RADICAL RING

In mathematics, a radical ring R is a ring without unity which is
equal to its Jacobson radical (see Ring (mathematics)). Finite
radical rings yield set-theoretic solutions of the Yang-Baxter equa-
tion, and are examples of skew braces. They also yield examples of
Hopf-Galois structures on Galois extensions of fields. [!
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DEFINITIONS

Radical ring. A radical ring R is with the additional property that
R is equal to its Jacobson radical J(R).

A ring R without unity, sometimes called a rng, has two operations,
+ (addition) and - (multiplication), where a - b is typically written ab,
and a-a-...-a (n factors) is denoted a™. With those operations, R
satisfies all of the properties of a ring (associativity of multiplication,
left and right distributivity of multiplication over addition, etc.) except
that there is no multiplicative identity element.

A radical ring R is a ring without unity with the additional prop-
erty that the ring R is equal to its Jacobson radical J(R) (See Ja-
cobson radical. More explicitly, given any ring R, define the circle
operation o on R by aocb =a+ b+ a-b. It is easy to check that
the operation o is associative, and a o0 = 0o a = a, so (R, o), the set
R with the circle operation o, is a monoid (R, o) with identity element

Date: February 8, 2022.



2 RADICAL RING

equal to the additive identity element O of the ring R. Call an element
a of R right quasi-regular if there exists an element @ of R so that
a+a-+a-a=0: that means that a has a right inverse under the circle
operation.

Then the ring R is a radical ring if and only if (R, o) is a group: that
is, every element of R is both right quasi-regular and left quasi-regular.
The group (R, o) is called the circle group or adjoint group of R.

Nilpotent ring. A nilpotent ring of index n (some positive integer)
is a ring without unity in which the product a; -as-...-a, = 0 for all
elements aq,...,a, of R. A nilpotent ring of index n is a radical ring:
given a in R, the element

a:—a+a2—a3+a4—|—...

is a finite sum because a™ = 0, and is easily seen to be the left and
right inverse of a under the circle operation.

Conversely, if R is a finite radical ring, then R is Artinian, that is,
satisfies the descending chain condition on left ideals (any descending
chain of left ideals must have finite length), hence R is a nilpotent ring,
by a theorem of Hopkins [see [Her61]].

CIRCLE GROUP

. An open question is to understand which finite groups can be the
circle group of a finite radical ring.

It is known (see [AWT3]) that if the radical ring R is nilpotent of
index n, then the circle group G of R is a nilpotent group of class at
most n — 1. For setting R* to be the subring generated by all products
of k elements of R, then in the chain of subring

ROR*ODR*>...DOR"'D>R"=0,
each subring R’ is a normal subgroup of the group (R, o), and the
commutator of any element of R is in R/™!. Ault and Watters [AW73]
prove a partial converse: if G is a finite nilpotent group of class 2,
that is, if G D Z(G) D (1) with Z(G) the center of G and G/Z(G) is
abelian, then G is the circle group of a nilpotent ring of class 3. See
also [Kru70].

SOME COUNTING RESULTS

Radical algebras and rings with unity. A radical algebra R over a
field K is a K-vector space which is a radical ring—that is, a K-algebra
R without unity for which R = J(R). For R finite dimensional over K,
the dimension of R as a K-vector space is called the rank of R. Then
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the ring with unity R = K @ R = s+al|s € K,a € R is a ring with
multiplication

(s+a)(t+0b) =st+ sb+ta+ tb.

and multiplicative identity = 1 = 1 4+ 0, the multiplicative identity
element of K. For R commutative, then R’ is a commutative local ring
with unique maximal ideal R, since R = J(R) = J(R'). In that setting,
there is an isomorphism from (R, o) to (R',-) induced by a — 1+ a,
for

aocb=a+b+ab—1+a+b+ab=(1+a)(l+D).

Counting isomorphism types of commutative nilpotent alge-
bras. In [Po 08b], Poonen determines all 52 of the commutative local
algebras of rank < 6 (up to isomorphism as K-algebras) over an al-
gebraically closed field K; they all have the form A = K & R where
R is a commutative radical algebra of rank one less than the rank of
A. In particular, over an algebraically closed field F' of characteristic
p, the number of isomorphism types of commutative nilpotent algebras
of rank n < 5 is independent of p. (Nearly all of the algebras can be
defined over any field, not just algebraically closed fields, hence yield
distinct examples of nilpotent algebras of index < 5 over any field.)

For K the field of p elements, the number of commutative nilpotent
K-algebras A of rank n a over K satisfying A® = 0 is a fixed number
independent of p for n < 5, but examples in [ST68] show that the
number of isomorphism types of commutative nilpotent K-algebras of
rank 6 is at least (p —5)/6, resp. (p—1)/6 if p is congruent to 5, resp.
1 modulo 6. So the number of isomorphism types for rank > 6 goes
to infinity with p. Whether this is also true for algebras of rank 5 is
apparently unknown (c.f. [Ch15]).

Number of rank n commutative nilpotent [ ,-algebras for large
n. Kruse and Price [KP70] determined that the number of isomorphism
types of commutative nilpotent Fj-algebras A of rank n over F, and
index 3, that is, with A3 = 0, is pr™’~37°+0™ a5 n — co. For p > 3,
the circle group of any F,-algebra A with A* = 0 is an elementary
abelian p-group, a consequence of a lemma of Caranti 2.

Poonen [Po08b| determined that for large m the number of rank m
commutative local F-algebras is p%mstO(mg/B). Since local IF-algebras
of rank m coincide with nilpotent [F,-algebras of rank m — 1, this gives
an asymptotic estimate of the number of commutative nilpotent [F,-
algebras of rank n, independent of index.
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Number of nilpotent K-algebras of dimension < 4. In [DeG18],
DeGraaf determined all isomorphism types of nilpotent associative (but
not necessarily commutative) K-algebras of dimension < 4 over any
field K: if K is a finite field with ¢ elements, then there are 5g + 20
isomorphism types for ¢ odd and 5¢ + 17 for ¢ even.

RADICAL RINGS AND SKEW BRACES

A set B with two operations, * and o, is a left skew brace if (B, x)
is a group (where the inverse of a is called a™'), (B, o) is a group (where
the inverse of a is called @), and the single defining relation relating the
two operations is: for all a,b,c in B,

ao(bxc)=(aob)*xa ' x(aoc).

If (B, *) is an abelian group, then B is called a brace. In that setting
(B, *) is usually called the ”additive group” and the operation * is
usually replaced by +; in that case the defining relation is

ao(b+c)=(aob)—a+ (aoc).
Given a radical algebra A = (A, +,-), the circle operation o on A
defined by

aob=a+b+a-b

makes (A, o) into a group, and then (A, +, o) is then a brace: for

ao(b+c)=a+b+c+alb+c).

while
(aob)—a+ (aoc)=a+b+ab—a+a+c+ac.
and the defining relation for a brace holds. (see [GV17], [SV1§]).

RADICAL ALGEBRAS AND THE SET-THEORETIC YANG-BAXTER
EQUATION

The question of finding set-theoretic solutions of the Yang-Baxter
equation was first raised by V. G. Drinfel’d in 1990 [Dr92]. That ques-
tion has motivated considerable work in algebra since that time.

Any radical K-algebra A yields a set-theoretical solution of the Yang-
Baxter equation:

Given A, define \, : A — A by \,(b) = a~'(aob). Then aob = alb.
Welet R: Ax A— AXx Aby

R(a,b) = (04(b), (a) = (Ma(b), \a(D) 0@ 0 b
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where 0,(b) = a™'(a o b) and 7,(a) = A\y(b) 0o aob. The claim ([GV],
Theorem 3.1) is that if A is a skew left brace, then for all z,y, z in A,

(R x id)(id x R)(R x id)(x,y, z) = (id x R)(R x id)(id X R)(x,y, 2).
Thus,

Ocu(y) (U‘Fy(m) (2)), Tor,(2)(2) (02(y)), 72 (7 (2)))
= (036(03/(2)), Oy (2) (@) (Tz<y>)a Tr.(y) (Toy(z) (3:))

So there are three equalities to show:

Ooo(y) (Ory(2)(2)) = 02(0y(2)),

TUTy(I)(Z)(O-CC(y)) = O-Tgy(z)(x)(Tz(y))
and
7.(1y(2))) = Tr.(w) (Tay(Z) (2)).

The fact that any radical algebra yields a set-theoretic solution to
the YBE motivated the concept of left brace by W. Rump [Ru06], and
subsequently the concept of skew left brace ([GV17]), as generalizations
of a radical algebra: every skew brace yields a solution to the YBE and
every solution to the set-theoretic YBE corresponds to a skew brace.
(see, e. g [Venl9])

For a radical algebra A, 0,(y) = y + 2y and 7,(2) = 17, Note
that by embedding A into A’ = K & A by a — 1 + a, we can identify
A as the set of elements 1 4+ a in A’, and they are all invertible in A’.
For if @ is the inverse of A in the circle group (A4, o), then in A, 1+ a
for a in R has an inverse, 1 +a. where @ is the inverse of a in the circle
group (R, o):

0O=aod =a+d +ad
iff 1 =(1+a)(1+a). Thus 7,(z) makes sense in A’

Thus for a radical algebra A (or A’ = K & A), the three equations
that must hold for the function R to yield a set-theoretic solution of
the YBE are as follows: The left equation (L) is:

Tou) (0, (@) (2)) = 0u(0(2)) :
both sides of equation (L) equal
(1+2)(1+y)=.
The middle equation (C) is

Tory((02(Y) = 07, (@) (T=(y)) :
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both sides of equation (C) equal

(y(1+ )
T+2(14+2)(1+y)

The right equation is (R):

TZ(Ty(x))) = Tr.(y) (Tay(Z)(m)) :
both sides of equation (R) equal

x
(1+2) 14y +yx)+axz
Thus a radical algebra yields a solution of the Yang-Baxter equation.

SEE ALSO

Jacobson radical, Yang-Baxter equation; for connections to Hopf-
Galois theory and local algebraic number theory, see [CGKKKTU21]J;
for brace theory, see [GV17] and [SV18] and the references therein.

NOTES

[1]. For the connection between radical rings and Hopf-Galois exten-
sions, see, for example, [Ch15] or [CGKKKTU21] and the references
therein.

[2]. Caranti’s Lemma says that if A is a commutative nilpotent F-
algebra of dimension n and index < e (that is, A = 0) where e < p,
then the circle group (A, o) is isomorphic to the additive group (A, +).
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