
RADICAL RING

In mathematics, a radical ring R is a ring without unity which is
equal to its Jacobson radical (see Ring (mathematics)). Finite
radical rings yield set-theoretic solutions of the Yang-Baxter equa-
tion, and are examples of skew braces. They also yield examples of
Hopf-Galois structures on Galois extensions of fields. [1]
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Definitions

Radical ring. A radical ring R is with the additional property that
R is equal to its Jacobson radical J(R).

A ring R without unity, sometimes called a rng, has two operations,
+ (addition) and · (multiplication), where a · b is typically written ab,
and a · a · . . . · a (n factors) is denoted an. With those operations, R
satisfies all of the properties of a ring (associativity of multiplication,
left and right distributivity of multiplication over addition, etc.) except
that there is no multiplicative identity element.

A radical ring R is a ring without unity with the additional prop-
erty that the ring R is equal to its Jacobson radical J(R) (See Ja-
cobson radical. More explicitly, given any ring R, define the circle
operation ◦ on R by a ◦ b = a + b + a · b. It is easy to check that
the operation ◦ is associative, and a ◦ 0 = 0 ◦ a = a, so (R, ◦), the set
R with the circle operation ◦, is a monoid (R, ◦) with identity element
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2 RADICAL RING

equal to the additive identity element 0 of the ring R. Call an element
a of R right quasi-regular if there exists an element a of R so that
a+ a+ a · a = 0: that means that a has a right inverse under the circle
operation.

Then the ring R is a radical ring if and only if (R, ◦) is a group: that
is, every element of R is both right quasi-regular and left quasi-regular.
The group (R, ◦) is called the circle group or adjoint group of R.

Nilpotent ring. A nilpotent ring of index n (some positive integer)
is a ring without unity in which the product a1 · a2 · . . . · an = 0 for all
elements a1, . . . , an of R. A nilpotent ring of index n is a radical ring:
given a in R, the element

a = −a+ a2 − a3 + a4 + . . .

is a finite sum because an = 0, and is easily seen to be the left and
right inverse of a under the circle operation.

Conversely, if R is a finite radical ring, then R is Artinian, that is,
satisfies the descending chain condition on left ideals (any descending
chain of left ideals must have finite length), hence R is a nilpotent ring,
by a theorem of Hopkins [see [Her61]].

Circle group

. An open question is to understand which finite groups can be the
circle group of a finite radical ring.

It is known (see [AW73]) that if the radical ring R is nilpotent of
index n, then the circle group G of R is a nilpotent group of class at
most n− 1. For setting Rk to be the subring generated by all products
of k elements of R, then in the chain of subring

R ⊃ R2 ⊃ R3 ⊃ . . . ⊃ Rn−1 ⊃ Rn = 0,

each subring Rj is a normal subgroup of the group (R, ◦), and the
commutator of any element of Rj is in Rj+1. Ault and Watters [AW73]
prove a partial converse: if G is a finite nilpotent group of class 2,
that is, if G ⊃ Z(G) ⊃ (1) with Z(G) the center of G and G/Z(G) is
abelian, then G is the circle group of a nilpotent ring of class 3. See
also [Kru70].

Some counting results

Radical algebras and rings with unity. A radical algebra R over a
field K is a K-vector space which is a radical ring–that is, a K-algebra
R without unity for which R = J(R). For R finite dimensional over K,
the dimension of R as a K-vector space is called the rank of R. Then
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the ring with unity R′ = K ⊕ R = s+ a|s ∈ K, a ∈ R is a ring with
multiplication

(s+ a)(t+ b) = st+ sb+ ta+ tb.

and multiplicative identity = 1 = 1 + 0, the multiplicative identity
element of K. For R commutative, then R′ is a commutative local ring
with unique maximal ideal R, since R = J(R) = J(R′). In that setting,
there is an isomorphism from (R, ◦) to (R′, ·) induced by a → 1 + a,
for

a ◦ b = a+ b+ ab 7→ 1 + a+ b+ ab = (1 + a)(1 + b).

Counting isomorphism types of commutative nilpotent alge-
bras. In [Po 08b], Poonen determines all 52 of the commutative local
algebras of rank ≤ 6 (up to isomorphism as K-algebras) over an al-
gebraically closed field K; they all have the form A = K ⊕ R where
R is a commutative radical algebra of rank one less than the rank of
A. In particular, over an algebraically closed field F of characteristic
p, the number of isomorphism types of commutative nilpotent algebras
of rank n ≤ 5 is independent of p. (Nearly all of the algebras can be
defined over any field, not just algebraically closed fields, hence yield
distinct examples of nilpotent algebras of index ≤ 5 over any field.)

For K the field of p elements, the number of commutative nilpotent
K-algebras A of rank n a over K satisfying A3 = 0 is a fixed number
independent of p for n < 5, but examples in [ST68] show that the
number of isomorphism types of commutative nilpotent K-algebras of
rank 6 is at least (p− 5)/6, resp. (p− 1)/6 if p is congruent to 5, resp.
1 modulo 6. So the number of isomorphism types for rank ≥ 6 goes
to infinity with p. Whether this is also true for algebras of rank 5 is
apparently unknown (c.f. [Ch15]).

Number of rank n commutative nilpotent Fp-algebras for large
n. Kruse and Price [KP70] determined that the number of isomorphism
types of commutative nilpotent Fp-algebras A of rank n over Fp and

index 3, that is, with A3 = 0, is p
2
27
n3− 4

9
n2+O(n) as n → ∞. For p > 3,

the circle group of any Fp-algebra A with A3 = 0 is an elementary
abelian p-group, a consequence of a lemma of Caranti [2].

Poonen [Po08b] determined that for large m the number of rank m

commutative local Fp-algebras is p
2
27
m3+O(m8/3). Since local Fp-algebras

of rank m coincide with nilpotent Fp-algebras of rank m− 1, this gives
an asymptotic estimate of the number of commutative nilpotent Fp-
algebras of rank n, independent of index.
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Number of nilpotent K-algebras of dimension ≤ 4. In [DeG18],
DeGraaf determined all isomorphism types of nilpotent associative (but
not necessarily commutative) K-algebras of dimension ≤ 4 over any
field K: if K is a finite field with q elements, then there are 5q + 20
isomorphism types for q odd and 5q + 17 for q even.

Radical rings and skew braces

A set B with two operations, ∗ and ◦, is a left skew brace if (B, ∗)
is a group (where the inverse of a is called a−1), (B, ◦) is a group (where
the inverse of a is called a), and the single defining relation relating the
two operations is: for all a, b, c in B,

a ◦ (b ∗ c) = (a ◦ b) ∗ a−1 ∗ (a ◦ c).

If (B, ∗) is an abelian group, then B is called a brace. In that setting
(B, ∗) is usually called the ”additive group” and the operation ∗ is
usually replaced by +; in that case the defining relation is

a ◦ (b+ c) = (a ◦ b)− a+ (a ◦ c).

Given a radical algebra A = (A,+, ·), the circle operation ◦ on A
defined by

a ◦ b = a+ b+ a · b
makes (A, ◦) into a group, and then (A,+, ◦) is then a brace: for

a ◦ (b+ c) = a+ b+ c+ a(b+ c).

while

(a ◦ b)− a+ (a ◦ c) = a+ b+ ab− a+ a+ c+ ac.

and the defining relation for a brace holds. (see [GV17], [SV18]).

Radical algebras and the set-theoretic Yang-Baxter
equation

The question of finding set-theoretic solutions of the Yang-Baxter
equation was first raised by V. G. Drinfel’d in 1990 [Dr92]. That ques-
tion has motivated considerable work in algebra since that time.

Any radical K-algebra A yields a set-theoretical solution of the Yang-
Baxter equation:

Given A, define λa : A→ A by λa(b) = a−1(a◦b). Then a◦b = aλab.
We let R : A× A→ A× A by

R(a, b) = (σa(b), τb(a) = (λa(b), λa(b) ◦ a ◦ b
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where σa(b) = a−1(a ◦ b) and τb(a) = λa(b) ◦ a ◦ b. The claim ([GV],
Theorem 3.1) is that if A is a skew left brace, then for all x, y, z in A,

(R× id)(id×R)(R× id)(x, y, z) = (id×R)(R× id)(id×R)(x, y, z).

Thus,

σσx(y)(στy(x)(z)), τστy(x)(z)(σx(y)), τz(τy(x)))

= (σx(σy(z)), στσy(z)(x))(τz(y)), ττz(y)(τσy(z)(x)).

So there are three equalities to show:

σσx(y)(στy(x)(z)) = σx(σy(z)),

τστy(x)(z)(σx(y)) = στσy(z)(x)(τz(y))

and

τz(τy(x))) = ττz(y)(τσy(z)(x)).

The fact that any radical algebra yields a set-theoretic solution to
the YBE motivated the concept of left brace by W. Rump [Ru06], and
subsequently the concept of skew left brace ([GV17]), as generalizations
of a radical algebra: every skew brace yields a solution to the YBE and
every solution to the set-theoretic YBE corresponds to a skew brace.
(see, e. g [Ven19])

For a radical algebra A, σx(y) = y + xy and τy(x) = x
1+y+xy

. Note

that by embedding A into A′ = K ⊕ A by a → 1 + a, we can identify
A as the set of elements 1 + a in A′, and they are all invertible in A′.
For if a is the inverse of A in the circle group (A, ◦), then in A′, 1 + a
for a in R has an inverse, 1 +a. where a is the inverse of a in the circle
group (R, ◦):

0 = a ◦ a′ = a+ a′ + aa′

iff 1 = (1 + a)(1 + a). Thus τy(x) makes sense in A′.
Thus for a radical algebra A (or A′ = K ⊕ A), the three equations

that must hold for the function R to yield a set-theoretic solution of
the YBE are as follows: The left equation (L) is:

σσx(y)(στy(x)(z)) = σx(σy(z)) :

both sides of equation (L) equal

(1 + x)(1 + y)z.

The middle equation (C) is

τστy(x)(z)(σx(y)) = στσy(z)(x)(τz(y)) :
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both sides of equation (C) equal

(y(1 + x)

1 + z(1 + x)(1 + y)
.

The right equation is (R):

τz(τy(x))) = ττz(y)(τσy(z)(x)) :

both sides of equation (R) equal
x

(1 + z)(1 + y + yx) + xz
.

Thus a radical algebra yields a solution of the Yang-Baxter equation.

See also

Jacobson radical, Yang-Baxter equation; for connections to Hopf-
Galois theory and local algebraic number theory, see [CGKKKTU21];
for brace theory, see [GV17] and [SV18] and the references therein.

Notes

[1]. For the connection between radical rings and Hopf-Galois exten-
sions, see, for example, [Ch15] or [CGKKKTU21] and the references
therein.

[2]. Caranti’s Lemma says that if A is a commutative nilpotent Fp-
algebra of dimension n and index ≤ e (that is, Ae = 0) where e < p,
then the circle group (A, ◦) is isomorphic to the additive group (A,+).
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