in neglecting all terms in {A) after the one in

a;»-i is given by the remainder (see (64), p. 230)

(Z)) i^ = |/«(x^);-

hence we can find for what values of a; a polynomial represents the

functions to any desired degree of accuracy by writing the inequahty

{W) 1-^1^ limit of error

^

and solving for x, provided we know the maximum value of /^"^^j).

Thus if we wish to find for what values of x the formula

{F') sin a; = a; — —

is correct to two decimal places (i.e. error < .01), knowing that

|/^''(a;j)
I

s 1, we have, from (D) and (i^),

^2A<-01; i.e. |a;|<VL2; or|2;|sl.

Therefore « — — gives the correct value of sin x to two decimal
D

places if |a;|Sl; i.e. if x lies between + 57° and —57°. This agrees

with the discussion of (A) as an alternating series.

Since in a great many practical problems accuracy to two or three

decimal places only is required, the usefulness of such approximate

formulas as (JB) and (F') is apparent.

Again, if we expand sin a: by Taylor's Series, (62), p. 228, in

powers oi X — a,, we get

sin a; = sin a + cos a(a; — a) — ^^^ (x —(lf^ .
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Hence for all values of x in the. neighborJwod of some fixed value a

we have the approximate formula

(G) sin a; = sin a + cos a(x — a).

Transposing sin a and dividing by a; — a, we get

sin a; — sin a = cos a.
X — a

Since cos a is constant, this means that

:

The chaTige in the value of the sine is proportional to the change in the

angle for values of the angle near a.

For example, let a = 30°= .5236 radians, and suppose it is required

to calculate the sines of 31° and 32° by the approximate formula (G').

Then
sin 31° = sin 30° + cos 30° (.01745)*

= .5000 +.8660 X.01745

= .5000 +.0151

= .5151.

Similarly, sin 32° = sin 30°+ cos 30° (.03490) = .5302.

This discussion illustrates the principle known as interpolation by

.first differences. In general, then, by Taylor's Series, we have the

approximate formula

(ff) f(x-)=fCa-)+f'Cd)Cx-d).

If the constant /'(a) =^ 0, this formula asserts that the ratio of the

increments offunction and variable for all values of the latter differing

little from the fixed value a is constant.

Care must however be observed in applying (JST). For while

the absolute error made in using it in a given case may be

small, the percentage of error may be so large that the results are

worthless.

Then interpolation by second differences is necessary. Here we use

one more term in Taylor's Series, giving the approximate formula

(7) /(;c) =/(a) +/'(a) ix-d) + €!^ Qx - a)^

» X - a = l°= .01745 radian.
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The values of sin 31° and sin 32° calculated on p. 239 from (G)

are correct to only three decimal places. If greater accuracy than

this is desked, we may use (/), which gives, for /(a;) = sin a;,

(J") sm a; = sm a + cos a(a;— a) rK-\^~"')-

Let a = 30° = .5236 radian. ~
Then sin 31°= sm 30°+ cos 30°(.01745) - ^-^^ (.01745)^

= .50000 + .01511 - .00008

= .51503.

sin 32° = sin 30° + cos 30° (.03490) - ^-^^ (.03490)^

= .50000 +.03022 -.00030

=.52992.

These results are correct to four decimal places.

EXAMPLES

1. Using formula (H) for interpolation by first differences, calculate the following

functions

:

(a) cos 61°, taking a = 60°. (c) sin 85.1°, taking a = 85°.

(b) tan 46°, taking a = 45°. (d) cot 70.3°, taking o = 70°.

2. Using formula (I) for interpolation by second differences, calculate the following

functions

:

(a) sin 11°, taking a = 10°. (c) cot 15.2°, taking a = 15°.

(b) cos 86°, taking o = 85°. (d) tan 69°, taking a = 70°.

3. Draw the graphs of the functions x, x — ,
— , x — , 1-|— respectively, and com-

pare them with the graph of sinx. I— I— I

—

148. Taylor's Theorem for functions of two or more variables. The

scope of this book will allow only an elementary treatment of the

expansion of functions involving more than one variable by Taylor's

Theorem. The expressions for the remainder are complicated and

will not be written down.

Having given the function

(^) /(^, J/),

it is required to expand the function

(i') fi^ + hy + Tc-)

in powers of h and h.

Consider the function

(CO f(x + U,y + k€).
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Evidently (5) is the value of (C) wlien t = l. Considering (C) as

a function of t, we may write

which may then be expanded in powers of t by Maclaurin's Theorem,

(64), p. 230, giving

(Ey i?'(O = -P'(0) + fJ"(0) + ^J"'(0) + |^i^"'(0) + ....

Let us now express the successive derivatives of F(t') with respect

to i in terms of the partial derivatives of F(t') with respect to x

and y. Let

(J") a = o-+}it, P = y+ kt;

then by (51), p. 195,

.^. ,
dFda 8Fd^

But from (i?-),

CE^ ^ = A and 'f = /.;
^ "^ dt dt

and since -?'(<) is a function of a; and y through a and y3,

aJ" ai?'aar , gi^ dFd^— = and — = -——

;

dx da dx dy dj3 dy

or, since from (i^), — = 1 and 7— = 1,
dx dy

dF dF , dF dF
(I\ — =— and — =—r-

^ ^
dx da dy d^

Substituting in ((?) from (/) and (^),

Replacing FCf) by -P"(0 ^ (/)' "^^ g^t

^^ dx dy \ dx" dxdy] \ dxdy df\

In the same way the third derivative is

(£) J""(0 = A«S+3A^A^ +3AF^ + Fff,
^ -' ^ ^

da^ da^dy dxdy" df

and so on for higher derivatives.
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When t=0,we have from (X>), ((?), (<7), (JT), (i),

i^(0)=/(2;, ?/), i.e. F(t} is replaced by /(a;, ^),

^ ^ dx dy

i?"(0) = A^^ + 2M-^ + fJ^,
^ -' da? dxdy dy"

F"'CO-) = h'^+ 3 A^;fc-^ + 3 AF-^ + f|^,

and so on.

Substituting these results in (^), we get

(66) fix + ht,y + kt) = fix, y) + f (|ftg+ ftgj

\2\ dx' dxdy^ di/'J^

To get/(2;+ h, y+ k}, replace i by 1 in (66), giving Taylor's Theorem

for a function of two independent variables,

(67) f(ix + h,y + K) = fix,y~) + h^^+k^

f"'
ajr" dxdy dy'l

'

which is the required expansion in powers of h and k. Evidently (67)

is also adapted to the expansion of f(x + k, y + k') in powers of x and y
by simply interchanging x with h and y with k. Thus

(67a) f{x + h,y+k) = fCh,K) + x^+y^^

+ '(x^':£ + 2xy^ + y''^)+....

Similarly, for three variables we shall find

(68) f(x+ h, y + k, z+r) = f(x, y, z} + h^ + k^ + /^
dx dy dz

[2\ dJ^^ djt Sz' dxdy

^f ""

dz

and so on for any number of variables.

dzdx dydzj
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EXAMPLES

1. Given /(s, y) = Ax^ + Bxy + Cy'^, expand f{x + h,y-{-k) in powers of h and k.

Solution. —=i2Ax-\-By, — = Bx + 2Cy;
dx dy

dx^ dxdy Sy^

The third and higher partial derivatives are all zero. Substituting in (67),

f(x + h,y + k)~Ax^ + Bxy + Cy^ + (2Ax + By)h + (Bx + 2 Cy)k

+ AK' + Bhk + Ck^. Ans.

2.
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is a maximum point when it is " higher " than all other points on the

surface in its neighborhood, the coordinate plane XOY being assumed

horizontal. Similarly, P' is a minimum point on the surface when it is

" lower " than all other points on the surface in its neighborhood. It

is therefore evident that all vertical planes through P cut the surface in

curves (as APB orDPU
in the figure), each of

which has a maximum
ordinate z (= MP) at P.

In the same manner all

vertical planes through

P' cut the surface in

curves (as BP'C or

FP'G}, each of which

has a minimum ordinate

z(=NP') at P'. Also,

any contour (as HIJK) cut out of the surface by a horizontal plane

in the immediate neighborhood of P must be a small closed curve.

Similarly, we have the contour LSBT near the minimum point P'.

It was shown in §§ 81, 82, pp. 108, 109, that a necessary condition

that a function of one variable should have a maximum or a minimum

for a given value of the variable was that its first derivative should

be zero for the given value of the variable. Similarly, for a function

/(a;, y) of two independent variables, a wecessary, condition that /(a, 6)

should be a maximum or a minimum (i.e. a turning value) is that for

x= a, V = h,

dy

Proof. Evidently (^) and (B) must hold when h=Q; that is,

/(« + A, 6)-/(a, 6)

is always negative or always positive for all values of h sufficiently

small numerically. By §§ 81, 82, a necessary condition for this is

that -— f(x, V) shall vanish for a; = a, or, what ambunts to the same
ax

thing, —f(x, y) shall vanish for a; = a, y = h. Similarly, (^) and (S)

must hold when A = 0, giving as a second necessary condition that

— f(x, y) shall vanish iov x = a, y = h.

(^) ^ = 0,
dx

0.
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In order to determine sufficient conditions that /(a, 5) shall be a
maximum or a minimum, it is necessary to proceed to higher deriva-

tives. To derive sufficient conditions for all cases is beyond the scope

of this book.* The following discussion, however, will suffice for all

the problems given here.

Expanding f(a + h, b + k) by Taylor's Theorem, (67), p. 242, re-

placing xhj a and t/ by b, we get

(D) /(« + h,h + Jc-) =f(a, l')+-h^I+k^
ox cy

[2 \ c^ dxdy dy^j

where the partial derivatives are evaluated for x=a, y = h, and li

denotes the sum of all the terms not vn'itten down. All such terms

are of a degree higher than the second in h and Ic.

Since t^= and t^= 0, from (C), p. 244, we get, after transpos-

ing /(«, J),

W/(a +M + ^)-/(.,5) =l(A^g+2M^ + F|)-fi^.

If f(a, 6) is a turning value, the expression on the left-hand side of

(E^ must retain the same sign for all values of Ji and k sufficiently small

in numerical value,—the negative sign for a maximum value (see (^),

p. 243) and the positive sign for a minimum value (see (5), p. 243)

;

i.e. f(a, V) will be a maximum or a minimum according as the right-

hand side of (^) is negative or positive. Now i? is of a degree higher

than the second in A and k. Hence as h and k diminish in numerical

value, it seems plausible to conclude that the numerical value of R will

eventually become and remain less than the numerical value of the sum

of the three terms of the second degree written down on the right-hand

dde of (E). t Then the sign of the right-hand side (and therefore also

of the left-hand side) will be the same as the sign of the expression

(J.) A^2^+2M^-fF|C-
^ ^ cx^ cxdy dy^

But from Algebra we know that the quadratic expression

¥A+2hkC + k^B

always has the same sign as A (or B") when AB— C^> 0.

* See Oours d'Analyse, Vol. I, by C. Jordan.

t Peano has shown that this conclusion does not always hold. See the article on " Maxima
and Mmima of Functions of Several Variables," by Professor James Pierpont in the Bulletin

of the American Mathematical Society, Vol. IV.
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o2j? o2j? q2^

Applying this to (F), A= -r^, B = -4' C^= :^-^' and we see that

(i^), and therefore also the left-hand member of (^), has the same

sign as -^( or -fA when
d7?\ df) 8'/ ay /gyy^o

da? df \dxdyj

Hence the following rule for finding maximum and minimum values of a

function /(jr, y).

FiBST Step. Solve the simultaneous equations

dx dy

Second Step. Calculate for these values of x and y the value of

ay8y_/_eyY
da? df [SxdyJ

Third Step. The function will have a

dj/ dj
maadmum if A > Q and -=^( or -^ ) < ;^

da?\ df) •

minimum if A > and
da?\ df)

neither a maximum nor a minimum if A<().

The question is undecided i/" A = 0.*

The student should notice that this rule does not necessarily give

all maximum and minimum values. For a pair of values of x and y
determined by the First Step may cause A to vanish, and may lead to a

maximum or a minimum or neither. Further investigation is therefore

necessary for such values. The rule is, however, sufficient for solving

many important examples.

The question of maxima and minima of functions of three or more

independent variables must be left to more advanced treatises.

Illustrative Example 1. Examine the function Zaxy — x' — y^ for maximum
and minimum values.

Solution. /(i, y) = 3 axy — x' — 2^.

FirstsUp. — = 3a^-3a;2-o, ^ = Zax-Zy^ = (i.

dx dy

Solving these two simultaneous equations, we get

x = 0, x = a,

y = 0; y = a.

* The discussion of the text merely renders the given rule plausible. The student should

observe that the case A = Is omitted in the discussion.
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Third step. When a; = and y = 0, A = - Oa", and there can be neither a maxi-
mum nor a minimum at (0, 0).

When,s = a and y = a, A = + 27 a^ ; and since —^ = — 6 a, we have the conditions

for a maximum value of the function fulfilled at (a, a). Substituting a; = o, j/ = a in

the given function, we get its maximum value equal to a".

Illustrative Example 2. Divide a into three parts such that their product shall

be a maximum.

Solution. Let x = first part, y = second part ; then a— {x-\-y) = a — x — y = third

part, and the function to be examined is

/(a;, y) = xy{a-x — y).

First step. ~ = ay ~ 2xy — y"^ = 0, — — ax — 2xy — x^ = 0.
Sx cy

Solving simultaneously, we get as one pair of values x = - , y = -•
o o

Secondstep. -^ = —2y, —^ = o-2x — 2w, -J.=-2x:
dx^ "' dx&y "'

dy"

A = ixy — (a — 2x — 2y)2.

d da? d^f 2 a
Third step. When x = - and y = - , A = — ; and since —^= , it is seen that

3 3 3 Sx^ 3

our product is a maximum when x = -, y = - Therefore the third part is also - , and
o o 3
a'

the maximum value of the product is—

EXAMPLES

1. Find the minimum value ot x^ + xy + y^ — ax — by. Ans.
-J-

{ai> — a^ — 6^).

2. Show that sin x + siny + cos (x + y) is a minimum when x = y =— , and a
, IT 2

maximum when x = y = —
6

3. Show that xe!' + ^=™J' has neither a maximum nor a minimum.

(ax + hu 4- c)^
4. Show that the maximum value of -^ ^is a^ + If' + c^.

x2 + y2 + 1

5. Find the greatest rectangular parallelepiped that can be inscribed in an ellipsoid.

That is, find the maximum value of 8xyz(= volume) subject to the condition

x^ «2 g2 8 oJc

HiHT. Let u = xyz, and substitute the value of z from the equation of the ellipsoid. This

where m is a function of only two variables.

*x = 0, y = are not considered, .since from the nature of the problem we would then

have a minimum.
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6. Show that the surface of a rectangular parallelepiped of given volume is least

when the solid is a cube.

7. Examine x* + y^— x^ + xy — y^ for maximum and minimum values.

Ans. (Maximum when x= 0, y = ;

minimum when x = y = ± i, and when x =— y =± ^ Vs.

8. Show that when the radius of the base equals the depth, a steel cylindrical

standpipe of a given capacity requires the least amount of material in its construction.

9. Show that the most economical dimensions for a rectangular ta,nk to hold a

given volume are a square base and a depth equal to one half the side of the base.

10. The electric time constant of a cylindrical coil of wire is

mxyz
u = ,

ax + oy +CZ

where x is the mean radius, y is the difference between the internal and external

radii, z is the axial length, and m, a, b, c are known constants. The volume of the

coil is nxyz = g. Find the values of x, y, z which make u a minimum if the volume of

the coil is fixed.
ifabcci

Ans. ax = iy = cz = \j
——

\ n



CHAPTER XIX

ASYMPTOTES. SINGULAR POINTS

150. Rectilinear asymptotes. An asymptote to a curve is the limit-

ing position* of a tangent whose point of contact moves off to an

iafinite distance from the origin, t

. Thus, in the hyperbola, the asymptote

AB is the limiting position of the tangent

PT as the poiat of contact P moves off

to the right to an infinite distance. In

the case of algebraic curves the following

definition is useful: an asymptote is the

limiting position of a secant as two points

of intersection of the secant with a branch

of the curve move off in the same direction along that branch to an

infinite distance. For example, the asymptote AB is the limiting posi-

tion of the secant PQ a& P and Q move upwards to an iafinite distance.

151. Asymptotes found by method of limiting intercepts. The equa-

tion of the tangent to a curve at (x^, y^ is, by (1), p. 76,

First placing y = and solving for x, and then placing a; = and

solving for y, and denoting the intercepts by x^ and y. respectively,

we get dx.

-y^dy^
intercept on OX

;

y^ =zy^— x^ -j-^ = intercept on Y.

Since an asymptote must pass within- a finite distance of the origin,

one or both of these intercepts must approach finite values as limits

when the point of contact (x^, y^) moves off to an infinite distance. If

limit (a;;) = a and limit (z/,) = S,

*A line that approaches a fixed straight line as a limiting position cannot be whoUy at

infinity ; hence it follows that an asymptote must pass within a finite distance of the origin.

It is evident that a curve which has no infinite branch can tave no real asymptote.

t Or, less precisely, an asymptote to a curve is sometimes defined as a tangent whose

point of contact is at an infinite distance.

249
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then the equation of the asymptote is found by substituting the Hmit-

ing values a and h in the equation

- + ? = !•
a

If only one of these limits exists, but

\\m\t i-^\ = m,
\dxj

then we have one intercept and the slope given, so that the equation

of the asymptote is
y

y = m.v + 5, or x = — + a.

m

Illustrative Example 1. Find the asymptotes to the hyperbola — r = 1-

„ , ,. dy b^x b 1 , limit /dy\
,

6
Solution. — = —— = ± ^=^ , and m= (-— 1 = ±-.

dz a?y a I gi x _ co \^/ ^

Also x; = — and Vi= ; hence these intercepts are zero when x = y = co.

X y
Therefore the asymptotes pass through the origin (see figure on p. 249) and their

equations are .

2/ — = ± -(x — Ox), or ay = ±bx. Ans.
a

This method is frequently too complicated to be of practical use.

The most convenient method of determining the asymptotes to alge-

braic curves is given in the next section.

152. Method of determining asymptotes to algebraic curves. Given

the algebraic equation in two variables,

If this equation when cleared of fractions and radicals is of degree n,

then it may be arranged according to descending powers of one of the

variables, say y, in the form

(£) ay-+ (i.c + c-)t/'-' + (^cW+ ex +/) t/" -+... = ().*

For a given value of i- this equation determines in general n

values of y.

* For use In this section the attention of the student is called to the following theorem
from Algebra : Given an algebraic equation of degree n,

Ay' + Btj^-i-^ Cy"-^ + Dy''-^ + --- = 0.

When A approaches zero, one root (value of y) approaches x

.

When A and B approach zero, two roots approach oo

.

When A, B, and C approach zero, three roots approach oo , etc.
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Case I. To determine the asymptotes to the curve (B) which are

parallel to the coordinate axes. Let us first investigate for asymptotes

parallel to OY. The equation of any such asymptote is of the form

(C) x = h,

and it must have two points of intersection with (5) having infin ity,

ordinates.

First. Suppose a is not zero in (^), that is, the term in y" is

present. Then for any finite value of x, (S) gives n values of y, all

finite. Hence all such lines as (C) will intersect (5) in points having

finite ordinates, and there are no asymptotes parallel to O Y.

Second. Next suppose a = 0, but h and c are not zero. Then we
know from Algebra that one root (=«/) of (5) is infinite for every

iinite value of x; that is, any arbitrary line (C) intersects (5) at only

one point having an infinite ordinate. If now, in addition,

hx + c = Q, or

(i)) a: = -^,

then the first two terms in (5) will drop out, and hence two of its

roots are infinite. That is, (i>) and (5) intersect in two points having

infinite ordinates, and therefore (J>) is the equation of an asymptote to

(E) which is parallel to Y.

Third. If a = 6 = e = 0, there are two values of x that make y in

(B') infinite, namely, those satisfying the equation

(E~) dx^ + ex +/= 0.

Solving (E^ for x, we get two asymptotes parallel to Y, and so on

in general.

In the same way, by arranging f(x, y") according to descending

powers of x, we may find the asymptotes parallel to OX. Hence the

following rule for finding the asymptotes parallel to the coSrdinate axis :

First Step. Equate to zero the coefficient of the highest power of x in

the equation. This gives all asymptotes parallel to OX.

Second Step. EquMte to zero the coefficient of the highest power of y

in the eqwatim,. This gives all asymptotes parallel to Y.

Note. Of course if one or loth of these coefficients do not involve

X (or y~), they cannot be zero, and there will he no corresponding

asymptote.
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Illustrative Example 1. Find the asymptotes of the curve a^x = y (x — (£f.

Solution. Arranging the terms according to powers of x,

yx^ — (iay-^ a?)x + a^y = 0.

Equating to zero the coefBcient of the high-

est power of X, we get y = as the asymptote

parallel to OX. In fact, the asymptote coin-

cides with the axis of x. Arranging the terms

according to the powers of y,

(x — a)^y — a^x = 0.

Placing the coefficient of y equal to zero,

we get X = a twice, showing that AB is a

double asymptote parallel to OT. If this curve is examined for asymptotes oblique to

the axes by the method explained below, it will be seen that there are none. Hence

2/ = and x = a are the only asymptotes of the given curve.

Case II. To determine asymptotes oblique to the coordinate axes.

Given the algebraic equation

Consider the straight line

((?) y = mx + k.

It is required to determine m and k so that the line ((?) shall be

an asymptote to the curve (-F).

Since an asymptote is the limiting position of a secant as two points

of intersection on the same branch of the curve move off to an infinite

distance, if we eliminate y between (i^) and ((?), the resulting equa-

tion in X, namely,

(^) f(x, mx + k')= 0,

must have two infinite roots. But this requires that the coefficients

of the two highest powers of x shall vanish. Equating these coeffi-

cients to zero, we get two equations from which the required values

of m and k may be determined. Substituting these values in (G)

gives the equation of an asymptote. Hence the following rule for

finding asymptotes oblique to the coordinate axes :

First Step. Replace y hy mx + k in the given equation and expand.

Second Step. Arrange the terms according to descending powers ofx.

Third Step. Equate to zero the coefficients of the two highest powers *

of X, and solve for m and k.

* If the term involving a;"-! is missing, or if the value of m obtained by placing the first

coefficient equal to zero causes the second coefficient to vanish, then by placing the coeffi-

cients of x» and x"-2 equal to zero we obtain two equations from which the values of m
and Tc may be found. In this case we shall, in general, obtain two Ic's for each to, that is, -

pairs of parallel oblique asymptotes. Similarly, if the term in a;»-2 is also missing, each
value of m furnishes three parallel oblique asymptotes, and so on.
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Fourth Step. Substitute these values of m and k in

y = mx + Te.

This gives the required asymptotes.

x^ for asymptotes.

.A Y

Illustkative Example 2. Examine y^ = % w? -

Solution. Since none of the terms involve both

X and y, it is evident that there are no asymptotes

parallel to the coordinate axes. To find the oblique

asymptotes, eliminate y between the given equation

. and y = otk 4- &. This gives

(ttm; + A:)' = 2 ox^ — x^

;

and arranging the terms in powers of x,

(1 + m^)x3 + (Sm^fc— 2a)x2 + Sfe^ma; + P = 0.

Placing the first two coefficients equal to zero,

14-m3 = and Sm^A; — 2a = 0.

2a
Solving, we getm = — 1, i; = Substituting in y = mx, + /c, we have y -.

the equation of asymptote AH.

x+-

EXAMPLES

Examine the first eight curves for asymptotes by the method of § 150, and the

remaining ones by the method of § 151

:

1. y — ff:. Atis. y = 0. 2. y = e-^^. Ans. y = 0.

3. y'=\ogx.

i.y = (^ + lj

. X = 0.

y = e, X: 1.

5. y = tanx.

1

6. y = eP= — l.

7. 2/2 = 6x2 + x^

8. Show that the parabola has no asymptotes.

9. y^ = a^ — x'.

10. The cissoid y^ =
2r — X

11. yM = y^x + x^.

12. j/2(x2 + l) = x2(x2-l).

13. 2/2 (a; _ 2 a) = x« - d^

14. x^y^ = a^(x^ + y^).

15. 2/(x2-36x + 262) = x3-3ax2 + a8.

16. 2/ = c + -

(X - by

17. The folium x^ + y^ — Saxy = 0.

18. The witch x^y = 4 a^ (2 a - 2/) •

19. X2/2 + x^y = a^.

20. x' + 2x^y - xy^ - 2y'' + iy^ + 2xy + y = 1. x + 2y =^0, x + y = 1, x-y --L

n being any odd integer, x =

X = 0, 2/ = 0.

2/ = X + 2.

y + x = 0.

X — 2r.

x = a.

y = ±x.

x = 2a, y =±{x + a).

x=± a, y =±a.

x = b, x = 2 6, y + 3a = x + 3b.

y = c, X = 6.

y + x + a = 0.

2/ = 0.

X = 0, 2/ = 0, X + 2/ = 0.
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153. Asymptotes in polar coordinates. Lefc/(/>, ^) = be the equa-

tion of the curve PQ having the asymptote CD. As the asymptote

must pass within a finite distance (as OE")

of the origin, and the point of contact is

at an infinite distance, it is evident that

the radius vector OF drawn to the point

of contact is parallel to the asymptote,

and the subtangent OE is perpendicular

to it. Or, more precisely, the distance of the asymptote from the

origin is the limiting value of the polar subtangent as the point of

contact moves off an infinite distance.

To determine the asymptotes to a jwlar curve, proceed as follows

:

First Step. Find from the equation of the curve the values of 6 which

make p = co* These values of 6 give the directions of the asymptotes.

Second Step. Find the limit of the polar subtangent

PYp' by (7), p. 86

as 6 approaches each such value, remembering that p approaches oo at the

same time.

Third Step. If the limiting value of the polar subtangent is finite, there

is a corresponding asymptote at that distance from the origin and parallel

to the radius vector drawn to the point of contact. When this limit is pos-

itive the asymptote is to the right of the origin, and when negative, to the

left, looking in the direction of the infinite radius vector.

EXAMPLES

1. Examine the hypertolic spiral p = - for asymptotes.
6

dp a jB
Solution. When 0=0, p

,de

00. Also -

dS
;

; hence

subtangent = p^
dp e"

0^1 [p'f]
= - «. ^l"0h is finite.

dp

It happens in this case that the subtangent is the same for all values of 6. The
curve has therefore an asymptote BC parallel to the Initial line OA and at a dis-
tance a above it.

* If the equation san be written as a polynomial in p, these values of 9 may be found by
equatrag to zero the coefficient of the highest power of p.
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i Examine the following curves for asymptotes

:

2. pcos0= acos2 6.

Ans. There is an asymptote perpendicular to the initial line at a distance a to

the left of the origin.

3. p = a tan S.

Ans. There are two asymptotes perpendicular to the initial line and at a dis-

tance o from th^ origin, on either side of it.

4. The lituus pdi — a. Ans. The initial line.

5. p = a sec 2 9.

Ans. There are four asymptotes at the same distance - from the origin, and

inclined 45° to the Initial line.

6. (p — a) sin fl = 6.

Ans. There is an asymptote parallel to the initial line at the distance 6 above it.

7. /} = a(sec2^ + tan2S).

Ans. Two asymptotes parallel to ^ = — , at distance a on each side of origin.
4

8. Show that the initial line is an asymptote to two tranches of the curve

p'^ime = a?cos2e.

9. Parabola p = Atis. There is no asymptote.
1— cosw

154. Singular points. Given a curve whose equation is

Any poiat on the curve for which

^1=0 and ^=0
dx dy

is called a singular point of the curve. All other points are called

ordinary points of the curve. Since by (57 a), p. 199, we have

dy__^
dx~ df

it is evident that at a singular point the direction of the curve (or

tangent) is indeterminate, for the slope takes the form - • In the next

section it will be shown how tangents at such points may be found.

155. Determination of the tangent to an algebraic curve at a given

point by inspection. If we transform the given equation to a new set

of parallel coordinate axes having as origin the point in question on

the curve, we know that the new equation will have no constant term.

Hence it may be written in the form

(A) f(x, y') = ax + ly + (ex' + dxy + ef)

+ (fx^ + gx'y + hxf + if) + = ().
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The equation of a tangent to the curve at the given point (now

the origin) will be

(B) ^={^y By (1), p. 76

Let y = mx be the equation of a line through the origin and

a second point P on the locus of {A). If then P approa.ches along

the curve, we have, from (5),

(C~) limit OT = -^-
ax

Let O be an ordinary point. Then, by § 155, a and h do not both

vanisli, since at (0, 0), from (^), p. 255,

(if 3/ J,— = a, _ = J.

dx dy

Replace y in (^) by mx, divide out the factor x, and let x approach

zero as a limit. Then (A) will become *

a + bm = 0.

Hence we have, from (i?) and (C),

ax + hy = 0,

the equation of the tangent. The left-hand member is seen to consist

of the terms of the first degree in (J.).

When is not an ordinary pomt we have a = b = Q. Assume that

c, d, e do not all vanish. Then, proceeding as before (except that we
divide out the factor a:^), we find, after letting x approach the limit

zero, that (^) becomes
c + dm + em'= 0,

or, from (C),

Substituting from (5), we see that

(-£) ex' + dxy + ef=^0

is the equation of the pair of tangents at the origin. The left-hand

member is seen to consist -of the terms of the second degree in (^).

Such a singular point of the curve is called a double point from the

fact that there are two tangents to the curve at that point.

* After dividing by x an algebraic equation in m remains wliose coefficients are functions
of X. If now a; approaches zero as a limit, tbe theorem holds that one root of this equation
in m will approach the limit — a-j- 6.
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Since at (0, 0), from i(^),

dj = 2,
ay = d.

dj = 2g,
dx" dxdy dy"

it is evident that (D) may be written in the form

^ ' dx^ dxdy\dx) dy^\dxj

In the same manner, if

there is a triple point at the origin, the equation of the three tangents

feeing /2;3 _^ g^y ^ ^^2^ ^y^ Q^

and so on in general.

If we wish to investigate the appearance of a curve at a given point,

it is of fundamental importance to solve the tangent problem for that

point. The above results indicate that this can be done hy simple

inspection after we have transformed the origin to that point.

Hence we have the following rule for finding the tangents at a given point.

EiBST Step. Transform the origin to the point in question.

Second Step. Arrange the terms of the resulting equation according to

ascending powers of x and y.

Third Step. Set the group of terms of lowest degree equal to zero.

This gives the equation of the tangents at the point (origin').

iLLnsTEATiTE EXAMPLE 1. Eind the equation of the

tangent to the ellipse

5x2+ 52^2+ 2x?/-12x-12y =
at the origin.

. Solution. Placing the terms of lowest (first) degree

equal to zero, we get

— 12x-12y = 0,

or X + 2/ = 0,

which is then the equation of the tangent PT at the origin.

Illustkatite Example 2. Examine the curve

3"a;2 — xy — 2 ^2 + x^ — 8 2/3 = for tangents at the

origin.

Solution. Placing the terms of lowest (second)

degree equal to zero,

3x2.-x2/-2 2/2 = 0,

or (x-y)(3x + 2y) = 0,

I- 2/ = being the equation of the tangent AB, and 3x + 22/ = the equation of

the tangent CD. The origin is, then, a double point of the curve.
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Since the roots of the quadratic equation (jF), p. 257, namely,

^/^Y-4-2-^/^V^=0
dy\dx) d,x»y\dx) dx''

may be real and unequal, real and equal, or imaginary, there are

three cases of double points to be considered, according as

\dxdy/ dx dy

is positive, zero, or negative (see 3, p. 1).

156. Nodes. /^y_£^£^>0.

In this case there are two real and unequal values of the slope

-p ) found from (i^), so that we have two distinct real tangents
dxl

to the curve at the singular point in question. This means that

the curve passes through the point in two diflFerent directions, or,

in other words, two branches of the curve cross at this point. Such

a singular point we call a real double point of the curve, or a node.

Hence the conditions to be satisfied at a node are

dx dy \Sxdy/ dx^ dy'

I LLDSTKATivE EXAMPLE 1. Examine the lemniscate y^ = x- — x* for singular points.

Solution. Here /(x, y) = y" — x'' + x* = 0.

Also ^=_2x + 4x3 = 0, — = 2y = 0.
Sx ' 8y

The point (0, 0) is a singular point, since its coordinates satisfy the above three

equations. We have at (0, 0)

^=-2 -?^ = ^ = 2
'^ ^

ax2 ' Bx&y •
' ey2

\dxdy) dx^Sy^ '

Af
and the origin is a double point (node) through which
two branches of the curve pass in different directions. By placing the terms of the

lowest (second) degree equal to zero we get

2/2 — x^ = 0, or y = X and y =— x,

the equations of the two tangents AB and CD at the singular point or node (0, 0).
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157. Cusps.
[dxdyj dx^ dy^

In this case there are two real and equal values of the slope

found from (F^; hence there are two coincident tangents. This

means that the two branches of the curve which pass through the

point are tangent. When the curve recedes from the tangent in both

directions from the point of tangency, the singular point is called a

pmnt of osculation ; if it recedes from the point of tangency in one

direction only, it is called a cusp. There are two kinds of cusps.

First kind. When the two branches lie on opposite sides of the

common tangent.

Second Mnd. When the two branches lie on the same side of the

common tangent.*

The following examples illustrate how we may determine the nature

of singular points coming under this head.

Illustrative Examplb 1. Examine a*y^ = a%* — x" for singular points.

Solution. Here /(x, y) — a*y^ — a^x^ + x« = 0,

dx
=—iaH^+ 6x5

32/

and (0, 0) is a singular point, since it satisfies the above three equations. Also, at

(0, 0) we have -y

8^
3x2

= 0, 0,
a2/ = 2 a*,

Sxdy ' Sy^

and since the curve is symmetrical with respect to OY, the

origin is a point of osculation. Placing the terms of lowest

(second) degree equal to zero, we get y^ = 0, showing that the two common tangents

coincide with OX.

Illtistrative Example 2. Examine y^ = x' for singular points.

Solution. Here /(x, y) = y^ — x^ = 0,

3x
.=-3x2 = 0,

sy

showing that (0, 0) is a singular point. Also, at (0, 0) we have

- = 0,
«^/. = 0, ^ = 0, ^ = 2.

Wsy/ 3x2 32/23x2 gj-gy

This is not a point of osculation, however, for if we solve the given equation for ;/

we get y = ± VxS,

* Meaning in the neighborhood of the singular point.
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which shows that the curve extends to the right only of 0¥, for negative values of x

make y imaginary. The origin is therefore a cusp, and since the branches lie on oppo-

site sides of the common tangent, it is a cusp of the first kind. Placing the terms of

lowest (second) degree equal to zero, we get y^ = 0, showing that the two common
tangents coincide with OX.

Illustrative Example 3. Examine {y — x'')^=x^ for

singular points.

Solution. Proceeding as in the last example, we find a

cusp at (0, 0), the common tangents to the two branches

coinciding with OX. Solving for y,

y = x^ ± xi.

If we let X take on any value between and 1, y takes

on two different positive values, showing that in the vicinity of the origin both

branches lie above the common tangent. Hence the singular point (0, 0) is a cusp of

the second kind.

158. Conjugate or isolated points. |
—— ) 4 —^ < 0.

In this case the values of the slope found are imaginary. Hence

there are no real tangents ; the singular point is the real intersection of

imaginary branches of the curve, and the coordinates of

no other real point in the immediate vicinity satisfy the

equation of the curve. Such an isolated point is called a

conjugate point.

Illdstkative Example 1. Examine the curve y^=x^—x^ for singular

points.

Solution. Here (0, 0) is found to be a singular point of the curve at

which — = ±V— 1. Hence the origin is a conjugate point. Solving the

equation tor y, y = ±x Vx^.
This shows clearly that the origin is an isolated point of the curve, for no values

of X between and 1 give real values of y.

159. Transcendental singularities. A curve whose equation involves

transcendental functions is called a transcendental curve. Such a curve

may have an end point at which it terminates abruptly, caused by a

discontinuity in the function; or a salient point at which two branches of

the curve terminate without having a common tan-

gent, caused by a discontinuity in the derivative.

Illustrative Example 1. Show that y = x\ogx has an
end point at the origin.

Solution. X cannot be negative, since negative numbers
have no logarithms; hence the curve extends only to the

right of OY. When x = 0, y = 0. There being only one
value of y for each positive value of x, the curve consists of a single branch terminating

at the origin, which is therefore an end point.
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Illustrative Example 2. Show that y =

1 1 + e^

J
has a salient point at the origin.

Solution. Here — = 1- -

dx 1

e'

1 + e=" X (1 + e^)2

If X is positive and approaches zero as a limit, we
have ultimately

3/ = and -^ z= 0.
dx

If X is negative and approaches zero as a limit, we get ultimately

y = and ^ = 1.
dx

Hence at the origin two branches meet, one having OX as its tangent and the other,

AB, making an angle of 45° with OX.

EXAMPLES

1. Show that ^2 — 2 x^ + x^ has a node at the origin, the slopes of the tangents

being ±V2.

2. Show that the origin is a node of y^{a? + x^) = x^ (a^ — x^), and that the tan-

gents bisect the angles between the axes.

3. Prove that (a, 0) is a node oty^ = x(x— a)^, and that the slopes of the tangents

are ±Vo.

4. Prove that a^y^ — 2 ahx^y — x'' = has a point of osculation at the origin.

5. Show that the curve y^ = x^ + x* has a point of osculation at the origin.

6. Show that the oissoid y^ = -
- has a cusp of the first kind at the origin.

2a — X

7. Show that j/^ = 2 ax^ — x' has a cusp of the first kind at the origin.

8. In the curve (y — x^Y = x" show that the origin is a cusp of the first or second

kind according as n is < or > 4.

9. Prove that the curve x* — 2 aa?y — axy^ + a?y^ — has a cusp of the second

Mnd at the origin.

10. Show that the origin is a conjugate point on the curve y^ (x^ — a?) = x^

11. Show that the curve y^ = x (a + x)^ has a conjugate point at (— a, 0).

12. Show that the origin is a conjugate point on the curve ay^ — x^ + 6x^ = when
a and 6 have the same sign, and a node when they have opposite signs.

13. Show that the curve x* + 2 ax^y — ay^ = has a triple point at the origin, and

that the slopes of the tangents are 0, + V2, and — V2.

14. Show that the points of intersection of the curve ( -| + (-) = 1 with the axes

are cusps of the first Mnd. ^"'^ ^^'

15. Show that no curve of the second or third degree in x and y can have a cusp

of the second kind.

16. Show that y = e ^ has an end point at the origin.

17. Show that y = x arc tan - has a salient point at the origin, the slopes of the

tangents being ± —

.



CHAPTER XX

APPLICATIONS TO GEOMETRY OF SPACE

160. Tangent line and normal plane to a skew curve whose equations

are given in parametric form. The student is already familiar with the

parametric representation of a plane curve. In order to extend this

notion to curves in space, let the coordinates of any point P (x, y, z)

on a skew curve be given as functions

of some fourth variable which we shall

denote by t, thus,

(^) ^ = .^(0, 2/=t(0. « = x(0-

\

[ztAx.^-fAi/.z-l-AzI

i^y

The elimination of the parameter t

between these equations two by two

will give us the equations of the pro-

jecting cylinders of the curve on the X/

coordinate planes.

Let the point P(x, y, z) correspond to the value t of the param-

eter, and the point F'(^x+ Ax, y+ Ay, z+ Az) correspond to the value

t+At; Ax, Ay, Az being the increments of x, y, z due to the incre-

ment At as found from equations {A). From Analytic Geometry of

three dimensions we know that the direction cosines of the secant

(diagonal) FF' are proportional to

Ax, Ay, Az;

or, dividing through by At and denoting the direction angles of the

secant by a', /3', 7',

I 01 , Ax Ay Az
cos a' : cos B' : cos 7' : : — : —^ :

' At At At

Now let P' approach P along the curve. Then At, and therefore

also Ax, Ay, Az, will approach zero as a limit, the secant PF' will

approach the tangent line to the curve at P as a limiting position,

and we shall have
dx dy dz

dt dt ' dt

262

cos a : cos /8 : cos 7

:
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where a, /3, 7 are the direction angles of the tangent (or curve) at F-

Hence the equations of the tangent line to the curve

at the point (x, y, z) are given hy

X-x Y-y Z-z
(69)

dt

dz

Tt

and the equation of the normalplane, i.e. the plane passing through (x, y, z)

perpendicular to the tangent, is

X, Y, Z being the variable coordinates.

Illustrative Example 1. Find the equations of the tangent and the equation of

the normal plane to the helix * (d being the parameter)

(x = acos6,

iy = a Bind,

Iz = bS,

(a) at any point ;
(b) when 5 = 2 ir.

dx
Solution.

dy=— asinff =—y, ^ = acos6
d0 d0

dz ,

X, — = 0.

d9

Substituting in (69) and (70), we get at (x, y, z)

X-x Y—y Z-z
-y

tangent line

;

and -y{X-x) -^xij— y) + 6(Z — z) = 0, normal

plane.

When 9 = itr, the point of contact is (a, 0, 267r),
J-

^"^"^ X-a _ r-0 _ Z-2hrr

d " a ~ b

or, X=a, bY= aZ — 2 (Onr,

the equations of the tangent line ; and

aY+bZ-2b^ir = 0,

the equation of the normal plane.

The helix may be defined as a curve traced on a right circular cylinder so as to cut all

the elements at the same angle.

Take OZ as the axis of the cylinder, and the point of starting in OX at Pq- Let o = radius

pi base of cylinder and 6= angle of rotation. By definition,

PITPN
' k (const.) , or z=akd.

SN arcPo-^ «*

Let ak=h; then z=be. Also y = MK= a sin B, x= 0M= a cos 6.



264 DIFFERENTIAL CALCULUS

EXAMPLES

Find the equations of the tangent line and the equation of the normal plane to

each of the following skew curves at the point indicated

:

x — 2_y — l z — 4.\. x = 2t,y = P,z = i.ti; t = l. Ans.
2 2 16

x + y + 8z-35 = 0.

2. a; = t2-l, 2/ = i + l, z = i8; J = 2. Ans. ?^ = ^ZL? = ?J1^
;

4 1 12
4x + 2/ + 12z — 111 = 0.

3. x = t^-l,y = t + f^,z = it^-it + l; < = 1. Ana. - =l^ = ^^;
' ' ' 3 3 9

a; + jr + 3z-8 = 0.

A , -4 44'^ A 4x — IT V2« — 1 V2z —

1

4. X = i, ^ = sm i, z = cos i ; t = -

.

Ans. = i =
;4 4 1 _ 1

I6X+V2?/— V2z-47r = 0.

5. x = at,y — U^, z = ct^; t = 1.

6. x = t, y = l~t', z = 3i^ +'4i; <=— 2.

7. x = t,y = e',z = e-'; t = 0.

8. X = asint, y = b cos t, z = t; i = —

9. Find the direction cosines of the tangent to the curve x = t", y = t^, z = i* at

point X = 1.

161. Tangent plane to a surface. A straight line is said to be tan-

gent to a surface at a point P if it is the limiting position of a secant

through F and a neighboring point P' on the surface, when P' is

made to approach P along the surface. We now proceed to establish

a theorem of fundamental importance.

Theorem. All tangent lines to a surface at a given point* lie in

general in a plane called the tangent plane at that point.

Proof. Let

be the equation of the given surface, and let P (x, y, z) be the given

point on the surface. If now P' be made to approach P along a curve

C lying on the surface and passing through P and P', then evidently

the secant PP' approaches the position of a tangent to the curve C
at P. Now let the equations of the curve C be

(5) a;=</.(0, y = ^(f), 2 = x(0-

* The point in question is assumed to be an ordinary (nonsmgular) point of the surface,
. dF dF dF

^ ,^ ^^^ ,

I.e. -;—' ^—' — are not all zero at the point,
Sx dy dz
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Then the equation (^) must be satisfied identically by these values,

and since the total differential of (^) when x, y, z are defined by
(i?) must vanish, we have

^^> V.di^^dt+^Jt='- By (52), p. 196

This equation shows that the tangent line to C, whose direction

cosines are proportional to

dx dy dz

dt dt dt

is perpendicular * to a line whose direction cosines are determined by

the ratios
^^^ ^^ g^

ox dy dz

and since C is any curve on the surface through P, it follows at once,

if we replace the point T(x, y, a) by Ii(x^, y^, z^), that all tangent

hues to the surface at P^ lie in the plane ^

dF^ dF, dF. .

(71)
—i(x-jrO+r-i (y-^i) +77(^-^1) =0,t
ox^ oy^ dz^

which is then the formula for finding the equation of a plane tangent at

(x
, y , z ) to a mirfaee whose equation is given in the form

F(x, y, 2) = 0.

In case the equation of the surface is given in the form z =f(x, «/), let

(-D) F(x, y, Z-) =f(x, y)-z=0.

dx dx dx dy dy dy dz

* From Solid Analytic Geometry we know that il two lines having the direction cosines

coscti, cos;3i, C0S7X ^•"i '^°^ '^i' ""^^zt <=os 72 are perpendicular, then

cos OTi cos a2 + cos ^1 cos P2 + cos 7i cos 72 = 0.

dF-i BF-i SFi
t The direction cosines of the normal to the plane (71) are proportional to g^ > g— > -gj-

Hence from Analytic Geometry we see that (C) is the condition that the tangents whose

direction cosines are cos a, cos (3, cos 7 are perpendicular to the normal; i.e. the tangents

must lie in the plane.

} In agreement with our former practice,

dF\ dF\ dFi Sz^ dz^

denote the values of the partial derivatives at the point (xi, 2/1, Zi).
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If we evaluate these at (x^, t/^, z^ and substitute in (71), we get

('2) S(^-'i) + 5(y-yi)-(^--^i) = o,

which is then the. formula for finding the equation of a plane tangent at

(x^ ^j, Zj) to a surface whose equation is given in the form z =f(x, y).

In § 126, p. 197, we found (55) the total differential of a function u (or z) of x and

y, namely,

(E)
dx dy

We have now a means of interpreting this result geometrically. For the tangent

plane to the surface z =/(i, y) at (x, y, z) is, from (72),

{F) Z-z = |(X-.)-,|(r-.),

X, Y, Z denoting the variable coordinates at any point on the plane. If we substitute

. X = x + dx, and Y=y + dy
P(.X,Y,Z)

in (F), there results

(G) Z-z = ~dx + —dy.
dx dy

Comparing (E) and (G), we get

(H) dz = Z — z. Hence

Theorem. The total differential

of a function f(x, y) corresponding

to the increments dx and dy equals

the corresponding increment of the

z-coordinate of the tangent plane to

the swrfoice z =/(x, y).

Thus, in the figure, PP' is the

plane tangent to surface PQ at ^Y
P(x, y, z).

Let AB = dx and CD = dy

;

then (Jz = Z - z = DP' - DE = EP'.

162. Normal line to a surface. The normal line to a surface at a

given point is the line passing through the point perpendicular to the

tangent plane to the surface at that point.

The direction cosines of any line perpendicular to the tangent

plane (71) are proportional to

dF, gjr ai-;

dx.

(73)

dz.
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an the equationg of the normal line* to the surface F(x, y, 2)=0 at

Similarly, from (72),

(74)
x-x^ ^ y-y^ ^ z-z^
azj azi -

1

are the equations of the normal line * to the gurfdce z =/(a;, y')at(x,y,z).

EXAMPLES

1. Find the equation of the tangent plane and the equations -of the normal line

to the sphere x^ + y^-\-z^ = 14 at the point (1, 2, 3).

Solution. Let F(x, y, z) = x^ + y^ +z^ - 14 ;

.

dF dF dF
then =2x,-- = 2y,— = 2z; x^^ 1, y^ = 2, z^ = 3.

ox oy oz

asi ^y^ Sz,

Substituting in (71), 2(x - 1) + 4(y - 2) + 6(z - 3) = 0, x + 22/ + 3z = 14, the

tangent plane.

substituting in (73), ?^ = ^^^ =?^

,

giving z = 3 a; and 2z = 3y, equations of the normal line.

2. !E1nd the equation of the tangent plane and the equations of the normal line to

the ellipsoid 4a;2 + 9^" + 362" = 36 at point of contact where x = 2, y = 1, and z is

positive. Ans. Tangent plane, 8{x-2) + 9(y -1) + 6 VTl (z - ^ Vll) = ;

,,. x-2 y-1 z-iVu
normal line, = = ^^ni

—

8 9 eViT

3. Knd the equation of the tangent plane to the elliptic parabola z = 2 x^ + 4 j/^

at the point (2, 1, 12). Ans. 8x + Sy — z = 12.

4. Eind the equations of the normal line to the hyperboloid of one sheet

x2 _ 43/2 + 2z2 = 6 at (2, 2, 3). Am. y + 4x = 10, 3x-z = 3.

5. Find the equation of the tangent plane to the hyperboloid of two sheets

i" «2 z" . x,x y,y z,z ,

6. Find the equation of the tangent plane at the point (x„ y.^, Zj) on the surface

0x2 + 6j,2 ^ 0^2 ^ (J
_ 0. Ans. oXjX + iyi_y + czjZ + d = 0.

7. Show that the equation of the plane tangent to the sphere

a;2 + 2/2 + z2 + 2ix + 2Jlf?/ + 2JVz + -D =
at the point (Xj, y.^, z^) is

a^iX + ViV + z.^z + L{x + Xi) + M{y + y^) + N(z + z{) + D = 0.

* See second footnote, p. 265.
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8. Pind the equation of the tangent plane at any point of the surface

x^ + y^ + z^ = o^,

and show that the sum of the squares of the intercepts on the axes made by the tangent

plane is constant.

9. Prove that the tetrahedron formed by the coordinate planes and any tangent

plane to the surface xyz = a' is of constant volume.

10. Find the equation of the tangent plane and the equations of the normal line to

the following surfaces at the points indicated

:

(a) 2x2 + 42/2_z = 0; (2, 1, 12). {d) 3x^ + y^ - 2z = 0; x = 1, y = 1.

(b) x^ + iy'-z' = 16; (1,2, -1). (e) x^y^ + 2x + z' = 16; x - 2, y = 1.

(c) x^ + y^ + z^ = 11; (3, 1, 1). (f) a;2 + 32/2 + 2z2 = 9; 2/ = l, z = l.

163. Another form of the equations of the tangent line to a skew

curve. If the curve in question be the curve of iatersection AB
of the two surfaces F(^x, y, 2) = and u^
G (x, y, z) = 0, the tangent line PT at

-P(a;j, y^, z^) is the iatersection of the

tangent planes CD and GE at that point, j^

for. it is also tangent to both surfaces and .(^

'

hence must lie in both tangent planes.

The equations of the two tangent planes

at P are, from (71),

(75)

dF, OF, dF,

aG, SG, SG,

Taken simultaneously, the equations (75) are the equations of the

tangent line PT to the skew curve AB. Equations (75) ia more com-

pact form are

(76)

or.

(77)

x—x^ y-Vx z— z.

dF\dG^_dF\dG^ dF\dG^_dF\dG^ dF^dG^ dF^dG^

dy^ dz^ dz^ ey^ dz^ dx^ dx^'dz^ dx^'dy^~'dy^'dx^

X— X, y-Ui z-z.
dF^ dF^

dy^ dz^

5Gi 5Gi

dy^ dz^
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164. Another form of the equation of the normal plane to a skew
curve. The normal plane to a skew curve at a given point has abeady
been defined as the plane passing through that point perpendicular to

the tangent line to the curve at that point. Thus, in the above figure,

FHI is the normal plane to the curve AB at P. Since this plane is

perpendicular to (77), we have at once

dF^ dF^

dy^ dz^

dG^ 5Gi

az/i dz^
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4. Find the equations of the tangent line and the normal plane to the curve

at (1, - 1, 2).

5. Find the direction of the curve

xyz = 1, y^ = x
at the point (1, 1, 1).

6. What is the direction of the tangent to the curve

y = x^, z^ = l — y
at (0, 0, 1) ?

7. The equations of a helix (spiral) are

x2 + y2 = r'-i,

y = X tan -

.

c

Show that at the point (Xj, j/j, Zj) the equations of the tangent line are

c(s-Xi) + 2/i(2-Zi) = 0,

c(2/-2/i)-a;i(z-Zi) = 0;

and the equation of the normal plane is

yjX — Xjy — c{z — z^) = 0.

fg2 y1 -2
8. A skew curve is formed by the intersection of the cone V- = and

02 62 c2

the sphere x^ + y^ + z2 = ^2. ghow that at the point (Xj, y^, Zj) the equations of the

tangent line to the curve are

c2 (a? - 62) xj (x - X,) = - a2 (ft^ + c^) z^ (z - z,),

c2 (a2 - 62) y^ (y - i/j) = + 6^ (c^ + a^) z, (z - z^)

;

and the equation of the normal plane is

efi (62 + c2) j/jZiX - 62 (c2 + a2) z^x^y - c^ (a^ - 62) x^y^z = 0.



CHAPTER XXI

CURVES FOR REFERENCE

For the convenience of the student a number of the more common

curves employed in the text are collected here.

Cubical Pakabola

y

Semicubical Pakabola

' = aa^. i/^=cu^.

The Witch of Agnesi The Cissoid op Diocles

Y
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The Lemniscatb of Beknoulli The Conchoid of Nicomedes

Y

p^= a^ cos 2 6. p =a CSC 6 + b.

Cycloid, Oedinaky Case
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Hypocycloid of Four Cusps Evolute of Ellipse

- Y\

x=a cos' 6,

y = a sin' Q.

{axf+(lyf=(a^-l?-f

Caedioid

/3 = a (1— cos ^).

Folium of Descartes

Y

a?+i^~ Saxi/ = 0.

Sine Curve Cosine Curve

t/ = sin X. y = cos X.
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LiMAcosr Stbophoid

¥

p = b — a cos 0. r-^
,a + x

Spiral (
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Parabolic Spiral Logarithmic Curve

(p — a)^= 4 ac6. y = log X.

Exponential Curve

i/ = e'.

Probability Curve

Y

Secant Curve

|t 1
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Theee-Lbaved Eosb Three-Leaved Eosb

3 y

p = a sin 3 d. p = a cos 3 6.

Four-Leaved Eosb Foub-Lbaved Rose

p= a sin 2 0. p = a cos 2 0.

Two-Leaved Rose Lemniscate

p''=a'sm2e.

Eight-Leaved Rose

p = a sin 4 6.
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Cttkve with End Point

AT Origin

Curve with Salient Point
AT Origin

JO

y = x log X. i(l +^ = x.

CuKVB WITH Conjugate (Isolated) Curve with Cusp op Second

Point at the Origin Kind at Origin

(iy-xy=a^.

p = a sec -

.

Equilateral Hyperbola

• IT
I

X

xy = a.
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CHAPTER XXII

INTEGRATION. RULES FOR INTEGRATING STANDARD
ELEMENTARY FORMS

165. Integration. The student is already familiar with the mutu-

ally inverse operations of addition and subtraction, multiphcation

and division, involution and evolution. In the examples which fol-

low, the second members of one column are respectively the inverse

of the second members of the other column

:

y = «% a; = log„?/;

y — sin X, x= arc sin y.

From the Differential Calculus we have learned how to calculate the

derivative /'(a;) of a given function f(x), an operation indicated by

or, if we are using differentials, by

df(x)=fix)dx.

The problems of the Integral Calculus depend on the inverse operation,

namely

:

To find a function fQc) whose derivative

(A) f'(x) = <i>(x)

is given.

Or, since it is customary to use differentials in the Integral Calculus,

we may write

(£) ' 'df(x-) =f'(a>') d^ = 'l> (.<"} <^^^

and state the problem as follows

:

Saving given the differential of a function, to find the function itself.

279
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The function /(a;) thus found is called an integral* of the given

differential expression, the process of finding it is called integration,

and the operation is indicated by writing the integral dgn^
j

in front

of the given differential expression ; thus

(C) jf(x)dxt^f(x).

read an integral off'(x) dx equals f(x). The differential dx indicates

that X is the variable of integration. For example,

(a) If f(x') = x\ then /'(«) dx=B 3?dx, and

/ %̂x^dx = x\

(b) If/(a;) = sina;, th.QTXf(x) dx = cos xdx, and

/cos xdx = sui X.

(c) If /(a;) = arc tan x, then /'(a;) dx = z ^ > and

dec
;
= arc tan x.

Let us now emphasize what is apparent from the preceding expla-

nations, namely, that

Differentiation and integration are inverse operations.

Differentiating (C) gives

(1)) djf<(x)dx=f(x)dx.

Substituting the value of /'(») dxl= df(x')'] from (S) in ( C), we get

W Jdf(x-)==f(xy

d r
Therefore, considered as symbols of operation, -j- and I dx wcq

inverse to each other ; or, if we are using differentials, d and / are

inverse to each other. "^

* Called anti-differential by some writers.

t Historically this sign is a distorted S, the initial letter of the -word sum. Instead of
defining integration as the inverse of differesitiation, we may define it as a process of sum-
mation, a very important notion which we will consider in Chapter XXVIII.

X Some authors write this D~ f'(x) when they wish to emphasize the fact that it is an
inverse operation.
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When d is followed by / they annul each other, as in (Z)), but

when I is followed by c?, as in (^), that will not in general be the

case unless we ignore the constant of integration. The reason for this

will appear at once from the definition of the constant of integration

given in the next section.

166. Constant of integration. Indefinite integral. From the pre-

ceding section it follows that

since d(a?') = 3 x^dx, we have / 3 a?dx — a?;

since ci(a;'-|- 2) = 3 x^dx, we have / 3 x^dx = x'+2;

since d(af— 7) = 3 x'dx, we have I 3 afdx = a;'— 7.

In fact, smce ^^^a^ g,^ _ 3 ^^^^

where C is any arbitrary constant, we have

/dx''dx = x''+C.

A constant C arising in this way is called a constant of integration.*

Since we can give C as many values as we please, it follows that if

a given differential expression has one integral, it has infijiitely many
differing only by constants. Hence

P\f(x)dx=fix) + C;

and since C is unknown and indefinite, the expression

is called the indefinite integral off'(x) dx.

It is evident that if ^(x) is a function the derivative of which is

/(a;), then ^ (x) + C, where C is any constant whatever, is likewise

a function the derivative of which is f{x). Hence the

Theorem. If two functions differ hy a constant, they have the same

It is, however, not obvious that if ^ (x) is a function the derivative

of which is f(x), then all functions having the same derivative fCx)

are of the form <^(x) + C,

where C is any constant. In other words, there remains to be proved the

* Constant here means that it is independent of the variable of integration.
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Converse theorem. If two functions have the same derivative, their

difference is a constant.

Proof. Let <j>(x) and ^•{x') be two functions having the common

derivative /(a;)- Place

F(z') = <i}(x) — ^(x); then

(A) F>(x) = -^l<t><ix)-f (2;)] =/(a;) -/(a;) = 0. By hypothesis

But from the Theorem of Mean Value (46), p. 166, we have

F(z+Ax')-F(xy = AxF'(x + 0-^')- 0<0<1
. . F(x + Ax') ~ F(x)= a,

[Since by {J) the derivative of F{x) is zero for all Values of a.]

and F(x + As) = F(x).

This means that the function

F(x) = ^ix-)-^(x)

does not change in value at all when x takes on the increment Aa;,

i.e. ^(x) and ^(x) differ only by a constant.

In any given case the value of C can be found when we know the

value of the integral for some value of the variable, and this will be

illustrated by numerous examples in the next chapter. For the pres-

ent we shall content ourselves with first learning how to find the

indefinite integrals of given differential expressions. In what fol-

lows we shall assume that every continuous function has an indefinite

integral, a statement the rigorous proof of which is beyond the scope

of this book. For all elementary functions, however, the truth of

the statement will appear in the chapters which follow.

In all cases of indefinite integration the test to be applied in veri-

fying the results is that the differential of the integral must he equal

to the given differential expression.

167. Rules for integrating standard elementary forms. The Dif-

ferential Calculus furnished us with a Q-eneral Rule for differentiation

(p. 29). The Integral Calculus gives us no corresponding general

rule that can be readily apphed in practice for performing the inverse

operation of integration.* Each case requires special treatment and

we arrive at the integral of a given differential expression through

* Even though the integral of a given difeerential expression may be known to exist, yet
it may not be possible for us actually to find it in tenns of known functions, because there are
functions other than the elementary functions whose derivatives are elementary functions.
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our previous knowledge of \he known results of differentiation. That

is, we must be able to answer the question, What function, when dif-

ferentiated, mil yield the given differential expression ?

Integration then is essentially a tentative process, and to expedite

the work, tables of known integrals are formed called standard forms.

To effect any integration we compare the given differential expression

with these forms, and if it is found to be identical with one of them,

the integral is known. If it is not identical with one of them, we
strive to reduce it to one of the standard forms by various methods,

many of which employ artifices which can be suggested by practice

only. Accordingly a large portion of our treatise on the Integral Cal-

culus will be devoted to the explanation of methods for integrating

those functions which frequently appear in the process of solving

practical problems.

From any result of differentiation may always be derived a formula

for integration.

The following two rules are useful in reducing differential expres-

sions to standard forms

:

(a) The integral of any algebraic sum of differential expressions equals

the same algebraic sum of the integrals of these expressions taken separately.

Proof. Differentiating the expression

j du+ I
dv — I dw,

u, V, w being functions of a smgle variable, we get

du + dv — dw. By III, p. 34

(1) .'.

I
(du + dv — dw) = j du+ j

dv—
j
dw.

(b) A constant factor may be written either before or after the integral

sign.

Proof. Differentiating the expression

ajadv

gives adv. By IV, p. 34

(2) .-. (adv = a(dv.

On account of their importance we shall write the above two rules

as formulas at the head of the following list of
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Standard Elementary Foems

(1)
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(19) f^ = l.log'-^ + C.

/dv V
--F= = arcsin- + C.
Vd'-v' o

/dv ,

,
= log(i; + Vt^±^) + C.

/dv V
. = = arc vers - + C.

^2 cm -if °

a, r dv 1 V
(«3) I

—
. = - arc sec - 4- C.

Proof of (3). Since ^^ , n\ j »^ <,.^^ d(x + cy=dx, II, p. 34

we get I dx = x+ C.

Proof of (4). Since / „+i >

d f^^ + (7j = V'dv, VI, p. 34

ifdv = + C.

This holds true for all values of n except w = — 1. For, when
w = — 1, (4) gives

/
^-1+1

1

which has no meaning.

The case when n = — l comes under (5).

Proof of (5). Since ,

d(logv+C) = —, Vma, p. 35

we get
f
~~ ^°S v+C.

The results we get from (5) may be put in more compact form if

we denote the constant of integration by log c. Thus

/— = log V + log c = log ev.

Formula (5) states that if the expression under the integral sign is a

fraction whose numerator is the differential of the denominator, then the

vntegral is the natural logarithm of the denominator.



286 ESTTEGEAL CALCULUS

EXAMPLES *

For formulas (l)-{5).

Verify the following integrations

:

1. fx'^dx = — 1- C = — + C, by (4), where v = x. and n = 6
J 6 + 1 7

2. fv^di = fxi dx = y + O = |xi + C,

where v = x and n = i.

where v = x and n = — 3.

4. fax^dx = aCx^dx = —- + C.

5. rx2di = ^ + C.

by (4)

by (4)

By (2) and (4)

/2 , 3 XT
XT dx = -— + C.

J 3x2 3a;

J ax^ 2 a

10. j'5ydy =^ + C.

dx — -X V2px + C.
o

3xi

.3. Cs-ids = 2Vs + C.

..

f
5m^z^dz =^^ + G.

1-n 1

r(nx) " (ix = (nx)»4-C.

[. Cy-m-idy= + (7.11. rV2px

19. r(2x'-5x2-3x + 4)dx= C%x^dx- Cbx^dx- Cixdx + C

i

= 2 Tx^dx - 5 Tx^dx - 3 Cxdx + 4 fdx

dx by(i)

by (2)

X* 5xs 3x2
,

: — h 4 X + C.
2 3 2

Note. Although each separate integration requires an arbitrary constant, we write down

only a single constant denoting their algebraic sum.

20. Ci^-^ + ZcVlAdx= f2ax-idx- l'bx-^dx+ Cscx^dx

= 2a Cx-^dx — b Cx-^dx + 3e fx^dx

:2a.^-6.^ + 3c.?! + C
* -

1

i

by(i)

by (2)

by (4)

= 4aVxH 1--CXT + C.
» 5

* Wlien learning to integrate, the student should have oral drill in integrating simple

functions.



INTEGRATION 287

5 7

22. r(-5/ii_ 1 +lW^i^_3xJ-JL + c.
J \ -5^x5/ 5 2x*

. r(ot - x^Ydx = aH + ~ahi --aix^ - — + C.
«/ 7 5 3

/x=

23. " '

Hint. First expand.

24. /(a= - ,V V^d^ = 2yf
(I

-i^ + i^* - g)+ C.

25. /(VS - Vt)»d« = alt - 2 ait +?^ -^ + C.

(x^ - 2)8x8da! =_ _^ + 2x6 - 2x« + O.
10 a

27. J(a2 + 6V)ixdx = ("' + ^°'«')*
+ c.

Hint. This may be brought to form (4) . For let v=a^ + fi^ajZ and n=i; then d« = 2 b^dx.

If we now Insert the constant factor 2 6^ before xdx, and its reciprocal —-rz before the integral

sign (so as not to change the value of the expression) , the expression may be integrated, using

(4), namely,
/> yn +1

.1 n + 1

Thus, r(o2+63a;2)4a;(2a; = -L C {a^ -1-1,2x^)^2 b^dx^—^ r(a2 + ?>2a;2)4d(a2 + 62a;2)

1 (a2+ 62a;2)i
^

^ (ag + 62a!2)i
^

2 62 3 3 62

Note. The student is warned against transferring any function of the variable from one

side of the integral sign to the other, since that would change the value of the integral.

28. rVo2 - x^xdx =[(0? - x^ixdx=- i(a^ - x^)! + C.

29. f(3ax2 + 4&x')t(2ax + 46x2)*E=^(3ax2 + 45x')l + C.

Hint. Use (4) , making v = Sax!^ + 4 bx^, cJw = (6 aa; + 12 6a;2) dx and n = i-

30. fb{6ax^ + 86xS)i(2 ax + 46x2)dx =— {6ax^ + 86xS)f + C.
J 16

3 ._^^^2 ^^3^_^^

Hint. Write this f (a^ + x^)~^x^dx and apply (4).

32. f ^_ =-2VT^r^ + 0.
^ Vl-x

33. /2,n/(^ + l^^dy = |^(?'' +i'¥ + C

34. r(l + e!>;)i^>dx = 1(1 + e»:)i + C.

sini'x cosxcfe = / (sin x)^ cos x A? = ^ ^ + C = —-—1- C.

Hint. Use (4) , making « = sin a, dv = cos xdx, and n=-2.
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„„/«. , oos'x _
36. I cos'x sinxdx= l-C

J 6

37 . / sin' ax cos axdx =— sin* ax + C.
J 4a

cos*3x sin Sxdx = cos=3a; + C.
15

39. f /^ =-Vaii-x^ + C.

Va2 - a;2

5 adi _ a

1)6 ~ (6 - «)s
40. r_i^^ = _^^_ + c.

41. fv'l + x^xtJx = J(l + x2)t + c.

•^ Vl - s2 4

M»- Id-it _ (a +6u»)i

t + 6M»)">~ 6w(l-

2 osds _ a

,2 _ c2s2)2
~

c'

Saxdx 3a
62 + e^x

3axdx „ / stix

43. r ^" -- ^ v-^-/- +c.
J (a + 6m»)"> 6w (1 — m)

44 r 2'^'^« = °
I c

45. I
=—- log(62 + e^x^) + C.

„ , , . /> 3 oxdx „ / stix -, ,„.
Solution. (

— —
- = 3 a I

— -— By (2)

This resembles (5). For let v = b^ + ^3? ; then d» = 2 e^xdx. If we introduce the

factor 2 e^ after the integral sign, and—- bfefore it, we have not changed the value

of the expression, but the numerator is now seen to be the differential of the denom-

inator. Therefore

3 a \ —— I
=— /

—^^

—

= log (62 + e2x2) + G. By (5).
J 62 + e2x2 2 e2J 62 + e2i2 2 e2J 62 + e2x2 2 e2 ^ ' ^ '

50.
''^'*". rx^Ox x2 x= , , ,. ^

'•i^TT=^-"¥+3-^°^(^ + '^ + ^-

Hint. First divide the numerator by the denominator.

51- ^^k+l^ " "^ ~ "^o^K^x + 3)2 + C.
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/2;n — 1 I 2
dx = -log (a?*.— nx) + C.

x''— nz n

53 r (.--2)^^. ^2_6 j^^_

-/ a + 6f» n6

55. r(log a)3— = 1 (log a)i + C.

-^l~dr = — + r + 21og{r - 1) + C.

57.
J
—

-^ = 21og(e>=+l) + C.
'

sin xdx 1

,

+ baosx

sec^ 6dd 1,

58.
I

= log (a + ft cos x) + C.
./ a + ocosx

^°-/S =•¥ + '' + ^"s^""- ^> + ^•

61. f?^^dr = \og(ef+lY-r + C.

62. Integrate the following and verify your results by differentiation

:

{a)fUx^-^dx.

Solution. fUx^--\dx = 4 fx^dx - 2 f— =— - 2 log x + C.

renficution,. d(^— 21ogx + c\ = (^:3x^-2 -\dx = Ux^-?\dx.

(b)/x^&. (h)/s™ + «ds. (n)J|£l^. (t)/sin3^cos^dx.

(e)/5^x<^. (i)/..i... (0)/,-^. (u)/^.

(f)/75fa^. (l)/6^cfe. (r)j(?^hil^. (x)/(J + l)^6^dx.

<^)/^- <'"^/^\ ^^^/v5f3^^- (^)/<^°^*)'t-

Proofs of (6) and (7). These follow at once from the corresponding

formulas for differentiation, II and Ha, p. 35.
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EXAMPLES
For formulas (6) and (7).

Verify the following integrations

:

ba?^dx =—— + C.
2 log a

Solution, fftas^ffe = ft frt- "^dj-. By (2)

This resembles (6). Let«= 2a;; then tli} = 2 ilx. If we then insert the factor 2 before (fe and the

factor ^ before the integral sign, we have

bCa^-dx = -fa^-2dx = lfa^-d{2x) = l-:^ + C. By (6)

J 2J iJ ^ ' 2 loga

2. Cz&^ = %^-irC. 7. Je-»*i;=-e-^+C.

. f^dx = n^+C. 8.
J
e^dx =— + C.3

fax

/g2cosx *
/* 5^ ^

e-2cosa:sini(fe= ^ + ^- ^^'
J
^ \^'^

" 21og3 •' _l + loga/I / a'^ \
(esx + a6'»)dx = -{^'^ +

j
+ C.

13. rg^ + 4»^ + 8(x + 2)(ix^ie^ + *^ + » + C.

Ignx _ femx) cfe = — + C.
nloga mlogo/X _3C X _X

(e" + e ") *c = a (e" — e ") + C

16. r(e!'+ e-!')2dy = l(e2i'-e-2!') + 22/ + C.

J a^f log o — log b

iei^+a^x+3i,^2x)clx = —- + — —

—

- + C.
4 51oga 2 log

6

/I fpSat . g— 8a("l

(ea< + e- «)Sdt = ± 1_ + 3 ea! -1 3 e- <" -— + C.
a\_ 3 3 J

20. Integrate the following and verify your results by differentiation

:

(a) Ce^'ds. (e) fe-^'^dx. (i) Cbe^dx. (m) fa^xdx.

2'^t. (i) J
e " *i:. (n) j e ' dS.

(c) fc"''^. (g) fs^e^dx. (k) r<ie-'»«dx. (o) C(e^'')^dx

(-i)/^-
('^>i^- <^Uvii- ^^^-/ftf^-
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(q) ra2»™*cos0(i0. (s) Cef^'esingdO. (u) fe^^^'sec^tdt.

(r) j{^+e"^Ydx. (t) fe^-ixdx. (y) Ca^ogx^.

Proofs of (8)-(13). These follow at once from the corresponding

formulas for differentiation, XI, etc., p. 35.

Proof of (14).
I
tan vdv = (

sin vdv

-/

-P

cost)

sin vdv

cos V

' d (eos v")

cosv

= — log COS v + C by (5)

= logsecv+C

[Since — log cos v = — log = — log 1 + log sec v — log sec v.
S6C 1} J

Proof of (15). 1 cot vdv = l —. =
|
—^ ^

- J J sm.v J smv
= log sin V + C- By (5)

„ , ,^ ^ „. secw+tant)
Proof of (16). Since sec?;= secv ;

^ ^ sec V.+ tan v

_ sec V tan v+ sec^v

sec V + tan v

//"sec « tan v + sec v ,

sec v.dv = / av
J sec V + tan »

/
d (sec t> + tan v')

sec V + tan v

= log (sec t) + tan v^ + C. By (5)

„ ^ , ^ ^ _. CSC w— cot

»

Proof of (17). Since esc i; = esc v
CSC V— cot V

— CSC V cot V+ csc^'v

/ cscv<?v= /

CSC V — cot V

— CSC V cot V + csc'^v
C?l)

CSC V — cot w

/
c? (csc V — cot t))

CSC V — cot t)

= log (csc V — cot «) + C. By (5)



292 INTEGRAL CALCULUS

EXAIIPLES
For formulas {8)-(17).

Verify the following integrations:

cos 2 ox

/sin 2 axdx -.

2a
+ C.

Solution. This resembles (8). For let « = 2 ox ; then dv = 2 adx. If we now insert

the factor 2 a before dx and the factor— before the integral sign, we get
2a

fsin 2 axdx =— fsin 2 ox • 2 adx
J 2aJ

=— rsin2ax-d(2ax) = - cos2ax+C. By (8)
2aJ ^ ' 2a

cos 2 ax

2a
+ C.

2. fcosmxdx = — smmx + C. 7. fcso ay cot aydy = cso ay + C.
J m ' o,

3. rtan6idi = -logsecfta; + C. 8. Tcsc^Sxdx =— JcotSx + C.

4. rsecax(i); = -log(secax+ tanax) + C. 9. (cot - (ix = 2 log sin - + C.
•J a •12 2

5. Tcsc 5 dx = o log (cso- - cot -") + C. 10. fsec^x^ x^di = \ tan i^ + C.

6. rseo3Jtan3«di = isec3t + C. 11. ("-^-5- = - cot x + C.
J J sin^x

2. f— = tans + C.
J cos's

. r(tan 6 + cot ff)He = tan ff — cot 6 + C.

.4.
I
(sec a — tan a^da = 2 (tan a — sec a)— a + C.

5. r(tan2s — l)2ds = itan2s + log cos 2s + C.

6. fl COS - - sin 3 e ) dS = 3 sin - + - cos 3 ^ + 0.
J \ 3 / 3 3

'.
I
(sinox + sin-jdx =

J \ a/ a
cos ax— a cos - + C.

a

21,

/k
kcos(a + by)dy = -sin(o + by) + C.

9.
I
cosec^x' -x^dx =— Jcotx* + C.

/dx
cos (logx)— = sin (logx) + C

X

/dx X=— cot X + CSC X + C = tan - + C
1 + cos X 2

Hint. Multiply both numerator and denominator by 1 - cos x and reduce before inte-

grating.

22.
I

= tanx — $ecx + C.
J 1 + sin X
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23. Integrate the following and verify the results by differentiation :

(a)/sin^ci.. i^)f~ (o)/(tan4s-coti)ci«.

(b) fcot e^ . e*dx. (i) ftan - dx., (P) / ^°°^ ^ " ^)^^

, . r 6 e ,„ r (l) ({seat-Xfdt.
(c) j sec - tan - dO. (]) j csc^ (a - to) dx. "^

(r) r(l-cscy)2da.

(d)
I
osc-^ cot ~d(t>. (k) IJob J sin24^ , . r dx

(e)/eos(6 + ax)dx. (1)/-^.
•^ 1 — si

(t) fseo^2axdx. (m) C (sec2d - osc-jdd. ,^s / 2gdi
^ 'J sin6i

^^^/^^fs^-
(n)/(tan0 + sec0)^d0. (v)J^*'^^

Proof of (18). Since

cos a

cosSe

d"
c?(-arctaii-+C)= fL_=-^^, by HII, p. 35

. v^+a^

/dv 1 V
g , ^ = - are tan - + C*
+ a a a

Proof of (19). Since -^-i-^ = A. (A L_\

r dv ^ J^ r/_i 1

J v^~a^ 2aJ \v~ra v +
dv

+ a/

1

Za v + a

'Also (i/- arc cot- + c'| =—r^ and f—^^=_larccot- + (7'. Hence
\o a I v^ + a'' J v^ + a^ a a

r dv 1
/ =-a

i/ 1)2 + a2 a
- are tan — + C=— arc cot - + C".

Since arc tan - + arc cot—= — , we see that one result may be easily transformed into the other.
a a 2 V V

The same kind of discussion may be given for (20) involving arc sin - and arc cos - , and for

(23) 'involving arc sec- and arc esc -.
o a

t By breaking the fraction up into partial fractions (see Case I, p. 325)

.
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Proof of (20). Since

d"'

d fare sin - +cU ,

^"^ = a^
, ^ XVIII, p. 35

= arc sm - + C-
a

r dv

Proof of (21). Assume v^atanS, where g is a new variable;

differentiating, dv = a sec^ zdz. Hence, by substitution,

/dv _ r a seo^ zdz _ P sec' zdz

^7+7^"J VaHan^z + a' J Vtan's+l

=
I
sec zdz = log (sec z + tan s) + C by (16)

= log (tan 2 + Vtan^2 + l) + c. By 28, p. 2

But tan 2 = - ; hence,
a

-. v+^v^+a'
,= log h c

a

= log(v +Vv^+ a^)— log a + c.

Placing C =— log a + c, we get

f-^^ = log{v+V7T^^)+C.
J Vv^+ar

In the same manner, by assuming v = a sec z, dv = a sec s tan zdz

we get
f dv fa sec 2 tan 2^2 r
I =

I
=

I
sec 2a2

= log (sec 2 + tan 2) + c by (16)

= log (sec 2 + Vsec^ 2 — l)+ c by 28, p. 2

= log('^ + >J^-lVc = log(t;+V7^^)+C.

Proofs of (22) and (23). These follow at once from the corre-

sponding formulas for differentiation, XXII and XXIV, p. 36.
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A large number of the fractional forms to be integrated have a

single term in the numerator, while the denominator is a quadratic

expression with or without a square root sign over it. Tte following

outline will assist the student in choosing the right formula.
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10. f
^"^ =garcsmx^ + C. 13. f—^= = arc vers ? +

C

J Vi-K* 2- '' Vex- x^ *>

11.
"^ =-arcsec— + C. 14. j ^^—^^ = ^^loKrr +C

^- arf. t.a.ll - 4- (7. 15. |

-

X* + e* 2 f

"^ =-arcsec^ + C. 14. I „ ,.2^ = ^7:;^ l°g »—

^

12. f^?^ = JL arc tan ?? + C. 15- /^|^ = ^^^^ ^'^ «' + ^

6
16. f = —= arc sin a /^ s + C.

•^ V3-5s2 VB ^'S

17. T—=^= =— log(Vau + VoB^^ + C.
^ Vat!^ — 6 Va

,„ r cos ardor 1 ^ /sinaN
, „

18. ( = - arc tan ) + C.
J a^ + sin^ a a \ a /

19.
I

—

. = arc sin (log x) + G.
•^ X Vl— log^x

20. f ^ = - log (ex + V62 + e%2) + c.
•^ Vb^ + e^x- «

21. f ,

^^ =\\og(bv + Vf^v^-a^) + G.

22.
I

—

— = arc sm \-G.

adz a ^ z — e= - arc tan
e)2 + 62 6 6

23. r '^ = :iarctan^^^^ + C.
J (z_,-" -" -

24. I = - arc tan Y G.
Jx^+2x+b 2 2

Hint. By completing the square in the denominator, this expression may be brought to

a form similar to that ol Ex. 17. Thus,

/dx r dx r dx l.a; + l,^ _ ,,„,=
I

=
I =- arc tan + C. By (18)

a;2 + 2s + 5 J (x2 + 2a: + l)+4 J (a: + l)2 + 4 2 2

Here v = x + l and a = 2.

n- r dx .2x —

1

25. I — — = arc sm 1- G.
•^ V2 + X — x2 3

Hint. Bring this to the form of Ex. 16 by completing the square. Thus,

/dx r dx r dx r dx . 2^-1
,

I
,

I
, ==

I
=arcsm—- + C, By (20)

V2+i-a:2 J V2-(a:2-a:) J V2-(x^-x+l)+l J Vf-(a;-J)2
^

Here v = x-\ and a = j.

/dx 2 2x + 1==—- = -— arctan
^ +C.

1 + X + x2 VS V3

„„ r dx 1 r dx 1 ^3x— 1._,
27. I = -

I
— = —= arc tan =^ + O.

J3x2-2x + 4 3^x2-|x + f Vll Vll
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Vi-|X-x2 2^ V^-(x2+iX+^j)+^j
1 . 8x + 3

, -,
; - arc sin J- C
2 Vil

29.. f ^=: = arcsm(2g — 3) + C.
"^ V3x-x2-2

30. I
= - log h C.

31. f
-^^ ^J_iog^^ + g-^+c:

Jy2 + 32, + l V5 22/ + 3 + V5

32. C—=^=z=\og{t + \ + VW+t + i\^-G.
J Vl + J + i2 V 2 /

33. r ^ = arc tan (2 z - 1) + 0.

34. r
,

^ - = log(s+ a + V2g„s + .jgj + f;.

35. (
- = — arc sec 1-0.

36. r_4^^^ = i arc vers 18 x»+C.
•-' Vx^— 9x8 3

r(b + ex)dx 6 ^ x e, , „ ». „
37. ^—i— = -arctan- + -log a2 + a;2) + c.

Hint. A fraction with more than one term in the numerator may be broken up into the

sum of two or more fractions having the several terms of the original numerator as numer-
tors, all the denominators being the same as the denominator of the original fraction. Thus,
the last example may be written

/{b + ex)dx_ r bdx r exdx _ r dx r_xdx_

a2 + s2 ~J a^ + x^ J a2 + a;2~ J a^ + x'' ^J a^ + x^'

each term being integrated separately.

38. r(i^^:I)^ = ?log(x2+9)--arctan- + C.
J x^+^ 2^^ '3 3

39. r^^dx = llog(3x2-2)--i-log^^-^ +C.
JZx^-% 3 ^^ 2V6 XV3 + V2

40. r_jj—g-ds=-3V9-s2-2arcsin- + C.
•J VO _ s2 3

41 / ^ + 3
{-^^p^=ax = -y/^fiTi + 31og(x + Vx2 + 4) + O.
Vx2 + 4

2. rlil^llf = 5Vst^ir^-^ log («V3+V3t^39) + a.42. . , ._. .

Vse^-g 3 V3
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43. Integrate the following expressions and verify your results by difEerentiatioij

:

dx ,.> r 2dx , , f Sdx
(a) r

"^
(i) f-

•' v'4 — 25SC2 "^ V25a;2_,

(c) f—^ (k) f^^=
(d)/—^=. (I)/-

<^

aV9a2-4 -' sVGx" — 16

sin^dS
, V r dz

I(e)
/ .

(m)
/V9-4cos2tf -^ zV4 — (logz)"'

/' (2a:-3)(fc /•(« + 2)d«

^ ' J x^ + i '
"• ' .1 it^-s

(h)r ^ (P)/
,

""

168. Trigonometric differentials. We shall now consider some trigo-

nometric differentials of frequent occurrence which may be reaAQy

integrated by being transformed into standard forms by means of

simple trigonometric reductions.

y^i 1 J^ V5x2 + 1
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Illustrative Example 1. Find fsm^xco^xdx.

Solution. I sin''x cos"xdx = fsin^x cos*x cos xdx

=
J

sin2a;(l — sln^i)^ coaxdx by 28, p. 2

=
I

(sin" a; — 2 sin* a; + sin's) cos xdx

=
J

(sinx)2 cosxdx — 2 /"(sin a;)* cos xdx + /"(sinx)' cos xdx

sin'x 2sin?x sin'x

Here » = sinx, d» = cos xdx, and w = 2, 4, and 6 respectively.

Illustrative Example 2. Find | cos^xdx.

Solution. rcosSxdx= fcos^xcosxdx = C(l — sm^x)cosxdx

=
I
cosxdx —

I
sin^x cosxdx

sin'x
. -,= sinx 1- C.

EXAMPLES

'6(5lcos6«d(9 = -
24

1. TsinSxdx = i cos'x - cosx + C. 5. fsin^eff cos 6i?dtf = fE^lif ^ c.

2. fsin^x cosxdx =?^ + C. 6. rcos3 20sin2(?d(Si =- 5^5^^ + 0.J s J 8

o r • J sin^x
, „^ _ /"COS* xdx 1 o „

3. sinx cosxdx = hC* 7. / = csox csc^x + C
J 2 J sin*x 3

A r > J cos' a
. „ „ /-sin^ ardor „

4. ( cos^a sin ada= h C. 8. I = sec ar + cos cr + C.
•' Z J cos^or

9. / cos*x sin' xdx = — J cos^x + |cos'x + C.

tn r r. J .5^1! COS''X
,

10. I sin^idx =— COSX + -cos°x \-

I 3 53 5
c.

.I r r. J • ^ • B ,

smox
. _,

11. I cos^xox = sm I sin"x -\ [ C.
J 3 5

12. fsin^ ^ cos' 4>d4> =^ sin'V^ — ^ sinV + 0.

* This was integrated by the power formula taking n = l, w = sin a;, dv = cos xdx. To illus-

trate how an answer may take on different forms when more than one method of integration
is possible, let us take n=l, «; = cosx, du=-sinxda;, and again integrate by the power
formula. Then

/ sin X cos xdx= - I (cos x) (- sin x dx) = — + C",

a result which differs from the first one in the arbitrary constant only. For,

eosiix „, l-sin2x
^
^,_ 1

^

sin^x
^ p/^ 8"'''a; 1

^

^,
2 2 2 2 22'

Hence, comparing the two answers, C=-i+ C"
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13. fsini

e

cos= eae = § slnte-^ sin¥ + ^sm'^6 + C.

14. r
^'°°^

d;y = - 2 Voosy fl - ? cos^y + ^ cos*2/) + 0.
•' Vcosy \ 5 9 /

,_ /^oos^idt 3.2./, 1 . o. ,
1 . iA ,

/-.

15. I
— = -smti/l sm2« + -sm*i) + C.

16. Integrate the following expressions and prove your results by differentiation

:

(a) fs,in^26dff. (f) fcos^ ax sin axdx. (k) jsin!'mt coe,^ mtdt.

(b) Ccos^-de. ig) fsin^-^ cos -^dx. {\) fsin^ntdt.

(c)
I
sin 2 X cos 2 xdi. (h) / cos^ 3 1 sin 3 xctc. (m) |

sin*x coszda.

(d)
I
sin^icos^tdi. (i) j sin^bsdosbsds. (n) | cos*j/sinydy.

(e) fcos-sin-dx. (j) Tcos^lsin^^d^. (o) fco^ (a + bt)d!l
J a, d «/ 2 2 J

Example II. To find j tan"xdx, or I eofxdx.

These forms can be readily integrated, when n is an integer, on

somewhat the same plan as the previous examples.

Illdstrative Example 1. Find j tan%dx.

Solution. rtan*xdx = rtan2x(sec2x — l)dx by 28, p. 2

=
I
tan^xsec^xtJx—

| tan^xdx

= I (tan x)^d (tan x)—
j

(sec'' x — l)dx

tan'x „= — tan X + X + C.

Example III. To find j secTxdx, or j csd"xdx.

These can be easily integrated when w is a positive even integer,

as fgllows:

Illustrative Example 2. Find fsec'xdx.

Solution. jseo^xdx=j(ta,n^x + l)^sec^xdx by 28, p. 2

=
J

(tanx)*sec2xdx + 2 r(tanx)2sec2xdx + Csec^xdx

tan^x
,

„tan'x= —z [-2—-— + tanx + (7.

5 o

When n is an odd positive integer greater than unity, the best plan is to reduce to

sine or cosine and then use reduction formulas on p. 303.
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Example IV. To find \ tari'xsed^xdx, or j eot"'xc8(fxdx.

When w is a positive even integer we proceed as in Example III.

Illdstkative Example 3. Find j tan'xsec*xdx.

Solution.
I
ta.n^xsec'^xdx = j tan^a;(tan2a; + l)sec^xdx by 28, p. 2

=
I
(tanx)*sec2a^ + I tsm.'^xsec^xdx

9

Here v = tans, dv = sec^xdx, etc.

tan»x_^ta^^p_
By (4)

When m is odd we may proceed as in the following example.

Illustrative Example 4. Find j tan^xsec'xttc.

Solution.
I
tan* x sec'xdx = Ttan*x sec^x sec x tan xdx

=
j
(seo^x — 1)^ sec^x sec x tan x<Jx by 28, p. 2

=
I
(sec^x— 2sec*x + sec^x)secxtanx(Zx

7

Here v = sec x, dv = sec x tan xdx, etc

sec'x 2sec=x
_^
se£x

_^ ^^ ^^ ^^^

EXAMPLES
cot^x

1. ftanSidx = ^^^ + log cos x + G. 3. fcot'xdx =- ^^—^ - log sin x + C

2. rtan22x(fe = ^'^^^ - x + C. 4. fcot^xdx =- cotx - x + C.

5. rcot<-(Zx=-cot5- + 3cot| + x + C.
J 3 3 3

6. Toots ^£ja =— i cot* a + i cot^ a + log sin a+C.

7. ftans ^ (Zy = tan* ^ - 2 tan^ ^ + 4 log sec ^ + C.
J 4 4 4 4

„ / „ , tan'x .
3tan'x

, . , ^ „ , ri
8. /seo8xdx = 1 1- tan3x + tanx+ C.

J 7 5

9. rcsc6x(Zx=— cotx— -foot^x- icot5x + C.

/, , tan'0 ,
tan5(^

tan* sec* 0d0 = ——-^ +—— + C.

11. ftan^ ff sec* 0dd = } sec' 5 - i sec^ ff + C.

/cot^x cot'x , „
cot=x csc*x(Zx = — 1- <^-

/• s , , 2tan^x 2tan2x
, -,

13. I tan^xsec*x(fe =— 1 1-<^-
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14

15

16

17

18

/ tan'ysec* ydy = 2 seo^yi—- 1- -I + C

/
sec'ordo: , „ .

cottar
= tan a — 2 cot a

tan* a 3

f{tB,n^z + tan* z)dz = Jtan^z + C.

f{ta.n t + cot S)8 dt = i (ta.nH - ootH) + log tan^i + C.

Integrate the following expressions and prove your results by differentiation:

tan2 2Mt. (g) f
sec^ ta.Q^ OdS

.

(m) / ^—dx.
'/ V COS *c

, 2

ax.h) fcot^-dt. (h) Ccsc^<pcot^ipd<ti. (n) f^

:) fta.n^axdx. (n f "^— (o) f

sin^'x

sec* xdx.

(d) Jcot^'^dx. Q) ft&n^t secern. (p) fesc* xdx.

(e)
I
——

.

(k) fcot^y csch/dy. (q) ftan x sec^ xdx.

r 3d0 rJM_
fcotscsc^xdx.

^'/cot24i9 ^'Jcot'e ^'J

Example V. To find j sin'^x co^xdx by means of multiple angles.

When either m or w is a positive odd iateger, the shortest method

is that shown in Example I, p. 298. When m and n are both positive

even integers, the given differential expression may be transformed by

suitable trigonometric substitutions into an expression involving sines

and cosines of multiple angles, and then integrated. For this purpose

we employ the following formulas

:

sin u cos u = ^ sin 2 u, 36, p. 2

sin^M = ^ — 1 cos 2 u, 38, p. 2

cos^M = ^ + J cos 2 u. 39, p. 2

Illustrative Example 1. Find | cos^xdx.

Solution. joos^xda! = r(i + icos2x)dx 38, p. 2

1 /* 1 /* X 1= -
J
dx + - / cos 2 xdx = - -1- - sin 2 X + C

Illustrative Example 2. Find | sin^S; cos^ xdx.

Solution.
I
sin^xcos^xdx = i- rsln2 2xdx 36, p. 2

= i r(i — icos4x)(ic 38, p. 2

^ 1 • .
= ---sm4x + C.
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Illcstkative Example 8. Find Csin*xeos^xdx.

Solution. / sin* x cos^ xdx =
j

(sin x cos x)" sin^ xdx

= y*isln22x(i-icos2s)dx ~

36, p. 2 ; 38, p. 2

= i jsirfi2xdx — i fsin^ 2 x cos 2 xcfe

= i f (i— icos4iX)dx — i jsin-2xcos2xdx

_ X sin4x sin'2x „
~16 64 48~

Example VI. To find j sin mx cos nxdx, I sin mx sin nxdx, or
f

cos mx
cos nxdx, when m^n.

By 41, p. 2, sin mx cos wa; = J sin (w + w) a; + |- sin («i — w) x.

..I sin mx cos W2;«?a; = |^ | sin (m + n') xdx + j I sin (m — w) xdx

Similarly, we find

cos (m + n')x cos (m — n')x

2 (m + w) 2 (m — w)

,. sin (m + n)x
,
sin (m — n~)x „

sin mx sui wMa; = —-^^ —| —^^ —|- C,
2 (m + n) 2 (m — m)

, sinCm + w)a; ,
sin(«i — 91^)2;

, _,

cos mx cos nxdx = —--^ —|

—

-r-^ —1- C.
2(m + n^ 2(m — n)

EXAMPLES
, /» X 1

1. I cos"xdx = - + -Bin2x + C.
-/ 2 4

„ r , , 3 X sin 2 X .
sin 4 X/. . , 3 X sin i! X sin 4 X . „

sin* xdx = 1 1- G.
8 4 32

- / , , 3x sin2x sin4x . ~
3. / cos*xdx = 1 + C.

J 8 4 32

A r , J 1 /c A c^ ,
sin8 2x

,
3 . , \

, ^
4. / sin^xdx =— I5x— 4 sin 2 x -\ \- -sin4x + '^•

J 16 \ 34 /

^ r . , 1 /, ^ . „ sin'2x 3 . , \ . ^
5. / cos'xdx =— (5x + 4 sin 2 X \- -sin4x)+ G.

J 16 \ 3 4/
„ r . . , . sin'2a

,
a sinia

,
~

7. fwa.*tcoe^m =— (3t-sinit + ^^^)+G.
J 128 \ 8 //I / 8 „ ^ sin8x\ , „

cos'xsin^xdx =— (5x + -sin'2x — sin4x — 1 + o.
128 \ 3 8 /



304 INTEGRAL CALCULUS

9. I cos 3y sin 5ydy = —

10.
I
sm5zsin6zda = —

11.
I
cos 4 s cos 7 sds =

cos Sy cos 2 2/

~l6 4

sin 11 z .
sinz

+ C.

22

sin 11 s sin 3 s

22 6

+_ + 0.

+ c.

169. Integration of expressions containing Va" - x^ or Vjr^ d= a" by

a trigonometric substitution. In many cases the shortest method of

integratmg such expressions is to change the variable as follows:

When y/a^— x^ occurs, let x = a sin z.

When va^+ x^ occurs, let x=a tan z.

, let x= a

1. Find f-

When Va;^— a' occurs, let x= a sec s.*

dx
Illustrative Example 1.

(a2 _ x2)t

Solution. Let x = a sin z ; then dx = a cos zdz, and

dx c a cos zdz _ fa cos zdz

P cos' z
= [-

(a2-a;2)t '' (a^ _ a^ sin^ z)2

= lrJ^ = lfsec^zdz^'^+C
a^J cos^z a^J a^

o2 V a2 - x^

Since sin 2 »= - , draw a right triangle with x as the opposite
a

leg to the acute angle s, and a as the hypotenuse. Then

the adjacent leg "will he Va^ — x^ and tan 3=

—

.

Va2 - X'

Illustrative Example 2 . Find r
dx

VaJ^c^

xVx^ + 1

Solution. Let x = tan z t ; then dx = sec^ zdz, and

Ac r seo^ zdzr dx _ r

^ ajVa;2 + 1 -^ tanz Vtan^z 4- 1 -» ti

sec'' zdz

tan z • sec z

rsecz , r dz r ,= I dz =
I

= I CSC zdz
J tanz •/ sinz •'

Va;^ + 1 1= log (esc z — cot z) = log + 0.

Since tanz= a:, cotz= _, and csoz = .X£iil.

* We may also use the substitutions a; = a cos z, a; = a cot z, and a: = a osc z respectively,

t In this example a = 1.
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EXAMPLES

-Vx2-a2
1.

I
dx = Vx^— a^— aarosec- + C.

J X a

2. CVd'- x^dx = - Vo2- x2 + — arc sin- + C.
J 2 2 g

3. I ^— dx = \og(x + Wx^+ a^) — + 0.
J x^ X

, x^dx 1 . x
4. I

—

,
= -arc sinx

Vl-x2
VTT^ 2

r dx _ (2x^-1) Vajg+l
' ' s*Vx2+l~ 3x»

+ 0.

Vx2 + a2
6. f g^— =-^^^+"%C.

/ X* 3a^8

305

./ sm*x

'I
(x^ + l)dx

x + 2

(ox + 6) dx

Vx2_[a2

4. ("tan'-d^.

/•(4x — l)dx

Vl-5x2
dx

V2 + 2x — x^

/ 3f

d0

;d«.

8. f ^

j i_4a!*'

10. r(tan3x-l)2dx.

11. ftseaPesec^edd.

12. Jsini^dx.

13,
•/;

09

cos* 6

leSCELLAirEOTTS EXAMPLES

di
14,

15.

/, + 6t+ 5

r 3 cos Sd^

J 5- 7sin(9'

ds

dx.

17. f- .
•^ Vl + 3s-i

18. fcos'-dx.

dx
19

J X2 + 2x + l

20. r^!^
J x-3

d(?

21./

22. r

23./

24./

sin 2 5

dt

cos 3 1,

5dx

Vx-3
dy

25. r^
J b —

Vp^-6y + 10

axdx

xdx
26. f^

(1 + xY

27
dx/a;

(a + 6x)'

29./

28. ri±i?^d^.
J l+.tanS

X*Vx^ -

1

30. /(a-3x2)>»2xdx.

31•/
2x^dx

{af-x^)i

-{a + xf
32. y" '"'

dx.

33/
Vx

log^xdx

34. I e-<^x2dx.

35,
ax — b

x2 + 4m2
dx.

36. ririi^dx.

37.
I
cos'ox sin axdx.

38. fcot* 3 aydy.

fsin^Ba39 3 xdx.
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40. The following firnctions have been obtained by differentiating certain func-

tions. Find the functions and verify your results by differentiation.

(a) 5x^ + sin 2s.

Solation. In this example (5 a;' + sin 2 a!) (is is the differential expression to be iate-

grated. Thus f(5x^ + sia2x)dx = -^ cos2z+C. Aiis.
, J 4 2

d /6x* 1
Vacation. — ( cos2z + C) = 5x' + sin2x.

dx\ 4 2

(b)5a;8-6a;. mx + n (l-2y)s

(c)2x2-3z-4. -^g^-Khfl Vy

(d) cos^ax-l-sin-. (k)
'^-"^

. (s)

(g)

« ' V3T4^' ^'x^-\-ix-\
(e) VST^. 6t+c (t) sec*^.

*^ + »
, , o-6s (1)

,
=^-

X .
("'^ ^34^- V4-X2+2X

6+2x"
(n)

^° . (v)(J-e-%

(M 3 + 2x ,.^~^^ (w)a;'(l + a;2)i
\"' ^2 I 1

(o) Sin mx cos mx. ^ '

«i-Sn7- (q)tan»-.
(y)x^VrT^2.



CHAPTER XXin

CONSTANT OF INTEGRATION

170. Determination of the constant of integration by means of initial

conditions. As was pointed" out on p. 281, the constant of integration

may be found in any given case when we know, the value of the

integral for some value of the variable. In fact, it is necessary, in.

order to be able to determiae the constant of integration, to have

some data given in addition to the differential expression to be

integrated. Let us illustrate this by means of an example.

Illustrative Example 1. Find a function whose first derivative is 3 x^ — 2 x + 5,

and whicli shall have the value 12 when x = 1.

Solution. (3x2 — 2x + 5)dx is the differential expression to be integrated. Thus

r(3x2-2x+ 5)(Jx = x3-x2 + 5x+ C,

where C is the constant of integration. From the conditions of our problem this

result must equal 12 when x = 1 ; that is,

12 = 1 - 1 + 5 + O, or O = 7.

Hence x*— x^ + 5x + 7 is the required function.

171. Geometrical signification of the constant of integration. We
shall illustrate this by means of examples.

Illustkative Example 1. Determine the equation of

the curve at every point of which the tangent has the

slope 2x.

Solution. Since the slope of the tangent to a curve at

dv
any point is — , we have, by hypothesis,

dx
dy

=:2x,

Integrating,

dx

dy = 2 xdx.

y — 2
I
xdx, or,

(A) y = x^+C,

where G is the constant of integration. Now if we give to a series of values, say

6, 0, — 3, {A) yields the equations

y = x^+6, y=x\ y = x^-3,

whose loci are parabolas with axes coinciding with the axis of y and having 6, 0, — 3

respectively as intercepts on the axis of T.

307
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+ C,

All of the parabolas (A) (there are an infinite number of them) have the" same

value of — ; that is, they have the same direction (or slope) for the same value of x.
ax '

It will also be noticed that the difference in the lengths of their ordinates remains

the same for all values of x. Hence all the parabolas can be obtained by moving any

one of them vertically up or down, the value of C in this case not affecting the slope

of the curve.

If in the above example we impose the additional condition that the curve shall

pass through the point (1, 4), then the coordinates of this point must satisfy (A), giving

4 = 1 + C, or G = 3.

Hence the particular curve required is the parabola y = x^ + 3.

Illustrative Example 2. Determine the equation of a curve such that the slope

of the tangent to the curve at any point is the negative ratio of the abscissa to the

ordinate. y-

Solution. The condition of the problem is expressed

by the equation
^j^ ^

dx y
or, separating the variables,

ydy =— xdx.

Integrating, — =

or, a;2 + j/2 = 2 C.

This we see represents a series of concentric circles with their centers at the origin.

If, in addition, we impose the condition that the curve must pass through the point

(3,4), then 9 + 16 = 20.

Hence the particular curve required is the circle x^ + y^ — 25.

The orthogonal trajectories of a system of curves are another sys-

tem of curves each of which cuts all the curves of the first system

at right angles. Hence the slope of the tangent to a curve of the

new system at a point will be the negative reciprocal of the slope of

the tangent to that curve of the given system which passes through
that point. Let us illustrate by an example.

Illustrative Example 3. Find the equation of the orthogonal trajectories of the
system of circles in Illustrative Example 2. yik

Solution. For the orthogonal system we will then
have dy_y_

dx X

or, separating the variables,

Ay _dx
y X

Integrating, log 2/ = log x + log c = log ex,

or, y = ex.

Hence the orthogonal trajectories of the system of circles x^^y'^ = is the system
of straight lines which pass through the origin, as shown in the figure.
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172. Physical signification of the constant of integration. The fol-

lowing examples will illustrate what is meant.

Illtjstrative Example 1. Find the laws governing the motion of a point which

moves in a straight line with constant acceleration.

Solution. Since the acceleration = — from (14), p. 92 I is constant, say /, we
have L dt J

or, dv=fdt. Integrating,

(A) v=ft+C.

To determine C, suppose that the initial velocity be »,, ; that is, let

1! = »o when t = 0.

These values substituted in (A) give

?)„ = + C, or, C = »„.

Hence (A) becomes

(B) v=fl + Vg.

ds
Since d = — [(9), p. 90], we get from {B)

or, ds = ftdt + Vgdt. Integrating,

(C) s = ifP + v,t + C.

To determine C, suppose that the initial space (= distance) be «„ ; that is, let

8 = 85 when i = 0.

These values substituted in (C) give

So = + + 0, or, C = Sa.

Hence (0) becomes

(D) s = ^/!2+V + V
By substituting the values /= gr, Uq = 0, «„ = 0, s = A in (B) and (D), we get the

laws of motion of a body falling from rest in a vacuum, namely,

{Ba) V = gt, and

(Da) h = \gt^.

Eliminating t between {B a) and (D a) gives

« = V2 gh.

Illustkative Example 2. Discuss the motion of a projectile having an initial

velocity »„ inclined at an angle a with the horizontal, the resistance of the air being

neglected. y
Solution. Assume the Xy-plane as the plane of mo-

tion, OX as horizontal, and OF as vertical, and let the

projectile be thrown from the origin.

Suppose the projectile to be acted upon by gravity

alone. Then the acceleration in the horizontal direc- ^ "ocosa

tion will be zero and in the vertical direction — g. Hence from (15), p. 93,

dfx „ J dvy—5 = 0, and -^ =— g.
dt ' dt

"
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Integrating, Da: = Cj, and Vj,=— gt+ G^.

But Bq cos a = initial Telocity in the horizontal direction,

and Vq sin a = initial velocity in the vertical direction.

Hence C-^ = »(, cos a, and Oj = Vg sin a, giving

(E) Vx = Oq cos a, and By =— ffJ + Oo ^'° ^-

But from (10) and (11), p. 92, Dj, = — , and i>y = -£ ; therefore {E) gives

dx ,dy ...— = D„ cos q:, and -^ =— grt + b„ sin a,

or, dx = Wj cos adt, and dy =— gtdt + Wq sin adt.

Integrating, we get

(F) x = VgCOsa-t + Oj, and y =— i gt^ + VgSiji a t + C^.

To determine Cj and C^, we observe that when

i = 0, x = and y = 0.

Substituting these values in (F) gives

Cg = 0, and C^ = 0.

Hence

(G) !" = «(, cos a t, and

(fl") y=-igt' + VoSma-t.

Eliminating t between (G) and (B"), we obtain

fin''
(I) y = xtajia ^-—-—

,

^ '
20o2cos2q:

which is the equation of the trajectory, and shows that the projectile will move in a

parabola.

EXAMPLES

1. The following expressions have been obtained by differentiating certain functions

Find the function in each case for the given values of the variable and the function

:

Derivative of

function
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2. Find the equation of the system of curves such that the slope of the tangent

at any point is

:

(a) X. Ans. Parabolas, y ——} C.

Parabolas, y = x^—2x + G.

1/2

(b)
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6. Find the equation of the curve whose subnormal is constant and equal to 2 a.

dy Ans. 2/2 = 4 as + C, a parabola.
Hint. From (4), p. 77, subnormal = J/ -7-

•

7. Find the curve vrhose subtangent is constant and equal to a (see (3), p. 77).

Ans. alogy = x + G.

8. Find the curve whose subnormal equals the abscissa of the point of contact.

Ans. y^ — x^ = 2C, an equilateral hyperbola.

9. Find the curve whose normal is constant (= B), assuming that y = B when

X = 0. Ans. x^ + y^ = B^, a circle.

Hint. From (6), p. 77, length of normal = 2/-4/l+(^j , or dx=^(,B^-y^~^ydy.

10. Find the curve whose subtangent equals three times the abscissa of the point

of contact. Ans. x = q/'.

11. Show that the curve whose polar subtangent (see (7), p. 86) is constant is the

reciprocal spiral.

12. Show that the curve whose polar subnormal (see (8), p. 86) is constant is the

spiral of Archimedes.

13. Find the curve in which the polar subnormal is proportional to the length

of the radius vector. Ans. p = ce^.

14. Find the curve in which the polar subnormal is proportional to the sine of the

vectorial angle. Ans. p = c — a cos6.

15. Find the curve in which the polar subtangent is proportional to the length

of the radius vector. Ans. p = C€°*.

16. Determine the curve in which the polar subtangent and the polar subnormal

are in a constant ratio. Ans. p = ce°«.

17. Find the equation of the curve in which the angle between the radius vector

and the tangent is one half the vectorial angle. Ans. p = c(l— cos8).

18. Determine the curves in which the subtangent is n times the subnormal ; and

find the particular curve which passes through (2, 3)

.

Ans. Vny = x + C ; Vn{y — 3) = a; — 2.

19. Determine the curves in which the length of the subnormal is proportional to

the square of the ordinate. Ans. y = c^.

20. Find the curves in which the angle between the radius vector and the tangent

at any point is n times the vectorial angle. Ans. p" = c sin nS.

Assuming that v = Vg when i = 0, find the relation between v and t, knowing that the

acceleration is

:

21. Zero. Ans. v = v„.

22. Constant = k. v = v„ + kt.

23. a + U. K = u^ ^. at +_

.

Assuming that s = when t = 0, find the relation between s and t, knowing that the

velocity is

:

24. Constant (= e„). Ans. s = u„«.

25. m + ni. s = mt + —-
2

26. 3 + 2f-SJ2 s = 3t + t^-f
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27. The velocity of a body starting from rest is 5 i^ feet per second after t seconds,

(a) How far will it be from the point of starting in 3 seconds ? (b) In what time will

it pass over a distance of 360 feet measured from the starting point ?

Ans. (a) 45 ft.
;

(b) 6 seconds.

28. Assuming that s = 2 when t = 1, find the relation between s and 4, knowing that

the velocity is

:

(a) 3. Ans. s = 3 « - 1.

(b)2«-3. s = j2_3j + 4_

(c)i2+2J-l. s = - + i2_t + l
^ 3 3

(d) -• s = logt + 2.

(e) 4<3-4. s = i4-4«+5.

(f)^- s=-^ + 4 + 2.
<2

t

29. Assuming that » = 3 when i = 2, find the relation between » and t, knowing
that the acceleration is :

(a) 2. Ans. v = it — l.

(b)3<2 + l. „^i3 + i_7_

(c) t5-2i. » = ^_i2 + 3.
4

(d)- + f. K = log- + _ + i.

30. A train starting from a station has, after t hours, a speed .of i' — 21 i^ -|- 80 <

miles per hour. Find (a) its distance from the station
;

(b) during what interval the

train was moving backwards
;

(c) when the train repassed the station
;

(d) the dis-

tance the train had traveled when it passed the station the last time.

Ans. (a) if- W + 40 1^ miles
;

(b) from 5th to 16th hour

;

(c) in 8 and 20 hours
;

(d) 4658^ miles.

31. A body starts from the origin and in t seconds its velocity in the X direction

is 12 i and in the Fdirection 4*^ — 9. Find (a) the distances traversed parallel to each

axis; (b) the equation of the path.
/o \ T

Am. (a)x = 6i2, y = -fi-Qt; (b) j, = (-x-
9J^5.

32. The equation giving the strength of the current i for the time t after the source

of E.M.F. is removed is (K and L being constants)

dt _m
Find i, assuming that I= current when i = 0. Ans. i = le ^
33. Find the current of discharge i from a condenser of capacity C in a circuit of

resistance R, assuming the initial current to be'/j, having given the relation (C and E
being constants) di dt

' —
- = -— Ans. i = 7oe''-".

34. If a particle moves so that its velocities parallel to the axes of X and Y are

h/ and fee respectively, prove that its path is an equilateral hyperbola.

I

35. A body starts from the origin of coordinates, and in t seconds its velocity parallel

to the axis of X is 6 1, and its velocity parallel to the axis of r is 3 i^ - 3. Find (a) the

distance traversed parallel to each axis in t seconds
;

(b) the equation of the path.

Ans. (a) X = 3t% y = fi-3t; (b) 27 y^ = x{x - 9)^.



CHAPTER XXIV

THE DEFINITE INTEGRAL

173. Differential of an area. Consider the continuous function <t>(x),

and let ^ ^ ^(^^-^

be the equation of the curve AB. Let CD be a fixed and MP a

variable ordinate, and let u be the measure of the area CMPD.*
When X takes on a sufficiently small increment Ax, u takes on an

increment Am (= area MNQP^. Completing the rectangles MNBP
and MNQS, we see that

area JfTViJP < areailfiV^P < axe&MNQS,

or, MP • Aa; < Am < NQ Ax ;

and, dividing by Ax,

MP<^< NQJ
Ax

Now let Ax approach zero as a limit ; then since MP remains fixed

and NQ approaches MP as a limit (since ^ is a continuous function

of r.), we get ^^

du = 1/dx.

Theorem. The differential of the area bounded by any curve, the axis

of X, and two ordinate^ is equal to the product of the ordinate ter-

minating the area and the differential of the corresponding abscissa.

174. The definite integral. It follows from the theorem in the last

section that if AB is the locus of

y = 4>(x),

then du = ydx, or

(^) du = ^ (a;) dx,

* We may suppose this area to be generated by a variable ordinate starting out from CD
and moving to the right; hence u -will be a function of z which vanishes when x=a.

t In this figure MP is less than NQ; if MP happens to be greater than NQ, simply
reverse the inequality signs.

314

or, using differentials,
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where du is the differential of the area between the curve, the axis

of X, and any two ordinates. Integrating (^A), we get

u= j <f}
(x) dx.

Since / <f>(x)dx exists (it is here repre-

sented geometrically as an area), denote

ithjf(x-) + C.

(B) .•.M=/(^),+ (7.

We may determine C, as in Chapter XXIII, if we know the value

of u for some value of x. If we agree to reckon the area from the

axis of y, i.e. when

(C) x = a, u = area OCDG,

and when x=b, u = area OEFG, etc.,

it follows that if

(i)) a; = 0, then m = 0.

Substituting (D) in (B'), we get

^=/(0)+C, or, (7=-/(0).

Hence from (5) we obtain

(E) M=/(x)-/(0),

giviag the area from the axis of y to any ordinate (as MP').

To find the area between the ordinates CD and EF, substitute

the values (C) in (^), giving

(-F) area CDG =fCa) -/(O),

( (?) area OEFG =/ (6) -/(O).

Subtracting (J") from ((?),

(F) area CEFD =f(V)-f{d)*

Theorem. The difference of the values of j
ydx for x = a and x = h

gives the area bounded by the curve whose ordinate is y, the axis of X,

and the ordinates corresponding to x= a and x=b.

This difference is represented by the symbol ^

(O J^b
rib

ydx, or, j <^{x)dx,
a %J a

*The student should observe that under the present hypothesis /(a:) will he a single-

valued function which changes contimioiisly from/(a) to/(6) as x changes from a to 6.

t This notation is due to Joseph Fourier (1768-1830).
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aad is read "the integral from a to J of ydx." The operation is

called integration between limits, a being the lower and b the upper

limit.*

Since (I) always has a definite value, it is called a definite integral.

For, if

cf>(x)dx=f<:x}+C,

then £cl,(x^dx = ^f(:x)+C^^

or (\(:x')dx=fib-)-fia-),

the constant of integration having disappeared.

We may accordingly define the symbol

J(j}
(.(•) dx or I ydx

a ^ o.

as the numerical measure of the area, bounded by the curve y = 4> (a;),t

the axis of X, and the ordinates <^ the curve at x = a, x=b. This

definition presupposes that these lines hound an area, i.e. the curve does

not rise or fall to infinity, and both a and b are finite.

We have shown that the numerical value of the definite integral

is always fib')-f(a), but we shall see in Illustrative Example 2, p. 324,

that /(6)—/(a) may be a number when the definite iutegral has no

meaning.

175. Calculation of a definite integral. The process may be sum-

marized as follows

:

First Step. Mnd the indefinite integral of the given differential ex-

Second Step. Substitute in this indefinite integral first the upper

limit and then the lower limit for the variable, and subtract the last

result from the first.

It is not necessary to bring in the constant of integration, siuee

it always disappears m subtracting.

" The word limit in this connection means merely the value of the variable at one end of

its range (end value), and should not be confused with the meaning of the word in the

Theory of Limits.

t (x) <)> is continuous and single-valued throughout the interval [a, 6].
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Illustrative Example 1. Find I x^dx.

J"*
fx'T* 64 1

x^dx = — = — — - = 21. Ans.
1 L 3 J 1 *^ *^

iLLtrsTKATivB EXAMPLE 2. Find r sinxdx.

Solution. ( sin xdx = — cos a; = — (— 1) — — 1 = 2. Atis.

Illustrative Example 3. Find |
— -•

Jo a^ + x^

r" dx ri i a;"l<» 1 ^ , 1 ^ .

Solution. I = - arc tan - = - arc tan 1 arc tan
Jo o^ + x^ La ajo a a

= = Ans.
ia ia

EXAMPLES

y.j\x^dx = SS.
13. r^sec*ed^ = |.

Jo

2. f (aH-x')dx = —- ,^ /2'-V2r
Jo 4 14.

I
——

Jo a/^
dx = ir.

Vx

1 -l~"' 15. r''(|Vt-/;t2)dt = 2V5-5.
Jox^

'dx rdx Trr

^1 ^ Jo Vr2 - x2 2

5. £' (x2 - 2x + 2) (X - 1) dx =- i. /.2r2V27# _
Jo V2r-y

/»1 ox _ /q 1

J-m* 315 0*

•^o 31 + 1 3 19.2a/ (2'+2cos^)id;^ = 8a.

J_
n r,/i dx TT ff

« /o^V2— 3x2 4V3 20. r^sin3Q:cos^a:da = j'ij.

9. f'_^^^=^yi25. -

•'a 2 J'x2-4 21.
J*,

tan a<Ja = 0.

10. r ^y =1JL.
"*

Jo2/2-y + l 3V3 " ^^^
,

/l + V2\
99 f 4sec ^d^ = log I -^-

I

U r'J^^log2 ^''•X ^ V3 '

J2 1+42 2

„- /^ 2 cos aaa _ ^
12.

j^
sin0# = 1. 23.

J^
jqj^T^ - 4

•

"2 COS^dS T
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176. Calculation of areas. On p. 316 it was shown that the area

between a curve, the ax'is of X, and the ordinates x=a and a; = J is

given by the formula

Area = I ydx,

where the value of ^ in terms of a; is substituted

from the equation of the given curve.

Illustkativb Example 1. Find the area bounded by

the parabola y = x^, the axis of X, and the ordinates ai = 2

and a; = 4.

Solution. Substituting in the formula

Area ABBG =r'-=B]:
64

'

3
"

3
Ans.

EXAMPLES

1. Find the area bounded by the parabola y = x^, the axis of X, and the ordinate

a; = 3. ^™s. 9-

2. Find the area above the axis of X, under the parabola y^ = ix, and included

between the ordinates x = 4 and x = 9. Ans. 25J.

3. Find the area bounded by the equilateral hyperbola xy = a^, the axis of X, and

the ordinates x =: a and x = 2 a. Ans. a^ log 2.

4. Find the area between the parabola y = 4 — x^ and the axis of X. Ans. lOf.

6. Find the area intercepted between the coordinate axes and the parabola

xi + yi z= oi. Ans. -

6

6. Find the area by integration of the triangle bounded by the line y = 6x, the

axis of X, and the ordinate i = 2. Verify your result by finding the area as one half

the product of the base and altitude.

7. Find the area by integration of the triangle bounded by the line y =2x + 6,

the axis of X, and the ordinate x = 4. Verify your result as in the last example.

8. Find the area by integration of the trapezoid bounded by the line x — j^ + 4 = 0,

the axis of X, and the ordinates x = — 2 and x = 4. Verify your result by finding the

area as one half the product of the sum of the parallel sides and the altitude.

9. Find the area by integration of the trapezoid bounded by the line x + 2y

—

6 = 0, the axis of X, and the ordinates x = and x = 3. Verify your result as in

the last example.

10. Find the area by integration of the rectangle bounded by the line y = 5, the

axis of X, and the ordinates x = 2 and x = 6. Verify your result geometrically.

11. Find by integration the area bounded by the lines x = 0, x = 9, y = 0, y = 7.

Verify your result geometrically.

12. Find the area bounded by the semicubical parabola y^ = x^, the axis of X, and

the line x = 4. Ans. | -^1024,
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13. Knd the area bounded by the cubical parabola y = a;', the axis of X, and the

ordinate a; = 4. Ans. 64.

14. Find in each of the following cases the area bounded by the given curve, the

axis of X, and the given ordinates

:

^rw. 36.

logVes.

1.

54.

28H.
-*•

b
,

i^log-.

(a) 2/ = 9 - a;2.
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Similarly, a definite integral standing for volume, surface, mass,

force, etc., may be represented geometrically by an area. On p. 366

the algebraic sign of an area is interpreted.

178. Mean value of ^(Jr). This is defined as follows:

Mean value of ^ (x) ) _ Ja

from x—atox—b) b— a

Since from the figure

jy^x-) dx = area APQB,

r
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Interpreting this theorem geometrically, as in § 174, p. 315, we
see that the integral on the left-hand side represents the whole
area CEFB, the first integral on the right-

hand side the area CMPD, and the second

integral on the right-hand side the area

MEFP. The truth of the theorem is there-

fore obvious.

Even if x^ does not lie in the interval

between a and S, the truth of the theorem

is apparent when the sign as well as the magnitude of the areas is

taken into account. Evidently the definite integral may be decom-

posed into any number of separate definite integrals in this way.

181. The definite integral a functioA of its limits.

From f\(x)dx=f(h-)-f(ia)
Ua

we see that the definite integral is a function of its limits. Thus

^(z)dz has precisely the same value as / (j)(x)dx.

Theorem. A definite integral is a function of its limits.

182. Infinite limits. So far the limits of the integral have been

assumed as finite. Even in elementary work, however, it is some-

times desirable to remove this restriction and to consider integrals

with infinite limits. ' This is possible in certain cases by making use

of the following definitions.

When the upper limit is infinite,

/
^(x)dx = ^ ^™j*„ /

<f>
(a;) dx,

and when the lower limit is infinite,

{\{x)dx = ^'^'2j\{x)dx,

provided the limits exist.

J"»-f-

CO ^JTT

1 X2

Solution. r^= limt /-'^^ Umit f 1^

^ limit r_l + i1 1. An,.
6 = +<»L \
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Illustrative Example 2. Find

INTEGRAL CALCULUS

/. a;2+ 4a2

o,^ /" + " ^a''^ limit /' Sa^cfe limit rA„2,rnt=,r, ^ 1'
Solution. I =

1, , I = 1 , 4 a'' arc tan -—

^ limit r4a2arctan— I = 4a2-- = 27ra2. Arw,
6 = +a>L 2aJ 2

Let us interpret this result geometrically.

The graph of our function is the witch, the

locus of

^"~x« + 4a2'

= 4 a^ arc tan
x^ + ia? 2 a,0PQ6=J'

Now as the ordinate Q6 moves indefinitely to the right,

b_

'2a

&
is always finite, and

limit

4 a^ arc tan

;

a? arc tan -'f r4a^arctanAl =
+ " L 2 aJ

= 2ira2,

which is also finite. In such oases we call the result the area bounded by the curve, the

ordinate OP, and OX, although strictly speaking this area is not completely bounded.

—
1 X

Solution.
/•+"^_ limit r''dx_ 111

Ji X ~b = + "Ji X ~b =
limit

+ CC
(log 6).

The limit of log 6 as 6 increases without limit does not exist; hence the integral

has in this case no meaning.

183. When y =
<f>

(jt) is discontinuous. Let us now consider cases

when the function to be integrated is discontinuous for isolated

values of the variable lying within the limits of integration.

Consider first the case where the function to be integrated is con

tinuous for all values of x between the limits a and 6 except x=a. ,

li a<.b and e is positive, we use the definition

CA-) fcf, (X) dx = "-^^'l f <!> (r.) dx,
Ja Ja + 6

and when <^ (x) is continuous except at a; = 6, we use the definition

(^) fV C^) dx = f^i* f"V (^) dx,

provided the limits are definite quantities.
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dx

323

Solution. Here

ind r ^
.

becomes infinite for x = a. Therefore, by (B),
Va2 - x2

" dx limit /•""' ^ limitr" dx _ limit/-"-' (fo _ limit [" . xl"-'

=Sh-.(i-3]= arc sin 1 = -
. Ans.

Illtjstkative Example 2. Find / —
Jo a;2

Solution. Here — becomes infinite for a; = 0. Therefore, by (A)^

'', M /i^_ limit /"I
(fa; _ limit /I .\

' "J^ Jo a;''~f = OJe ^~' = 0(,e"~ /
In this case there is no limit and therefore the integral does not exist.

If c lies between a and 6, and ^ (x) is continuous except at a;= e, then,

e and e' being positive numbers, the integral between a and h is defined hy

(C}
f<t>

(a;) dx = I'^'o*

f" V (^) ^^ + e' ='o r <^ (^) '^^^

provided each separate limit is a definite quantity.

X3o
2 xdx

' <a;2-a2)*

Solution. Here the function to be integrated becomes infinite for x = a, i.e. for a

value of X between the limits of integration and 3 a. Hence the above definition

(C) must be employed. Thus

'« 2x*c _ limit /""

f
i*
[3(x^- a=)*]""'+ f^\ [3(x2- a^)i]^"

= ]'^ 1^3 ^(a-^)'-«= + 3 a*] + j,™** [3 -^8^ - 3 ^(a + e^^-a^]

= 3 a^ + 6 a^ = 9 a^. ^ns.

To interpret this geometrically, let us plot

the graph, i.e. the locus, of

2x
^
= V

(x2_a2)i-

Jnd note that s = a is an asymptote.

,_ /•«-' Ixdx

Jo

limit z*"-' 2xda: limit Z"^" 2 xdx

" (x2-a2)^ ^ = OJo (x2-a2)f

limit

imit /"*" "ixOx

'=0Ja + .'(j.2_a2

area OP^ =

= 3-v'(a-e)2-a2 + 3aff.

Now as P£ moves to the. right toward the asymptote, i.e. as e approaches zero,

3 ^{a - e)2 - a2 + 3 a*
is always finite, and

1™''
[3 ^(a-e)2-a2 + 8 a^] = 3 a^.
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which is also finite. As in Illustrative Example 1, p. 323, 3 a^ is called the area

bounded by OP, the asymptote, and OX. Similarly,

"3 <» 2 xdx
area E' e'Y - a?

is always finite as Q-B' moves to the left toward the asymptote, and as e' approaches

zero, the result 6a^ is also finite. Hence 6a^ is called the area between QE, the

asymptote, the ordinate x = 3 a, and OX. Adding these results,';we get 9 a* which

is then called the area to the right of OY between the curve, the ordinate i = 3 a,

and OX.

_. ,
/2o (Jx

Illustrative Example 2. Find I — •

J a {x—Obf

Solution. This function also becomes infinite between the limits of integration.

Hence, by (C),

z^^" dx _ limit r"-^ dx limit r^" dx

Jo (x-a)2~^ = 0Jo (x-a)2 ^'= Ja + c (x - a)^

_ limit r_ 1
"I'^-'i

limit r ^Y"
~e = 0L x-ajo "^£' = 0L x-aj„ +

_ limit /I 1\
,

limit / 1 ,
1\

In this case the limits do not exist and the inte-

gral has no meaning.

If we plot the graph of this function and note the

limits, the condition of things appears very much the

same as in the last example. It turns out, however, that the shaded portion cannot

be properly spoken of as an area, and the integral sign has no meaning in this case.

That it is important to note whether or not the given function becomes infinite

within the limits of integration will appear at once if we apply our integration

formula without any investigation. Thus

12a 2

Jo (x — a)2 L X — ajoJo a

a result which is absurd in view of the above discussions.

EXAMPLES
-+" dx



CHAPTER XXV

INTEGRATION OF RATIONAL FRACTIONS

184. Introduction. A rational fraction is a fraction the numerator

and denominator of which are integral rational functions.* If the

degree of the numerator is equal to or greater than that of the

denominator, the fraction may be reduced to a mixed quantity by

dividing the numerator by the denominator. For example,

x^ + Sx' „ „ 5a;+3= XT + X— 6
a? + 2x + l af + 2x+l

The last term is a fraction reduced to its lowest terms, having

the degree of the numerator less than that of the denominator. It

readily appears that the other terms are at once iutegrable, and hence

we need consider only the fraction.

In order to integrate a differential expression involving such a

fraction, it is often necessary to resolve it into simpler partial frac-

tions, i.e. to replace it by the algebraic sum of fractions of forms such

that we can complete the integration. That this is always possible

when the denominator can be broken up into its real prime factors

is shown in Algebra.'^

185. Case I. When the factors of the denominators are all of the first

degree and none repeated.

To each nonrepeated linear factor, such as x — a, there corre-

sponds a partial fraction of the form

A
X— a

Such a partial fraction may be integrated at once as follows

:

/Adx _ r dx

X — a J X— a

= Alog(x-a') + C.

* That is, the variable is not affected with fractional or negative exponents,

t See Chap. XIX in Hawkes's "Advanced Algebra," Ginn and Company, Boston.

325
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C (2 a; + 3)
Illustrative Example 1. Find I -^ ir-^

J x» + a;2 _
(2a; + 3)cix

2k'

Solution. The factors of the denominator being a, a; — 1, a; + 2, we assume *

x(x-l)(a; + 2) a; x-1 x + 2

where A, B, G are constants to be determined.

Clearing (A) of fractions, we get

{B) 2x + 3 = 4(x - 1) (x + 2) + B(x + 2)x + 0(x - l)x,

2x + S = (A + B + C)x^ + (A + 2 B -C) X - 2 A.

Since this equation is an identity, we equate the coefficients of the like powers

of X in the two members according to the method of Undetermined Coefficients,

and obtain three simultaneous equations

r A + B + C = 0,

(C) Ia + 2B~C = 2,

[ - 2A = 3.

Solving equations (C), we get

^=-1, B = |, C=-l.

Substituting these values in (A),

2x + 3 __ 3 5 1

x(x-l)(x + 2) 2x 3(x-l) 6(x + 2)

/
2x+ 3 _ 3 fdx 6 r dx 1 r dx

x(x-l)(x + 2) ~ 2J X SJ x-l~6J x + 2

= -|logx + |log(x-l)- Jlog(x + 2) + logc

, c(x-l)T

x4(x + 2)*

A shorter method of finding the values of A, B, and C from (B) is the following

Let factor x = ; then 3 =— 2 A, or A=— |.

Let factor x— 1 = 0, orx = l; then 5 = 3 B, or B = 5_

Let factor x + 2 = 0, or x =- 2 ; then - 1 = 6C, or C =— J.

A useful exercise is to integrate without determining the constants

A, B, C, etc. For instance, in the above example,

r (2x+2,-)dx rAdx p Bdx r
J x(x-l-)(x+2^ J X ^Jx-l'^J]

Cdx

x+ 2

= A\ogx + B log (x ~ 1) +C log (x + 2).

» In the process of decomposing the fractional part of the given differential neither the
integral sign nor dx enters.
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EXAMPLES

J {x-\)(x-2) ^ x-l
r xM ^liog_(^±3)^ + 0.

g r (x-l)d3; ^1 c(g +# .

J x" 4.6a; + 8 (x + 2)*

.(2x3 + l)dx^^,_^ (x + 2)^^

Jx2 + 3x + 2 *x + l

_ /-x^ + x^-S , x' x2 . . x2(x-2)6
, „

8. r 5^^ = ^_2x + llog "'-^ +lglog(x + 2) + C.
/ (x2 - 1) (X + 2) 2 6 ^ (X + 1)» 3 ^ ^ '

9. r (°-^)^'^^ ^iog(y-")''+c.

Jj(t-i>)(t+g) ^ t

11. \- x^ • = =log = + -log ;r + C.

Jl x2 + 4x 4 ^<

,„ /« dx , 11
13. I

= log—
Jo l + 3x + 2x2 ° 6

14. /
^^

' = log
J3 x" — 4 X

186. Case II. When the factors of the denominator are all of the first

degree and some repeated.

To every n-fold linear factor, such as (a; — a)", there corresponds

the n partial fractions

^ . S _ ,
L

-1 "I"

'

(x — ay {x — ay-^ x—a

The last one is integrated as in Case I. The rest are all integrated

by means of the power formula. Thus

-i+^-
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Illustkative Example 1. Find ( —, ttt:^-
gg + l

x(x-l)5'

/x' +
x(x — '.

Solution. Since x — 1 occurs three times as a factor, we assume

x' + l A, B
,

G ^ D
:
= — + 77 TTi + 7:—T^ + r—7-

X(X-I)' X (X-1)8 (X-1)2

Clearing of fractions,

x8 + 1 = ^ (x - 1)8 + Bx + Cx (X - 1) + Dx(x - 1)2.

x' + l=:(A + D)x3 + (-3A + C-2D)x^ + (SA + B-G + D)x— A.

Equating the coefl&cients of like powers of x, we get the simultaneous equations

A + D = l,

-3A + C-2D = 0,

3A + B-C + D:=0,

-A = l.

Solving, A=-l, B = 2, C = l, D = 2, and

x3 + l ^ 1
^

2
^

1 ^2
x(x-l)3 X (x-l)s {x-l)2

r f "'"i\3
'^=-'°g'^-

/ \,„ -^-r + 21og(x-l) + C
/ X (x — If (x — 1)2 X — 1

X
,

(X-1)2 ^

(X-l)2

EXAMPLES

J (X - i)2(x - 2) ~ i - 1
"*

°^^^ri
"*" "

^/ (x + ;?x + l)=^ + "'^^- + ^) + ^-

x2 + 1 ^ 1 2. r x'-' + 1 , 1 2 ,
,

r(x5-x3 + l)dx x2 1 ,1,, x-1 „

J x(x + l)8 2(x + l)2"^ ='(x + l)2"'"

/• x'dx _ _ 5x + 12 /x + 4\2

J (x + 2)2(x + 4)2- x^ + ex + s"*" ^^V^l^/"^*^'
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r, r ^i « , 1 , «+V2
, _,

(i2_2)2 4(i2_2) 8v^ t-V2

- as^ds , , . ^ . 2a2 a'= a log (s + a) +
{s+af ^^

' s+a 2(s + a)2

11. f (-^ ,
"^ ,J dz = log(z + m)'»(z + n)-" - -!?L- + 0.

J \z + m (z + n)'^/ z + v

12. r° ,

'^
=l-log2,

Ji x2(l + a;)
^

x2(l + a;)

,„ f° dt , . 1
13. I = log2

Ji ((l + t)^ ^ 2

14. r'ii±M^=iog?+i
Ji a + 2x2 + x3 ^5 5

187. Case III. When the denominator contains factors of the second

degree but none repeated.

To every nonrepeated quadratic factor, such as x^+px + q, there

corresponds a partial fraction of the form

Ax + B
a?+px+ q

This may be integrated as follows

:

r(Ax+^-^+Adx
r{Ax+E)dx _ I \ 2 2/
J x^+px + q J a^+px+q

Adding and subtracting— in the numerator.

^+B)dx

xr+px + q «/ x+px + q

_A r(2x+p')dx
^

(2B-Ap\^ ^ <&

a?+px+q V 2 / (^^P\\(^ P
^ + 2J+l^ 4

[CJompleting the square in the denominator of the second integral.]

= 9 log (x^+px + q-)+ arc tan ^^ + ^•

Since a;^+^a; + ^ = has imaginary roots, we know from 3, p. 1,

that4?-/>0.
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4dx
Illustrative Example 1. Find

/4ax
x' + 4a!

4 A Bx+C
Solution. Assume ——: — ——F—

=

:-•

x{x'^ + i) X , x^ + i

Clearing of fractions, 4: = A(x^ + 4:) + x{Bx + C) = {A + B)x^ + Cx + 4:A.

Equating the coefBcients of like powers of x, we get

A+B = 0, G = 0, 4:A = i.

4 1 X
This gives ^ = 1, ;3 = -l, G = 0, so that -— —- -•

/ 4dx _ rdx r xdx

x(x2 + 4) ~J X Jx^ + i

= log X log (x^ + 4) + log c = log —^=: • ^ns.
2 Vx2 + 4

EXAIUPLES

rdr , X «——— = log - + a.

oT »<^ li x2 + 4,2 ,x,_
2. f = — log [- - arc tan - + C

J (X + 1) (x" + 4) 10 ^ (X + 1)2 ^ 5 2

„ / (2x2-3x-3)dx , (x2-2x + 5)i 1 ^ x-1 ^
3. / —

^

= log -^ '— + - arc tan \- C.
•/ (x-l)(x2-2x+ 5)

^ x-1 2 2

^ /• x^dx 1 , 1 + X 1 .
,

_
4. I = - log arc tan x + G.
Jl-x< 4^1-x 2

^ r dx 1

,

X* 1
5- I -^ ::

= - log — arc tan x + ( .

/ (x2 + 1) (x2 + x) 4 °(x + l)2(x2 + l) 2

^ (x3 - 6) dx , x2 + 4 3 ^ X 3 x
6-

I
-^ -^—

t:
= log

,
+ - arc tan arc tan 1- C.

J X* + 0x^ + 8 ^V^T2 2 2 V2 V2
_ r (5x2-l)dx

,
x2-2x + 5

,
5 ^ j,-l 2 x „'/

(x2 + 3)(x''-2x+5) "^°°^-^^Ti~- + 2"'^''^"^-^-Vl""'^"^Vl^^-

Jx^ + 1 6 *x2-x + l^V3 VS
. r z^dz 1, /z-l\ , V2 ^ 2
9. ( = - log ( 1 + arc tan + C.

J z*-\-z^-2 6 ^ \z + 1/ 3 V2

Jo (l + x2){3 + x2) ^Xlg-

13. r 2X2 + X + 3 ^1 ,^^.
Jo (x + l)(x2 + l) '=4
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188. Case IV. When the denominator contains factors of the second

degree some of which are repeated.

To every n-fold quadratic factor, such as (x'^+px + qy, there cor-

respond the n partial fractions

(A)
^ +B Cx+B Lx+M.

{x^+px + qy (x'^+px + qy-)^'"^ x'+px + q

To derive a formula for integrating the first one we proceed as

follows

:

r /-+^ dx= /
V i_j L

J Qr+px + qy J (a;'+j92; + ^)"

Adding and subtracting S- in the nnmevator.

J (3?+px + qy J (x^+px + qy

dx

(x'^+px + qy

The first one of these may be integrated by (4) p. 284; hence

Ax + B J A
•dx =

(x^+px + qy 2(1 -n')(x^+px + qy-'^

Qt'+px+qy

hi
Let us now differentiate the function

Thus (.^+p- + 9y-^

£\ -» or
dx\(y+px + qy-^l (x'+px + qy-' (x'+px + qy

+ <iT~l \(/+px+qy-'' (y+px+q]

[since x' + pxH- g=(a; + |)'+(s -^), and {x-ir^^= i.x'' +px + q) -(<? -j)-\
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Integrating both sides of (C),

(a?+px + qy

/dx
Q^+px+qr

(x'+ px + qy
or, solviag for the last integral,

mf dx
^+1

(x?+px + qy 2(n-l)(?-^')(r'+^:. + ?)»-

2 w — 3 r dx

AJ

Substituting this result in the second member of (5), we get *

(2 B -Ap) (2 n - 3) r
^ (n-l)(4g-/»^) J lx' + px+ qy-'

(Ax+B)dx _ ^(j>'-4g) + (2-g-^j>)(2jc + j>)

(X' +px+ qy 2 (72 - 1) (4 g - /)") (j:^ + px + qy-'

dx

It is seen that our integral has been made to depend on the inte-

gration of a rational fraction of the same type in which, however, the

quadratic factor occurs only n— 1 times. By applying the formula

(£) n — 1 times successively it is evident that our integral may
be made ultimately to depend on

dx

/;x'+ px + q

and this may be integrated by completing the square, as shown on

p. 296.

In the same manner all but the last fraction of (^) may be inte-

grated. But this last fraction, namely,

Lx +M
a?+px + q

may be integrated by the method already given under the previous

case (p. 329).

* 4 5 -p2>0, since a:2 +pa; + g = has imaginary roots.
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Illustkative Example 1. Find C-—

—

—— '

J {3? + 2)2

Solution. Since x^ + 2 occurs twice as a factor, we assume

x^ + x^ + 2 _ Ax + B Cx + D
{x^ + 2)^ ~ (a;2 + 2)2 a;^ + 2

'

Clearing of fractions, we get

x^ + x^ + 2 = Ax + B + {Cx + D) (x2 + 2).

x^ + x^ + 2 = Cx' + Bx^ + {A + 2 C)x + B + 2 D.

Equating the coefficients of like powers of x,

= 1, D = l, ^ + 20 = 0, B + 2D = 2.

This gives A =-2, B = 0, C = 1, D = 1.

„ x« + x^ + 2 2x x + 1
Hence = '— , and

(x2 + 2)2 (x2+ 2)2^x2 +2
(x' + x2 4- 2) (Jx._ r 2 xdx r xdx r dx/(x» + x'' 4- 2) ax._ r 2 xdx r xdx r

(x2 + 2)2 ~~'J (z" + 2)2
"*"

J x2 + 2"*"J
Ix2 + 211 X 1

;
+ —=arotan—-:-l--log(x2 + 2)+ C.

a;' + 2 V2 V2 2

Illustrative Example 2. Pind / :^dx.nnd f
"^ +^

J (x2 +

:

.1)2

Solution. Since x2 + 1 occurs twice as a factor, we assume

2x^ + x+3 _ ^x + B Cx + D
(x2 + 1)2

~
(x2 + 1)2 x2 + 1

Clearing of fractions,

2x3 + X + 3 = ^x + B + (Cx + Z)) (x^ + 1).

Equating the coefficients of like powers of x and solving, we get

A=-l, B=3, G = 2, D = 0.

Hence / — dx = | — dx + (

J (X2 + 1)2 J(X2+1)2 J X^ + 1

= log(x2 + 1) + r ~ ^ "*" ^
dx.^^ 'J (X2 + 1)2

Now apply formula (E), p. 332, to the remaining integral. Here

A=-l, B = 3, p = b, q = l, n = 2.

Substituting, we get

x + 3 , l + 3s Sr dx l + 3x 3r^:x + 3_^^J^+Sx_ S r dx

-' (X2 + 1)2 2(X2 + 1) 2^x2 + 1
+ - arc tan x.

(x2 + l)2 2(x2 + l) 2^x2 + 1 2(x2 + l) 2

Therefore
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EXAMPLES

1. f — = +iarctans + C.

t+1^^ = ^-^ + log(x^ + 2)i L= arc tan^ + C.
' " 2)2 4(x2 + 2) ^' 4V2 V2

2
<- x» + x

J (X2 +

J (1

2xdx 1, x2 + l
,

x-1 „

+ x)(l + xY 4 °(X + 1)2 2(x2 + l)

2a2x
4. / / :^^ — 1 dx = X H 2 a arc tan - + C.

J Vx^ + aV x^ + a^ a

g H4X + S

J (4x2 +
(4x + 3)dx _ 4x» + 5x -2 1 ^,„,,,2x^^
-' ° 3)8 8(4x2 + 3)2 leVs V3

„ r 9x'(Jx 3x 1, (x + l)2 , /5 ^ 2x-l
, ^I _!:;: _ L _ log _i—:

—

l \. V3 arc tan —h C.
J (x3 + 1)2 xs + 1 2 * i2 - X +

1

V3

^x^+xi+x^ +^ ^^^_ 1^ 19

-/ (x2 + 2)2 (x2 + 3)2 2(x2 + 2) x2 + 3 2 °^ ' b\ /

„ r (4x2-8x)dx 3x2 -X (x-l)2
, ^ ,

„
8. / —

i

'- = \- log ^^ — + arc tan x + C
J (x - 1)2 (x2 + 1)2 (I _ 1) (a;2 + 1)

^ x2 + 1

„ r (3x + 2)(to . 13X-24 26 , 2x-3
, ^

9. I —

^

^

—

'- = arc tan —h C.
J(x2-3x + 3)2 3(x2-3x + 3)^3V3 Vs

Since a rational function may always be reduced to the quotient

of two integral rational functions, i.e. to a rational fraction, it follows

from the preceding sections in this chapter that any rational function

whose denominator can be broken up into real quadratic and hnear

factors may be expressed as the algebraic sum of integral rational

functions and partial fractions. The terms of this sum have forms all

of which we have shown how to integrate. Hence the

Theorem. The integral of every rational function whose denominator

can he broken up into real quadratic and linear factors may he found,

and is expressible in terms of algebraic, logarithmic, and inverse-trigono-

metric functions ; that is, in terms of the elementary functions.



CHAPTER XXVI

INTEGRATION BY SUBSTITUTION OF A NEW VARIABLE.

RATIONALIZATION

189. Introduction. In the last chapter it was shown that all rational

functions whose denominators can be broken up into real quadratic

and linear factors may be integrated. Of algebraic functions which

are not rational, that is, such as contain radicals, only a small number,

relatively speaking, can be integrated in terms of elementary functions.

By substituting a new variable, however, these functions can in some

cases be transformed into equivalent functions that are either in the

list of standard forms (pp. 284, 285) or else are rational. The method

of integrating a function that is not rational by substituting for the

old variable such a function of a new variable that the result is

a rational function is sometimes called integration hy rationalization.

This is a very important artifice in integration and we will now take

up some of the more important cases coming under this head.

190. Differentials containing fractional powers of x only.

Such an eaypression can be transformed into a rational form hy means

of the substitution x = z^

where n is the least common denominator of the fractional exponents of x.

For X, dx, and eachradical can then be expressed rationally in terms of z.

dx.

^
Solution. Since 12 is the L.C.M. of the denominators of the fractional exponents,

we assume
x = z^^.

Here dx = 12zii<fe, x^ = g8, xi = z^, xi = z^.

/• a: -X ^ ^ r 28-2=
^^ ^^^^^ ^ ^^ ("(^is _ ^s) az

J ^i J z' J

= f «" - f z3 + C = f x^ - Jxi + C.

LSubstituting back the value of z in terms of x, namely, z= x^.\

The general form of the irrational expression here treated is then

1

R (x"} dx,

where B denotes a rational function of z"-

336
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191. Differentials containing fractional powers ot a + bx only.

Such an expression can he transformed into a rational form hy means

of the suhstitution a + hx = ^

where n is the least common denominator of the fractional exponents of

the expression a + bx.

For X, dx, and each radical can then be expressed rationally in

terms of z. /dx
.

_.

(1 + x)t + (1 + i)^

Solution. Assume 1 + x = z^

;

then dx = 2 zdz, (1 + x)t= z', and (1 + x)^ = z./dx _ r 2zdz _ r dz

(l + x)H(l + x)^~-^^^^+^" Ji^+ I
= 2 arc tan z + = 2 arc tan (1 + x)* + .C,

when we substitute back the value of z in terms of x.

The general integral treated here has then the form

E [x, (a + bxy} dx,

where B denotes a rational function.

192. Change in limits corresponding to change in variable. When in-

tegrating by the substitution of a new variable it is sometimes rather

troublesome to translate the result back into the original variable.

When integrating between limits, however, we may avoid the process

of restoring the original variable by changing the limits to correspond

with the new variable.* This process will now be illustrated by

an example.

Illustkative Example 1. Calculate /

Jo 1 + x^
Solution. Assume x = z*.

Then dx = 4z'dz, x^ = z", xi = z. Also to change the limits we observe that

when X = 0, z = 0,

and when x = 16, z = 2.

-Jo r7-i=Jo TT^=u ('-'^i^r
= 'fo^''^

- 'f^^ + ^//l-i = [f - '^ + ^arctanz];

= 1+4 arc tan 2. Ans.

* The relation between the old and the new variable should be such that to each value
of one within the limits of integration there is always one, and only one, finite value of the
other. When one is given as a many-valued function of the other, care must be taken to
choose the right values.
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EXAMPLES

I
= riK*— log(a;t + 1) + G. 3. I =

''x* + l 3 S^'' ' Jol + x 2 3

„ /-xt-xi, 1/2 # 6 isX „ ^
/-a 6x

2. I
-— dx = -(-xt XT1S)+C. 4. I ,

= 2 arc tan 2
J 6xi 3V9 13 / •^o(2 + x)Vr+^

5. r ^
'^

dx= -H |-21ogx — 241og(xA + l)+ G.

6

XB + X? xi xtV

dx 8 i
. „ ,

xi^ — 1/ox Oi„, xs^— 1, i^= -X* + 2 log 1- 4 arc tan x* + O.

x^ - x^ 3 X* + 1

7. r^^^ = -18r^ + f + i|^ + 4xi + 16xi + 321og(x*-2)lH-C.
^ 2v^ — vx^ LS 2 3 J

8. r-J!i^=4-21og3. 10. f'-li
'0 1 + Vx •'i V2 +

/29 (a;-2)i-dx _ 3V3 /-" xdx _3A, 9\
Ji (x_2)i+3"' "^ 2

'^' 'Jo
(2a; + 3)-t-~8V ^/

'

'^x(x + l)^ (x + 1)^ + 1

C xdx 2 (2 a + 5x) _
.4.

I

= 4- O.

(a + 6x)^ 6^ Va + 6x

r_^3x__ _ 6x^+ 6x + l
^

^(4x + l)^ 12(4x + l)*

6.
fy

^a + ydy = -ij(iy - 3a)(a + y)i + C.

'. r ^^jtJ':'''^ tfa = x + l + 4Vx+l + 41og(Vx + ]-l) + C.
•^ Vx + 1 - 1

S. f ^ = g(x + l)t- 3(x + 1)*+ 31og(l + ^x + l) + C.
•^ 1 + \^x + 1 2

.9. r_i±^dx = 2 Vx-2 + V2 arc tan -\/^^ + G.

22.

xVx —

2
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193. Differentials containing no radical except ^a + hx -\-x^.*

Such an expression can be transformed into a rational form hy means

of the ^sbitution ^a + bx+a^= z - x.

For, squaring and solving for x,

«"-«
i-i, ^ 2(z'+bz + a')dz

z^+ bz + a
and Va + te + a?(=2 — a;)=—J—2^

Hence x, dx, and Va + bx + a^ are rational when expressed in terms

of z.

Illustkative Example 1. Find /
-

dx

Vl + x + x^

Solation. Assume Vl + £ +x^ = z — x.

Squaring and solving for x,

z2-l ., , 2(z2 + z + l)dz—
; then da = —^—

.

2z + l (2z + l)2

— z^
x^(= z — x) = —

2(z^ + z + l)dz

. 22 1 2 + 1
and Vl + X + x^ {= z — x) = — — •

^ Z "T 1

(2z + l)^ r

z^ + z + 1 J

2z + l

^^ = log[(2z + l)c]

= log[(2x + l+ 2 Vl + x + x2)c],

when we substitute back the value of z in terms of x.

194. Differentials containing no radical except Va + bx — x^J

Such an expression can be transformed into a rational form by means

of the substitution

y/a-^bx — x^\_=y/(x — a')(^^ — a;) J = (x~ a)g[or = (/S — a;) 2],

where a; — a and /3 — x are real ^ factors of a-\-bx—a?.

*If the radical Is of the fonu Vw +pa; + qx^, Q>0, it may he written Vs -»/- + - a: + 3;2,

« » \9 ?
and therefore comes under the ahove head, where a--, 5=- •

q q I

t If the radical is of the form vn+px-qx^, g >0, it may he written Vq\j—^Ex-x^,

and therefore comes under the above head, where a = - , 6 =— •

g i

t If the factors ota + bx-x^ are Imaginary, Va + bx- x^ is imaginary for all values of a;.

For if one of the factors isx-m + in, the other must be - (a; - m - in) , and therefore

6 + ax - a;2 = - (a; -m + ire) (a; - m - in) = - [(a; - m)2 + ra2],

which is negative for aU values of a;. We shall consider only those cases where the factors
are real.
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For if ^a-\-hx-x^= -^(x - a)(/3 - a;) = (a; - a)z, by squaring,

caacelling out (x — a), and solving for a;, we get

. =^; then ^.^^(^ ^).^.

and -s/a + hx-x\=(x-a)z\=^^^^^-^.
sr + l

Hence a;, dx, and va + 6a; — a;*" are rational when expressed in

terms of 2.

Illustkativb Example 1. Findind f-
(Zx

V2 + X - X2

Solution. Since . 2 + x — x^ = (a; 4. i) (2 — x),

e assume -v/(x + 1) (2 — x) = (x + 1) z.

2 2^
Squaring and solving for x, x = —

Hence dx = -———- , and -^2 + x — x^ [= (x + 1) zl :

/dx r dz— = — 2
I
— =— 2 arc tan z + C

V2 + X - x2 -^ z^ +

1

1^^=— 2 arc tan -t f 1- G,
\x +1

when we substitute back the value of z In terms of x.

EXAMPLES

_ 1 ,„„Vx2 — x + 2 + X-V2
t + 2

dx

Ti
dx 1 , \/2 + 2x —V2 —

X

1.
I

,
. =—=log—

^

-+C.
•f xVx^ — x + 2 V2 Vx2 — X + 2 + X+V2

2. r

—

- = 2 arc tan (x + Vx^ + 2 x - l) + C.
' xVx2 + 2x —

1

3.
f ^

°- =^log
•J X V 2 4- X — x2 V2X V2 + X — x2 V2 V2 + 2X +V2-X

+ C.

^ C dx . x+Vx2 + 4x— 4
,

_
4.

I
— — = arc tan 1- C.

' X Vx2 4-4x —

4

2

5. fX^^-±-^dx = ,^ + log(x + 2 +Vx2 + 4x) + C.
^ x^ x+vV + 4x

6. f ^ = -|±|^=+C.

(2 ax - x2)l a2 V2 ox - x^

8. r(^^±^!)i^=iog(x+i+V2^i:^) 4=+c.
^ a;^

,
x+V2x + x2

a r ax , X — i + vx' + x + j.

9. /
,

= log-
,

+C-
•^ X Vx^ + X + 1 X + 1 + Vx2 + X + 1

1A r *: ^ * |2(3-x)
, „

10. / — = — -./- arc tan -* /—^ + C.
"'^.V'firr_fi_^2 V3 \3(x-2)
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The general integral treated in the last two sections has then the

^^^^ E{x,-Va + bx + cx')dx,

where B denotes a rational function.

Combining the results of this chapter with the theorem on p. 334,

we can then state the following

Theorem. Every rational function of x and the. square root of a poly-

nomial of degree not higher than the second can he integrated and the

result expressed in terms of the elementary functions*

195. Binomial differentials. A differential of the form

x'^ia + hx'^ydx,

where a and h are any constants and the exponents^, n,p are rational

numbers, is called a binomial differential.

Let x = z°; then dx = az" ~ ^ dz,

and x^Qx + hx'ydx = a^^''-^(a + h^ydz.

If an integer a be chosen such that ma and no. are also integers,^

we see that the given differential is equivalent to another of the same

form where m and n have been replaced by integers. Also

«'"(« + bx'Ydx = x'"->-'"'(ax-"+bydx

transforms the given differential into another of the same form where

the exponent w of a; has been replaced by — n. Therefore, no matter

what the algebraic sign of n may be, in one of the two differentials

the exponent of x inside the parentheses will surely be positive.

When p is an integer the binomial may be expanded and the dif-

ferential integrated termwise. In what follows p. is regarded as a

fraction ; hence we replace it by - , where r and s are integers. *

s

We may then make the following statement

:

Every binomial differential may be reduced to the form

x'^ia + hapydx,

where m, n, r, s are integers and n is positive.

*As before, however, it is assumed that in each case the denominator of the rational

function can be broken up into real quadratic and linear factors.

t It is always possible to choose a so that ma and na are integers, for we can take a as

the L.C.M. of the denominators of m and n.

t The case where p is an integer is not excluded, but appears as a special case, namely,
r-p, s = l.
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196. Conditions of integrability of the binomial differential

(A) x'"(^a + bx''ydx.

Case I. Assume a + bx"=^.
1 r

Then (a + 6af)' = 2, and (a + Ja;")' = z'

;

1

also x = (
—-— 1, and x'"

hence dx= —^~''^l—:;— ) dz.
on

Substituting in (^), we get
n + I

x'"(a + barydx = -^z'-+''-''(^—^\
"

dz.

The second member of this expression is rational when

m +1
n

is an integer or zero.

Case II. Assume a + bx"= sfaf:

Then af= -, and a + bx"= z!'af= ^

^-b a-b
r r T

Hence (a + bx^'J= a' {f-b^'z^;11mm
also X = ct (f— 6)""'', 7^= a" (f— 6)"

";

s i -1-1
and ti2;==--aV-V2'-6) " &.

w '

Substituting in (^), we get

971 -f- 1 T
The second member of this expression is rational when h -

is an integer or zero.

Mence the binomial differential
r

oT'^a + bx^ydx

can he integrated by rationalization in. the following oases :
*

•Assuming as before that the denominator of the resulting rational function can he

broken up into real quadratic and linear factors.
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Case I. When
^ = an integer or zero, hy assuming
n

Case II. When -\--=an integer or zero, by assuming
n s

a + haf=z:'x\

EXAMPLES

C x^dx _ c , 12a + 6x2

^ (a + W)^ -^ 6' Va + 6x2.

Solution, m = 3, 71 = 2, r = - 3, s = 2 ; and here — = 2, an integer. Hence'71
this conies under Case I and we assume

a + 6x2 = z2 ; whence x = i^—^ , dx = -—? -, and (a + bx2)t = z^.

\ 6 / bi(z2-a)4

/• x»dx _ /
('^jzi^^

zi^z
2^

"•'
{a + 6x2)f

~-^ V ^ / bi{z^-a)i ^'

= ij(l - az-^)dz = i (z + az-i) + O

1 2a + 6x2 _
+ O.

2. r^^
•^ x4vT+

dx _{2x^-l)(l + x')i

3x8
+ C.

7* 1 7/1 -4" X )"

Solution. m=— 4, n = 2, -= ; and here —— 1- - = — 2, an integer. Hence
s 2 n s

this comes under Case II and we assume

l + x^ = zV, ,z=ii±^;
X

whence x^ = — , 1 + x^ = — , Vl + x^ = -;
z2-l z2-l (z2_l)i

1 1 zdz
also X = , a;* = -— ; and dx= —

(z2_])i (^^-1)^ (z2_l)l

/_zdz_
dz

3xs

3. /x3(l + x^M = (3x--2)(l + x2)f
^ ^

4.r^^=_^+c.
•^

(1 + X2)t Vl + X2
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5. r^^=(i+x^)i^^+c. 8. r
•^ Vl + s" 3 ./o Vo^-T^ 15

'• /
"^

4
=- »(i + =^'>~* (^^

+ S + ^- 10. rv v^^^dx = !:^.
•'s2(l + x2)5 \ '^f Jo 16

11. rV(a2-x2)i^dx =—

.

Jo 32

12. r ^^— = ilog^^^Il^ + C.

y(a2 + »2)* ^" Va2 + 3/2 + a

13. ft^l + 2P)icU, = (1 + 2P)i
^^^~^

+ G.

14. rii(l + u)^(iu = y^(l + u)4(5M-2)+ C.

16. r_^!^^= ^! . + C.

."' (a + fia^)^ 3a(ol+6a:?)^

16. fe^(i+ 0^)^d9 = #j(l + 5==)^- 1(1 + «^)* + A(l + ^)*+ C

dx 3x' + 2a
"/; +C.

e2 (a + x8)7 2 a^x (a + x?)^

197. Transfonnation of trigonometric differentials

From Trigonometry

n T. —• ^. sin , ,v,.,

2 2
(J[) sin a;= 2 sin -cos-, 87, p. 2

(^)
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Substituting in (A) and (5),

2z 1-2=
sin a; =5 ;i cosa; = - r-

1 + 2^ 1 + 2'

O J-

Also by differentiating x—2 arc tan s we have cia; =
:j

-

Since sin x, cos a;, and dx are here expressed rationally in terms of

2, it follows that

A trigonometric differential involving sin x and cos x rationally only

can be transformed by means of the substitution

tan 75
= 2,

or, what is the sam,e thing, by the substitutions

22 1-2= , -Idz
sm X = ; J cos X = , dx =

1 + 2^ 1 + 2= 1+2=

into another differential expression which is rational- in z.

It is evident that if a trigonometric differential involves tan x, cot x,

sec X, esc X rationally only, it will be included ia the above theorem,

since these four functions caii be expressed rationally in terms of

sin X, or cos x, or both. It follows, therefore, that any rational trigono-

metric differential can be integrated.*

1. r-ii±i
J sina;(l

EXAMPLES

"^^^ '- = - tan^ - + tan- + - log tan- + C.
+ cosx) 4 2 22^ 2

Solution. Since this differential is rational in sinx and cosx, we make the above

substitutions at once, giving

\ 1 + Wi-r (l + sinx)dx _ I \ 1 + zV 1+1
J sinx{l + cosx)

I
2z /, ,

1 — z=

'J 1 + Z2\ l + z2

_ r (1+^ + 2 z)dz

)

r l + z2 + 2z)dz 1 r,

1 /z' \= -(- + 2z + logz) + C

= ^tan2| + tan| + llog(tan|) + C.

*See footnote, p. 34:1.
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2. pi_^ = l. 8.r^= ^ +0.Jol + sinx J 1 — sina; - ^ »
1 — tan-

fir 2
3. / V-^^— = 1.

Jo 5 +
dx

SCOSK

dy

'/ir
dx

5sinx 3

rir ay _ TT
rf 1 / \

„ /•« dor TT

Jo 2 + cosa a-v/s H-
I ;^ : = - arc tan (3 tan x) + C

•/ 5 — 4 cos2x3
,2 dx

J
-2 ox _

1 _^
2„l+cosx 12. r = —-arctan/Vstan-l+C.
y -/2-cos« Vi \ 2/

,„ /• dx 1 ^ /5tanx4-4\ „
13. I

= -arctan( H^j+o.
J 5 + 4sin2x 3 \ 3 /

, . c cosxdx „ ^ (^ ^\ ^ ^
, r, . X, „

14. I
= 2 arc tan

I
tan- I— tan- + C = x — tan- + C.

-/ 1 + cosx \ 2/ 2 2

15. Derive by the method of this article formulas (16) and (17), p. 284

16
/sinxdx 2 .r.^/^x\_ 2 „= h 2 arc tan ( x tan- 1 + C = \-x + G.

^ + ''^^
1 + tan? V 2; i + tan?

2 2

198. Miscellaneous substitutions. So far the substitutions considered

have rationalized the given differential expression. In a great number

of cases, however, integrations may be effected by means of substitu-

tions which do not rationalize the given differential, but no general

rule can be given, and the experience gained in working out a large

number of problems must be our guide.

A very useful substitution is

1 , dz

z z

called the redprocal substitution. Let us use this substitution ia the

next example.

/-^^2 2j2

dx.
X*

1 dz
Solution. Making the substitution x = - , dx = -, we get
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EXAMPLES

1. •r_^_=J_ log^i-+c.

J (X - 2)8 ^ ^
' (X - 2)2

„ /- x8(ix 18x2 + 27x + 11
, , , , ,, , „

3. I
=

-r hlog(x + l)+C.
J (x + 1)* 6(X + 1)'

SV -r ;-r

6. f- -.
,

•^ sV 1 + x + x2 2 + X + 2 Vl + X + x2



CHAPTER XXVII

INTEGRATION BY PARTS. REDUCTION FORMULAS

199. Formula for integration by parts. If u and v are functions of

a single independent variable, we have, from the formula for the dif-

ferentiation of a product (V, p. 34),

d (uv) = udv + vdu,

or, transposing, udv = d(uv') — vdu.

Integrating this, we get the inverse formula,

(Ay j udv = uv— I vdu,

called the formula for integration by parts. This formula makes the inte-

gration of udv, which we may not be able to integrate directly, depend

on the integration of dv and vdu, which may be in such form as to be

readily integrable. This method of integration hy parts is one of the

most useful in the Integral Calculus.

To apply this formula in any given case the given differential must

be separated into two factors, namely, u and dv. No general directions

can be given for choosing these factors, except that

(a) dx is always a part of dv;

(b) it must be possible to integrate dv; and

(c) when the expression to be integrated is the product of two func-

tions, it is usually best to choose the most complicated looking one that it

is possible to integrate as part of dv.

The following examples will show in detail how the formula is

apphed

:

Illust^rative Example 1. Find j xooBxdx.

Solution. Let u = x and dv = cos xdx

;

then du = dx and «= | cosxdx = sinx.

Substituting in (A), , ) ,

I
X cos xdx = X sin X — / sin x dx

= X sinx + cosx + C.

847
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Illustrative Example 2. Find I xlogxdx.

Solution. Let
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The Integral in the last term may he found hy applying formula (A) again, which

-/ a \ a/

Suhstituting this result in {B), we get

I
x^e""^ = s-0» - - + C =— (x2 + ) + 0.

J a a^ \ a/ a \ a a^l

Among the most important applications of the method of iategration

by parts is the integration of

(a) differentials involving products,

(b) differentials involving logarithms,

(c) differentials involving inverse circular functions.

EXAMPLES

1. rx21ogxda; = — (logx — -1 + C

2.
I
asinada =— aoosar + sina + C.

3. fare sin xdx = x arc sin x + Vl — x^ + C.

Hint. Let u= arc sin a: and dv = cbx, etc.

4.
I
logxdx = X (logx — 1) + C.

5. Tare tanxdx = x arc tan x — log (1 + x^)' + G./xt + i / 1 \

x» log xdx = ( logx r I + C.
n + l\ n + 1//x*^ 4-

1

X •

X arc tan xdx = arctanx — - + C.
2 2

8. fare cotydy = y arc cot j/ + -J log (1 + v'') + C.

9. fxoFdx = cF\-^ —^ +C.
J Llog a log oJ

10. CPam = a< rJi- -^ + -^1 + C.
•/ Llog a log^o log^aj

11. Tcos 6 log sin Odd = sin 6 (log sin 5 — 1) + C.

12. fx^efdx = &:(x^- 2x + 2) + C.
,

13. rxsinxcosxdx = isin2x — ixcos2x + C.

14. rx2e-=^ = e-=^(2-2x-x2) + C.

15. rarctan-v^dx = xarctan-v^ — Vx + arotan Vx + C.
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16. /--^ =
if-i-i3^]+^-

2«- ^^log^ = |(log.-l) + 0.

17. £'cBlog«to =- i.
21-

X'^"^"
sinztfe = I

- 1.

.

18. f\ogydy=-l. 22./^'arctanedS = |-logV2.
t/O

19.. JVsinada = TT- 2. 23. jVlogsds =- i-

J a \ a a' a'/

25. fip^ sin .^d^ = 2 cos + 2 (^ sin ^ — .^2 cos ^ + C.

26. f (log x)2dx = X [log2 X - 2 log X + 2] + 0./Q.2
atan2 0.^0- = o-tan or —— + log cos a + C.

28. f
'°g^ = ^logx - log(x + 1) + C.

J (x + l)2 x + 1

Hint. Let «=loga; and dw=- -—.etc.
(3;+ 1)2/J.S x^ + 2 / r -.

x^ arc sin xdx = — arcsinxH — vl — x^ + G.

30. Tsec^ ff log tan Sdff = tan 6 (log tan fl — 1) + C.

31. Tlog (log x)— = log X log (log x) - log X + C.

32. f]£S^^+J)^ =' 2 ^^TI [log(x + 1) - 2] + C.
^ Vx + 1

fx' (a - x2)i dx =- Jx2 (a - x2)l - T% (a - x^)^ + C.33.

Hint. Let u = x^ and dv = {a- x^)^ xdx, etc.

34. rVa2 - x^dx = - Vo2 - x2 + — arc sin - +, C.
J 2 2 a

35. r_^^=_l(x2 + 2)(l-x2)i + C.

36. fVa^ + x^dx = - Va2 + x^ + — log(x + Va^ + x^) + C.
J 2 2

I

„„ r a^^dx X /-;; j . a^ . x
. ^

37. /
,

= Wa? — x^ + — arc sin - + C.
J Va2 - x2 2 2 a

/•(logx)2dx 2 r, „ 4,
,
81

,
-

200. Reduction formulas for binomial differentials. It was shown in

§ 195, p. 340, that any binomial differential may be reduced to the

form x''(a + bx''ydx,

where ^ is a rational number, m and n are integers, and n is positive.

Also in § 196, p. 341, we learned how to integrate such a differential

expression in certain cases.
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In general we can integrate such an expression by parts, using (il),

p. 347, if it can be integrated at all. To apply the method of integra-

tion hy parts to every example, however, is rather a long and tedious

process. When the binomial differential cannot be integrated readily

by any of the methods shown so far, it is customary to employ reduc-

tion formulas deduced by the method of integration by parts. By
means of these reduction formulas the given differential is expressed

as the sum of two terms, one of which is not affected by the sign of

integration, and the other is an integral of the same form as the origi-

nal expression, but one which is easier to integrate. The following

are the four principal induction formulas

:

(A) \ x^(a-\-bx''ydx=—-—^—
, ..\^ ' J ^ ^

(n/> + 7n + l)6

anp r
i,xny-'. Ox.

(m-l-l)a J ^ ^

r x'"+'-(a-\-bx"y+^

^ ^ J ^ ^
n(/» + l)a

While it is not desirable for the student to.memorize these formulas,

he should know what each one will do and when each one fails. Thus

:

Formula (A) diminishes m hy n. (A) fails when np-^-m -{-1=0.

Formula (J?) diminishes p by 1. (J?) fails when np-i-m -{-1=0.

Formula (C) increases m by n. (C) fails when m-\-l=0.

Formula (D) increases p by 1. (P) fails when ^+1=0.
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I. To derive formula (A~). The formula for iiitegration by parts is

(A)
'

j udv = uv—
j
vdu. (4), p. 347

We may apply this formula in the integration of

\ x'^(a + ha^ydx

by placing m = 2;'"-"+^* and dv = (a + hx''ya^-'^dx;

(a + lx"Y*^
then du = (m — n-\-V)x'^-"dx and v= ^

_/ -

Substituting in (^A),

But far- " (a + bafy+^dx= jar - " (a + hx")" (a + haf^dx

= a
I
ar-''(^a + bx"ydx

+ b Cx''(a + bx"ydx.

Substituting this in (5), we get

— ^^— _^
I

a;""
-

" (a + bx"ydx
nb(p+l} J

Transposing the last term to the first member, combining, and solv

ing for
I

2;'"(a + bx^ydx, we obtain

^ ^
6(n/> + m + l)

-:ry ^!—4-
I x'"-"Ca + bx"ydx.

b(np + m + l}J y ^ J

* In order to integrate dv by (4) it is necessary that x outside tlie parenthesis shall have

the exponent n - 1. Subtracting n-1 from m leaves m - n + 1 for the exponent of a: in m.
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It is seen by formula (A) that the integration of a;"" (a + bx^ydx is

made to depend upon the integration of another . differential of the

same form in which m is replaced hjm — n. By repeated applications

of formula (4), m may be diminished by any multiple of n.

"When np + m +1=0, formula (^1) evidently fails (the denominator

vanishing). But in that case

m+l
[-p = 0;

n

hence we can apply the method of § 196, p. 841, and the formula is

not needed.

II. To derive formula (B'). Separating the factors, we may write

(0) jx'"Qa + bx"ydx= jx''(a + hx"y-\a + bx')dx

= a
j
x''(a + bx''y-^dx

+ b jx'^+''(a + bx"y-'dx.

Now let us apply formula (.4) to the last term of (C) by substi-

tuting in the formula m + n for m, and p — 1 for p. This gives

I fx-^X-+bxr-'dx=
^'^'"^^+^''"y- <^+'^]

Cx-ia+ bx'^y-^dx.
J np+m+1 np+m+\j

Substituting this in (C), and combining like terms, we get

(J5) f:^ (a + bx^ydx= -

np + m + 1

np + m + ij ^ ^

Each application of formula (5) diminishes p by unity. Formula

(5) fails for the same case as (.4).

III. To derive formula (C). Solving formula (4) for

f'
x'"-"(a + bx''ydx,

and substituting m + n for m, we get

x'"+\a + b3^y+^

a(m + l)

+ n +
1(772 + 1)

(C) fx'"(^a+ bx"ydx= -

HnP + n + m + i} C^r.^n^a+bx-ydx.
a(777 + l) J ^ ^ ^
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Therefore each time we apply (C), m is replaced hj m + n. When
m + 1 = 0, formula (C) fails, but then the differential expression can

be integrated by the method of § 196, p. 341, and the formula is not

needed.

IV. To derive formula (D). Solving formula (5) for

/x'"(a + hx''y-'^dx.

and substituting ^ + 1 for p, we get

+ ——-
I
x"'(a + bx"y+'-dx.

Each application of (i)) increases p by unity. Evidently (7)) fails

when ^+1=0, but then p = — l and the expression is rational.

EXAMPLES

1. f-^^=- l(x2 + 2) (1 - x^)i + G.

Solution. Here m = 3, n = 2, p = — J, a = 1, 6 = — 1.

We apply reduction formula (A) in this case because the integration of the differen-

tial would then depend on the integration of / a;(l — x^)~idx, which comes under (4),

p. 284. Hence, substituting in (A), we obtain

fx^l_,.yi^^-^I^110^^r}ll 1(3-2 + 1) r,a-.(i_,.)-i<fe,
J ^

' -1(- 1 + 3 + 1) _l(_l-(-3 + l)J ^ '

=- i x2 (1 - K2)i + ^jx (1 _ x^y^dx

= -i-a;2(l-K2)*- |-(i_x2)*+C

= -i(x2 + 2)(l-x2)+ + C.

2. f—^^^— =-('ia;' + |a23;\v^ir^ + !„4arcsin-+C.
^

(a2 - x2)* \4 8 / 8 a

Hint. Apply {A) twice.

3. r(a2 + x2)*dx = ^ Va^ + x2 + ^ log(x + Va^ + x^) + C.

Hint. Here m=0, n=2, p = ^, 0=0^ 6=1. Apply (B) once.

^ /• dx (x2-l)* 1
4.

I
= = ^ . + - arc sec x + C.

•^x^Vx^-l 2x2 2

Hint. Apply (C) once.

x^dx
(

=— -Vga — x" H arc sin -+ C.
/ -v/n2 _ rri 2 2 aV02
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= -(!Eg-2anVag + z2 + 0.

*' Vl-s" \5 15 15/

8. ra;2 Va2-a;2dx = ^(2x2 - a^) Va^ - s^ + ^ arc sin - + O.
•' 8 8 a

Hint. Apply (A) and then (B).

n / dx X 1 X _

^J(^M:^-2a^(a^ + x^) + 2^^'^''*^"a +
^-

Hint. Apply (D) once.

10. I = log -—:^— + C.
•^x'V^^^:^ 2a2x2 2a» ^a+VS^^T^i
/ x^dx _ x" + 2 g^

^
(o2 + x2)l (a2 + x2)i

12.
r fe _ (3a^-2x')x

^ ^
"'(a!'-x2)^ 3a*(a2-x2)t

13. r(x2 + a2)l(fe = ^(2x2 + 5a2) Vx^ + a^ +— log (x + Vx^ + a^) + C.
»/ 8 8

14. rx2(x2 + a2)*<ix = 1(2x2 + a^) Vx^ + o^ - — log (x H-Vx^ + o^) + C.
«/ 8 8

„ /• x^dx x + 3a,„ ,,J.
,
3a2 a;

. ^
15.

I
- = (2 ox — x^Y H arc vers - +C

•^ V2 ax - x2 2 2 a

-=
j x*(2a-x)~sdx. Apply (.4) twice.

V 2 era - x2 J

dx Vo" — x^
16. r ^ =_x^!^^+c.

17 r y'd;^ ^_ 2y^ + 5r(y + 3r) y^^^y^^ ^ g^ ,,-,,,,,, j^ ., q.

= — (2 at — t^)^ + a arc vers-
V2a«-i2 a

ds s
.

3s . 3
19. I — arc tan - + C.

J (a2 + s2)8 4 a2 (a2 + «2)2 8 a* (a^ + s^) 8 a= a

20. r-^!^ = _A(3r6 + 4r8 + 8)Vr^+C.
•z Vl — r' 45

21. r_5!^_. 25. ft^V^^TT^dt. 29. f-^!^^.

22. r-^— . 26. r-^. 30. r-
''""'

x2(l + x2)t Vz* + 9 ./ Vs -aS

23. r_^^. „_ /• Va^ + x^dx
gj^

r Vi-y''dy
' Vl-x* J X ' J y*

24. r_^^. 28 /•(i-x')^ 32. r ^
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201. Reduction formulas for trigonometric differentials. The method

of the last section, which makes the given integral depend on another

integral of the same form, is called successive reduction.

We shall now apply the same method to trigonometric differentials

by deriving and illustrating the use of the following tr^onometric

reduction formulas

:

m
f:

sm"^
sin"" JT cos''xdx= m + n

n — 1 r
H I

sva!"X ais''~'xdx.~ njm + i

(F) /s.sin'"j:cos"jrd[r=
gJjjni-ljj.gQgn+ lj

m + n

m-1 r
- nJ

m /sin"" jc cos" xdx = —

m + i

n + 1

m + n + 2- + " + rsin'"a:cos"+''jfdr.
n+i J

. „ , sm°'"^^xcos"
sm" jr cos" xdx =r

m + i

+ 2 r
-!^—

/ sui"'+
=

1 J

m + n + 2
, . ^„

H j sm"'+^jccos"jfdii:.
m + ^

Here the student should note that

Formula (E) diminishes n ly 2. (£) fails when m + n = 0.

Formula (F) diminishes m hy 2. (F) fails when m + n=0.
Formula (G) increases n hy 2. (G) fails when w + 1 = 0.

Formula (H} increases m by 2. (ff) /ai7s when m + l = 0.

To derive these we apply, as before, the formula for integration

by parts, namelj',

(^) j udv = uv- j vdu. (A), p. 347

Let M = cos"-^a;, and dv = sm'^ x cos xdx

;

then du =— (n — V)cos"~^xsiD.xdx, and w = sin"'+^2!

m + l
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Substituting in (^), we get >

(J5) 1 sui"'2; cos"a;aa: =

+

m + 1

^^ I
sin"'+

In the same way, if we

w —

1

W T I sin"'+''a;eos°~''a;^a;.

let u = sin™ ^ar, and dv = cos" a; siu a;c?a;,

we obtain

siQ"'~^a;cos""''^a;
(0) /sm^a; cos"a;c?a; = — •

M + 1

H
;-Y I

sin'" ^a;cos"+^a:cZa;.

But
I

sin""
+

^ a; cos"~ ^xdx = | sin"" a; (1 — cos^ a;) cos"~ ^xdx

= I sia"'a;cos''~^a;(?a;— | ssia"'a;cos''~^a;(?a;— | siu" a; cos" a:c?a;.

Substituting this in (5), combiuiug like terms, and solving for

I sin" a; cos''a;cZa;, we get

m /sin^jccos" jrdr = sin^+^jccos""*;!:

m + n

n-1
-J'

sin'^jrcos""" Jfdjr.

m +

Making a similar substitution ia (C), we get

sin"'~^Jccos"+^jr
cn Jsisin'"j:cos"jrd[r = m + n

-I I
sin'"~^jf cos"jr<ic.

m + nJ

Solying formula (£J) for the integral on the right-hand side, and

increasiag n by 2, we get

-m + l vz-noi + l

(G)
I
sm"" jr cos" jrdr = —

n + l

m + n + 2 r^„ ^ ^^„ + , ^^
n + 1 J
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In the same way we get, from formula (^),

sin'"Jccos"jfdjr =
m + 1

m+n + 2 rsin'"+=j:cos";cdir.
m + 1 J

Formulas (£) and (F) fail when m + n = 0, formula (G) when
n + l=0, and formula (ff) when m + 1= 0. But in such cases we
may integrate by methods which have been previously explained.

It is clear that when m and n are integers, the integral

sin'"a;eos"2^a;/
may be made to depend, by using one of the above reduction

formulas, upon one of the following integrals

:

I
dx,

I
SLQ xdx,

I
cos xdai, I sin x cos xdx, l —— = i esc xdx,

=
/ sec xdx, I -,— , / tan xdx, i cot xdx,

cos X J J cos xsuix J J
all of which we have learned how to integrate.

EXAMPLES

1. I sm^^x cos*x(fa; = 1
— 1- — (smx cosx + x) + C.

J 6 24 16

sin X cos^ X sin x cos* s 1

1 "^ 24 """le'

Solution. First applying formula (i?"), we get

1 A\ C • <> A J sinxcos'x 1 /• . ,(A)
I
sm^x cos*xdx = — 1- - / cos* xdx.

[Here m= 2, n= 4.]

Applying formula (E) to tlie integral in the second member of (A), we get ,

/B\ r d J sinxcos'x 3 /• . ,

(P) j cos* xdx = 1- - / cos'' xdx.

[Herem=0, »=4.]

Applying formula {E) to the second member of (B) gives

//-,> r > J sinxcosx X
(C) ( cos^xdx = 1

J 2 2

Now substitute the result (0) in (B), and then this result in (A). This gives the

answer as above.

2 r„:-,i» „„„!!„j oosx/sin^x sin'x sin
rsin*x cos^xdx = 5^ (?^ - ?12!^ _ !l^\ + - + C

.
I

= tanx — 2cotx cot^x + C.
/ sin*X cos''

X

3
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4. I —V-;— = -— (3— oos^k) i-C.J sm^'x 2 2/I 1
seo'xdx = -seoajtani + -log(seca; + tana;) + C.

A 2/I 1
csc'xda; =— - esc x cot a; + - log (esc a; — oota;) + C.

A 2

_ r cos*adar cosa 3, a
7. / —^-, =-;r-r-; eosar--logtan- + C.

J sm'a 2sin2Q: 2 2

o r • « J cosa/sin^a
, 5 . . 5 . \ ha

8. / smeada =_ __ (^__ + _ sm»<. + - sma) + i| + C.

9. rcscas<W=_5^(J_+ 3 X 3^ ^^^^

,« r 7^j. sin0 / 1 5 5\ 5lO.jsec'*d0 = ^-^^^-_^ + ^^_^ + -j + _log(sec^ + tan^) + C.

11. fcosSidi =^ (cosH + 1 oos^i + ?^ cos't + - cost) +—+ C.I 8 \ 6 24 16/128
19 r ^y 1 / 1 _L 5 5 . \ 5, ,

^^•Jsin*j,cos»2,— ^^i3lh^ + 3^-i''°^; + i^°^(^"'=^ + *^"^) + ^'

13. Psm8xoos*xflte =—

.

16. r^oos8ado:=—

.

/o 512 Jo 256

14. C\m^xdx = ^^. 17. rmji*xdx = ^.
Jo 256 -^0 8

15. rsm«6dff = ~. 18. r%s*«d< =—

.

Jo 16 Jo 16

202. To find j e"" sin nxdx said Ce"cosnxdx.

Integrate e"^ sin nxdx by parts,

letting u = e"", and t^v = sin nxdx

;

then c?M = ae'^dx, and w = cos ?i,x

n

Substituting in formula (.4), p. 347, namely.

we get

i udv = uv — j vdu,

(-4) I e sm W2;a!a; = — 1- -
I « cos nxdx.

J n nj

Integrate e*^ sin nxdx again by parts,

letting , u = sin nx, and cZw = e'^cZa;

;

then du = n cos wajcZa;, and w =—
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Substituting in (4), p. 347, we get

^^x r ™ . T e'^sia.nx n C ^^ ,
(B) I e"^ sin nxdx = I e cos nxdx.

J a aj

Eliminating / e'^ cos nxdx betweeu. (^) and (5), we have

(a"+ w")
I

e"^ sin nxdx = e"^ (a sin nx — n cos wa;),

/„, . - e'^Ca sin wa; — n cos nx')
,

_
e sin nxdx =—^= ; ; + 6.

Similarly, we may obtain

/
, e'^Cn sin nx+ a cos nx) , _

i nxdx =—^^ + C.

In working out the examples which follow, the student is advised

not to use the above results as formulas, but to follow the method by

Vhich they were obtained.

EXAMPLES

4

€F sin xdx = — (sin x — cos x) + G.

e=^cosxda; = — (sinx + cosx) + 0.
Ji

3. re2^cos3xdx =— (3sin3x + 2cos3x) + C.
«/ 13

/sinxdx sinx + cosx= + ^>
e^ 2e^

, / cos 2 xdx 1 ,„ . „ „ „ , „
5. I

= (2sm2x- 3cos2x) + G.

„ C 1 J, ^ /-i 2 sin 2 X + cos 2 x\ „
6.

I
e^sm2x(ix = — (1 1+0.

tv r ^ 9 J e^ /, , 2 sin 2 or + cos 2 q:\ ^
7. I e*cos2a;da: = — IIH )+G.

/- X -/ X x\
e^cos-tix = e2(sin- + cos-| + C.

2 \ 2 2/

9. I e"" (sm aa + cos aa) da =— 1- C.

e'^(sin2x— cos 2 x) c?x =•— (sin 2 x — 5cos2x) + C

11. I e-''smx(Zx = -.
| e-sa=

Jo 2 Jo

1 r" <?

' — ''"•cos2xdx=:
18



CHAPTER XXVIII

INTEGRATION A PROCESS OF SUMMATION

203. Introduction. Thus far we have deimed integration as the

inverse of differentiation. In a great many of the apphcations of the

Integral Calculus, however, it is preferable to define integration as

a process of summation. In fact, the Integral Calculus was invented in

the attempt to calculate the area bounded by curves, by supposing

the given area to be divided into an " infinite number of infinitesimal

parts called elements, the sum of all these elements being the area

required." Historically, the integral sign is merely the long S, used

by early writers to indicate "sum." "
,

This new definition, as amplified in the next section, is of fun-

damental importance, and it is essential that the student should

thoroughly understand what is meant in order to be able to apply

the Integral Calculus to practical problems.

204. The fundamental theorem of Integral Calculus. If ^ (a;) is the

derivative of /(a;), then it has been shown in § 174, p. 315, that the

value of the definite integral

(A-) j\(x)dx=f(h-)-fia)

gives the area bounded by the curve

y = ^ Qc), the X-axis, and the ordinates

erected at a; = a and x = h.

Now let UiS make the following con-

struction in connection with this area.

Divide the interval from x = a to x=h into any number n of equal

subiatervals, erect ordinates at these points of division, and complete

rectangles by drawing horizontal lines through the extremities of the

ordinates, as in the figure. It is clear that the sum of the areas of

these n rectangles (the shaded area) is an approximate value for the

area in question. It is further evident that the limit of the sum of

the areas of these rectangles when their number n is indefinitely

increased, will equal the area under the curve.

361
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Let us now cany through the following more general construction.

Divide the interval into n subintervals, not neeessarily eqiml, and erect

ordinates at the points of division. Choose a point within each sub-

division in any manner* erect ordinates

at these points, and through their ex-

tremities draw horizontal lines to form

rectangles, as in the figure. Then, as

before, the sum of the areas of these

n rectangles (the shaded area) equals

approximately the area under the curve

;

and the limit of this sum as n increases

without limit, and each subinterval ap-

proaches zero as a limit, is precisely the area under the curve. These

considerations show that the definite integral QA) may be regarded as

the limit of a sum. Let us now formulate this result.

(1) Denote the lengths of the successive subintervals by

Aa;^, Aa;^, Aaig, Aa;,

(2) Denote the abscissas of the points chosen in the subintervals by

Then the ordinates of the curve at

these points are

<^(a;J, 4>(x^), <t>Cx^), , ^QcJ.

(3) The areas of the successive rec-

tangles are obviously ^ 3mb x"axi X.

<j>(ix^)Ax^, <i>(,x^)Ax^, <l>(x^)Ax^, •••, <^(a;„)Aa;„.

(4) The area under the curve is therefore equal to

n = »['^(^:)^^i+ '^(^.) A2;,+ </.(a;3) Aa;3+ • • +0(a;J Aa:„].

But from (^) the area under the curve = I (j> (x) dx.

Therefore our discussion gives

(-5) jT <^ (^) '^^ = n =« [<^ (^J ^y+ <i> (^,) Ax^+---+<i> (xj AJ .

* This eonstrafetion Includes the previous one as a special case, namely, when the point i

chosen at one extremity of a subinterval.
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This equation has been derived by making use of the notion of area.

Intuition has aided us in estabhshing the result. Let us now regard (5)
dmply as a theorem in analysis, which may then be stated as follows

:

Fundamental Theorem of the Integral Calculus

Let <j> (a;) be continuous for the interval x= atox=b. Let this interval

be divided into n svhintervals whose lengths are Ax , Ax ,
• • , Ax^, and

points be chosen, one in each subinterval, their abscissas being x,x ,
• •

• , x^

respectively. Consider the sum

(C) cl>(x;)Ax^+ 4>(x^)Ax^+ +<t>(ixjAx„=^cl>(x,)Ax,.
t=i

Then the limiting value of this sum when n increases without limit, and

each subinterval approaches zero as a limit, equals the value of the definite

integral /•<>

I ^ (x) dx.

Equation (5) may be abbreviated as follows

:

(D)
, f

<j>(^x-)dx = ^'^l^<l>(x,)Ax,

The importance of this theorem results from the fact that we are

able to calculate by integration a magnitude which is the limit of a sum

of the form (C).

It may be remarked that each term in the sum (C) is a differen-

tial expression, since the lengths Ax^, Ax^, • • , Ax^ approach zero as

a limit. . Each term is also called an element of the magnitude to be

calculated.

The following rule will be of service in applying this theorem to

practical problems.

Fundamental Theorem. Eule

FiEST Step. Divide the required magnitude into similar parts such

that it is clear that the desired result will be found by taJdng the limit of

a sum of such parts.

Second Step. Find expressions for the magnitudes of these parts such

that their sum will be of the form (C).

Thied Step. Having chosen the proper limits x = a and x=b, we

apply the Fundamental Theorem

and integrate.
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As in the last section, divide205. Analytical proof of the Fundamental Theorem

the interval from x = atox = b into any number

n of subMitervals, not necessarily equal, and de-

note the abscissas of these points of division by

61, 62, • • •, 6n-i, and the lengths of the suhinter-

vals by Ax^, Ax^, • •
• , Ax„. Now, however, we let

xi, X2, •
• , < denote abscissas, one in each inter-

val, determined by the Theorem of Mean Value

(44), p. 165, erect ordinates at these points, and

through their extremities draw horizontal lines

to form rectangles, as in the figure. Note that

here ^(a;) takes the place of (p'(x). Applying

(44) to the first interval {a = a, 6 = b^, and xi lies between a and b^), we have

™.' nr' t'

fiW)- :^ = 0(xf),

or, since

Also

fej— a

6j^
— a = Ax^,

/(6i)-/(a) = 0(xl)AXi.

/(b^) _/(6^) = ,^(a^ Axj, for the second Interval,

/(6g) — /(ftg) = 0(^3) Aaig, for the third interval,

etc.,

f(p) — /(6„_i) = 0(xQ Ax„, for the rith interval.

Adding these, we get

(E) f(b) -f{a) = 0(xl)AXi + .^(xaO AXg + •
. + 0(xi)Ax„.

But {x'l) AXj = area of the first rectangle,

0(X2) • AXj = area of the second rectangle, etc.

Hence the sum on the right-hand side of (-B) equals the sum. of the areas of the

rectangles. But from (4), p. 361, the left-hand side of (-B) equals the area between

the curve y = <j>{x), the axis of X, and the ordinates at x = a and x = 6. Then the sum

(F) ^0(xOAxi

equals this area. And while the corresponding sum
n

(G) ^0(x.)AXi
i= l

[Where Xi is any aliscissa of the subintenral A(.]

(formed as in last section) does not also give the area, nevertheless we may show that

the two sums (F) and (G) approach equality when n increases without limit and each

subinterval approaches zero as a limit. For the difference (xQ — (x;) does not ex-

ceed in numerical value the difference of the greatest and smallest ordinates in Axj.

And furthermore it is always possible * to make all these diflerenoes less in numerical

value than any assignable positive number c, however small, by continuing the process

of subdivision far enough, i.e. by choosing n sufficiently large. Hence for such a choice

of n the difference of the sums (F) and (G) is less in numerical value than e(6 — a),

* That such is the case is shown in advanced works on the Calculus.
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i.e. less than any assignable positive quantity, however small. Accordingly as n in-

creases without limit, the sums (F) and (G) approach equality, and since (F) is

always equal to the area, the fundamental result follows that

in which the interval [a, 6] is subdivided in any manner whatever, and Xi is any
abscissa in the corresponding subinterval.

206. Areas of plane curves. Rectangular coordinates. As already

explained, the area between a curve, the axis of X, and the ordinates

x = a and a; = 5 is given by the formula

(^) area-£ ydx,

the value of ^ in terms of x being substi-

tuted from the equation of the curve.

Equation (A~) is readily memorized by

observing that ydx represents the area of

a rectangle (as CE) of base dx and altitude y. It is convenient to

think of the required area ABQP as the limit of the sum of all such

rectangles (strips) between the ordinates AP and BQ.

Let us now apply the Fundamental Theorem, p. 363, to the calcu-

lation of the area bounded by the curve x=j> Qy'), QAB in figure), the

axis of Y, and the horizontal hues y = c and

y = d.

FiKST Step. Construct the n rectangles

as in the figure. The required area is clearly

the limit of the sum of the areas of these

rectangles as their number increases with-

out limit and the altitude of each one ap-

proaches zero as a limit.

Second Step. Denote the altitudes by

Ay^, Ay^, etc. Take the point in each inter-

val at the upper extremity and denote their ordinates by y^, y^, etc.

Then the bases are ^(^j), ^(iy^)-! etc., and the sum of the areas of

the rectangles is

</> iVi) ^^1 +<l>iy^^y,+--- + 'i> iyn) ^yn=X<l> (yd ^yr

Third Step. Applying the Fundamental Theorem gives

limit

n
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Hence the area between a curve, the axis of F, and the horizontal

hnes y—e and y = d\& given by the formula ^

(B) area=x xdy.

the value of a; in terms of y being sub-

stituted from the equation of the curve.

Formula (5) is remembered as indicating

the limit of the sum of all horizontal strips

(rectangles) within the required area, x and dy being the base and

altitude of any strip.

Illustrative BxamplB 1. Find the area included between the semicubical parab-

ola y^ = 3? and the line x = i.

Solution. Let us first find the area OMP, half of the required area OPP' For the

upper branch of the curve y = V^, and summing up all the strips between the limits

1 = and a; = 4, we get, by substituting in (A),

area OMP = f ydx = f x^dx. = ^ = 12f

.

J fj Jo

Hence area OFF' = 2 -^ = 25f

.

If the unit of length is one inch, the area of OPP' is

square inches.

Note. For the lower branch y =— xi; hence

area OifP'= f (-a;^)(ir =- 12fJo

—

X

This area lies below the axis of x and has a negative sign because

the ordinates are negative.

In finding the area OMP above, the result was positive because the ordinates were
positive, th£ area lying above the axis of x.

The above result, 25|, was the total area regardless of sign. As we shall illus-

trate in the next example, it is important to note the sign of the area when the

curve crosses the axis of X within the limits of integration.

Illustrative Example 2. Find the area of one y
arch of the sine curve y = sina;.

Solution. Placing y = and solving for x, we find

x = 0, TT, 2 IT, etc.
"0"

Substituting in {A), p. 365,

area OAB = f ydx= f smxdx = 2.
Ja Jo

area BCD = f ydx = f sinxdx = — 2,
Ja J-ir

a,Tea, OABCB = f ydx= f "sinxdx = 0.
Ja Jo

This last result takes into account the signs of Ihe two separate areas composing
the whole. The total area regardless of these signs equals 4,

Also

and
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Illustrative Example 3. Find the area included between the parabola x^ = iay
and the witch

_ Sgg
^~

x^ + ia'^'

Solution. To determine the limits of integra-

tion we solve the equations simultaneously to find

where the curves intersect. The coordinates of

A are found to be (— 2 a, a), and of C (2 a, a).

It is seen from the figure that

area AOCB = areaX>^CB^ — aveaDECOA.

/» 2 a g a^dx
But area DECBA = 2 x area OBCB = 2 | 2 ira?,

Jo a;2 + 4a2

and area DECOA = 2 x area OEC = 2
I
—

Jo 4a

2ax2 4a2

3

Hence area 40CB =27ra2 ^ = 2a2(ir-|). A-aa.
o

Another method is to consider the strip PS as an element of the area. If i/ is the

ordinate corresponding to the witch, and y" to the parabola, the differential expression

for the area of the strip PS equals (j/' — y")dx. Substituting the values of y' and y"

in terms of x from the given equations, we get

area AOCB = 2 x area OCB

'>2a

= 2f {y'-y")dx
Jo

Jo \x^ + 4:a^ 4a/

= 2o2(ff-f).

X^ «2
Illustrative Example 4. Find the area of the ellipse 1- — = 1

Solution. To find the area of the quadrant OAB, the limits are x = 0, x = a ; and

2, = - Va2 - x2.

Hence, substituting in (A), p. 365,

areaO^JB = - fia^ — x^idx
aJo

= — (a^ — x^)^ + — arc sin -
L2a^ '2 oJo

TTOb

Therefore the entire area of the ellipse equals

iraJ.

Y
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207. Area when equation of the curve is given in parametric form.

Let the equation of the curve be given in the parametric form

We then have y = ^ (f),
and dx =f'(t') dt,

which substituted* in (^), p. 365, gives

(^) area = r>l>(ty'(t^dt,

where t = t^ when x = a, and t = t^ when x=b.

We may employ this formula (A} when finding the area under a

curve given in parametric form. Or we may find y and dx from the

parametric equations of the curve in terms of t and dt and then

substitute the results dkectly in (.A), p. 365.

Thus in finding the area of tlie ellipse in Illustrative Example 4, p. 367, it would

have been simpler to use the parametric equations of the ellipse

a; = o cos 0, y = b sin 0,

where the eccentric angle is the parameter (§ 66, p. 81).

Here 2/ = 6 sin <p, and dx = — a sin <pd(p.

^VVhen x = 0, = -
; and when x = a, = 0.

Substituting these in {A), above, we get

Trailpa • />u

area OAB = I ydx = — I a6 sin^ 0(j0 =

Hence the entire area equals iraft. Ans.

EXAMPLES

1. }?ind the area bounded by the line y = hx, the axis of X, and the ordinate

g. _ 2. Ans. 10.

2. Find the area bounded by the parabola y^ = ix, the axis of F, and the lines

2/ = 4 and 2/ = 6. ^ws- 12f.

3. Find the area of the circle x^ + j/^ = r^, Ans. ttt^.

4. Find the area bounded hj y^ = Qx and y = 3x. . Ans: i.

5. Find the area bounded by the coordinate axis and the curve y = eF. Ans. 1.

6. Find the area bounded by the curve y = log x, the axis of y, and the lines

2/ = and 2/ = 2. Ans. e^-l.

7. Find the entire area of the curve x^ + y^ = a». Ans. %Trefi.

8. Find the area between' the catenary ?/ = - [e* + e "], the axis of T, the axis

of X, and the line x = o.
Ayia ^ \e^ - 11

* For a rigorous proof of this substitution the student is referred to more advanced

treatises on the Calculus.
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9. Find the area between the curve y = logx, the axis of X, and the ordinates
j; = lands = a. ^Tis. a(loga-l) + l.

10. Find the entire area of the curve

11. Find the entire area of the curve a^y^ = x^{2a — x). Ans. ira?.

12. Find the area bounded by the curves

x{y — eF) = sin x, and 2 x?/ = 2 sin a; + x',

the axis of Y, and the ordinate x = 1. Ans. f (e»= — ^ x^) cix = e — | = 1 .55 + . . ..

J

13. Find the area betv?een the Vfitch y = — and the axis of X, its asymptote.
x^ + 4 a^ . . nAns. iira^.

14. Find the area between the cissoid y' = and its asymptote, the line

x = 2a. 2a-

X

^^_ g^^2_

15. Find the area bounded by ^ = x"^ ^^ = g^ and the axis of T. Ans. 12.

16. Find the area included between the two parabolas y^ = 2px and x^ = 2py.

. 4p2

3

17

.

Find the area included between the parabola y' = 2x and the circle y^ = 4x — x^,

and lying outside of the parabola. Ans. 0.475.

18. Find the area bounded hj y = x^, y = x, y = 2x. Ans. I.

19. Find an expression for the area bounded by the equilateral hyperbola

x' — y^ = a^, the axis of X, and a line drawn from the origin to any point (x, y).

Ans. ^log^±I.
2 a

20. Find by integration the area of the triangle bounded by the axis of T and
the lines 2x + y + S = and y =— i. Ans. 4.

21. Find the area of the circle
(x = r cos d,

\y = rsin^,
9 bemg the parameter. Ans. irfi

22. Find the area of the ellipse
X = a cos 0,

2/ = 6 sin 0,

where the eccentric angle ^ is the parameter. Ans. irab.

23. Find the area of the cardioid

X = a (2 cos t — cos 2 1),

y = a(2 sin t— sin 2 1).

24. Find the area of one arch of the cycloid

rx = a(8 — sin^),

\y = a{l— cosO),
9 being the parameter.

Hint. Since x varies from to 2 ira, 6 varies from to 2 tt.

Ans. 3 ira?' ; that is, three times the area of the generating circle.
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25. The locus of A in the figure, p. 82, is called the "companion to the cycloid."

Its- equations are x = a£

y = a{l-cosd). Y
Pind the area of one arch. Ans. 2ira^.

26. Find the area of the hypocycloid

fx = acos'O,

y = asw?6,

$ being the parameter. Ans. ; that is, three eighths of the area of the
° circumscribing circle.

27. Mnd the area of the loop of the folium of Descartes

a;' + 2/* = 3 axy.

- ix ; then x = ,Hint. Let

w= . and da;= Zadt.
l+«3 (1+<S)2

The limits for t are and oo.

28. Mnd by integration the areas bounded by the following loci

:

(a) (y — 1)2 = 1', y = 0. Ans. ^.
(b) {X - 2/2)2 = ^5^ 'a; = 0. jij.

(c) a?y = x (i2 - a2), 2/ = 0. \ a^.

(d) x(l + 2/2) = l, a; = 0. tt.

'

(e) 2/ = x(l-x2), y = o. \.

(f) x = 2/2(2^_l), a; = p.
,lj.

(g) 2/^ = x*(2x + l). Areaof loop. j^-..

(h) 2/2 = x2 (21 + 1) . Area of loop.
-f^'.

(i) 2/ = X + 4, 2/ = 2x + 4, 5^ = 0.

(j) 2^ = x2'+ 5, 2/ = 0, X == 0, X = 3.

(k) y = 2x3, X = 0, 2/ = 2, 2/ = 4.

(1) x2 = 2/ + 9, 2/ = 0.

(m) 2/2 _ 4 + 3; _ 0, 1 = 0.

(n) X2/;=x2— 1, 2/ = 0, x = J, x=l.
(0) X2/ = 4, y = 1, 2/ = 5.

(p) X = 10!/, 2/ = i, 2/ = 2.

208. Areas of plane curves. Polar coordinates. Let it be required

to find the area bounded by a curve and two of its radii vectors. For
this purpose we employ polar coordinates. Assume the equation of

the curve to be _ f(Q\

and let OP and OD be the two radii.

Denote by a and /3 the angles which the

radii make with the polar axis. Apply
the Fiindamental Theorem, p. 363.

FiEST Step. The required area is

clearly the limit of the sum of circular

sectors constructed as in the figure.

Second Step. Let the angles of the successive sectors be A^^, ^^^,
etc., and thek radii p^, p^, etc. Then the sum of the areas of the sec-

tors* is „ „ "

* The area of a circular sector = i radius x arc. Hence the area of first sector- i p, • p^Aff,= fPj^A$if etc.
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Third Step. Applying the Fundamental Theorem,

limit

1= 1 tya
^^ ..^ . ..Me.

Y
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10. Mnd the area of the ellipse p^ = „ . „„
—-; — -^ns. -irab.

11. Find the entire area of the curve p = a(sin25 + cos2S). Ans. sro"^.

12. Pindtheareaof oneloopof thecurvep2cos^ = a2Bin35. Ans. — T^"?^-

13. Find the area below OXwithin the curve p = asin8-. Ans. (lO tt + 27 Vs)— •

14. Find the area bounded by p" = €? sin 4 0. Atis. a^.

15. Find the area bounded by the following curves and the given radii vectors :

(ay p = tan«, 6 = 0, 6 = '^- (d) p = sec «l + tan 6^, 5 = 0, 6 = ^

(b)p = e4», 5 = |, e =~ (e)p = sin^ + cos^, 5 = 0, 5 = |.

(c) p = a?S6<fi-, 6 = '^, e = ^- (f) p = asin5 + 6cos5, 5 = 0, 5=|.

16. Find the area inclosed by each of the following curves :

(a) p2 = 4sin25. (d) p = 1 + 2cos5. (g) p^ = 0^(1- cos5).

(b)p = acos35. (e) p = 3 + cos 5. (h) p = a(l + sin5).

(c)p = 8sin45. (f)p = 2-sin5. (i)p = acos55.

209. Length, of a curve. By the length of a Mraighb line we com-

monly mean the number of times we can superpose upon it another

straight liae employed as a unit of length,

as when the ca,rpenter measures the length

of a board by making end-to-end applica- ^

tions of his foot rule. «

Since it is impossible to make a straight a
line coincide with an arc of a curve, we cannot measure curves in the

same manner as we measure straight lines. We proceed then as follows

:

Divide the curve (as AB~) into any number of parts in any mamier

whatever (as at C, D, JE^ and connect the adjacent points of division,

forming chords (as AC, CD, DE, EB^.

The length of the curve is defined as the limit of the sum of the chords

as the number of points of division increases without limit in such a way

that at the same time each chord separately approaches zero as a limit.

Since this limit will also be the measure of the length of some straight

line, the finding of the length of a curve is also called " the rectification

of the curve."

The student has already made use of this definition for the length

of a curve in his Geometry. Thus the circumference of a circle is

defined as the limit of the perimeter of the inscribed (or circumscribed)

regular polygon when the number of sides increases without limit.

.r^^
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The method of the next section for finding the length of a plane

curve is based on the above definition, and the student should note

very carefully how it is applied.

210. Lengths of plane curves. Rectangular coordinates. We shall

now proceed to express, in analytical form, the definition of the last sec-

tion, making use of the Fundamental Theorem.

Given the curve _ /.^ ^

and the points P'(a, e), Q (b, d} on it ; to find

the length of the arc P'Q.

First Step. Take any number n of points on

the curve between P' and Q and draw the chords

joining the adjacent points, as in the figure. The required length of

arc P'Q is evidently the limit of the sum of the lengths of such chords.

Second Step. Consider any one of these chords, P'P" for example,

and let the coordinates of P' and P" be

P'Qx', y) and PXx'+ Aa/, y'+ Ay').

Then, as in § 90, p. 134,

P'P"'= V(A^')'+ (%')''

Tt__^
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Thied Step. Applying the Fundamental Theorem,

Hence, denoting the length of arc F'Q by s, we have the formula for

the length of the arc ^b

s=j ll+fXxy}idx, ov

(^)

dp
-XT-(I dx,

where — must be found in terms of x from the equation of the
ax

given curve.

Sometimes it is more convenient to use y as the independent variable.

To derive a formula to cover this case, we know from (35), p. 148, that

dy 1 ^ -, dx ^-— = -—; hence dx = —- ay.
ax ax ay

dy

Substituting this value of dx in QA.'), and noting that the corre-

sponding y limits are c and d, we get* the formula for the length of

the arc.

(5) -m +1 dy,

dx .

where — in terms of y must be found from the equation of the

given curve.

Illustrative Example 1. Mnd the length of the circle x^ + y^ = r'^.

Solution. Differentiating, — =
Substituting in (^),

*^ ^

arcB.4 dx

r Substituting ij^=r'-x'' from the equation of the]
[eirole in order to get everything in terms of x.\

... arcB4 =rr—^=f;arcsi„?T=^.
Jo Vr2-a;2 L r\ 2

Hence the total length equals 2 irr. Ans.

•"X'[»(i)'J**-x'[(S)Mi)"(i)>=i:'[(S)""T*-
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EXAMPLES

1. Find the length of the arc of the semicubical parabola aj/^ = ^a fjom y^g origin

to the ordinate x = 5 a. 336 a
Ans.

27
2. Find the entire length of the hypocycloid x^ + y^ = a^. Ans. 6 a.

n - —-
3. Rectify the catenary y = - (e" + e~"°) from x = to the point (x, y).

Ans. -(e^—e ").

4. Find the length of one complete arch of the cycloid ^

Hint. Use (-B). Here

x = r arc vers - —V2 ry — y^. Ans. 8r.
r

^

dx y

'^y V2 1-y - 2/2

5. Find the length of the arc of the parabola y"^ = 2x0, from the vertex to one

extremity of the latus rectum. n Vs n , /-,

Ans. ^ + |log(l+V2).

6. Rectify the curve 9 ay^ = x (x — 3 a)^ from x = to x = 3 a. ^ns. 2 a Vs.

7. Pind the lenffth in one quadrant of the curve (-) +(r =1- «2 i «/. i 7.2W \W ^ns. " +«'' + ''
.

a + 6
• e^ + 1

8. Find the length between x = a and x = 6 of the curve 0i = •

^
e' — l

e26 _ I
Ans. log \-a—b.

9. The equations of the involute of a circle are e^"— 1

Cx = a{cos0 + 6 sinff),

\^y = a (sin S — ^ cos 0).

Find the length of the arc from ^ = to ^ = 5^. Ans. iaOf.

f X i^ c^ sin TT

10. Find the length of arc of curved „ „ from ^ = to S = -^ \y = eicosd 2 i;

Ans. .V2(e2-1).
11. Find the lengths of arcs in the following curves :

gx \
(a) y = log ; X = 1, X = 2. (d) y = logx ; x = 1, x = 4.

(b) 2/ = logJ-x2); x = 0,x = ^.
(e) 2/ = log sec x; x = 0,x = ^.

X^ 1 TT TT
(c) 2/ = — --logx; x = l, x = 2. (f) 2/ = logcscx; 3; = -, 3; = g'

211. Lengths of plane curves. Polar coordinates. Formulas (.A) and

(5) of the last section for finding the lengths of curves whose equa-

tions are given in rectangular coordinates involved the differential

expressions U+mp. and U^J+1

In each case, if we introduce the differential of the independent vari-

able inside the radical, they reduce to the form

dy.
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Let us now transform this expression into polar coordinates by means

of the substitutions x = pcosO, i/ = psin6.

Then dx = — psia Odd + cos 6dp,

dy = p cos OdQ + sin 6dp,
and we have

[&'+ df'f= [(^ p sin ede + cos ddpf^ (p cos 0d0 + sm ddpyf

= [p'de'+dp^f.

If the equation of the curve is

then dp=f'ce}de = ^d0.

Substituting this in the above differential expression, we get

If then a and ^ are the limits of the independent variable 6 corre-

sponding to the limits in (^) and (5), p. 374,

we get the formula for the length of the arc,

(^) -fXt dd,

where p and —^ in terms of 6 must be substi-
da

tuted from the equation of the given curve. "^ ^

In case it is more convenient to use p as the independent variable,

and the equation is in the form

^ = '^^^^'
de

then dd = <^'(/3) dp =— dp.
dp

Substitutmg this in [p^d0^+dp^f

WV
dp)

Hence if p^ and p^ are the corresponding limits of the independent

variable p, we get the formula for the length of the arc,

gives /''(3^)+l dp.

''^ "X."KI)"^']'*'
where — in terms of p must be substituted from the equation of the

given curve.
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Illustrative Example 1. find the perimeter of the cardioid p = « (1 + c(is^).

dp
Solution. Here -

d0
a sin 0.

I If we let 6 vary from to ir, the point F will generate

one half of the curve. Substituting in {A), p. 376,

- = /""[a^ll + cos(9)2 + a^m&iB^ae
2 «/

: 8 a. Ans.

EXAMPLES

1. Find the length of the spiral of Archimedes, p = ad, from the origin to the end

of the first revolution. ^^ TO.VrT4^ + -log(2,r + vT+l^).

2. Rectify the spiral p = e^ from the origin to the point (p, 6). Ans. — Vo^ + T.

Hint. Use (B).
a

3. Find the length of the curve p = a sec" - from ^ =

2 Ans. /V2 + logtan

—

\a.

4. Find the circumference of the circle p = 2r sin ^.

Atis. 2 nr.

5. Find the length of the hyperbolic spiral p9 = a

from (Pi, gi) to (p^, 9^).

Ans. Va2 + p2 —V^M^ + a loiog

Show that 04,6. Show that the entire length of the curve p = a sin= - is

AB, BC are in arithmetical progression.

7. Find the length of arc of the cissoid p = 2 a tan ff sin 8 from ^ = to ^ = - •

212. Volumes of solids of revolu-

tion. Let V denote the volume of

the solid generated by revolviQg

the plane surface ABCD about the

axis of X, the equation of the plane

curve DC beiag

FiEST Step. Construct rectangles

within the plane area ABCD as in

the figure. When this area is re-

volved about the axis of X, each

rectangle generates a cylinder of

revolution. The required volume is clearly equal to the limit of

the sum of the volumes of these cylinders.
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Second Step. Denote the bases of the rectangles by Ax^, Ax^, etc.,

and the corresponding altitudes by r/^, t/^, etc. Then the volume of'

the cylinder generated by the rectangle AEFB will be irylAx^ and

the sum of the volumes of all such cylinders is

TrylAx^+ -^yl^^i+ • • + 7r«/„A2:„ = ^iry^AXi.

Third Step. Applying the Fundamental Theorem (using limits

OA = a and OB = J),
^^^^^

» />;>

1=1 -ya

Hence the volume generated by revolving, about the axis of X,

the area bounded by the curve, the axis of X, and the ordinates x= a

and a; = S is given by the formula

QAy F,= ttJ fdx,

where the value of «/ in terms of x must be substituted from the

equation of the given curve.

This formula is easily remembered if we consider a slice or disk of

the solid between two planes perpendicular to the axis of revolution

as an element of the volume, and regard it as a cylinder of infinitesimal

altitude dx and with a base of area iry'^, and hence of volume iry^dx.

Similarly, when OY is the axis of revolution we use the formula

(B~) V^=7rJ'x'dy,

where the value of x in terms of y must be substituted from the

equation of the given curve.

iLLnSTKATivE EXAMPLE 1. Fiud the volume generated by revolving the 'ellipse

1-^ = 1 ahout the axis of X.
62

b\
Solution. Since y^ =— (a^ — x^), and the re-

quired volume is twice the volume generated

by OAB, we get, substituting in (.4),

y /.a . /»a?>2

2 Jo Jo a^^ '

Fa: =

3

i-n-ab^

To verify this result, let b = a. Then V^
iTra^

the volume of a sphere, which

is only a special case of the ellipsoid. "When the ellipse is revolved about its major
axis, the solid generated is called a prolate spheroid ; when about its minor axis, an
oblate spheroid.
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EXAMPLES

1. Find the volume of the sphere generated by revolving the circle a;^ ^. j,2 _ ^a

about a diameter. Aiis. iirfi.

2. Find by integration the volume of the right cone generated by revolving the

triangle whose vertices are (0, 0), (a, 0), (a, 6) about OX. Also find the volume gen-

erated by revolving this triangle about OY. "Verify your results geometrically.

3. Find the volume of the torus (ring) generated by revolving the circle

a;2 + (2/ - 6)2 = a? about OX. Ans. 2 Tr^a^b.

4. Find by integration the volume of the right cylinder generated by revolving

the area bounded hj x = 0, y = 0, x = 6, y = i (a) about OX; (b) about OY. Verify

your results geometrically.

5. Find by integration the volume of the truncated cone generated by revolving

the area bounded hjy = 6 — x, 2^ = 0, x=0, x = 4 about OX. Verify geometrically.

6. Find the volume of the paraboloid of revolution generated by revolving the arc,

of the parabola y^ = 4ax between the origin and the point (x-y, y^ about its axis.

2 Tn/lx,
Ans. AiraXj^ = : ; i.e. one half of the volume of the circumscribing cylinder.

2i

7. Find the volume generated by revolving the arc in Ex. 6 about the axis of Y.

Alls. ^ = -irx^y.; i.e. one fifth of the cylinder of altitude y, and radius of base x,.
80 a^ 5

8. Find by integration the volume of the cone generated by revolving about OX
that part of the line 4a; — 52/ + 3 = which is intercepted between the coordinate axes.

Sir
Ans.

9 Find the volume generated by revolving about OX the curve 100

(a; — 4 a) 2/2 = ox (x — 3 a)

between the limits x = and x = 3 a. Ans. (15 — 16 log 2).

10. Find the volume generated by revolving about OX the areas bounded by the

following loci

:

2 2 2 32 TTOi

(a) The hypocycloid xt + y'a = a^, Ans. —-—-

.

105

(b) The parabola x^ + yi = ai, x = 0, y = 0.
1̂5

(c) One arch ot y = sin x.
2

'

(d) The parabola 2/^ = 4 x, x = 4. 32 ir.

— fe2 — 11
(e) y = xe^, x = l, y = 0. 4 "• '

2
(f) y^ = 9x,y = 3x.

(g) The witch y — — -—
' y = 0. iir'^a?.

(h) y2(4 + j.2) = i^ j, = o, x,= 0, x=a>. (1) 2/(1 + x2) = X, y = 0, X = 0, X = 8.

(i) 2/ = x^ 2/ = 0, X = 1. (m) y{x- if = 1, ?/ = 0, x = 3, x = 4.

(j) 2/2(6 - X) = x2, 2/ = 0, X = 0, X = 4. (n) 2/2 = (x + 2)^, i/ = 0, x =- 1, x = 0.

(k) 42/2 = x3, X = 4. (o) (X - 1)2/ = 2, 2/ = 0, X = 2, X = 5.
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11. Find the volume generated by revolving the areas bounded by the foUovsring loci

:

About OX About OY

(a) 2/ = e», X = 0, 2/ = 0.

(b) y = x^,x = 2, y = 0.

(c) ay^ = x', 2/ = 0, X = a.

(d)^ + ^=l.
^ ' 16 9

<•'©'-©*

Ar^. -.
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213. Areas of surfaces of revolution. A surface of revolution is

generated by revolving the arc CD of the curve

y =f(.^')

about the axis of X
It is desired to measure this sur-

face by making use of the Funda-

mental Theorem.

First Step. As before, divide

the interval AB into subintervals

AKj, Ax^, etc., and erect ordinates

at the points of division. Draw the

chords CS, EF, etc., of the curve.

When the curve is revolved, each

chord generates the lateral surface of a frustum of a cone of revolu-

tion. The required surface of revolution is defined as the limit of the

sum of the lateral surfaces of these frustums.

Second Step. For the sake of clearness let us draw the first frus-

tum on a larger scale. Let M be the middle point of the chord CE.

Then

(^) lateral area = 2 irNM- CE*

In order to apply the Fundamental Theorem it

is necessary to express this product as a function

of the abscissa of-some point in the interval Aa;^.

As in § 210, p. 373, we get, using the Theorem of

Mean Value, the length of chord

(J?) CE^ll+f(x;)'fAx^,

where x^ is the abscissa of the point Ii(x^, y^) on

the arc CE, where the tangent is parallel to the

chord CE. Let the horizontal line through M intersect QI[ at Bj and

denote BP^ by e^.^ Then

(C) NM=y^-e^.

Substituting (5) and (C) in (^), we get

2 7r(t/^— e^) [1 +f'(xy''YAx^= lateral area of first frustum.

* The lateral area of the frustum of a cone of revolution is equal to the circumference of

the middle section multiplied by the slant height.

t The student will observe that as Aajj approaches zero as a limit, e^ also approaches the

limit zero.
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Similarly,

2 7r(«/ — e ) [1 +f'(^x^'yAx^= lateral area of second frustum,

2 7r(y„— e„)[l4-/'(2'„)''] Aa;„= lateral area of last frustum.

Hence

V 2 TT (t/j— e,.) [1 +/'(2;i)^]*Aa;,.= sum of lateral areas of frustums.

i= l

This may be written

1=1 !=1

Third Step. Applying the Fundamental Theorem to the first sum

(using the limits OA = a and OB = 6), we get

limit

n 'IX 2 -^i/, [1 +f'C<v,yfAx,= f'-I nry [1 +/'(:.)^]*c^a;.

1= 1 t/a

The limit of the second sum of (D) for w = oo is zero.* Hence the area

of the surface of revolution generated by revolving the arc GB about

OX is given by the formula

where y and -^ in terms of x must be substituted from the equation

of the revolved curve, and S denotes the required area. Or we may
write the formula in the form

S=1ir \ yds,

remembering that

\dx)
ds = {dx-+dy''f=\l + (- dx. (27), p. 135

This formula is easily remembered if we consider a narrow band of

the surface included between two planes perpendicular to the axis of

revolution as the element of area, and regard it as the convex surface

* This is easily seen as follows. Denote the second siun by S„. If e equals the largest of
the positive numbers |ej|, |ej|, •, |e„|, then

n

t=i

The sum on the right is, by (B)
, p. 381, equal to the sum of the chords CE, JEF, etc. Let this

.sum be L. Then Sn = ci,. Since limit e = 0, S„ is an Infinitesimal, and therefore limit S„ = 0.
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of a frustum of a cone of revolution of infinitesimal slant height ds,

and with a middle section whose cixcumference equals 2 iry, hence of

area ^iryds.

Similarly, when OY is the axis of revolution we use the formula

(f) '=^'1
^ r (dxv

dy)
dy,

dx
where the value of x and —- in terms of y must be substituted from

dy
the equation of the given curve.

Illustrative Example 1. Find the area of the surface of revolution generated

by revolving the hypooycloid x^ + y^ = aT about the axis of X.

, 1^ dy y's ,2 as
Solution. Here — = — !—

, y = (aT — ccs)!

.

Substituting in {E), p. 382, noting that the arc BA generates only one half of the

surface, we get

2
=2xrvi-s*)tri+^i dx.

/'^ 2 2 3

= 2'7rai"
j

(al — xi)^x idx

^X—

6rf
5

12 TO^

EXAMPLES

1. rind the area of the surface of the sphere generated by revolving the circle

x^ + 2/2 = ,.2 about a diameter.

'

Ans. i m-^.

2. Find the area of the surface generated by revolving the parabola y^^Aax

about OX, from the origin to the point where x = 3 a.
56 „

Ans. — Tra'
3

3. Find by integration the area of the surface of the cone generated by revolving

about OX the line joining the origin to the point (a, 6). Ans. irb Vo^ + 6^.

4. Find by integration the area of the surface of the cone generated by revolving

the line 2/ = 2 x from x = to x = 2 (a) about OX
;

(b) about OT. Verify your results

geometrically.

5. Find by integration the lateral area of the cylinder generated by revolving the

line X = 4 about OY from 2/ = to 2/ = 6, and verify your result geometrically.

6. Find by integration the lateral area of the frustum of a. cone of revolution

generated by revolving the line 2y = x — A about OX from x = to x = 5, and verify

your results geometrically.
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7. Parabolic mirrors and reflectors have the shape of a parahol'oid of revolution,

rind the area of the reflecting surface of such a mirror 2 feet deep and 6 feet

vfide. Ans. ^-ir.

This equals the area of a circle 7 feet in diameter.

8. Find the surface of the torus (ring) generated by revolving the circle

a^ + (2/ - 6)^ = a2 about OX. Am. ^iflab.

Hint. Using the positiv« value of vo^

_

^i gjyes the outside surface, and the negative

value the inside surface.

9. Find the surface generated by revolving an arch of the cycloid

•Tra^

IT

x = rare vers ^%ry — y^
6iirr'

about its base. -^"*- 3

10. Find the area of the surface of revolution generated by revolving each of the

following curves about OX -.

(a) y = x', from x = to x = 2. Ans. — [(145)i — 1].

(b) y = e-^, from j- = to x = 00. 7r[V2 + log (l + V2)]

(c) The loop ot9ay^ = x{3a- x)^. 3 tto^.

(d) 60^x2^ = x*+ 3a*, fromx = atox = 2a. H'^"^-

(e) The loop of 8aV = a^x^ - ^*-

(f

)

y^ + ix = 2 log y, from y = 1 to y = 2. J^tt.

(g) 2/ = e==, from x =- 00 to x = 0. 7r[V2 + log(l + V2)]

(h)Thecyclo:d|^^^^^^_^^^^^ --
(i) The cardioid/^

= " ^^^os^ - cob2^), 128^_

(j) 2/ + 2x = 4, from x = to x = 2.

(k) 3 y — 2 X = 6, from x = to x = 2.

(1) y = x^, from x = to x = 1.

(m) x2 + iy'^ = lQ.

(n) 9x2 + 2/2 = 36.

(o) 2/^ = 9 X, from x = to x = 1.

11. Find the area of the surface of revolution generated by revolving each of the
following curves about OY

:

(a) X + 22/ = 6, from 2/ = to 2/ = 3.

(b) 3x + 2 2/ = 12, from 2/ = to 2/ = 4.

(c) x2 = iy^ from 2/ = to 2/ = 3.

(d) x2 + 162/2 = 16.

(e) 4x2 + 2/2= 100.

(f) 3x = y^, from 2/ = to 2/ = 1.

(g) X = ^8, from 2/ = to 2/ = 3. ^„s. ^ [(ysoyl _ i],

(h) 6 aHy = x* - 3 a^ from x = a to x = 3 a, ^20 + log 3) iro^.

(i) 42/ = x2 - 21ogx, from x = 1 to x = 4. 24 7

(3) 2s, = xVx2- 1 + log(x - Vx2 - 1), from x >•: 2 to x = 5. 78 ir.
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12. Find the area of the surface of revolution generated loy revolving each of the
following curves

:

(a) The ellipse — + £- = i.

Hint, e = eccentricity of ellipse

Va2-62

About OX

2 m^ ^ arc sm e.

e

About or

2ira^ H log—

—

e 1 — e

(b) The catenary y = -(ef -\- e "),

from X = to X = a.

(o) x*4-3 = 6xy,fromx=l toa; = 2.

(d)
1 7y =

= e* sin &,

y = e^cosO, from 6 -

4

2V2

(e2+4-e-2).

-(e'^-2).

+ _)«^

2ira2(l— e-1),

7r(J3i + log2).

4 TT

-f (2e- + l).

(4 + Slog3)^(e) 3x2+ 42/2_3a2_.

(f) X + 2/ = 4, from x = to a; = 4.

(g) y = 2x + 4:, from ?/ = 4 to y = 8.

(h) x2+22/2=i6.

214. Miscellaneous applications. In § 212 it was shown how to

calculate the volume of a solid of revolution by means of a single

integration. Evidently we may con-

sider a solid of revolution as gen-

erated by a moving circle of varying

radius whose center lies on the axis

of revolution and whose plane is per-

pendicular to it. Thus in the figure

"the circle ACBD, whose plane is per-

pendicular to OX, may be supposed

to generate the solid of revolution — EGFH, while its center moves

from to N, the radius MC (= y) varying continuously with 0M(= x)

in a manner determined by the equa-

tion of the plane curve that is being

revolved.

We will now show how this idea

may be extended to the calculation

of volumes that are not solids of

revolution when it is possible to ex-

press the area of parallel plane sec-

tions of the solid as a function of their distances from a fixed point.

I Suppose we divide the solid shown in our figure into n slices by

sections perpendicular to OX and take the origin as our fixed point.



386 INTEGRAL CALCULUS

Let FDE be one face of such a slice. Construct a right prism upon

FDE as a base, the second base lying in the other face of the slice.

Since, by hypothesis, the area of FBE is a function of ON, or x,

let f(x) = area of FDE = area of base of prism, and let Ax = alti-

tude of prism. „

Hence f(x') Ax = volume of prism, and V/(a;,.) A2:...= sum of volumes
1=1

of all such prisms. It is evident that the required volume is the limit

of this sum ; hence, by the Fundamental Theorem,

and we have the formula

^=jf{x)dx,

where f(x) is the area of a section of the solid perpendicular to OX ex-

pressed in terms of its distance (= cc) from the origin, the a;-litmts being

chosen so as to extend over the entire region B occupied by the solid.

Evidently the solid — ABC may be considered as being generated

by the continuously varying plane section DEF as ON(=x) varies

from zero to OM. The following examples will further illustrate this

principle.

Illustkatite Example 1. Calculate the volume of the ellipsoid

^3
a? I

+ - = 1
C2

by means of a single integration.

Solution. Consider a section of the ellipsoid perpendicular to OX, as ABCD, with

semiaxes 6' and c'. The equation of the ellipse HEJO in the XOF-plane is

J)
a2 62 - •

Solving this for y(=h') in terms of

x{= OM) gives

6':
a
-V^

Similarly, from the equation of the

ellipse EFGI in the JfOZ-plane we get

, c

a
'- Va2 - x2.

Hence the area of the ellipse (section) ABCD is

Substituting in (A),

mc /'+'», „ • 4= —r I (o^ — x'')clx = - TTobc. Ans.
Or J~a 3
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"We may then think of the ellipsoid as being generated by a variable

ellipse ABCD moving from G to E, its center always on OX and its

plane perpendicular to OX.

Illustbatite Example 2. Find the volume of a right conoid with circular base,

the radius of base being r and altitude a.

Solution. Placing the conoid as shown in the figure, consider a section PQH per-

pendicular to OX. This section is an isosceles triangle ; and since

BJf= V2ra;-x2

(found by solving a;^ + j/^ = 2 n;, the equation of the circle

OBA q, for y) and j£p _ a,

the area of the section is

aV2 rx — x"^ =/(x).

Substituting in (A), p. 386,

jrfiaV=a\ V2 rx — K^da; = ^^-^-^ • Ans.
Jo 2

5'/ iT

This is one half the volume of the cylinder of the same base and altitude.

Surface offluid

We will now take up the study of fluid pressure and learn how to

calculate the pressure of a fluid on a

vertical wall.

Let ABCD represent part of the area

of the vertical surface of one wall of a

reservoir. It is desired to determine the

total fluid pressure on this area. Draw
the axes as in the flgure, the Y-axis lying

in the surface of the fluid. Divide AB
into n subintervals and construct hori-

zontal rectangles within the area. Then

the area of one rectangle (as UP^ is yAx.

If this rectangle was horizontal at the depth x, the fluid pressure on

it would be
^^^^^^

t

[The pressure of a fluid on any given horizontal surface equals the -weight"!

of a column of the fluid standing on that surface as a base and of height

equal to the distance of this surface below the surface of the fluid.J

where W= the weight of a unit volume of the fluid. Since fluid pres-

sure is the same in all directions, it follows that Wxt/Ax will be ap-

proximately the pressure on the rectangle UP in its vertical position.

Hence the sum



388 INTEGRAL CALCULUS

represents approximately the pressure on all the rectangles. The pres-

sure on the area ABCD is evidently the limit of this sum. Hence, by the

Fundamental Theorem,

n='l% Wx,yAx,= fwxydx.
«=i «/

Hence the fluid pressure on a vertical submerged surface bounded

by a curve, the axis of X, and the two horizontal lines x= a and x = b

is given by the formula j

(S) fluid pressure =W I yxdx,
Ja

where the value of y in terms of x must be substituted from the equa-

tion of the given curve.

We shall assume 62 lb. (= JF) as the weight of a cubic foot of water.

Illustrative Example 3. A circular water main

6 ft. in diameter is half full of water. Find the pressure

on the gate that closes the main.

Solution. The equation of the circle is d? \ -y^ := 9.

Hence y = V9 — x^,

W=62,
and the limits are from j = to x = 3. Substituting in

(B), we get the pressure on the right of the axis of X
to be

pressure = 62 f V9 - x^ x(Zx = [- V (9 - s^jf]^ _ 558.

Hence the total pressure = 2 x 558 = 1116 lb. Ans.

Let us now consider the problem of finding the work done in emp-

tying reservoirs of the form of solids of revolution with their axes

vertical. It is convenient to assume

the axis of X of the revolved curve

as vertical, and the axis of Z on a

level with the top of the reservoir.

Consider a reservoir such as the

one shown ; we wish to calculate the

work done in emptying it of a fluid

from the depth a to the depth b.

Divide AB into n subintervals, pass

planes perpendicular to the axis of

revolution through these points of

division, and construct cylinders of

revolution, as in § 212, p. 377. The volume of any such cylinder

will be TrfAx and its -weight TF7r/Aa;, where Tr= weight of a cubic
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unit of the fluid. The work done in lifting this cylinder of the fluid

out of the reservoir (through the height x) will be

Wtti/'xAx.

[Work done in lifting equals the weight multiplied by the vertical height.]

The work done in lifting all such cylinders to the top is the sum
n

^W'n-yfXi\Xi.
i= l

The work done in emptying that part of the reservoir will evidently

be the limit of this sum. Hence, by the Fundamental Theorem,

^=^a^^W'^y,?x^Ax= I Wirt/^xdx.
1=1 J

limit

n

Therefore the work done ia emptying a reservoir in the form of a

solid of revolution from the depth a to the depth b is given by the

formula

(C) work =Wir f y^xdx,

where the value, of y in terms of x must be substituted from the

equation of the revolved curve.

ILLUSTRATIVE EXAMPLES

1. Calculate the work done in pumping out the water filling a hemispherical reser-

voir 10 feet deep.

Solution. The equation of the circle is x^ + y^ =100.

Hence y^ = 100 — x^, " i^^^B^^^^ .^

and the limits are from x = to a; = 10. \ l"! ^M^
Substituting in (C), we get ^>^^^^^^^

,^10

work =:62ir
j (100 - x^) xdx = 155,000 tt ft. lb. |^

2. A trough 2 ft. deep and 2 ft. broad at the top has semielliptioal ends. If it is

full of water, find the pressure on one end. Ans. 165J lb.

' 3. A floodgate 8 ft. square has its top just even with the surface of the water. Find

the pressure on each of the two portions into which the square is divided by one of

its diagonals. Ans. 5290f lb., 10,581^ lb.

4. Find the pressure on one face of a submerged vertical equilateral triangle of

side 4 ft., one side lying in the surface of the water. Ans. 496 lb.

5. A horizontal cylindrical oil tank is half full of oil. The diameter of each end is

4 ft. Find the pressure on one end if the oil weighs 50 lb. per cubic foot.

Ans. 266flb.
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6. Find the work done in pumping out a semielliptical reservoir filled with water.

The top is a circle of diameter 6 ft. and the depth is 5 ft. Ans. 34871 tt ft. lb.

7. rind the pressure on the surface of the reservoir in Example 1.

8. Find the pressure on the surface of the reservoir in Example 6.

9. A conical reservoir 12 ft. deep is filled with a liquid weighing 80 lb. per cubic

foot. The top of the reservoir is a circle 8 ft. in diameter. Find the energy expended

in pumping it out. Ans. 15,360 tt ft", lb.

10. The cross section of a trough is a parabola with vertex downward, the latus

•rectum lying in the surface and being 4 feet long. Find the pressure on one end of

the trough when it is full of a liquid weighing 62J lb. per cubic foot. Ans. 66 lb.

11. Find the pressure on a sphere 6 feet in diameter which is immersed in water,

its center being 10 feet below the surface of the water.

Hint. Pressure = 2 td" / y(\(i + x)ds,a,r\6.dx = -ih;.
-» ' Ans. 22320 TT lb.

12. A board in the form of a parabolic segment by a chord perpendicular to the

axis is immersed in water. The vertex is at the surface and the axis is vertical. It is

20 feet deep and 12 feet broad. Find the pressure in tons. Ans. 59.52.

13. How far must the board in Example 12 be sunk to double the pressure ?

Ans. 12 feet.

14. A water tank is in the form of a hemisphere 24 feet in diameter, surmounted

by a cylinder of the same diameter and 10 feet high. Find the work done in pumping

it out when filled within 2 feet of the top.

15. The center of a square moves along a diameter of a given circle of radius a,

the plane of the square being perpendicular to that of the circle, and its magnitude

varying in such a way that two opposite vertices move on the circumference of the

circle, tind the volume of the solid generated. Ans. fa'.

16. A circle of radius a moves with its center on the circumference of an equal

circle, and keeps parallel to a given plane which is perpendicular to the plane of the

given circle. Find the volume of the solid it will generate. 2 a'° ^ Ans. _!^(3'n- + 8).
o

17. A variable equilateral triangle moves with its plane perpendicular to the x-axis

and the ends of its base on the points on the curves 2/^ = 16aa; and y^ = iax respec-

tively above the x-axis. Find the volume generated by the triangle as it moves from
the origin to the points whose abscissa is a. .Jg

Ans. a'.
2

18. A rectangle moves from a fixed point, one side being always equal to the dis-

tance from this point, and the other equal to the square of this distance. What is the

volume generated while the rectangle moves a distance of 2 ft.? Ans. 4 cu. ft.

X^ 7/2

19. On the double ordinates of the ellipse — -f-
2- = 1, isosceles triangles of verti-

cal angle 90° are described in planes perpendicular to that of the ellipse. Find the

volume of the solid generated by supposing such a variable triangle moving from one
extremity to the other of the major axis of the ellipse. iab^

Ans.
3
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20. Determine the amount of attraction exerted by a thin, straight, homogeneous
rod of uniform thickness, 6i length (, and of mass M, upon a material point P of mass

m situated at a distance of a from one end of the rod in its line of direction.

Solution.* Suppose the rod to be divided into equal infinitesimal portions (ele-

ments) of length dx.

— = mass of a unit length of rod
;

hence — da; = mass of any element. ,

Newton's Law for measuring the attraction between any two masses is

product' of masses
force of attraction =

;

(distance between them)^

therefore the force of attraction between the particle at P and an element of the rod is

— rrub: m w—x—J^"]

-l-(x + a)

which is then an element of the force of attraction required. The total attraction between

the particle at P and the rod being the limit of the sum of all such elements between

a; = and x = I, we have
— mdx
I _ Mm r' dx _

(X + a)2
~ ITJo (X + a)2

~
i

, „ ^.*..„ , ™, Mm, ,
force of attraction = | = | = H Ans.

aifl-\- I)

21. Determine the amount of attraction in the last example if P lies in the per-

pendicular bisector of the" rod at the distance a from it. . 2 mJf ^ I
'^ Ans. arc tan

al 2 a

22. A vessel in the form of a right circular cone is filled with water. If ft is its

height and r the radius of base, what time will it require to empty itself through

an orifice of area a at the vertex ?

Solution. Neglecting all hurtful resistances, it is known that the velocity of dis-

charge through an orifice is that acquired by a body falling freely from a height

equal to the depth of the water. If then x denote depth of water,

u = V2 gx. L^^,.,^__,_£__^^i
Denote by dQ the volume of water discharged in time dt, \^ ~A_'

and by dx the corresponding fall of surface. The volume of Vp^^:::^,—.„__----^|

water discharged through the orifice in a unit of time is .4W_ -^ \

a-Jigx, V V| h

being measured as a right cylinder of area of base a and alti- \ / x
\

tude «(=V25rx). Therefore in time di, X/
] |

{A) dQ = aVigxdt.

Denoting by S the area of surface of water when the depth is x, we have, from

Geometry, S _x^ vr^

* The two following examples indicate commonly employed " short methods," the detailed

exposition followed in the preceding sections being omitted. The student should however

supply this.
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But the volume of water discharged in time dt may also be considered as the vol-

ume of cylinder AB of area of base S and altitude dx; hence

{B) dQ = Sdx =—^
Equating (A) and (B) and solving for dt,

Trr^z^dx
dt = -

Therefore * =
I

"' '"

.
= " "

'

. A-ns.
Jo

ah?V2gx

- " irrVdx _ 2 in'''Vh

ah^ 'V2gx 5 a 'v2g

23. A perfect gas in a cylinder expands against a piston head from the volume Dj

to the volume Uj, the temperature remaining constant. Pind the work done.

Solution. Let c = area of cross section of cylinder.

If dv = increment of volume,

dv
then — = distance piston head moves while volume takes on the increment dv.

By Boyle's Law, pv = k {= const.)

.

k
.-. p = - z= pressure on piston head.

Hence element of work done = (= pressure x dist.).

, . , , , Cikdv k /•"•dv k, v,
. . total work done = / = - | — = - log -1

.



CHAPTER XXIX

SUCCESSIVE AND PARTIAL INTEGRATION

215. Successive integration. Corresponding to successive differenti-

ation in the Differential Calculus we have the inverse process of

successive integration in the Integral Calculus. We shall illustrate

by means of examples the details of this process, and show how

problems arise where it is necessary to apply it.
'

Illustrative Example 1. Given —^ = 6x, to find y,
dx

Solution. We may write this

\dxV
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and is called a triple integral. In general, a multiple integral requires

two or more successive integrations. As before, if there are no limits

assigned, as in the above example, the integral is indefinite ; if there are

limits assigned for each successive integration, the integral is definite.

Illustrative Example 2. Find the equation of a curve for every point of whicli

the second derivative of the ordinate with respect to the abscissa equals 4.

Solution. Here —^ = 4. Integrating as in Illustrative Example 1,

(C) | = ''- + «^-

(D) y = 2x2 + Cja; + Cj. Ans.

This is the equation of a parabola with its axis parallel to OT and extending

upward. By giving the arbitrary constants of integration Cj and Cj all possible values,

we obtain all such parabolas.

In order to determine Cj and c^, two mpre conditions are necessary. Suppose we
say (a) that at the point where x = 2 the slope of the tangent to the parabola is -zero

;

and (b) that the parabola passes through the point (2, — 1).

(a) Substituting x = 2 and — = in (C)
dx

gives = 8 + Cj.

Hence c^ =— 8,

and (D) becomes y = 2x^ — Bx + Cj.

(b) The coordinates of (2, — 1) must satisfy this equation ; therefore

-1 = 8-16+ c,, or, C2 = + 7

Therefore the equation of the particular parabola which satisfies all three con-

ditions is
2/ = 2x2-8x + 7.

EXAMPLES

1. Given ^ = 0x2, find y. Ans. y =^ +^ + c„x + c,.
(Jx^ 60 2 '

2- Gi^en g = 0, find y. ^ =¥ + "^'^ + '«•

3. Given d^y =—^ , find j/. 2/ = logi + £l^ + c^x + c,.

5. Giveng. 3.2-1, find. a = ^1 - llog* + £^ + c,i + c,

6. Given d^p = sin cos^^d^^, find p. p = 5l^ - 1 sin + c^^ + c^.

7. Determine the equations of all curves having zero curvature.

Hint. —^ = 0, from (40), p. 157, since ^=0.
Ans. y = c^x + Cj, a doubly infinite system of straight lines.
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8. The acceleration of a moving point is constant and equal to /; find the distance

(space) traversed.

Hint. -— =/. Ans. s = :!—
-\- cA + c„.

dfi 2

9. Show in Ex. 8 that Cj stands for the initial velocity and Cj for the initial

distance.

10. Find the equation of the curve at each point of which the second derivative of

the ordinate with respect to the abscissa is four times the abscissa, and which passes

through the origin and the point (2, 4)

.

Ans. Sy = 2x(x^ — 1).

11. Given —_ = a; cos a;, find y. Ans. w = a; cosx — 4sinx + -J ^— \- c„x + c,.

12. Given —- = sin»x, find y. Ans. y — y — y c„x + c„.

216. Partial integration. Corresponding to partial differentiation

in the Differential Calculus we have the inverse process of partial

integration in the Integral Calculus. As may be inferred from the

connection, partial integration means that, having given a differ-

ential expression involving two or more independent variables, we

integrate it, considering first a single one only as varying and all the

rest constant. Then we integrate the result, considering another

one as varying and the others constant, and so on. Such integrals

are called double, triple, etc., according to the number of variables,

and are called multiple integrals.*

Thus the expression ^^
« = ( //(a:, y'ydydx

indicates that we wish to find a function m of 2; and y such that

dxdy
=/(-P' yy

In the solution of this problem the only new feature is that the

constant of integration has a new form. We shall illustrate this by

means of examples. Thus suppose we wish to find u, having given

Integrating this with respect to x, considering y as constant, we

'^^ u = T'-hxy + Sx + cj),

* The integrals of the same name in the last section are special cases of these, namely,

when we integrate with respect to the same variable throughout.
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where <p denotes the constant of integration. But since y was re-

garded as constant during this integration, it may happen that ^
involves ?/ in some way ; in fact,

<f>
will in general be a function of y.

We shall then indicate this dependence of <^ on z/ by replacing by

the symbol <^ (?/). Hence the mo^t general form of u is

where ^(y) denotes an arbitrary/ function of y.

As another problem let us find

iA) u=JJ(x^+f}dydx.

This means that we wish to find u, having given

d\ „ „

dxdy
^

Integrating first with respect to y, regardmg x as constant, we get

- = ^y^\ + ^ix),

where -^(x) is an arbitrary function of x and is to be regarded as

the constant of integration.

Now integrating this result with respect to a;, regarding y as con-

stant, we have a 3

" =^ +^ + ^(^)+<t>(j/),

where ^ («/) is the constant of integration, and

^(ix')=(-<^(x)dx.

217. Definite double integral. Geometric interpretation. Let/(a;, y)
be a continuous and single-valued function of x and y. Geometrically,

is the equation of a surface, as KL. Take some area S m the XY-
plane and construct upon >S as a base the right cylinder whose
elements are accordingly parallel to OZ. Let this cylmder intersect

KL in the area ;S', and now let us find the volume V of the solid

bounded by S, S', and the cylindrical surface. We proceed as follows

:

At equal distances apart (= Ax} m the area S draw a set of hues

parallel to OY, and then a second set parallel to OX at equal distances

apart (= Ay'). Through these lines pass planes parallel to YOZ and
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F^

XOZ respectively. Then within the areas 8 and S' we have a net-

work of lines, as in the figure, that in S being composed of rectangles,

each of area Lx-tl^y. This construction divides the cylmder into a

number of vertical columns, such as MNPQ, whose upper and lower

bases are corresponding

portions of the networks

in S' and S respectively.

As the upper bases of

these columns are curvi-

liaear, we of course can-

not calculate the volume

of the colunms directly.

Let us replace these col-

umns by prisms whose

upper bases are found

thus: each column

is cut through by

a plane parallel to Xr passed through that vertex of the upper base

for which x and y have the least numerical values. Thus the column

MNPQ is replaced by the right prism MNPB, the upper base being

in a plane through P parallel to the XOZ-plane.

If the coordinates of P are (x, y, z), then MP = z =f(x, y}, and

therefore

(B) volume of MHPR =f(x, y') Ay • Ax.

Calculating the volume of each of the other prisms formed in the

same way by replacing x and y in (5) by corresponding values, and

adding the results, we obtain a volume V approximately equal to

V; that is,

((7) r'=^'^fCx,y')Ay-Ax;

where the double summation sign ^V indicates that there are two

variables in the quantity to be summed up.

If now in the figure we increase the number of divisions of the

network in S indefinitely by letting Ax and Ay diminish indefinitely,

and calculate in each case the double sum (C), then obviously F' will

approach F as a limit, and hence we have the fundamental result

limit ____.
(Z>) F= Ay = yy/(a;, y-) Ay • Ax.
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The required volume may also be found as follows : Consider any

one of tlie successive slices into which the solid is divided by the

planes parallel to YZ; for example, the slice whose faces are

FIGH and TLJK. The thickness of this slice is Aa;. Now the

values of z along the curve HI are found by writing x = OB in

the equation z=f(x, y); that is, along HI

z=fiOB,y-).

fiPD, y)dy.
DF

The volume of the shoe under discussion is approximately equal

to that of a prism whose base is FIGH and altitude Ax; that is,

equal to r^(f

Ax area FIGH= Ax
j /(OD, y) dy.
JDF

The required volume of the whole sohd is evidently the limit of

the sum of all prisms constructed in like manner, as x (= OD) varies

from OA to OB ; that is, ^^ ^^

(^) r= f dxf f{x,y-)dy.
J OA JdF

Similarly, it may be shown that

Jr^ov pEU
dy] f(x,y')dx.

oc Jew

The integrals (^) and (#) are also written m the more compact

form (^OB pBG rtOV pEU

/ /
f(p,y^dydx and | I f(x,y')dxdy.

JoA JDF Joe Jew

In {E') the limits DF and DG are functions of a;, since they are

found by solving the equation of the boundary curve of the base of

the solid for y.

Similarly, in (i^) the limits FW and FT! are functions of y. Now
comparing (X)), {E'), and (J^) gives the result

limit ,^,^ /•"i r^
(G) F= A2/ = ^y^%S(x, y)Ay.Ax=

/ fQx, y) dydx
A^ — " Ja^ Ju^

I /(»' y) dxdy,
&, Jv„

where v^ and v^ are, in general, functions of y, and u^ and u^ functions

of X, the second integral sign applying to the first differential and

being calculated first.
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Our result may be stated in the following form

:

The definite double integral

may he interpreted as that portion of the volume of a truncated right

cylinder which is included between the plane XOY and the mirface

the base of the cylinder being the area bounded by the curves

y = Uj, y==u^, x = a^, x=a^.

Similarly for the second integral.

It is instructive to look upon the above process of finding the vol-

ume of the solid as follows:

Consider a column of infinitesimal base dydx and altitude z as an

element of the volume. Summing up all such elements from y =DF
to y= DG, X in the meanwhile being consjiant (say = 0-D), gives the

volume of an indefinitely thin slice having FGHI as one face. The

volume of the whole solid is then found by summing up all such

slices from x = OA to 2; = OB.

In partial integration involving two variables the order of integra-

tion denotes that the limits on the inside integral sign correspond to

the variable whose differential is written inside, the differentials of the

variables and their corresponding limits on the integral signs being

written in the reverse order.

Wa'-=?

Illustrative Example 1. Find the value of the definite double integral

Jo Jo

Jo Jo

(x + y) dydx.

Solution. /
I

(a; + y) dydx,

L
Vo^-a^

(x + y)dy\dx

2/2 "1
-v „ _

XJ/ + 2- dx
^ Jo

2 a'
. Aw.

Interpreting this result geometrically, it means that we have found the volume of

the solid of cylindrical shape standing on OAB as base and bounded at the top by the

surface (plane) z = x + y.
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The attention of the student is now particularly called to the manner in which the

limits do hound the base OAB, which corresponds to the area S in the figure, p. 397.

Our solid here stands on a base in the XF-plane bounded by

y = (line OB)

y =Va^ — x^ (quadrant of circle AB)

x = aineOA)'] . ,. .,

,,. -r,™ MromalinutB.

from y limits;

x = a (line BE)
_

218. Value of a definite double integral over a region S. In the last

section we represented the definite double integral as a volume. This

does not necessarily mean that every definite double integral is a vol-

ume, for the physical interpretation of the result depends on the nature

of the quantities represented by .r, y, z. Thus, i£x, i/, z are simply con-

sidered as the coordinates of a point in space, and nothing more, then

the result is indeed a volume. In order to give the definite double

iiitegral in question an interpretation not necessarily involving the

geometrical concept of volume, we observe at once that the variable z

does not occur explicitly in the integral, and therefore we may confine

ourselves to the JTY-plane. In fact, let us consider simply a region

S in the XY-plane, and a given function ¥

f(x, y). Then, drawing a network as be-

fore, calculate the value of

f(x, y')^.y^x

for eacih point* of the network, and sum
up, findmg in this way

and finally pass to the limit as Aa; and A«/ approach zero. This opera-

tion we call integrating the functionf(x, y^ over the region S, and it is

denoted by the symbol rr

S

If S is bounded by the curves x= a^,x= a^,y= u^, y- u^, then, by (G},

jjfi^^ y') ^y^^=f J f(.^, y) dydx.

s "^ "'

* More generally, divide the interval on OX into subintervals Aa:i, Axg, •
, Aas», and on

Orinto AiJi, Aj/2, •
, Aj^m. Draw the network, and in each rectangle AxtAi/t (not necessa-

rily a comer) choose a point Xi, yt. Then it Is clear intuitionally that

jjf (a:, y) dxdy = ™^ ^^ X"^ ^^'' ^'' ^'^<^V''-
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We may state our result as follows

:

Theorem. To integrate a given functionf(x, y) over a given region S
in the XOY-plane means to calculate the value of

limit
^ ^

Aj/ = ^^
a% explained above, and the remit is equal to the definite double integral

f f
f(pc,y')dydx, or, I / f(x,y')dxdy,

the limits being chosen so that the entire region S is covered. This process

is indicated briefly by pp
jjf(.^' y) ^y^'^-

s

In what follows we shall show how the area of the region itself and
its moment of inertia may be calculated in this way.

Before attempting to apply partial integration to practical problems

it is best that the student should acquire by practice some facility in

eyaluating definite multiple integrals.

I
{a — y) x'dyclx —

Jr»26
/.a /*^*r y^~\^ r^^a^
I

(a — y) xMydx = ( \ay — — \ x^dx — \ — x^da;
6 •'0 Jh \_ 2 Jo Jb %

/» a /. Va^ — o? 2 d^
Illustrative Example 2. Verify

( / xdydx =
Ja'^ — x"

[•a c \la^ - a? /of ~\-\/a?-ay'
Solution.

I (
xdydx =

|
\xy

\
dx

-'o J_^y^r^ Jo I J_v5r3 •

= p2xVa2-x2dx =["- ?/a2 - »tT= -a^-

In partial integration involving three variables the order of inte-

gration is denoted in the same way as for two variables ; that is, the

order of the limits on the integral signs, reading from the inside to

the left, is the same as the order of the corresponding variables whose

differentials are read from the inside to the right.

I / xy^dzdydx =—
2 Ji Ji 2

Xa
y->a rtij nZ n^r /»G ~| rtS /»2r "15

/ / xyHzdydx = I
| / xyHz dydx = ( I xy'z dydx

Jl Ji •/2 •'1 \_J2 J J2 J\ \_ J2

= 3 r r zyHydx = sf If xyHy\dx

35
2

'
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Verify the following

:

1.
I I

xy(x-y)dydx = -—-(a-0).
Jo Jo o

2. ( ''rdedr = L^.
Jb_ Ja 24
2

na ply 11a*
3.

I /
zydadv = ----

Jo Jy-a 24

& t/o •^a 6

INTEGRAL CALCULUS.

EXAMPLES

pa pV^ 2 S

10.
I / (i2/da; = -o2.
Jo Jo o

r" r^^ 2 ,/ai 4\ll.££x.^d.^ = -a=(---)

pa px py a'
12. I I I

x^yHdzdydx — —
Jo Jo Jo 9(

Jo Jo

09

90

13
-a /.V5^ (!z(2x

"20 p^2ax—3?
x'W

Vox — Z^

f7.S

= 4a2

3ira3
5.

I I I
" dzdydx=^

Jo Jo Jo 4

/.n- /ia(l+ C08fl) „ 4a^
6. f f r^sva.9drde = ^-

Jo Jo 3

/»6 /»10( ^

7.
I I

Vst-t2dsctt = 6 6^

143 ««

3

16 a*

8. ("" r«(u) + 2B)

pl prP^ <£

9.
I (

e^dwdv =
Jo Jo

dwdv:

1

2'

30

^(X'^y)dxdy = -^
-a«/0 5

nir /»acoB0 a^
15.

I I
psmmpde=i-~

Jo c/0 3

16. r "
f''(x^-\-y^)dydx-.

Jo t/o

JoJ^x2 + 2,2 2

a

-/•/.:./'*»«=('-ii)s-

Jn
a /^ a: (j^ — ^3

/ r^ sin S'JSdr =—-— (oos p — cos a),
b Ja 3

20

Jb Jp

il px pX +
I j

ef^+v + 'dzdydx^
Jo Jo

e*-3 3e2
h e.

8 4

I I
(x2 + 2/2 + z2)d2dyda; = -^(a2 + 62 + c2).

«/o t/o 3

/» 6 /• 10 ?/ ,

22. ( I
-Vxy - y^dxdy = 61)^.

Jo J II

Ji Jo Jo x2 + J/2
~

2

219. Plane area as a definite double integral. Rectangular coordinates.

As a simple application of the theorem of the last section (p. 401'j, we

shall now determine the area of the region S itself in the XOF-plane

by double integration.*

* Some of the examples that -will be given in this and the following articles may be solved

by means of a single integration by methods already explained. The only reason in such

cases for using successive integration is to familiarize the student with a new method for

solution which is sometimes the only one possible.
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As before, draw lines parallel to OX and OY at distances Aa; and
Ay respectively. Now take any one of the rectangles formed in

this way, then

element of area = area of rectangle PQ= t^y- Aa;,

the coordinates of P being (x, y).

Denoting by A the entire area of region S, we have, using the

motion of a double summation,

(^)
limit

Ay iXX'^y^''-

We calculate this by the theftrem on

p. 401, setting /(a;, «/) = !, and get

(^)
OA JCD

dydx.

Y
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Corresponding to the two orders of summation (integration), the

following notation and figures are sometimes used:

(^) A= j I dyclx, ^= / I dxdy.

S S

Referring to the result stated on p. 401, we may say

:

The area of any region is the value of the double integral of the function

f(x, y) = 1 taken over that region.

Or, also, from § 217, p. 396,

The area equals numerically the volume of a right cylinder of unit

height erected on the base S.

Illustrative Example 1. Calculate the area of the circle x^ + y'' = r^ by double

integration.

Solution. Summing up first the elements in a vertical strip, we have from (B), p. 403,

^OA nMR
A=

\ \ dydx.
Job JMS

From the equation of the boundary curve (circle)

we get

Hence

JlfJS=Vr2-x2, MS
OB =—r, OA = r.

-V,

-Vr- -x%

A= I I dydx

XVr^ — x'^'dx = Trr'. Ans.
r

When the region whose area we wish to find is symmetrical with

respect to one or both of the coordinate axes, it sometimes saves

us labor to calculate the area of only a part at first. In the above

example we may choose our limits so as to cover only one quadrant

Qf the circle, and then multiply the result by 4. Thus

A ^r'
dyd.>'-[^? 2 7 " '

4

' A= 7rr^. Ans.
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Ilmsteative Example 2. Calculate that portion of the area which lies above OX
bounded by the semlcubioal parabola y^ = x' and the straight line y = x.

Solution. Summing up first the elements in a horizontal strip, we have from (C),

J'-UJJ pAV
I

dxdy.
J AB

From the equation of the line, AB = y, and from the

equation of the curve, ^C = y^, solving each one for x. To
determine OD, solve the two equations simultaneously to

find the point of intersection £. This gives the point (1, 1);

hence 0D=1. Therefore

A=f r'^y=C\yi-y)ay=\'4^yI\
Jo Jy Jo L 5 2jo

EXAMPLES

1. Find by double integration the area between the straight line and a parabola

with its axis along OX, each of which joins the origin and '^/^ i

thepoint (a, 6). ^^s. Cf
Jo Jbx

dydx =—
6

2. Find by double integration the area between the two parabolas Sy^ = 25 x and

5a;2 = 9y. Ans. 5.

3. Required the area in the first quadrant which lies between the parabola y^ = ax

and the circle y^ = 2ax — x^. , ira?' 2 a^
Ans.

4. Solve Problems 2 and 3 by first summing up all the elements in a horizontal

strip, and then summing up all such strips.

TTO? 2ar
~3~Ans. Ex. 2, ( I

V i^j^^ ^ g ex. 3, | /
" dxdy =— -

Jo Jsy^ Jo Ja_VS5Z^ 4

5. Find by double integration the areas bounded by the following loci

:

(a) xi + yi = aJ, x + y = a.

(b) 2/2 = 9 + x, 2/2 = 9_3x.

(o) y = sin x,y = cos x, x = 0.

8 a'

Ans.

(d)y = - 2^ = K, x = 0.
x2 + 4a2

(e) x^ + y^ = a^,x-\- y = a.

(f) 2/2 = x + 4, s^2 = 4-2x.

(g) y^ = ia^ — x'^, y' = i.a^ — i ax.

(h) x2 + 2/2 = 25, 27 2/2 = 16 x^.

(i) iy^ =x', y = x.

(k) a;2 - 2/2 = 14, x2 + 2/2 = 36.

V^-
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220. Plane area as a definite double integral. Polar coordinates.

Suppose the equations of the curve or curves which bound the

region S are given in polar coordinates.

Then the region may be divided into

checks bounded by radial lines drawn

from the origin, and concentric circles

drawn with centers at the origin. Let

PS=Ap and angle POS = A0. Then

arc PE= pA0, and the area of the shaded

check, considered as a rectangle, is pAO Ap. The sum of the areas

of all such checks in the region will be

^pApAe.

Since the required area is evidently the limit of this sum, we have

the formula

(A) A=CCpdpde.

S

Here, again, the summation (integration) may be effected in two

ways.

When we integrate first with respect to 0, keeping p constant, it

means that we sum up all the elements (checks) in a segment of a

circular ring (as ABCU), and next integrating with respect to p, that

we sum up all such rings within the entire regfon. Our limits then

appear as follows:'^ pOF
f^

angle XOB

(5) A= [ { pd0dp,
Joe JimgleXOA

the angles XOA and XOB beuig, in general, functions of p, and OH
and OF constants giving the extreme values of p.

Suppose we now reverse the order of integration. Integrating first

with respect to p, keeping constant, means that we sum up all the

elements (checks) in a wedge-shaped
,/<?;3?Jn>n. l h

strip (as GKLH^. Then integrating

with respect to 0, we sum up all such

strips within the region S. Here

J

jangle A'07 pOH

]
pdpd0,

OH and OG being, in general, functions of 0, and the angles XOJ"and

XOI being constants giving the extreme values of 0.
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Corresponding to the two orders of summation (integration), the

following notation and figures may be conveniently employed

:

(O) A= ffpdpde, A=ffpdddp.

s s

These are easily remembered if we think of the elements (checks) as

being rectangles with dimensions pd6 and dp, and hence of area pdOdp.

Illustrative Example 1. Find tile area, of the circle p = 2r aosd by double

integration.

Solution. Summing up all the elements in a sector

(as OB), the limits are and 2 r cos 6 ; and summing
TT

up all such sectors, the limits are and — for the q
semicircle OXB. Substituting in (D),

=
f

I pdpd9 = ^—, or, A = m-^. Ans.

EXAMPLES

1. In the above example find the area by integrating first with respect to 9.

2. rind by double integration the entire areas in Examples 1-16, pp. 368, 369.

/?

3. rind by double integration the area of that part of the parabola p = a sec^ -

intercepted between the curve and its latus rectum. ir ,» „ ,

Ans. 2f^^£'^-^pdpdd =
^-f.

4. Find by double integration the area between the two circles p= a cos ^, p=b cos^,

b>a: integrating first with respect to p. , ^^ nbcoae „ tt „
Ans. 2 ( -=

(
pdpdd = —{b^ — a^).

Jo Jacose 4

5. Solve the last problem by first integrating with respect to 0.

6. Find by double integration the area bounded by the following loci

:

(a) p = 6 sin 9, p = 12 sin 9. Ans. 27 tt.

(b) p cos 9 — 4:, p = S.

(c) p = a sec^ - , (0 = 2 a.

(d) (0 = a (1 + COS ^), p = 2 a cos ^.

(e) psax9 = h, p = 10.

(f) /Q = 8 cos ^, p cos 9 — 2.

(g) p = 2 cos ^, p = 8 cos ^.

64 TT

3

2aV-
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-

221. Moment of area. Consider an element of the area of the region

S, as FQ, the coordinates of P being (x, y). Multiplying the area

of this element (= AyAa;) by the distance

of P from the T-axis (=»), we get the

product

which is called the moment of the element

PQ with respect to the Y-axis. Form a

similar product for every element within

the region and add all such products by a double summation. Then

the limit of this sum, namely,

limit __v_-\ rr
(5) A2/ = X Xa^AyAa; = I I xdydx,

defines the moment of area of the region S with respect to the Y-axis.

Denotiag this moment by M^, we get

Y
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The center of area of a thin homogeneous plate or lamina is the

same as its center of mass (or center of gravity^.*

If a coordinate axis is an axis of symmetry of the area, it is evident

that the corresponding coordinate of the center of area will be zero.

In polar coordinates x = p cos 6, y = p sin 6, and element of area

= pA.p/\d replaces Ay^x. Hence formulas (^F) become

(G) . //'
yo" COS ddpd6

x= -
If'

p" sin Sdpde

, y =

ffpdpdO ffpdpdO

the limits being the same throughout and determined (as before) in

the same way as for finding the area.

Illustrative Example 1. Find the center of the area

bounded by j/^ = 4 x, x = 4, ?/ = 0, and lying above OX.
1

•.4 /.2a:'

Solution. By'(C),p.408, Jlfj,= f f
"^

zdy6x = ^^.

By (D), p. 408, M^=f f
"^

ydydx = 16.

Area = | I dydx = */.

Substituting in (E), p. 408,

x = i|i-^^^ = Y, and 1/ = 16-Y = I- ^^

EXAMPLES

1. Find the centers of the areas bounded by the following loci

:

(a) The quadrant of a circle.

(b) The quadrant of an ellipse.

.(c) y = sinx, y = 0, from x = to x = tt.

(d) A quadrant of x^ + y^ = a^.

(e) y^ = iax, X = h.

(f) y = 2x,y = 0,x = S.

(g)
y^ = Sx,y = 0,y + x = 6.

(h) (2a-x)y^ = x^,x = 2a.

(i) y^(a^-x^)-a\x = 0.

(j)
xi + yi = a^,x = 0,y = 0.

(k) Cycloid x = a (i? - sin i9), 2/ = a (1 - cos (9).

» If the plate is supported loosely on a horizontal axis through its center of gravity, there

will be no tendency to rotate, whatever the position of the plate may be.

Ans. X
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2. Find flie centers of the areas bounded by the following curves :

(a) One loop of p^ = a^ cos 2 5.

(b) One loop of p = a sin2 tf.

Avs. X = , y = 0.

128 a

105 IT

5a

(f) p = 8cosS, /ocos5 = 2.

(g) p = 2 cos 9, p = 9icos0.

= y-

y = 0.(c) Cardioid p = a(l + cosS).

(d) p = 6 sin e, p = 12 sin d.

(e) p cos ff = 4s, p = S.

223. Moment of inertia of plane areas. Consider an element of the

area of the region S, as FQ, the coordinates of P being (x, y). Mul-

tiplying the area of this element (= At/Aa;)

by the square of the distance (= x) of P
from the F-axis, we get the product

(J) o^AyAx,

which is called the moment of inertia* of

the element PQ with respect to the F-axis.

Form a similar product for every element

within the region and add all such products by a double summation.

Then the hmit of this sum, namely

limit

(^) Ax :

Ay - 'XX^ ^AyAx =11 x^dydx.

defines the moment of inertia of the area of S with respect to- the Y-axis.

Denoting this moment by I^, we get

(C) Iy=jjx'dydx,

the limits of mtegration bemg determined in the same way as for

finding the area.

In the same manner, if we denote the moment of inertia of the area

with respect to the X-axis hy I^, we get

(-0) ,=jjfdydx,

the limits being the same as for (C).

224. Polar moment of inertia. Rectangular coordinates. Consider

an element of the area of region S, as P Q. If the coordinates of P are

(x, 2/), the distance of P from is V?+ y^. Multiplying the area of

* Because the element of area is multiplied by the square of Its distance from the I'-axis
it is sometimes called the second moment, to conform with the definition of moment of area
(§221, p. 408).
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element (= Aj/Aa;) by tlie square of the distance of P from- the origin,'

we have the product q^^+ y^^y^^
which is called the polar moment of inertia of the element PQ with

respect to the origin. The value of the double sum

(^) £= lZXi^+ /)A2/A2; =jj(x'+f) dydx

defines the polar moment of inertia of the area

within the region S with respect to the origin.

Denoting this moment of inertia by /„,

we get

the limits of integration being determmed in the same way as for

finding the area.

From (F),

/„ = / / (a;^+ y^) dydx = I ix^dydx +
j j

y^dydx.

By comparison with (C) and (U) we get

(<?) /„=/.+ /„

and hence the

Theorem. The polar moment of inertia of a plane area with respect to

any point equals the sum of its moments of inertia with respect to any

two perpendicular axes through that point.

225. Polar moment of inertia. Polar coordinates. Since the element

of area is now pApA6, and x^+y^= p% we get, by substitution in (-£'),

W h=fjp'dpde,

the limits of integration being the same

as for finding the area.

Since the element of area (= A«/A«

= pApAO^ is 'essentially positive and x% ^

y\ p^ are always positive, it follows that moment of inertia is never

zero, but always a positive number. Moments of inertia arise fre-

quently in engineering problems, the principal application being to

the calculation of the energy of a rotating body.

*We may then say that Iq is the value of the double integral of the function /(a;, y)

= a;2 + 2/2 over the area.
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EXAMPLES-

1. Find Ig over the area bounded by the' lines x = a,y = 0, y ^-x.

Solution. These lines bound a triangle OAB. Summing up all the elements in a

vertical strip (as PQ), the y-limits are zero and -z (found

from the equation of the line OB). Summing up all such

strips within the region (triangle), the x-limits are zero

and a (= OA). Hence, by (F),

Io=j J
" {x^ + y^)dyclx = abi— + —y Ans.

If we suppose the triangle to be composed of horizontal

B(a,bi

strips (as BS),

I„ = f" (""(x^ + y^)dxdy = ab(~
Jo •Jay \i

-I ) . Ans.

2. Find 7,, over the rectangle bounded by the lines x = a,y = b, and the coordi-

i + ofisnate axes.
Ans. f f {x^ + y^)dydx-.

Jo Jo

3. Pind 7j over the right triangle formed by the coordinate axes and the line join-

ing the points (a, 0), (0, 6).
6(a— x)

_ g6(a^ + 6^)

12

Ans.
4

ira^b

a' d' 4

6. Find I^ over the region between the straight line and a parabola with axis

along OX, each of which joins the origin and the point (a, 6).

Ans. f f " {x'^ + y^)dyclx =
Jo Jo

4. Find I-c for the region within the circle x^ + y^ = r^.

x^ 2/2

5. Find 7„ for the ellipse 1- — = 1. Ans.

35 '

314 a*

7. Find I^ over the region bounded by the parabola 2/^ = 4 ax, the line x + ^ — 3 a

= 0, and OJT. r" /-^VoS /.So ^sa — x 314a*
Ans.

j j
(x^ + y'^dydx+f j (x'^ + y^) dydx z-

""-^ ""

or,
I /

{x^ + y^)dicdy--
Jo J„^

8. Find I^ over the region bounded by the

circle p = 2r cos^.

Solution. Summing up the elements in the tri-

angular-shaped strip OP, the p-limits are zero and
2 »• cos^ (found from the equation of the circle).

Summing up all such strips, the ^-limits are ^f

and -, Hence, by (H),

'^bj:•^n = I I7 pHpdd = —-— Ans.
-^Jo 2

Summing up first the elements in a ciircular strip (as QS), we have

.=/.x
2r /» arc COS-;

]
pHOdp = Ans.
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9. Find Ig over the area bounded by the parabola p = a sec^-, its latus rectum,
and the initial line OX. ' ^

Ans.

2

10. Mnd Zq over the entire area of the cardioid p = a(l — cosS).

Ans. 2 f fJo Jo

35

aa-cos«) 35 ^(i4

'^ '^ 16

11. Find Zo for the lemniscate p'^ = a? cos 2 9.

12. Find Z^ and ly for area bounded by y^ = 4aa;, y = 0, x = x^.

-4ns.

4res. Ix = 2xiVi

15

13. Find the moment of inertia of the area of a right triangle with respect to the

vertex of the right angle, a and 6 are the lengths of the perpendicular sides.

Ans. ^(a2 + 62).
12'

14. Find ly for the area bounded by ^^ = 4 ox, a; + y = 3 a, ?/ = 0. Ans. ly -.

46

15. Find the moment of inertia of a rectangle whose sides are 2 a, 2 6, about an

axis through its center parallel to the side 2 6 ; to the side 2 a.

16. Find I^ for x^ + y^ = a*.

17. Find I^ over the area of one loop of p = a cos2 ^.

. a% ajtfi

A-ns. — ;

..
21 ,

512

226. General method for finding the areas of surfaces. The method

given in § 213 for finding the area of a surface applied only to

surfaces of revolution. "We

shall now give a more gen-

eral method. Let

be the equation of the sur-

face KL in the figure, and

suppose it is required to cal-

culate the area of the region

>S" lying on the surface.

Denote by S the region on

the XOF-plane, which is the-

orthogonal projection of S'

on that plane. Now pass planes parallel to YOZ and XOZ at com-

mon distances Aa; and ^y respectively. As in § 217, these planes

form truncated prisms (as P5) bounded at the top by a portion

(as PQ) of the given surface whose projection on the XOF-plane
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is a rectangle of area Aa;Az/ (as ASy, which rectangle also forms the

lower base of the prism, the coordinates of F being (ps, y, z).

Now consider the plane tangent to the surface KL at P. Evidently

the same rectangle AB is the projection on the -XOZ-plane of that

portion of the tangent plane (-P-B) which is intercepted by the

prism FB. Assuming 7 as the angle the tangent plane makes with

the XOF-plane, we have

area AB = areaFB cos 7,

["The projection of a plane area upon a second plane is equal to the area of the]

[portion projected multiplied by the cosine of the angle between the planes.

J

or,

But

AyAx = area FB cos 7.

1
cos 7 =

Hmm
["Cosine of angle between tangent plane, (72), p. 266, and A'O Y-l
[plane found by method given In Solid Analytic GeometryJ

hence

or,

A«/Aa; = area FB
V /

dx) '^\8y^

area FB
=[-(£HI)'

AyAa;,

which we take as the element of area of the region S'. We then define

the area of the region S' as

limit , , r
Ay=oyy\i+ZnAAAa; = (£J-

dz
Ai/Ax,

the summation extending over the region ;i5, as in § 217. Denoting by
A the area of the region (S^', we have

-//.h(S)'-(S)T*-.

the limits of integration depending on the projection on the XOY-plane
of the region whose area we wish to calculate. Thus for (fi) we choose
our limits from the boundary curve or curves of the region S in the

XOr-plane precisely as we have been doing in the previous four
sections.
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If it is more convenient to project the required area on the XOZ-
plane, use the formula

s

where the limits are found from the boundary of the region 8, which

is now the projection of the required area on the JTO^-plane.

Similarly, we may use '

-//[-(l)'HS)t
dzdy,

the limits being found by projecting the required area on the YOZ-

plane.

In some problems it is required to find the area of a portion of one

surface intercepted by a second surface. In such cases tlie partial

derivatives required for substitution in the formula should be found

from the equation of the surface whose partial area is wanted.

Since the limits are found by projecting the required area on one

of the coordinate planes, it should be remembered that

To find the projection of the area required on the XO Y-plane, elimi-

nate z between the equations of the surfaces whose intersections form tJie

loundary of the area.

Similarly, we eliminate y to find the projection on the XOZ-plane, and

X to find it on the YOZ-plane.

This area of- a surface gives a further illustration of integration of

a function over a given area. Thus in (E), p. 414, we integrate the

function
^ ,2 /a„\2lt'

HMD]
over the projection on the XO y-plane of the required curvilinear

surface.

Illusikative Example 1. Find the area of the surface of sphere x^ + y^ + z^ = r^

by double integration.

Solution. Let ABC in the figure be one eighth of the surface of the sphere. Here

dz _ X 8z __y
8x~ z' Sy~ z'

j;2 yi x^ + y^ + e'^ _ r-

Wl \dyj z" z^ ;
r' — x^ —

'i
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The projection of the area required on the XOT-plane is AOB, a region bounded

by a; = 0, {OB)
; y = 0, (OA) x^ + y^ = r\ {BA).

Integrating first with respect to y, we sum up all the elements along a strip (as

DEFG) which is projected on the XOZ-plane in a

strip also (&s MNFG); that is, our y-limits are zero

and MF (= Vr" — x^) . Then integrating with respect

to X sums up all such strips composing the surface

ABC; that is, our x-limits are zero and OA{=r).
^

Substituting in (B), we get

or.

A _ r'- /-v^

8
~ Jo Jo

A = iTTT^. Ans.

rdydx

Vr^- ^X

/B FG

Illustrative Example 2. The center of a sphere of radius r is on the surface of

a right cylinder, the radius of whose base is -• Pind the surface of the cylinder

intercepted by the sphere.

Solution. Taking the origin at the center of the sphere, an element of the cylinder

for the z-axis, and a diameter of a right section of the cylinder for the x-axis, the

equation of the sphere is x^ \-y^ + z^ = r^, and of

the cylinder x^ \-y^ = rx. OBAPB is evidently one

fourth of the cylindrical surface required. Since

this area projects into the semicircular arc ODA on

the XOy-plane, there is no region S from which to

determine our limits in this plane ; hence we will

project our area on, say, the XOZ-plane. Then

the region S over which we integrate is OACB,
which is bounded by z = 0, (OA) ; x = 0, (OB)

;

z2 + rx = r^, {ACB) ; the last equation being found

by eliminating y between the equations of the two

surfaces. Integrating first with respect to z means

that we sum up all the elements in a vertical strip y^
(as PD), the z-limits being zero and Vr^ — rx.

Then on integrating with respect to x we sum up all such strips, the x-limits being

zero and r.

Since the required surface lies on the cylinder, the partial derivatives required for

formula (C), p. 415, must be found from the equation of the cylinder.

Hence
dy _r —2x
dx 2j/

— = 0,
dz

Substituting in (C), p. 415

A
T

Substituting the value of y in terms of x from the equation of the cylinder,

A=2r I =2r '^
d.r. = 2r ^-dx = 4:r-^.

Jo Jo Vrx — x^ '0 Vrx — x^ -^o ^^
^ i <
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Ans. 8W /
• -' dV^ ^srK

EXAMPLES

1. In the preceding example find the surface of the sphere intercepted by the

cylinder. r /.v';jZ^ dydx

J Jq 'vr^ x^ y^

2. The axes of two equal right circular cylinders, r heing the radius of their

bases, intersect at right angles. Pind the surface of one intercepted by the other.

Hint. Take x'^ + z^=r' and a!^ + j/2 = 7-2 as equations of cylinders.

rTf .,Jo f/o y'j.a /p2

3. Find by integration the area of that portion of the surface of the sphere

x^ + y^ + z^ = 100 which lies between the parallel planes x = — 8 and x = 6.

4. Find the surface of the cylinder x^ + y^ = r^ included between the plane z = mx
and the XOF-plane. Ans. ir^m.

5. Find the surface of the cylinder z^ + (x cos a + y sin a)^ = r' which is situated

in the positive compartment of coordinates.

Hint. The axis of this cylinder Is the line z = 0, x cos cc + y sin or = ; and the radius of

base is r. . r^
Ans.

sin a cos a

6. Find the area of that part of the plane - + ^ + - = 1 which is intercepted by

the coordinate planes. Ans. i^b^c^ + cV + a^t^.

7. Find the area of the surface of the paraboloid y^ -\- z"^ = iax intercepted by the

,
parabolic cylinder 2/2 =. CKC and the plane X = 3 a. Ans. ^-^-ira^.

8. In the preceding example find the area of the surface of the cylinder inter-

cepted by the paraboloid and plane. . /- „ /To .
Y

a^

V3

9. Find the area of that portion of the surface of the cylinder j/* + z* = a*

bounded by a curve whose projection on the XF-plane is x*' + ^^ = a^. Ans. ^ a?.

10. Find the area of that portion of the sphere x^ + y^ ^ ^^ = 2 a^/ cut out by one

nappe of the cone x^ + «^ = 2/^- ^™«- 2 ttb^.

227. Volumes found by triple integration. In many cases the vol-

ume of a solid bounded by surfaces whose equations are given may

be calculated by means of three successive integrations, the process

being merely an extension of the methods employed in the preceding

sections of this chapter.

Suppose the solid in question be divided by planes parallel to the

I
coordinate planes into rectangular parallelepipeds having the dimen-

sions As, At/, Aa;. The volume of one of these parallelepipeds is

A2 • Ay • Aa;,

and we choose it as the element of volume.

Now sum up all such elements within the region B bounded by

the given surfaces by first summing up all the elements in a column
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parallel to one of the coordinate axes ; then sum up all such columns

in a slice parallel to one of the coordinate planes containing that axis,

and finally sum up all such slices within the region in question. The

volume V of the solid will then be the limit of this triple sum as Az,

At/, Aa; each approaches zero as a limit. That is,

limit

the summations being extended over the entire region E bounded by

the given surfaces. Or, what amounts to the same thing.

=///dzdydx,

R
the limits of integration depending on the equations of the bounding

surfaces.

Thus, by extension of the principle of § 218, p. 401, we speak of

volume as the result of integrating the function f(x, y,z) = l through-

out a given region. More generally, many problems require the integra-

tion of a variable function of x, y, and z throughout a given region,

this being expressed by the notation

///f(x, y, z) dzdydx.

R
which is, of course, the limit of a triple sum analogous to the double

sums we have already discussed. The method of evaluating this triple

integral is precisely analogous to that already explained for double

integrals in § 218, p. 401.

Illustrative Example 1. Find the volume of that portion of the ellipsoid

a2 &2 + ^2
-

which lies in the first octant.

Solution. Let — ABC be that portion of the

ellipsoid whose volume is required, the equations

of the bounding surfaces being

(1)

(2)

(3)

(4)

^ + | + ^ = M^i*C),

z = 0, (OAB),

y = 0, {OAG),

x = 0, (OBC). Y/b~

PQ is an element, being one of the rectangular parallelepipeds with dimensions Az,
Ay, Ax into which the planes parallel to the coordinate planes have divided the region.

G E
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Integrating first with respect to z, we sum up all sucli elements in a column

(as MS), the z-limits being zero [from (2)] and TR = c -t /l — — - 1^ [from (1) by
BoMngforz]. ^ "^ ^^•

Integrating next with respect to y, we sum up all such columns in a slice (as

1 [from equation

X- u-
"'^

of the curve AGB, namely h — = 1, by solving for yl. '

a' 6^

Lastly, integrating with respect to x, we sum up all such slices within the entire

region — ABC, the x-limits being zero [from (4)] and OA = a.

Hence ^ °= "'-dzdydx
Jo Jo Jo

Therefore the volume of the entire ellipsoid is
4 7ra6c

Illustrative Example 2. Eind the volume of the solid contained between the

paraboloid of

revolution

the cylinder

and the plane

x^ + j/2 = az,

x^ + y^ = 2 ax,

z = 0.

3.2 _(. „2
Solution. The z-limits are zero and iVP(= , found

by solving equation of paraboloid for z).

The y-limits are zero and Jf2V(= V2ax — x^, found by

solving equation of cylinder for y).

The x-limits are zero and OA (= 2 a).
'

The above limits are for the solid ONAB, one half of the solid whose volume is

required. ^.^,^.

y /.-la n^-lax-xi / ti , , , SttO?
Hence — =

|
dzdydx = ^^—

2 Jo Jo Jo 4

Zira?

2
Therefore Y — -

EXAJHPLES

1. Knd the volume of the sphere x'' + y^ + z^ = r^ by triple integration.

jLns.
3

2. Find the volume of one of the wedges cut from the cylinder x^ + y^ = r' by

the planes z = and z = mx. /.r [.^r^-sn prKc 2r^m
Ans. 2

I ( (
dzdydx = —-—

J J Jo o

3. Find the volume of a right elliptic cylinder whose axis coincides with the

»-axis and whose altitude = 2 a, the equation of the base being cV + b'^z'^ = 6%^.

Am. 8 I
dzdydx = 2 irahc.

Jo Jo Jo
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4. Find the entire volume bounded by the surface (-1 + (r) + (") ~ ^' ^""^ ^^^

coSrdinate planes. ^"^ ^''' ^''^ Ans. —.

5. Find the entire volume bounded by the surface x^ + y' + z^ = a». 4 ^qS
Ans.

35

6. Find the volume cut from a sphere of radius o by a right circular cylinder

with 6 as radius of base, and whose axis passes through the center of the sphere.

Ans. — [a^ - (a^ - b^)i].
o

7. Find by triple integration the volume of the solid bounded by the planes

x = a,y = b, z = mx and the coordinate planes XOY and XOZ. Ans. imba'.

8. The center of a sphere of radius r is on the surface of a right circular cylinder

T
the radius of whose basis is - • Find the volume of the portion of the cylinder inter-

cepted by the sphere. Ans. f (tt — J)r2.

9. Find the volume bounded by the hyperbolic paraboloid cz = xy, the XOY-
plane, and the planes x = a^, x = a^, y = b^, y = b^. ("^ — a?) (pi — b?)

Ans.
4c

10. Find the volume common to the two cylinders x^ + y^ = r^ and x^ + z^ =>^.

16r3
Ans.

3

11. Find the volume of the tetrahedron bounded by the coordinate planes and the

plane - + - + - = 1. Ans. - abc.
a b c 6

12. Find the volume bounded by the paraboloid x^ + y" — z = 1 and the XF-plane.

Ans. -
• 2

13. Find the volume common to the paraboloid y^ + z^ = 4:ax and the cylinder

x^ + y^ = 2ax. Ans. 2Tra^ + -J/ a'.

14. Find the volume included between the paraboloid y^ + z'^ = iax, the parabolic

cylinder y^ = ax, and the plane x — 3a. Ans. (6 tt + 9 Vs) a'.

15. Find the entire volume within the surface x^ + yi + z'^ = a^.

16. Compute the volume of a cylindrical column standing on the area common to

the two parabolas x = y^,y = x^ as base and cut off by the surface z = 12 + y — x^.

17. Find the volume bounded by the surfaces y^ = x + 1,
y'' =— x + 1, z =—2,

z = x + i.

18. Find the volume bounded by z = x^ + 2y'', x + y = 1, and the coordinate

planes.

19. Given a right circular cylinder of altitude a and radius of base r. Through a

diameter of the upper base pass two planes which touch the lower base on opposite

sides. Find the volume of the cylinder included between the two planes.

Ans. (tt — f) wfi.



CHAPTER XXX
ORDINARY DIFFERENTIAL EQUATIONS*

228. Differential equations. Order and degree. A differential equa-
tion is an equation involving derivatives or differentials. Differential

equations have been frequently employed in this book, the following

being examples

:

^
''

\ dx /\dxy \ dx^ jdx

(3)
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A partial differential equation involves more than one independent

variable, as (8), (9), (10).

In this chapter we shall deal with ordinary differential equations

only.

The order of a differential equation is that of the highest derivative

(or differential) iu it. Thus (3), (5), (6), (8) are of the first order;

(1), (4), (7) are of the second order; and (2), (10) are of the third

order.

The degree of a differential equation which is algebraic in the

derivatives (or differentials) is the power of the highest derivative

(or differential)- in it when the equation is free from radicals and

fractions. Thus all the above are examples of differential equations

of the first degree except (2), which is of the second degree.

229. Solutions of differential equations. Constants of integration. A
solution or integral of a differential equation is a relation between the

variables involved by which the equation is identically satisfied. Thus

(^) , y =
'^i

sin X

is a solution of the differential equation

(^)
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the equation (in this case two), is called the general solution or the

complete integral.* Solutions obtained therefrom by giving particular

values to the constants are called particular solutions or particular

integrals. •'

The solution of a differential equation is considered as having been

effected when it has been reduced to an expression involving integrals,

whether the actual integrations can be effected or not.

230. Verification of the solutions of differential equations. Before

taking up the problem of solving differential equations it is best to

further familiarize the student with what is meant by the solution of

a differential equation by verifying a number of given solutions.

Illustrative Example 1. Show that

(1) y = c-^x CQS log X + CgX sin log x + x log x

is a solution of the differential equation

(2) x^g-x| + 2, = xlogx.

Solution. Differentiating (1), we get

(3)
-^ = (Cj — Ci)sinlogx + (Cg + Cj)ooslogx + logx + 1.

dx

Substituting (1), (3), (4) in (2), we find that the equation is identically satisfied.

EXAMPLES

Verify the following solutions of the corresponding dii|erential equations :

Differential equations Solutions

^ m'-^-x^ + y = 0. y = cx + c-c'.
\dx/ dx dx

2. J^y+2x^-3/ = 0. y^ = 2cx + cK
\dx/ ax

dx l + c

e-'

4. ^ + ^^"^=0. j/ = c,x + ^ + C3.

dx^ X dx^ X

dx2 dx ("^ — ^)

* It is shown in works on Differential Equations that the general solution has n arbitrary

constants when the differential equation is of the ntb order.
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Differential equations Solutions

°- T7- 4?^ + 6^- *T^ + 2/ = <'• y = {c^ + v + e,x^ + c,xO)e'.

dx* dx^ dx^ dx

7. x2^- 5x^ + 52/ = -. Ay =^ + c^x' + c^.
dx^ dx X 3x

8. x— — y + X Vx^ — y^ = 0. arc sin- = c — x.

dx X

„ dy sin2x . 1 ,
. ,9.-^ + 2/ cosx = y = sinx — 1 + ce-^^^.

dx 2

10. (1 — x^)— — X— — a% = 0. y = Cie<"»"=»™^ + c^e-'"-^''^^.
dx^ dx

ii.^ + !J = o. , = ^ + c,.

(Jx^ X dx X

231. Differential equations of the first order and of the first degree.

Such an equation may be brought into the form Mdx + Ndt/ = 0, in

which M and N are functions of x and y. Differential equations

coming under this head may be divided into the following tjrpes :

Type I. Variables separable. When the terms of a differential

equation can be so arranged that it takes on the form

CA) fQr:)dx+i\y-)dy=Q,

where /(a;) is a function of x alone and i^(y) is a function of y
alone, the process is called separation af the variables, and the solu-

tion is obtained by direct integration. Thus integrating (^), we
get the general solution

(5) jfQx) dx +jF(y^ dy = c,

where e is an arbitrary constant.

Equations which are not given in the simple form (^) may often

be brought into that form by means of the following rule for separating

the variables.

TiKST Step. Clear of fractions, and if the equation involves deriva-

tives, multiply through by the differential of the independent variable.

Second Step. Collect all the terms containing the same differential

into a single term. If, then, the equation takes on the form

XYdx+X'Y'dy = 0,

where X, X' are functions of x alone, and Y, Y' are functions of y alone,

it may be brought to the form (^) by dividing through by X'Y.

Thikd Step. Integrate each part separately, as in (5).
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Illustkative Example 1. Solve the equation

dy 1 + 2/2

dx (1 + X?) xy

Solution. First step. (1 + x^) xydy = (l + y^)dx.

Second step. (1 + y^)dx — x(l + x'^) ydy = 0.

To separate the variables we bow divide by x (1 + x^) (1 + y"), giving

(fe ydy _ Q
a; (1 + x2) 1 + y'

Third step. r^ fJ^ = C,
•/ X (1 + x2) J 1 + y^

rd^_rxd._r_yd^
p. 329

J X J 1 + x^ ) 1 + y^

logs - hog(l + x2) - ^log(l + y^) = G,

log (1 + x2) (1 + 2/2) = 2 logx - 2 C.

This result may be written in more compact form if we replace — 2 C by logc, i.e.

we simply give a new form to the arbitrary constant. Our solution then becomes

log (1 + x2) (1 + 2/2) = logx2 + log c,

log(l + x2) (l + 2/2) = logcx2,

(1 + x2) (1 + 2/2) = cx2. Arvs.

I dy ^ \ c

alx-— + 2y] = xy-
\ dx I c

Illustkative Example 2. Solve the equation

dy

dx

Solution. First step. axdy + 2 aydx = xydy.

Second step. 2 aydx + x(a~ y)dy — 0.

To separate the variables we divide by xy,

2adx {a — y)dy _
X y ~ '

Third step. 2aj'^ + af^-fdy = G,

2a\ogx + a\osy — y = G,

alogx^y = C + y,

log.x22/ = -| + |.

By passing from logarithms to exponentials this result may be written in the form

c y_

c

Denoting the constant e« by c, we get our solution in the form

«

x^y — ce". Ans.
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EXAfflPLES

Differential eqiwiions Solutions

1. ydx-xdy = 0. y = <^-

2. (1 + y)dx - (1 —x)dy = 0. (1 + V) (1 - x) = c.

3. (\ + x)y6x-+{}.-y)xdy = (i. logxy + x-y = c.

4. (x2 - a'')dy -yclx = 0. y^" = «|^-

5.(x^-yx^)^ + y^ + xy^ = 0. ^ + log| = c.

dx xy X

1

6. uHv + (v-a)du = 0. v-a = c0'.

du _ l + u' u-l±A.
' dv~ 1 + vi^ 1 — CT

5. {1+ s^)dt — t^ds = 0. 2t*— arctans = c.

9. dp + p ta,n8de = 0. p = c cos^.

10. sin 6 cos (pdO — cos sin 0d0 = 0. cos ^ = c cos 6.

11

.

sec^ 6 tan 0dS + sec^ (^ tan M(^ = 0. tan tan = c.

12. sec^ tan 0(l0 + sec" tan SdS = 0. sin" + sin" = c.

13. xydx - (a + x){b + y)dy = 0. x-y = c + log(a + x)<^.

14. (1 + x") dy — Vl — 2/"(i!; = 0. arc sin 2/ — arc tan x = c.

15. Vl - x'^dy + Vl - y'^dx = 0. j/ Vl - x^ + xVl- 2^" = c.

16. Septan 2/cJx + (1 - e^) sec" 2/dj/ = 0. tanv = c(l- e^^)'.

17. 2 x"2/d2/ = (1 + x") dx. 2/" = — - + X + c. '

x

18. (x - i/"x)dx + (!/ - x"y)di/ = 0. x" + y" = x"2/" + c.

19. (x"2/ + x)d3/ + (X2/" — y)dx = 0. xj/ + log- = c.

Type II. Homogeneous equations. The differential equation

Mdx+Ndy = Q

is said to be homogeneous when M and N are homogeneous functions

of X and y of the same degree.* Sucli differential equations may be

solved by making the substitution

y = vx.

This will give a differential equation in v and x in which the vari-

ables are separable, and hence we may follow the rule on p. 424.

* A function of x and y Is said to be homogeneous in the variables if the result of replacing

X and y by Xx and 'Ky (X being arbitrary) reduces to the original function multiplied by some
power of X. This power of X is called the degree of the original function.
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Illustrative Bxamplk 1. Solve the equation

Solution. j,2(fc + (s2 _ ^y) ay = 0.

Since this is a homogeneous differential equation, we transform it hy means of the
substitution ^^^_ Hence dy = .<fc + xd«,
and our equation becomes

vVdx + (x2 _ vx^) (pclx + xdv) = 0,

x^vdx + x' (1 — v) dv = 0.

To separate the variables divide by vx.'. This gives

dx {l — v)dv __

logx + logo — 1) = C,

logcBX = C + B,

vx = 6'^+" = e^- ef,

ox = ce".

But B = -
. Hence the solution is y = ce^. Ans.

EXASIPLES
Differential equations Solutions

1. (X + y)dx + xdy = 0. x^ + 'ixy = c.

2. (X + 2/)(ir + (y-x)dy = 0.
, log(x2 + y^)i- arctan^ = c.

3. xds^ — ydx =Vx'' + y^dx. i + 2cy- c^x^ = 0.

4. (82/ + 10x)(ix+ (52/ + 7x)(J2/ = 0. (x + y)2(2K + 2/)3 =
5. xyHy = (x^ + y^) dx. 2/' = 3 x^ log ex.

6. (x2-22/2)dx + 2x2/(i2/ = 0. 2/2 _ _ 3,2 jog gj.

7. {x^ + y^)d3i = 2xydy. y^ = x^ + cx.

8. (2Vst-s)di + <ds = 0. te'^Jzi

9. (t-s)dt + t(is = 0. <e' = c.

X

c.

: C.

ain-in y dy y uu-
10. X cos 2. = j,cos- — X. xe ^ = c.

X dx X

y y y
11. X cos- (ydx + xcZ?/) = y sin- (xdy — ydx). xy cos- = c.

X X X

Type III. Linear equations. A differential equation is said to be

linear if the equation is of the first degree in the dependent variable

(usually y") and its derivatives (or differentials). The linear differen-

tial equation of the first order is of the form

(^) S+^^=«'
where P, Q are functions of x alone, or constants.
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To integrate (^), let

(5) y = uz,

where z is a new variable and m is a function of x to be determined.

Differentiating (-B),

,„, dy _^ dz du

dx dx dx

Substituting (C) and (5) in (^), we get

dz
^

du
, ^ _

U—- + Z-— +Puz = Q, or,
dx dx

Now let us determine, if possible, the function u such that the term

in z shall drop out. This means that the coefficient of z must vanish

;

—- + Pu = 0.
dx

Then ^ = _j>dx,
u

and logeW = — / Pdx +C, giving

Equation (D) then becomes
dz

dx

To find z from the last equation, substitute in it the value of u

from (^) and integrate. This gives

(i^) CjZ = fQef'''"'dx + C.

The solution of (A) is then found by substituting the values of

u and 2 from (^) and (i?") in (5). This gives

(«) y = e-I'-'-lj Qe!''''-dx + cY
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The proof of the correctness of (G) is immediately established by-

substitution in (^). In solving examples coming under this head

the student is advised to find the solution by following the method

illustrated above, rather than by using (G) as a formula.

Illustrative Example 1. Solve the equation

^
'

dx x + 1 ^ '

Solution. This Is evidently in the linear form (A), where

P = ?— and Q = (a; + l)i
x + 1

Let y = vz; then — = a— + z— • Substituting in the given equation (1), we get
dx dx dx

dz du 2uz , , ,,i

dz /du 2u \ , ,
,.5

Now to determine u we place the coefficient of z equal to zero. This gives

du 2 M _
» dx 1 + X '

du _ 2dx

u 1 + X

l0geM = 2l0g(l + x),

(3)
u = ei»E (1 + ^)2 = (1 + x)2.*

Equation (2) now becomes, since the term in z drops out,

u— = (x + l)S-

dx

Replacing u by its value from (3),

J = (x + l)i
ox

d2 = (x + 1)^ *>;,

2(x + l)t

(4)
z = -^-^ + 0.

Substituting (4) and (3) in y = uz, we get the solution

y^^J^±^ + G{x + lY. Ans.

» Since lege « = loge elosd + ^'^ = log (1 + a:)2
• lege e = log (1 + a;)2, it follows that «= (1 + a;)2.

For the sake of simplicity we have assmned the particular value zero for the constant of

integration.
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EXAMPLES
mfferential equations SoMions

1. ^ _ _E^ = (a + 1)3. 2y = (x + l)* + c(z + lf.
dx X + 1

dy^^^xj^ y^cx<' +
X 1

dx X X 1 — " ^
3. x(l - x^)dy + (2x2 - i^^jjx = ax'^dx. ' y = ax + ex Vl - x^.

i.dy-^^^ =^^. y = ax + c(l + x^h
" 1 + x^- 1 + x^

5. — cosi + ssint = l. s = sini + ccost.
dt

6. — + scos< = isin2«. s = sint- 1 + ce-»"'.
dt

7. ^_5:j/ = e^n. 2/ = x''(g^+c).
dx X

8. ^ + -3/ = — . x«3/ = ax + c.

(ix X x"

9. ^ + 2/ = --
'

e^ = x + c.

dx e' ,

10. ^ + ^—#^y = 1. 2/ = x2(l + c^).
dx x^

Type IV. Equations reducible to the linear form. Some equations

that are not linear can be reduced to the linear form by means of a

suitable transformation. One type of such equations is

where P, Q are functions of x alone, or constants. Equation (^) may

be reduced to the linear form (A), Type III, by means of the substitution

2 = y~° + '- Such a reduction, however, is not necessary if we employ

the same method for finding the solution as that given under Type

III, p. 427. Let us illustrate this by means of an example.

Illustrative Example 1. Solve the equation

(1) ^ + y- = a\ogx.yK
dx X

Solution. This is evidently in the form (A), where

P = -, Q = alogx, 71 = 2.
X

T i iv dy dz , du
Let y = uz; then -S- = u \- z—

dx dx dx
Substituting in (1), we get

dz
,

du uzu— + z—--\ = alogj;- «^2^
ox dx X

dz /du u\
(2) u-+(- + -y = alosx.uH^
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Now to determine u we place the coefficient of z equal to zero. This gives

^ + "^ = 0,
dx X

du _ dx

u X

logu =— logx = log-,
X

(3) u =
l.X

Since the term in z drops out, equation (2) now becomes

u— = alogX'M^'',
dx
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232. Differential equations of the nth order and of the first degree.

Under this head we will consider four types which are of importance

in elementary work. They are special cases of linear differential equar

tions, which we defined on p. 427.

Type I. The linear differential equation

d''v d''-'^y d"-'y

in which the coefficients p^, p^, , p„ are constants.

The substitution of e™ for y in the first member gives

This expression vanishes for all values of r which satisfy the

equation

(5) r^+p/''-^+p/'-^+---+p„=0;

and therefore for each of these values of r, e""' is a solution of (A).

Equation (5) is called the auxiliary equation of (.A). We observe

that the coefficients are the same in both, the exponents in (5) cor-

responding to the order of, the derivatives in (^), and y in (.4) being

replaced by 1. Let the roots of the auxiliary equation (5) be r^, r^,

••,»•„; then

(C) e-'i^ ev, ..., e'""

are solutions of (^). Moreover, if each one of the solutions (C) be

multiplied by an arbitrary constant, the products

(D} c^ev, c^ev, ..., oy^

are also found to be solutions.* And the sum of the solutions (D),

namely,

(^) 2/ = c/'"+ o^ev+ . .
. + c„e'-"",

may, by substitution, be shown to be a solution of (.4). Solution (^)
contains n arbitrary constants and is the general solution (if the roots

are all different), while (C) are particular solutions.

Case I. When the auxiliary equation has imaginary roots. Since

imaginary roots occur in pairs, let one pair of such roots be

r^=a + bi, r^=a — bi. i =V^
* Substituting Cie'i'lor y in (A), the left-hand member becomes

(ri" +Piri"--' + pa?-!""^ + • + Pn) c^e'^'.

But this vanishes since r^ is a root of (B); hence Oie''" is a solution of (A). Similarly
for the other roots.
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The corresponding solution is

= e'^\ ej(cos hx + i sin hx) + e^Ccos bx — i sin 6a;)P
= e"^! (Cj+ ejj)cos 5a; + i(ej— C2)sin 6a;|,

or, y = e'^(^ cos Ja; +5 sin 62;),

where A and S are arbitrary constants.

Case II. When the auxiliary equation has multiple roots. Consider

the linear differential equation of the third order

where p^, p^, p^ are constants. The corresponding auxiliary equation is

(G) r'+p/+p^r+p=0.

If j-j is a root of (G), we have shown that e'"''" is a solution of (i^).

We will now show that if r^ is a double root of ( G), then xe''^" is also

a solution of (i^). Replacing y in the left-hand member of (i^) by

xeT'", we get

(if) xe-^Xr^+p^r^ +p/^ +P3) + e'-xX3 r^+ ^f^^+f^)-

But since r^ is a double root of ((?),

and 3 rl^ ^P^r^+P^= 0- By § 69, p. 88

* Replacing x by ibx in Example 1, p. 232, gives

^ , ., ^2a;2 iftSjjS 64a;4 jftSajS

e<^=l + ,to_-^_-^ +_ + -^-.... or,

(1) '^'"=i-i2-+ir--^Y"-"i3:+^--j'
and replacing^ by -i6. gives

^^^^ .^^_^ ^^^ .^^^

(2)

But, replacing a by b« in (^), (5), p- 231, we get

(3) cos6a; = l--jy + -T|

(4) sin 5a! = ox - -ij- + -rg •

Hence (1) and (2) become

e**= cos Sa; + i sin bx, e-""- cos bx-i sin bx.
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Hence (IT) vanishes, and xe^^'^ is a solution of (F'). Corresponding

to the double root r, we then havie the two solutions

More generally, if r^ is a multiple' root of the auxiliary equation (B),

p. 432, occurring s times, then we may at once write down s distinct

solutions of the differential equation (^), p. 432, namely,

eje'"i% o^xe^'r', c^e'^", , c^x'~^e''i\

In case a + hi and a — hi are each multiple roots of the auxiliary

equation, occurring s times, it follows that we may write down 2 s

distinct solutions of the differential equation, namely,

c^e"^ cos hx, c^e"^ cos hx, c^e"" cos hx, • • • , cpf~^e'" cos hx ;

cje"" sin hx, c^xe"^ sin hx, c'^x^e"^ sin hx, • • • , clx^~'^e'^ sin hx.

Our results may now be summed up in the following rule for solving

differential equations of the type

d"y d"-^y d"-^y

where p^, p^, • •
, jo„ are constants.

EiKST Step. Write down the corresponding auxiliary equation

r^+p^r''-'-+p/'-^+ . +p^= 0.

Second Step. Solve completely the auxiliary equation.

Third Step. From the roots of the auxiliary equation write down the

corresponding particular solutions of the differential equation as follows :

Auxiliary Equation Differential Equation

(a) Uach distinct real 1

V gives a particular solution e'''^'.

(b) Uach distinct pair 1 . j two paHicular solutions e"^ cos hx,

(c) A multiple root occur-

ring s times r s'

of imaginary roots a±hi J
^"^^^

| e<^ sin hx.

s particular solutions ohtained hy

multiplying the particular solutions

(a) or (h'),hyl,x,x% .--..x'-K-

FouETH Step. Multiply each of the n* independent solutions hy an
arbitrary constant and add the results. This pives the complete solution.

* A check on the accuracy of the work is found in the fact that the first three stepS must
give n independent solutions.

. . ,,
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Illustrative Example 1. Solve —^-3—^ + 42/ = 0.

Solution, follow above rule.

First step, r* — 3 r^ + 4 = 0, auxiliary equation.

Second step. Solving, the roots are — 1, 2, 2.

Third step, (a) The root — 1 gives the solution er".

(b) The double root 2 gives the two solutions e^"", xe^'^.

Fourth step. General solution is

y = Cjg-^ + Cje^"^ + CjXe^^. Ans.

Illustrative Example 2. Solve— -4^ + 10—^-12^ + 5y = 0.
<Jx* dx^ dx^ dx

Solution. Follow above rule.

First step, r* — 4 r* + 10 r^ — 12 r + 5 = 0, auxiliary equation.

Second step. Solving, the roots are 1, 1, 1 ± 2 i.

Third step, (b) The pair of imaginary roots 1 ± 2 i gives the two solutions e^ cos 2 x,

e^sin2a;(a = 1, 6 = 2).

(o) The double root 1 gives the two solutions e^, xe".

Fourth step. General solution is

y = Cyf^ + c^xe^ + c^eF cos 2 X + c^eF sin 2 x,

or, y = (Cj + C2X + C3COS2X + C4sin2x)e^. Ans.

EXAMPLES
Differeniial equations General solutions

dx^

d?v
2. —- + 2/ = 0. 3/ = Cj Sin X + Cj COS*.

dx^

3. ^ + 12j/ = 7^. y = Cie8== + Cje^f.

dx^ dx

4. ^_4^+4i/ = 0. 2/ = (Ci + C2x)e2=^.

dx^ dx

5. ^ - 4^ = 0. 2/ = Ci + c^e^^ + 0^6-^==.

dx' dx

6 ^ + 2— -8j/ = 0. j/ = Cje^->/2 + C2e-="^+C3sin2x + CjCOs2x.

dx* dx2

dt' dt2 dt
12 3

9. ^_6— + 13a = 0. i4 = (CiSin2u + C2COs2u)eS".

du^ dv

10 ^ + 2n2^ + 71*2/ = 0. y = (Ci + C2x)cosKX + (C3 + c,x)sinM.

dx* dx^

,0 --/ iVi «V3\
11 ^ = s s = Cie* + e s/casin-— + C3COS-— |.

di" \ / ^ /
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Differential equations General solutions

12. ^ - 7 - + 6s = O'. s = c,e^* + e„e' + c.e-s'.
dt^ dt

12 8

14. ^ + 3^-10?/ = 0. 2/ = c,e2^+c,e-s»'.
dx^ dx

15. —+ 2-^ + 10?/ = 0.
'

4/ = e-«(c, cos3a; + c„sin3a;).

16. 2—^-3— + 2— + 2^ = 0. y = e,eri=' + e!'{c„cosx + e,smx)
dx'' dx^ dx

Type II. The linear differential equation

whereX is afunction of x alone, or constant, andp ,p , ,p„ are constants.

When X= 0, (/) reduces to (A), Type I, p. 432,

The complete solution of (J") is called the complementary function

of (/).

Let u be the complete solution of (t7), i.e. the complementajy

function of (/), and v any particular solution of (/). Then

Adding, we get

-^^(u + v-)+p^^^^^(u + v-)+p^^^^(u + v^+...+p^(u + v-) = X,

showing that m + v is a solution* of (/).

To iind a particular solution w is a problem of considerable diffi-

culty except in special cases. For the problems given in this book

we may use the following rule for solving differential equations of Type II.

First Step. Replace the right-hand member of the given equation (/)
hy zero and solve hy the rule on p. 434. This gives as a solution the

complementary function of (J), namely,

y = u.

* In works on differential equations it is shown that u^vis the complete solution.
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Second Step. Differentiate successively the given equation (J) and
obtain, either directly or by elimination, a differential equation of a
higher order of Type I.

Third Step. Solving this new equation by the rule on p. 434, we get
its complete solution „ _ ,, _i_y — u -\- V,

where the part u is the complementary function of (/) already found
in the first step,* and v is the sum of the additional terms found.

Fourth Step. To find the values 'of the constants of integration in

the particular solution v, substitute

y = v

and its derivatives in the given equation (/). In the resulting identity

equate the coefficients of like terms, solve for the constants of integration,

substitute their values back in ^ _. ^ _l ^

giving the complete solution of (/).

This method will now be illustrated by means of examples.

Note. The solution of the auxiliary equation of the new derived differential equa-
tion is facilitated by observing that Ihe left-hand member of that equation is exactly

divisible by the left-hand member of the auxiliary equation used in finding the com-
plementary function.

Illustrative Example 1. Solve

dx? dx

Solution. First step. Replacing the right-hand member by zero,

^
'

dx^ dx

Applying the rule on p. 434, we get as the complete solution of {L)

(M) y = c^g' + c^e-^'' = u.

Second step. Differentiating (K) gives

^ ' djp dx? dx
.

'

Multiplying (K) by 2 and adding the result to (N), we get

«°) S"S— »

a differential equation of Type I.

TAird step. Solving by the rule on p. 434, we get the complete solution of (0) to be

y_= Cjg"' -f- CgE-^^ -f- CgXe- 23--,

or, from (M), y = u + c^xe-^^ = u + v.

* From the method of derivation it is obvious that every solution of the original equation

must also be a solution of the derived equation.
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Fourth step. "We now determine c, so that CgXe-"^ shall be a particular solution v

of (JT). , M
Substituting y = c^xe-^^, — = c^e-^='(l-2x), -^ = c^e-^^{4:X- i) in (-ST), we get

.-. —3c^ = a, or, Cj^— 4a.

Hence a particular solution of (K) is

» =— -J-axe-^^,

and the complete solution is

Illustrative Example 2. Solve

(P\ —- + re^2/ = cos ax.
^ ' dx"

Solution. First step. Solving

(Q) 5^ + "'^ = '''

we get the complementary function

(B) y = 0^ sin nx + Cj cos rue = m.

Second step. Differentiating (P) twice, we get

(S) —^ + »2—^ = — a^ cos ax.

Multiplying (P) by a^ and adding the result to (S) gives

(T) ?? + («' + «') ?! + «'™'2' = 0-

Third step. The complete solution of (T) is

y = Cj sin nx + c^ cos nx + Cg sin ax + c^ cos ax,

or, 2/ = M + Cg sin ax + c^ cos ax = m + d.

Fourth step. Let us now determine Cg and t;^ so that Cg sin ax + c^ cos ax shall be a

particular solution d of (P).

Substituting
dy iPy o o

w = c, sin ax + c. cos ax, -^ = Cga cos ax — c.a sm ax, —^ = — CgU^ sm ax — c.a^ cos ax

in (P), we get
(n^c^ — a^c^) cos ax + (n%g — a^Cg) sin ax = cos ax.

Equating the coefficients of like terms in this identity, we get

n\ — a\ = 1 and n\ — a\ = 0,

Hence a particular solution of (P) is

cos ax
V =

and the complete solution is

cos ax
y = u + V = e^smnx + c^ cos nx'+ —
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EXAMPLES
SWerential equations Complete solutions

3- ^ - a's = < + 1. s = de-' + c^e-"' - i±i.

. d'p od^p ,
dp ^ I g2\

"• ^ - '='2' = a; • y = c,e«^ + c^e-'^ + Cg sinaa; + c^ cosax - —

,

6- T-^ + a^s = cosaa;. « = Cj sin ox + Cj cos ox +
xsmax

*;^ '
• " • 2a

''' ^ ~ ^"
di

"^ "'* " ^'" s = (Ci + Cat) E»« +
e'

(a -1)2

d^v dy 1

9-^-y = 5x + 2. 2/ = Cie»'+ c^e-^- 5x-2.

dx^ dx ' " "1"
'

"2" ^„2_5„+6

dx^ dx « 1 2 ,i2_3,i + 2 (ji2_3n + 2)2

13,
d^s „ ds

d«2 dt
9^ + 20s = <V. s = Ciei«+C2e5« + ?^^-±-^^e

14. —- + 4s = isin^i. « = (c, )sin2t + (c, |cos2< + -

\ ^ 16/ \ ^ 32/d<2 \ ^ 16/ \ ^ 32/ 8

Type III. ^=Z,

where JT is a function of x alone, or constant.

To solve this type of differential equations we have the following

rule from Chapter XXIX, p. 393

:

Integrate n times successively. Each integration will introduce one

a/rhitrary constant. . .

.
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Illustrative Example 1. Solve —- = ase^.

Ahi r
Solution. Integrating the first time, j^ = ( se^aa!,

°''' ^ = a;e"-e-+Ci. By(4), p. 347

Integrating
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Second step. ^ = VO, - aV,
dx

taking the positive sign of the radical. Separating the variables, we g»t

dy
: dx.

Integrating, - ar(fsin-^ = x + C„
a '^^

or, arc sin—A= = ax + aO,.

This is the same as —— — sin {ax + aC^

ay

ay

or, y = 1 cos aO„ • sin ax +' " a ^ a

= sin ax cos aC^ + cos ax sin aC^, 31, p. 2

VcT _ . , Vg[ . „
' cos aG„ sm ax -^ ' sm aU„ • cos ax

a ^ a ^

= Cj sin ax + Cj cos ax. .4ms.

EXAMPLES
Differential equations Solutions

d^v x^
1. —^ = x^ — 2 cosx. 2/ = 1- 2 sin X + c,x2 + c^x + Cg.

dx' 60

2. V— = 2. M = B^log?) + c,i;2 + Cgi) + Cg.

'

do'

d'o „ „ cos' ^ 7 cos 6 „„ , .
,

4. ^ =/sinn«. s=-^smnt + c^i + Cj.

|mx'»+'>

y = T ; 1- c,x''-i + h c„_ix + c„.

|?n.-+ n

ox = log(2/+V2/2 + Ci) + Cj, or,

3 i = 2 ai (s* - 2 c^) (s^" + Cj)^ + Cj.

(c^t + Cg)^ + a = Ci2/2.

5.
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MISCELLAIfEOUS EXAMPLES

Solve the following difierential equations

:

dx* dx^ dx^ dx

^ <Py_a ^ dy

.Ay

dx x^

*-^^ + ^TI-^' 11. y-x^ = aiy^ + ^^\
dec \ dx/

dy
5. (4y + 3x)— + y = 2x. jg ^i^j^diB. (^s + yS)ay = o.

6. 2^+5$-12x = 0. 13. ^-3^+42, = 0.
dt^ dt

'

dx? dx^

^_5§?! + 6, = .*=^. 14.
f^.ox'' (to; (ir
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233. Mechanical integration. We have seen that the determination

of the area bounded by a curve C whose equation is
.

y =f(p)

and the evaluation of the definite integral

\f(x)dx

are equivalent problems.

Hitherto we have regarded the relation between the variables x and

y as given by analytical formulas and have applied analytic methods

in obtaining the integrals required. If, however, the relation between

the variables is given, not analytically, but, as frequently is the case

in physical investigations, graphically, i.e. by a curve,* the analytic

method is inapplicable unless the exact or approximate equation of the

curve can be obtained. It is, however, possible to determine the area

bounded by a .curve, whether we know its equation or not, by means

of mechanical devices. We shall consider the construction, theory,

and use of two such devices, namely, the Integraph, invented by

Abdank-Abakanowicz,^ and the Polar Planimeter. Before proceed-

ing with the discussion of the Integraph it is necessary to take up

the study of integral curves.

234. Integral curves. If F(x) and f(x) are two functions so

related that

(^) I i^C^) =/(..),

then the curve

(5) y=FQc)

is called an integral curve of the curve

(C) y =/(a;).*

* For instance, the record made by a registering thermometer, a steam-engine indicator',

or by certain testing machines.

t See LesInUgraphes ; la courbe inUgrale et ses applications, by Abdank-Abakanowicz,

Paris, 1889.

X This curve is sometimes called the original curve.

443
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The name integral curve is due to the fact that from (C) it is seen

that the same relation between the functions may be expressed as

follows

:

(D) r./(aO dx = F(x). F(p-) =
Jo

Let us draw an original curve and a corresponding integral curve in such a, way

as easily to compare their corresponding points.

integral curve

y = F(x)

original curve

y =f¥)

To find an expression for the shaded portion (jyM'P') of the area under the original

curve we substitute in (A), p. 365, giving

area 0'JW'P'= f''y(x)clx.
Jo

But from (D) this becomes

area O'M'P' = C'fix) dx. = [F(x)]^=^, = F{x^) = MP*
Jo

Theorem. For the same abscissa Xj the number giving the length of the ordinate of tlie

integral curve (B) is the same as the number that gives the area between the original curve,

the axes, and the ordinate corresponding to this abscissa.

The student should also observe that

(a) Por the same abscissa aij the number giving the slope of the integral curve is

the same as the number giving the length of the corresponding ordinate of the original

curve [from (C)]. Hence (C) is sometimes called the curve of slopes of (B). In the

figure we see that at points 0, B, T, V, where the integral curve is parallel to OX,

the corresponding points 0', B', T', Y' on the original curve have zero ordinates, and

corresponding to the point W the original curve is discontinuous.

* When x\ = O'R', the positive area O'M'B'P' is represented by the maximum ordinate

JVB. To the right of R' the area is below the axis of X and therefore negative ; consequently

the ordinates of the integral curve, which represent the algebraic sum of the areas inclosed,

will decrease in passing from R' to T'

The most general integral curve is of the form

in which case the difference of the ordinates for a; = and a; = Ki gives the area under the

original curve. In the integral curve drawn C=F{0) = 0, i.e. the general integral curve is

obtained if this integral curve be displaced the distance C parallel to 1'.
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(b) Corresponding to points of inflection Q, 8, U on the integral curve we have
maximum or minimum ordinates to the original curve.

iit).
dx\9}

Tor example, since

. it follows that

(E)

is an integral curve of the parabola

(F)

y = -

Since from {F)

and from {E)

dx -.

M-^n =

\ ^
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in the cai'riage Cj so as to be at the same distance from the axis of X as is the trac-

ing point T. A second stud S^ is set in a crossbar of the main carriage C so as to be

on the axis of X. A split ruler B joins these two studs and slides upon them. A
crosshead JET slides upon this ruler and is joined to the frame J" by a parallelogram.

The essential part of the instrument consists of the sharp-edged disk D, which
moves under pressure over a smooth plane surface (paper). This disk will not slide,

and hence as it rolls must always move along a path the tangent to which at every

point is the trace of the plane of the disk. If now this disk is caused to move, it is

evident from the figure that the construction of the machine insures that the plane of

the disk D shall be parallel to the ruler E. But if a is the distance between the ordi-

nates through the studs Sj, S^, and t is the angle made by B (and therefore also plane

of disk) with the axis of X, we have

(A) tan T = ?^

;

and if y' = F(x')

is the curve traced by the point of contact of the disk, we have

{B) tanT = ^'.*
dx

Comparing (A) and {B), — = -, or,
dx a

(C) ]/ = - fydx = i Jf{x) dx = F{x')A

That is (dropping the primes),the curve

y = F(x)
is an integral curve of the curve

The factor - evidently fixes merely the scale to which the integral curve is drawn,

and does not affect its form.

A pencil or pen is attached to the carriage Cj in order to draw the curve y = F{x).
Displacing the disk D before tracing the original curve is equivalent to changing the
constant of integration.

236. Polar planimeter. This is an instrument for measuring areas

mechanically. Before describing the machine we shall take up the

theory on which it is based.

237. Calculation of the area swept over by a moving line of con-

stant length.

Consider the area. ABQB'A'PA swept over by the line AB of constant length I.

Let PQ and P'Q^ be consecutive positions of the line, de = angle POP' = change in

* Since x = x' + a, where d= width of machme, and therefore ^=^ .^ ^ ^' _

dx" dx dx' dx
'

t It IS assumed that the instrument is so constructed that the abscissas of any two corre-
spondmg points of the two curves differ only by a constant; hence a is a function of x'.
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direction of PQ, and ds = circular arc described about by the middle point R of the
line. Using difierbntiajs, we have ^'

area of 0Q(^= i OQ^dO*

area of OPP'= i OP^dd.

.-. areaof PQQ^P'^i OQ^dS-i OP'^dd A
= i{OQ+OP){OQ-OP)dg

= OB pqae

= I 0Bd6 = Ms. O

Summing up all such elements,

(A) a^rea, ABQB'A'PA = fids = lCdsz= Is,

where s = displacement of the center of the line in a direction always perpendicular

to the line.t To find s, let the line be replaced by a rod having a small wheel at the

center B, the rod being the axis of the wheel. Now as the rod is moved horizontally

over the surface (paper), the wheel will, in general, both slide and rotate. Evidently

s = distance it rolls

= circumference of wheel x number of revolutions.

(B) .-.8 = 2 mrn,

where r = radius of wheel, and n = number of revolutions.

Substituting (B) in (A), we get

(C) area swept over = 2 irrln.

So far we have tacitly assumed that the areas were swept over always in the

same direction. It is easy to see, however,

that the results hold true without any such

: restriction, provided areas are taken as posi-

tive oi negative according as they are swept

over towards the side of the line on which di

is taken positive, or the reverse. Choose signs

as indicated in the figure. If the line AB .i/.^Zi//,

returns finally to its original position, A and '\'//^
B having described closed curves, it is evi- ,

^ ^ -^ ^

dent that" the formula above will give (taking

f account of signs) the excess of the area in-

^ closed by the path of A over that inclosed by

the path of B.

For ABQB'A'PA = ABBB'A'PA + closed curve jBQB'Z)-B,

B'A'GABBB' = ABDB'A'PA + closed curve ^P^'C^.
positive area

negative area

Finding the difEerence, we have

net area = closed curve BQB'-D-B — closed curve ^P^'C^.

* Area of circular sector = f radius x arc = i Q • Q dS = i Q dB.

t It should be observed that s wiU not be the length of the path described by the center

R xoUbssAA' and BB' are the ares.of circles with the center at 0.
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tracing
point

Now if the area of one of these closed curves (as APA'CA) is zero, that is, A keeps

to the same path both going and returning, the area swept over by the line will equal the

area of the closed curve BQB'DB.
A simple and widely used type of polar planimfeter was invented by Amsler, of

Schafihausen, in 1854. This consists essentially of two bars OA and AB, freely jointed

at A, OA rotating about a fixed point O and AB being the axis of a wheel situated at

its center E, and having a tracing point at B.

Now if the tracing point completely describes

the closed curve, A will oscillate to and fro

along an arc of a circle (as CD), describing a

contour of zero area. Hence the area swept

over by the bar AB exactly equals the area of

the closed curve, and is given by the formula

(D) area of closed curve = 2 irr/n,

where I = length of bar AB,

r = radius of wheel,

n = number of revolutions indicated on the wheel after the tracing point

has made one complete circuit of the curve.

238. Approximate integration. Since the value of a definite integral

is a measure of the area under a curve, it follows that the accurate

measurement of such an area will give the exact value of a definite

integral, and an approximate measurement of this area will give an

approximate value of the integral. "We will now explain two approx-

imate rules for measuring areas.

239. Trapezoidal rule.' Instead of inscribing rectangles within the

area, as was done in § 204, p. 361, it is evident that we shall get a

much closer approximation to the _.i

area by inscribing trapezoids. Thus
divide the interval from x = a to

x=h into n equal parts and de-

note each part by Ax. Then, the

area of a trapezoid being one half

the product of the sum of the

parallel sides multiplied by the o] a '

' b S
altitude, we get

i (^0+ ^i) ^^ = area of first trapezoid,

i (2^1+2/2)^^= area of second trapezoid,

i (2/»-i— 2/«) ^^ = area of nth trapezoid..

Adding, we get

K2/0+ 2 t/j-l- 2 ?/jj-|- . . -I- 2 t/„_j-|-yj Aa; = area of trapezoids.
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Hence trapezoidal rule is

(4) area = 0i/, + y, + y, + . . +y„_^ + \y„-)Lx.

It is clear that the greater the number of intervals (i.e. the smaller
Aa; is) the closer wiU the sum of the areas of the trapezoids approach
the area under the curve.

Illustkatite Example 1. Calculate C x^clx by the trapezoidal rule, dividing
X = 1 to a; = 12 into eleven intervals.

^

Solution. Here = ——— = 1 = Aj. The area in question is under the curve
Ti 11

y = x2. Substituting the abscissas x = 1, 2, 3, • • , 12 in this equation, we get the ordi-

nates y = 1, 4,9, , 144. Hence, from {A),

area = (i + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 + 121 + J. 144) • 1 = 577^.

By integration
J

x^dx = — = 575f . Hence, in this example, the trapezoidal

rule is in error by less than one third of 1%.

240. Simpson's rule (parabolic rule). Instead of drawing straight

lines (chords) between the points of a curve and forming trapezoids,

we can get a still closer approximation to the area by connecting the

points with arcs of parabolas and

summing up the areas under these

arcs. A parabola with a vertical

axis may be passed through any

' three points on a curve, and a series

of such arcs will fit the curve more

closely than the broken line of

chords. We now divide the inter-

val from x=a=OM„ to x=b=OM^
into an even number (= n) of parts,

each equal to Ax. Through each successive set of three points ij, ij,

P^; P^, P^, P^; etc., are drawn arcs of parabolas with vertical axes.

From the figure

area of parabolic strip M^P^P^P^M^ = area of trapezoid M^^P^P^M^

+ area of parabolic segment P^P^Pi-

But the area of the trapezoidilf„^^i!f^ =\(iya+ y^'^ ^^

= (2^0+^2)^^'

and the area of the parabolic segment J^iji^

= two thirds of the circumscribing parallelogram P^PjP^P^
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Hence area of first parabolic strip M^ll^I^M,^

Similarly, second strip =— (y^+ 4 «/g+ ?/J,

Apt
third strip = -^ (y,+ 4 2/5+ y^}.

wth strip =— («/„_2+ 4 i/„_-,+ y„).

Adding, we get

A-y

-3- (2/0 + 4^1+ 22/^+42/^+ 2y^+ ..- + 2y„_,+ 42/„_i+ yJ

as the sum of these areas. Hence Simpson's rule is (n being even)

Ax
(E) area =_ (i/„ + 4 y^ + 2 y, + 4 1/3 + 2 y, + • • + y„) .

As in the case of the trapezoidal rule, the greater the number of

parts into which M^M^ is divided, the closer will the result be to the

area under the curve.

Illustrative Example 1. Calculate | x'ds by Simpson's rule, taking ten intervals.
Ja

Solution. Here = = 1 = Ax. The area in question is under the curve
n 10

y = a;'. Substituting the abscissas a; = 0, 1, 2, • • • , 10 in ?/ = i', we get the ordinates

2/ = 0, 1, 8, 27, • • , 1000. Hence, from (5),

area = J (0 + 4 + 16 + 108 + 128 + 500 + 432 + 1372 + 1024 + 2916 + 1000) = 2500.

^10 ra;*"]!"
By integration, I x^dx = -r = 2500, so that in this example Simpson's rule

happens to give an exact result.

EXAMPLES

1. Calculate the integral in Illustrative Example 1 (above) by the trapezoidal rule,

taking ten intervals. Ans. 2525.

2. Calculate / — by both rules when n = 12.
•^' ^ ^ns. Trap. 1.6182; Simp. 1.6098.

3. Evaluate I x^dx by both rules when n = 10.^ Ans. Trap. 3690 ; Simp. 3660.

log^„a:da; by both rules when n = 10.

Ana. Trap. 6.0656 ; Simp. 6.0896.

5. Evaluate / -„ by both rules when n = 6.

" "'"'^ ^ns. Trap. 1.0885; Simp. 1.0906.
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sin xdx by both rules for ten-degree intervals. •

7. Evaluate ( x^dx by both rules for n = 12.

8. Find the error in the evaluation of I x^dx by Simpson's rule when n = 10.

9. Evaluate | e^dx by Simpson's rule when n = 10.

241. Integrals for reference. Following is a table of integrals for

reference. In going over the subject of Integral Calculus for the first

time, the student is advised to use this table sparingly, if at all. As
soon as the derivation of these integrals is thoroughly understood, the

table may be properly used for saving time and labor in the solution

of practical problems.

SOME ELEMENTARY FORMS

1. C(du ±dxi±dw ±---)— Cdu ± jdv ± jdw ± • •

.

2. fadv = a Cdv. 4. ix'^dx = + 0,n^—lL.

3. fdf{x) = ff{x) dx=f(x)+G. 6. J^ = log X + C.

Forms containing Integral Powers of a + bx

„ r c^ 1 1 / , i_\ , /^ M - <5 * ^ ^ '£
'

"'V t'
6. ( — = -log(a + 6x) + C. y -~ A^

J a + ox b

7. r(. + ;^)ndx= (° + ^>;"V c.n^-l.
J 6 (m + 1)

8. Cf{x, a + bx)dx. Try one of the substitutions, z = a + bx, xz = a + bx.

9. f-!^^ = -la + bx-alog(a+bx)-\ + C.
J a + bx b^

,0. C-^^ = -U{a + bxf- 2a(a + bx) + anog(a + bx)] + C.

J a + bx V
, r dx 1. a + bx
1. I

= log f- C.
J x{a+bx) a x

2. r_^_=_l + liog^+^ + c.

J x^(a + bx) ax a^ x

J (a-^bxf 6^ ' a + 6xj

4 r_?!^_ = ira + 6x-2alog(a+te)--^l+C.

r_^_ :3_J__ _ 1 log ^:!^ + c.

Jx{a + 6x)^ a(a + ta) o^ x

r xdx _i.r ,J__ + 1 1+c.
J (a + bxf~b'^l a + bx 2(a+bx)''^

OM
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Forms containing a^ + x^, (fi — x% a + hx", a + hx^

17. r^ = Itan-i? + C
; f-^ = Un-i'x + C.

J a'-x^ 2a ^a-x Jx^-a? 2a "x + a

19. r ^ =J-Un-^xJ^+C.
J a + bx^ Va6 ^«

20. r '^ =±.iog^±^+c.
J a^-b^x^ 2ab ^a-bx

21. fx^(a + bxf')Pdx

b(np + m + 1) b{np + m + 1)^

22. f^(a + bxn).dx = '^^"^'' + ^^' + ""^ Jx'^(a + bxn).-iax.
J np + m + 1 np + m + IJ

23. f
^

_ 1 {m— n + np — l)b r dx
~ (m — l)ax'»-i(a+ 6a;»)P-i (m— l)a J a™ - » (a + fee")*'

24. r—^

—

J a"' (a + 6X")*

_ 1 m— n + np — lr dx
~ an{p — l)i"'-i(a + hx^y-'*^ an{p — 1) J x'^(a + bx'')p-^

/(a + 6x»)Pdx _ {a + 6a;»)i' + i 6 (m — » — np — 1) /^ (a + 6x»)^ da;

./ a;"> a(m— l)!"-! a(?n — 1) J z™-n

r{a + bxf')Pdx _ (a + 6x")p anp /^(a + 6x")?-i(ic

J x"* (rip — m + l)x'»-i rtp — m + lJ x™

/" x'^'dx _ a!"'-'> + i a{m — ji + 1) /- x"'-'^dx

J (o + ftx")*
~

6 (m — np + 1) (a + 6x»)»' - 1 b(m, — np + l)J {a + bx'')p'

C ^'"'^ _ x^ + i m+n — np + l/- x""*!);

'
•/ (a + 6x»)P~ a7i(p — l)(a + 6x")p-i (in{p — 1) J(a + 6x»)p-i'

-/ (a2 + x2)»
~ 2(n- l)a2L(a2 + x^)"-!

"^
^
"~

'J (a^ + x^)"-!]'

' J (a + 6x2)"
^ 2{n - l)a\_(a + te^)"-! ^

"~
'J (a + 6x2)»-ij'

„, /^ xdx 1 f dz , ,31. I ^— = -
I , where z = x^.

J (a + 6x^2)" 2 J (a + fiz)"

32 r_^^?_ ^ r^ ,

1 r dx

'J (a + bx^)" 2b(n-l)(a + bx^)n-i^ 2b(n-l)J (a + bx^)»-l'

33. r ^ =±log_^L_ + c.
J X (a + ftx") an a + &x»

34 r '^ -^ r '^ '' r
J x^(a + 6x2)" a J x^ (a + ftx^)"- 1 aJ (a + bx^)"

35. r^^ = JLiog(x2 + «Uc.



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46

47

48.

49.

50.
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x^dx X a r dxr X'ax _x a r

I a + bx^~b~bJ a + bx^

f-J^ =J_log^L_-+c.
J x{a + bx^) 2a ^a+bx^

r ax _ \ b r a.

> x^ (a + 6x2)
~

oa; aJ a-\-

/dx,
(ST

6x2

(a + 6x2)2 2a(a + 6x2) 2

1 r dx

2aJ a + 6x2'

Forms containing Va + bx

rxV^T^<fe=-^<^°'-'''^>^^^^+^+c.
J 1562

I
x2 Va + 6x dx

:

2(8a2- 12 a6x + 1562x2) V(a + bxf

1056=
+ 0.

•^ Va + 6x 362

/- x2^ 2(8a2-4a6x + 362x2) ,
—-—- ^

I
-~^^^ = —i ^Va + 6x + C

^ Va + 6x 156'

r dx 1 , Va + bx — Va
, „ , ^ „

I
^

= —;= log-
,
— ;= + C, for a > 0.

/:

X Va + 6x Va Va + 6x + Va
(Zx 2 , , /a + 6x

, „ , ^ntan- i-v /

—

1- C, for o < 0.
\ — a

dx

aXVa + 6x ">

dx — Va + 6x 6r aa

•^ .T-Va + bx ax

or d!

2a'^xVa + 6a

rVa + bxdx „ /
, , , r

. I
= 2Va + 6x+a/

J x J
.

dx

X Va + 6x

Forms containing Vx2 + a^

C(x^ + a?')^dx = -Vx2+a2 + ^log(x + Vx' + o2) + C.

453

3 a*

51

52

58

54,

f{x2 + a^i^dx = -(2x2 + 5a2) Vx2 + a? + ^log(x + Vx^ + a2) + O.
J 8 8

r(,. + „.)fcfe = ^(?!±^ + -ij-/(x2 + a2)t '

J ^ n + 1 n + 1*/

n

. rx(x2+a2)2dx =

dx.

(x2 + a2)

K + 2
-+C.

rx2 (x2 + a2)idx =
I

(2 x2 + a2)v^M^ - ^ log (x + VSm^) + C.

"^ (x2 + a2)i

•/

:log(x + Vx2+a2) + 0.

=+(7,

(x2 + a2)t a2V'a!2 + a2
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55. f
—?^?— = VxM^+C'.

56. f
^'^ = ?Vi^T^ - ^ log(x + V^^T^) + C.

57. r ^'^ =_ ^_ + iog(^ + ^rr^) + c.

58. / r = -log
,

+g-
''x(x2+a2)4 " a + vx2 + a2

59. r_^=-^!±^+c. .

'K^x- + a^)i ^a^x'' ^2a3 ^

/'(x2+a2)idx / „ ,
„ , a + Va^ + x^

. I
i '- = V a^ + x^ — o log 1- C.

J X X

r(x^+a^)idx Vx" + a^
, , / , / , ," o\

, ^
. / ^

—

-—'- = 1- log (x + Vx^ ^- a') + C.
J x^ X

Forms containing Va;^ — a^

63. f{x^ - a2)idx = -Vx2-o2- ^log (x + Vx^-a^) + C.

64. C{x^ - a2)t dx = -(2 x2 - 5 o2) Vx^-a^ +^ log (x + Vx^-a^) + C.
«/ 8 8

n

65. r(g'- ag)'dx = ^(^'- "'')' _J^ r(x'i + a?Y~''dx.
J ^

71 + 1 re + 1-'

x(x2 - a'^fdx = y^ ^ + C.
n + 2

67. Cx^(3? - a^)idx = - (2x2 - ^2) Vx^-o^ - —log (x + Vx^-az) + C.
«/ 8 8

68.

69.

r — = log (x + Vx2 - a2) + C.

(x2-a2)4

(2x

70.
I"
—5^?— = Vx2-(i2+C.

^ (x2-a2)i

71. r_^^ = |V^^3^ + ^log(x + V^^^^=) + Cf.

•^ /™2 _ ^2\i .^ 2
(x2 - a")^

72.
x'^dx

;. r '""^
3

—

-

y^ + log(x + V^^T^) + C.

•^(x2-a2)t Vx2 - a2

r dx 1 ,x,_,/-dx
, „

I
= -sec-i- + C;

I
___-=sec-ix + C.

^x(x2-ani " " *' xVx2-l
73, .

x(x2-a2)t
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74. f ^ = ^5E»!+c.
X':2(s2_a2)i "'^

75.
/;

dx -Vx" - a^ 1 X
+ T-^sec-i-+ G.

76. C{x^-a^)idx r-.
, a

J ~ = va;2 — d' — a cos- 1 - +

77

-+C.
X

^- J ^ =- -^^ + log (x + Vx^-a^) + C.

FOKMS CONTAINING Va^ — X^

78. f(a^- x^)idx = Va2 - x2 + ^ sin- 1 - + C.
"^ 2 2 a

79. r(a2 - a;2)^dx = 5 (5 a2 _ 2 x^ Va^-x^ +^ sin- 1 ? + C.' 8 8 o

80. /(a^- x^)t<fe =^(^ +^ /(„._ ,.)|-^.
*'' m +

1

n + Iv*
'

M + 2

81. rx(o2-x2)2(fo;=-(^5!ll^!)_L+C.
^ 71+2

82. |'x2(o2_ s2)i(ir = |(2x2- a2) Va2- x2 + ^siii-i- + G.

^„ r dx . .X r dx . ,
83. / - = sm-i-;

/
= sm-ix.

•' (a2-x2)l « "^ Vl-x2

84. r
'^ = ? +C.

^ /„2 ,2\l /)2 -v//.2 _ -..2

•^ (a2-x2)t

r x^dx X r-z 5 ,
a^ . iX , _,

i. /
= va^ — x^ H sm- 1 - + (7.

''(a2-x2)^ 2 .
2 a

„„ r x^dx X . ,x „
87. / = . _siTi-i-+ r7.

•^ (a2-a;2)f Va^ _ x^ a

88.
I

= Va2 — x2 + -i ^— I (fe.

^(a2_x2)i m m •''(a2_a;2)l

r dx 1

,

X „
89. / r = -log +0.

*^x(o2_x2)i <* a + Va2-x2

90. r ^ =_^^«!EZ+o.
^x2(a2-x2)4 "''^

„, /• dx Va^ — x^
.

1 , X , „
91. / =

1 log + C.

•'
x8 {cfl - x2)i 2 a2x2 2 a8 „ + Va^ - x^
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oo r(a^-a;^)^j n 5 1
a + Va^-a;^

92. / ^ i-dx = sa^ — x^— a log h G.
J X X

£3. / -i i-dx = sin-i-+C.
J x^ X a

Forms containing V'2aa; — x% V2ax + x^

94. rV2ax-x2(ix = ?-=^V2aa;-x2 + ^vers-i-+ C.
J 2 % a

95.
j

— = vers- ' - ; I = vers- 1 x + C

96. I x™V2 ax — x^dx = 5^ — + - '
I x'»-W2ax — x^dx.

J m+2 m+2 J

Q_ , dx V2 ox — x^ , ?n — 1 r dx. /" dx _ V2 ax — x'- ?n — 1 z'

^ x" \/2 nx, — t2 (2m — l)ax"' (2m — l)a.^ x"'-ix"'V2ax-x2 (2m-l)ax"' (2m- l)a^ x'"-V2ax- x'^

.„ r x"'dx _ x""-! V2ax — x'-* (2m — l)a / x^-'dx

^ V2 ox — x2 ™ m -' -,

• V2ax — x''
^ _ (2ax — x^)^ m— 3 r V2 ax — x^

ax — X''

„„ /•V2ax-x2, (2ax-x2)t m-3 rv2ax — x^
99. I dx =—i '-

I dx.
•z X"' (2m — 3)ax'» (2to — 3)a"' x™-!

1 nr. r a; 5J 3 a^ + ox — 2 x" /T T a' , x
100. I X V2 ax — x^dx = ! V2 ox — x^ H vers- 1 -

.

•^ 6 ^2 a

101. f ^^ ^_V2ax-x-^^^
"^ xV2ax — x2 ox

102. C ^ =- V2a.T.-.T.2 + „vp.rs-lg+r7
"^ V 2 ax — x^ a

f x^dx x + 3a /- ; 3 , ,J- ^
103. I r = —V2 ax — x^ + - a^ vers- 1 - + G.

•^ V2ax-x'-= 2 2 a

,«^ /'V'2ax — X-, /- X
104. I dx = V2 ax — x"^ + a vers- ^ - + (

'.

•^ X a

f V2ax- x2^^ 2 V2 ax - x2 ,x • „^"°-
I

5 ™ = vers- 1 - + C.
•> x^ X a

106.
rV2ax-x^^^_(2ax-x2).

•^ x8 3ax8

107. r—^?— = ^-"
+ c.

• V2 OX - x° __(2ax-x2)l
x'

~
3ax8

dx _ X— a

(2 ox - x2)l a^ V2ax-x2

108./^^ =—^=H-C.
(2ax-x'')t aV2ax-x2

109. Jf{x, V2ax-x2) dx = Jf(2 + a, Va^- 32) dz, where z = x-a.

110. f ,
= = log(x + a + V2 ox + x2) + C.^ V2 ax + x2

111. JF{x, V2ax + iE2)dx =/^(z - a, Vz--=-a2)dz, wher? ? = x + a.
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Forms containing a + bx ± cx^

2 ^ , 2ca; + 6
tan-i -

+ ox + cx2 V4ac-62 y/iaa-^
112.

I

— - tan-i-— 4- 0, when 6^ < 4 gc.
J a + Ox + CX^ -v/4. /»/• _ W a/4 n/! _ W

113.
I

= - log ; —;z=^ + C, when 6^ > 4 ac.
J a + bx + cx' v'62_4ac 2cx + 6 + Vft^- 4ac

114. r ^5 = 1 ,^gVg+4ac + 2ex-6
_|^ ^^a + 6x-cx2 V62 + 4ac V62 + 4ac - 2cx + 6

115. f ^ = ^lng(2fix4-h4-2v^Va + 6x4-ex2>4-0.
•^ Va + 6x + ca;2 Vc

116. fVa + 6x +cx2dx

= ^"'^ "*" ''

Va + Ox + ex'' - ^^~ '^'^
log(2cx + 6 + 2 VeVa+ to + cx'^) + O.

,,_ r dx 1-1 2cx— 6 , „
117.

I
=—-an-i—

—

+(7.
"^ Va + 6x — cx^ vc vP+4ac

,,„ /^ / ; ;, 2cx — 6 / 7 3 b^+iac . , 2cx —

5

118. / Va + bx—cx^dx = Va + 6x— cx^ H sm-i —

—

+ V.

119.
I

— — = log(2cx + 6 + 2 VcVa + bx + cx^)+ V.
'' -y/a + bx+ cx^ '^ lA

120. r ^ _ ^-^'^ + ^-I^^Asin-i ^^-^
^O. '1-^

•^ Va + 6x - cx2 « 2ct V62 + 4 ac

Other Algebraic Forms

121. f^h±ldx. = V(a + X) (6 + x) + (a - 6) log (Va + x + Vb + x) + G.
J \ b + x

122. r /^L:r^^ = V(a - X) (6 + X) + (a + 5) sin- i-i/^-i^ + <"•

^\6+x \a+o

123. r^/^+-5 (Zx = - V(a + x)(6-x) - (a + 6) sin- '•x/^^ + C.
J\6 — X f

\a + o

124. rJl±^dx = -Vl-x2+sin-ix,+ C. '

•^ V(x-aW-x) >'/3-«

Exponential and Trigonometric Forms
'

126 Ca^dx = -^—+ C. • 129. / sinxdx =— cosx + C.

J log a -^

127. fe^^iZx = e^+ C: 130. fcosxiix = sinx + C.

128. re^dx =—+ C. 131. Ttanxcfe = logsecx =— logcosx + C.

132. fcot xdx = log sin x+ C.

secxox = j = log(.secx + tanx) = log tan
\^^

+
2
j + '^-
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coseo xdx = I
= log (cosec x — cot x) = log tan - + G.

^ sina; 2

136.

137

135. fsec^xdx = ta,nx + C. 138.
J

coseo soot s(i)5=- cosec a; + C.

.. rcosec2xdx,=-cotx+C. 139. Jsin^ ado; = | - - sin 2 a; + C.

. Csecxtanxdx = seca; + G. 140. Jcos^xxtx = | + -sin2z + C.

, ., r . , slnx-ixcosa; n— 1 /" . „ ,

141.
I
sin»X(Jx = 1

I
sin''-2a^.

J n ji /

,.„ /• , cos«-ixsina; n — 1 / _ „ ,

142.
I
cos»a;da; = —

-i | cos»-2xdx.
/ n n >/

'

-/ sin^x n — lsin"-ix n—1-/ sin

/cte _ 1 sin X 71 — 2 /"

cos"x n— lcos»-ix n — l-zc
144

sm»-2x

dx 1 sinx , n — 2 f dx

cos"-^x

cos^-iisino + ix m —

1

,,- r . , cos^-J^isinn + ix m — 1 r _„ ., . ,
145. / cos"'xsin»xax — 1 ( cos™-^xsin''xax.

J m+ n m + nJ

•An r __ • J sin»-ixcos™+ix n — 1 r , « j146. I cos™xsm»iax = 1 ( cos'»xsm»j-2xax.
' m + n m + nJ

/dx _ 1 1 m + n — 2/" dx

sin^xcosnx n—1 sin" - 1 x cos" - ^

x

n — 1 -/ ;

147

148

sin^xcos^-^x

dx 1 1 m + n—2 r dx/dx _ 1 1 m + n—2r
sin^xcos"! m— 1 sin^-ixcosn-^x m— 1 -/sisin'"-2xcos"x

..„ /'oos"xdx_ cos'n + ix m — n + 2 /"oos^xdx

J sin»x (n — l)sin»-ix n — 1 -•' sin'-i^x

/cos^xdx _ cos^-^x m — 1 fcos^-'-'xdx

sin»x (m — m)sin»-ix m—nJ sin»x
150

^ sm»x (m —

151. I sinx cos»xdx = f- G.
J n+

1

/sin" i" ^ X
sin»x coBxdx = 1- G.

n + 1

sin" + 1 x

n +
tan" - 1

X

154

tan»xdx = | tan»-2a;dx + C.
n — 1 J

/cot**— ^ X /"

oot»xdx= ( cot»-2xdx + C.
n — 1 •)

ICC C- -J sin(m + n)x sin(m— n^x „
155. I sin Tnx sin nxdx = i —'-— i 'sL+a.

J 2(m + n) 2(m-n)

icn C J sin(m + n)x sin(m — n)x „
156. I cosmxcosnaxix =—i

—

-—'-—\- —i l!iz + c
•' 2(m + n) 2(m-n)

.-„ C . - cos (m-\- rC)x cos (m — nl x
157. I

sm mx cos jixdx = ^

—

—i ^ ZlsL+G
J 2(m + n) 2(m-n)-

158.
/
—-4 = r^ tan- 1( -1/^^ tan ^ ) + C, wheno>6.

J a + bcosx ^gp. _ j2 \\a + 6 2/
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V6 — a tan - + V6 + a

159. f
—— =z log + C, when a<b.

2

atan- + 6
/I

daj 2 '2
160. ( =

,

- tan-l

—

+ a, whm a ^ b.
I a + 6 sma; ^„2 _ m Vo.a _ h2

—-^-^—=
,

:log + 0, when a < 6.
a + 6sma; VfiS-n^ -^-^^ . .. . ,/S—15

2

6 sina; Va^ - 6^ Va^ _ fcz

atan- + b-V62_a^

6sina;-V6^3^"°atan^ +6+V6^
2

162. f- ^ = Lu.n-i(^J^ + c.

ICO r^^ • J e«^(asin7ia;— ncosnx)
, _, /"_ . , e^(sinx — cosi) ^163.

I
e^sinna^ =—^ '- + C; | e^smxdx = —^ '- + C.

J a2 + n^ ' J 2

a;e°»da; =—- (as - 1) + O.
a^

x^e^dx = I
xf'-i-e^dx.

a a J

m log a m log a i/

C ^''^ '^^ logo ra^dx
16o,

/a^oa; _ a^ log a r a^ax

X™ (to— 1)X™-1 TO— l.'X'"-!

, r , e^cos»-^»(acosx + jisinx) .n(n — \) r . ,

169. I e«^oos»xdx = ^r
-' + —

^

-^
( e<^co^-^xdx.

x" COS oxdx =—T— (ox sin ox + m cos ax) ^—-

—

'- / x™- ^^ cos oxdx.
a^ a^ '

Logarithmic Forms

171. flogxdx = X logx — X + C.

172. f-^ = log(logx) + logx + - log^x + .
.

•

.

J logx ^

173. r-^ = log(logx) + C.
•/ xlogx

174. plogxdx = ^'•+{^ - (^] + O.

175. j6-logxdx =—^--J -<£».

176. fx'nlog^xdx^-^^^log^x ^ fx^log^-ixcix.
./ TO+l OT + 1«'

Z' X"^ _ X'^ + 1 TO+l / X"'fc
'•''"''

J i^i^"" (n-l)log"-ix n-lJlog«-ix'
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Absolute convergence, 220

Acceleration, 92

Approximate formulas, 287

Archimedes, spiral of, 274

Area, moment of, 408 ; center of, 408

Areas of plane curves, polar coordinates,

370, 406 ; rectangular coSrdinates, 365,

402

Areas of surfaces, 381, 413

Asymptotes, 249

Auxiliary equation, 434

Bending, 113

Binomial difierentials, 340

Binomial Theorem, 1, 99

Cardioid, 273

Catenary, 272

Cauchy's ratio test, 218

Center, of area, 408 ; of gravity, 409

Change of variables, 148 .

Circle of curvature, 178

Cissold, 271

Computation by series of e, 238 ; of loga-

rithms, 235 ; of IT, 235

Concave up, 126 ;
down, 126

Conchoid of Nioomedes, 272

Conditional convergence, 221

Cone, 2

Conjugate points, 260

Constant, 8 ; absolute, 8 ;
arbitrary, 8 ;

numerical, 8 ; of integration, 807

Continuity of functions, 14

Convergency, 214

Coordinates of center of curvature, 178

Cosine curve, 237

Critical values, 110

Cubical parabola, 271

Curvature, center of, 178 ;
circle of, 178

;

definition, 155 ; radius of, 155

Curve tracing, 128

Curves in space, 262

Cusp, 259

Cycloid, 82, 272

Cylinder, 2

Decreasing function, 106

Definite integration, 314

Degree of differential equation, 426

Derivative, definition, 27 ,

Derivative of arc, 184

Differential coefficient, 27

Differential equations, 421

Differential of an area, 814

Differentials, 141

Differentiation, 29 ; of constant, 36 ; of

exponentials, 48 ; of function of a func-

tion, 44 ; of implicit function, 69 ; of

inverse circular functions, 61 ; of in-

verse function, 45 ; of logarithm, 46,

50 ; of power, 39 ; of product, 38 ; of

quotient, 40 ; of sum, 37 ; of trigono-

metrical functions, 54

Double point, 256

Envelopes, 205

Equiangular spiral, 274

Evolute of a curve, 182

Expansion of functions, 227

Exponential curve, 275

Family of curves, 205

Fluid pressure, 388

Fluxions, 25

Folium of Descartes, 273

Formulas for reference, 1

Function, continuity of, 14; definition,

7
;
graph of, 16 ;

implicit, 69 ; increas-

ing, decreasing, 106 ; inverse, 45 ; many-

valued, 17 ; of a function, 44

461
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Gravity, center of, 409

Greek alphabet, 3

Helix, 263

Homogeneous differential equation, 426

Hyperbolic spiral, 274

Hypocycloid, 273

Increasing functions, 106

Increments, 25

Indeterminate forms, 170

Infinitesimal, 13, 132

Infinity, 18

Inflection, 125

Integral curves, 446 ; definition, 314 ; in-

definite, 281

Integraph, 443

Integration, by rational fractions, 325

by parts, 347 ; by rationalization, 835

by transformation, 343 ; definition, 279

mechanical, 443

Interpolation, 237

Involute, 187

Laplace, 25

Leibnitz, 32 ; formula, 99

Lemnisoate, 272

Length of curves, 375

Lima^on, 274

Limit, interchange of, 320 ; of a variable,

11 ; of integration, 316 ; theory of, 11

Linear differential equation, 427

Lituus, 274

Logarithmic curve, 275 ; spiral, 274

Logarithms, Briggs's, 237 ; common, 237
;

Napierian, 237

Maolaurin's Theorem and Series, 280

'Maxima and minima, 108

Mean value, extended theorem of, 166

;

theorem of, 165

Mechanical integration, 443

Moment of area, 408

Moment of inertia, 410

Multiple roots, 69

Natural logarithms, 4

Newton, 25

Node, 258

Normal, 76

Normal line; 266

Normal plane, 262

Order of differential equations, 426

Ordinary point, 255

Osculation, 259

Osgood, 215

Parabola, 277 ; cubic, 271 ; semicubical,

271 ; spiral, 275

Parabolic rule, 449

Parameter, 6, 205

Parametric equations, 79

Partial derivatives, 191 ; integration, 393

Pierpont, 245

Planimeter, polar, 446

Points, conjugate, 260 ; end, 260 ; isolated,

260 ; of inflection, 125 ; salient, 260
;

singular, 255 ; turning, 108

Polar planimeter, 446

Pressure, fluid, 888

Probability curve, 275

Quadratic equation, 1

Radius of curvature, 159

Rates, 141

Rational fractions, 325

Reciprocal spiral, 274

Reduction formulas, 350

Rolle's Theorem, 164

Secant curve, 275

Semicubical parabola, 271

Series, alternating, 220 ; arithmetical,

1 ; convergent, 214 ; divergent, 214
;

geometrical, 1 ; infinite, 213 ; noncon-

vergent, 214 ; oscillating, 215
;
power,

223

Signs of trigonometric functions, 3

Simpson's rule, 449

Sine curve, 278

Singular points, 255

Slope of curve, 73

Solution of differential equations, 422

Sphere, 2

Stirling, 230

Strophoid, 274

Subnormal, 77

Subtangent, 77

Successive differentiation, 97

Successive integration, 393

Surface, area of, 381, 413
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Tangsnt, to plane curves, 76 ; to space

. curves, 262

Tangfent curve, 276

JTangent line to surface, 264

Tangent plane, 264

Taylor's Series, Theorem, 228

Test, comparison, 217

Total differentiation, 194

Trajectory, orthogonal, 308

Trapezoidal rule, 448

Triple integration, 417

Variable, definition, 6 ; dependent, 7
;

independent, 7

Velocity, 90

Volumes of solids, 377, 417

Witch of Agnesi. 271

Work, 389
















