
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1994-09

Space tether - radar data processing

Brewster, Wayne Allan

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/42963

Downloaded from NPS Archive: Calhoun



NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CALIFORNIA 

THESIS 

SPACE TETHER - 
RADAR DATA PROCESSING 

By 

Wayne Allan Brewster 

September, 1994 

Thesis Co-Advisor: Richard C Olsen 
Ralph Hippenstiel 

Approved for public release; distribution is unlimited. 

19950109 086 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewng the collection of information. Send comments regarding this 
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington HeadquartersServices, 
nrectorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management 
and Budget Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1.     AGENCY USE ONLY (Leave blank) 2.      REPORT DATE 
September 1994 

4.     TITLE AND SUBTITLE 
SPACE TETHER - RADAR DATA PROCESSING 

3.     REPORT TYPE AND DATES COVERED 
Master's Thesis 

6.    AUTHOR(S) Brewster, Wayne A 

7.     PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey CA 93943-5000 

9.     SPONSORINGMONTTORING AGENCY NAME(S) AND ADDRESS(ES) 

11. 

5.     FUNDING NUMBERS 

PERFORMING 
ORGANIZATION 
REPORT NUMBER 

10.   SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect 
the official policy or position of the Department of Defense or the U.S. Government. 

12a DISTPJBimON/AVAELABILnY STATEMENT 
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 
A 

13.   ABSTRACT (maximum 200 words) 

NASA conducted the Delta-PMG tethered satellite mission. It was conducted to verify the hollow cathode 
plasma source's ability to couple electric currents from each end of a long wire tether traversing the 
ambient low earth orbit ionosphere plasma Observations were obtained through a suite of sensors which 
included large ground based VHF radars. The goal of this thesis was to process the radar data received at 
the radar based in Hawaii to study disturbances in the Earth's ionosphere caused by the tether. After 
extensive analysis, unique radar returns were identified that were associated with the passage of the tether 
system through magnetic field lines threading the radar's field of view. These returns were interpreted as a 
plasma cloud propagating along a magnetic field line and reflecting back along another. This phenomenon 
produced dual returns with inverted Doppler frequency content. 

14.   SUBJECT TERMS Delta - PMG, Radar Data Processing, Plasma Cloud 

17. SECURITY CLASSIFI- 
CATION OF REPORT 
Unclassified 

NSN 7540-01-280-5500 

18.   SECURITY CLASSIFI- 
CATION OF THIS PAGE 
Unclassified 

19.   SECURITY CLASSIFI- 
CATION OF ABSTRACT 
Unclassified 

15. NUMBER OF 
PAGES   81 

16.   PRICE CODE 

20.   LIMITATION OF 
ABSTRACT 
UL 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 298-102 



Approved for public release; distribution is unlimited 

SPACE TETHER - RADAR DATA PROCESSING 

by 

Wayne A Brewster 
Lieutenant Commander, Canadian Forces 

B.Eng., Royal Military College of Canada, 1984 

Submitted in partial fulfillment 
of the requirements for the degrees of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
MASTER OF SCIENCE IN APPLIED PHYSICS 

from the 

NAVAL POSTGRADUATE SCHOOL 
September, 1994 

Author: 

Approved by: 

Wa^ne A Brewster 

R.C. Olsen Thesis<-Co-Advisor 

Thes Hippenstiel Thesis Co-Advisor 

Department of Electrical 
and Computer Engineering 

11 



ABSTRACT 

NASA conducted the Delta-PMG tethered satellite mission. It was conducted to 

verify the hollow cathode plasma source's ability to couple electric currents from each 

end of a long wire tether traversing the ambient low earth orbit ionosphere plasma 

Observations were obtained through a suite of sensors which included large ground 

based VHF radars. The goal of this thesis was to process the radar data received at the 

radar based in Hawaii to study disturbances in the Earth's ionosphere caused by the 

tether. After extensive analysis, unique radar returns were identified that were 

associated with the passage of the tether system through magnetic field lines threading 

the radar's field of view. These returns were interpreted as a plasma cloud propagating 

along a magnetic field line and reflecting back along another. This phenomenon 

produced dual returns with inverted Doppler frequency content. 
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I. INTRODUCTION 

An electrodynamic tether is an orbirting satellite system with two bodies or payloads 

connected by a conductive wire. Electrodynamic tethers make use of interactions between a 

moving conductor, the Earth's magnetic field and the ambient plasma in the Earth's 

ionosphere. These interactions can produce propulsion, braking and power generation. 

The passage of the tethered satellite through the ionosphere will produce perturbations 

in the environment. Radio waves at the appropriate frequency will be reflected by 

perturbations that sufficiently increase the electron density in the ionosphere medium Thus, a 

radar could be used to monitor plasma-perturbation signatures caused by a tethered satellite's 

movement through the ionosphere. 

NASA conducted the Delta-PMG tethered satellite mission. The experiment was 

conducted to verify the hollow cathode plasma source's ability to couple electric currents from 

each end of a long wire traversing the ambient low earth orbit ionosphere plasma 

To complement the onboard data recording, ground based VHF radars were used They 

provided a validation for observable interactions between the plasma motor generator system 

and the low earth orbit environment. 

The goal of this thesis research is to process available radar data and study 

disturbances in the Earth's ionosphere caused by the passage of the tether. 



ü.   BACKGROUND 

A       PLASMA MOTOR GENERATOR EXPERIMENT 

NASA conducted the Delta-PMG tethered satellite mission June 26, 1993. It 

was conducted in low earth orbit to confirm theoretical predictions that a low-density, 

weakly ionized gas from a hollow cathode assembly acting as an ionospheric plasma 

contactor would provide a low impedance electrical coupling between spacecraft and 

the ionosphere. A secondary goal was to demonstrate electrodynamic-tether behavior in 

low earth orbit as it functioned as either an orbit-boosting electrical motor or a 

generator that converts orbital energy into electricity. 

The flight hardware shown in Figure 1, consisted of four major subsystems, the 

far end package, near end package, electronics box and the plasma diagnostic package. 

The system was launched piggy back on an Air Force Delta II rocket. The system was 

deployed with the second stage after fuel depletion and was left in an elliptical orbit. 

The plasma motor generator far end package was spring ejected on a 500 meter 

conducting wire. The two bodied tethered satellite system stabilized in a gravity- 

gradient configuration with the far end package above the Delta II second stage to 

which was attached the near end package. 

The measurement plan utilized onboard telemetry data and a remote sensor 

suite. The remote sensors included fixed and transportable radars, magnetometers, and 

optical systems. The large remote sensor suite was used to observe large-scale 

geophysical processes, such as the electrical current coupling, far end package 

deployment, operation of the hollow cathode plasma sources, current flow along 

geomagnetic field lines and drag and thrust forces (I x B). The remote sensors also 

compiled data on space-based hollow cathode plasma production, tether current closure 

through ionosphere, tether dynamics and I x B forces on the tether. 

The ground based radar system used was composed of four VHF radar systems. 

All four systems operated in a pulsed, narrow-band, fixed-pointing configuration with 

a center frequency at approximately 50 MHz. The four systems were deployed at 



Hawaii, Pohnpei in Mcronesia, and Jicamarca and Piura in Peru. The data used for 

this thesis was obtained from the radar based in Hawaii. 

The core hardware components were the hollow cathode assemblies. They 

needed to produce plasma which would couple electric currents from either end of the 

tether to the low earth ionosphere. Figure 1 displays the hollow cathode assembly 

cross section and schematic diagram Functionally, the hollow cathode assembly heats 

a flow of xenon gas to approximately 1300 degrees celsius, within a barium-oxide 

impregnated tungsten hollow electron-emitter cathode in the presence of a strong 

voltage gradient between the cathode and an anode plate. In this state the gas flow is 

ionized by the discharge resulting in a dense plasma. This plasma can couple to the 

environment allowing current to flow freely between the hollow cathode and the 

ionosphere. 

In the plasma motor generator system there were two hollow cathode 

assemblies with a differential voltage between them One attached to the second stage 

of the Delta II rocket as part of the near end package and one deployed at the end of 

the 500 meter conducting tether as part of the far end package. The current loop was 

composed of the space plasma, the far end package, tether, load, battery, near end 

package including second stage rocket body and back to the plasma The current 

through the tether was the net effect of current flow through both plasma clouds to 

their respective local space plasma environments and the current collected directly by 

exposed conducting surfaces of the system The exposed conducting surfaces of the 

system were mainly the second stage rocket body. One of the hollow cathode 

assemblies acted as a collector of electrons and the other acted as an emitter of 

electrons. The two possible arrangements of this system and their respective 

interactions with the ionosphere are shown in Figure 1. The first arrangement is when 

the electrons are collected at the far end package which places the plasma motor 

generator system is in the motor mode. The second arrangement is when the electrons 



are collected at the near end package and the system is in the generator mode. The 

modes refer to how the geomagnetic field interacts with the tethered system 

The useful experiment duration was six to seven hours, which corresponds to 

the life expectancy of the onboard batteries. This time allowed for approximately four 

orbits and allowed ground based sites to collect data during at least three passes. 

R       IONOSPHERE 

The earth's upper atmosphere, extending from 60 to 1000 kilometers is called 

the Ionosphere. The ionosphere contains free electrons and ions in sufficient numbers 

to influence the propagation of electromagnetic radiation. The electron density is 

distributed in a series of layers. The different layers are produced primarily by the 

photoionization of various atmospheric gases by diverse wavelengths of solar 

ultraviolet and X-ray radiation. 

The ionosphere is divided into different regions which, for historical reasons 

have been named by letters of the alphabet. These regions are depicted in Figure 3. 

The D-region extends from 50 to 90 kilometers, the E-region extends from 90 to 140 

kilometers and the F-region which is usually subdivided into Fl and F2 regions, 

extends from 140 to 1000 kilometers. The electron densities in these regions vary with 

time of day, season and solar activity. 

Radio waves are refracted or reflected by the ionosphere. The influence of the 

ionosphere on radio waves decreases with increasing frequency. Waves of sufficiently 

high frequency can pass through hardly affected, but lower frequencies are reflected. 

The critical frequency is a function of electron density, frequency and angle of 

incidence. 

For reflection of a radio wave by the ionosphere, neglecting the geomagnetic 

field, the following criteria must be met 

N=[fcos(8)]2/80.6 (1) 



with     N = electron density (electrons/m3); 

0 = angle of incidence; and 

f = radio frequency (Hz). 

The ionosphere can be inhomogeneous on a micro scale and have various 

unstable pockets that have an electron density high enough to reflect radio waves even 

if the average density is insufficient. 

Irregular meteor arrivals, cause the most echoes, and will have many echo 

characteristics. The size of the meteor will determine the amount of ionization 

produced, the target strength and the duration of the trail. The energy developed in 

collisions between ablated atoms of the meteor and molecules or atoms of the upper 

atmosphere is sufficient to free electrons from the atoms. The electrons produce the 

scattering phenomena, and may conveniently be divided into two major subdivisions 

depending on whether the number of electrons produced per meter of path length is 

smaller or greater than the critical value. If smaller, the meteor trail is said to be 

underdense, allowing the radio wave to penetrate the column freely. Then each 

electron acts as an individual Rayleigh scattering source. If greater, the trail is 

overdense and the radio wave does not penetrate the column, but is effectively 

reflected as the electrons are dense enough to cause total reflection. The electron 

diffusion coefficient (observed decay time) depends on the atmospheric pressure and 

therefore on the height. 

Rayleigh scattering refers to the relationship between target size, frequency of 

radio waves and target's effective radar cross section. The scattering cross section of a 

target describes and quantifies the fraction of radio frequency energy scattered back. 

The quantitative study of the scattering of electromagnetic waves was preceded 

by the study of optics by over half a century. One concept of scattering from optics 

that is of relevance in radar, is the terminology which may be applied to the 

dimensions of a target relative to wavelength. The relationship between the radar cross 

section of a spherical target and its circumference measured in wavelengths is shown 



in Figure 4. The magnitude of the cross section varies from virtually nothing to 

approximately the physical cross section. When the dimensions of the scattering object 

are much less than a wavelength, one refers to Rayleigh scattering. As the target size 

increases to where the circumference is approximately equivalent to a wavelength, then 

scattering becomes Mie or resonant. As the target circumference becomes larger than 

several wavelengths then the scattering becomes optical. 

The Rayleigh scattering region is where the radar cross section is proportional 

to the fourth power of the frequency, is where less than critical electron density 

detection takes place. 

The exact calculation of the scattering cross section requires the solution of 

Maxwell's equations, subject to appropriate boundary conditions on the surface of the 

scatterer. 

C       TETHERS 

With the exception of some very far sighted astronomers doing some thought 

experiments, the history of tethers is a short one. The first tether concepts to be tested 

were during the Gemini-Aegena experiment in 1966. During the flight two bodies 

connected by a tether were shown to have an induced angular momentum Also it was 

shown that the two bodies could maintain a vertical position with the gravity gradient 

force pulling them apart. It was shown that in both cases there was induced artificial 

gravity in both of the bodies which pushed all liquids in the bodies to the farthest 

point from the tether. [NASA 1986] 

It was not until 1974 that Colombo, working for the Smithsonian Astrophysical 

Observatory, published the idea of using a tether and it's interaction with the 

geomagnetic field to produce thrust or propulsion. [Penzo, 1984] 

1. Tether Theory 

Tethers may be conducting or shielded. They generally have several different 

layers which provide extra strength. Figure 5 shows an example of the tether used 

during the TSS-1 experiment. Tether systems can be of various forms. The simplest 



and most general is two masses connected by a tether. The forces acting on this 

system in orbit are shown in Figure 6. The main forces acting on the system are 

gravitational and centrifugal. The upper mass, being at a greater radius will feel a 

larger centrifugal force. The lower mass will feel a stronger gravitational force. The 

two forces are equal and balanced only at the system's center of gravity. The center of 

mass is in free fall as it orbits the Earth, but the two end masses are not. The tether 

ensures the two masses orbit at the same angular speed as the center of mass. Without 

the tether, the upper mass would move slower, and the lower mass would move faster 

than the center of mass. It is for this reason that the upper mass experiences a larger 

centrifugal force and the lower mass a larger gravitational force. These opposing forces 

give rise to the balancing tether tension and produce the restoring forces when the 

system is not exactly vertical. The tension acts as an artificial gravity force on the 

masses. This artificial gravity force or tether tension equals the gravity-gradient force. 

Central to tether applications and the stabilization of tethered platforms are these 

gravity-gradient forces. 

The gravity-gradient force can be calculated by [NASA, 1986] 

FG=3Lmd)0
2 (2) 

with     m = mass; 

L = distance from the center of gravity; and 

©0 = orbital angular velocity (s1). 

This force is negative for a mass below the center of gravity and positive for a mass 

above. 

The orbital speed squared of the center of gravity is given by 

v0
2=GM/r (3) 



with      M = mass of the Earth (5.979xl024 Kg); 

G = universal gravitational constant (6.673xl0-u NnrVKg2); and 

r = radius of the system's center of gravity from the Earth's center (m). 

These forces make the vertical orientation of the tether system stable, but these 

are not the only forces acting on the system Other forces include the Earth's 

oblateness, differential atmospheric drag due to varying air densities and 

electrodynamic forces. These forces are weak but persistent and cause the system to 

osculate about the vertical. These oscillations have frequencies which are independent 

of tether length. The oscillations can be damped out by properly lengthening or 

shortening the tether length as a function of the tension on the tether. 

2. ELECTRODYNAMICS 

With respect to tethers, electrodynamics defines the class of systems which 

generate any electromagnetic quantity or effect. The systems can be further subdivided 

into subsystems. Hectrodynamic systems have moving parts within the system which 

generate the electromagnetic effect, and the electromagnetic systems do not. 

The electromagnetic systems rely on the interaction of a conducting tether with 

the planetary magnetic field and plasma These systems can be designed to produce 

either electrical power or thrust and drag. 

In the electric power generator mode the tether system cuts across the 

geomagnetic field which induces an electromotive force across the length of the tether. 

The electromotive potential generated is given by 

V=/(vxB)-dl_ (4) 

with    V = induced electromotive potential (volts); 

y = tether velocity relative to geomagnetic field; and 

B = magnetic field strength (Tesla). 
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When the tether is vertical and (v x BJ is assumed nominally vertical, this reduces to 

V=LvBsin(9) (5) 

with    L = length of the tether (m); 

v = magnitude of velocity; and 

0 = angle between y and B. 

It can be seen that the induced electromotive potential is greatest when the tether 

velocity and magnetic field are perpendicular, which happens on low-inclination orbits. 

Figure 2 shows how the electromotive force creates a potential difference 

across the tether. Since the tether travels in an easterly direction the top of the tether is 

made positive with respect to the lower end. This acts to collect electrons at the top 

end and drive them down the tether, where they are emitted. 

In order for this process to work, the tether ends must make electrical contact 

with the Earth's plasma environment. When contact is made a "phantom loop" is 

produced through the tether, external plasma, and ionosphere. This closed loop path is 

shown in Figure 7. The free charges are constrained to move along the geomagnetic 

field lines traversed by the tether. They flow along one field line until they reach a 

point in the lower ionosphere where the charge can migrate across to the other field 

line, closing the circuit. The migration is accomplished by collisions with neutral 

particles of sufficient density. 

A very important component of the tether system is the plasma contactors, 

which connect the system with the ionosphere. In order to operate effectively the 

plasma contactors must spread the tether current over a large area to reduce current 

densities. In this experiment the Plasma Motor-Generator used hollow cathodes as 

plasma contactors. The hollow cathode at each end of the tether generates an 

expanding cloud of highly conductive plasma The plasma density is very high at the 



tip of the tether, and falls off to ionospheric densities at a large distance from the tip. 

This plasma cloud produces sufficient electron density to carry the full tether current 

in either direction at any distance from the tether, until it is merged into the ambient 

ionospheric plasma currents. 

The current passing through the tether can be controlled by direct current 

impedance matching. This is done by adjusting a continuously variable load impedance 

in order to match the varying tether voltage and power with the spacecraft load power 

requirements. 

The tether may also be used to generate thrust or drag. The induced 

electromotive force across the tether can produce a current as discussed earlier. When 

this current is allowed to flow, a force is exerted on the current by the geomagnetic 

field. This force, for a vertical tether is given by 

F = ILxB (6) 

By using the vector cross product this reduces to 

F = ILB sin(0) (7) 

with    F = force exerted on the tether by the magnetic field; 

I = tether current (amps); 

B = magnetic field strength (webers/m2); and 

0 = angle between L and B. 

This equation states that the force is maximum when the tether is perpendicular to 

both the magnetic field line. 

Now depending upon relative orientation the force can have components 

parallel and perpendicular to the velocity of the tether. The parallel component will 

affect the magnitude of the tether velocity. When the tether's orbital velocity is to the 

east and is greater than the rotational velocity of the geomagnetic field, then the force 
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acts as a drag. This drag force will attempt to match the tether's velocity to that of the 

geomagnetic field's rotational velocity. 

Figure 2 shows that when current from an on-board source is fed into the tether 

against the induced electromotive force, the force will act as a propulsive force. 

D.       RADAR 

The term 'Radar' is an acronym for RAdio Detection And Ranging. It was 

devised by the United States Navy in 1940 and officially adopted by the Allied Powers 

in 1943. 

A radar system uses radio frequency electromagnetic waves and their 

reflections to provide information on the range, angle and speed of a target. 

1. History 

Radar as we know it today dates from the 1930's, but this was not its origin. 

Although, radar theory developed slowly until World War II produced a need, the 

basic concepts had already been discovered The first detection of an object, using 

radio waves was by a German engineer, Hulsmeyer in 1903. Hulsmeyer patented the 

detection of radio waves reflected from ships at very short ranges. In 1925 pulses of 

radio frequency energy were used to measure the height of the ionosphere. The 

detection of aircraft was demonstrated in 1933 by the use of a continuous wave radar. 

This method detected the presence but not the range of the target. The first pulsed 

technique to detect and measure the range of an aircraft was demonstrated in 

1935.[Swords, 1986] 

The most significant development in radar was the magnetron. This 

development opened up the field to higher power microwave radars of relatively small 

sizes, and also made radar a more attractive commercial option. 

Although most radar theory was known by the end of World War II, it was not 

until more recent technical advances could radar development progress. These 

advances included electrically steered Phased Arrays, phase stable amplifiers, digital 

signal processing using computers and Fast Fourier Transforms. 
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2. Theory of Operation 

The function of radar is to detect and locate targets and extract as much 

information about the target as possible or as defined by the mission. The majority of 

radars illuminate targets by transmitting bursts of energy and then listening for echoes 

while the transmitter is silent. This type of radar is known as a pulsed radar. There are 

also radars that illuminate the target area with a continuous wave and listen for echoes 

with a receive antenna far removed from the transmitting antenna Radars can 

generally be subdivided by the type of transmitter used. The main distinctions are 

made by the form of illumination and if phase coherence is required on reception. 

The pulsed radar in simplified form has the basic structure shown in Figure 8. 

The transmitter is composed of a frequency generator, a synchronizing circuit and a 

pulse forming network. The frequency generator is a high power radio frequency 

oscillator. It consists of either a non-coherent high powered magnetron which oscillates 

when pulsed, or a coherent low powered device that oscillates continuously with an 

output stage that switches the signal on and off and supplies amplification. A coherent 

frequency generator maintains phase from pulse to pulse, where as a non-coherent 

oscillator starts a new oscillation for every pulse with random phase. The 

synchronization circuit is responsible for coordinating the timing of the entire radar. 

The pulse forming network produces the pulse train as dictated by the synchronization 
circuit. 

The antenna system is connected to the radar via a duplexer. This component 

enables a single antenna to be used for both receive and transmit. As dictated by the 

timing circuits the duplexer alters the routing of signals to protect the receiver on 

transmission and maximize the return echo strength when the transmitter is silent. The 

antenna may take on various shapes and sizes depending on the mission and the area 

to be illuminated by the pulse. 

The receiver's main function is to amplify the received echo to the level 

required by the signal processing unit. The majority of the amplification is done after 
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the echo's frequency has been lowered to an intermediate frequency which is easier to 

work with. Finally the signal is processed depending upon the required information 

and displayed in an appropriate fashion so as to allow the operator to comprehend the 

data The most common display is a cathode ray tube which is synchronized with the 

pulse. 

The components interact to detect and locate a target in a simple manner. The 

synchronization and pulse forming network periodically cause the transmitter to 

generate a burst of electromagnetic energy. The pulse's parameters vary depending 

upon the desired information or mission. It is defined by the length of the pulse, the 

length of time between pulses and the power level. At the same time the transmission 

occurs, a timer is started The energy is delivered by the duplexer to the antenna, 

where it is concentrated into a beam pointed in the direction the radar is searching. 

The concentrated energy propagates through the atmosphere at a speed near the speed 

of light in free space. If the wave encounters an object, a portion of the energy striking 

the object is reflected The energy is reflected in many directions, but only the portion 

reflected directly back to the receiver is useful. The energy reflected back towards the 

radar is called backscatter. The backscatter energy propagates back through the 

atmosphere where it is intercepted by the antenna. The larger the antenna, the more 

backscatter energy it can intercept. The antenna also intercepts echoes from objects not 

desired and interfering signals, called clutter which distort the target echo. The 

captured energy is directed by the duplexer to the receiver, where it is amplified, 

filtered and reduced to a lower intermediate frequency. Unfortunately, the receiver also 

generates noise, which again reduces the signal to noise ratio. All these competing 

energies are fed to the processing unit. The processing unit works specifically to 

reduce the interference and enhance the target echo. The processed signals are 

compared to a reference level called a detection threshold and if they exceed this level 

then a target is deemed to be present. If the clutter and noise is sufficient to exceed 

the threshold then a false alarm occurs. If the target return is too small to cross the 

13 



threshold the target is missed. Detection is described statistically and radars will be 

described by their probability of false alarm and probability of detection. When 

detection occurs the timer is sampled to measure the targets round trip time for the 

calculation of range, and the antenna location details the angle of the target. Motion of 

the target with respect to the radar will cause a frequency shift in the return signal, 

allowing the velocity of the target to be determined from the Doppler frequency. 

A radar's parameters are set depending upon the radar's task. To understand 

how a radar will perform, the interrelationship between all these parameters must be 

known. The main defining parameters are the pulse width, pulse repetition period, 

frequency and size and shape of the antenna. 

As stated earlier, a pulsed radar sends out a train of pulses. This train of pulses 

is defined by the pulse width and pulse repetition period The pulse width defines the 

radars range discrimination. If a second target is within the distance light can travel in 

one half the pulse width it will be indistinguishable from the first target. This is 

because the front end of the second return will overlap with the trailing edge of the 

first return. This is defined as the radar's range resolution. The pulse repetition period 

defines the radar's unambiguous range. If a targets range is such that light can not 

travel to the target and back again in one pulse repetition period, then the next pulse is 

transmitted prior to the echo returning. Thus the radar will not be able to tell if the 

return is from a small close target, or a large target that is far away. Depending upon 

atmospheric attenuation, target returns may arrive after several other pulses have been 

transmitted. These returns are defined as multiple time around echoes and their range 

is ambiguous. To fully understand the effects of the pulse width and pulse repetition 

period the frequency spectrum must also be considered The pulse train and it's Fourier 

transform is shown in Figure 9. The main sine function is the result of the pulsed 

carrier and has a width at half maxirnum equal to the reciprocal of the pulse width and 

is centered at the frequency of the transmitted wave. The pulse train produces a 

spectrum which is a series of sine functions separated by one over the pulse repetition 
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period Each of the underlying sine functions have a width at half maximum of one 

over the pulse repetition period multiplied by the number of pulses used for the 

calculation of the echo's frequency content. The frequency domain spectrum allows the 

maximum unambiguous Doppler frequency shift to be one over twice the pulse 

repetition period, as any shift greater than this will result in the ambiguity of which 

underlying sine function was actually shifted The maximum frequency resolution is 

defined by the width at half rnaximum of the underlying sine function which is given 

by one over the number of pulses processed multiplied by the pulse repetition period. 

The choice of frequency for the radar is a function of the target's shape and 

size, ranges desired and the medium over which the pulse must travel. The attenuation 

of the medium and the targets radar cross section vary as a function of frequency. The 

medium through which the energy must propagate is set and charts are available that 

show the best part of the spectrum to use for each particular job. The way a target's 

size and shape affect it's radar cross section has already been discussed. 

The size and shape of the antenna affect the radar by defining the shape of the 

beam transmitted or more directly the percentage of energy transmitted that is directed 

towards the target. The beamwidth is defined by diffraction as defined in 

9^ = a VD (8) 

with    A, = wavelength; 

a = constant depending upon shape of the aperture; and 

D = antenna diameter in direction of interest. 

The beamwidth is defined by the half angle in azimuth and elevation multiplied by the 

range. This in turn determines the radar's ability to (üscriminate targets in elevation 

and azimuth. These relationships cover the basic radar principles required to 

understand a radar system but are by no means complete. 
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Once the radar has received the return energy it must process it to determine if 

a target is present. The basic function of a receiver is to take the received energy at 

the transmitted frequency plus the Doppler frequency imparted by the target, amplify it 

and lower it to an intermediate frequency. Once at the intermediate frequency the 

signal can once again be amplified but since it is at a lower frequency much more 

amplification is possible. For radars that require Doppler information, the phase 

relationships must be maintained The basic block diagram is shown in Figure 10. A 

coherent sample of the transmitted pulse is used to offset the echo's frequency 

downward. To determine the sign of the Doppler frequency the relative phase must be 

known. The echo's frequency is lowered using two channels and a coherent oscillator 

(COHO), one mixed with the coherent oscillator in phase and one with a ninety degree 

phase shift. This process also eliminates blind phases, which is when two different 

phase shifts look identical at the radar's sampling frequency. The two signals are then 

digitized and stored for further processing. 

The simplest detection scheme is to compare the returned energy to a preset 

threshold and if it surpasses this preset level the presence of a target is declared. 

Generally more sophisticated procedures are required For each pulse the receiver 

output is sampled at a preset frequency. These samples are saved as a row vector with 

each subsequent pulse being a new row. This is best perceived as a matrix with each 

row being a different pulse and each column specifying a distance from the radar. The 

columns are defined as range cells as the distance from the radar is not precise. The 

transmitted pulse has a specified width which determines the radar's range resolution. 

If two targets are within the distance light can travel in one pulse width, the front edge 

of second return will overlap the trailing edge of the first. This minimum range 

resolution defines the optimum sampling period and each column defines a range 

resolution cell. It is important to keep in mind that the composite signal samples which 

are processed together arrive at the radar simultaneously in time. Or 
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equivalently, only one range bin is analyzed at a time. This is the key concept in radar 
signal processing. 

Since the clutter is stationary and the noise is statistically random, the 

processing is able to increase the signal strength with respect to the background 

Random noise samples will on average cancel each other, so by adding successive 

pulses the signal to noise ratio will be increased. Equivalently, if the target is moving 

it can be separated from stationary clutter in the frequency domain by the use of a 

delay line canceler. This is achieved by delaying each pulse and subtracting it from the 

next pulse. The magnitude of the transfer function for a delay line canceler is given by 

||fl-(jf)||=||2sin(7trr)|| (9) 

With the pulse repetition period T being one over the pulse repetition frequency. In the 

frequency domain this lowers the level of returns with no or little Doppler shift, and is 

maximum at one half the pulse repetition frequency. 

Finally if the signal is to be processed for Doppler iriformation it is best done 

by taking the Fast Fourier Transform over a set number of samples from the same 

range gate of successive pulses. The transform will divide the frequency range, defined 

by one over the pulse repetition period, into equally spaced frequency bins. These bins 

would now define the frequency resolution of the radar. Any deviation from the center 

frequency is due to the Doppler shift caused by motion of the target with respect to 

the radar. The Doppler shift is a function of radial velocity only. 

3. Major Recent Advances 

To fully understand radars of today several of the more important recent 

advances must be discussed Of interest to this paper are the phased array and pulse 

compression techniques. 
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A phased array antenna system is an array of transmitting elements which work 

together to form the required beamshape. First consider a simple system with two 

radiating elements, separated by a specified distance. They will interact similar to that 

of the two slits in Young's double slit experiment. We see a far field intensity pattern 
defined by 

I = I, + I2 + 2(I,I2r cos(5) (io) 

with    I = the total intensity; 

I; = the intensity of element i; and 

Ö = the phase factor. 

With 6 being defined as the displacement from the center line divided by the range, 

the phase factor is then given by 

5 = (271/A) sin(9) (H) 

By electronically altering the phase's of the signals sent to the radiating elements the 

constructive and destructive interference pattern is shifted off the center line. Through 

a direct extension of these theories it can be seen how this development allows for 

computer controlled beamshaping, steering and even multiple target tracking. 

As stated earlier the range resolution of a radar is a function of the pulse width 

and this can be overly restrictive especially for high powered systems. To decrease this 

range there must exist a method to distinguish the front of one pulse from the end of 

the previous pulse. A simple method is to alter the frequency transmitted linearly as 

the pulse progresses. This method is called the chirped pulse. Another method is to 

phase encode the pulses. The phase of a sine wave is reversed based upon a specific 

sequence of phases. Shifting the phase increases the bandwidth of the sine wave. The 

main idea is that a phase encoded pulse has a short autocorrelation length. Thus on 
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reception when the pulse is correlated with itself the length is shortened and thus the 

resolution in range is smaller. 
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m. PROBLEM 

The data used for this thesis was from the installation in Hawaii. The 

NASA/JSC Transportable Radar System was deployed in a remote area near HUo, 

Hawaii. Specifically, the radar consisted of several transmitter modules that could 

provided up to 250 kilowatts of peak pulse power at a two percent duty cycle, two 

coherent multi-channel receivers and several phased-array antenna systems. 

The transmitter is a pulsed system which operated at 50 MHz. It was set to 

operate at a peak power of 160 KW with a duty cycle of one percent for this 

experiment. The pulse width was 50 microseconds and the pulse repetition period 

varied between 3000 and 5000 microseconds. The theoretical range resolution of the 

radar as defined by the pulse width is given by 

P     _ ex _ 3JC10BX5 0X1Q-6   ^   rI /10v 
Rzes 2 2 =V.5iOT? (12) 

The theoretical unambiguous range of the radar is given by 

P = CxT_ 3*10Bx5xlQ-3   _cntr Ru   ~2 z =750Km (13) 

The radar samples the data with a period of forty microseconds, which corresponds to 

six kilometres, which is slightly less than the range resolution of the radar but defines 

the range gate width. The waveforms were sampled and collected in forty-eight gates. 

This corresponds to 288 kilometres. The initial sample was at a range of 75 

kilometres, and second time around echoes were also collected which extended the 

second initial range out to 825 kilometres. 

The antenna was an electronically steerable phased array. A phased array is a 

series of elements which are excited individually with a controlled phase relationship 

which directs the beam This steering and beamshaping is done by controlling 
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constructive and destructive interference patterns. The physical layout and beam 

pattern used for each pass are depicted in Figure 11. 

The data made available for processing was from the first two passes over 

Hawaii, and covered 32 range gates with both in-phase and quadrature channels. 

The first pass occurred from 177:14:52 to 177:14:59 GMT which list the 

day:hour:mhiute. The radar was pointed at an angle of 42 degrees off the ground until 

minute 56 when the beam was switched to a 54 degree angle. At 54 degrees the beam 

intersected the magnetic field line perpendicularly. During the first pass the meteor 

event rate was reported as relatively low with one to two events per minute and no 

natural E-region returns reported. The tethered system was predicted to pass through 

beam center at approximately 177:14:54:20 GMT (day:hour:minute:second), at a slant 

range of 980 kilometres. 

Pass two occurred from 177:16:33 to 177:16:40 GMT. Data was only available 

for the first five minutes of pass two at which time the beam was directed at an angle 

of 58 degrees off the ground The meteor event rate was slightly higher than pass one, 

up to about three to four events per minute. On this pass the tethered system crossed 

beam center at 177:16:35:35 at a slant range of 745 kilometres. 

The data received is made up of background noise, unstable E-field echoes, 

meteor echoes and echoes caused by the Delta-PMG experiment. To correctly process 

the data, the types of echoes expected must be understood. 

The background noise was found to have a fairly constant mean value and a 

small variance at each elevation of the radar. The autocorrelation function of several 

portions of echo free returns were tested and the results closely resembled that of the 

autocorrelation of white noise. The results were close enough to enable the background 

noise to be treated as white noise with no apparent loss of accuracy or validity. 

A.       PROCESSING 

As stated earlier the meteor can produce several different types of returns. A 

very large meteor can, under proper conditions, produce a cloud of ions which have 
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similar properties to that of a plasma cloud. However; these types of returns are very 

infrequent and can be substantiated by other methods such as visual. The small meteor 

will produce a very sharp and well pronounced return which is easily distinguishable 

from a plasma cloud Only the head of the meteor will reflect enough energy to be 

detected and will act very much like a hard target. The intermediate sized meteor will 

produce the largest problem as it will produce an ionized cloud, but the meteor head 

echo will be too small to make independent identification as a meteor difficult. The 

only other returns will be from the vehicle itself and unexpected targets that pass 

through the beam. All of these returns will be hard targets and show a definite and 

sharp signature. 

As no obvious procedure or model for the expected signal was apparent several 

procedures were considered and rejected All modeling techniques, tracking algorithms 

and correlation receivers were unsuccessful as no time or frequency characteristics 

completely separated all the various returns. The returns may contain a wide range of 

frequencies and may remain for varying lengths of time. 

It has been established that the background noise can be taken as white noise 

with varying mean and variance at each of the range gates. The small meteors and 

various unexpected targets like aircraft or orbiting equipment that pass through the 

beam will be characterized by a straight forward return that is limited to one range 

gate and contain basically one frequency. The medium meteor may or may not contain 

a large distinct echo from the head of the meteor, it will produce an ionized cloud 

which will exhibit similar characteristics to that of a small plasma cloud and should 

transgress several range gates. The large meteor will have a very distinct head echo 

that transgresses many range gates, it should last for a substantial length of time and 

will produce a large ionized cloud in it's wake. The large meteor is easily confirmed 

by other sensors. The plasma cloud, which is the primary target of interest, will not 

have a constant hard return and the echo will resemble turbulence with scintillating 

intensity. The frequency contained in the return will be wide ranging and offset by a 
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Doppler shift if not exactly perpendicular to the radar beam. The frequency content of 

the echo is determined by the Short Time Fourier Transform (STFT) calculated using 

STFFx(nT,kF) = Jt x(t) /(t-nT) eJ2*^ dt (14) 

with    y = rectangular window; and 

x = time series to analyzed. 

The magnitude of the STFT was taken and plotted against time to form the 

spectrogram The spectrogram by definition covers all frequencies between plus or 

minus one half the sampling frequency. As the range gates were sampled at the pulse 

repetition frequency of 200 Hz, the spectrogram analyzes the returns frequency 

components between -100 and 100 Hz. The Doppler shift imparted on a return relates 

directly to the targets radial velocity with respect to the radar. If the angle of incidence 

of the target with respect to the axis of the radar beam is known the target's velocity 

can be calculated using 

Vr = Sc/(2fros(G!)) (15) 

with    fj = Doppler shift (Hz); 

ft = transmitted frequency (Hz); 

c = speed of light (m/sec); 

Vr = radial velocity (m/s); and 

6 = angle of incidence of target (rad). 

A positive Doppler shift indicates the target is closing on the radar, while a negative 

Doppler indicates the target is moving away. 

By detenirining which returns exhibit the characteristics of plasma echoes we 

can quickly eliminate those which are definitely not the plasma-perturbations caused 
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by the satellite's movement through the ionosphere. To determine which returns exhibit 

the proper characteristics we note that a plasma cloud is an area of highly ionized 

particles. As discussed earlier in the paper, the electrons are the main reflecting 

element. The cloud has areas of varying electron density which are in constant motion 

and produce a return of scintillating intensity. The plasma cloud can also be described 

by turbulence theory. Although the intensity fluctuations appear random they are 

correlated when the power spectral density plot is observed As the cloud does not 

have a constant mean it can not be treated as stationary and conventional statistics are 

of limited use. Instead the more robust structure function formulations are needed A 

structure function is the mean square difference between two intensity measurements at 

two different locations in space. The structure function has the form 

Dx(r, , a) = < [x(r2) - x(r,)]2 > (16) 

with     x(r) = intensity at position described by r; and 

< ) = time averaging. 

The structure function is similar to a variance measurement but removes the mean 

value and slow changes in the mean. Structure functions are also tensors in general 

and depend on the vectors depicting the measurement locations. Frequently it is 

possible to assume local homogeneity and isotropy in limited volumes of space the 

structure function becomes proportional to the scalar separation distance between 

measurements. With these assumptions the power spectrum becomes proportional to 

the first difference between measurements raised to some power 

(17) D^-rJl^C2!" 
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with    C = some constant; 

r = distance between measurements; and 

m = some power to be determined 

Kolmogorov turbulence defining flow with a Reynolds number greater than 100,000 

have often been shown to have a dependence of the first difference raised to the two- 

thirds power. This dependence is valid over separations ranging from millimetres to 

meters. The connection between the structure function and the autocorrelation function 

can be seen by expanding equation (16). When expanded it takes on the form 

Dx(l„r2) 
= 2<x2>-2<x2x1> (18) 

Where the first term relates to the variance and the second term shows the direct 

connection to the autocorrelation function. As well, the power spectral density is the 

Fourier Transform of the autocorrelation function. Therefore; a plasma cloud should be 

identifiable from an autocorrelation plot and power spectral density plot of its returns. 

[Tennekes and Lumley, 1974] 

The biased autocorrelation function is estimated using 

Rjq =(1/N) E^V x[n+l] x [n] (19) 

with    1 = the time lag from 0 to N; 

x = the data sequence from a set range gate; and 

N= the number of data points used. 

The autocorrelation function of a solid target will display a sharp main lobe and then 

will drop off quickly and in a regular manner as the time lag 1 is increased. For a 

scintillating target such as plasma, the autocorrelation function will show a thinner 

main correlation lobe but will display side lobes at larger time lags. 
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IV. OBSERVATIONS 

The procedure defined in the previous section was used to analyze the data 
supplied. 

A.       PASS ONE 

During the first pass thirty three range gates contained echoes with sufficient 

power to be declared a target. Target detection was based on power, with the in-phase 

and quadrature channel outputs squared and added. The detector threshold was 

determined by the operator visually. The number of returns prohibit attaching all 

returns, so only those deemed necessary or interesting will be included in the thesis. 

Figure 12 shows the plot of range gate ten for the 58th minute that was used for 

initial declaration of a target. The in-phase and quadrature channel outputs were 

squared and summed and then plotted versus time. In this figure we see that the target 

is above the threshold for a very short duration of time. 

Figure 13 shows the declared target from Figure 12 but this time it displays the 

first sixteen range gates versus a reduced time scale as well as it's spectrogram The 

range gates plotted versus time show a target with a duration of approximately 0.1 to 

0.2 seconds. The return is in only one range gate and very strong. The spectrogram 

shows a strong frequency center with all frequencies present but their contribution 

drops off as they extend out from the center frequency. The slightly elongated time 

span is due to the fifty percent overlap processing used The center frequency varied 

with time as if the target was changing aspect with respect to the radar or speed 

Figure 14 shows the same detection sequence used earlier but for range gate six 

during the 58th minute. The signal is located at approximately thirty one seconds and 

exceeds the threshold for almost two seconds. The signal power peaks at the start of 

the return and declines as time progresses. 

Figure 15 displays the declared target from Figure 14 but this time it shows the 

first sixteen range gates and the returns spectrogram plotted versus a reduced time 
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scale. By plotting all sixteen range gates versus time we see that this target's return is 

spread over three range gates, with a duration of approximately one second and is 

scintillating in intensity. The spectrogram shows a similar scintillating nature with a 

poorly defined center frequency and a large spread of frequencies present. The wide 

spread of frequencies present at the onset of the return seem to dissipate to the point 

where only the center frequency is present. 

The echoes with features to those presented in Figures 12 and 13 are deemed to 

be either a meteor with a small trail or an extraneous hard target. Echoes displaying 

the characteristics found in Figures 14 and 15 are deemed to be a large meteor trail or 

plasma. The large meteor required to produce these characteristics would be easily 

verified by other methods. Only when the echo's spectrogram and is viewed in 

conjunction with several range gates plotted against time can these determinations be 

made. This procedure is computationally burdensome, but as discussed earlier a single 

plot of the autocorrelation function can quickly eliminate the majority of echoes not 

caused by plasma. This can be easily seen by viewing the autocorrelation functions of 

the previously discussed echoes. Figure 16 shows the wide main lobe and low 

correlation at large time lags for the target from range gate ten, while the bottom plot 

shows the sharp main lobe and repetitive side lobes at large time lags of the target 

from range gate six. Unfortunately, finer discrimination still requires using the 

spectrogram and the range gate plots. 

Thirty three declared targets from pass one were analyzed; selected returns are 

presented. 

During minute 52 of the first pass there were only three returns. Figure 17 

shows the spectrogram and autocorrelation function of the return in the sixteenth range 

gate. This target was a very weak return but is noticeable for the long and scintillating 

nature of the echoe's spectrogram It displays a positive Doppler shift and lasts from 

twenty to about twenty five seconds. The autocorrelation function shows a very sharp 

peak and displays correlation at large time lags. The other return in this minute is 
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mainly located in the seventeenth range gate with a small portion of the energy in the 

eighteenth range gate. Figure 18 shows the spectrogram and autocorrelation function of 

the return from the seventeenth range gate. In this figure the return exhibits a negative 

Doppler shift which corresponds to a negative target velocity component in the radial 

direction. The return is present from about eighteen and three quarters to twenty one 

seconds. The autocorrelation function of this return shows a very distinctive correlation 

pattern at large time lags. The return from range gate sixteen is too weak to enable a 

plot of several range gates against time to reveal any information. These two returns 

are classified as plasma 

The fifty third minute has the most range gates with sufficient energy to have a 

target declared. The majority of the returns during this minute occur between twenty 

two to twenty eight seconds. Figure 19 shows the first sixteen range gates plotted 

versus time to show the returns with relationship to each other. In this figure we see 

several sharp short duration echoes and one scintillating longer duration return. The 

majority of these returns transgress more than one range gate. Figure 20 shows the 

autocorrelation function and the spectrogram of the echo from range gate five at 

approximately 24.8 seconds. This figure shows a spectrogram localized in time with a 

frequency center Doppler shifted by twenty Hz. The autocorrelation function shows a 

wide main lobe with very little correlation at larger time lags. Figure 21 contains the 

spectrogram and autocorrelation function of the return from range gate six centered at 

approximately twenty four seconds. The spectrogram shows what looks like two 

localized returns with a scintillating return connecting them The autocorrelation 

function seems to reflect this combination of attributes. The main lobe is very narrow 

and the correlation function drops off quickly to near zero but the larger time lags 

show definite correlation. Figure 22 shows the spectrogram and autocorrelation 

function of the return from range gate nine at approximately twenty three seconds. In 

this figure we see a scintillating pattern in the spectrogram that shows a negative 
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Doppler shift with a very short duration of about one half of a second. The 

autocorrelation function displays a very narrow main lobe and high sidelobes; 

however, they decay very quickly. 

During minutes fifty four, fifty five, fifty six and fifty seven all the returns 

except one were short in duration and displayed low correlation at the larger time lags. 

The one return not of this form was detected in range gate twenty two at 

approximately one second. Figure 23 shows the spectrogram and autocorrelation 

function of this return. In the figure we see that the spectrum contains a very localized 

frequency component which is Doppler shifted by negative twenty Hz. The signal lasts 

for almost two seconds and with two short drops in intensity during the return. The 

autocorrelaton function shows a wide main lobe with dips matching the drops in 

intensity of the signal. 

The fifty eighth minute contained two large returns. Figure 24 shows the 

sixteen range gates versus time. This figure shows the two large returns and their 

orientation to each other. The return starring at approximately thirty two seconds is 

larger than the return starting at approximately 26.5 seconds and is at a larger slant 

range. Both returns are scintillating in nature and transgress more than one range gate. 

Figures 25 and 26 show the spectrogram and autocorrelation function for these returns 

using the range gate containing the most power for each return. Figure 25 is the 

spectrogram and autocorrelation function for the return from range gate three at 

approximately twenty seven seconds. In this figure the spectrogram of the return shows 

a scintillating return with no Doppler shift. The autocorrelation function displays a 

very repetitive structure and a definite correlation at large time lags. Figure 26 displays 

the spectrogram and autocorrelation function of the return from range gate six located 

at approximately thirty two seconds. The figure shows very similar characteristics as 

those observed in Figure 25, but with a larger intensity. These two returns are deemed 

to be from plasma 
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R       PASS TWO 

The majority of echoes from pass number two were short in duration and had a 

localized frequency spectrum which indicated that they were returns from meteors. 

Figure 27 shows the spectrogram and autocorrelation function of the echo from 

range gate four, during minute thirty four at approximately 46 seconds. The form 

displayed in this figure also represents the return from range gate five at the same 

time. The spectrogram shows a scintillating return with a Doppler shift of 

approximately twenty five Hz. The autocorrelation function has a narrow main lobe 

with correlation at larger time lags. 

Figure 28 contains the spectrogram and autocorrelation function of the echo 

from range gate nineteen, during minute thirty seven at approximately thirty seven 

seconds. These plots accurately reflect those for the return from range gate eighteen at 

the same time. The spectrogram shows a very strong quasi-static, direct current 

component that lasts for almost two seconds and a repetitive structure that covers the 

entire frequency band tested. 
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V. POST ANALYSIS 

The first two passes over the radar site in Hawaii were analyzed This data was 

composed of thirty two range gates sampled 200 times every second for twelve 

minutes. Every single one of the over five million samples were analyzed at least 

once, with those deemed to be corresponding to a valid return being analyzed 

completely. This exhaustive analysis resulted in several observations. 

Initially the returns can be separated by the use of the autocorrelation function. 

The majority of the meteor echoes will display an autocorrelation function that has a 

wide main lobe and very little correlation at larger time lags. A plasma cloud will 

exhibit a spectrogram displaying scintillating intensity and an autocorrelation function 

which has a sharp narrow main lobe with correlation at larger time lags. 

Unfortunately, not all returns fall exactly into these two cases and must be 

reviewed more closely, and not all returns displaying the characteristics of plasma will 

be caused by the passage of the tethered system through the ionosphere. Plasma is 

present in the ionosphere and if unstable may produce a return, or a large meteor 

ionizing the ionosphere produces a target with characteristics similiar to that of 

plasma 

The presence and direction of motion and the echo's orientation with respect to 

other targets will provide a method of separating spurious returns or meteors from the 

plasma of interest for this thesis. All plasma clouds will have motion, either self 

imposed or by ionospheric winds. The target of interest in this thesis is a plasma cloud 

that travels along the Earth's magnetic field line in one direction and then crosses to 

another field line before travelling in the opposite direction to complete the circuit. 

All returns not specifically discussed in this section have been classified as a 

hard target or meteor. Figures 17, 18, 21, 22, 23, 25 and 26 display characteristics 

inconsistent with a meteor. 

Figures 17 and 18 show the two returns from minute fifty two. During this 

minute the antenna beam was not perpendicular to the Earth's magnetic field lines and 
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thus anything travelling along the field lines will display a positive or negative 

Doppler shift depending on the direction of travel. Both echoes display the properties 

of plasma and are separated by a range gate and almost two seconds. The later return 

is much weaker in intensity but is at a shorter slant range. Figure 17 shows an echo 

with a positive Doppler shift and Figure 18 shows an echo with a negative Doppler 

shift. For these reasons these echoes are deemed to be from the same target and 

caused by the Delta-PMG experiment. 

Figure 22 shows the large scintillating return from range gate nine during 

minute fifty three. This figure show that this echo displays all the attributes of plasma; 

however, the echo has no matching return and the correlation decays very quickly. 

This implies that this echo was caused by some other phenomenon. 

Figures 21 and 23 show two non-standard returns. Figure 21 displays what 

appears to be two solid targets connected by a plasma cloud Although unconfirmed by 

vehicle trajectory this target should be investigated as being caused by the vehicle. 

Figure 23 is definitely a hard target but is peculiar by its duration. This target is 

interesting but definitely not caused by the passage of the tethered system through the 
ionosphere. 

Figure 24 displays two echoes received during minute fifty eight with Figures 

25 and 26 displaying these two echoes individually. During minute fifty eight the 

antenna beam was pointed perpendicular to the magnetic field lines which means that 

any motion along these magnetic field lines will not produce a Doppler frequency 

shift. Neither target displays a Doppler frequency shift and it is apparent that these two 

echoes are plasma As well their location and time of detection with respect to each 

other imply that the echoes are in fact from the same plasma cloud These facts lead to 

the conjecture that these returns are from a plasma cloud created by the space tether. 

The echo from pass number two shown in Figure 26 is definitely not from a 

plasma cloud. It is however very similar to that shown in Figure 21 from pass number 
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one. The fact that this echo format is found only once per pass but in each pass could 

indicate a more in depth analysis of its origin is in order. 

Figure 25 displays the characteristics of a plasma target; however, the beam 

during pass number two was nearly perpendicular to the Earth's magnetic field line and 

the amount of Doppler shift exhibited by this target make it very unlikely that it was 

caused by a plasma cloud travelling along the field line. 

Table one gives a comprehensive review of the targets analyzed from pass one. 

Each row of the table represents the return from a single target and may appear in 

several range gates. As well, each target has been declared either a hard or soft target. 

A soft return is from a suspected plasma target, where as the hard return is from any 

target other than plasma. The Doppler shift listed in the table is the Doppler shift 

associated with the echo's center in Hz. This was calculated by summing across each 

frequency bin in the Spectrogram to find the rmornum magnitude. For each return the 

associated figure number, if any, is listed in the final column. 
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TIME 

(MN:SEC) 

RANGE 

GATES 

DURATION 

(SEC) 

HARD/SOFT 

RETURN 

DOPPLER 

SHIFT 

FIGURE 

NUMBER 

52:21 16 3-4 SOFT 28 Hz #17 

52:19 17,18 3.0 SOFT -15 Hz #18 

53:23 8,9,10 0.5 SOFT -20 Hz #22 

53:26 1,2 0.25 HARD NIL 

53:24 4,5 0.25 HARD 15 Hz #20 

53:23 6 1.0 SOFT 20 Hz #21 

54:22 8 0.1 HARD NIL 

55:46 5 0.1 HARD NIL 

55:17 7 0.1 HARD NIL 

55:35 14 0.1 HARD -12 Hz 

56:33 2 0.25 HARD NIL 

56:15 13 0.25 HARD NIL 

56:01 22 2.0 HARD -20 Hz #23 

57:10 2 0.25 HARD 18 Hz 

57:24 3 0.25 HARD 15 Hz 

58:26 3,4 1.0 SOFT NIL #25 

58:32 5,6,7 1.5 SOFT -2 Hz #26 

- 
58:54                 10,11 0.25 HARD 5Hz 

Table 1. Review of Targets Detected From Pass One 
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VI. CONCLUSIONS 

NASA conducted the Delta-PMG tethered satellite mission to verify basic 

characteristics of electrodynamic tether behaviour. A major element was the ability of 

a hollow cathode plasma source to couple electric current from each end of the tether 

to the ambient ionospheric plasma A major question was how these currents travel 

into and through the plasma It is thought that either plasma from the hollow cathodes, 

or a disturbance caused by the passage of the tether, propagates along the magnetic 

field line, away from the tether.The object of this thesis was to process the data 

obtained from the radar station in Hawaii to study disturbances in the Earth's 

ionosphere caused by the tether. The data processing was complicated by the presence 

of numerous other returns, primarily from meteors. 

During the first pass over Hawaii two separate sets of returns were detected 

that were deemed to be induced plasma travelling along the Earth's magnetic field 

lines. These returns were deemed to be non-meteor returns based on their frequency 

content, Doppler shift and autocorrelation function. The disturbances detected in each 

set were interpreted to be propagating down one field line and back up another. The 

returns were observed prior to and after the passing of the vehicle through the antenna 

beam The return following the passage of the tether occurred during minute fifty 

eight. This occurrence coincided with expectations established by previous 

observations. Disturbances detected prior to the tether passage, during minute fifty 

two, do not coincide with previous expectations. The actual passing of the vehicle was 

not detected. The second pass over Hawaii did not noticeably extend the results 

obtained from pass number one. The fact that no plausible returns were found while 

processing pass number two could be due to changing atmospheric conditions, the 

position and direction of the antenna beam or even the digitizing process. 

The radar data indicates that the tether passage disturbs the ionosphere in such 

a way as to trigger a disturbance which propagates along magnetic field lines, perhaps 

due to plasma from the hollow cathodes. This may reflect the current coupling process 
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which controls the electrodynamic tether behaviour. It is recommended that all 

rernaining data from this experiment be analyzed using the method put forward in this 

thesis to provide a more substantial base from which to study the phenomenon 

produced by the interaction between a long conducting tether and the Earth's magnetic 

field lines. The data concerning the disturbance in the ionosphere caused by the 

passage of the tether found during minute 58 and supplied orbital data for the tethered 

satellite system was used to extract velocity information for the travelling plasma 

disturbance. [Olson, 1994] 
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Figure 7. Phantom Current Loop [Fig. 5 from Jost, 1994] 
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APPENDIX. IDL PROGRAMS 

************************************************** 

* THIS PROGRAM CALCULATES AND PLOTS THE 
* SPECTROGAM AND THE 16 RANGE GATES VS. 
* TIME FOR A SELECTED TIME. 
* INPUT VARIABLES REQUIRED: 
* GATE - DEFINES RANGE GATE OF INTEREST 
* BEGIN_TIME - USED FOR START OF SPECTROGRAM 
* END_TIME - USED FOR END OF SPECTROGRAM 
* NUM_SAMPLES - RECTANGULAR WINDOW SIZE 
* FFT SIZE - SIZE OF FFTs TO BE TAKEN 

pro idl_setup, x_win_size, y_win_size, num_colors, ps or x 

x_win_size = 600.*1. & y_win_size = 800 *l.0& num_colors = 256 

ps_or_x = 'x' 
ps_or_x = strupcase(ps_or_x) 

PS_or_x = 'X' ; initialize for 8 bit display 
set_plot, 'x' 
device, retain =2, pseudo_color = 8 
window, 1, xsize = x_win_size, ysize = y_win_size, 
colors = num_colors 
loadct, 13 ; 13 for color, use 0 for b&w 
tvlct, r, g, b, /get 
r(0) = 255 & g(0) = 255 & b(0) = 255 
tvlct, r, g, b 
!p.color = 1 

circle = 2*!pi*findgen(9)/8. 
radius =0.2 
usersym, radius*cos (circle), radius*sin(circle), /fill 

return 
end 

********************************************************* 

pro do_plot, title_string, array_of_yfrm, data2, begin_time, 
end_time,igate, ps_or_x 

xl = 0.1 

image = bytscl(array_of_yfrm, min =0, max = .75, top = 254) 
image2 = bytscl(data2, min =0, max = 200, top = 254) 
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if ( ps_or_x eq 'X' ) then begin 
tv, congrid( image, 60*8, 256), xl*600, .15*800 
tv, congrid( image2, 480, 256), xl*600, .6*800 
endif else begin 

tv, 254-congrid( image, 60*8, 256), xl*6, .15*8,$ 
xsize =4.8, ysize = 2.56, /inches 

tv, 254-congrid( image2, 480, 256), xl*6,  .6*8, $ 

endelse 
xsize =4.8, ysize = 2.56, /inches 

yl = .15 
x2 = xl + 60.*8./600. 
y2 = yl + 256./800. 
posit = [xl, yl, x2, y2] 

plot, image, /nodata, xrange = [begin time, end time], /noerase  $ 
xtitle = 'Time (sec)!n ', $       ~        ~ 
ytitle = ' Frequency (Hz)',$ 
yrange = [-100,100] , $ 
title = 'fft for range gate '+ string(igate + 1, "(i2)")+' 'n '   $ 
xstyle = 1, ystyle = 1, yticklen = -.02, xticklen = - 02  $ 
position = posit, /normal 

second plot 

yl- = .6 
y2 = yl + 256./800. 
posit = [xl, yl, x2, y2] 

plot  imagery nodata, xrange = [begin_time, end_time] , /noerase, $ 

ytitle = 'Range Gate',$ 
yrange = [0,16], $ 
xstyle = 1, ystyle = 1, yticklen = -.02, xticklen = -.02, $ 
position = posit, /normal, $ 
title = title_string 

return 
end 
************ main program here *************** 

dir = '/sun_data/pmg/passl/' 
file = 'mpll4581.bin' 

openr, 2, dir+file 
day = 177 
hour = 14 
min = 52 
sec = 0.002 
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size = 12000 
sec = fltarr(size) 
s = .002 
i = intarr(16, size) 
q = intarr(16, size) 
datal = intarr(16) 
data2 = intarr(16) 
Ip.psym = -8 
index = 0 

print, 'reading in data from ', file 

while not eof (2) do begin 
forrd, 2,  hour, min, s, datal, data2 
sec(index) = s 
i(0:15,index) = datal(0:15) 
q(0:15,index) = data2(0:15) 
if index eq 1 then start_hour = hour 
if index eq 1 then start_min = min 
index = index+1 

endwhile 
close, 2 

print, 'data read in ' 

time =sec 
igate = 3 
gate = 3 

read, 'enter range gate for fft spectrogram (1-16) ', gate 
igate = gate - 1 

print, index,' data points in array' 

j = complex(0,1) 

data = i(igate,*)    + j*q(igate,*) 
; 5 ms per sample 

begin_time = 0 
end_time = 60 
read, 'enter begin_time (0), end_time(60) ', begin_time, end_time 
number_seconds = end_time - begin_time 

loop_here: 
num_samples = 256 
read, 'enter number of data samples per fft (256) ', num_samples 
fft_size = 256 
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read, 'enter number of of steps in fft (256) ', fft size 
if (fft_size It num_samples) then goto, loop_here ~ 

num_steps = 2*(number_seconds * 200) /num_samples 
; 2* to do overlap 

help, num_steps, num_samples 

data_256 = data(0:fft_size-l) 
data_256(*) = complex(0.) 

starting_step =  2*(begin_time*200)/num samples 
help, starting_step - 

array_of_yfrm = fltarr(num_steps,fft_size) 

for istep = 0, num_steps-l do begin 
istart =0.5* (istep+starting_step)*num_samDles 

; 0.5* to do overlap 
finish = istart + num_samples - 1 
if (finish gt index) then"goto, skip 

if ( num_samples eq fft_size ) then begin 
time_series = data(istart:finish) 

endif else begin 
time_series = data_256 
time_series(0:num_samples-l) = data(istart:finish) 

endelse 

xfrm = fft( time_series, -l) 
yfrm = abs(xfrm) 
yfrm =  shift(yfrm, (fft_size/2)-1 ) 
array_of_yfrm (istep,0:fft_size-l) = yfrm(0:fft size-1) 

endror — 

skip: 
x = indgen(256) - 127 

rangeO = 200* begin_time 
range1 = 2 00* end_time -1 

h2lp2 da?a2( 1(*' range0:ran9el)   + 3*q(*, rangeO:rangel) 

direction = 4   ; transpose only x = >  y,  y=> x 
data2 = rotate( data2, direction) 
help, data2 
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; initialize system 
idl_setup, x_win_size, y_win_size, num_colors, ps_or_x 
title_string = '!A'+ ' PMG Pass 1:  Time ' 
+ string( start_hour,   start_min, $ 
"(i2,lx,i2)") + '!n ' 

do_plot,title_string, array_of_yfrm, data2, begin_time, 
end_time, igate, ps_or_x 

stop, 'enter .con for postscript plot ' 

set_plot, 'PS' 
device, file='spec.ps', /portrait, $ 
bits_per_pixel=8, /close_file, /inches, yoffset = 2.0, 
ysize =8.0,$ 
xoffset = 1.5, xsize =6.0 

loadct, 0 
!p.color = 1 
ps_or_x = 'P' 
do_plot,title_string, array_of_yfrm, data2, begin_time, 
end_time, igate, ps_or_x 

colbar = bindgen(256) 
colbar = reform(colbar, 1,256) 
tv, 255-colbar, 5.75, 5.0 , xsize = .2, ysize = 2, /inches 
plot, colbar, /nodata, xrange = [0,1], xticks = 1, 
xtickname = [' ', ' ' ] , $ 
yrange = [0,200], ystyle = 1, xticklen = 0.01, yticklen = -.05,$ 
/noerase, position = [ 5.75/6.0, 5.0/8.0, 5.95/6.0, 7.0/8.0], 
/normal, $ 
charsize = 0.7 

lable = string(num_samples,"(i4)") + ' data samples, 
zero padded for ' 
lable2 = string(fft_size,  " (i4)") + ' element fft' 
xyouts,  .2, .07, lable+lable2, size = .9, /normal, color = 1 
;xyouts,  .2, .01, 'Naval Postgraduate School - Run on '+!stime, 
/normal 

if (ps_or_x eq 'P') then begin 
device, /close_file 

endif 

set_plot, 'x' 

end 
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THIS PROGRAM CALCULATES THE BIASED AUTOCORRELATION FUNCTION 
REQUIRED OPERATOR INPUT VARIABLES ARE: *um,llUN 

rll - autocorrelation start time in seconds; and 
ell - autocorrelation end time in seconds. 

pro auto_corr, x, range, acf, bias 
x is a one-d array, range is a2 element vector 
defining subset of x you want to autocorrelate 
acf is the autocorrelation function we return, 
a vector bias is flag for biased vs unbiased acf 

bias = l; do biased - each element divided by number 
; of elements selected for acf 

xl = x( range(0): range(1) ) 
x2 = conj (xl)       ; the complex conjugate 

; have asusmed at this point data are 
; in complex 

n_ele = 1+ range(1) - range(0) 
acf = complexarr(n_ele) 

acf (0) = total(xl*x2) 
for i = 1, n_ele -1 do begin 
x2 = shift(x2, 1) 
x2(0) =0 
acf(i) = total(xl*x2) 
endfor 

acf   =  acf/n_elc 

return 
end 

; assume bias = 1  for now 

read, 'enter ACORR start time',rll 
rl=rll*200 
read,'enter ACORR end time',ell 
el=ell*200 
range= [l,rl:el ] 
auto_corr, x, range, acf, bias 
plot, acf & wait, 1 
end 
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