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ABSTRACT 

An adaptive formation controller is developed to position nodes within a mobile 

Network Control System (NCS) composed of heterogeneous agents. Each node is 

represented with distinct capabilities and constraints with regard to communications, 

sensing, and mobility. Metrics used to quantify network robustness are developed for 

weighted graphs. Formation control is implemented to position nodes relative to virtual 

leaders. A utility function that encapsulates the sensing, communications, robustness, and 

dynamics of the NCS is designed and shown to be submodular. Submodular function 

maximization is then used to adaptively recompute the optimal formation in 

simulation. Submodularity is a property of set functions, which guarantees near-optimal 

performance if a greedy algorithm is used to iteratively select node locations. This 

effectually reduces the NP-hard combinatorial optimization problem to a 

polynomial time process. The greedy algorithm is used to adaptively recompute the 

optimal formation in simulation. This controller reduces the complexity of 

employing large numbers of autonomous agents in support of competing objectives. 
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CHAPTER 1:
Introduction

In this thesis, we seek to develop a methodology to control a Network Control System
(NCS) composed of heterogeneous nodes. The NCS consists of heterogenous agents which
include unmanned and manned assets, whereby each node has communications, sensing
and mobility capabilities and constraints. Given potentially competing objectives between
multiple virtual leaders and tasks, we present a framework for controlling the network nodes
as a single system. Wewill also address metrics for ensuring adequate performance in terms
of controllability, observability, and robustness of a Linear Time Invariant (LTI) system.
These metrics are incorporated into a utility function that also incorporates the sensing,
mobility, and communication constraints. This utility function is shown to be submodular.
This property allows us to use the greedy algorithm to solve a combinatorial optimization
in polynomial time. This enables the generation of near-optimal formations that are used to
dynamically re-position agents relative to the uncontrolled manned platforms represented
as virtual leaders.

1.1 Motivation
Unmanned vehicles are becoming increasingly prevalent in all sectors. Many of these
unmanned systems are already being used collaboratively in groups. Conceivably, these
systems will soon operate in all domains as a single organized system. Each additional
unmanned system either provides a novel capability or reduces the cost of an additional
operator in an often adverse environment. Despite these benefits, each system sharply
increases the size of the necessary support network. When multiple unmanned systems
are employed across multiple domains, coordinating those systems becomes increasingly
complex, requiring even more manning. Thus, creating an NCS to control these disparate
unmanned vehicles as a single system would reduce the complexity and manning necessary
to support such groups.

1



1.2 Problem Statement
This thesis will contribute to research on collaborative robots with the ultimate goal of
reducing the manning necessary to control a network of multi-domain unmanned systems.
By decreasing the overhead required to coordinate a complex network of mobile sensors,
greater flexibility and utility are provided to the operator, and costs can also be reduced. We
extend current notions of graph robustness to weighted graphs and develop a submodular
utility function for an NCS supportingmultiple objectives. The applicability of this research
extends beyond the case study examined in this thesis. Examples include search and
rescue, surveying areas impacted by natural disasters, fighting wild fires, and oceanographic
operations.

1.3 Case Scenario
In November of 2017, the Consortium for Robotics and Unmanned Systems Education
and Research (CRUSER) at the Naval Postgraduate School (NPS) conducted a Multi-
Thread Experiment (MTX) on San Clemente Island (SCI), CA. The MTX provides a
realistic multi-domain scenario to test and increase the autonomy of collaborative unmanned
systems. The NCS at the MTX consists of aerial, surface, and undersea assets. These
unmanned vehicles and a Navy Destroyer (DDG) operate in support of a Naval Special
Warfare (NSW) unit conducting a mission to land on SCI and act on a target. The ScanEagle
Unmanned Aerial Vehicle (UAV) shown in Figure 1.1 provides Intelligence, Surveillance,
and Reconnaissance (ISR) support with the capability of transmitting live video footage
through the network. The SeaFox, a speed-boat sized Unmanned Surface Vehicle (USV)
shown in Figure 1.2 provides transportation and limited ISR capabilities with surface
search RADAR. The REMUS 100 Unmanned Underwater Vehicle (UUV) pictured in
Figure 1.3 is used to map the seafloor with SONAR during Intelligence Preparation of the
Battlefield (IPB) before the NSW unit lands on SCI.

Wemodel this NCS as a graph of nodes and links. The unmanned vehicles, NSWunit, target,
and support ship (DDG) comprise the nodes of this graph. These nodes are connected by
links which represent the sensing and communication relations between these nodes. Once
the system model is defined, a controller for the system can be developed. In this thesis
we implement high-level control, rather than design a control that specifies exact rudder
angles or shaft speeds (for example), we design a controller that sends position and velocity

2



Figure 1.1. The ScanEagle UAV  platform. 
Photograph by ENS Ben Keegan, NPS.

Figure 1.2. The SeaFox USV platform.

Source: Naval Postgraduate School, https://my.nps.edu/web/cavr/vehicles.

commands to the agents in the NCS. This controller acts as a secondary controller on
top of the primary controller onboard the individual agents. Thus, when we use the word
controller, we refer to this secondary, high-level controller. This controller must position
nodes to maintain the ability to communicate and sense the target and any other threats.

The system works collectively to achieve an objective by driving its state to a desired
optimal state for achieving said objective. However, determining this optimal state is often
costly and impossible to execute in real-time, so a strategy to approximate this optimal
configuration is required rather than attempting to determine it exactly. The development
of an optimization function fundamentally seeks to drive a system to achieve an optimality
criterion, often by maximizing utility or minimizing cost.

One approach to optimal coverage is known as submodular function maximization. If a
system is submodular, a near optimal solution can be approximated using a greedy algorithm.

3



Figure 1.3. The Remus 100 UUV platform.

Source: Naval Postgraduate School, https://my.nps.edu/web/cavr/vehicles.

This method attempts to solve the optimization problem by using the greedy algorithm to
iteratively adding elements to a set to maximize the increase in the utility function. This
process results in a near optimal solution that can be evaluated in polynomial time [1], [2].

The evaluation of the greedy algorithm requires a utility function to quantify the utility
of placing a node in a certain location. Graph theoretic robustness measures described
by Ellens and Kooij are extended to quantify the robustness of weighted graphs and are
incorporated into the utility function [3]. The added benefit of sensing each location is also
incorporated into the utility function. The performance of the developed control algorithm
is evaluated in simulation and will be tested at future MTX events.

1.4 Overview
In Chapter 2 we review fundamental concepts relating to NCS, optimal coverage, graph
theory, and control theory. Then in Chapter 3 we develop and evaluate robustness metrics
for weighted networks. We then implement a near-optimal adaptive formation controller
with respect to a submodular utility function in Chapter 4. In Chapter 5 we analyze the
performance of our controller. We then map our problem to implement adaptive policies
using adaptive submodularity in Chapter 6. Finally, we enumerate open areas of research
and summarize our results in Chapter 7.

4



CHAPTER 2:
Background

First, we include a brief literature reviewof formation control and optimal coverage problems
in Sections 2.1 and 2.2, respectively. We then introduce fundamental concepts from graph
theory in and control theory, Sections 2.3 and 2.4, respectively.

2.1 Network Control Systems
A NCS can be described as a single system composed of multiple independent agents
that exchange feedback via networked communications to control the overall state of the
system [4]. In recent years, a considerable amount of research has been devoted to NCS.
The agents that comprise NCS can either be static or dynamic. An example of a static
NCS is provided in [2], which considers a simple model of the European power grid and
the placement of High Voltage Direct Current (HVDC) and Flexible Alternating Current
Transmission Device (FACTS) nodes to improve the stability of the grid. Our NCS could
include static nodes as in [2]; however, we choose to focus on the case where the nodes are
mobile (to clarify, these mobile nodes are still permitted to remain stationary).

AmobileNCSdiffers from its static counterpart inmany regards. For instance, the properties
surrounding communications cannot be assumed to be time invariant. Communication
delays that are time-varying and imperfect information exchange must be taken into account
to the design process. As a consequence, it is imperative that the communications and
controls are robust and stable across a broad range of operating conditions. In [5], Mesbahi
provides a comprehensive overview of topics contained within the domain of NCS, some
of which include

• Consensus: reaching an agreement on the value of a state variable.
• Formations: controlling the agents to assume a specific orientation.
• Assignments: tasking agents to (optimally) complete an objective.
• Flocking: utilizing simple distributed control laws to emulate swarming behaviors
observed in many animal species.

• Coverage: distributing sensors to observe or estimate an environmental variable.

5



Flocking is a common means of controlling mobile NCS because control is distributed
and therefore scalable to massive networks. Flocking behavior is regulated by three rules
identified by Reynolds; cohesion (staying close to other network agents), separation (avoid-
ing collisions with other agents), and alignment (matching the velocity of neighboring
agents) [6]. Olfati-Saber provides multiple flocking algorithms using artificial potentials
and stability anaylsis in [7]. Li et al also provide a framework for flocking control to opti-
mize communications [8]. Even though flocking behaviors allow the creation of scalable,
distributed control, we wish to implement a more deterministic approach. This approach is
selected such that node configurations can be explicitly specified. Thus, instead a formation
controller is used to position nodes within the network.

In [9], Olfati-Saber, Fax, and Murray outline a common framework for the analysis of
consensus and collaborative problems within NCS. Advances in collaborative control
(including formation control) are covered in [10]–[15]. Qin, Ma, Shi, and Wang provide
details regarding the control of mobile NCS with heterogenous agents in [14]. In [4],
Zhang, Han, and Yu provide a survey of communication problems in NCS. We extend
this work with formation control to address issues of time-varying formations that are
dynamically recomputed to satisfy competing objectives. One such objective is to maintain
robust communications. Schuresko and Cortés design and analyze a controller to maintain
algebraic connectivity [16], which is a proposed robustness metric based on the graph
laplacian (See Subsections 2.3.3 and 3.3.6) [3].

Oh, Park, andAhn cover recent research on formation control in [17], focusing on centralized
and distributed approaches. In general, distributed approaches are attractive because they
are scalable to larger numbers of agents due to the reduced need for communication.
This also makes an NCS with distributed control more robust due to the reduced need
for communication. However, centralized approaches make reaching a global consensus
easier. Two implementations of formation control are provided in [18] and [19]. In [19],
necessary and sufficient conditions are introduced for controlling time-varying formations
consisting of homogenous agents. We adapt the formation controller described in [19] to
drive heterogeneous agents to formations that are reassigned tomaximize an utility function.

6



2.2 Optimal Coverage
Numerous techniques have been developed to address coverage optimization problems.
The objective of coverage optimization problems is to position nodes of a NCS in an
environment, subject to constraints, in order to maximize utility or minimize cost. Given
a fixed set of sensor locations subject to area constraints, [20] determines the optimal
configuration to reduce the cost of network maintenance using center generalized Voronoi
configurations. The work in [21] constructs density functions encoding coverage utility
and uses gradient descent methods to optimally position mobile sensing networks. This
work was extended in [22] to address optimization for networks where the nodes are subject
to communication and anisotropic sensing constraints. In [23], an optimization scheme is
presented to minimize the detection time predicted using the Ensemble Cumulative Sum
Algorithm. Another approach is discussed in [24], [2], and [1] utilizing submodularity, a
property of set functions. Of the many available approaches to combinatorial optimization
problems, we utilize submodular function maximization.

Submodularity quantifies the property of diminishing returns, i.e., adding an element to a
larger set will increase utility less than adding an element to a smaller set would. Krause
and Golovin prove that for problems that satisfy this property, a simple greedy algorithm
can be used to achieve near optimal performance [1]. Sensor placement is demonstrated
in [2] to maximize network controllability and observability. We wish to extend this
work by designing robust networks. We will quantify network robustness in terms of
metrics discussed in Chapter 3. We discuss submodular function maximization and our
implementation of submodular function maximization in greater detail in Section 4.2. In
Chapter 6 we discuss the extension of our problem to adaptive submodularity to adaptively
select optimal policies for our coverage problem. By utilitzing adaptive submodularity, we
can use feedback to update our policies to achieve improved performance of the NCS.

2.3 Graph Theory
For a thorough discussion of graph theory and its relation to NCS, see Reference [5]. In
general, a graphG is the theoretic representation of a collection of nodes and the connections
that exist between them. For instance, a collection of agents and the communication links
that exist between them. We define graph G = (V, E) to be the collection of vertices V

(nodes) and edges E (links) which connect a subset of V . We describe a singular vertex as

7



Figure 2.1. Examples of basic graphs.

(a) An undirected graph. (b) A directed graph. (c) A weighted undirected graph.
Adapted from [5].

vi and the edge between adjacent vertices vi and v j as ei j [5].

In this thesis, all graphs will be a simple graph, meaning that at most one edge will exist
between each pair of vertices (as opposed to a multigraph where more than one edge may
exist). We will also omit self-loops (i.e., for ei j, i , j). Figure 2.1(a) shows an example
of an undirected graph. If the edges are directed, it is accordingly referred to as a directed
graph or digraph, as in Figure 2.1(b). We also make use of the concept of weighted
graphs G = (V, E, w), where w is the set of weights corresponding to the edges E as
shown in Figure 2.1(c). For example, an edge weight could quantify the strength of the
communication link between two nodes.

2.3.1 Adjacency Matrix
Although it is intuitive to represent these networks graphically, it is often more useful to
represent the graph using matrices. The adjacency matrix A(G) encodes the adjacency of
vertices i and j where

Ai j(G) =

wi j if ei j ∈ E

0 otherwise
. (2.1)

8



If the graph is undirected, the adjacency matrix is always symmetric. If the graph is
unweighted, wi j = 1 [5]. For example, in the case of the digraph in Figure 2.1(b), the
adjacency matrix is

A(G) =


0 1 1 1
0 0 1 1
0 0 0 1
0 0 1 0


,

and the weighted adjacency matrix of the graph in Figure 2.1(c) is

A(G) =


0.0 0.5 1.0 0.4
0.5 0.0 0.2 0.7
1.0 0.2 0.0 3.4
0.4 0.7 3.4 0.0


.

2.3.2 Degree Matrix
For an undirected graph, the degree of a vertex δ(vi) quantifies the number of vertices
adjacent to the vertex vi. The degree can also be seen as the number of edges connected
to vertex vi. A graph is said to be complete if the degree of every vertex is n − 1 [5]. The
degrees of the vertices in the graph in Figure 2.1(a) are

δ(v1) = δ(v2) = δ(v3) = δ(v4) = 3

These can be assembled in a diagonal degree matrix ∆(G). For an undirected graph G with
n vertices [5],

∆(G) =


δ(v1) 0 . . . 0

0 δ(v2) . . . 0
...

...
. . .

...

0 0 . . . δ(vn)


. (2.2)

For directed graphs, indegree and outdegree are used to differentiate between inward directed
edges that terminate at vertex vi and outward directed edges that originate at vertex vi [5],

9



2.3.3 The Laplacian
The Laplacian is important as it relates to the controllability of our NCS [5]. The graph
Laplacian L(G) is simply defined as the difference of the degree matrix ∆(G) and the
adjacency matrix A(G) (i.e., L(G) = ∆(G) −A(G)) [5]. Thus, the Laplacian takes the form

Li j(G) =


δi if i = j

−1 if ei j ∈ E

0 otherwise

. (2.3)

The Laplacian of the graph in Figure 2.1(a) is

L(G) =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


,

The Laplacian for undirected graphs has a few special properties; it is symmetric, positive
semidefinite, and the rows sum to zero. Thus, its eigenvalues are real, non-negative, and
the smallest one is zero [3]. These eigenvalues (λ) are commonly ordered such that

0 = λ1 ≤ λ2 ≤ · · · ≤ λn. (2.4)

For directed graphs we will use the outdegree to compute the Laplacian (note, the properties
discussed in the previous paragraph do not hold for digraphs). Thus for Figure 2.1(b), the
Laplacian is

L(G) =


3 −1 −1 −1
0 2 −1 −1
0 0 1 −1
0 0 −1 1


,
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2.4 Control Theory
Modern control theory provides many tools to analyze and design controllers for a wide
variety of enclosed systems. By modeling a system in state-space representation, we can
determine the controllability and observability of nonlinear and linear systems. Liu and
Barabási provide extensions to NCS in [25].

2.4.1 State-Space Representation
Any dynamic system with n states, p inputs, and q outputs, can be represented in the most
general state-space representation as

Ûx(t) = f(t, x(t), u(t)), (2.5)

y(t) = h(t, x(t), u(t)), (2.6)

where the x(t) ∈ Rn represents the state of the systemat time t, u(t) ∈ Rp represents the inputs
to the system, and y(t) ∈ Rq represents measurements. For instance, x(t) could represent
the pose of a UAV, u(t) the commands sent to its control surfaces and propulsion system,
and y(t) the measurements generated by the onboard Inertial Measurement Unit (IMU).

If f(·) and h(·) are linear (or approximately linear around an operating point), the state-space
representation becomes

Ûx(t) = A(t)x(t) + B(t)u(t), (2.7)

y(t) = C(t)x(t) + D(t)u(t), (2.8)

where A(t) ∈ Rn×n is the state matrix, B(t) ∈ Rn×p is the input matrix, C(t) ∈ Rq×n is the
output matrix, and D(t) ∈ Rq×p is the feedforward matrix. If the system is time-invariant,
A, B, C, and D lose their dependence on time, in which case the system is referred to as an
LTI system.

Previously, state-space representation and analysis have been limited to singular systems.
However, as computational power and our ability to mapmore complex networks of systems
have grown, the problem of controlling networks has become more tractable. In [25], Liu
and Barabási provide a thorough coverage of control theory as applied to these complex
networks. For a NCS, the weighted adjacency matrix is used as the state matrix A(t) for the
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system. In this way, the state matrix represents how the nodes are connected. The amount
of traffic passing through node i is denoted by the state variable xi(t). The populated cells
in the input matrix B(t) indicate which nodes are directly controlled by the input signal u(t)
and the influence the input has on those nodes [25].

2.4.2 Controllability
A system is controllable if, starting from any initial condition, it can be driven in a finite
amount of time to a desired final state [26]. Several tools exist to determine the controllability
of LTI systems. For a system with n states, the controllability rank criterion guarantees that
if the controllability matrix has full rank, i.e. rank(Mc) = n, the system is controllable,
where the controllability matrix is

Mc = [B,AB,A2B, . . . ,An−1B]. (2.9)

This metric is particularly binary, simply indicated that if the system is controllable or
not. However, to gain more resolution on the controllability of a system the contollability
Grammian Wc(t) can be used. The symmetric positive definite controllability Grammian
is related to the amount of input energy required to reach a given state from the initial
condition [2]. The finite horizon controllability Grammian is defined

Wc(t) =
∫ t

0
eAτBBT eA

T τdτ ∈ Rnxn. (2.10)

The finite horizonGramian can be used to analyze both stable and unstable systems, however
it is harder to evaluate than the infinite horizon Gramian

(
lim
t→∞

Wc(t)
)
. The infinite horizon

Gramian can instead be determined by solving a Lyapunov equation

AWc +WcAT + BBT = 0. (2.11)

This advantage becomes greater as the size of the network increases [2].

Theories of structural controllability have also been developed for NCS. In [25] and [27],
the theories of structural controllability developed by Lin are covered thoroughly to prove
controllability for state matrices where the structure is known but the value of its nonzero
elements are not precisely known or vary with time. With concepts from structural control-
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lability, the minimum number of "driver nodes" (nodes that are directly controlled) can be
more easily identified in order to ensure controllability, rather than conducting an exhaustive
brute force search (i.e., to determine the structure of B(t)) [27].

2.4.3 Observability
A system is observable if, given a particular subset of state measurements, it is possible to
estimate all states in the system. Analogous tools exist to test for observability in a similar
manner as controllability. For an LTI system, the observability rank criterion states if the
observability matrix

Mo =


C
CA
...

CAn−1


(2.12)

has full rank (i.e., rank(Mo) = n), then the system is observable. Numerous other tests exist
to determine the observability of a system, including an observability Gramian; however
we will not make use of them in this thesis [25].
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CHAPTER 3:
Robust Networks

Numerous graph theoretic metrics have been proposed to quantify the robustness of graphs.
As the physical architecture of NCS lend themselves naturally to being represented by
graphs, it is natural that we extend these robustness metrics to our NCS. Ellens and
Kooij provide a comprehensive spread of proposed metrics to quantify network robustness
in [3]. Yang et al. use four of these metrics to demonstrate the robust growth of networks
in simulation. [28]. In this chapter, we describe desirable characteristics of a robustness
metric (Section 3.1). We then describe proposed robustness metrics (Section 3.3) and
provide results showing the evolution of these metrics for the growth of a generalized
network (Section 3.4). (Note: We use "network" and "graph" (the representation of the
network) interchangeably).

3.1 Desired Characteristics
In order to better quantify network robustness, we identify subdivisions of robustness and
attempt to increase the amount of information encapsulated in our robustness metric. In
relation to networks, robustness is a vague and imprecisely defined term. Thus, we identify
four more intuitive factors which affect network robustness. We connect these four factors
to four subdivisions of robustness that we define as resiliency, toughness, flexibility, and
strength. We then connect these subdivisions to metrics defined in Section 3.3. In our
development of a single robustness metric we require that it quantify these four factors:

• Edge addition and deletion (resiliency).
• Node addition and deletion (toughness).
• Network flexibility (flexibility).
• Link strength (strength).

We refer to the ability of the NCS to continue functioning after the loss of an edge as the
resiliency of the network. The loss of an edge is equivalent to when direct communication
between adjacent nodes is severed. Of the proposed measures, the edge connectivity best
quantifies network resiliency (Subsection 3.3.1).
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We describe toughness as the ability of the NCS to continue functioning after the loss of a
node. Toughness is largely dependent on the topology of the graph. Barabási describes two
major network topologies; pseudorandom and scale-free [29]. In a pseudorandom graph,
toughness is relatively low because the number of nodes necessary to disconnect the graph
is relatively low, whereas scale-free networks are resistant to the removal of a large number
of nodes. Thus, the toughness of scale-free networks is high, since it can handle a large
number of random node removals. However, the vulnerability of scale-free networks is also
high because a targeted attack on a hub can disconnect the network [29]. The clustering co-
efficient and number of spanning trees best quantify toughness (Subsections 3.3.4 and 3.3.7
respectively).

Flexibility indicates the ability of a network to adjust its topology to accommodate chang-
ing objectives. Intuitively a more flexible graph is more robust because of its ability to
compensate for changing conditions. Of the metrics proposed in the literature, the effective
graph resistance seems to best quantify network flexibility, however this is still open for
consideration (Subsection 3.3.8).

The strength of the network indicates the communication capacity of the network. Clearly,
the network strength is directly related to the strength of the links between individual nodes.
This link strength is represented as the edge weight wi j . In the literature, discussions of
network robustness have not considered weighted graphs. However, we find that without
considering network strength, any robustness metric does not provide sufficient resolution
for cases when the network topology changes without the loss or addition of edges and
vertices (i.e., when the edge weights change). For this reason, we devote Section 3.2
to describing various edge weight functions and adapt metrics developed for unweighted
graphs to be used with weighted graphs in Section 3.3.

3.2 Edge Weight Functions
Wedesire our robustnessmetric to have a high resolution to reflect small topological changes
in the network that do not include the addition or removal of nodes in links. For this reason,
we propose (when possible) to use weighted graphs. Weighted graphs allow us to capture
more information about the physical state of the network, thereby providing a
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better indication of robustness. In all cases, we normalize these weights such that they are
bounded from zero to one.

For example, the edge weight could encapsulate the physical range ri j between two adjacent
nodes vi and v j . We assume a maximum communication range rmax. The edge weight wi j

then decreases proportionally to the range up to rmax

wi j(ri j) =


1 − 0.9 ri j

rmax
if ri j ≤ rmax

0 if ri j > rmax
. (3.1)

Note that we scale this proportionally decreasing edge weight such that the minimum value
attained before disconnecting is wi j = 0.1. For each edge weight function we enforce that
the minimum weight is no less than 0.1 to differentiate from when the edge does not exist,
i.e., wi j = 0. In Equation 3.1, the network becomes less robust as the edge weight decreases.
This distribution is shown in Figure 3.1(a) where the maximum range is one meter. This
maximum range can be increased to whatever value suits the reader; for instance, the
maximum communications range of a radio system.

Perhaps a more intuitive formulation for a NCS would be to quantify the edge weight
with a function that encapsulates the communication strength. For instance, a function
approximating the shape of the path loss could be expressed as an inverse exponential with
the range scaled by the maximum communications range.

wi j(ri j) =


eτri j if ri j ≤ rmax

0 if ri j > rmax
, (3.2)

where τ determines the decay rate of the weighting function. This distribution is shown
in Figure 3.1(b) where τ = 2.5 and rmax = 1.0 meter. This function could also represent
the probability that a message will be received. Additionally, rather than being a function
of range, these edge weight functions could instead be functions of the bandwidth of the
communication channel or the received Signal-to-Noise Ratio (SNR).

In some applications wemay be less interested inmaking the edge weight proportional to the
communication strenght. For instance, if we know that we have a sufficient communication
signal up to a certain range. This type of distribution is shown in Figure 3.1(c), where
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sufficient communications exist up to range rsuf at which point the communication quality
degrades and the link is broken at rmax. This distribution is given by

wi j(ri j) =


1 if ri j ≤ rsuf

0.1 + 0.45
(
1 + cos

(
π

ri j−rsuf
rmax−rsuf

))
if rsuf ≤ ri j ≤ rmax

0 if ri j > rmax

. (3.3)

For the distribution shown in Figure 3.1(c), rsuf = 0.5m and rmax = 1m. Although this
is formulated as a function of range, it could be easily adjusted to be a function of SNR,
bandwidth, or any other environmental variable. A similar function could be used to enforce
a separation distance rmin between nodes. This function maximizes the edge weight at the
midpoint between rmin and the maximum interaction range rmax

wi j(ri j) =


0.1 if ri j ≤ rmin

0.1 + 0.45
(
1 + cos

(
π

ri j−rmin
rmax−rmin

))
if rmin ≤ ri j ≤ rmax

0 if ri j > rmax

, (3.4)

where rmid = rmin +
1
2 (rmax − rmin). This distribution is shown in Figure 3.1(d) where

rmin = 0.5m and and rmax = 1.0m.

Alternatively, rather than having the maximum edge weight represent the most robust link,
we could have the minimum edge weight represent the most robust link. For instance, the
edge weight could quantify the chance that a communication packet is not received. Thus, a
lower edge weight (and accordingly lower probability) indicates a more robust link. Using
this edge weight formulation lends itself better to certain robustness metrics as shown in
Section 3.4. An edge weight distribution that increases proportionally to the range between
nodes is

wi j(ri j) =


0.1 + 0.9 ri j

rmax
if ri j ≤ rmax

0 if ri j > rmax
. (3.5)

This distribution is shown in Figure 3.2(a). The inverse exponential edge weight can also
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Figure 3.1. Decreasing edge weight distributions.

Distributions are shown where decreasing edge weight indicates decreasing robust-
ness. These are shown for ranges from zero to 1.1 meters, where the edge weight
function (a) is porportional to the range as in Eq. 3.1, (b) an inverse exponential
function of the range as in Eq. 3.2, (c) smoothly varies from one to zero as in
Eq. 3.3, and (d) is maximized at rmid as in Eq. 3.4.

be modified as shown in Figure 3.2(b) and computed as

wi j(ri j) =


1.0 − 0.9 ∗ eτri j if ri j ≤ rmax

0 if ri j > rmax
. (3.6)

Similarly, the two sinusoidal edge weight distributions are

wi j(ri j) =


0.1 if ri j ≤ rsuf

0.1 + 0.45
(
1 − cos

(
π

ri j−rsuf
rmax−rsuf

))
if rsuf ≤ ri j ≤ rmax

0 if ri j > rmax

, (3.7)
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Figure 3.2. Increasing edge weight distributions.

Distributions are shown where increasing edge weight indicates decreasing robust-
ness. These are shown for ranges from zero to 1.1 meters, where the edge weight
function (a) is porportional to the range as in Eq. 3.5, (b) an inverse exponential
function of the range as in Eq. 3.6, (c) smoothly varies from one tenth to one as
in Eq. 3.7, and (d) is minimized at rmid as in Eq. 3.8.

and

wi j(ri j) =


1 if ri j ≤ rmin

0.1 + 0.45
(
1 − cos

(
π

ri j−rmin
rmax−rmin

))
if rmin ≤ ri j ≤ rmax

0 if ri j > rmax

. (3.8)

These distributions are shown in Figure 3.2(c) and (d) respectively.

Each of the eight edge weight distributions described in this section can be placed into one of
two categories: distributions in which a high edge weight indicates stronger communication
(e.g., edge weight decreases as a function of range) or distributions in which a lower edge
weight indicates stronger communications (e.g., edge weight decreases as a function of
range). We examined each of these edge weight distributions for each the robustness metrics
identified in Section 3.3 to be compatible with weighted graphs. We provide plots of these
metrics for the two edge weight distributions that either increase or decrease proportionally
to the range. This allows us to determine which type of edge weight distribution results in
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a more intuitive value of the robustness metric. Then in implementation, we select an edge
weight distribution that better quantifies the physical interaction between the agents in the
NCS.

3.3 Graph Theoretic Robustness Measures
In this section we discuss the metrics proposed by Ellens and Kooij in [3] and by Yang et
al. in [28]. We also indicate how each metric relates to graph robustness. We expand upon
these authors’ work by incorporating weighted graphs into the robustness measures where
possible. In this section, however, we focus solely on a general undirected graph with n

nodes and m edges. We do not consider the extension of these metrics to digraphs, which
is an open area of research. Throughout this section we indicate the number of nodes with
n and the number of edges with m.

3.3.1 Connectivity
Connectivity κ is a binary metric which indicates if a graph is connected (κ = 1) or
disconnected (κ = 0). If a graph is connected, then there exists a path between any two
vertices vi and v j . If the algebraic connectivity (the second eigenvalue λ2 of the Laplacian
L(G)) is greater than zero, then the κ = 1 [3].

Vertex connectivity (κv) is equivalent to the minimum number of vertices necessary to
remove in order to disconnect the graph [3].

Edge connectivity (κe) is defined as the minimum number of edges necessary to remove in
order to disconnect the graph [3].

Algorithms used to compute the vertex and edge connectivity are provided in [30]. However,
the computation of these metrics is NP-hard and becomes increasingly computationally
expensive as the size of the graph grows [30]. For this reason, we do not consider them to
be good candidates to be robustness metrics. One may note however, κ ≤ κv ≤ κe ≤ δmin ≤

n − 1, where δmin = min(∆(G)), the minimum degree of the graph G. Intuitively, the NCS
becomes more robust as each of these quantities increase. Although it is not proposed in [3]
as a measure of robustness, the computation of δmin is much simpler than that of edge and
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vertex connectivity, so δmin could be used as a lazy evaluation of the edge connectivity to
speed the evaluation of a greedy algorithm used as part of an optimization scheme.

3.3.2 Distance Based Measures
We call the length (sum of the edge weights) of the shortest path between vertices vi and v j ,
the distance di j . Note that vi and v j need not be adjacent and that di j may not be a number
if the graph is disconnected (κ = 1).

The diameter of the graph is then defined in [3] as

dmax = max di j, (3.9)

and the average distance is defined as

d̄ =
2

n(n − 1)

n∑
i=1

n∑
j=i+1

di j . (3.10)

For an unweighted graph, increasing distance indicates decreasing robustness as a larger
distance indicates information must travel through more nodes en route from vi to v j .
However, if weighted edge distributions are used as described previously, a larger distance
indicates a stronger communication link.

The efficiency is also proposed in [3] as the average of the inverse of the distances

E =
2

n(n − 1)

n∑
i=1

n∑
j=i+1

1
di j
. (3.11)

For unweighted graphs, increasing efficiency indicates increasing robustness since the
reciprocal of distance is used. For weighted graphs, the opposite is true.

One shortcoming of distance based measures identified in [3] is the fact that alternate paths
between vi and v j are not considered. Naturally one would assume a network with multiple
paths linking each node is more resilient to the loss of of an edge and has greater toughness
to withstand node failures. However, this is not captured by these metrics.
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3.3.3 Betweenness
The betweenness indicates the number of shortest paths passing through a vertex or an edge
x between vertices vi and v j ,

bx =

n∑
i=1

n∑
j=i+1

ni j(x)
ni j

, (3.12)

where ni j is the number of shortest paths between vi and v j and ni j(x) is the number of
shortest paths passing through x between vi and v j [3]. The betweenness quantifies the
importance of an edge or vertex x. If a single vertex or edge has a significantly higher
betweenness, it can indicate a vulnerability in the network. Ellens and Kooij show that for
unweighted graphs, the average vertex betweenness b̄v and average edge betweenness b̄v are
functions of the average distance

b̄v =
1
2
(n − 1)(d̄ + 1) (3.13)

b̄e =
n(n − 1)

2m
d̄. (3.14)

Note these relationships do not hold for weighted graphs. Since Equations 3.13 and 3.14
are only valid for unweighted graphs, here the average distance is equivalent to the average
number of edges along the shortest path between all nodes vi and v j , instead of the sum of
the edge weights. Robustness increases as both of these quantities increase.

3.3.4 Clustering Coefficient
In a social network, people are represented as nodes and friendships are indicated by edges.
The clustering coefficient originally used in this context to compute the probability that two
people (vi and v j) are friends (P(ei j = 1)), given that vi is friends with vk (edge eik exists)
and v j is also friends with vk . Thus, the clustering coefficient C captures the probability
that the triangle formed by vi, v j , and vk exists. Robustness increases with the clustering
coefficient, which can be computed

C =
1
n

∑
i∈V :δi>1

1
δi(δi − 1)

[A3(G)]ii, (3.15)
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where A(G) is the adjacency matrix and δi is the degree of node i [3]. In Section 3.4,
we examine the effect of using the weighted adjacency matrix instead of the unweighted
adjacency matrix.

3.3.5 Reliability Polynomials
Given the probability p that an edge e exists, the reliability polynomial of a network (Rel(G)),
is then the probability that the network is connected. This probability is defined as

Rel(G) =
m∑

i=0
Fi(1 − p)i pm−i, (3.16)

where Fi is the number of connected subgraphs of G if i edges are removed [3]. This
quantity lends itself naturally to using the edge weights as the probability p which must be
selected. However, as the size of the graph grows, Fi becomes exponentially more expensive
to compute. For this reason, for networks we approximate Fi as

F̂i =
m
i

(3.17)

as suggested in [31]. Robustness increases as the evaluation of the reliability polynomial
increases.

3.3.6 Algebraic Connectivity
The algebraic connectivity is defined as the second smallest eigenvalue (λ2) of the Lapla-
cian [3]. Unfortunately, this measure is not strictly increasing as edges are added, so it
is hard to correlate to robustness. In general, as λ2 increases, so does robustness. In un-
weighted networks, the algebraic connectivity is never greater than the vertex connectivity.
Thus we may arrange some metrics in order of increasing magnitude

0 ≤ λ2 ≤ κv ≤ κe ≤ δmin ≤ n − 1. (3.18)

This metric is far less intuitive, so we attempt to correlate its behavior through by plotting
it as function of the edge weight in Section 3.4.
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Figure 3.3. Example spanning trees.

A graph G is shown in (a) for which ζ = 3. These three spanning trees are shown
in (b), (c), and (d). Adapted from [5].

3.3.7 Number of Spanning Trees
Given graph G with n vertices, a spanning tree is a subgraph of G containing n − 1 edges
that also forms a tree (i.e., there are no cycles) [3]. This is illustrated for a simple graph in
Figure 3.3. The number of spanning trees ζ is proportional to the product of the eigenvalues
(λi) of the unweighted Laplacian:

ζ =
1
n

n∏
i=2

λi . (3.19)

A proof is referenced in [3], and this can be easily verified for the graph in Figure 3.3(a);
The Laplacian of of the graph is

L(G) =


2 −1 −1
−1 2 −1
−1 −1 2

 ,
whose eigenvalues are λ = [0 3 3]T . The number of spanning trees is then

ζ =
1
3
(3)(3) = 3,

as shown graphically in Figure 3.3. Robustness intuitively increases with the number of
spanning trees since it indicates a network with more redundant edges.

3.3.8 Effective Graph Resistance
The effective graph resistance (R) is inspired by first modeling the graph as a circuit with
resistors between each node, each having a resistance of one. The effective graph resistance
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is then the the sum of effective resistances between each pair of vertices, as determined by
using Kirchoff’s laws [3]. For unweighted networks, it has been shown that the effective
resistance is incredibly equivalent to

R = n
n∑

i=2

1
λi
. (3.20)

This metric accounts for all paths between each vertex pair and their path lengths. For this
reason, it is a very attractive metric that provides a strong indication of network robustness.
For an unweighted graph, robustness increases as the effective graph resistance decreases.
In Section 3.4 we provide results for the computation of the effective resistance when the
eigenvalues of the weighted graph Laplacian are used instead.

3.4 Results
We use the graphs shown in Figure 3.4 to compare the proposed robustness metrics. The
graphs are ordered from left to right in what we would intuit as increasing robustness. The
proposed metrics are tabulated in Table 3.1 for these five graphs where the weight on all
edges is one (this is equivalent to evaluating the measures on an unweighted graph).

Figure 3.4. Sample graphs.

Sample graphs are shown to be used to compute the proposed robustness metrics.
Graphs are arranged from left to right in increasing order of expected robustness.

We are particularly interested in the metrics where the weights affect the value of the metric
in addition to the structure: the diameter dmax, average distance d̄, efficiency E , clustering
coefficient C, reliability polynomial Rel(G), algebraic connectivity λ2, and effective resis-
tance R. We show these metrics in Figures 3.5 through 3.11 plotted against the separation
range between adjacent nodes. In each figure, the left panel uses the decreasing weight
distribution described by Equation 3.1 and the right panel uses the increasing edge weight
distribution described by Equation 3.5. For the sake of simplicity, the maximum commu-
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Table 3.1. Robustness metrics unweighted graphs.

κ κv κe δmin dmax d̄ E be,max b̄e b̄v C λ2 ζ R
O5 0 0 0 0 ∞ ∞ 0.00 - - - 0.00 0.00 0 ∞

P5 1 1 1 1 4.00 2.00 0.64 4 6 5 0.00 0.38 1 4.00
S5 1 1 1 1 2.00 1.60 0.70 6 5 4 0.00 1.00 1 3.20
C5 1 2 2 2 2.00 1.50 0.75 1 5 3 0.00 1.38 5 2.00
K5 1 - 5 4 1.00 1.00 1.00 0 4 1 1.00 5.00 125 0.80

The values of proposed robustness metrics for the graphs in Figure 3.4 where the
edge weight, wi j = 1.

nications range rmax is set to one meter and each are plotted for ri, j = [0.0, 1.1]. These
plots aid in determining which type of distribution is best suited to the computation of each
metric. The results of this analysis are summarized in Table 3.2.

The diameter is inversely proportional to robustness. In Figure 3.5, complete graph K5

always has the smallest diameter as onewould expect. In general, as the range between nodes
grows larger we want the metric to reflect the decreasing robustness. Thus, a decreasing
edge weight distribution should be used as shown in the left panel (Figure 3.5(a)). One may
note than when the edge weight goes to zero beyond rmax, the diameter goes to infinity.
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Figure 3.5. The diameter dmax vs. range.

The diameter dmax is shown relative to the range for a path graph, a star graph,
a cycle graph, and a complete graph for (a) an increasing edge weight distribution
(Eq. 3.1) and (b) a decreasing edge weight distibution (Eq. 3.5) that are linear
functions of the range. (Note: the line for S5 is directly behind P5.)

The average distance is also inversely proportional to robustness. In Figure 3.6, the lines
representing the metric for each line are ordered as expected; bottom to top in order of
decreasing robustness. By using a decreasing edge weight distribution, as shown in the left
panel (Figure 3.6(a)), the average distance also reflects the decreasing robustness associated
with increasing the distance between nodes. One may note than when the edge weight goes
to zero beyond rmax, the diameter goes to infinity.
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Figure 3.6. The average distance d̄ vs. range.

The average distance d̄ is shown relative to the range for a path graph, a star graph,
a cycle graph, and a complete graph (a) an increasing edge weight distribution
(Eq. 3.1) and (b) a decreasing edge weight distibution (Eq. 3.5) that are linear
functions of the range.

Graph efficiency increases with robustness. Thus, we wish to maximize the efficiency when
the range is the smallest. An increasing edge weight distribution accomplishes this, as
shown in Figure 3.7(a).
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Figure 3.7. The e�ciency E vs. range.

The e�ciency E is shown relative to the range for a path graph, a star graph, a
cycle graph, and a complete graph for (a) an increasing edge weight distribution
(Eq. 3.1) and (b) a decreasing edge weight distibution (Eq. 3.5) that are linear
functions of the range.

Figure 3.8 exposes the weaknesses of using the clustering coefficient to quantify the ro-
bustness of weakly connected graphs; it does not distinguish between the graphs P5, S5,
and C5 since none of them contain redundant edges like K5. However, if used, we wish to
maximize C, thus a decreasing edge weight distribution is best for reflecting the decreasing
robustness as the range between nodes decreases (see Figure 3.8(b)).
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Figure 3.8. The clustering coe�cient C vs. range.

The clustering coe�cient C is shown relative to the range for a path graph, a
star graph, a cycle graph, and a complete graph for (a) an increasing edge weight
distribution (Eq. 3.1) and (b) a decreasing edge weight distibution (Eq. 3.5) that
are linear functions of the range.

As seen in Figure 3.9, the reliability polynomial does not appear to be directly correlated
to the edge weight. Although we thought the reliability polynomial ought to be intuitively
connected to the edge weight, it clearly needs further refinement.
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Figure 3.9. The reliability polynomial Rel(G) vs. range.

The reliability polynomial Rel(G) is shown relative to the range for a path graph, a
star graph, a cycle graph, and a complete graph for (a) an increasing edge weight
distribution (Eq. 3.1) and (b) a decreasing edge weight distibution (Eq. 3.5) that
are linear functions of the range. The edge weight is used as the probability p in
the computation of the reliability polynomial.

Increasing robustness is directly correlated to increasing the algebraic connectivity, which
is reflected by the fact that the complete graph K5 has the highest algebraic connectivity
in Figure 3.10. A decreasing edge weight distribution is best used with the algebraic
connectivity as shown in Figure 3.10(b).

32



0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
5

S
5

C
5

K
5

Figure 3.10. The algebraic connectivity λ2vs. range.

The algebraic connectivity λ2 is shown relative to the range for a path graph, a
star graph, a cycle graph, and a complete graph for (a) an increasing edge weight
distribution (Eq. 3.1) and (b) a decreasing edge weight distibution (Eq. 3.5) that
are linear functions of the range.

Increasing the robustness of a graph reduces its effective resistance. Thus, as the distance
between nodes becomes larger, we wish to see the effective resistance also increase. For
this reason an increasing edge weight distribution is best used to quantify the robustness
as shown in Figure 3.11(a). Note, when the graph becomes disconnected, the effective
resitance goes to zero, thus this minima must be ignored in an optimization scheme.
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Figure 3.11. The e�ective resistance R vs. range.

The e�ective resistance R is shown relative to the range for a path graph, a star
graph, a cycle graph, and a complete graph for (a) an increasing edge weight
distribution (Eq. 3.1) and (b) a decreasing edge weight distibution (Eq. 3.5) that
are linear functions of the range.

Overall, the effective graph resistance appears to be the best metric for quantifying the
robustness of a weighted graph. It has good resolution to variations in the edge weight and
is also strictly decreasing as edge weights are added. Additionally, it accounts for multiple
paths between nodes (because of its relation to parallel resistors). For these reasons, we use
it in the utility function described in Section 4.3.

34



Table 3.2. Distribution analysis for robustness metrics.

Most Robust Value Best Distribution Type Multiple Paths?
dmax min(dmax) Increasing No

d̄ min(d̄) Increasing No
E max(E) Increasing No
C max(C) Decreasing No

Rel(G) max(Rel(G)) Decreasing -
λ2 max(λ2) Decreasing No?
R min(R) Increasing Yes

The best edge weight distribution type (increasing or decreasing) is indicated that
produces an intuitive change in the metric as a graph grows more or less robust.
In general, we also desire a metric that is either re�ects the added robustness from
multiple paths. The results for the reliability polynomial are inconclusive. It is
also unclear how the algebraic connectivity relates to quantifying the existence of
multiple paths between nodes.
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CHAPTER 4:
Problem Formulation

In this chapter we present the foundational mathematics for our simulation. We begin by
describing time-varying formation control in Section 4.1. We then present submodularity
and describe submodular function maximization in Section 4.2. We conclude by describing
the utility function used to compute the optimal formation and prove its submodularity in
Section 4.3.

4.1 Formation Control
We implement a position-based formation control to shape our network. In this formulation,
individual agents are able to localize relative to a global reference frame. The agents actively
control their position as prescribed by a centralized control algorithm that provides a specific
location (and velocity) to actuate toward. One may note that interaction between agents is
not required for the agents to move to a desired location; however, the control performance
can be improved by including interactions between agents [17]. We also address issues
of limited sensing and communications. In certain scenarios, agents may operate in a
GPS denied environment. By using formation control, with at least one agent capable of
localizing globally, all the agents can also localize globally by localizing relative to that one
agent. We also decentralize control as much as possible. For a centralized coordination
scheme, formation control is not required since it is not necessary to communicate if each
agent is given instructions from the centralized controller. However, by using formation
control, our system benefits by receiving feedback from neighboring agents and we lay the
groundwork to decentralize control in future iterations.

We design our formation controller as a secondary controller that acts on top of the primary
controllers on board the heterogeneous agents that comprise the NCS. Thus, we model
each system with double-integrator particle dynamics [17]–[19]. Consequently, the only
information that necessarily must be exchanged between agents is individual position and
velocity information. We treat uncontrolled nodes (i.e., manned platforms and the NSW
unit) as virtual leaders. The system does not generate a control input for these nodes, but
the formation is recomputed in response to their movement.
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Consider a mobile NCS consisting of N agents. We represent this NCS as a graph G. To
simplify notation, we represent the graph Laplacian L(G) simply as L. The off-diagonal
elements of L (the edge weights wi j) represent the interaction strength between agent i and
agent j. We assume that G has a spanning tree, which implies that the system is stabilizable
(see [18] for a proof). In our control we will also use the eigenvalues ofL, λi, i ∈ 1, 2, . . . , N .
Note if G has a spanning tree, λ1 = 0.

We then approximate the dynamics of each agent i = 1, 2, . . . , N with a double integrator
particle dynamics

Ûri(t) = vi(t)

Ûvi(t) = biui(t),

where ri(t) = [xi(t), yi(t)]T and vi(t) = [ui(t), vi(t)]T represent the two-dimensional po-
sition and velocity vectors respectively, and biui(t) ∈ R2 relates the control input to the
acceleration. We represent the individual agent dynamics in state-space as an LTI system

Ûxi(t) = Axi(t) + Bui(t) (4.1)

y(t) = Cx(t) (4.2)

where

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


,B =


0 0
0 0

bi,31 0
0 bi,42


,C =

[
1 0 0 0
0 1 0 0

]

and xi(t) = [ri(t), vi(t)]T. In general, we assume the dynamics are consistent in the
horizontal plane (i.e., bi,31 = bi,42). In the special case of homogeneous agents, for any two
agents i and j

bi,31 = b j,31,

and
bi,42 = b j,42.

These equalities do not hold for heterogeneous systems where the dynamics are highly

38



disparate and cannot be approximated as equivalent particles (e.g., an UAV compared to an
UUV). For homogeneous systems, we can concisely write the dynamics of the entire NCS,

Ûx = IN ⊗ Ax + IN ⊗ Bu, (4.3)

where ⊗ indicates the Kronecker product, x(t) = [x1(t), x2(t), . . . , xN (t)]T, and u(t) =
[u1(t), u2(t), . . . , uN (t)]T.

We define the time-varying formation as h(t) = [h1(t), h2(t), . . . , hN (t)]T. Here hi(t) is
the piecewise continuously differentiable vector, hi(t) = [hi,r, hi,v]

T which indicates the
position and velocity assigned to agent i in the formation. New formation configurations
ĥ(t) are computed at discrete intervals separated by some∆t as described in Section 4.2. The
continuous function h(t) is then defined as a linear interpolation between the configurations
ĥ(t) and ĥ(t + ∆t).

From here we will simplify our notation by indicating xi(t) with xi, ui(t) with ui, hi(t) with
hi etc. For the the system defined by Equation 4.1, Dong et al. propose the control law

ui = K1[xi − hi] +K2

N∑
j=1

[
wi j

(
x j − h j

)
− (xi − hi)

]
+ Ûhi,v. (4.4)

In this control law, the feedback gains K1 and K2 are used to shape the response of the
time-varying formation center and the response of individual agents respectively. For
homogeneous nodes, the complete system can then be defined as

Ûx = [IN ⊗ (A + BK1) − L ⊗ (BK2)]x − [IN ⊗ (BK1) − L ⊗ (BK2)]h − [IN ⊗ B] Ûhv. (4.5)

A necessary and sufficient condition for the NCS defined by Equation 4.5 to achieve the
time-varying formation h is provided in [19] along with a proof.

Theorem 1 The system 4.5 achieves time-varying formation if and only if for any i ∈

{1, 2, . . . , N}

lim
t→∞

[
(hi,v − h j,v) − ( Ûhi,v − Ûh j,v)

]
> 0, j ∈ Ni (4.6)
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and for any i ∈ {2, 3, . . . , N}
− k12 + Re(λi)k22 > 0 (4.7)

(−k12 + Re(λi)k22)ψi − Im(λi)
2k2

21 > 0 (4.8)

where
ψi = k12k11 − Re(λi)(k12k21 + k11k22) + (Re(λi)

2 + Im(λi)
2)k21k22.

Dong et al. then provide a procedure to select the gain matrices in Equation 4.4. First,
using a pole-placement technique, select desired locations in the open left-hand plane for
the poles of A + BK1 to determine K1 [26]. This controls the dynamics of the formation
center. Then, using Theorem 2, compute K2, which satisfies the conditions in Theorem 1,
as proven in [19].

Theorem 2 If condition 4.6 in Theorem 1 holds, then system 4.5 achieves time-varying
formation with the control law 4.4 where

K2 =
1

Re(λ2)
BTP̄,

where P̄ is the positive definite solution to the algebraic Riccati equation

P̄(BK1 + A) + (BK1 + A)TP̄ − P̄BBTP̄ + I = 0

4.2 Submodular Function Maximization
In this discussion we refer to the work of Krause and Golovin in [24] and [1], and of
Summers, Cortesi, and Lygeros in [2] for further details on the properties of set functions,
discussions of submodularity, and examples of maximization and adaptive submodularity.

4.2.1 Submodularity
A set function f : 2V → R maps a subset S ⊆ V to a value f (s) [24]. In our problem, the
ground set V is the discretized set of locations where we can assign nodes. The subset S is
then the set of N locations where we place our N nodes (the agents in our NCS). The set
function f (S) computes the utility of placing the nodes at locations S.
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Submodularity is a property of set functions commonly referred to as the property of
diminishing returns; that is adding a node to subset of B, will produce a larger utility
gain than adding the node to B [24]. Krause and Golovin provide two definitions of
submodularity as provided in Definition 4.2.1. The first of these two definitions relies on
the discrete derivative which we define before defining submodularity. In addition, we
define a subclass of submodular functions, monotone functions.

Definition 4.2.1 Discrete Derivative: For a set function f : 2V → R, S ⊆ V, and ν ∈ V , let
∆ f (ν |S) := f (S ∪ ν) − f (S) be the discrete derivative of f at S with respect to ν [24].

If it is clear that the function f is implied, we simplify notation by writing the discrete
derivative without the subscript as ∆(ν |S).

Definition 4.2.2 Submodularity: A set function f : 2V → R is submodular if for every
A ⊆ B ⊆ V and ν ∈ V \ B it holds that

∆ f (ν |A) ≥ ∆ f (ν |B). (4.9)

Equivalently, a function f : 2V → R is submodular if for every A, B ⊆ V [24],

f (A ∩ B) + f (A ∪ B) ≤ f (A) + f (B). (4.10)

Definition 4.2.3 Monotonicity: A function f : 2V → R is monotone if for every A ⊆ B ⊆

V, f (A) ≤ f (B) [24].

4.2.2 Maximization
We are interested in finding the set S of node locations that will maximize the utility function
f (S). That is we wish to solve

max
S⊆V

f (S). (4.11)

on which we will place constraints [24]. For instance, we are limited by the number of
agents N available. This is referred to as a cardinality constraint, i.e., |S | ≤ N . This
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problem is Non-deterministic Polynomial-time (NP) hard [24]. To demonstrate this fact,
consider our problem of maximizing the utility of placing N nodes. We discretize our
area of interest into an r by c two-dimensional grid containing p locations (p = r × c). In
order to find the set of locations maximizing the utility function f (s), we must consider pN

permutations. Clearly, this quantity grows exponentially as more nodes are added and the
grid space is discretized into a finer mesh.

Fortunately, this problem, subject to cardinality constraints, can be approximately solved
utilizing a greedy algorithm. Starting with the empty set S0, the greedy algorithm adds the
element e that maximizes the discrete derivative ∆ f (ν |Si−1) at each iteration i = 0, 1, . . . , N

Si = Si−1 ∪ {arg max
ν
∆ f (ν |Si−1)}. (4.12)

This significant result was proven by Nemhauser et al. in 1978 [32]. An extension to this
proof is provided in [24] to allow for cases where the greedy algorithm places more nodes
K than the optimal number of nodes N .

Theorem 3 (Nemhauser et al. 1978 [32]) Fix a nonnegative monotone submodular func-
tion f : 2V → R+ and let {Si}i≥0 be the greedily-selected sets defined in Equation 4.12.
Then for all positive integers N and K ,

f (S∗) ≥
(
1 − e−K/N

)
max

S:|S |≤N
f (S). (4.13)

In particular, for K = N , f (SN ) ≥ (1 − 1/e)max|S |≤k f (S).

From this we derive two important conclusions. First, if we design our utility function
to be a nonnegative monotone submodular function, we are guaranteed to asymptotically
approach the optimal solution using a greedy algorithm that can be executed in polynomial
time. Second, as the number of nodes increases, the closer our approximation approaches
the optimal solution. Golovin and Krause note that if the utility of a certain number of nodes
N are determined to be a sufficient optimal utility f (S∗), the greedy algorithm continues
to asymptotically approach the optimal value if it is allowed to place more than N nodes.
We display this property in Figure 4.1, where the blue line indicates the lower bound of the
greedy algorithm as a fraction of the optimal utility f (S∗).
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Figure 4.1. Asymptotic property of the greedy algorithm.

As the number of nodes K is increased, the lower bound of the utility produced by
the greedy algorithm approaches the optimal f (S∗). If exactly N nodes are placed,
the utility will be no less than 63% of the optimal (indicated in red). If 5N nodes
are placed, the utility improves to 99%. The lower bound of the greedy algorithm's
performance is indicated in blue.

By utilizing the greedy algorithm, we reduce the complexity of our problem from evaluating
f (S) for pN permutations, to instead evaluating f (S) only p×N times. Krause and Golovin
point out that in some cases, the evaluation of f (S) is still computationally intensive and
render even the greedy algorithm infeasible. For this they propose and explore the use of
lazy evaluations to form an accelerated greedy algorithm [24].

4.3 Utility Function
We purposely design a monotone submodular utility function in order to reduce the com-
putational complexity of our optimization problem and take advantage of the bounded
performance of the greedy algorithm. One useful property we will use in the design of
our utility function is that submodularity is preserved for linear combinations of submod-
ular functions. To clarify, if set functions g1, g2, . . . , gn : 2V → R are submodular and
α1, α2, . . . , αn ≥ 0 are nonnegative coefficients, then f (S) =

∑n
i=1 αigi(S) is submodu-

lar [24]. We use this property to design a complex utility function that is composed of a
linear combination of simpler utility subfunctions. Our utility function J is composed of
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components which quantify the sensing ability fs(S) and the communication robustness of
the network fr(S):

J(S) = αs fs(S) + αr fr(S). (4.14)

In addition, mobility and dynamics constraints are considered in the utility function. We
enforce these constraints by setting the values of the utility function to zero for locations that
would place a node in violation of its physical constraints. For each subfunction, submod-
ularity is preserved as long as the utility values are greater than zero, thus submodularity
is preserved while enforcing these constraints [24]. In future iterations, we may consider
gramian-based controllability and observability utility subfunctions proposed in [2].

One point of consideration is where to place the first node. In all the cases we examine,
virtual leaders are already present in the environment. Consequently, the node is typically
placed within communication range of a virtual leader (depending on the values of αs and
αr). However, if no virtual leaders were present, the first node would simply be placed in
the location that provides the greatest sensing utility. Then subsequent nodes are placed
within communication range of that node. If there is no absolute maxima, then the greedy
algorithm arbitrarily selects one of the maxima and continues placing nodes.

4.3.1 Sensing Subfunction
We are interested in the ability of our network to sense the environment and provide coverage
of areas of interest. That is, we wish to select a subset of V = 1, 2, . . . , p locations to place
N nodes. If we place node i at location j, we say that it provides a sensing benefit of Θi, j ,
where Θ ∈ RN×p. If each node is assigned to the location with the largest benefit, the total
value is the set function

fs(S) =
N∑

i=1
max
j∈S
Θi, j (4.15)

IfΘi, j ≥ 0 for all i, j, then fs(S) is monotone submodular [24]. In our scenario we determine
the value of the Θi, j based on the characteristics of node i and the proximity of location j to
points of interest. In general, we use a similar function to Equation 3.3. In this case,
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however, the range r is the distance to the nearest point of interest and ri,max is the maximum
sensing range of node i

Θi, j(r) =

wj

2

(
1 + cos

(
π

r−ri,suf
ri,max−ri,suf

))
if r ≤ ri,suf

0 if r > rmax
. (4.16)

where w j represents the relative importance of sensing the point of interest at location j

and ri,suf quantifies the distance at which the sensing utility is not improved by approaching
closer to the point of interest.

For example, we assume that UAV nodes can effectively travel anywhere in the discretized
space and we assign a relative importance betweenmonitoring the road network and specific
targets using the weight w j . In order to compute Θ we use image processing techniques
to extract the roads from satellite imagery and use a distance transform to determine the
distance to the nearest section of road [33]. We then add targets for the UAV to investigate
on the northwest and southeast ends of the island (indicated with red asterisks in Figure 4.2).
We can represent this sensing function as a heat map, as demonstrated in Figure 4.2(c).

The rows of Θ that relate to the sea-based USV and UUV are computed similarly, but with
one key difference. These nodes clearly cannot drive ashore, and commanding them to
do so would lead to the loss of an asset. Consequently, all values are automatically set to
zero so that the submodular maximization function will not place a USV or UUV node on
land. Further safeguards are of course incorporated in those agents’ primary controllers to
prevent them from entering shoal water. The development and graphical representation of
the row inΘ relating to an UUV is shown in Figure 4.3. Figure 4.3 demonstrates that we are
primarily interested in searching the coast for hazards and extraction routes. We can bias
the node towards searching a particular location that we believe to be of particular interest,
as demonstrated in the South East corner of the island in Figure 4.3.

By formulating the sensing utility subfunction in thismanner, we accomplish two objectives.
First, we bias our network toward points of interest that we can identify explicitly, or we
can allow the network to identify these automatically based on feature recognition software.
Second, we design this such that nodes are not commanded to go where they cannot
physically go. These demonstrations provide a snapshot of the sensing subfunction.

45



Figure 4.2. UAV sensing utility subfunction.

The sensing utility Θi, j assigned to UAV i for all locations j = 1, 2, . . . , p. (a)
Satellite imagery is analyzed to extract (b) points of interest such as roads, and
(c) an utility is assigned to each discretized point in accordance with Equation 4.16.

However, the matrix Θ in reality is time-dependent. As the nodes move through the
environment, the data they collect can inform Θ to either increase or decrease the interest
in location j if something needing further investigation is surveyed or if the area has been
marked clear of adversaries. We account for this fact by lowering the values of Θk, j for
nodes k = i + 1, i + 2, . . . , n after node i has been placed in the locations j near to node
i. This ensures that the network provides coverage of all regions of interest. In future
iterations, this sensing model could be made significantly more complex. For instance, as
the nodes progress through the environment, recently covered areas would have a low value;
but as time goes by and the certainty of measurements made at location j decrease, the
attractiveness would increase.
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Figure 4.3. UUV sensing utility subfunction.

The sensing utility Θi, j assigned to UUV i for all locations j = 1, 2, . . . , p. (a)
Satellite imagery is analyzed to (b) eliminate the land and (c) an utility is assigned
to each discretized point to highlight the coastline and other areas of interest in
accordance with Equation 4.16.

4.3.2 Robustness Subfunction
We use the effective graph resistance (described in Chapter 3, to quantify the robustness
of the graph. We use the inverse exponential edge weight distribution as described by
Equation 3.6. By using an inverse exponential edge weight, the effective graph resistance
increases roughly linearly as the average distance between nodes increases.

Since the graph becomes more robust as the effective resistance decreases, we manipulate
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the resitance to form a new metric Ω that conforms to a maximization problem

fr(S) =
N∑

i=1
max
j∈S
Ωi, j (4.17)

where Ωi, j = 1 − norm(Ri, j). Here, Ri, j is the effective resistance if a node i is added to
the network at location j. We then normalize the resistance from zero to one such that
0 ≤ Ωi, j ≤ 1. When Ωi, j is at a maximum (Ωi, j = 1), graph resitance is at a minimum,
meaning the network is at its most robust. Since Ωi, j ≥ 0 for all i, j, this function is
monotone submodular [24].

By using this metric and a communications-based edge weight, we attempt not only to
maximize the robustness of our network, but we also incorporate optimizing communica-
tions into the placement of our nodes. We can further improve this relationship by using
communication strength (e.g., SNR) to compute the edge weights instead of the range which
only roughly approximates the signal strength.

4.3.3 Mobility constraints
In some iterations we also consider the mobility of our nodes. Although our submodular
maximization function executes in near real-time, it operates at a much slower rate than the
measurement and control systems on board each agent. For this reason, it is used to generate
new formation hr(t) every ∆t. This formation is used as part of a secondary controller that
operates on top of the agents’ primary controllers.

We wish this new formation to be reachable within ∆t. For this reason, we limit how far
the maximization function can move node i in one time step. In general, we limit this
displacement based on the node’s maximum velocity to max(vi)∆t. For a location outside
of this maximum displacement, we setΘi, j andΩi, j to zero, such that the function will never
direct a node beyond its reachable sphere of influence.

We examine the effects of varying ∆t. We wish to compare the formations generated for
varying update rates and for cases where this constraint is dropped. We also examine the
affects of placing more restricted nodes first (i.e., nodes with a slower maximum velocity)
or last (Section 5.3).
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4.4 Summary
In this chapter, we have introduced the mathematics used to control our NCS. A greedy
algorithm is used to generate new formations at discrete intervals. This greedy algorithm
selects each formation to maximize a utility function that encapsulates the networks ability
to sense its operating environment and communicate robustly. The agents that comprise the
NCS are controlled using a time-varying formation controller.
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CHAPTER 5:
Results and Analysis

This chapter focuses on the results and analysis of the submodular maximization function
for a mobile NCS. The goal is to provide near-optimal time varying formation solutions that
position nodes to support competing objectives.

We first demonstrate the performance of our submodular maximization function for a single
time step (i.e., without formation control) in Sections 5.1, 5.2, 5.3, and 5.4. In Section 5.1,
we demonstrate our utility function is tuned and show how varying the utility subfunction
weights induces topological changes. Then in Section 5.2, we demonstrate how the greedy
algorithm iteratively selects node locations. We also examine how altering the order of
placing heterogeneous nodes affects the formation generated in Section 5.3. Finally, we
enforce reachability constraints when placing nodes in Section 5.4.

In Section 5.5, we compare the solution of the submodular maximization function to
the optimal solution computed using an exhaustive brute force approach. We conclude
by demonstrating the coupled performance of the formation controller and maximization
function as the virtual leaders move through operational phases (Section 5.6).

5.1 Utility Function Tuning
Overall, when evaluating the greedy algorithm and our submodular utility function, we are
looking for the formation it generates to appear logical above all. We refer to Chapter 16
of [34] for a thorough discussion of this complex evaluative measure; however, for our
purposes the generated formation should provide coverage over areas of interest andmaintain
connectivity between all nodes. This is where the the weights on sensing and robustness
utility, αs and αr , become useful because we use them to tune the generate formation to
produce a rational and desirable solution that balances the competing objectives during each
phase of operation (See Section 5.6).

Before we can allow this NCS to operate autonomously, we must first build trust in the
system. Even if a formation maximizes the utility function, if it is irrational, trust will not
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be warranted. Thus it is of utmost importance that the control emulates (and exceeds) the
performance of a human decision maker. Comparatively, it is easy for the algorithm to place
a substantial number of nodes faster than a human; however, the NCS must also provide
sufficient utility to the operators it is supporting. As initially envisioned the NCS would act
in the background and simply provide recommendations to the operators of the unmanned
agents. As confidence in the recommendations of the NCS grows, it can be given more
autonomy to control the physical systems.

We began tuning the utility function with a simple network composed of homogeneous
UAV nodes. This allows us to simplify communications and sensing models such that
they were equivalent for all of the nodes in the network. In Figure 5.1(a) we show the
near-optimal placement of five UAVs relative to two virtual leaders (the NSW unit and
DDG) and sensing targets. Each node is placed greedily in sequence to maximize the utility
function. To get a better intuition of the shape of the utility function, we plot the total
utility that led to the placement of the most recent node for all discrete locations j as a
heat map in Figure 5.1(b). This total utility is the weighted sum of the sensing utility in
Figure 5.1(c) and the robustness utility in Figure 5.1(d). A feature of note for the sensing
utility is observable in Figure 5.1(c); once a node is placed, the utility for all the locations
in its "field of view" are set to zero.
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Figure 5.1. Formation with homogeneous agents.

(a) The network is shown with the most recently-placed node highlighted in red.
This node was placed at the point maximizing the utility function. (b) The total
utility shown as a heat map. (c) A heat map of the sensing utility Θi, j shown
for all locations j. (d) A heat map of the robustness utility Ωi, j shown for all
locations j.

After validating our optimization scheme with homogeneous agents, we expanded the
scheme to address heterogeneous agents. We demonstrate the placement of heterogeneous
nodes in Section 5.2. While tuning the utility function, it became evident that the utility
subfunction weights αs and αr could be employed to induce significant topological changes
in the network. This fact is demonstrated in Figure 5.2.

53



Figure 5.2. Comparison of varying utility subfunction weights.

Topological changes in the network are shown. These changes are induced by
varying the utility subfunction weights. In (a) αs = 0 and αr = 1. In (b) αs = 1
and αr0. In (c) αs = 1 and αr = 1. In (d) αs = 3 and αr = 1.

In Figure 5.2(a), all of the emphasis is placed on maximizing robust communications with
respect to the virtual leaders (i.e., αs = 1 and αr0). This causes the agents to cluster in a
formation that maximizes the number of communications links. Figure 5.2(b) demonstrates
the polar opposite case, where αs = 1 and αr0. Here, the nodes are placed to simply
maximize the each agent’s ability to sense the environment. When equal emphasis is placed
on each subfunction (αs = 1 and αr = 1), the formation shown in Figure 5.2(c) results.

We deemed that weighting each utility subfunction equally did not provide sufficient cov-
erage of the island. Thus, in Figure 5.2(d) we show the case where αs = 3 and αr = 1.
We consider this to be a potentially optimal balance of the competing objective to sense the
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environment and communicate robustly. In Chapter 6, we describe adaptive submodularity,
which can be used to select optimal policies. An example of a policy, could be this specific
set of subfunction weights. Rather than tuning the parameters based our own observations,
adaptive submodularity could be used to adjust these weights based on a probabilistic model
of the world state and measurements.

5.2 Iterative Node Placement
We now considered heterogeneous agents. This requires us to enforce the mobility con-
straints of each node. Whereas for UAV nodes we assume their airspace is unrestricted,
for sea-based nodes we ensure that they are not directed to ground themselves by zeroing
the sensing utility above land. Even for an extremely low-weighted sensing utility as in
Figure 5.3(c), this prevents nodes from being directed aground. We also enforce a standoff
distance from the shore by using a dilation when we use image processing to parse out land
from the ocean [33]. In Figure 5.4 we continue placing aerial assets after the sea-based
assets shown in the previous figure. This creates a well-connected network that maintains
communications as well as overwatch on the target and the NSW unit.
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Figure 5.3. Formation with half heterogeneous agents placed.

(a) The network is shown with the most recently-placed node highlighted in red.
This node was placed at the point maximizing the utility function. (b) The total
utility shown as a heat map. (c) A heat map of the sensing utility Θi, j shown
for all locations j. (d) A heat map of the robustness utility Ωi, j shown for all
locations j.
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Figure 5.4. Formation with all heterogeneous agents placed.

(a) The network is shown with the most recently-placed node highlighted in red.
This node was placed at the point maximizing the utility function. (b) The total
utility shown as a heat map. (c) A heat map of the sensing utility Θi, j shown
for all locations j. (d) A heat map of the robustness utility Ωi, j shown for all
locations j.

5.3 Node Placement Order
For the previous heterogeneous networks, we placed nodes according to the somewhat-
arbitrary rule of placing themost constrained (either slowest or having the smallest operating
zone) first. We hypothesized that this would result in better formations and that the order of
placing nodes would significantly affect the network topology. In Figure 5.5, we reversed
the placement order from Figures 5.3 and 5.4. Instead we place the most mobile UAV

57



nodes first. Although some specific nodes trade places, the final network formation created
is surprisingly similar.

Figure 5.5. Heterogeneous formation with reversed placement order.

(a) The network is shown with the most recently-placed node highlighted in red.
This node was placed at the point maximizing the utility function. (b) The total
utility shown as a heat map. (c) A heat map of the sensing utility Θi, j shown
for all locations j. (d) A heat map of the robustness utility Ωi, j shown for all
locations j.

5.4 Reachability Constraints
We further improve our formation generator by limiting its output to include only locations
in each node’s reachable workspace, i.e., a new formation is not useful if none of the nodes
can reach that formation by the time the next new formation is generated. This is enforced
by limiting the output of the utility function to only include locations that are within a
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certain range of the node’s current location. This is demonstrated in Figure 5.6(b) where the
majority of the map is ruled out as an option when reassigning the position for UAV2. The
algorithm thus must select whatever local maxima is located within a sufficient range of the
node. This range is computed based on the maximum speed of the node and the time step
that the algorithm is prognosticating forward. In Figure 5.7 we show the network’s current
position, and the newly-commanded formation based on a 100 second prognostication.

Figure 5.6. Formation with placement constrained by current position.

(a) The network is shown with the most recently-placed node highlighted in red.
This node was placed at the point maximizing the utility function. (b) The total
utility shown as a heat map, where only reachable locations are allowed. (c) A
heat map of the sensing utility Θi, j shown for all locations j. (d) A heat map of
the robustness utility Ωi, j shown for all locations j.
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Figure 5.7. Heterogeneous formation with current position shown.

The current formation and subsequent formation is shown for a 100 second prog-
nostication. The current node locations are indicated in red, with arrows pointing
to the newly assigned position.

Overall, we determine that our utility function meets our criteria of rationality in that
it consistently generates a formation that meets the objectives to maximize sensing and
communications.

5.5 Comparison to Brute Force Approach
We now present a simple comparison of our maximization function to the brute force
approach. Due to the sheer complexity of computing the absolute maximum value of the
utility function, we were limited to finding the maximum utility for the placement of five
nodes in a grid with only 130 grid points (in all other cases we used a grid with 1000 points).
A brute force algorithm was designed to exhaustively compute all possible configurations
of the network. The optimal formation computed using the brute force algorithm required
over 3.7 × 1010 computations of the utility function. This formation is shown in Figure 5.8
with the grid overlaid on the map.
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Figure 5.8. Optimal formation generated with brute force.

The optimal network con�guration is shown for a simple grid containing 130 dis-
cretized points. It required 3.7 × 1010 evaluations of the utility function to deter-
mine the optimal con�guration with utility J(S∗) = 0.9895.

In comparison, the greedy algorithm only required 650 utility function evaluations and
produced a very similar formation. However, the most telling result is the fact that J(S∗) =

0.9895, while the greedy algorithm found a formation with a nearly identical utility J(S) =

0.9820. This formation and grid is overlaid on the map of SCI in Figure 5.9. Overall, we
consider this a remarkable success and proof of concept.

Figure 5.9. Near-optimal formation generated with the greedy algorithm.

The near-optimal network con�guration is shown for a small grid containing 130
discretized points. This only required 650 evaluations of the utility function to
determine the optimal con�guration with utility J(S) = 0.9820.
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The advantages of submodular function maximization are even more obvious when we
consider scaling up the number of agents or the number of discretized points. In reality
a network consisting of five agents is very trivial, but it is extremely encouraging that the
greedy algorithm performs so well. While it would be interesting to compare larger numbers
agents and discretized points to the absolute maximum, the problem is entirely intractable
as these numbers are increased.

5.6 Formation Control
In each phase of operation, the virtual leaders move independently of the network based
on predefined tracks or their own volition. The other nodes in the network are controlled
using the time-varying formation controller described by Equation 4.5. The formation h is
adaptively recomputed based on the movement of the virtual leaders. The slave nodes do
not have knowledge of the virtual leaders’ intended path; only the virtual leader’s current
position when they are within communication range.

At the MTX, six phases of operation were conducted; IPB, Insertion, Infiltration, Actions
at the Objective, Exfiltration, and Extraction. These phases require significant topological
changes in the network. We induce these transformations in the network by tuning the
parameters αs and αr based on the emphasis of sensing versus communications and robust-
ness. The submodular function maximization is then used to recompute the formation. We
constrain the utility function based on the heterogeneous properties of each node such that
the nodes are not given an unreachable position in the formation. Initially, sensing is the
most important factor and the network biases itself toward surveying the island. Gradu-
ally, the weight on the importance of communications and network robustness is increased,
bringing the network closer together in support of the NSW unit.

During IPB, the network is composed solely of two UUVs, one USV, and one UAV. The
unmanned assets conduct ISR and operate independently for the majority of the phase. The
UUVs act as the virtual leaders during this phase, following pre-planned routes to survey
the seafloor where the NSW unit plans to infiltrate the island. At the beginning of the
phase, there is no need to communicate (αr = 0) and the nodes act separately to survey the
environment, as shown in Figure 5.10(a). As more information is gathered, we gradually
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increase αr and the nodes draw closer together in Figure 5.10(b) (Note: this is very close
based on the assumed communication ranges of the UUVs).

Figure 5.10. Network during initial IPB.

(a) The network is shown during beginning of the IPB phase. (b) The network is
shown at the end of the IPB phase. USV1 has traveled close enough to transmit
information gathered by the UUVs. Communication links form and break as the
nodes leave and enter communication range. The virtual leaders are indicated in
red and their paths are indicated in purple. The formation controller directs the
other nodes shown in blue, with their paths indicated in green. Communication
links are shown in gray.

Following IPB, the NSW unit and support ship (DDG) enter the network, along with other
unmanned assets. During Insertion, the NSW unit uses another USV to travel to shore,
which also acts as the virtual leader. The support ship also acts independently, so the
network treats it as an additional virtual leader. The movements of the network are shown
in Figure 5.11. Throughout the phase, robustness is weighted more heavily and the nodes
are moved to provide better connectivity. One may note the UUV nodes are not pictured
because they have left the network.
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Figure 5.11. Network during the Insertion phase.

The network is shown near the end of the NSW Insertion. The virtual leaders are
indicated in red and their paths are indicated in purple. The formation controller
directs the other nodes shown in blue. Communication links are shown in gray.

After the NSW unit has been inserted, the unit conducts Infiltration and move on foot to
conduct Actions at the Objective. The infiltration is the longest phase of the operation, and
we show multiple panes separated by approximately 20 minutes of real time in Figure 5.12
to demonstrate the topological changes of the network. In the series of snapshots, the NSW
unit is shown traversing toward the target indicated by the red star on the northwest end of the
island. Meanwhile, the DDG circles offshore. For the entire operation, the network adapts
its formation to the movement of the two virtual leaders and maintains sensing coverage
and robust communications. As time goes on, the importance of robustness is increased,
bringing the network in tighter around theNSWunit, rather than providing extensive sensing
coverage of the island.
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Figure 5.12. Network during the In�ltration phase.

The network throughout the In�ltration. In the progression from (a) to (f), the
NSW unit traverses up the island and the network responds to its movement and
the movement of the DDG as it circles o�shore. The virtual leaders are indicated
in red and their paths are indicated in purple. The formation controller directs the
other nodes shown in blue. Communication links are shown in gray.
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Once the NSW unit has infilled to the target, the unit conducts Actions at the Objective and
then reverse course during Exfiltration and is Extracted. The network is not demonstrated
during Actions at the Objective due to the phase’s brevity. The Exfiltration and Extraction
phases are not pictured due to their similarity to the previous phases, conducted in reverse.
Although we frame this in terms of the MTX, these results can be generalized to many other
scenarios. This demonstrates the feasibility of using a time-varying formation controller
with heterogeneous nodes. The controller also handles the addition and loss of nodes as
they leave and enter the network, seamlessly breaking and reestablishing communications.

Additionally, this demonstrates the ability of submodular function maximization to balance
competing objectives and efficiently solve a complex combinatorial optimization problem.
In this simulation, the map is discretized into a 100 by 100 grid. At most time steps there
were, at minimum, five mobile nodes. Using a brute force method, 1 × 1020 permutations
would need to be considered. This is completely infeasible with the hardware onboard any
of the agents in the network, and extremely time intensive even when using a supercomputer.
Instead, this problem is reduced to a scalable problem that is solvable in polynomial time.
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CHAPTER 6:
Adaptive Submodularity

In this chapter we provide an overview of an adaptive submodular approach to use machine
learning to improve the performance of our NCS. In Section 6.1, we describe adaptive
submodularity, a technique that usesmachine learning to adaptively adjust a policy to achieve
an optimal outcome. We then synthesize our problem in terms of adaptive submodularity
in Section 6.2. The implementation of this approach is left to future work.

6.1 Framework
In our problem, we may wish to use sensor readings or the actual received communication
strength as feedback to adaptively place the next node. In this formulation, rather than
merely optimizing over a utility function, we optimize over a policy. A policy is a function
that translates from gathered information to the next action taken [1].

The following is an enumeration of the variables relating to adaptive submodularity and
their definitions as defined in [24] and [1].

Actions V: There is a finite set of actions V (e.g., node location selections) available to us.
We call a single action ν and a set of specific actions A ⊆ V .

Outcomes O: A finite set of outcomes O correspond to the finite set of available actions V .
For example, the outcome of a certain NCS topology could be the resultant band width of
the network.

World StateΦ: The random variableΦ is used to model the state of the world. For instance,
this could represent the likelihood that each location j is mined.

Realization φ: A realization φ is a concrete state from the probabilistic world state Φ, e.g.,
there are mines at locations i, j, and k. We use the world state φ as a function that maps
from an action to an outcome, i.e., φ : V → O. Thus, φ(ν) is the outcome of action ν. For
example, if the world is in state φ and we take an action by placing a node at location ν, we
realize the outcome φ(ν) (e.g., the realization that there is or is not a mine at ν).
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Prior Probability Distribution P(φ): Using a Bayesian model, we assume that there is a
prior probability distribution p(φ) = P(Φ = φ). We use this model to predict a posteriori
realizations, i.e., the results of the set of actions A. This distribution is akin to the sensing
utility described in Section 4.3; that is this distribution helps us generate prediction of the
expected gain in utility.

Partial Realization ψ: We define a partial function ψ that maps the actions performed to
the observed outcomes. We use dom(ψ) to denote the domain of ψ, i.e., the set of actions
A performed up to the current time. The partial realization ψ(A) is the set of outcomes
observed up to the current time (e.g., the set of measurements from locations A).

Objective Function f : We design an objective function f : 2V ×OV → R+ that computes
the utility f (A, φ) of the actions A resulting in the particular realization of the world state φ.

Policy π: A policy π is a function that maps from the partial realizations ψ to new actions.
Thus, π(ψ) are the actions taken by the policy π after observing the partial realization ψ.
We denote the set of actions played by policy π under realization φ as V(π, φ). An example
of a policy could be a certain set of gains α1, . . . , αn that are used to tune the utility function
to produce a different network topology.

Expected utility favg(π): The expected utility of policy π is

favg(π) = E [(V(π,Φ),Φ)] =
∑
φ

P[φ] f (V(π, φ), φ). (6.1)

Now that we have setup each of the relevant variables, we describe the objective of Adaptive
Stochastic Maximization. We wish to maximize the utility of a limited number of actions;
that is we wish to find a policy π∗

π∗ ∈ arg max
pi

favg(π), (6.2)

subject to cardinality constraints, i.e., |V(π, φ)| ≤ k for all φ [24]. Krause and Golovin
show that for this problem of Adaptive Stochastic Maximization, if the utility function f is
adaptivemonotonic and adaptive submodular, bounded performance of the greedy algorithm
generalizes to the adaptive situation [24]. The adaptive greedy algorithm functions similarly
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to the standard greedy algorithm and relies on the conditional expected marginal benefit,
which is similar to the discrete derivative [1].

Definition 6.1.1 Conditional Expected Marginal Benefit: given a partial realization ψ and
an action ν, the conditional expected marginal benefit of ν is

∆(ν |ψ) = E [ f (dom(ψ) ∪ {ν},Φ) − f (dom(ψ),Φ)|ψ ⊆ Φ] (6.3)

and the conditional expected marginal benefit of a policy π is

∆(π |ψ) = E [ f (dom(ψ) ∪ V(π,Φ),Φ) − f (dom(ψ),Φ)|ψ ⊆ Φ] . (6.4)

While less than k actions have been taken, the adaptive greedy algorithm determines the
action ν∗ that maximizes the conditional expected marginal benefit. Action ν∗ is then taken.
The realization φ(ν∗) is observed and then added to the partial realization φ [24]. Adaptive
submodularity has the advantage in that it can be used to deal with uncertainty, i.e., when
the world state realization is not deterministic.

6.2 Application
In our problem, we are limited by the resources available to us. We are limited by the
number of unmanned agents, the amount of fuel on each agent, the sensing range, the
communications range, and the time available to execute a mission. We also force the
constraint that we have limited knowledge of our operating environment. For these reasons,
adaptive submodularity is a natural extension to the approach we have discussed in previous
chapters. We can deploy our mobile sensing platforms individually, one by one. Then using
adaptive submodularity, we can utilize the intelligence collected by each deployed agent to
inform the placement of each successive node. In this scheme we can attempt to preserve
our resources and maximize the reduction of our uncertainty about the world state.

In this problem (as before), we discretize our area of interest into a set of locations V . We
aim to select the set of locations A that maximizes the certainty in our representation of the
environment. However, before we deploy our agents the state of the environment is unknown
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or at most partially known. Thus, we assign an initial state φ(ν) for each discretized point
ν. This initial state could indicate the probability that there is an adversary at that location.

We then design an objective function f : 2V × OV → R+ that quantifies the utility of
positioning nodes at locations A given the realization φ of those points. Using f , we aim
to adaptively position our limited number of k nodes in order to maximize the intelligence
we gather about the environment. We can then use a Bayesian approach to estimate the full
world state from our partial realizations.
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CHAPTER 7:
Conclusion

In this concluding chapter we summarize our findings (Section 7.1) and provide an overview
of future extensions to this thesis (Section 7.2).

7.1 Contributions
In this thesis we address a broad range of topics. Significantly, we develop novel criteria
for the evaluation of robustness metrics. We then develop new network robustness metrics
based on weighted graphs. We conclude that the effective graph resistance metric best
encapsulates network robustness in a single value.

We also develop a utility function that quantifies competing sensing and communication
objectives. We prove that this function is submodular and use it compute optimal network
formations with respect to a realistic operation. We then demonstrate that the greedy
algorithm indeed produces a near optimal solution by comparing its output to that of the
brute force computation of the full power set.

Time-varying formation control is then demonstrated in simulation. In this simulation, we
show that the agents are able to adaptively reconfigure in response to the movements of
virtual leaders.

We then formulate our problem in terms of adaptive submodularity, a promising approach
that could be used to tune the performance of the control algorithm to produce more
desirable results. Although we leave the implementation of this to future work, this holds
the potential to make our controller scalable to networks containing significantly more node
where tuning the utility subfunction gains becomes more difficult.

Potential applications of this research are far ranging. The framework developed in this thesis
could be applied to any number of scenarios in which manned and unmanned agents work
to achieve certain objectives that can be formulated as a coverage problem. Such operations
include humanitarian operations, search and rescue, or the spreading of pesticides tomanage
an invasive species or disease vector such as mosquitoes.

71



7.2 Future Work
Overall, with future work we aim to make our control algorithm more robust to failure and
uncertainty. In Chapter 6 we outline our approach to implement adaptive submodularity to
address the uncertainty in the environment. In order to make our network more resistant to
failure, we seek to decentralize control and reduce the need for communication.

As currently implemented, the formation of our nodes is computed in a centralized fashion.
Complete positional knowledge and connection information is required to calculate the
utility of our network. This could be improved by using estimators to track node positions
in the case of brief network dropouts and using a more realistic communications model to
ensure commanded formations will not cause nodes to become disconnected. Protocols also
need to be designed for scenarios in which nodes become disconnected from the network.

In addition, the utility function could possibly be improved by using Gramian-based control-
lability and observability metrics proposed in [2]. Other factors that were not considered,
but would be useful additions to the utility function, include the energy usage and time
required to reconfigure the formation. The capacity of the network for deception could also
be considered. For instance, using noncritical nodes to lead adversaries away from more
valuable nodes, or ensuring that nodes acting as overwatch for ground forces do not give
away the position of those assets.

This research will also be translated from simulation into physical hardware. Using the
Robotic Operating System (ROS) as the middleware for the NCS, the described control
architecture will be implemented on the assets described in Chapter 1 and evaluated at
future MTX events [35].
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