RADICAL RING

In mathematics, a radical ring R is a ring without unity which is equal to its Jacobson radical (see Ring (mathematics)). Finite radical rings yield set-theoretic solutions of the Yang-Baxter equation, and are examples of skew braces. They also yield examples of Hopf-Galois structures on Galois extensions of fields. ${ }^{[1]}$

Contents

Definitions

- Radical ring
- Circle (or adjoint) group
- Nilpotent ring

Some counting results

- Radical ring
- Counting isomorphism types of commutative nilpotent algebras]
- Counting rank n commutative nilpotent \mathbb{F}_{p}-algebras for large n
- Number of nilpotent K-algebras of dimension ≤ 4

Radical rings and skew braces
Radical algebras and the set-theoretic Yang-Baxter equation

Definitions

Radical ring. A radical ring R is with the additional property that R is equal to its Jacobson radical $J(R)$.

A ring R without unity, sometimes called a rng, has two operations, + (addition) and \cdot (multiplication), where $a \cdot b$ is typically written $a b$, and $a \cdot a \cdot \ldots \cdot a$ (n factors) is denoted a^{n}. With those operations, R satisfies all of the properties of a ring (associativity of multiplication, left and right distributivity of multiplication over addition, etc.) except that there is no multiplicative identity element.

A radical ring R is a ring without unity with the additional property that the ring R is equal to its Jacobson radical $J(R)$ (See Jacobson radical. More explicitly, given any ring R, define the circle operation \circ on R by $a \circ b=a+b+a \cdot b$. It is easy to check that the operation \circ is associative, and $a \circ 0=0 \circ a=a$, so (R, \circ), the set R with the circle operation \circ, is a monoid (R, \circ) with identity element
equal to the additive identity element 0 of the ring R. Call an element a of R right quasi-regular if there exists an element \bar{a} of R so that $a+\bar{a}+a \cdot \bar{a}=0$: that means that a has a right inverse under the circle operation.

Then the ring R is a radical ring if and only if (R, \circ) is a group: that is, every element of R is both right quasi-regular and left quasi-regular. The group (R, \circ) is called the circle group or adjoint group of R.

Nilpotent ring. A nilpotent ring of index n (some positive integer) is a ring without unity in which the product $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}=0$ for all elements a_{1}, \ldots, a_{n} of R. A nilpotent ring of index n is a radical ring: given a in R, the element

$$
\bar{a}=-a+a^{2}-a^{3}+a^{4}+\ldots
$$

is a finite sum because $a^{n}=0$, and is easily seen to be the left and right inverse of a under the circle operation.

Conversely, if R is a finite radical ring, then R is Artinian, that is, satisfies the descending chain condition on left ideals (any descending chain of left ideals must have finite length), hence R is a nilpotent ring, by a theorem of Hopkins [see [Her61]].

Circle group

. An open question is to understand which finite groups can be the circle group of a finite radical ring.

It is known (see [AW73]) that if the radical ring R is nilpotent of index n, then the circle group G of R is a nilpotent group of class at most $n-1$. For setting R^{k} to be the subring generated by all products of k elements of R, then in the chain of subring

$$
R \supset R^{2} \supset R^{3} \supset \ldots \supset R^{n-1} \supset R^{n}=0,
$$

each subring R^{j} is a normal subgroup of the group (R, \circ), and the commutator of any element of R^{j} is in R^{j+1}. Ault and Watters [AW73] prove a partial converse: if G is a finite nilpotent group of class 2, that is, if $G \supset Z(G) \supset(1)$ with $Z(G)$ the center of G and $G / Z(G)$ is abelian, then G is the circle group of a nilpotent ring of class 3. See also [Kru70].

Some counting results

Radical algebras and rings with unity. A radical algebra R over a field K is a K-vector space which is a radical ring-that is, a K-algebra R without unity for which $R=J(R)$. For R finite dimensional over K, the dimension of R as a K-vector space is called the rank of R. Then
the ring with unity $R^{\prime}=K \oplus R=s+a \mid s \in K, a \in R$ is a ring with multiplication

$$
(s+a)(t+b)=s t+s b+t a+t b
$$

and multiplicative identity $=1=1+0$, the multiplicative identity element of K. For R commutative, then R^{\prime} is a commutative local ring with unique maximal ideal R, since $R=J(R)=J\left(R^{\prime}\right)$. In that setting, there is an isomorphism from (R, \circ) to ($\left.R^{\prime}, \cdot\right)$ induced by $a \rightarrow 1+a$, for

$$
a \circ b=a+b+a b \mapsto 1+a+b+a b=(1+a)(1+b) .
$$

Counting isomorphism types of commutative nilpotent algebras. In [Po 08b], Poonen determines all 52 of the commutative local algebras of rank ≤ 6 (up to isomorphism as K-algebras) over an algebraically closed field K; they all have the form $A=K \oplus R$ where R is a commutative radical algebra of rank one less than the rank of A. In particular, over an algebraically closed field F of characteristic p, the number of isomorphism types of commutative nilpotent algebras of rank $n \leq 5$ is independent of p. (Nearly all of the algebras can be defined over any field, not just algebraically closed fields, hence yield distinct examples of nilpotent algebras of index ≤ 5 over any field.)

For K the field of p elements, the number of commutative nilpotent K-algebras A of rank n a over K satisfying $A^{3}=0$ is a fixed number independent of p for $n<5$, but examples in [ST68] show that the number of isomorphism types of commutative nilpotent K-algebras of rank 6 is at least $(p-5) / 6$, resp. $(p-1) / 6$ if p is congruent to 5 , resp. 1 modulo 6 . So the number of isomorphism types for rank ≥ 6 goes to infinity with p. Whether this is also true for algebras of rank 5 is apparently unknown (c.f. [Ch15]).

Number of rank n commutative nilpotent \mathbb{F}_{p}-algebras for large n. Kruse and Price [KP70] determined that the number of isomorphism types of commutative nilpotent \mathbb{F}_{p}-algebras A of rank n over \mathbb{F}_{p} and index 3 , that is, with $A^{3}=0$, is $p^{\frac{2}{27} n^{3}-\frac{4}{9} n^{2}+O(n)}$ as $n \rightarrow \infty$. For $p>3$, the circle group of any $\mathbb{F}_{p^{-}}$-algebra A with $A^{3}=0$ is an elementary abelian p-group, a consequence of a lemma of Caranti ${ }^{[2]}$.

Poonen [Po08b] determined that for large m the number of rank m commutative local \mathbb{F}_{p}-algebras is $p^{\frac{2}{27} m^{3}+O\left(m^{8 / 3}\right)}$. Since local \mathbb{F}_{p}-algebras of rank m coincide with nilpotent \mathbb{F}_{p}-algebras of rank $m-1$, this gives an asymptotic estimate of the number of commutative nilpotent $\mathbb{F}_{p^{-}}$ algebras of rank n, independent of index.

Number of nilpotent K-algebras of dimension ≤ 4. In [DeG18], DeGraaf determined all isomorphism types of nilpotent associative (but not necessarily commutative) K-algebras of dimension ≤ 4 over any field K : if K is a finite field with q elements, then there are $5 q+20$ isomorphism types for q odd and $5 q+17$ for q even.

Radical Rings and skew braces

A set B with two operations, $*$ and \circ, is a left skew brace if $(B, *)$ is a group (where the inverse of a is called a^{-1}), (B,o) is a group (where the inverse of a is called \bar{a}), and the single defining relation relating the two operations is: for all a, b, c in B,

$$
a \circ(b * c)=(a \circ b) * a^{-1} *(a \circ c) .
$$

If $(B, *)$ is an abelian group, then B is called a brace. In that setting $(B, *)$ is usually called the "additive group" and the operation $*$ is usually replaced by + ; in that case the defining relation is

$$
a \circ(b+c)=(a \circ b)-a+(a \circ c) .
$$

Given a radical algebra $A=(A,+, \cdot)$, the circle operation \circ on A defined by

$$
a \circ b=a+b+a \cdot b
$$

makes (A, \circ) into a group, and then $(A,+, \circ)$ is then a brace: for

$$
a \circ(b+c)=a+b+c+a(b+c) .
$$

while

$$
(a \circ b)-a+(a \circ c)=a+b+a b-a+a+c+a c .
$$

and the defining relation for a brace holds. (see [GV17], [SV18]).

Radical algebras and the set-theoretic Yang-Baxter EQUATION

The question of finding set-theoretic solutions of the Yang-Baxter equation was first raised by V. G. Drinfel'd in 1990 [Dr92]. That question has motivated considerable work in algebra since that time.

Any radical K-algebra A yields a set-theoretical solution of the YangBaxter equation:

Given A, define $\lambda_{a}: A \rightarrow A$ by $\lambda_{a}(b)=a^{-1}(a \circ b)$. Then $a \circ b=a \lambda_{a} b$. We let $R: A \times A \rightarrow A \times A$ by

$$
R(a, b)=\left(\sigma_{a}(b), \tau_{b}(a)=\left(\lambda_{a}(b), \overline{\lambda_{a}(b)} \circ a \circ b\right.\right.
$$

where $\sigma_{a}(b)=a^{-1}(a \circ b)$ and $\tau_{b}(a)=\overline{\lambda_{a}(b)} \circ a \circ b$. The claim ([GV], Theorem 3.1) is that if A is a skew left brace, then for all x, y, z in A,

$$
(R \times i d)(i d \times R)(R \times i d)(x, y, z)=(i d \times R)(R \times i d)(i d \times R)(x, y, z)
$$

Thus,

$$
\begin{aligned}
& \left.\sigma_{\sigma_{x}(y)}\left(\sigma_{\tau_{y}(x)}(z)\right), \tau_{\sigma_{\tau_{y}(x)}(z)}\left(\sigma_{x}(y)\right), \tau_{z}\left(\tau_{y}(x)\right)\right) \\
& =\left(\sigma_{x}\left(\sigma_{y}(z)\right), \sigma_{\left.\tau_{\sigma_{y}(z)}(x)\right)}\left(\tau_{z}(y)\right), \tau_{\tau_{z}(y)}\left(\tau_{\sigma_{y}(z)}(x)\right)\right.
\end{aligned}
$$

So there are three equalities to show:

$$
\begin{gathered}
\sigma_{\sigma_{x}(y)}\left(\sigma_{\tau_{y}(x)}(z)\right)=\sigma_{x}\left(\sigma_{y}(z)\right), \\
\tau_{\sigma_{\tau_{y}(x)}(z)}\left(\sigma_{x}(y)\right)=\sigma_{\tau_{\sigma_{y}(z)}(x)}\left(\tau_{z}(y)\right)
\end{gathered}
$$

and

$$
\left.\tau_{z}\left(\tau_{y}(x)\right)\right)=\tau_{\tau_{z}(y)}\left(\tau_{\sigma_{y}(z)}(x)\right)
$$

The fact that any radical algebra yields a set-theoretic solution to the YBE motivated the concept of left brace by W. Rump [Ru06], and subsequently the concept of skew left brace ([GV17]), as generalizations of a radical algebra: every skew brace yields a solution to the YBE and every solution to the set-theoretic YBE corresponds to a skew brace. (see, e. g [Ven19])

For a radical algebra $A, \sigma_{x}(y)=y+x y$ and $\tau_{y}(x)=\frac{x}{1+y+x y}$. Note that by embedding A into $A^{\prime}=K \oplus A$ by $a \rightarrow 1+a$, we can identify A as the set of elements $1+a$ in A^{\prime}, and they are all invertible in A^{\prime}. For if \bar{a} is the inverse of A in the circle group (A, \circ), then in $A^{\prime}, 1+a$ for a in R has an inverse, $1+\bar{a}$. where \bar{a} is the inverse of a in the circle group (R, \circ):

$$
0=a \circ a^{\prime}=a+a^{\prime}+a a^{\prime}
$$

iff $1=(1+a)(1+\bar{a})$. Thus $\tau_{y}(x)$ makes sense in A^{\prime}.
Thus for a radical algebra A (or $A^{\prime}=K \oplus A$), the three equations that must hold for the function R to yield a set-theoretic solution of the YBE are as follows: The left equation (L) is:

$$
\sigma_{\sigma_{x}(y)}\left(\sigma_{\tau_{y}(x)}(z)\right)=\sigma_{x}\left(\sigma_{y}(z)\right):
$$

both sides of equation (L) equal

$$
(1+x)(1+y) z
$$

The middle equation (C) is

$$
\tau_{\sigma_{\tau_{y}(x)}(z)}\left(\sigma_{x}(y)\right)=\sigma_{\tau_{\sigma_{y}(z)}(x)}\left(\tau_{z}(y)\right):
$$

both sides of equation (C) equal

$$
\frac{(y(1+x)}{1+z(1+x)(1+y)} .
$$

The right equation is (R) :

$$
\left.\tau_{z}\left(\tau_{y}(x)\right)\right)=\tau_{\tau_{z}(y)}\left(\tau_{\sigma_{y}(z)}(x)\right):
$$

both sides of equation (R) equal

$$
\frac{x}{(1+z)(1+y+y x)+x z}
$$

Thus a radical algebra yields a solution of the Yang-Baxter equation.

See also

Jacobson radical, Yang-Baxter equation; for connections to HopfGalois theory and local algebraic number theory, see [CGKKKTU21]; for brace theory, see [GV17] and [SV18] and the references therein.

Notes

[1]. For the connection between radical rings and Hopf-Galois extensions, see, for example, [Ch15] or [CGKKKTU21] and the references therein.
[2]. Caranti's Lemma says that if A is a commutative nilpotent $\mathbb{F}_{p^{-}}$ algebra of dimension n and index $\leq e$ (that is, $A^{e}=0$) where $e<p$, then the circle group (A, \circ) is isomorphic to the additive group $(A,+)$.

References

[Ch15] Childs, L. N., On abelian Hopf Galois structures and finite commutative nilpotent rings, New York J. Math. 21 (2015), 205-229.
[CGKKKTU21] Childs, L. N., Greither, C., Keating, K. P., Koch, A., Kohl, T., Truman, P. J., Underwood, R.G., Hopf Algebras and Galois Module Theory, Amer. Math. Soc. Math. Surveys and Monographs, vol.260, 2021.
[DeG18] DeGraaf, W., Classification of nilpotent associative algebras of small dimension, Int. J. Algebra Com. 28 (2018), 133-161.
[Dr92] Drinfel'd, V., On some unsolved problems in quantum group theory, Lecture Notes in Mathematics 1510 (1992), 1-8.
[FCC12] Featherstonhaugh, S. C., Caranti, A., Childs, L. N., Abelian Hopf Galois structures on prime-power Galois field extensions, Trans. Amer. Math. Soc. 364 (2012), 3675-3684.
[GV17] Guarnieri, L., Ventramin, L., Skew braces and the YangBaxter equation, Math. Comp. 86 (2017), 2519-2534.
[Her61] Herstein, I. N., Theory of Rings, University of Chicago Mathematics Lecture Notes, Spring, 1961
[KP70] Kruse, R. L., Price, D. T., Enumerating finite rings, J. London Math. Soc. (2) 2 (1970), 149-159.
[Kr70] Kruse, R. L., On the circle group of a nilpotent ring, American Math. Monthly 77 (1970), 168-170.
[Po08b] Poonen, B., Isomorphism types of commutative algebras of finite rank over an algebraically closed field, in Computational Algebraic Geometry, Contemp. Math. 463, Amer. Math. Soc., 2008, 817-836.
[Po08a] Poonen, B., The moduli space of commutative algebras of finite rank, J. European Math. Soc. 10 (2008), 817-836.
[Ru07] Rump, W., Braces, radical rings, and the quantum YangBaxter equation, J. Algebra 307 (2007), 153-170.
[ST68] Suprunenko, D. A., Tyskevic, R. I., Commutative Matrices, Academic Press, New York, NY, 1968.
[SV18] Smoktunowicz, A., Vendramin, L., On skew braces (with an appendix by N. Byott and L. Vendramin), J. Combinatorial Algebra 2 (2018), 47-86.
[Ven19], Vendramin, L., Problems on skew braces, Advances in Group Theory and Applications 7 (2019), 15-37.

