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PREFACE. 

The present volume is the first of three in which its author desires 

to offer, to academies and colleges, a course of Natural Philosophy, 

including Astronomy. It embraces the subject of Mechanics—the 

ground-work of the whole. It is intended to be complete within 

itself, and to have no necessary dependence, for the full compre¬ 

hension of its contents, upon those which are to follow. In its 

preparation, constant reference was made to the admirable labors of 

M. Poncelet, and much valuable assistance was derived from the 

work of M. Peschel. 

Large type, marginal notes, tables of reference, and numerous 

diagrams, often repeated, have swollen the volume beyond the limits 

originally intended; but whatever of inconvenience may thence arise, 

will, it is hoped, be more than compensated by the facilities which 

these sources of increased size cannot fail to bring to the .aid both of 

the teacher and student. 
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ELEMENTS 

OF 

NATURAL PHILOSOPHY. 

INTRODUCTION. 

The term nature is employed to signify the assemblage Nature, 

of all the bodies of the universe; it includes whatever 

exists and is the subject of change. Of the existence of 

these bodies we are rendered conscious by the impressions Bodies, 

they make on our senses. Their condition is subject to a 

■ variety of changes, whence we infer that external causes 

are in operation to produce them; and to investigate Physical science, 

nature with reference to these changes and their causes, 

is the object of Physical Science. 

All bodies may be distributed into three classes, viz.: classification of 

unorganized or inanimate, organized or animated, and the 

heavenly bodies or primary organizations. 

The unorganized or inanimate bodies, as minerals, inanimate 

water, air, form the lowest class, and are, so to speak, definite period 

the substratum for the others. These bodies are acted no life, 

on solely by causes external to themselves; they have 

no definite or periodical duration; nothing that can 

properly be termed life. 

The organized or animated bodies, are more or less Animated bodies, 

perfect individuals, possessing organs adapted to the per- °'sans’ 11tallty‘ 

formance of certain appropriate functions. In consequence 

of an innate principle peculiar to them, known as vitality, 

bodies of this class are constantly appropriating to them¬ 

selves unorganized matter, changing its properties, and 
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Reproduction, 

and limited 

duration. 

Animal and 

vegetable 

kingdoms. 

Celestial bodies; 

organs— 

continents, ocean, 

atmosphere. 

Earth existed 

long before plants 

and animals. 

Heavenly bodies 

—the support of 

animals and 

vegetables. 

Natural 

philosophy, 

external changes. 

deriving, by means of this process, an increase of bulk. 

They also possess the faculty of reproduction. They 

retain only for a limited time the vital principle, and, 

when life is extinct, they sink into the class of inanimate 

bodies. The animal and vegetable kingdoms include all 

the species of this class on our earth. 

The celestial bodies, as the fixed stars, the sun, the 

comets, planets and their secondaries, are the gigantic 

individuals of the universe, endowed with an organization 

on the grandest scale. Their constituent parts may be 

compared to the organs possessed by bodies of the second 

class; those of our earth are its continents, its ocean, 

its atmosphere, which are constantly exerting a vigorous 

action on each other, and bringing about changes the 

most important. 

The earth supports and nourishes both the vegetable 

and animal world, and the researches of Geology have 

demonstrated, that there was once a time when neither 

plants nor animals existed on its surface, and that prior to . 

the creation of either of these orders, great changes must 
j 7 0 O 

have taken place in its constitution. As the earth existed 

thus anterior to the organized beings upon it, we may 

infer that the other heavenly bodies, in like manner, were 

called into being before any of the organized bodies which 

probably exist upon them. Reasoning, then, by angjogy 

from our earth, we may venture to regard the heavenly 

bodies as the primary organized forms, on whose surface 

both animals and vegetables find a place and support. 

Natural Philosophy, or Physics, treats of the general 

properties of unorganized bodies, of the influences which 

act upon them, the laws they obey, and of the external 

changes which these bodies undergo without affecting 

their interned constitution. 

Chemistry; Chemistry, on the contrary, treats of the individual 

properties of bodies, by which, as regards their constitu* 
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tion, they may be distinguished one from another ; it also internal changes, 

investigates the transformations which take place in the 

interior of a body—transformations by which the sub¬ 

stance of the body is altered and remodelled ; and lastly, 

it detects and classifies the laws by which chemical 

changes are regulated. 

Natural History, is that branch of physical science Natural History— 

which treats of organized bodies; it comprises three 

divisions, the one mechanical—the anatomy and dissec- physiology, 

tion of plants and animals; the second, chemical—animal 

and vegetable chemistry; and the third, explanatory— 

physiology. 

Astronomy teaches the knowledge of the celestial Astronomy, 

bodies. It is divided into Spherical and Physical astron- and 

omy. The former treats of the appearances, magnitudes, 

distances, arrangements, and motions of the heavenly 

bodies; the latter, of their constitution and physical con¬ 

dition, their mutual influences and actions on each other, 

and generally, seeks to explain the causes of the celestial 

phenomena. 

Again, one most important use of natural science, is 

the application of its laws either to technical purposes-:— Application of 

mechanics, technical chemistry, pharmacy, Ac.; to the phe¬ 

nomena of the heavenly bodies—physical astronomy ; or to 

the various objects which present themselves to our notice 

at or near the surface of the earth—physical geography, 

meteorology—and we may add geology also, a science which 

has for its object to unfold the history of our planet from 

its formation to the present time. 

Natural philosophy is a science of observation and ex- Natural 

periment, for by these two modes we deduce the varied ^^0/’ * 

information we have acquired about bodies; by the observation and 
. . experiment. 

former we notice any changes that transpire m the condi¬ 

tion or relations of any body as they spontaneously arise 
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Apparatus; 

experimental 

physics. 

Observation, 

experiment. 

Laws of nature. 

Hypotheses and 

probability of 

their truth. 

without interference on our part; whereas, in the per¬ 

formance of an experiment, we purposely alter the natural 

arrangement of things to bring about some particular con¬ 

dition that we desire. To accomplish this, we make use 

of appliances called philosophical or chemical apparatus, the 

proper use and application of which, it is the office of Ex¬ 

perimental Physics to teach. 

If we notice that in winter water becomes converted 

into ice, we are said to make an observation: if, by 

means of freezing mixtures or evaporation, we cause water 

to freeze, we are then said to perform an experiment. 

These experiments are next subjected to calculation, 

by which are deduced what are sometimes called the laws 

of nature, or the rules that like causes will invariably pro¬ 

duce like results. To express these laws with the greatest 

possible brevity mathematical symbols are used. When 

it is not practicable to represent them with mathematical 

precision, we must be contented with inferences and 

assumptions based on analogies, or with probable ex¬ 

planations or hypotheses. 

A hypothesis gains in probability the more nearly it 

accords with the ordinary course of nature, the more 

numerous the experiments on which it is founded, and the 

more simple the explanation it offers of the phenomena 

for which it is intended to account. 

PHYSICS OF PONDERABLE BODIES. 

physical ;§ 1.—The physical properties of bodies are those ex- 

senses^03 ’ ^ ternal signs by which their existence is made evident to 

our minds; the senses constitute the medium through 

which this knowledge is communicated. 

All our senses, however, are not equally made use of 

for this purpose ; we are generally guided in our decisions 

by the evidence of sight and touch. Still sight alone is 

All the senses 

not equally 

employed. 
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frequently incompetent, as there are bodies which cannot 

be perceived by that sense, as, for example, all colorless 

gases; again, some of the objects of sight are not sub¬ 

stantial, as, the shadow, the image in a mirror, spectra 

formed by the refraction of the rays of light, &c. Touch, Touch, 

on the contrary, decides indubitably as to the existence of 

any bodj^. 

The properties of bodies may be divided into primary Primary and 

or principal, and secondary or accessory. The former, are ^.operUes of 

such as we find common to all bodies, and without which bodies, 

we cannot conceive of their existing; the latter, are not 

absolutely necessary to our conception of a body’s ex¬ 

istence, but become known to us by investigation and 

experience. 

PRIMARY PROPERTIES. 

§ 2.—The primary properties of all bodies are extension 

and impenetrability. 

Extension is that property in consequence of which Extension; 

every body occupies a certain limited space. It is the 

condition of the mathematical idea of a body; by it, the 

volume or size of the occupied space, as well as its boun¬ 

dary, or figure, is determined. The extension of bodies is 

expressed by three dimensions, length, breadth, and thick¬ 

ness. The computations from these data, follow geometri¬ 

cal rules. 

Impenetrability is evinced in the fact, that one body impenetrability, 

cannot enter into the space occupied by another, without 

previously thrusting the latter from its place. 

A body then, is whatever occupies space, and possesses 

extension and impenetrability. One might be led to im- Body defined, 

agine that the property of impenetrability belonged only 

to solids, since we see them penetrating both air and Air and water 

water; but on closer observation it will be apparent that imPenetrabl°* 

this property is common to all bodies of whatever nature. 
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If a hollow cylinder into which a piston fits accurately, be 

filled with water, the piston cannot be thrust into the 

Experiment. water, thus showing it to be impenetrable. Invert a glass 

tumbler in any liquid, the air, unable to escape, will pre¬ 

vent the liquid from occupying its place, thus proving the 

impenetrability of air. The diving-bell affords a familiar 

illustration of this property. 

The difficulty of pouring liquor into a vessel having 

only one small hole, arises from the impenetrability of the 

air, as the liquid can run into the vessel only as the air 

makes its escape. The following experiment will illus¬ 

trate this fact: 

In one mouth of a two¬ 

necked bottle insert a funnel 

a, and in the other a siphon b, 

the longer leg of which is im¬ 

mersed in a glass of water. 

Experiment. Now let water be poured into 

the funnel a, and it will be 

seen that in proportion as this 

water descends into the vessel 

Fj the air makes its escape 

through the tube b, as is 

proved by the ascent of the 

bubbles in the water in the 

tumbler. 

SECONDARY PROPERTIES. 

Secondary 

properties. 
The secondary properties of bodies are compressibility, 

expansibility, porosity, divisibility, and elasticity. 

Compressibility, 

expansibility. 

§ 3.—Compressibility is that property of bodies by 

virtue of which they may be made to occupy a smaller 

space; and expansibility is that in consequence of which 

they may be made to fill a larger, without in either case 

altering the quantity of matter they contain. 
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Both changes are produced in all bodies, as we shall change of 

presently see, by change of temperature; many bodies tempei’atl,r 
pi gssui e, 

may also be reduced in bulk by pressure, percussion, &c. percussion. 

§ 4.—Since all bodies admit of compression and ex¬ 

pansion, it follows of necessity, that there must be 

interstices between their minutest particles; and that 

property of a body by which its constituent elements do 

not completely fill the space within its exterior boun¬ 

dary, but leaves holes or pores between them, is called Porosity. 

;porosity. The pores of one body are often filled with Pores filled w itb 

some other body, and the pores of this with a third, as in otherbodies- 

the case of a sponge containing water, and the water in its 

turn, containing air, and so on till we come to the most 

subtle of substances, ether, which is supposed to pervade Ether pervades 

all bodies and all space. a11 bodies and a11 

In many cases the pores are visible to the naked eye ; visible and 

m others they are only seen by the aid ot the microscope, 

and when so minute as to elude the power of this instru¬ 

ment, their existence may be inferred from experiment. 

Sponge, cork, wood, bread, &c., are bodies whose pores 

are noticed by the naked eye. The human skin appears 

full of them, when viewed with the magnifying glass ; the 

porosity of water is shown by the ascent of air bubbles 

when the temperature is raised. 

§ 5.—The divisibility of bodies is that property in Divisibility, 

consequence of which, by various mechanical means, 

such as beating, pounding, grinding, &c., we can reduce 

them to particles homogeneous to each other, and to the 

entire mass; and these again to smaller, and so on. 

By the aid of mathematical processes, the mind may infinite 

be led to admit the infinite divisibility of bodies, though dnislblllty; 

their practical division, by mechanical means, is subject practical 

to limitation. Many examples, however, prove that ithmitatlon- 

may be carried to an incredible extent. We are fur- Smallness of some 

riished with numerous instances among natural objects, natu,al ()bjects' 
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Mechanical 

subdivisions in 

the arts 

Divisibility of 

gold. 

Divisibility of 

dyes. 

In the spider’s 

thread, thread of 

the silkworm. 

whose existence can only be detected by means of the 

most acute senses, assisted by the most powerful arti¬ 

ficial aids; the size of such objects can only be calculated 

approximately. 

Mechanical subdivisions for purposes connected with 

the arts are exemplified in the grinding of corn, the 

pulverizing of sulphur, charcoal, and saltpetre, for the 

manufacture of gunpowder; and Homoeopathy affords a 

remarkable instance of the extended application of this 

property of bodies. 

Some metals, particularly gold and silver, are suscep¬ 

tible of a very great divisibility. In the common gold 

lace, the silver thread of which it is composed is covered 

with gold so attenuated, that the quantity contained in a 

foot of the thread weighs less than ■§-oVo a grain. An 

inch of such thread will therefore contain 72W00 a Sra^n 

of gold; and if the inch be divided into 100 equal parts, 

each of which would be distinctly visible to the eye, the 

quantity of the precious metal in each of such pieces 

would be 720IJ000' of a grain. One of these particles ex¬ 

amined through a miscroscope of 500 times magnifying 

power will appear 500 times as long, and the gold covering 

it will be visible, having been divided into 3,600,000,000 

parts, each of which exhibits all the characteristics of 

this metal, its color, density, &c. 

Dyes are likewise susceptible of an incredible divisi¬ 

bility. With 1 grain of blue carmine, 10 lbs. of water 

may be tinged blue. These 10 lbs. of water contain about 

617,000 drops. Supposing now, that 100 particles of car¬ 

mine are required in each drop to produce a uniform tint, 

it follows that this one grain of carmine has been sub¬ 

divided 62 millions of times. 

According to Biot, the thread by which a spider lets 

herself down is composed of more than 5000 single 

threads. The single threads of the silkworm are also of 

an extreme fineness. 

Our blood which appears like a uniform red mass, con- In blood. 
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sists of small red globules swimming in a transparent fluid 

called serum. The diameter of one of these globules does 

not exceed the 4000th part of an inch : whence it follows 

that one drop of blood, such as would hang from the 

point of a needle, contains at least one million of these 

globules. 

But more surprising than all, is the microcosm of organ- in the infusoria, 

ized nature in the Infusoria, for more exact acquaintance 

with which we are indebted to the unwearied researches 

of Ehrenberg. Of these creatures, which for the most 

part we can see only by the aid of the microscope, there 

exist many species so small that millions piled on each 

other would not equal a single grain of sand, and thou¬ 

sands might swim at once through the eye of the finest 

needle. The coats-of-mail and shells of these animalcules 

exist in such prodigious quantities on our earth that, 

according to Ehrenberg’s investigations, pretty extensive Ehrenbergv 

strata of rocks, as, for instance, the smooth slate near Bilin, imestlsatlons- 

in Bohemia, consist almost entirely of them. By micro¬ 

scopic measurements 1 cubic line of this slate contains Microscopic 

about 23 millions, and 1 cubic inch about 41,000 millions measu,ement’ 

of these animals. As a cubic inch of this slate weighs 220 

grains, 187 millions of these shells must go to a grain, weight, 

each of which would consequently weigh about the 

millionth part of a grain. Conceive further that each of 

these animalcules, as microscopic investigations have 

proved, has his limbs, entrails, &c., the possibility vanishes 

of our forming the most remote conception of the dimen¬ 

sions of these organic forms. 

In cases where our finest instruments are unable to Divisibility 

render us the least aid in estimating the minuteness of dete<Jted by 

bodies, or the degree of subdivision attained; in other 

words, when bodies evade the perception of our sight and 

- touch, our olfactory nerves frequently detect the presence 

of matter in the atmosphere, of which no chemical analysis 

could afford us the slightest intimation. 

Thus, for instance, a single grain of musk diffuses in a instance of musk. 

2 
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Oil ol'lavender. 

Elasticity, its 

measure. 

Examples of 

elastic bodies. 

Experiment with 

Ivory. 

large and airy room a powerful scent that frequently lasts 

for years: and papers laid near musk will make a voyage 

to the East Indies and back without losing the smell. 

Imagine now, how many particles of musk must radiate 

from such a body every second, in order to render the 

scent perceptible in all directions, and you will be aston¬ 

ished at their number and minuteness. 

In like manner a single drop of oil of lavender evapo¬ 

rated in a spoon over a spirit-lamp, fills a large room with 

its fragrance for a length of time. 

§ 6.—Elasticity is the name given to that property of 

bodies, by virtue of which they resume of themselves their 

figure and dimensions when these have been changed or 

altered by any extraneous cause. Different bodies possess 

this property in very different degrees, and retain it with 

very unequal tenacity. The measure of a body’s elasticity, 

is the ratio obtained by dividing the capacity of resti¬ 

tution inherent in the body, by the capacity of the cause 

producing the change, both being supposed measurable. 

Thus, if R denote the capacity of restitution, F that of the 

extraneous cause, and e the elasticity, then will 

R 

When F and R are equal, the body is said to be perfectly 

elastic: when R is zero, the bodv is said to be non-elastic. 

These limits embrace all bodies in nature, there being 

none known to us which reach either extreme. 

The following are a few out of a large number of 

highty clastic bodies; viz., glass, tempered steel, ivory, 

whalebone, &c. 

Let an ivory ball fall on a marble slab smeared with 

some coloring matter. The point struck by the ball 

shows a round speck which will have imprinted itself 

on the surface of the ivory without its spherical form 

being at all impaired 
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Fluids under peculiar circumstances exhibit considera¬ 

ble elasticity; this is particularly the case with melted Elasticity of some 
, ... . . , . . melted metals. 

metals, more evidently sometimes than m their solid state. 

The following experiment illustrates this fact with regard 

to antimony and bismuth. 

Place a little antimony and bismuth on a piece of Melted bismuth 

charcoal, so that the mass when melted shall be aboutand antimony- 

the size of a peppercorn; raise it by means of a blowpipe 

to a white heat, and then turn the ball on a sheet of paper 

so folded as to have a raised edge all round. As soon 

as the liquid metal falls, it divides itself into many minute 

globules, which hop about upon the paper and continue 

visible for some time, as they cool but slowly; the points 

at which they strike the paper, and their course upon 

it, will be marked by black dots and lines. 

The recoil of cannon-balls is owing to the elasticity Recoil of 

of the iron and that of the bodies struck by them. cannon-baiia. 

FORCE. 
' •- • *• J. . 11/ „ .4, * 

§ 7.—Whatever tends to change the actual state of a 

body, in respect to rest or motion, is called a force. If a Forces, 

body, for instance, be at rest, the influence which changes 

or tends to change this state to that of motion is called 

force. Again, if a body be already in motion, any cause 

which urges it to move faster or slower, is called force. 

Of tie actual nature of forces we are ignorant; we ignorant of their 

know of their existence only by the effects they produce, "ature ’existence 

and with these we become acquainted solely through the effects on bodies, 

medium of the senses. Hence, while their operations are 

going on, they appear to us always in connection with 

some body which, in some way or other, affects our 

.senses. 
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Universal forces, 

attractions, and 

repulsions. 

Atomical action; 

attraction of 

gravitation. 

Force of cohesion 

and of 

dissolution. 

Inertia, 

Known by 

experience; 

passive in 

character. • 

§ 8.—We shall find, though not always upon super¬ 

ficial inspection, that the approaching and receding of 

bodies or of their component parts, when this takes place 

apparently of their own accord, are but the results pro¬ 

duced by the various forces that come under our notice. 

In other words, that the universally operating forces are 

those of attraction and of repulsion. 

§ 9.—Experience proves that these universal forces are 

at work in two essentially different modes. They are 

operating either in the interior of a body, amidst the 

elements which compose it, or they extend their influence 

through a wide range, and act upon bodies in the aggre¬ 

gate ; the former distinguished as Atomical and Molecular 

action, the latter as the Attraction of gravitation. 

§ 10.—Molecular forces and the force of gravitation, 

often co-exist, and qualify each other’s action, giving rise 

to those attractions and repulsions of bodies exhibited at 

their surfaces when brought into sensible contact. This 

resultant action is called the force of cohesion or of 

dissolution, according as it tends to unite different bodies, 

or the elements of the same body, more closely, or to 

separate them more widely. 

§ 11.—Inertia is that principle by which a body resists 

all change of its condition, in respect to rest or motion. If 

a body be at rest, it will, in the act of yielding its con¬ 

dition of rest, while under the action of any force, oppose 

a resistance; so also, if a body be in motion, and be 

urged to move faster or slower, it will, during the act 

of changing, oppose an equal resistance for every equal 

amount of change. We derive our knowledge of this 

principle solely from experience; it is found to be com¬ 

mon to all bodies; it is in its nature conservative, though 

passive in character, being only exerted to preserve the 

rest or particular motion which a body has, by resisting 



INTRODUCTION. 21 

all variation in these particulars. Whenever any force 

acts upon a body, the inertia of the latter reacts, and this 

action and reaction are, as we shall see in the proper Action equal to 

place, equal and directly opposed to each other. reaction. 

§ 12.—Molecular action chiefly determines the forms 

of bodies. All bodies are regarded as collections or 

aggregates of minute elements, called atoms, and are 

formed by the attractive and repulsive forces acting 

upon them at immeasurably small distances. 

Several hypotheses have been proposed to explain the 

constitution of a body, and the mode of its formation. 

The most remarkable of these was by Boscovich, about 

the middle of the last century. Its great fertility in 

the explanations it affords of the properties of what is 

called tangible matter, and its harmony with the laws 

of motion, entitle it to a much larger space than can be 

found for it in a work like this. Enough may be stated, 

however, to enable the attentive reader to seize its leading 

features, and to appreciate its competency to explain the 

phenomena of nature. 

1. All matter consists of indivisible and inextended 

atoms. 

2. These atoms are endowed with attractive and repul¬ 

sive forces, varying both in intensity and direction by a 

change of distance, so that at one distance two atoms 

attract each other, and at another distance they repel. 

3. This law of variation is the same in all atoms. It 

is, therefore, mutual; for the distance of atom a from 

atom b, being the same with that of b from a, if a attract 

b, b must attract a with precisely the same force. 

4. At all considerable or sensible distances, these mu¬ 

tual forces are attractive and sensibly proportional to the 

square of the distance inversely. It is the attraction 

called gravitation. 

5. In the small and insensible distances in which sensi- 
V; 

ble contact is observed, and which do not exceed the 

Forms of bodies 
determined by 

molecular action. 

Constitution of 

bodies; 

Boscovich. 

First postulate. 

Second postulate. 

Third postulate. 

Fourth postulate. 

Fifth postulate. 
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Sixth postulate. 

Molecule, 

particle, body. 

Add inertia. 

Exponential 

*urve. 

lOOOtli or 1500tli part of an inch, there are many alterna¬ 

tions of attraction and repulsion, according as the distance 

of the atoms is changed. Consequently, there are many 

situations within this narrow limit, in which two atoms 

neither attract nor repel. 

6. The force which is exerted between two atoms when 
■» t 

their distance is diminished without end, and is just 

vanishing, is an insuperable repulsion, so that no force 

whatever can press two atoms into mathematical contact. 

Such, according to Boscovich, is the constitution of a 

material atom and the whole of its constitution, and the 

immediate efficient cause of all its properties. 

Two or more atoms may be so situated, in respect 

to position and distance, as to constitute a molecule. Two 

or more molecules may constitute a particle. The par-, 

tides constitute a body. 

Now, if to these. centres, or lo;i of the qualities of 

what is termed matter, we attribute the property called 

inertia, we have all the conditions requisite to explain, 

or arrange in the order of antecedent and consequent, the 

various operations of the physical world. 

Boscovich represents his law of atomical action by 

what may be called an exponential curve. Let the dis 

tance of two atoms be estimated on the line CA C,[ A 
being the situation of one of them while the other is 

placed anywhere on this line. When placed at ?*, for 

example, we may suppose that it is attracted by A, with 
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a certain intensity. We can represent tliis intensity by 

the length of the line if perpendicular to A C, and can 

express the direction of the force, namely, from i to A, Attractive 

because it is attractive, by placing il above the axis A C. ordmates above- 

Should the atom be at m, and be repelled by A, we can 

express the intensity of repulsion by m ??, and its direc- Repulsive 
. • n , i sy i i ni . ordinates below. 
tion irom m towards G by placing m n below the axis. 

This may be supposed for every point on the axis, and 

a curve drawn through the extremities of all the perpen¬ 

dicular ordinates. This will be the exponential curve or 

scale of force. 

As there are supposed a great many alternations of curve on opposite 

attractions and repulsions, the curve must consist of many feldesofax13* 

branches lying on opposite sides of the axis, and must 

.therefore cross it at C', D\ C", D", &c., and at G. All 

these are supposed to be contained within a very small 

fraction of an inch. 

Beyond this distance, which terminates at (7, the force Force of 

is always attractive, and is called the force of gravitation, gravitatlon' 

the maximum intensity of which occurs at y, and is 

expressed by the length of the ordinate G'g. Further 

on, the ordinates are sensibly proportional to the square 

of their distances from A, inversely. The branch G' G" 

has the line A C, therefore, for its asymptote. 

Within the limit A C' there is repulsion, which be¬ 

comes infinite, when the distance from A is zero; whence 

the branch C' Da has the perpendicular axis, A y, for its 

asymptote. 

An atom being placed at 6r, and then disturbed so 

as to move it in the direction towards A, will be repelled, 

the ordinate of the curve being below the axis; if dis¬ 

turbed so as to move it from A, it will be attracted, the 

corresponding ordinates being above the axis. The point Position of 

G is therefore a position in which the atom is neither indlfferenco 

attracted nor repelled, and to which it will tend to return 

when slightly removed in either direction, and is called Limit of 

the limit of gravitation. gravitation. 
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Limits of 

cohesion. 

Permanent 

molecule. 

Positions of 

indifference. 

Limits of 

dissolution. 

Molecules of 

different orders; 

panicles. 

If the atom be at O', or C", &c., and be moved ever so 

little towards A, it will be repelled, and when the disturb¬ 

ing cause is removed, will fly back; if moved from A, it 

Fig. 2. 

will be attracted and return. Hence C', C", are positions 

similar to 6r, and are called limits of cohesion, O' being 

termed the last limit of cohesion. An atom situated at any 

one of these points will, with that at A, constitute a 

permanent molecule of the simplest kind. 

On the contrary, if an atom be placed at or D": &c., 

and be then slightly disturbed in the direction either from 

or towards A, the action of the atom at A will cause it to 

recede still further from its first position, till it reaches a 

limit of cohesion. The points j9', D", &c., are also posi¬ 

tions of indifference, in which the atom will be neither 

attracted nor repelled by that at A, but they differ from 

G, C\ C", &c., in this, that an atom being ever so little 

removed from one of them has no disposition to return 

to it again; these points are called limits of dissolution. 

An atom situated in one of them cannot, therefore, con¬ 

stitute, with that at A, a permanent molecule, but the 

slightest disturbance will destroy it. 

It is easy to infer, from what has been said, how three, 

four, &c., atoms may combine to form molecules of differ¬ 

ent orders of complexity, and how these again may be 

arranged so as by their action upon each other to form 

particles. Our limits will not permit us to dwell upon 

these points, but we cannot dismiss the subject without 
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suggesting a consequence which the reader will find of 

interest when he comes to the subjects of light and heat. 

We allude to those characteristics of the sun by which he inference—light 

is the main source of these principles to the inhabitants of and hoat °f sun' 

the earth. 

It results from the laws of gravitation, that every Attraction of 

atom in a spherical solid body is attracted towards the sphencal masses* 

centre by a force directly proportional to its distance from 

that point. The pressure towards the centre will, there¬ 

fore, increase as the magnitude of the sphere increases, 

and may ultimately become so great as to force the atoms 

near enough to each other to bring them within the last 

limits of cohesion, in which case, the mass, composed of 

atoms thus urged into close proximity, becomes perfectly Production of 

elastic. The magnitude of this elastic mass will beelastlclty* 

greater in proportion as the whole sphere is greater. 

Every body falling upon the sphere will, on reaching 

its position at the surface, send the motion with which it 

arrived towards the centre to agitate the atoms of the 

elastic mass. These being once disturbed will, under the Effect of a failing 

forces thus called into play, vibrate indefinitely aboutbody’ 

their positions of rest by virtue of their inertia. 

It is only necessary therefore to suppose, that the Nebular 

heavenly bodies have been formed by the gravitation of hypothesis* 

the particles of a vast nebula towards its centre, and to 

adopt the hypothesis which modern discoveries have 

revived and. forced upon us, viz., that heat and light are Light and heat, 

but the effects of vibratory motion, to account for the tircct8 °f motloIU 

incandescent and self-luminous character of the sun. The incandescence 
• • f • *i -i , • n , i • . i and luminosity ot 

same principle iurnishes an explanation ot the interna. the 

heat of our earth which, together with all the heavenly 

bodies, would doubtless appear self-luminous were the 

acuteness of our sense of si "lit increased bevond its 
O %y 

present limit in the same proportion that the sun exceeds 

the largest of these bodies. The sun far transcends all Those of the sun 

the other bodies of our system in regard to heat and light, eieater because of J ° 07 ji,s greater size. 
simply because of his vastly greater size. 
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Effects of 

molecular action. 

» 

Measure of 

cohesion. 

Three states of 

aggregation. 

Solid, gas, liquid. 

§ 13.—The molecular forces are the effective causes 

which hold together the particles of bodies. Through 

them, the molecules approach to a certain distance where 

they gain a position of rest with respect to each other. 

The power with which the particles adhere in these 

relative positions, is called, as we have seen, cohesion. 

This force is measured by the resistance it offers to 

mechanical separation of the parts of bodies from each 

other. 

On the degree of this force, the three states or ag¬ 

gregate forms called solid, liquid, and gaseous depend. 

These different states of matter result from certain definite 

relations under which the molecular attraction and repul¬ 

sion establish their equilibrium; there are three cases, viz. 

two extremes and one mean. The first extreme is that in 

which attraction predominates among the atoms; this pro¬ 

duces the solid state. In the other repulsion prevails, and 

the ejaseous form is the consequence. The mean obtains 

when neither of these forces is in excess, and then matter 

presents itself under the liquid form.. 

Let A represent the attraction and R the repulsion, 

then the three aggregate forms may be expressed by the 

following formulas: 

A > R solid, 

Formulae. A R g&S, 

A = R liquid. 

External 

peculiarities of 

bodies; subject to 

change. 

These three forms or conditions of matter may, for the 

most part, be readily distinguished by certain external 

peculiarities; there are, however, especially between solids 

and liquids, so many imperceptible degrees of approxima¬ 

tion, that it is sometimes difficult to decide where the one 

form ends and the other begins. It is further an ascer¬ 

tained fact that many bodies, (perhaps all,) as for instance 

water, are capable of assuming all three forms of aggrega-. 

tion. 
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Thus, supposing that the relative intensity of the change of 

molecular forces determines these three forms of matter, it molecular action 
' in same body. 

follows from what has been said above, that this term 

may vary in the same body. * 

The peculiar properties belonging to each of these 

states will be explained when solid, liquid, and aeriform 

bodies come severally under our notice. 

§ 14.—The molecular forces may so act upon the atoms' Action of 

of dissimilar bodies as to cause a new combination or moIecular force3 
between 

union of their atoms. This may also produce a separation dissimilar bodies. 

between the combined atoms or molecules in such manner 

as to entirely change the individual properties of the 

bodies. Such efforts of the molecular forces are called 

chemical action; and the disposition to exert these efforts, chemical action. 

on account of the peculiar state of aggregations of the 

ultimate atoms of different bodies, chemical affinity. chemical affinity. 

§15.—Beyond the last limit of gravitation, atoms Attraction of 

attract each other: hence all the atoms of one body attract bodies o1 sen31ble 
J magnitude. 

those of another, thus giving rise to attractions between 

bodies of sensible magnitudes through sensible distances. Intensity of this 

The intensities of these attractions are directly proportionalattiactlon- 

to the number of attracting atoms, and inversely as the 

squares of their distances apart. 

The term universal gravitation is applied to this force universal 

when it is intended to express the action of the heavenly sravltatlon* 
* 

bodies on each other; and that of terrestrial gravitation or Terrestrial 

simply gravity, where we wish to express the action of sra'lt>* 

the earth upon the bodies forming with itself one whole. 

The force is always of the same kind however, and varies 

in intensity only by reason of a difference in the number Effects of tins 

of atoms and their distances. Its effect is always to gen- lorce• 

erate motion when the bodies are free to move. 

Gravity, then, is a property common to all terrestrial Gravity common 

bodies, since they constantly exhibit a tendency to ap-t0 a11 bodie3- Its 
' J J consequences. 

proach the earth and its centre. In consequence of this 
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tendency, all bodies, unless supported, fall to the surface 

of the earth, and if prevented by any other bodies from 

doing so, they exert a pressure on these latter. 

This is one of the most important properties of terres¬ 

trial bodies, and the cause of many phenomena, of which 

a fuller explanation will be gi yen presently. 

Mechanics, 

Statics, 

Hydrostatics, 

Dynamics, 

Hydrodynamics. 

Mechanics of 

solids, 

§ 16.—That branch of Natural Philosophy which treats 

of the action of forces on bodies, is called Mechanics. 

Mechanics is usually considered under four separate 

heads, viz.: Statics, which treats of the mutual destruction 

of forces when applied to solid bodies; Hydrostatics, the 

same when applied to fluids; Dynamics, which investigates 

the motions of solids ; and Hydrodynamics, which discusses 

the motions of fluids. 

Statics and Dynamics will be treated together, under 

the general head, Mechanics of Solids, as will also 

Hydrostatics and Hydrodynamics, under the head, Me¬ 

chanics of Fluids. and of fluids. 



PART FIRST. 

MECHANICS OF SOLIDS. 

I. 
’ • . I . • v • • < i • . V. • , 

SPACE, TIME, MOTION, AND FORCE. 

§ 17.—Space is indefinite extension, without limit, and space, 

contains all bodies. 

§ 18.-—Time is any limited portion of duration. We Time; 

may conceive of a time which is longer or shorter than 

a given time. Time has, therefore, magnitude, as well as has magnitude, 

lines, areas, &c. 

To measure a given time, it is only necessary to obtain Time measured, 

equal times which succeed each other without intermission, 

to call one of these equal times unity, and to express, by 

a number, how often this unit is contained in the given 

time. When we give to this number the particular name 

of the unit, as hour, minute, second, &c., we have a com- Units of time, 

plete expression for time. 

The Instruments usually employed in measuring time Time 

are clocks, chronometers, and common watches, which are ,n8trumenls* 

too well known to need a description in a work like 

this. 

The smallest division of time indicated by these time¬ 

pieces is the second, of which there are 60 in a minute, 
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Performance of 

chronometers. 

Time represented 

by lines. 

Rest; 

absolute and 

relative. 

Example of 

relative rest. 

Motion, like rest, 

is relative. 

It is continuous. 

3600 in an hour, and 86400 in a day; and chronometers, 

which are nothing more than a species of watch, have 

been brought to such perfection as not to vary in their 

rate a half a second in 365 days, or 31536000 seconds. 

Thus the number of hours, minutes, or seconds, be¬ 

tween any two events or instants, may be estimated 

with as much precision and ease as the number of yards, 

feet, or inches between the extremities of any given dis- 
\ 

tance. 

Time may be rep¬ 

resented by lines, by 

laying off upon a Ac- 

given right line A i>, 

the equal distances 

from 0 to 1, 1 to 2, 2 to 3, &c., each one of these equal 

distances representing the unit of time. 

Fig. 3. 

§ 19.—A body is in a state of absolute rest when it 

continues in the same place or position in space. There is 

perhaps no body absolutely at rest; our earth being, 

without cessation, in motion about the sun, nothing con¬ 

nected with it can be at rest. In what follows, rest must, 

therefore, be considered but as a relative term. A body 

is said to be at rest, when it preserves the same position 

in respect to other bodies which we may regard as fixed. 

A body, for example, which continues in the same place 

in a boat, is said to be at rest in relation to the boat, 

although the boat itself may be in motion in relation 

to the banks of a river on whose surface it is floating:. 

§ 20.—A body is in motion when it occupies succes¬ 

sively different positions in space. Motion, like rest, is 

but relative. A body is in motion when it changes its 

place in reference to those which we may regard as 

fixed. 

Motion is essentially continuous; that is, a body cannot 

pass from one position to another without passing through 
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a series of intermediate positions; tlie motion of a point 

describes, therefore, a continuous line. 

A V lien we speak of the path described by a body, rath of a body, 

we are to understand that of a certain point connected 

with the body. Thus, the path of a ball, is that of its 

centre, &c. 

§21.—The motion of a body is curvilinear or recti- curvilinear and 

linear, according as the path described is a curve or motion 

right line. When the motion is curvilinear, we may 

consider it as taking place upon a polygon, of which Direction of a 

the sides are very small and sensibly coincide with the body 3 motlon' 

curve. The prolongation of any one of these sides will 

be a tangent to the curve, and will indicate the direction 

of the body’s motion while upon this side. 

Conceive the time employed by a body to pass from unifor m motion, 

one position to another, to be divided into a number 

of very small and equal parts. If the portions of the 

path successively described in these equal times be equal, 

the motion is said to be uniform. If otherwise, the mo¬ 

tion is said to be varied. It is accelerated when these Varied motion: 

elementary paths are greater and greater ; retarded, when accelerated and 

less and less in the order of time. 

§ 22.-—Velocity is the rate of a body’s motion. The velocity; 

rapidity or slowness of motion is indicated by the greater 

or less length of the path described by the body, during 

each of the small and equal portions of time into which 

the whole time is divided. This length is taken as the 

measure of the velocity when the small portion of time is its measure, 

made to denote the unit of time. 

The velocity is constant in uniform motion : it is vari- constant and 

able in accelerated and retarded motion. variable. 

§23.—In uniform motion, the small spaces described uniform motion, 

in equal consecutive portions of time being equal, it is 

obvious that the space described in any given time will 
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Relation of space 

to the time. 

Velocity 

measured by the 

space described 

in any unit of 

time. 

Rule for finding 

velocity. 

Example. 

contain as many equal parts of space as there are equal 

parts of time. Consequently, in uniform motion, equal 

spaces will be described in equal times, whatever be the rate 

of motion, and the spaces will be proportional to the times 

employed in describing them. 

Denote by S the length of space described during 

the time T; s the length of the space described in the 

small portion of time t, then, from what precedes, we have 

S : T : : s : t 

S 
T 

o 

t 

a constant ratio. 

§ 24.—Since in uniform motion, the spaces are propor¬ 

tional to the times employed in describing them, the 

velocity may be measured by the space described in any 

time whatever, for example in a second, minute, an hour, 

&c. Thus we say the velocity is 2 feet a second, or 120 

feet a minute, or 7200 feet an hour, or of a foot in jo 

of a second, &c; all of which amounts to the same thing, 

since the ratio of the space to the time is not changed. 

When a body describes uniformly a certain space in 

a given number of units of time, as the second, for ex¬ 

ample, which is usually taken as the unit, the velocity is 

found by dividing the whole space by the whole time, for 

if we make t — one second in equation (1), s becomes the 

velocity, § 22, and denoting this by V we have 

Example: The space described in 1 minute and 5 

seconds or 65s being 260 feet, the space described in Is, 

or the velocity, is given thus : 
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o o 
do 

V 
S _ 260/ 

T ~~ 65* 
= 4/. 

* 

Reciprocally, if the velocity be multiplied by the number 

of units of time, the space will result. 

§ 25.—It frequently happens in practice that the ve- Periodical 

locity is not constant, although the spaces described at the motlon* 

end of certain equal intervals are equal. Such for instance 

is the case in all periodical movements of which the dif¬ 

ferent changes are executed in the same interval of time, 

although the velocity is continually varying within this 

interval. The motion of a carriage and that of a pedes- instance— 

tnan, are examples ot tins; the spaces described in ... 
' I > -t pedestrian. 

certain intervals, are often the same, while the motion is 

sometimes accelerated and sometimes retarded. 

§26.—Conceive a table consisting of two vertical Relation of spac® 
-i • n ~\ j 7 7 and time, 

columns, m one ot winch are arranged the numbers ex- represented 

pressive of the intervals of time elapsed since any given geometrically, 

instant, and in the other, on the same horizontal lines, 

the numbers which designate the spaces described by any 

body in these intervals. Draw an indefinite right line in any kind of 

0 B; assume any linear dimension, as an inch, to repre- motlon* 

sent the unit of time, and let the same length represent 

the unit of space; with a scale of equal parts, lay off a 

distance 0 t4 representing 

an interval of time given 

by the table; upon a per¬ 

pendicular to 0 B at the 

point q, lay off a distance 

4 e4 representing the dis¬ 

tance passed over by the 

body in the time 0t4. Do 

the same for the other 

times and corresponding 

spaces of the table, and we obtain the points elr e2, e3, &c., 
3 

Fig. 4. 

o- 
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In uniform 

motion. 

which, being united two and two by right lines, will give a 

polygon. This polygon will not differ sensibly from a curve 

when the intervals of time are small and differ very little 

from each other. 0 4, 0 t2, 04, &c., are the abscisses, 

and 4 eh t2 e2, 4 e3, &c., the ordinates of this curve, of 

which the origin is 0. It is obvious that by means of the 

curve we may obtain, as by the table, the space de¬ 

scribed during any given interval; so that this curve- 

gives the relation which connects the spaces with the 

times, whatever be the nature of the motion. 

In uniform motion the spaces increase in the direct 

ratio of the times, and the ordinates 4 eh t2 e2, 4 e3) &c., 

are therefore proportional to 

the abscisses 0 th 0 4, 0 4, 

&c.; hence the curve becomes 

a right line. Let the axis 

OB, of times, be divided into 

any number of equal and 

very small parts; through 

the points of division draw 

the ordinates or spaces, and 

through the extremities of the 

ordinates draw the lines e1 b2, 

e2 b3, e3 b4, &c., parallel to the axis of times, we shall 

thus form a series of small right-angled triangles 0 4 eh 

e1 b2 e2, &c., similar to the triangle 0 4 e4, and because 

e3 b4 = t3 4, we have 

Fig. 5. 

o 

e 3 

eb 
e3* 

? 
V? 

b 4 

b. 

t t r t * 
j 2 a it s 

4 e4 : 0t4 : : b4 ei : 4 4, 

whence 

4 g4 _ ^4 e4 . 
. 0 4 4 4 J 

Koiation of spaces but b4 e4 is the space 5, described in the small time 4 4 — 4 

to the t mes. anq ^ ^ the Space S described in the time 0t4~ J] and 

the above may be written 
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S _ S_ 

T~ t’ 

and making t= 1, 6* becomes the measure of the velocity 

V1 and we have 

Velocity equal to 

the ratio of tne 

* space to the time. 

tlie same as before, equation (1). 

Or, 0tA may be taken as the unit of time, in which 

case, tAeA becomes the velocity V, and we have 

V = —, ' rji i 

V = i. 
t 

Same for any 

space and time. 

In varied motion, the spaces not being jDroportional to varied motion, 

the times, the line 0 eh ex e2) e2 e3) &c., is not straight, and 

the small spaces e2 b2, 

Fig. 6. 

Accelerated 

motion, 

represented 

geometrically. 

e3 b3, &c., described in 

the elementary times 

k 4> 4 4) &c., are not 

equal. The velocity 

must, therefore, vary 

at every instant. For 

the case represented 

by the figure, the mo¬ 

tion is accelerated, 

because the spaces 

e2 b2l e3 b3, &c., described in the equal elementary times, 

continually increase. Now let it be supposed that at 

the point e3 the motion ceases to be accelerated, and Motion ceases to 

that it becomes uniform with the velocity which the b°acceleiated> 

body had at this instant. The law of the motion after¬ 

ward will be represented by the right line e3 m, the pro- becomes 

longation of e3 eA, and since, at the instant we are 
uniform. 

*■0 

considering, the body describes a space equal to e4 bA in 

the elementary time e3 b4 = t3 q, it will, in virtue of 
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Pleasure of the 

relocity at any 

/nstant; 

its uniform motion, describe in a unit of time a space 

equal to mw, obtained 

bj laying off from the Fig. 6. 

point e3, on ■ e3 bA pro¬ 

duced, a distance e3n 

equal to the unit of 

time. But the space 

described in a unit of 

time, at a constant 

rate, is the measure 

of the velocity corre¬ 

sponding to the point 

e3, or at the end of the time 0 t3. From the figure we 

obtain 

eA bA : e3 bA : : mn : e3n\ 

or making 

eA bA = s, e3 bA — t, mn ~ FJ e3 n ~ 

we have 

s : t : : V : 1; 

1 

o^ual to the ratio 

of the element of 

the space, to the 

element of the 

time. 

Tangent line; 

will give the 

velocity. 

whence 

F= 1 
t 

If we suppose the element of time t3 tA sufficiently 

small, the line e3 eA will coincide with the curve to which 

e3 m will become a tangent at the point e3. This tangent 

being constructed geometrically, will give, in the manner 

above indicated, the velocity corresponding to the point 

of the curve to which it is drawn, or the velocity at the 

end of the time 013. 
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Fig. 7. 

Periodical motion, such, as has 

been defined in § 25, will be rep¬ 

resented by a waved line E E E, 

&c, whose undulations are regu- 

larly disposed about the right 

line eh e2l e3, &c., which repre¬ 

sents the law of uniform motion. 

It may be important to re¬ 

mark that the curves which have 

just been described, and which 

connect the lengths of the spaces 

and the times, in any kind of motion, must not be con¬ 

founded with the actual path described by the body. 

In this last, the tangent simply gives the direction of the 

motion; and to obtain the velocity, the elementary por¬ 

tion of the curve, or of the tangent line, must be divided 

by the time during which this element is described. 

Geometrical 

representation of 

periodical 

motion. 

Distinction 

between the line 

giving the law of 

the motion, and 

the path 

described by the 

body. 

Fig. 8. 

§ 27.—Matter in its unorganized state, is inanimate or 

inert. It cannot give itself motion, nor can it change 

of itself the motion 

which it may have 

received. A body 

at rest will forever *-h--- 

remain so unless dis¬ 

turbed by something 

extraneous to itself; or if it be in motion in any direction, inanimate bodies 

as from a to b. it will continue, after arriving at b, to move cannot chan§e 

towards c in the prolongation of a b / for having arrived at or of motion. 

5, there is no reason why it should deviate to one side 

more than another. Moreover, if the body have a certain 

velocity at 5, it will retain this velocity unaltered, since 

no reason can be assigned why it should be increased 

rather than diminished in the absence of all extraneous 

Apparent 

causes. 

If a billiard-ball, thrown upon the table, seem to 
7 J- 7 exception 

diminish its rate of motion till it stops, it is because its explained. 
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motion is resisted by tlie clotli and the atmosphere. If a 

body thrown vertically downward seem to increase its 

velocity, it is because its weight is incessantly urging it 

onward. If the direction of the motion of a stone, 

thrown into the air, seem continually to change, it 

is because the weight of the stone urges it incessantly 

towards the surface of the earth. Experience proves that 

in proportion as the obstacles to a body’s motion are re¬ 

moved, will the motion itself remain unchanged. 

It results, from 

what has been said, 

that when a body is 

put in motion and 

abandoned to itself, 

Consequences of its inertia will cause 
inertia. 

it to move m a 

straight line and 

preserve its rate of motion unchanged. If, from any extra¬ 

neous cause the body is made to describe a curve A 7i, and 

this cause be removed at the point B, the inertia will 

cause the body to move along the tangent B C, and to 

preserve the velocity which it had at B. 

Fig. 9. 

Forces; weight 

and heat. 

illustration. 

§ 28.—A force has been defined to be that which 

changes or tends to change the state of a body in respect 

to rest or motion. Weight and Heat are forces. A body 

laid upon a table, or suspended from a fixed point by 

means of a thread, would move under the action of its 

weight, if the resistance of the table, or that of the fixed 

point did not continually destroy the effort of the weight. 

A body exposed to any source of heat, expands, its 

particles recede from each other, and thus the state of the 

body is changed. 

Forces produce 

various effects. 
§ 29.—Forces produce various effects according to cir¬ 

cumstances. They sometimes leave a body at rest, by de¬ 

stroying one another, through its intervention ; sometimes 
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Fig. 10. 

they change its form or break it; sometimes they impress 

upon it motion, they accelerate or retard that which it has, 

or change its direction; sometimes these effects are produ¬ 

ced gradually, sometimes abruptly, but however produced 

they require some definite time, and are effected by con¬ 

tinuous degrees. If a body is sometimes seen to change 

suddenly its state, either in respect to the direction or the 

rate of its motion, it is because the force is so great as to 

produce its effect in a time so short as to make its dura¬ 

tion imperceptible to our senses, yet some definite portion 

of time is necessary for the change. A ball fired from a 

gun, will break through a pane of glass, a piece of board, 

or a sheet of paper when freely sus¬ 

pended, with a rapidity so great 

that the parts torn away have not 

time to propagate their motion to the 

rest. A cannon freely suspended at 

the end of a vertical cord will throw 

its ball to tho same point as though 

it were on its carriage, which proves * 

that the piece does not move sensibly till the ball leaves 

its mouth, though afterward it recoils to a considerable 

distance. In these several cases the effects are obvious, 

while the times in which they are accomplished are so 

short as to elude the senses: and yet these times have 

had some definite duration, since the changes, correspond¬ 

ing to these effects, have passed in succession through 

their different degrees from the beginning to the ending. 

Forces which give motion to bodies are called motive 

forces; they are accelerating when they accelerate the 

motion at each instant, and retarding when they retard it. 

§ 30.—We may form from our own experience a clear 

idea of the mode in which forces act; when we push or 

pull a body, be it free or fixed, we experience a sensation 

denominated pressure, traction, or in general, effort This 

effort is analogous to that which we exert in raising a 

Those effects 

require definite 

portions of time 

A ball fired from 

a cannon. 

Effects obvious, 

while the times 

are not. 

Motive forces: 

accelerating and 

retarding. 

Idea of the action 

of forces obtained 

from experience. 
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forces are real 

pressures; 

unit ol' force. 

Equal forces. 

Forces measured 

by weights. 

Double, triple, 

&.C., force. 

Unit of force a 

pound weight. 

Forces compared 

by the balance. 

weight, and thus forces are to us real pressures. Pressure 

may be strong or it may be feeble; it therefore has magni¬ 

tude, and may be expressed in numbers by assuming a 

certain pressure as unity, which may easily be done if we 

can find pressures that are equal to each other. 

Two forces are equal when, substituted, one for the 

other, in the same circumstances, they produce the same 

effect, or when, being directly opposed, they destroy each 

other. 

Conceive a body TP, suspended from the 

extremity of a thread; the thread will as¬ 

sume a vertical direction, and an effort will 

be necessary to support it; if two forces, 

applied successively to the thread and in the 

same manner, maintain the body at rest, these 

forces are equal to each other and to the 

weight of the body. A double, triple, &c., 

force, will support two, three, &c., bodies, 

similar to the first, suspended one above 

another on the same thread; taking one of 

Fig. 11. 

at 

Fig. 12. 

these forces, that, for instance, which sup¬ 

ports -g-^yth of a cubic foot of distilled water 

at the temperature of 60° Fahrenheit, and q 

of which the weight is called a pound, for 

unity, any force will be expressed by a 

number which indicates how many pounds it will sup¬ 

port. 

§ 31.—Weights are measured and compared by means 

of an instrument called a balance, and of which we shall 

speak hereafter. By the definition given above of equal 

forces, it will be easy to find the weights of bodies what¬ 

ever be the merits or defects of such an instrument. We 

have but to require that these bodies substituted for a 

certain number of standard units of weight, shall produce, 

under the same circumstances, the same effect upon the 

balance. Under this point of view, many devices may be 
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Fig. 13. 

employed to measure the weights of bodies and conse¬ 

quently the magnitudes of forces. 

Springs, among others, in 

supposing they preserve unim¬ 

paired for a long time their 

elasticity, may be, and indeed 

are, used in practice, for this 

purpose. Of such is the spring 

balance, a sketch of which is 

given in the figure. In using 

this instrument, it is necessary 

to determine previously the 

accuracy of its divisions by 

means of standard weights, 

and to change the values of its 

graduations if the elasticity of 

the spring shall be found to have undergone a change 

since its construction. 

Use of spring 

balance to 

measure forces. 

Verification of the 

elasticity. 

§ 32.—It is known from observation that the action Variation in force 

of the force of gravity diminishes as the bodies upon offhravity’ ,sma11 

which it is exerted are elevated above the surface of limits, 

the earth. The same body, therefore, which will cause by 

its weight a spring to bend through a certain angle at the 

surface of the sea, will cause it to bend through a less 

angle when weighed at the top of a mountain, and thus 

the 'absolute weight of the body, or magnitude of the force 

which sustains it, is diminished. But this diminution for 

the height of three miles does not exceed TJ~o of the total 

weight. Experience also shows that the weight of a body 

diminishes as it approaches the equator, but for an extent 

of territory equal to that of the state of New York this 

variation is scarcely appreciable. 

The directions of two plumb-lines being normal to the 

surface of the earth, cannot be perfectly parallel, since Acts in parallel 

they converge to a point near its centre and which is ^nmits ™thin 

therefore distant about 4000 miles from the place of ordinary bodies. 
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observation. These lines when separated by a distance 

of 600 yards on the surface of the earth, will form with 

each other an angle not to exceed 6", which is inappreci- 

Force of gravity able to common instruments. It hence follows, that, 

i^trane^1 ^ w^liin ordinary limits, the force of gravity may he regarded 

directions. as constant, and acting in 'parallel directions. 

II. 

ACTION OF FORCES, EQUILIBRIUM, WORK. 

Action of exterior § 33.—-When a force acts against a point in the surface 

folceson bodies’ 0f a body, it exerts a pressure which crowds together the 

neighboring particles ; the body yields, is compressed and 

its surface indented; the crowded particles make an effort, 

by their molecular forces, to regain their primitive places, 

and thus transmit this crowding action even to the re- 

when some of the motest particles of the body. If these latter particles are 

fixed or prevented by obstacles from moving, the result 

will be a compression and change of figure throughout the 

when none of the body. If, on the contrary, these extreme particles are 

free they will advance, and motion will be communicated 

by degrees to all the parts of the body. This internal 

motion, the result of a series of compressions, proves that 

a certain time is necessary for a force to produce its entire 

Definite velocity effect, and the absurdity of supposing that a finite velocity 

may be generated instantaneously. The same kind of 

action will take place when the force is employed to 

destroy the velocity which a body has already acquired ; 

it will first destroy the velocity of the molecules at and 

nearest to the point of action, and then, by degrees, that 

of those which are more remote in the order of distance. 

cannot be 

generated 

instantaneously, 

34.—As the molecular springs cannot be compressed Fraction equal 

and contrary 

to action. without reacting in a contrary direction, and with the 
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same effort, the agent which presses a body will experience 

an equal pressure. This is usually expressed by saying 

that reaction is equal and contrary to action. In pressing 

the finger against a body, in pulling it with a thread, or 

pushing it with a bar, we are pressed, drawn, or pushed in 

a contrary direction, and with the same effort. Two 

< lir 14. 

Illustration. 

weighing springs attached to the extremities of a thread or 

bar, will indicate the same degree of tension, and in con¬ 

trary directions when made to act upon each other through 

the intervention of the thread or bar. 

§35.—In every case, the action of a force is trans-Point of 

mitted through a body to the ultimate point of resistance, aPPllcatlon’takeD 

bv a series of equal and contrary actions and reactions ane of direction, 

which destroy each other, and which, the molecular 

springs of all bodies exert at every point of the right line, 

limited by their boundaries, along which the force acts. 

It is in virtue of this property of bodies, that the action of 

a force may be supposed to be exerted at any point in its 

line of direction. 

§ 36.—Bodies being more or less extensible and com- Bodies used to 

pressible, a thread or bar, interposed between the power ^-y^of forces, 

and resistance, will be stretched or compressed to a certain 

degree, depending upon the energy with which these 

forces act; but as long as the power and resistance remain 

the same, the thread or bar, having attained its new 

length, will cease to change. On this account, bodies, 
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\ 

regarded as rigid which are usually employed to transmit tlie action of 
and inextensible: n n ... . n -i 

forces from one point to another, may be regarded as 

perfectly inextensible or rigid, especially as such bodies 

are chosen and applied so as not * to yield under this 

action. 

Inertia measured 

by means of 

forces; t 

action of inertia 

on a thread; 

conduct of a 

spring when 

under the action 

of inertia; 

resistance to all 

changes of 

motion; 

9 

§ 37.—We have just seen that when a force acts upon 

a body to give it motion or to destroy that which it has, 

the body will react or oppose a resistance equal to the 

force. This resistance measures the inertia of the matter 

of the body. It is obvious that for the same body, this 

resistance increases with the degree of velocity imparted 

or destroyed; we shall presently find that it is propor¬ 

tional to this velocity, and that it also increases in the 

direct ratio of the quantity of 

matter in the body. If a body, 

free to move, be drawn by a 

thread, the thread will stretch 

and even break if the action be 

too violent, and this will the 

more probably happen in propor¬ 

tion as the body is more massive. 

If a body be suspended by means 

of a vertical cord, and a weighing 
7 O O 

spring be interposed in the line 

of traction, the graduated scale 

of the spring will indicate the 

weight of the body when the 

latter is at rest; but if we sud¬ 

denly elevate the upper end of 

the thread, the spring will immediately bend more in 

consequence of the resistance opposed by the inertia of 

the body. The motion once acquired by the body and 

become uniform, the spring will resume and preserve 

the degree of flexure or tension which it had when the 

body was at rest. If, now, the body being in motion, the 

velocity of the upper end of the thread be diminished, the 
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spring will unbend and the scale will indicate a pressure 

less than the weight of the body. The oscillations of the oscillations of a 

spring may therefore serve to measure the variations in ^cftHhe 

the motions of a body, and the energy of its force of changes in 

inertia, which acts against or with a power exerted in the 

direction of the motion, according as the velocity is in¬ 

creased or diminished. 

§ 38.—The effect of every force depends, 1st, upon its Effect of a force; 

mint of application; that is, the point to which it is poi"t °[. 

directly applied: 2d, upon the position of the line along of direction, and 

which it acts or the straight line which its point of appli-inttnslty’ 

cation would describe if perfectly free: 3d, upon the 

direction in which it tends to solicit its point of application 

along this line, whether backward or forward: 4tli, upon 

its absolute intensity, measurable in pounds or any other 

unit of weight. 

Fig. 16. 

§ 39.—Let A be the point of application of a force 

which acts upon the line AB; from A, lay off upon Graphical 

the direction m 

which the force 

acts, a distance 

A P. containing as 

many linear units, 

say inches, as there 

are pounds in the 

intensity of the 

force; the force 

will be fully represented. Commonly the direction of 

the action is indicated by an arrow, and the intensity 

of the force by some letter as jP, for the sake of brevity. 

Thus, we say a force P or A P, a force Q or A Q, as we 

say a force of 5 pounds, a force of 8 pounds. In this way by length of line 

the investigations in mechanics are reduced to those of 01 by symbo1- 

geometrical figures. 
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Equilibrium of 

forces; 

statical and 

dynamical. 

Illustration — 

two men. 

No case of 

absolute rest. 

Earth’s motion. 

Repose not 

necessary to 

equilibrium. 

§ 40.—When the forces applied to any body balance, or 

mutually destroy each other, so as to leave the body in the 

same state as before their application, these forces are said 

to be in equilibrio. The equilibrium may be statical or 

dynamical. In the first case, the forces finding the body at 

rest, will leave it so; in the second case, the forces being 

applied to the body in motion, will in no respect alter the 

motion. Two men pulling with equal strength at the op¬ 

posite ends of a cord, will be a case of statical equilibrium 

if the men' be at rest, and a case of dynamical equilibrium 

if they be in motion. 

In reality there is no case of absolute statical equi¬ 

librium, since the earth’s motion involves that of every 

body connected with it, in the same way that a* boat 

moving over the surface of the water carries every thing 

on board along with it. The idea of repose is not neces¬ 

sary to that of an equilibrium of forces, which only 

requires the mutual destruction of all the forces that 

act at the same instant upon a body. 

Forces in 

equilibrio; 

not in equilibrio 

when the motion 

changes. 

Effect of inertia 

on equilibrium 

of forces. 

I llustration— 

horse and 

carriage. 

§ 41.—When a body, subjected to the action of several 

extraneous forces, preserves its motion perfectly uniform, 

notwithstanding these forces, these latter will, from the 

definition above, be in equilibrio. If the velocity however 

augment or diminish, the extraneous forces will not be in 

equilibrio ; but if we take into account the force of inertia 

of the different particles of the body, and introduce among 

the extraneous forces one equal to it and capable of pre¬ 

venting the modification of the motion, there will again be 

an equilibrium among all the extraneous forces. A horse 

which draws a carriage along a road, destroys at each 

instant all resistances which are opposed to his action ; if 

the motion is perfectly uniform, these resistances arise 

only from the ground, the different frictions, &c. If the 

velocity increases at each instant in consequence of an 

increased effort of the horse, the inertia of the carriage 

will come into action and add to the other resistances 
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above named, and the effort of the horse during this 

increase of velocity, will be in equilibrio with all these 

forces; if, on the contrary, the velocity diminish, the 

inertia of the carriage, which tends to preserve its motion 

uniform, will add its action to that of the horse to over¬ 

come all the resistances, or to maintain the equilibrium. 

Thus inertia stands always ready to maintain an equi¬ 

librium among forces of whatever nature; and hence the 

distinction between the equilibrium of bodies and of 

forces. Forces are ever in equilibrio, while bodies are not 

necessarily so. If, for example, a material point be acted 

upon by a force, it will move in the direction of this force, 

while the force itself is maintained in equilibrio by 

the inertia developed during the yielding of the point. 

Action and reaction are equal and contrary. 

§ 42.—When an equilibrium exists among several 

forces, as 0, P, Q, &c., one of them, as 0, may be con¬ 

sidered as preventing the effect of all the others. If, then, 

we conceive a force 

P, equal and directly 

opposed to 0, at the 

same point of appli¬ 

cation (7, this force 

will destroy of it¬ 

self the force (9, and 

will therefore pro¬ 

duce the same effect 

upon the body as 

the forces P, Q, &c., 

taken together. This 

force P is called the 

resultant of the forces, P, Q, &c., and these latter the 

components of the force P. 

Reciprocally, if to the resultant P of several forces P, 

Qj &c., an equal force (9, be immediately opposed, there 

will be an equilibrium between this force and the several 

Inertia always 

ready to establish 

an equilibrium 

among forces. 

Reaction equal 

and contrary to 

action. 

Resultant of 

forces, 

components of a 
force. 
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Resultant and 

components 

defined. 

Resultant of 

several forces 

acting along the 

same line. 

Mechanical work 

of forces. 

Resistance 

overcome and 

reproduced. 

forces P, Q, &c.: lienee, the resultant is a single force 

which, will produce the same effect as two or more forces ; 

the components are two or more forces which will produce 

the same effect as a single force. 

§ 43.—When several forces act along the same straight 

line and in the same direction, their joint effect will ob¬ 

viously be the same as that of a single force equal to 

their sum, which single force will be their resultant. If 

some of the forces act in one direction, and others in an 

opposite direction, the resultant will be a single force equal 

to the excess of the sum of those which act in one direction 

over the sum of those which act in the contrary direction; 

and it will act in the direction of those forces which give 

the greater sum, for when two unequal forces are directly 

opposed, the smaller will destroy in the larger a portion 

equal to itself. Three men pulling in the same direction 

a cord, with efforts 10, 17, and 25 pounds, and two others 

pulling in the opposite direction with efforts 12 and 19 

pounds, the effect to move the cord will be the same as 

though it were solicited by a single force 52 — 31 = 21 

pounds, acting in the direction of the first men. 

§ 44.—The most simple case of equilibrium, is that in 

which two equal and opposing forces destroy each other, 

and it is this to which the employment of force in the 

mechanic arts is always reduced. To work, is to destroy 

or overcome, in the service of the arts, resistances, such 

as the force of adhesion of the molecules of bodies, the 

strength of springs, the weight of bodies, their inertia, 

&c., &c. To polish a body by friction, to divide it into 

parts, to elevate weights, to draw a carriage along a road, 

to bend a spring, to throw stones, balls, &c., &c., is to 

work, to continually overcome resistances incessantly 

recurring. 
O 

Mechanical work not only supposes a resistance over¬ 

come, but a resistance reproduced along the path described 
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by the point at which the resistance is exerted, and in 

the direction of this path. To take away from a body 

a portion of its matter with a tool, for example, we must 

not only overcome the resistance opposed by the matter 

removed, but also cause the point of action of the tool to 

advance in the direction of the line along which the resist¬ 

ance incessantly recurs. The further the tool advances, 

the greater will be the length of the removed portion; 

on the other hand, the broader and thicker this portion, 

the greater the resistance, and consequently, the greater 

the effort to overcome it. The 'work performed, therefore, work incireasea 

at each instant, increases with the intensity of the effort and Wltk th® effort 
7 j j jj and path 

the length of the path described by its point of application in described by the 

the direction of the effort. 

§ 45.—Let us suppose a constant resistance and, there- Measure of the 

fore, a constant effort which is equal and directly opposed wmk whenth0 
' L J i i resistance is 

to it, that is, they are the same at each instant; it is constant, 

obvious, from what precedes, that the work produced will 

be proportioned to the length of the path described by 

the point of application of the effort—double, if the path 

is double, triple, if the path is triple, &c.; so that, if we 

take for unity the work which consists in overcoming a 

resistance over aTength of 1 foot, the total work will be 

measured by the number of feet passed over. But if for 

another work, the constant resistance is double, triple, 

&c. of what it was in the first case, for an equal length 

of path, the work will be double, triple, &c. of what it 

was before. If, for example, the resistance were 1 pound 

in the first case, and 2, 3, 4, &c. pounds in the second, the 

work for each foot of path would be 2, 3, 4, &c. times that 

of 1 pound. In assuming, then, the work which consists 

in overcoming a resistance of 1 pound, through a distance 

of 1 foot, for the unit of work, we shall have for the 

measure of the work, of which the object is to overcome 

a constant resistance, the number of pounds which measures Rule. 

this resistance repeated as many times as- there are feet in the 
4 
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Illustration. 

Equation of the 

quantity of work. 

Geometrical 

representation of 

the quantity of 

work. 

Work when the 

resistance is 

variable. 

'path described by the point of application of the resist¬ 

ance. 

For example, suppose a motive force employed to 

draw a body on a horizontal plane; the work will be, 

to overcome the resistance of the constant friction exerted 

between the body and plane. Let this friction be 37.5 

pounds, and the path described 64 feet, the total work 

will be 

37.5 x 64 = 2400 pounds, j 

or equal to 2400 pounds over 1 foot, or 4 pound over a 

distance of 2400 feet. 

In general, then, denoting by Q, the quantity of work 

performed; by P the constant resistance, or its equal, the 

effort necessary to overcome it; and by S, the space de¬ 

scribed by the point of action, we shall have 

Q = P.&.(3). 

To represent this geometri¬ 

cally, assume any linear unit, 

as the inch, to represent 1 

pound, and the same to repre- I1 

sent the unit of linear length; 

lay off from O on the indefi- 

nite right line OB, the dis-_ 

tance Oeh equal to the length 

of path described by the point 

of action, and at eh the perpendicular e1 rh containing as 

many inches as the constant effort contains pounds; then 

will the number of square inches in the rectangle 0 <q rx r, 

express the quantity of work. 

<*■ % I o 

§ 46.—If the resistance, or the equal effort which de¬ 

stroys it, instead of being the same at each instant, varies 

incessantly, as is most frequently the case, the quantity 

of work will not be given by the simple rule above; but, 

as the effort, however variable, may, during the descrip- 
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tion of a very small portion of the path, be regarded as 

constant, the corresponding portion of work will still be Elementary 

measured by this constant effort into this small portion quantltyofwoik’ 

of the path. 

The total work, being composed of all its elements, Total quantity of 

will be measured by the sum of all these elementary work- 

products. 

Draw the curve r, rh r2, r3, &c., of which the abscisses 

(9e, 0 eh 0 e2l 0 e3, &c., shall represent the spaces described 

by the point of 

action of the resist¬ 

ance up to certain 

given successive in¬ 

stants of time, and 

of which the ordi¬ 

nates e r, e1r11 e2r2, 

e3r3, &c., shall rep¬ 

resent the corre¬ 

sponding resistan¬ 

ces. Let eeh e1e2j 

Fig. 19. 

—a 

Represented by 

geometry. 

e2 e3? &c.. be the 

equal and very 

small spaces described in successive portions of time. The 

elementary portions of work during these intervals of 

time, having for their measures the products of the small 

spaces by the corresponding resistances, regarded as con¬ 

stant for each one, that is, by the products 

ee1 X e r, e1 e2 X et rh e2e3 X e2 r2, 

these elementary portions of work are represented respec¬ 

tively by the elementary areas 

ers1eh e1r1s2e2, e2r2s3e3, &c., 

and the total work will be represented by the sum of all 

these rectangles. But if we multiply suitably the points 
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Represented by 

an area. 

Rule for finding 

the area. 

of division elf e2, e3, &c., by diminisliing the distances e eh 

eie2i e2e37 &c*, ^ is obvious tliat tlie sum of the rectangles 

will not sensibly differ from the area included by the 

curve rrx r2... r7, the whole path ee7 described by the 

point of action, and the two ordinates er and e7r7 drawn 

through its extremities. 

Hence we see, that when we know from experience, the 

law which connects the variable resistance with the length 

of path described by its point of action, to compute the 

amount of work performed, is but to construct by points, 

or otherwise, the curve of this law, and to calculate the 

area included by the curve, the total length of path 

described and the extreme ordinates. When the unit of 

length employed to construct the ordinates is the same as 

that by which the length of path is measured, it is plain 

that the unit of area will represent the work performed 

by a unit of effort, as a pound, through a unit of length, say 

a foot. 

To find this area, divide the path described into an 

even number of equal parts, and erect ordinates at the 

points of division, 

and at the extremi¬ 

ties ; number the 

ordinates in the or¬ 

der of the natural 

numbers; add to¬ 

gether the extreme 

ordinates, increase °* i \ J i | 

this sum by four 

times that of the even 

ordinates and twice that of the uneven ordinates, and multiply 

by one third of the distance between any two consecutive 

ordinates. 

Demonstration: To compute the area comprised by a 

curve, any two of its ordinates and the axis of abscisses, 

by plane geometry, it is usual to divide it into elemen¬ 

tary areas, by drawing ordinates, as in the last figure, 
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the rule. 

Fig. 21. 

n i * r* 

and to regard each of the elementary figures, et e2 r2 rh 

e2 e3 r3 r2, &c., as trapezoids; and it is obvious that the Demonstration or 

error of this supposition will be less, 

in proportion as the number of trape¬ 

zoids between given limits is greater. 

Take the first two trapezoids of the 

preceding figure, and divide the dis¬ 

tance e1 e3 into three equal parts, and 

at the points of division, erect the or¬ 

dinates mi?, mxnx, the area computed 

from the three trapezoids ex m n rh 

m mx nx n, mx e3 r3 nu will be more ac¬ 

curate than if computed from the two ex e2 r2 rh e2 e3 r3 r2. 

The area by the three trapezoids is 

o mVli es 

Ci r, + mn , m n 4- m, nx , m, ??, -f eq rq 
ex i)i X ——-4- m mx-—— + mx e3 — 1 33 

2 2 

But by construction, 

ex m = m mx = m1 e3 3 ei e3 f ei eil, 

and the above may be written, 

* * 

s ex e2 (et rL + 2 mn + 2 mx nx + e3 r3), 

but in the trapezoid m mx nx n, 

2 m n -\- 2 mx nx = 4 e2 r2, very nearly ; 

whence the area becomes 

lele2(elrl + 4 e2r2 + e3r3); 

the area of the next two trapezoids in order, of the pre¬ 

ceding figure, will be 

J«ie.2(ear3 + 4e4r4 4- e5r5); 
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and similar expressions for eacli succeeding pair of trape¬ 

zoids. Taking the sum of these, and we have the whole 

area bounded by the curve, its extreme ordinates, and the 

axis of abscisses; or 

Algebraic 

expression of the Q — ^ e1 e2 [fij Tj + 4 e2 v2 + 2es r3 -j- 4 e4 r4 -f- 2 <?5 r- + 4 e6 Tq + e7 r7] ; 
rule. 

whence the rule. 

§ 47.—When the value of the mechanical work of a 

variable resistance for any distance passed over by the 

Mean resistance; point of action, is found by the method just explained, if 

this value be divided by the distance, the quotient will 

equal to the entire be a ii'icccTi 'resistance, or the constant effort which, exerted 

work divided by trough the entire path, will produce the same quantity 

of work; for we have seen that for a constant resistance, 

the quantity of work is measured by the product arising 

from multiplying this resistance into the path described 

by its point of action. 

§ 48.—When a motive force is employed to bend a 

spring, it will develop, at each instant, an effort which 

is greater in proportion as its point of action describes, 

in the direction of the effort, a greater path; an effort 

which we have seen may be measured for each position 

of the spring or point of action. The curve which gives 

the law of these efforts may be constructed by the method 

just given, and the area determined by the rule in § 46 

will give the total mechanical work performed by the 

force. 

We have already taken as an example the work pro¬ 

duced by a constant force in drawing a body over a horizon¬ 

tal plane, and above we have taken the work which arises 

from the action of a variable force in bending a spring; 

the reasoning applied to these is applicable to all kinds 

of work employed in the arts. Does a horse pull upon 

the shaft of a mortar mill; a man draw water from a well; 

Examples of 

mechanical 

work; 

that of a force 

bending a spring, 

of the draft of a 

horse, 

of the effort of 

a man. 
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an artificer saw, plane, file, polish; a turner fashion his or the 

materials in the lathe; the quantity of work performed n’anipllliU 10113of 

is measured by the product of the effort, which is always obtained by the 

equal and contrary to the resistance opposed by thesamclult* 

matter to the tool, into the path described by the point 

of action, if the resistance is constant, or by the sum of • 

the partial products which measure the elementary por¬ 

tions of work, if the resistance is variable. 

§ 49.—In seeking to appreciate different kinds of work, Distinction to be 

we must be careful not to confound that which is really observecl mwork 

expended by the motive force, with that which is actually 

effective in accomplishing an object. It is to this last that 

are to be applied the foregoing considerations and measure¬ 

ments. We shall presently examine the mode of action 

of motive forces, the circumstances which modify the result 

of this action, and the waste which may attend it. 

§ 50.—To show the complication incident to certain Complication 

kinds of mechanical work, take, for example, the work inheient m 

of a filer: it is necessary 1st, to press upon the file to work, 

make it take hold; 2d, to support continually its weight; 

3d, to push it along the surface of the body ; 4th, to move 

it with a certain velocity back and forth, and therefore to 

overcome the inertia of the file as well as that of the 

matter removed. The quantity of work is the result of 

these different circumstances; but this complication may 

be made to disappear by separating from the result of the 

work, every thing not indispensable to it, in considering 

only what takes place where the metal is removed by the 

file: there, we only perceive a resistance which is op¬ 

posed to an equal and contrary effort in the direction 

of the path described by the points of action of the file, 

and of which the quantity of work is measured in the The work reduced 

manner already described. The work of the operator befoi>e 

may be reduced to this, by supposing the file placed upon 

a level surface, loaded with a given weight, and the 

and measured as 
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What I'.Avse oe 

understood by 

mechanical work 

of a force; 

work of the 

resistance. 

Invariable 

standard by 

which to estimate 

the quantity of 

work; 

utility of this 

standard. 

operator or motive power only employed in drawing it 

uniformly in the direction of its length. 
» 

§ 51.—In general, then, we must henceforth understand 

by mechanical work, that which results from the simple 

action of a force upon a resistance which is immediately 

opposed to it, and which is continually destroyed in 

causing the point of action to describe a path on the 

line of direction of this resistance. The force must be 

considered as a simple agent, producing an effort or 

pressure measurable in pounds, and acting in a single 

direction, as described in § 88; and we must be careful 

not to confound, as is frequently done, the terms work 

and force, with those by which we vaguely designate 

all the effects, more or less complicated, arising from the 

action of animate or inanimate agents upon resistances: 

thus we should not speak of the force of a horse, of a man, 

of a machine, without indicating the point of action of this 

force, its intensity, and its direction; we should not speak 

of the mechanical work of a force, without specifying the 

same things of the resistance which it overcomes at each 

instant, in each particular case of its application. 

§ 52.—The most simple work, that which conveys at 

once an idea of its measure, is the elevation of a weight 

through a vertical height, if we omit the consideration 

of inertia. The work in this case obviously increases as 

the weight and vertical height increase, and is measured 

by the product of the two, agreeably to what is said in 

§ 45 and § 46; here the unit of work, is the unit of 

weight raised through a unit of height. 

The utility of this measure is its great simplicity, and 

the ease it affords of estimating the pressure or effort in 

pounds, and the path described by the point of action in 

feet. We might, to be sure, take any other standard unit, 

as, for instance, the quantity of work necessary to grind 

1, 2, or 8 pounds of corn, which is the old standard of 
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millers and the proprietors of mills. But a given weight 

of corn will present different degrees of resistance, accord- standard or 

ing to its quality and the kind of tool or machinemillers; 

employed to grind it; so that not only is it impossible 

for people generally to understand what the millers mean 

by their standard, but for the millers to understand 

each other. It is hence indispensable to have some objections to it. 

standard which does not admit of variation, and of being: 

interpreted differently by different people; of such a 

nature is the standard which results from the considera¬ 

tion of the effort, and the path described by its point of 

action in the direction of the effort. 

It will remain to be found how many pounds of corn Means of 

this unit of work is capable of grinding, how many square 

yards of boards it will saw, &c.: all this must come from standards, 

careful observation and experiment. It is, above all, 

essential that there shall be nothing arbitrary in the 
t 

mode of estimating the quantity of mechanical work. 

> 

§ 53.—Different authors have given different names 

to mechanical work, which should be carefully distin¬ 

guished from the object accomplished, this latter being 

but its effect. 

Smeaton calls it mechanical 'power; Carnot, moment Different names 

of activity; Monge and Hachette, dynamic effect: Cou-glve,nt0 . 

LOMB, Havier, and others, quantity of action; and this work; 

last expression is now generally adopted. It will here¬ 

after be employed, and will always signify the quantity 

of work—mechanical ivork. 

Sometimes the mechanical work has been called quan- sometimes called 

tity of motion, and sometimes living force, both of which are living 

but simple effects of mechanical work upon a body free force, 

to move. We shall explain, in the proper place, the mean¬ 

ing to be attached to these terms. 

All work is judged of by the quantity of each par-work judged of 

ticular species of result, or useful effect, which it produces; ^’e usnM 

but we have seen that this quantiy of result is propor- 
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tional to tlie quantity of mechanical work necessary to its 

production, and hence mechanical work or quantity of 

action is what pays in forces. 

To express the 

continued work 

in numbers; 

work in unit 

of time ; note the 

duration of the 

effort. 

§ 54.—When a motive force acts with a constant effort, 

and its point of action moves uniformly during any con 

siderable portion of time, it will be sufficient to express 

the work done in a unit of time, as a day, an hour, a 

minute, or second. This will avoid the use of multiplicity 

of figures in comparing the effects of different forces with 

each other, while it will enable us easily to obtain the 

value of the whole work, by simply multiplying the work 

in the unit of time, by the number of units of time during 

which the force has acted or been working. The duration 

of the work must, therefore, be noted. Thus, we say the 

mechanical work of a particular horse is 120 pounds 

raised through a vertical height of 3 feet in one second, 

or 120 pounds raised through 180 feet in one minute, 

this work being continued during 8 entire hours each 

The path 

described in a 

second is usually 

taken; 

dav. 
»/ 

Ordinarily, we take for the length of path, that which is 

described in one second, this latter being taken as the unit 

of time. But this distance, according to the definition of 

uniform motion, is the measure of the velocity of the point 

of action, which we have supposed constant; by this co¬ 

incidence, the mechanical work happens to be measured 

by the product of a constant effort into the velocity of its 

point of action: which has misled many persons in caus- 

the consequences ing them, as we shall see further on, to confound the 

quantity of work or of action with the quantity of motion, 

although their measures are in fact very different. 

In the same way that the unit of time is arbitrary, so 

also are the units of effort or weight and distance, and 

consequently the unit of work, which is always equal to 

unit of effort, one the unit of effort or weight, exerted through the unit of 

distance,1 one(^stanccv shall take for the unit of effort 1 pound, 

foot= and for the unit of distance 1 foot, so that the unit of 

of this. 

All units 

arbitrary; 
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work will be, as before, the effort one pound exerted through 

a distance of one foot. 

Suppose, for example, that the effort 75 pounds is 

exerted through the distance 4 feet, then will 

4 x 75 — 800 units of work, 

of which each one is equivalent to an effort of one pound 

exerted through a distance of one foot. This is ordinarily 

expressed thus, 

800lbs- /•; 
I C • * a . * . r i . 

and is read, 300 pounds raised through 1 foot. And this 

has no reference to the time in which the work is per¬ 

formed. 

§ 55.—Mechanicians long felt the necessity of some 

well defined unit by which to express the work performed, 

or capable of being performed, by a motive force, in a 

given time, and several were proposed; but these ill 

according among themselves, there seemed as little likeli¬ 

hood of a general agreement in this respect as in regard 

to the unit of velocity, which depends upon the units 

assumed for time and space. 

After the introduction of the steam-engine, the horse¬ 

power was proposed, and is now generally adopted as the 

measuring unit. By horsepower is meant, the quantity of 

work, measurable in pounds and feet, which a horse is 

capable of performing in a given time; but this would 

obviously be indefinite, since horses differ in strength and 

endurance, were it not that some fixed value has been 

agreed upon, according to the principle explained in § 51, 

as the standard of horse-power. This value is the mean 

of the results of a great many trials with different horses, 

and is set down at 550 pounds raised through a vertical 

height of 1 foot in 1 second, or 38,000 pounds raised 

through 1 foot in 1 minute, or 1,980,000 pounds raised 

59 

unit of work, the 

product of these; 

and has no 

reference to time. 

Different units of 

work proposed, 

when time is 

considered. 

Ilorse-power 

adopted; 

550 lbs. 

through 1 foot in 

1 second; 
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Example. 

Error of 

considering the 

greatest effort 

alone; 

this effort may¬ 

be replaced by a 

fixed obstacle; 

error of 

considering the 

path alon ?, 

through. 1 foot in 1 hour; all of which amount to the same 

thing. 

When, then, we are told that a machine or engine is 

of 30-horse power, or has a power equal to 30, for in¬ 

stance, we are to understand that it will do work which 

is equivalent to raising 550 X 30 = 16,500 pounds through 

one foot in 1 second, or 33,000 X 30 = 990,000 pounds 

through one foot in 1 minute, &c. 

§ 56.—We can now appreciate the error we should 

commit, if, in estimating the productive power of a motive 

force or machine, we confine ourselves to the greatest 

absolute effort it is capable of exerting, without regard to 

the space described by its point of action; if, for ex¬ 

ample, in estimating the productive effort of a man, we 

only consider the greatest burden he is capable of sup¬ 

porting at rest under the action of its weight; or, of a 

horse, we consider alone the greatest effort, as indicated 

by a spring balance, he can exert while pulling against a 

fixed obstacle. 

We can conclude nothing from these in respect to the 

quantity of action; we must also have the path described 

in a continuous manner. Simply to support a weight or 

exert an effort, is not to work usefully; and this is rendered 

clear from the consideration that we may in all such cases 

replace the motor by an inert body, as a prop, a post, 

&c.; the action and reaction being equal and contrary, 

unaccompanied by any motion, there is no balance of 

work either in favor of the effort or resistance. 

It would be equally impossible to infer any work or 

quantity of action from the path described by the point of 

action, without taking into account the effort exerted at 

each instant. It is obvious that a man or horse, running 

at full speed, without exerting any effort except that 

which he is capable of impressing upon himself, is pro¬ 

ducing no useful effect; he overcomes no resistance ex¬ 

ternal to himself, which it can be an object to destroy. 
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In a wordt the productive effect of every motive force is Productive 

measured, at each instant, by the product of the effort abilities 

measured by the 

into the path described in the direction of the effort; gO product of the 

that, if either the effort or path be zero, the quantity of into the 

action will also be zero. 

§ 57.—It must be remarked, however, that, since all Always some 

bodies are more or less extensible and compressible, a ^xTd obstacles 

motive force cannot act against what are usually called 

fixed obstacles, without producing a certain quantity of 

action or mechanical work, such as we have defined it: 

for the point to which the force is applied will yield to a 

greater or less extent, and the body will be flattened or 

elongated ; the molecular springs will oppose a resistance; 

there will be a small path described in the direction of the 

force. At first the efforts of the equal and contrary re¬ 

sistances are nothing; afterward they augment by degrees 

till the effort of the jDower attains its maximum, and the 

body its greatest change of shape; after this the action is 

reduced to maintaining the body or obstacle at its state 

of tension and repose, without producing henceforth any 

mechanical action. 

§ 58. — Construct, in 

the manner before de¬ 

scribed, the curve 0 rx 

r2... ? g, of which the 

abscisses 0eh e1 e2, &c., 

represent the spaces de¬ 

scribed by the point of 

action in each successive 

instant of time in the 

direction of the force, and 

the ordinates, the cor¬ 

responding pressures or 

resistances opposed by the body in a contrary direction. 

The quantity of work destroyed while the point of action 

is describing any one of the small paths, as e2 e3l is the 

Fie:. 22. 

■n 

its value 

represented 

geometrically. 
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This work may in 

most cases be 

neglected; 

especially when 

action and the 

motion are at 

right angles to 

each other. 

area of tlie trapezoid e2 e3 r3 r2, and tlie total quantity of 

action destroyed by tlie molecular action of tlie body 

during its entire change of figure, is tlie area comprised 

by the curve, its greatest ordinate r6, which denotes the 

maximum resistance, and the axis of abscisses. If, then, 

it should happen that the body or obstacle is either com¬ 

pressed or extended by any appreciable quantity as 0 e6, 

which is the path described by the point of action, and 

the greatest resistance e6r6 should be considerable, this 

quantity of work must be taken into account in certain 

circumstances which will be explained. 

§ 59.—But in general the bodies employed to receive 

and transmit the action of forces, are selected with special 

reference to their capacity to resist all change of figure; 

so that when well chosen and judiciously disposed in com¬ 

binations, the work referred to in the preceding article, 

becomes so small a fraction of that developed by the force 

when it produces motion, or when the space described by 

the point of action is considerable in comparison with 

that which measures the linear change of figure, that it 

may, and indeed is in practice, neglected. It is under 

this point of view only that the work developed by a 

force, applied to a fixed obstacle can be said to be 

nothing. 

This work may also be neglected when the force which 

develops it, acts in a direction perpendicular to the path 

which the body is, by its connection with others, com¬ 

pelled to describe. The force in this case will only 

compress or stretch the body uselessly, without adding to 

or subtracting from the work in the direction of the 

motion. A man who pushes against the side of a carriage 

in a direction perpendicular to the path along which it 

is moving, neither aids nor hinders the horses: and 

although he actually develops a quantity of work by the 

compression of the carriage, it must be totally neglected 

in making an estimate of the useful effect. 
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§ 60.—These considerations are important, as they Motive forces 

prove, in general, that forces may work without produ- 

cing any useful effect. If the different pieces, for example, effect; 

which compose a machine, and which serve to transmit 

motion and work, in acting upon each other, become com¬ 

pressed or stretched, it is obvious that, even though the 

point of action moves in the direction of the force, this 

latter must first expend a certain quantity of work in 

changing the figure of the pieces before the motion can 

become regular or uniform throughout. And it may 

happen that this first work of the power will be totally 

lost, if the pieces, on ceasing to be compressed or stretched, the pieces 

retain their altered shape: that is to say, if they be not tian®mittl“s the 
n J 7 j work not being 

elastic., or, more generally, if the molecular springs do not perfectly elastic, 

contribute to augment the work when the effort of the 

force is relaxed, as they did to diminish it when the 

action began. 
•rs fq r % 

§ 61.—We also see that if the action of the force or Loss greater in 

motor, or the resistance occasioned by the work, undergo Plopoi,lonast} 8 

frequent alterations, in becoming sometimes feeble and 

sometimes stronger; in a word, if the pieces are often 

compressed and distended, the loss of work thence arising 

may bear a considerable ratio to the total work of the 

power, which could not take place if the action of the 

latter were constantly the same from the beginning to the 

end of the work. 

§ 62. — The shock of bodies develops considerable stm greater in 
-j -i 'iTi n xi the ense cf 

pressure, and produces sensible changes or ligure; the shockgt 

quantity of action destroyed or generated will, therefore, 

always be appreciable. On this account it becomes in¬ 

dispensable, in the application of mechanics, to pay the 

strictest attention to the influence of concussions which 

may occur during the performance of mechanical work. 

§ 63.—And hence we perceive the advantage arising Advantage of 
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stiff and elastic 

materials 

Elastic bodies 

restore, in 

expanding, the 

work absorbed 

in being 

compressed. 

Loss of work 

when the bodies 

are not perfectly 

elastic. 

Examples of 

elastic bodies; 
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from tlie use of very stiff and very elastic materials in the 

construction of those pieces which are employed to receive 

and transmit the action of forces, and to regulate the po¬ 

tions they produce. 

§ 64.—To obtain a clear idea how the molecular 

springs of a body may develop or restore a certain 

quantity of mechanical work, we have but to consider 

what takes place at the instant when a body begins to 

resume, progressively, its primitive figure after it has been , 

changed, and to recall what was said of the measure of tl^e 

quantity of work of a force, employed to bend a spring 

to compress or distend a body. Indeed, we have only to 

estimate, in pounds, the different pressures corresponding 

to each state of the body, from that of greatest compression' 

or distention to that of restitution, or to some intermediate 

state which the body will retain of itself. If the body 

resume, at last, precise!jr the form which it had before the 

change; if, also, the pressures which correspond to the 

same degree of tension—to the same shape and size of the 

body, are the same, if, in a word, the body be perfectly h 

elastic, the quantity of work produced during the process 

of restitution against a resistance opposed to it, will be f 

equal to that required to compress or distend it, since the 

curve, which gives the law of the pressures and spaces, 

will be the same in the two cases. 

If, on the contrary, the body be not perfectly elastic, 

it will not return to its former figure; the pressures will 

be less during the process of restitution, there will be a ■ 

loss of space described by the point of action, and, con¬ 

sequently, less work performed than in the first change 

of figure, there will be a certain quantity of action lost. 

There are scarcely any perfectly elastic bodies except .1 

the gases and vapors, and these must be confined in a 

close vessel or reservoir and acted upon by a piston. 

Such contrivances, together with springs made of the most 

elastic solids, serve to store up mechanical work for 
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future use; forces are employed to compress or bend tliem, their use. 

in wliicli state they are retained by mechanical contri¬ 
vances till the work thus expended is required for other, 

purposes; the restraint is then removed and the work 
transferred to some other body, which, in its turn, com¬ 

municates it to something else, and so on to the ultimate 

object to be attained. The balistas, catapultas, and bows Examples- ' 

of the ancients, throwing arrows, stones, and other missiles balistas’ 

are examples of this; the air-gun, in which the motive 

power is but a reservoir of compressed air, is well known; 
and every body is familiar with the steam-engine, in 

which, by the application of heat, water is expanded into 

vapor whose molecular spring or elasticity is capable of 

performing any amount of work, by the simple alterna¬ 

tions of heating and cooling. No .one is ignorant of steam and 
the terrible effects of steam and gunpowder, when over- sunP°wder- 

heated, and yet, when properly managed, these agents 

admit of being pent up in inert bodies or vessels, and 

made to do the work not only of the lower animals, such 

as horses, oxen, &c., but almost of intelligent beings. It 

is by means of this principle of elasticity, that clocks 
and watches, are kept in motion for days and entire 

months. 

§ 65.—Weight also affords the means of storing up weight as a 
mechanical work, and of rendering it available when meansofstorine 

' ° mechanical 

wanted. When a motive force has elevated a body work, 

through a certain height, in expending upon it a quantity 

of work, measured by the product of its weight into the 

height, this body, employed afterward to overcome a 

resistance either directly or by means of a machine, may 

restore, in its descent, precisely the same quantity of 
work which had been before expended upon it. It is in 

this way that motion is communicated to clocks, spits, 
&c., &c. 

By the action of heat, water assumes at the surface of Elevation of 

the ocean the form of vapor, ascends to elevated regions water b> heat' 
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Work employed 

to break, &c., not 

reproduced. 

Portability of 

springs, animals, 

and 

combustibles. 

'Nourishment 

and fuel 

representatives 

of mechanical 

.work. 

in the atmosphere, whence it is precipitated in the form 

of rain, is collected into natural reservoirs, and becomes, 

by its weight, a source of motion to mills, machinery, &c. 

This reproduction does not obtain, however, when the 

work is employed to divide, to break, to polish, to rub, to 

destroy, in a word, the natural affinity of bodies. The 

quantity of work thus expended is, in. a mechanical point 

of view, totally annihilated; it cannot be restored by the 

body after it has undergone this change of state. 

Springs, like animals, and combustibles which give 

heat, have this peculiarity, viz.: they are very portable, 

and may be even used as a motive power for vehicles. 

Thus carriages have been put in motion by springs at¬ 

tached, as boats are put in motion by animals on board, 

and by the vapor* of heated water. But springs are 

never perfect, and being subjected to the action of foreign 

resistances, never restore the whole of the mechanical 

work which they have received. Finally, animals, and 

heat even, the primitive source of all the mechanical 

work employed in the arts, require a certain expense in 

nourishment and fuel which, according to the beautiful 

theory of Leibig, are the same in principle. This nourish¬ 

ment and fuel become, therefore, the representatives of a 

.certain amount of mechanical work, so that it is really 

Impossible to create a motive force, without having pre¬ 

viously incurred an equivalent expenditure. 

inertia a source § 66.—Thus far we have only examined the work of 

of reproduction forees wpen employed to overcome the weight of bodies, 
ot mechanical 1 

work. the resistance inherent to their state of aggregation or 

force of affinity, their elasticity, &c. It remains to speak 

of the resistance which all bodies oppose to a change of 

their state in respect to motion or rest, by reason of their 

inertia, of which no estimate has been made in what has 

gone before, and from which it is impossible to separate 

the other species of resistance in all questions affecting 

quantity of work. It lias already been remarked that the 
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artificer must overcome the inertia of the matter of 

which his tool is made; the draft-horse, that of the 

carriage, and of the load it bears, &c. But indepen¬ 

dently of this, -it is very important to be able to estimate 

the quantity of work which a body will absorb in ac¬ 

quiring a certain degree of velocity, for this is often the 

only useful object in view, as in the case of throwing 

projectiles by the elastic force of gases or solids, which 

gives rise to the art of halistics, employed in war. Be¬ 

sides, it very often happens that instead of applying a 

force directly to the object in view, wre cause it to act 

upon a free body, and subsequently, by the aid of its 

inertia, concentrate the quantity of action absorbed by it 

to do the work at a blow, as in the example of the pile- Examples— 

ram, common hammer, &c.: the inertia of bodies is thus pile'ram aild 
1 common 

made, like weight, elasticity, &c., to restore the quantity of hammer, 

work which has been expended in subduing it; and we 

now proceed to the consideration of the action of forces 

employed to overcome inertia and to produce motion. 

III. 

VARIED MOTION. 

§ 67.—We will begin with the most simple case of varied motion; 

varied motion, viz : that in which a body is pressed by a con9tant force- 

constant force, that is to say, one which does not change 

the intensity of its action, and which is equal and contrary 

to the resistance opposed by the inertia in the line of 

direction of the motion. 

It is clear that, the pressure being the same at each 

instant, the small increments or decrements of velocity 

will, for the same body, also be the same; and thus the 

velocitv will increase or decrease with the time; in other 
%/ 1 
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uniformly varied, 

accelerated, and 

retarded. 

Uniformly 

accelerated; 

graphical 

representation of 

this motion. 

elapsed since the commencement of motion. This is 

called uniformly varied motion in general; which becomes 

uniformly accelerated or uniformly retarded, according as 

the force increases or diminishes the velocity of the 

body. 

§ 68.—First, take the case of uniformly accelerated 

motion, and recall to mind that the velocity acquired at any 

instant is, § 26, measured by the space described by the 

body in the unit of time succeeding this instant, if, the 

force having ceased its action, the body continue to move 

uniformly in virtue of its inertia; this velocity we have 

seen how to calculate by means of the law which connects 

the time with the spaces. 

Let 0 be the point 

of starting. Draw the 

line Ov1v2... v6l of which 

the abscisses 0 th 0 t2l 

&c., represent the times 

elapsed from the origin 

or beginning of the mo¬ 

tion, and of which the 

ordinates 4 vh t2 v2,... t6 v6, 

represent the velocities 

acquired at the end of 

the times 0 th Ot2,.. .0t6.' 

Since in uniformly varied motion, the velocities 4 vii 

t2 v2)... t6 Vq are proportional to the times 0 4, 012,... 016, 

the line Ov1v2v3... v6, is a right line, which passes 

through the point 0 from which the body takes its depar¬ 

ture ; for at this point, the velocity and time are zero 

together, at the instant of starting. The distances 0 4, 

4 4 4; &c., being equal, if through the points vlf v2, 

v3l... v6l lines be drawn parallel to the axis OB of times, 

there will be formed a series of right-angled triangles, 

0 4 vh vl b2 v2,... v5 b6 u6, all equal to each other. The sides 

4 vh v2b2l v3b3,.. .v6b6, will represent the successive incre- 

Fig. 23. 

v0 



MECHANICS OF SOLIDS. <59 

ments of velocity, which, are equal and constant, by the 

definition of uniformly varied motion, since the corre¬ 

sponding intervals of time 0 4, v1 Z>2, v2 b3l.... v- 4G, are 

equal. 

The successive intervals of time 0 th 4 4, 4 4: &c., being Path represented 

supposed very small, we may regard the body as moving 

uniformly during any one of them as 44 or its equal velocity into 

v3 bb and with the velocity 4 v3 acquired at its commence-time* 
# 

rnent. But by virtue of uniform motion, the path 

described by the body contains as many linear units as 

the rectangle of the time into the velocity contains super¬ 

ficial units, and, in this sense, the distance passed over by 

the body in the time 4 4? will have for its measure the 

product of this elementary portion of time by the velocity 

4 v3, or the area of the rectangle 4 4 4* vz: f°r another 

interval 4 4? the path described will have for the measure 

of its length, the area 4 4 ^5 and so on; so that the total 

length of path described by the body during the time 0 4, 

will be the sum of all the partial rectangles tlt2b2v11 

t2 4 b3 v.2l.... 4 4 ^6 vo 5 which sum will not differ sensibly 

from the area of the triangle 0 4 v6, when the points of 

division tb 4,... 4) are greatly multiplied. 

From this fact, viz.: that the length of the path 

described by a body in uniformly varied motion, is 

represented by the area of a triangle whose base is the 
1 

\ time during which the motion takes place, and altitude the 

velocity acquired at the end of this time, we easily deduce 

several important consequences, called the laws of uni- 

i formlv varied motion. 
*/ 

Since the area of the triangle 0 4 vc, has for its measure, Laws of 

the half of its base into its altitude, and as the base uniformly vaned 

; into the altitude, or the entire rectangle, represents the 

: length of path described in the time 0 4, with a con¬ 

stant velocity t6vGl acquired at the end of this time, it 

; follows, 

1st. In uniformly accelerated motion, the path described First law. 

I at the end of any time, is half that which the body would 
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?»econd law 

Third law. 

Formulas to 

compute the 

circumstances 

of this motion. 

Kpace in unit of 

time; 

relation of space, 

time, and 

velocity; 

»pace in any 

time. 

describe in the same time, if it lucre to move uniformly ivith 

the velocity acquired during this time. 

Since tlie paths described during any two times, as 

0 4, 0 4, are represented by the triangles 04 v3l O 4 ?v, 

respectively, and since these triangles are similar and their 

areas are to each other as the squares of their homologous 

sides, it also follows, 

2d. In uniformly accelerated motion, the paths described 

at the end of any two times, are to each other as the squares 

of these times. 

8d. That these paths are to each other, as the squares 

of the velocities acquired at the end of the corresponding 

times. 

When in uniformly accelerated motion, the velocity 

4 v-, acquired at the end of a given time 0 4, say one 

second, taken as the unit of time, is given, the law of the 

motion or the right line 0 vG, which represents it, is com¬ 

pletely determined, and we may compute the velocity and 

space which correspond to any other time. 

Denote by e1 and vh the length of path and velocity 

which correspond to the first second, and by S and F, the 

path and velocity corresponding to any other time, as T; 

we have by the first law, 

e, = 51\ X 1’ = -O', . . . (4), 

S=\VT.(5); 

and by the second law, 

ek : S : : V X Is : T X T : : V : T-y 

whence, 

S = eq X T2.(6) r* 
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i 

and replacing el by its value, Eq. (4), 

S = \ vx T2.(7). 

From the third law. 

eh or \ vi : S : : v2 : V2] 

whence 

V2 = 2 VyS.(8). 

By the definition of uniformly varied motion, we have, 

Vy : V : : Is : T\ 

Space in any 

time; 

Velocity due to 

any space. 

whence 

V = Vy T..(9). Velocity due to 

any time. 

In what precedes, we have supposed the body to start The body hag 

from rest, so that the right line, which gives the law of the already an 
° ° acquired velocity : 

motion, passes through the point of departure 0. But 

if the body have already 

a velocity 0 acquired 

previously, this right line Fig. 24. 

will pass through the V5 

extremity of the ordinate 

which represents the ve¬ 

locity of the body at the in¬ 

stant from which the time is 

reckoned. The velocity 0vQ, 

is called the initial velocity. 

By drawing v0 t'c, parallel 

to 0 i>, we see that the 

velocity t3 v3j which corre¬ 

sponds to the time 0t3l is 

composed of two parts, viz. 

t3t'3, and t'3v3; the first is 

equal to the initial velocity 0 v0l 

initial velocity. 

and the second to the 
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Formulas to 

«ompute the 

circumstances of 

Uie motion; 

value of the 

#p:ice; 

value of the 

velocity. 

velocity which the body would acquire in the time v0 t'3l 

equal to 013} under the action of the constant force, had it 

moved from the point v0 with no initial velocity, as in the 

preceding case ; for the line v0 v5 gives, in reference to the 

line v0t'5, the law of acceleration. Knowing, then, the 

velocity which the force is capable of impressing upon the 

body in a unit of time when moved from a state of rest, 

it is easy to construct the line v0 v5, in relation to v0 i! 5 or 

its parallel 0 t5y and to deduce from it all the circumstances 

of the motion. 

Let it be required, for example, to find the length of 

path described by the body in the time 014. This path 

will contain as many linear units as the trapezoidal area 

OtAv4vo contains superficial units. We perceive at once, 

that this length will be composed of two parts, viz.: that 

described uniformly in virtue of the initial velocity Ov0l 

and represented by the rectangle Ot^t\v^ and that de¬ 

scribed in virtue of the constant force and represented by 

the triangle v01\ v4. But, denoting by a the initial ve¬ 

locity, and by T the time, we have for the measure of the 

rectangle 

aT, 

and for the measure of the triangle, Eq. (7), 

Ui?’2; 

i 

and if we denote by S the total length of path actually 

described by the body, we have 

S = aT + iv,T2 .... (10): 

and because the actual velocity at the end of any time, is 

the initial velocity increased by that due to the action of 

the constant force during this time, we have, Eq. (9), 

V — a + vxT .... (11). 
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Fig. 25. 

graphical 

representation. 

§ 69.—If we now suppose the constant force, instead uniformly 

of increasing the initial velocity of the body, to diminish retarded motlou; 

it, the motion becomes uniformly retarded, and the line 

u0 v4 gives the law of the motion. 

By drawing v01'5 parallel to 

0t5, we see that the velocity 

v34, which corresponds to the 

time 0 4, is nothing else than 

the initial velocity O v0 dimin¬ 

ished by the velocity t'3 v3l 

which the body would acquire 

under the action of the con¬ 

stant force at the end of the 

time Ot3 had it moved from 

rest. The length of path de¬ 

scribed is now represented by 

the trapezoidal area Ol3v3v0; and is equal to that which 

would be uniformly described in the same time, with the initial 

velocity 0 vQ, diminished by that which would be described in 

the same time, if moved from rest under the action of the 

constant force, by a motion uniformly accelerated; that is to 

say, the length of path is represented by the rectangle 0 4 t'3 u0 

diminished by the triangle v0 v3 f3. 

The equations (10) and (11), which appertain to uni- Formulas to 

formly accelerated motion, become, therefore, applicable ch-Tumltances oi 

to uniformly retarded motion, by simply changing the this motion, 

sign of the velocity generated by the constant force, and 

that of the area of the triangle, which represents the path 

due to the action of this force; hence, 

S ■= aT — \VXT2 . . . . (12), Value of space; 

V a VXT.(13). of velocity. 

Let us suppose that, among other things, we desire 

the time required for the force to destroy all the initial 
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Time required to 

destroy all a 

body's velocity. 

The path 

descr.bed during 

the destruction of 

its velocity; 

alter the velocity 

is destroyed, the 

body will return; 

velocity; we have only to make V = 0, and equation (13) 

becomes 

a — v1 T = 0, 

whence 

from which we conclude that the time required for a con- 

stant force to destroy all the velocity a body may have, is 

equal to the quotient arising from dividing the value of 

this velocity, by the velocity which the force can generate 

in the body in one unit of time. 

To find the length of path described by the body 

during the extinction of its velocity, substitute the value 

of the time above found in equation (12), and we have 

that is to say, the space through which a body will move 

during the entire destruction of its velocity by the action 

of a constant force, is equal to the square of the velocity 

destroyed, divided by twice the velocity which this force 

can generate in the body during a unit of time. 

It is important to remark, that if the force continue to 

act after having destroyed all the velocity, the body will 

return along the path already described, and pass in 

succession and in reverse order, as to time, through its 

previous positions, at each of which it will have the same 

velocity it had there before; for while the body is losing 

its velocity, it may be regarded as beginning its motion 

at any point of its path with its remaining velocity or 

that yet to be destroyed, which, in such case, is denoted by 

a, and when all its velocity is destroyed, it returns from a 

state of rest or begins to move backward with no initial 

velocity; so that equations (4) to (9) become applicable to 
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this latter motion, while equations (14) and (15) arc to the 

former. But from equation (8) we have 

V = vx 

and substituting for S its value given by equation (15) 

we get 

/2 u, a3 
F=vvr =«: 

that is to say, the velocity V, which the body has ac¬ 

quired in moving backward through a space jS, is equal to 

the velocity a, with which it began to describe the same 

space in its forward motion. 

0 

§ 70.—One of the most important examples of uni¬ 

formly accelerated motion, is that presented by the verti¬ 

cal hill of heavy bodies; but, before discussing it, we will 

make known some of the circumstances which accompany 

and modify this motion at the surface of the earth. 

We have already seen, § 82, that the force of gravity 

may be considered as constant within ordinary limits. 

But at the surface of our globe, all bodies are plunged into 

the atmosphere, and this atmosphere is itself a material 

body, which, by its inertia and impenetrability, opposes 

with greater or less energy all kinds of motion of bodies; 

this opposition is named atmospheric resistance. Experi¬ 

ment shows us that this resistance increases as the velocity 

of the body and the extent of its surface increase; thus, 

in striking the air with a light flat board, the resistance 

which we experience is greater in proportion as the mo¬ 

tion is more rapid, while it is scarcely sensible when the 

motion is very slow; and again, the resistance will be less 

if, instead of striking the air with the broad surface, we 

present to it the edge of the board. 

tr* *•' 

lo 

and have at its 

previous 

positions the 

same velocity as 

before. 

Motion of 

falling bodies; 

causes which 

modify this 

motion; 

influence of 

velocity and 

extent of surface; 
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influence of air 

on the fall of 

bodies; 

bodies which 

weigh most and 

have least 

surface, fall most 

rapidly; 

in vacuo all 

bodies fall 

equally fast; 

gravity acts on 

the interior and 

exterior particles 

of a body alike; 

distinction 

between the 

weight of a body 

and the force of 

gravity. 

It is plain, therefore, that the presence of the air must 

modify the laws of the vertical fall of bodies subjected to 

the action of their weight. In permitting bodies to fall 

through the air, from the same height, it is 

observed that those which weigh most under 
° Fig. 26. 

the same volume, or those which present the 

least surface in the direction of the motion, 

arrive soonest at the bottom; thus, a ball of 

lead will fall sooner than a ball of equal 

volume of common wood, and a ball of 

common wood sooner than one of cork, &c. 

But if made to fall in vacuo, or in a long 

hollow cylinder from which the air has been 

removed, experiment shows that all bodies 

fall equally fast, and therefore will reach the 

bottom at the same instant if they start 

together. This is called the guinea and 

feather experiment, from the fact that a 

guinea and feather will fall under the action of their 

respective weights in vacuo, with the same velocity and, 

therefore, will reach the bottom in the same time. 

From this it follows, that the force of gravity acts indis- - 

criminately upon every particle of matter, and impresses upon 

each, at every instant, the same degree of velocity in vacuo, 

a fact which it is important to remember. 

We may easily assure ourselves that the force of 

gravity acts on the interior as well as on the exterior 
i 

particles of all bodies, by observing that the same body 

weighs just as much by the weighing spring whether 

placed in the open air, or in a close chamber; which 

proves that the force of gravity acts through this chamber 

envelope without undergoing any change. 

The weight of a body, is the resultant of all the actions 

of the force of gravity upon its elementary particles; we 

must be careful, therefore, not to confound the weight with 

the force of gravity itself, which is, in fact, only the ele¬ 

mentary force impressed upon each particle. 
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§ 71.—Finally, it is important to remember that the 

denser bodies, such as gold, lead, iron, &c., are those Gold, lead, &c. 

which, under equal volumes, or equal surfaces, will fall fal!1m>°?.,.apidly 

most rapidly in the air, because the resistance of the 

latter is weaker when considered in reference to the 

weight; and this resistance may become relatively so 

small that we may neglect it, particularly when the fall of 

the body is not very rapid. 

Galileo, an Italian philosopher, was the first to invest!- the motion of 

gate, experimentally, the laws which govern the motion of 

bodies falling under the action of their own weight, in accelerated, 

vacuo; and he found the motion to be uniformly accelerated. 

The force of gravity is, therefore, within the limits of ex¬ 

periment, a constant accelerating force, acting with an equal 

intensity at each instant whatever be the velocity ac¬ 

quired. Atwood, an English philosopher, in resuming 

the experiments of Galileo, with greatly improved means, 

obtained the same results. 

Laws of the 

§ 72.—Hence, when a body falls from rest through a motion of falling 

certain height, in vacuo, bo<iies ’ 

1st. The velocities acquired are proportional to the first law; 

times elapsed since the beginning of the motion. 

2d. The total spaces passed over, or the heights of the second law; 

fall, are proportional to the squares of the times elapsed. 

3d. These heights are proportional to the squares of third law; 

the velocities acquired at the end of each. 

4tli. The velocity acquired at the end of the first unit fourth law. 

of time, is measured by double the height of fall passed 

over during this time. 

Although the force of gravity, may, without sensible Force of gravity 

error, be regarded as constant at the same locality, it yet latitudfi. 

varies, as we have seen, from place to place, in going 

southward or northward, and cannot, therefore, generate 

as much velocity in one latitude as another. From 

careful experiments, made with a pendulum at different 

places, it is found that the length of path described by a 

varies with the 
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NATURAL PHILOSOPHY. 
{ 

body in the first second of its Ml from rest in vaquo, will 

be given by the following forijiula, viz : 

feet. 

ex = 16.0904 - 0.04105 cos. 2 + . . (16), 

in which. e1 is the space, and the latitude of the place. 

In works on mechanics, the velocity which the force of 

gravity can generate in a second of time at the surface of 

the earth, is usually denoted by g ; and as this velocity is 

equal to twice eh Eq. (4), as given by the above equation, 

we have, 

feet. 

g = 32.1808 - 0.0821 cos. 2 + . . (17); 

hence all the circumstances of the motion of falling bodies 

at any place, will be given by equations (4) to (15) after 

substituting therein g for i\. 

Let II represent the height, in feet, through which the 

body has fallen in a given, time denoted by T. and V the 

velocity acquired at the bottom of this height; then, from 

equations (5), (7), (8), and (9), we have 

II — \ V T . . . 

II = I g T* . . . 

V2 = 2 g II . . . 

V = g T . . . . 

in which, for all ordinary cases we may take 

• • (18), 

(19) , 

(20) , 

(21), 

g — 32.1808 feet . . . (22). 

Suppose we are required to find the velocity acquired 

and the path described at the end of 7 seconds; from 

equation (21), we have 

V = 32.1808 X 7 = 225.2656 feet, 
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from equation (19), 

II 
32.1808 

2_ 
x (7)s 788.4296 feet 

that is to say, at the end of 7 seconds, the body will 

have a velocity which would carry it over a distance of results; 

225.2656 feet during the 8th second, were its velocity at 

the end of the seventh second to become constant, and the 

space described during the seven seconds of fall, will be 

788.4296 feet. 

It must be remembered that, in the atmosphere, the influence of the 

body will not fall with the same velocity, on account of atnl0SpheiL’ 

the resistance of this medium; but from what has alreadv in the case of 

been remarked, this resistance will not have much in- metai3’1 c 
’ surface ot the 

fluence if the falling body be very dense, as iron, lead, body and height 

&c.; or if the surface of the body be small; or if the be sm“U ’ 

height of fall be not great, say sixty or seventy feet. We 

might, therefore, measure approximately, the height of application to 

towers, depth of wells, &c., &c., by noting the time, as lowers aad* 

indicated by a watch beating tenths or fifths of seconds, depth orweiu. 

required by a body to fall through the height. 

If we have given the height through which a body has 

fallen, it is easy to find the velocity acquired; for from 

equation (20), we have 

V = v/2y II 

Suppose a body to fall through a height of 80 feet, then 

will 

V = v/ 2 X 32.1808 X 80 ~~ 71.75 feet. 

This proposition is of frequent occurrence in practical 

mechanics. Velocity due to a 

The quantity V is called, the velocity due to a given a 

height II; and II, the height due to a given velocity V. given velocity. 

t 
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A body thrown 

vertically 

upward; 

greatest height 

to which it will 

ascend; 

time required to 

reach its greatest 

height. 

Example; 

§ 73.—When a body, as the ball from a gun, for 

example, is thrown vertically upward, its weight acts at 

each instant with the same intensity to diminish by equal 

degrees its primitive velocity; the motion will be uni¬ 

formly retarded ; the velocity will be totally destroyed 

when the body attains a certain height, from which it will 

descend, in taking successively the different degrees of 

velocity which it had at the same places in its ascent, all 

of which is obvious from what was said in § 69. Thus, at 

the distance of 1, 5, 7, &c. feet from the place of starting, 

the body will have exactly the same velocity in ascending 

and descending; it will only have the direction of its 

motion changed. When it returns to its point of depar¬ 

ture, its velocity will be the same as it was at starting. 

Denote by If the greatest height the body will attain; 

and V, the primitive or initial velocity; then will, equa¬ 

tions (20) and (21), 

F2 

II — ~2y.(23), 

V 
T = —.(24). 

9 

That is to say, the greatest height to which a body will 

ascend, when thrown vertically upward, is equal to the 

square of its initial velocity, divided by twice the force of 

gravity; and the time of ascent will be equal to the initial 

velocity, divided by the force of gravity 

Let the body, for example, leave the earth with a 

velocity of 150 feet a second, then will 

H = (15Q)2 

2 X 32,1808 
350.28 feet, 

150 

32,1808 
— 4.658 seconds. 
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This is on the supposition that the air opposes no resist- effect of 

ance. The body will not ascend so high in the air; and, atraosPheric 
J 07? resistance. 

moreover, will fall with less velocity than in vacuo. 

§ 74.—We may now appreciate the quantity of work Quantity of work 

or of action which the weight of a body will expend, in of the weight> 

impressing upon itself a certain velocity, or in overcoming impress upon a 

its inertia. Denote by W, the weight of the body, express- ^i<^.^glven 

ed in pounds, or, in other words, the absolute effort which 

gravity exerts upon the body, and which is equal and 

contrary to that necessary to support it in a given posi- 

tion; this will measure the constant effort exerted upon 

the body during its descent through the height II. The 

quantity of work consumed during this fall will, § 45, be quantity of work 

denoted by 
:! 

consumed during 

its fall; 

W x ir, 
' . v r ' * f , • , f r , , »• ‘ r - , ( / 

and this quantity of work will have generated in the body 

the velocity V, computed by the equation 

V2 = 2 g H ; 

from which we have 

H = 
V2 

2y; 

and multiplying both members by W, 
■ ? d ■:)' . . * 

w 
WII = J — x V2 

9 

§75.—Thus, the quantity of work developed by the work required to 

weight of a body to impress a certain degree of velocity "eiocuy& S1VGn 

upon itself, is equal to half the product obtained by multi¬ 

plying the square of this velocity, by the weight of the 

body, divided by the velocity y, which the force of 

gravity is capable of impressing upon all bodies during 
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the first second of their fall. This product, 

JE V 2 

9 ’ 

living force; 

equal to double 

the quantity of 

action necessary 

to produce it; 

half the living 

force lost or 

gained, equal to 

the work that 

overcomes the 

inertia. 

is what mechanicians call the living force of the body 

whose weight is W. We see, therefore, that the quantity 

of action expended by the weight of a body, is half the living 

force impressed; or that the living force impressed, is double 

the quantity of action expended by the weight. 

It is to be remarked, that when a body is thrown ver¬ 

tically upward with a certain velocity, the quantity of 

action of the weight, which is always measured by the 

product of the weight into the height to which this body 

has risen, is employed, on the contrary, to destroy this 

velocity, so that in the two cases of ascent and descent, 

the half of the living force lost or gained, measures the 

quantity of action or of work necessary to overcome the 

inertia of the body, whether the object of this action be to 

impress upon the body a certain velocity, or to destroy 

that which it already has. 

This principle is, as we shall soon see, general, what¬ 

ever be the motive force employed to communicate 

motion to a body, and whatever be the direction of the 

motion. But it is necessary first to remark upon certain 

terms employed in mechanics. 

meaning of living 

force; 

§ 76.—As the expression of living force, employed to 

designate the product, 

W 

9 

may lead to error, it is proper to remark here, that it 

must not be regarded as the name of any force, any more 

than the name given to the product 

not a force, but 

the result of a 

force’s action; 

W. If 

or the quantity of action, designates a force,, it is simply 
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the result of the activity of a motive force, expressible in 

pounds, which has been employed to overcome the inertia 

of a body, to impress upon it a certain motion—a certain 

velocity. Under this point of view, the living force is but 

a dynamic effect of a force, or rather double this effect, since a dynamic cfffcct. 

A body in motion, or a certain dynamic effect, may a body in motion 

example, a body thrown vertically upward is elevated 

in virtue of its velocity to a certain height, as though it 

were taken there by the incessant action of an animated 

motor. But this is, in all respects, analogous to what 

takes place when a force has developed a certain quantity 

of work to bend or compress a spring; the inertia of the 

matter has been brought into play in the same manner 

that the molecular springs have in this latter case. This 

inertia, § 66, when it has been thus conquered, becomes 

capable of restoring the quantity of work expended upon but cannot be a 

it, as well as a compressed spring; in a word, inertia, like 

a spring, serves to store up a quantity of action, to body, or bent 

transform it into living force, so that living force is a true spnn°’ 

disposable quantity of action. The same may be said of 

a body elevated to a certain height; this body solicited 

by its weight is the source of a quantity of action, of 

which we may subsequently dispose to produce a certain 

amount of mechanical work. But as we cannot say that 

this body, elevated to a certain height, is a force, that a 

compressed spring is a force, neither can we say that a 

body in motion, or that 

W 
V2 

0 

is a force. It is -the same of men, animals in general, or animals. 

of caloric, of water-courses, of wind, &c., &c.; these are but 

agents of work, or motors—not simple forces. 

caloric, the wind, 

& c. 
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Object 01 

mechanics as 

applied to the 

arts. 

n. i : ■ 

The mass of a 

body; 

force of gravity 

proportional to 

the velocity it 

may impress in 

one second. 

It is tlie object of mechanics, in its application to the 

arts of life, to study the different transformations or 

metamorphoses which the work of motors undergoes by 

means of machines and implements, to compare different 

quantities of work with each other, and to estimate their 

value in money, or in work of this or that kind. 

In short, when we speak of living force, communicated 

to, or acquired by a body, it is only necessary to remem¬ 

ber, that it relates to a real motion of the body, and is equal 

to the 'product of the square of its velocity into its ■weight, 

divided by the force of gravity. 

*\ ' V f I | ! ‘ ' ' I t * , . f • , ; | | 1 ’ * V ' 

§ 77.—Since the force of gravity acts indiscriminately 

upon all the particles of a body, and impresses upon 

them at each instant, the same degree of velocity at the 

same place, the weight of a body, which is the result of 

these partial actions, may give us an idea of the relative 

quantity of matter it contains, or of its mass, for it is plain 

that the mass must be proportional to the weight; often, 

indeed, the weight is taken for the mass. But as the 

intensity of the force of gravity varies from one locality to 

another, and as the quantity of matter in the same body 

or the mass remains absolutely the same, it is obvious that 

this latter would be but ill defined by its weight. Ex¬ 

perience shows that the velocity impressed by the force of 

gravity, in one second of time, is directly proportional to 

the intensity of this force, and that therefore the ratio 

. .. ! W 
9 ’ 

must remain the same for all places, since the weight is 

also directly proportional to the force of gravity. Thus if 

W and W, be the weights of the same body at different 

places, and g and g' the intensities of the force of gravity 

at those places, respectively, then will 

W W* 
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W 
This invariable ratio —, is taken, in mechanics, as the 

9 
measure of the mass of a body. Denote the mass by M, 

then will 
i ; : ( ‘ ; ; . ■, ! .•( ‘ .." 

w 
9 

, or W = Mg 
Measure of the 

mass of a body; i 

in which W expresses the effort or pressure exerted by 

the weight of the body, and g the velocity which this 

weight can impress upon the body in a second of time. 

Density is a term used to denote the degree of prox¬ 

imity among the particles of a body. Its measure is the 

number of particles in a unit of volume; and denoting 

the volume or bulk by B, and density by D, we shall 

have 

M — D By 

which, in equation (26), gives 

W= D.B.g.(26)'. meas^eofth« 
J v ' weight. 

§ 78.—By substituting the value of the weight, as given 

by equation (26), in the expression for the living force, we 

find 

— V2 = MV2: 
9 

Living force in 

terms of the mass 

and velocity; 

that is to say, the living force of a body in motion, is 

equal to the product of its mass into the square of its velocity. 

Finally, mechanicians have agreed to call the product of 

the mass of a body, as above defined, into its velocity, or 

M }y the quantity of motion of the body ; and this it must be quantity of 

remarked is very different from the quantity of action or motlon, 

of work. To understand what is meant by this new 

expression, denote the quantity of motion by Q, then will 
• . ■ ■ , .. . 

• • . , . .'.-.in, •• • 

8 
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its meaning; 

it is a pressure, 

like weight; 

living force 

equal to the 

quantity of 

motion into the 

velocity. 

Use of the 

denominations 

mass and 

quantity of 

motion. 

A force is 

proportional to 

the velocity it 

can generate in a 

given time, only 

when constant. 

When the force 

is variable, it is 

proportional to 

the small degree 

of velocity 

imparted at a 
given instant. 

or, which is the same thing, 

Q : W : : V : g. 

But IF, is the weight of the body, and g, the velocity 

which this weight can generate in this body, in one second 

of time; hence Q must designate either a weight or an 

equivalent effort, which can generate in the body, the 

velocity V. in one second. 

We see also that the living force, 

MV\ or MW = QV, 

is the product of this effort, by the velocity V, or by 

the path described uniformly by the body in a unit of 

time in virtue of its acquired velocity. 

These observations show the distinction between the 

quantity of motion of any body and its living force, and the 

identity between this latter and double the quantity of 

action. 

§ 79.—It is principally to abridge and simplify the 

computations and reasonings, that the denominations mass 

and quantity of motion, are employed in mechanics; and 

they might easily be dispensed with. But as authors 

generally have used them, it becomes important to under¬ 

stand their precise significations. 

§ 80.—We have just seen that the force of gravity will 

impress upon a body, during one second of time, velocities 

which are constantly proportional to its intensity, or to 

the absolute weight of the body in each locality. But 

this property arises only from the fact, that the weight 

remains constant during the fall, so that the total velocity 

at the end of the fall, is proportional to the equal degrees 

of velocity impressed at each instant. When the motive 

force, instead of being constant, varies at each instant, it is 

obvious that its intensity can no longer be measured by 
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tlie velocity which it impresses upon the same body 

during a unit of time, and that its measure must depend 

upon the small degree of velocity which it communicates 

at a given instant. 

By observing what takes place at the surface of the forces 

earth, and in our planetary system, it is found that the Propoltl<™al to 

motive forces or pressures are, in fact, proportional to the small of velocity they 

7 (. 7 .. 7 . 7 <7 ,7 77* can impress in a 
degrees oj velocity ivriich they impress upon the same body in very gmall 

equal indefinitely small portions of time. This fact serves portion °f time, 

as the basis of all dynamic investigations, and must be 

regarded as a general law of nature. 

§ 81.—Accordingly, let F be the measure, in pounds, Measure of the 

ot a torce ot pressure; let v be the small degree ot inertiabythe 

velocity which it can impress upon a bod}^ at any velocity 
• i *i • * i i -ii • , -» impressed ill & 
instant or epoch, during an indefinitely small interval gmall lime 

of time, denoted by t; also, let IF be the pressure 

exerted by the weight of the body at any given place, 

and v' the small degree of velocity which this weight can 

impress upon the body during the same short interval t. \\ 

We shall have, from the principles already established, 

since F may be regarded as constant within the limited 

time 

whence 

F : IF 

„ IF 
F = —r • V. 

V 

Consequences of 

the above law; 

But from the first law of falling bodies 

v' : g : : t : 1S0C-; 

whence 
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lierefore 

measure for tho 

intensity of any 

motive force; 

1di{? **4> ! 

inertia exerted, 

proportional to 

the product of 

mass into the 

velocity 

imparted; 

That is, the intensity of any motive force, is measured by the 

■product of the mass into the velocity it can generate while 

acting with a constant intensity, divided by the duration of the 

action. Thus, when we know the small velocity v, im¬ 

pressed in the short interval of time t, by the force I1] we 

may compute the value of this force, which is equal and 

contrary to the resistance opposed to motion by the inertia 

of the bodjL This resistance has been called by some the 

force of inertia, and by others dynamic force. The relation 

given by Eq. (28), shows us that the force of inertia, which 

is equal and contrary to F, is directly proportional to the 

mass, and to the velocity v which this mass receives during 

the elementary time t. 

Let F' be the measure of a second force, which acts 

upon the mass IP, impressing upon it in the same time t, 

the small velocity v', then will 

F' IP . 
v' 

7’ 

* Ftr'v { V _ v 

which, with Eq. (28), gives 

relation of any 

two motive forces. 
F F> Mv IP vf 

That is to say, any two motive forces are to each other, as the 

quantities of motion they can impress in the same elementary 

portion of time. 

§ 82.—From Eq. (28), we find 

Velocity 

impressed in any 

short time 

F.t 
v = -.7-; 

} II1 
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from wliicli we perceive that the degree of velocity which proportional to 

a motive force impresses upon a body, during a short f divided 

elementary portion of time, varies with the intensity of by the mass, 

the force directly, and with the mass, or weight, inversely. 

§ 83.—If now we suppose, at any instant, the force Measure of inertia 

suddenl y to cease to vary, and to continue to act upon the anc!of the equal 
J J 1 and contrary 

body with the intensity which it possessed at that instant, motive force; 

the velocity will increase or diminish, proportionally to 

the time, § 67, and the intensity of the force may be 

measured by the definite quantity of motion which it 

can impress upon the body during the first succeeding 

second. 

Designate by Vx the velocity generated in the body 

during the first second succeeding the instant in which 
O O 

die force becomes constant, then will 

Fx v fsec. . t; 

whence 

Fx = 
V 

T’ 

which, in Eq. (28), gives 
. ' ' . , V: *1 

F = F,J/ . . . • (29); 

and, in general, the motive force, equal and contrary to the equal to the 

force of inertia, is measured, at each instant, by the quantity ^Jiuoii^the Iatter 

of motion it can impress during one second, if instead of vary- can impress in a 

ing, it retain unaltered the intensity it had at that instant. constant. 

When the mass becomes the unit of mass, Eq. (29) 

becomes 

F Vi- (30); 

the force in this case is called the accelerating force, or, Accelerating 

more properly, the acceleration or retardation due to the force, foicc’ 



90 NATURAL PHILOSOPHY. 

measured by the 

velocity 

impressed on a 

unit of mass in 

unit of time; 

and is always measured by the velocity it is capable of im¬ 

pressing on a unit of mass in a unit of time, acting with a 

constant intensity. 

And from Eq. (29), which, gives, 

F 
J/’ 

is equal to the 

motive force 

divided by the 

mass. 

it appears that the acceleration or retardation due to the 

force, is, in every case, nothing more than that portion 

of the entire motive force which results from dividing the 

latter by the number of units in the mass acted on. 

Geometrical 

illustration; 

Fig. 27. 

§ 84.—Trace, according to the method described for 

uniformly varied motion, § 68, the curve v0 vx v2 v3) &cM 

which represents 

the law of the 

times and veloci¬ 
ties ; let 4 v3 and 

4 v4 represent the 
velocities which 

correspond to the 

end of the times 
Ot3 and 0 4, or 
at the beginning 

o o 

and end of the 

very small por¬ 
tion of time 

4 4 ■—- t* 

Draw through v3 the line v3 b4, parallel to the axis 0 B 
of times, and produce it till v3 m = 1 second; this line 

will meet the ordinate 4^4, and b4v4 will be the small 
portion of velocity = v, impressed by the force, during 
the small portion of time t. Now if, at the instant cor¬ 

responding to the end of the time 0 4, the force become 
constant, it will subsequently impress upon the body equal 
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increments of velocity during tlie equal intervals of time 

and the curve v3v4v5 will become the straight line v3n, 

tangent to the curve at the point v3. Drawing through 

vn a line parallel to #4v4, the portion mn will represent 

the velocity Vx impressed in one second, and the two 

similar triangles, v3 Z>4 v4 and v3 m n, will give 

v3 Z>4 : b4vA : : v3m : mn; 

or 

t : v : : lBec- : Vx; 

whence 

the value jf the 

■y _ . velocity 

^ l } impressed in one 

second; 

as before found. 

Thus, when we know the law which connects the 

velocity with the time, or the curve which represents this 

law, we may, at any instant, by drawing a tangent to 

the curve, determine the velocity Vh and consequently found by the 

compute the value of the intensity of the force from the tangent hne * 

equation, 

the measure of 

the motive force. 

or, which is the same thing, the value of the equal and 

contrary resistance, opposed by the inertia of the body, at 

each instant during the action of the force. 

F = M Tq = K 
9 

■ Vr, 

§ 85.—Reciprocally, if we know the value of the in¬ 

tensity of the force F at each instant, we deduce from it value of the 

, ■-i t i r> accelerating force, 
the corresponding value of cqual t0 motive 

force divided by 

vx = n 
F_ 
M ; 

mass. 
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inclination of 

tangent to the 

curve. 

or of the inclination of the tangent v3 n, or that of the 

element of the curve of velocities to the axis OB of times. 

The tangent of this inclination is given by 

m n 
v3 m Vi 

V ■ L ' • 

and if the initial velocity 0 v0 be given, nothing is easier 

curve constructed than t0 construct the curve, of which the ordinates shall be 
by means of this . , . . 
tangent. the successive velocities acquired under the action of the 

force; since, by means of the inclinations of the tangents 

or elements of the curve corresponding to each, absciss of 

time, those elements may be drawn one after the other, 

thus forming a polygon, which will differ less and less 

from the curve, in proportion as the number of values of 

the force between given limits is greater. 

Fig. 28. 

work necessary § 86.—By the aid of what precedes, we may readily 

velocity'S a81Ve~> comPu^e quantity of work which, must be expended 

against a body, whose weight is W] by a force F, equal 

and contrary to the force 
. 

of inertia, to impress upon 

it a certain velocity V, 
or, more generally, to 

augment or diminish its 

velocity by a given quan¬ 

tity. 

The quantity of work 

expended during any 

small interval of time t, 

has, for its measure, the 

product of the intensity 

of the force F, into the 

elementary portion of the path described by the body 

during this time. This small path is given by the area 

of the small rectangle v31314 &4, whose base is the element 

t3 tA = t and whose altitude is t3 v3 = V, § 67 and § 68; 
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that is to say, by the product Vt. lienee the elementary 

quantity of work is 

(• 

F V t, 

for each instant of time, or for each small increment 

of velocity. But from Eq. (28) we have 

v 
F = JfT; 

Fig. 29. 

replacing F by this, value, in the preceding expression, 

we have, for the elementary quantity of work, 
Hjf, J f ( - ^ v . 

; MVv; 

And it is the sum of all these partial quantities of work 

which composes the total quantity of work; this sum may 

be found' thus: 

From the point 0, as an origin, lay off the distances 

0 ivh iv1 w2, w2 W/*3, &c., to represent the * different incre¬ 

ments of velocity 

during the different 

successive elementary 

portions of time t, 

which have elapsed 

since the beginning of 

motion — increments 

that will not be equal 

in the case of a vari¬ 

able force; then will 

0wh 0w2l 0w2, &c., 

represent the veloci¬ 

ties of the body at the 

corresponding instants: lay off these same lengths upon 

the ordinates wx iv2 v2, w3v3, &c., so that we shall 

have 

w1v1 = 0 wh w2v2 = 0 io2, w3v3 = 0 wa, &c.; 

elementary 

quantity of work; 

geometrical 

method of finding 

the whole work. 
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The area of a 

triangle 

represents the 

sum of all the 

products Vv. 

Work consumed 

when the body's 

motion is 

accelerated; 

equal to half the 

living force 

communicated; 

the series of points vu v2l v3, &cv will lie on a right line, 

inclined to the axis 0 B, in an angle of 45°. Consider 

now the velocity v3 w3 = F, 

for instance, of which the in- 
J Fig. 29. 

crement w3 wA or v3 b4 = v4 b4, Vj 

is called v. The product % X 
Vv, will here be represent- 

ed by the small rectangle VyV j 

v3 w3 w4 64, or by the trape- 1 
zoid v3 w3 iv4 vA, to which it vy i 
becomes sensibly equal when vy 

the increment of velocitv or X 1 
J n W, Wr. IVD U-4 W\ V- 

that of the time is very 

small. The sum sought, of 

all the partial products Fv, has for its measure the sum of 

all the corresponding elementary trapezoids, or the area 

comprised within the right line Ov7, the axis Owrn and the 

ordinate Wr, v7j which latter represent the velocity acquired 

from the beginning to the end of the time for which we 
O O 

wish to estimate the work done by the force. 

§ 87.—For example, if the body sets out from rest, and 

we desire to find the sum of the products of V v, correspond¬ 

ing to the acquired velocity wA vA — F', this sum being rep¬ 

resented by the area of the triangle 0 wA we shall have 

i 0 wA X ivi vA = J {wA v4f = \ V'2; 

hence the quantity of work corresponding to the velocity 

F', and consumed by the inertia of the body whose mass 

is J/J will be measured by ^-J/F'2, or by half the living 

force communicated from the beginning of the motion, § 76. 

This principle obtains, therefore, for any kind of motion, 

or for a motive force different from the force of gravity. 

For another velocity, i^v^— F", the consumption of 
9 

work will be in like manner measured by \ M V", and 

consequently for the interval between the positions in 

which the body had the velocities F'and F", the quantity 
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of work consumed will be measured by tlie difference, or 

l M V"* i M 7 , 

corresponding to the trapezoid w1 v1 vA. But MV' and work consumed 

M V"2 are the living forces at the beginning and end of equaltoh^nie 

the interval of time during which we are considering the difference of 

work of the motive force; the expression above is, there- blghming and 

fore, one half the increment of living force, or half the living end- 

force communicated in this interval; so that the principle 

applies to any two instants of the body’s motion, and thus 

the quantity of work expended has, in every case, for its 

measure, half of the living force communicated in the interval 

between these two instants. 

§ 88.—Finally, it must be remarked, that the preceding 

supposes the velocity of the body to increase incessantly; 

if it were otherwise, the force would be opposed to the 

motion, and would be a retarding force. But the reasoning 

remaining the same, would be applicable to this case, and 

we should find that the quantity of work or action Work developed 

developed by the resistance F) (equal and contrary to the ^"^™otlon 

force of inertia now become a power,) during the time 

necessary, to reduce the velocity from V' to V", would 

have for its measure, 

i (j/ F'2 _ m 7"2), 

equal to half the 

difference of 

or half the living force destroyed or lost. 

Thus, the diminution of the living force of a body livi force at 

between any two given instants, supposes that a quantity the beginning and 

of work or of action equal to the half of this diminution, endofmtenal- 

has been developed by the inertia of this body against 

obstacles or resistances, as its augmentation supposes, on 

the part of a power, an expenditure of work equal to the 

half of this augmentation. inertia serves to 

transform work 

§ 89.—We now clearly perceive how the inertia of 

a body, serves to transform work into living force, and into action; 
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r L ; if '' * • •' •- •' ' X ' '' ' ' 

examples in the 

mechanic arts; 

example of the 

grist-mill; 

the air-gun; 

the action of the 

ball against a 

spring. 

living force into work; or, to use the expressions em¬ 

ployed, § 76, on the occasion of the vertical motion of 

heavy bodies, we see that inertia will store up the work 

of moters by converting it into living force, and give 

this work out again when the living force comes to be 

destroyed against resistances. 

The mechanic arts offer a multitude of instances in 

which these successive transformations take place, in 

operating by means of machinery, implements, &c., &c. 

The water contained in the reservoirs of grist-mills, for 

example, represents a certain quantity of disposable 

action, or work, which is changed into living force when 

the sluice gates are opened; in its turn, this living force 

acquired by the water, in virtue of its weight and descent 

from the reservoir, is changed into a certain quantity of 

work; this is communicated to the wheels of the mill, 

and these latter transmit it to the millstones which pul¬ 

verize the corn. The air confined in the reservoir of an 

air-gun, represents the value of the mechanical work 

expended by a certain moter in compressing it; on open¬ 

ing the valve, the air acts upon the ball, impels it forward, 

and converts a certain quantity of work into living force. 

If this ball be thrown against a spring, or an elastic body, 

the latter will be compressed in opposing a greater or less 

resistance to the inertia of the former, and will finally 

have destroyed all its 

motion at the instant 

the quantity of work, 

developed by the 

spring, becomes equal 

to half the living 

force of the ball; the 

spring being retained 

by any means in its 

compressed state, the 

living force will be stored up as a quantity of disposable 

work, so that when the restraint is removed from the 

Fig. 30. 
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spring, the ball will be thrown back with a velocity such, 

that the living force will be double the quantity of action or 

of work, restored by the spring in unbending or expanding. 

§ 90.—If, then, the spring be perfectly elastic, the Perfectly elastic 

velocity communicated to the ball, will be precisely equal bodiesrestorea11 

to that impressed upon it by the air-gun in a contrary lost during an 

direction. Thus, in the example before us, the quan- impact* 

tity of work has been alternately changed into living 

force, and living force into quantity of work, without any 

thing having been lost or gained. But if the spring be 

not perfectly elastic, a portion of the living force im¬ 

pressed upon the ball will be employed in destroying the 

molecular force of the spring, that is to say, in producing 

a permanent change in the arrangement of its particles. 

§ 91.—Hence, in the collision of bodies, not perfectly 

elastic, there will always be a loss of quantity of work, 

and this, from what has already been said, must be equal 

to half the living force destroyed. Few, if any, solid Living force is 

bodies are perfectly elastic, and as the vast maionty are, 
-t «/ 1 J ‘ collision of bodies 

to a considerable degree, deficient in this quality, the not perfectly 
* • elastic. 

quantity of work uselessly consumed by the molecular 

forces will, in general, bear an appreciable ratio to that 

developed by inertia during the compression; and it there¬ 

fore follows, that if this last force, or the velocity which 

occasions the collision, be considerable, there will take 

place, in a very short time, a great loss in the quantity of 

action; and this is why it is important, as before re¬ 

marked, to avoid all shocks in the motion of machinery. 

§ 92.—We also see, from what precedes, that it is as The work 

impossible tor the force ot a spring to develop, m un- never exceed 

bending, a living force greater than that consumed in that consumed m 

bending it, as for the force of gravity, § 65, to give ^te!\S 

to a body while falling, a living force exceeding that 

destroyed in it, through the same height, while rising; 

indeed, the whole of the velocity will not, in general 
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What takes place 

in periodical 

motion; 

when the 

velocity is 

increased, inertia 

opposes the 

force; 

w hen the 

velocity 

diminishes, 

inertia aids the 

force. 

be restored, and as the corresponding living force lost 

in the shock, has really been employed to overcome a 

certain resistance, and therefore to produce a certain 

quantity of work, it is true, as before stated, that inertia 

does actually perform an amount of work equivalent to 

that which has been employed in putting it into action; 

only it happens, that, in certain cases, a portion of this 

work is diverted from the object we desire to accom¬ 

plish, and is not, on that account, regarded as forming 

a part of the useful effect, as was explained in § 50 

with regard to the ordinary force of pressure. 

§ 93.—We have shown, by examples, how the quantity 

of work or of action may be transformed alternately into 

living force, and living force into quantity of action, by 

means of springs and machines which store up and give 

them out successively. These transformations take place, 

in general, whenever the motion of a body solicited by a 

motive force varies, by insensible degrees, so as sometimes 

to be accelerated and sometimes retarded. This occurs, 

for example, in the periodical motion spoken of in § 25, 

and, in general, in all cases of forward and backward 

movement, usually called alternating, and in which the 

velocity becomes nothing from time to time. The motion 

of the pendulum and that of the plumb-bob are evident 

examples of this last kind. When the velocity of a body 

augments, it is a sign that some portion of the motor’s 

action is employed to overcome the body’s inertia, and to 

increase its living force by double the portion thus ex¬ 

pended, the other portion being absorbed by resistances; 

if, on the contrary, the velocity of the body diminish, 

notwithstanding the power may be exerted in the direc¬ 

tion of*the motion, a certain portion of the living force 
i 

acquired will be expended against the resistances, and will 

augment the work of the motor by a quantity equal to 

half the living force thus expended, and so on, according 

to the number of alternations. 
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§ 94.—From which we see, that when the velocity or 

living force of a body oscillates between certain limits, it is 

a proof that inertia has alternately absorbed and given out 

portions of the moter’s work. The work absorbed by 

inertia will be the same for all equal velocities, and for the 

interval between the instants of equal velocities there will 

be nothing lost or gained, and the power must be con¬ 

sidered as having been entirely employed to overcome 

resistances other than inertia. But, if in any interval of 

time, the velocity, after having undergone alternations, 

does not attain to what it was before, the half of the 

difference of the living forces which correspond to the 

beginning and end of this interval, measures the quantity 

of work which has really been consumed or given out by 

the inertia of the body. Consequently, if the body were 

to set out from rest, the quantity of work consumed by its 

inertia up to any instant, would be measured by half the 

living force possessed by the body at this instant; if the 

velocity had increased incessantly, the inertia of the body 

would have opposed the motive force without intermis¬ 

sion ; if the velocity had, during any part of the time, 

diminished, the inertia would have aided the force. 

Within the 

intervals between 

instants of equal 

velocities, the 

moter is not 

employed to 

overcome inertia; 

work absorbed or 

given out by 

inertia, equal to 

half the living 

force acquired or 

destroyed. 

Fig. 31. 
Vj 
/. 

§ 95.'—All of which 

may be made manifest 

by means of the second 

figure employed in § 86, 

in observing that when 

the velocity of the body 

diminishes, after hav¬ 

ing augmented during a 

certain time, so will the 

abscisses and ordinates 

of the right line 0r7, 

which represent this velocity; the extreme ordinates w7 v7l 

after receding from the point 0, while the velocity is 

increasing, will, on the contrary, approach this point while 

Geometrical 

illustration; 
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the velocity is diminishing, to keep the triangular area 

0 Wrj v7, constantly proportional to the quantity of work 

absorbed by the inertia, or to its equal, one half the living 

example of a force. A carriage tra velling at a variable rate, sometimes 

camagedrawn faster sometimes slower, offers an example of this: at 

first, the horses exert a certain quantity of action to move 

the carriage with a trot; then, when the velocity is dimin¬ 

ished, by an increase of resistance, or by feebler action on 

the part of the horses, the inertia of the carriage develops 

against the resistances to its motion, a portion of the work 

it had at first absorbed, equal to half the diminution of its 

living force: and this alternation will continue till the 

carriage is brought to rest, at which instant, the work 

restored by the inertia will be exactly equal to the quan¬ 

tity of work consumed, so that nothing will be lost. In 

what is here said, it is understood, however, that no dimi¬ 

nution of velocity results from opposition or holding back 

of the horses, for in that case, the moter would be con¬ 

verted into resistance. 

The same 

reflections apply 

to weight as well 

is to inertia. 

§ 96.—The same reflections are applicable to the 

weight of a carriage in ascending and descending a hill. 

The quantity of work employed in overcoming the weight 

while ascending will be restored during the descent, pro¬ 

vided the latter be not so steep as to cause the horses to 

hold back, by which a quantity of work would be con¬ 

sumed uselessly. And this consideration shows us one 

of the many advantages whicli results from giving gentle 

slopes to roads. 

when a force is § 97.—When a motor is employed to raise a burden 

employed to laise trough, a vertical height, it takes the body from a state 

retains nothing of of rest, and hence a quantity of work must be expended 

the muter s work, ^ 0yerc0me its inertia. Arrived at the desired height, 

the effort of the motor is relaxed to restore the body to 
•• : 

a state of rest, and during this diminished action, a por¬ 

tion of the living force acquired is employed to destroy 
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in part the effect of the body’s weight, and the inertia 

will finally retain nothing of what it had absorbed. 

The same thing may be said of the operation of an the same is true 

artificer m filing, sawing, &c., since at the end of each .... , , , 

oscillation of the tool, the velocity becomes nothing 

through insensible variations. This could not be the case 

if the motion were suddenly to change, or if concussions 

should take place between bodies not perfectly elastic; a 

portion of the living force would, in that ease, be de¬ 

stroyed, or, which is the same thing, diverted from its 

intended purpose in producing a permanent change in 

the arrangement of the particles of the colliding bodies. 

§ 98.—Finally, in order to give a fuller idea of the part Examples of the 

performed by inertia in the various operations of the fa1.1 perforraed 
r J ■*- by inertia; 

mechanic arts, and to demonstrate how it may serve to 

explain an almost infinite variety of effects, we shall add 

a few special examples to those already mentioned. 

To take from a plane-stock its chisel, the carpenter the chisel of a 

strikes the plane a blow on the back; a velocity is thusplane’ 

suddenly impressed upon the stock which the chisel and 

its wedge only partake of in part, because of their inertia 

and imperfect connection with the body of the plane, and 

are, therefore, left behind. 

A hung is taken from a cask by striking, on either side the bung of a 

of it, the stave in which it is inserted; the resistance cask> 

which the inertia of the bung opposes to the sudden mo¬ 

tion communicated to the stave, causes the separation. 

We often see a handle adjusted to a tool, as an axe or handies of tools; 

hammer, by striking it on the end in the direction of its 

length; the inertia of the handle and that of the tool tend 

to resist the sudden motion impressed by the blow, but 

the former yielding more than the latter, by reason of the 

slight connection, the handle becomes inserted. 

As an illustration of the agency of inertia, in trans¬ 

forming quantity of action into living force, take the com- the common 

mon sling, from which a stone may be thrown with much 8lm*’ 
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the common 

whirling top, 

Inertia sometimes 

a passive 

resistance; 

sometimes a real 

motive force. 

Forces whose 

directions meet 

in a point; 
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greater velocity than from the naked hand. Here, living 

force is accumulated in the stone, by whirling it through 

many accelerated turns about the hand before it is dis¬ 

charged. The common top turns and runs along the 

ground, in virtue of the living force acquired during an 

accelerated unwinding of the string from the coils of o o 

which it is thrown. 

§ 99.—We would recommend to the reader, to con¬ 

sider attentively these examples, as well as all others of 

like nature which his observation and memory may 

furnish. They will aid his conceptions of the manner in 

which the inertia of bodies, like their weight and molecu¬ 

lar spring, sometimes acts as a mere passive resistance, 

and sometimes as a real motive force, according to the 

circumstances. 

It is, however, proper to remark, that the last example 

is mainly concerned with the inertia of a body having a 

motion of rotation, Avhile, thus far, we have only spoken 

of the living force of a body possessing a motion of transla¬ 

tion, in which all the particles have the same velocity; 

but we shall soon see, that the principles which connect 

the living force with the quantity of action, are universal 

and applicable to all kinds of motion. 

IV. 

OF FORCES, WHOSE DIRECTIONS MEET IN A 

POINT. 

§ 100.—Thus far we have only considered the effect of 

a single force, directly opposed to an equal force, viz.: 

to molecular spring or elasticity, to weight, or to inertia. It 

often happens that several forces are applied to a body, 

in different directions, to overcome certain resistances 
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through its intervention. When a body is thus subjected 

to the action of several forces, (powers, or resistances,) we forces in 

say these forces are in equilibrio, when one of them Xmi one 

destroys or prevents the effect which the others would prevents the 

produce, if the first did not exist. The body itself is in othell T ^ ^ 

equilibrio, if the different forces applied to it, leave it at 

rest. This last kind of equilibrium can never be abso- no absolute 

lute, because all bodies connected with the earth partake ®qinllbllumof 
7 bodies; 

of' its continual motion through space, and there is, in fact, 

no rest for them. A body may, however, have relative 

rest, as when it retains the same place in reference to 

surrounding objects, such as mountains, houses, &c., which 

we are in the habit of regarding as fixed. Thus, the idea statical and 

of equilibrium is not alone related to rest, and by no dynamical 
x 7 J equilibrium. 

means excludes motion. From this results the distinction 

of statical and dynamical equilibrium; the former relating 

to the repose of the body, and the latter to the mutual 

destruction of the forces which solicit it. Thus, a body 

may be in motion while the forces acting upon it are in 

equilibrio, or it may be at rest under the same circum¬ 

stances. 

§ 101.—It has already been stated, § 43, that when Resultant of 

several forces act along the same right line and in the severalforce3: 

same direction, their effect will be equivalent to that of 

a single force equal to their sum, and which will therefore 

be their resultant. If these forces act in opposite direc- when acting 

tions, and along the same straight line, their resultant will altmsthe bauu“ 
70 ° 7 line, in same or 

be equal to the excess of the sum of those which act in in different 

one direction, over the sum of those which act in the dliect,0I)s’ 

opposite direction, and it will act in the direction of the 

greater of these sums. This is the case in which several 

forces are exerted in the direction of the same cord. The 

tension of the cord will be the same throughout, and it is 

not possible to draw its two ends with different efforts. 
i 

The tension of a cord is the effort by which any tivo of tension of a cord; 

its consecutive portions are urged to separate from each other, 



104 NATURAL PHILOSOPHY. 

the effect of 

unequal force3 

acting upon a 

cord. 

and this being the same throughout, the excess of the 

sum of the forces which act in one direction over that of 

those which act in the opposite direction, will be wholly 

employed in overcoming the cord’s inertia and giving it 

motion. 

Parallelogram of 

paths; 

relative or 

component 

paths; 

resolution of any 

path into 

component 

paths; 

J\I 

§ 102.—When a body, or material point, moves from 

A to B, so as to describe the rectilineal path A B, each 

of the positions A and B may be projected upon the right 

lines 0 M and 

ON, situated 

in the same 

plane with the 

line A B, by 

drawing paral¬ 

lels to these 

lines consider¬ 

ed as axes, the 

place A giving 

the two co-or¬ 

dinates A A' and A A”, and the position • B the two 

co-ordinates BB' and BB". The positions A' and A", on 

the axes, are simultaneous with the position A; and 

those of B', B”, with the position B. The paths A'B' 

and A" B ', on the directions OM and ON, are, therefore, 

described by the projections in the same time as the path 

A B by the moving point. The first are called component 

or relative paths in such and such directions. Prolong the 

co-ordinates of the points A and B, till the parallelogram 

AEBF is formed, and this principle will appear, viz.: 

the rectilineal path described by a point, may always be re¬ 

solved into two relative or component paths, in any two 

directions, and these component paths mill be the sides of a 

parallelogram, constructed upon the path described by the 

point as a diagonal, and parallel to the assumed directions. 

Reciprocally, when we have the relative paths in any two 

directions, the true path, called the resultant, will be that 
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diagonal of the parallelogram constructed upon the rela- 

| tive paths which passes through their point of meeting. 

composition of 

the relative paths. 

§103.—It has been shown, that the velocity of a body Parallelogram of 

in motion, is represented by the length of path described vel0Clties; 

uniformly in any very small portion of time, assumed 

as the unit of time, and that it is only in the case of 

uniform motion, that the interval of time during which 

the velocity is estimated, may be taken as great as we 

please. The path A B, in the last figure, being described 

by the body in the same time that its relative paths true and relative 

A' B' and A" B" are described by its projections on'el0Clties; 

the directions 0 M and 0 Aj the first may be regarded as 

the point’s true velocity, and the two last as its relative 

velocities. Hence the true velocity of a body, is the diagonal true velocity 

of a paralleloc/ram constructed upon its two relative velocities, found fl°™ 
J -l j j. i relative velocities 

estimated in any given directions whatever. and the reverse. 

§ 104.—If the motion be curvilinear, the rectilineal di- Relative paths in 
i . th. t t xi j.1 curvilinear and 

agonal A B can no longer represent, m general, the path varied motion. 

described. Nor, if the motion be varied, can its length 

measure the velocity, when the time of description is con¬ 

siderable. In such cases, conceive a given interval of time 

divided into a great 

Fig. 33. 
number of small and 

equal portions, and 

determine the relative 

paths described during 

each, by the projec¬ 

tions of the moving 

point on the axes. 

Each pair of these 

relative paths will de¬ 

termine a parallelo¬ 

gram, of which the 

diagonal will be the corresponding elementary path de¬ 

scribed by the point itself. Any one of these diagonals, 

geometrical 

representation; 
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construction of 

the direction of 

, the body's 

motion. 

as A B, will sensibly coincide with an element of the 

curve, and its prolongation A T will be tangent to tbe 

curvilinear path. This tangent will determine the direc¬ 

tion of the body’s motion at the instant, and may be 

drawn by laying off from the projections A' and A" of 

the body’s place, the distances A' T' and A" T", equal 

respectively to double, triple, quadruple, or any number 

of times the body’s relative velocities at the time, and 

drawing T' ^and T" T\ respectively, parallel to the direc¬ 

tions 0 T" and 0 Tr 

Roberval’s 

method of 

constructing the 

tangent; 

results from the 

law which 

determines the 

path. 

§ 105.—When the law of a body’s motion in two direc¬ 

tions is known, it is always possible by the preceding 

method to draw a tangent to the path described. Take, 

for example, the ellipse : 

this curve is generated 

by fixing at two points 

F and F\ called the 

foci, the ends of a 

thread FA F', equal in 

length to a given line 

MM\ called the trans¬ 

verse axis, and moving 

the point of a pencil A 
to all positions in which 

it will keep the thread 

stretched. Since, in the motion of the describing point, 

the sum of the lengths FA and A F' is always the same, 

the portion FA will increase just as much as the portion 

A F' will diminish, and therefore the point A tends to 

describe equal relative paths, or will have equal relative 

velocities, in the two directions A B and A F'. Hence, 

taking upon FA produced, and upon A F\ the equal 

portions A B and A B\ and completing the parallelogram 

A B CBr, the diagonal A C.\ passing through the position 

of the point, will be a tangent line to the path described. 

This method, which is due to Eoberval, is very useful in 

. 
. 

m 

Pig. 34. 
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all cases where we know tlie law by which the curve is 

described. 

§ 106.—We have seen that any single motion may be 

resolved into two others, and the reverse. This arises 

from the simple fact, that a body may, in reality, be ani¬ 

mated by two or more simultaneous velocities. To ill us- illustration of the 

trate, let it be supposed that while a boat is crossing a coexi8tence of 

river, a man walks from one side of the boat to the other, velocities; 

and that, starting from 

the point A, for exam¬ 

ple, he arrives at B at Fig. 35. 

the moment the boat 

reaches a position such 

that the point A shall 

be at A', and the point 

B at B'. It is plain, 

. that the man, though 

only conscious of hav¬ 

ing walked across the 

boat from A to B, will, in fact, have been carried from 

A to B' in reference to the surface of the river. lie 

will have moved, at the same time, with the velocity 

which he impressed upon himself, and that impressed 

upon him by the boat. This being understood, it is 

easy to see that the result would be the same, if the boat example of fom 

first move from A to A', and afterward the man walk simultaneous 

across it from A' to B'; or if the boat were stationary, 

while the man is crossing it from A to B, and then 

were to move from B to B'. But this is not all; the 

earth turns about its axis, while the boat floats along 

the surface of the water, and the man walks across the 

deck of the boat; add now the motion of the earth about 

the sun through space, and we shall find the man ani¬ 

mated by four simultaneous velocities, of which it is easy 

to see that we shall find the resultant, in compounding, 

by the rule given in § 103, first, any two, then the resul- 
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resultant of 

several 

simultaneous 

velocities; 

mle 

illustration. 

Independence of 

the action of 

simultaneous 

forces; 
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tant of these two with the third, and the resultant of the 

three with the fourth. In fact, when a body has several 

simultaneous motions, the effect is 

the same as if the body had re¬ 

ceived, one after the other, all the 

motions which it possesses at the 

same time. Hence, this rule, 

viz.: The resultant of several simul¬ 

taneous velocities is found by con¬ 

structing a polygon, of which the 

sides are equal and parallel to the 

component velocities, and by join¬ 

ing, with a right line, the point of 

departure with the extremity of the 

last side. This right line will represent the resultant required. 

Thus, let the point 0 have the simultaneous velocities 

0 V, 0 F, 0 V", 0 V'"; from the extremity F of 0 V, 

draw Vm parallel, and equal to 0 V'; from m draw rn m' 

parallel, and equal to 0 V"; from m’ draw m'm" parallel, 

and equal to 0 V'", and join 0 with m"; the line 0 m" will 

be the resultant velocity. 

Fig. 36. 
o 

§ 107.—The action of a force upon a body, whether at 

rest or in motion, is always the same, and impresses upon 

it the same degree of velocity. Let a body fall, for exam¬ 

ple, under the action of its own weight, gravity will 

impress upon it the same velocity in a given portion of 

time, whether it set out from 

ward by the action of 

some other force. For 

example, when a bomb¬ 

shell is thrown into the 

air, it describes a curve 

under the joint action of 

the living force with which 

it leaves the mortar, and 

the incessant action of its 

rest or is projected down- 

Fig. 37. • 
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weight; and its velocity at any instant is the resultant 

MJR, of the velocity M Q, which it had at the begin¬ 

ning of the very short interval of time next preceding 

this instant, and the velocity MP impressed upon it by 

its own weight during the same interval of time. Thus, 

when two forces are applied to the same body, they im- two forces 

press upon it, at each instant, and simultaneouslv, the impres3 1X7 7 1/7 simultaneously, 

same degree of velocity which each would impress if the same velocity 

acting alone. This degree of velocity, we have said, § 81, ^p^eiy8 

is, from the general law of nature, proportional to the 

intensities of the forces. 

§ 108.—Accordingly, let a material point A be acted Parallelogram 

• • • of forces * 
upon by the two forces P and Q, represented in intensity and 

direction by the lines AB and A C respectively. These 

forces will impress simultaneously, and in their respective 

directions, the same degrees of velocity A m and A n, as 

though each acted separately. 

The resultant velocity will, 

§ 107, be represented by the 

diagonal A r of the parallelo¬ 

gram A rn r n. Conceive a 

force A, to act upon the point 

along this diagonal, but in the 

opposite direction, or from r 

to A, and with such intensity 

as to destroy this velocity; 

no motion can take place, so 

that the force A, destroying 

the effect of the forces P 

and Q, will maintain these 

forces in equilibrio. Take, up¬ 

on the diagonal, the distance 

A D — A, and conceive it to 

upon the point A, from A towards D; it will produce 

the same effect as the forces P and Q, and will, therefore, 

be their resultant. Now, the forces P and Q, and their 

Fig. 38. 

represent a force that acts 
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the resultant of 

any two oblique 

forces applied to 

a point; 

represented 

by the diagonal of 

a parallelogram; 

forces combined 

by the same rules 

as velocities; 

experimental 

illustration of the 

parallelogram 

of forces. 

resultant A D, equal in intensity to X, are proportional 

to the velocities A m, A n, and A r, which they can 

simultaneously produce; that is, 

A G : A D : : A n : A r, 

therefore D C is parallel to rn; and A D must be the diag¬ 

onal of the parallelogram constructed upon the lines A B 

and A C as sides. Whence, the resultant of any two forces 

applied to the same point, is represented, in magnitude and direc¬ 

tion, by the diagonal of a parallelogram, constructed upon the 

luxes which represent, in intensity and direction, the two forces. 

It must not be forgotten that a force is. in geometrical in¬ 

vestigations of mechanics, alwaj^s represented by a portion 

of its line of direction, containing as many linear units as 

there are pounds in the intensity of the force. It is plain, 

therefore, that forces may be combined by the same rules 

as velocities; and this is confirmed by experiment. If, for 

example, we attach to a cord A CB, fixed at its two ends, 

a weight li = fifteen pounds, it is easy, by a balance¬ 

spring, to measure the 

efforts exerted in the 

directions C A and 

C B. Laying off up¬ 

on the vertical through 

C, and from the point 

G\ a distance C D 

equal to 15 inches, 

and completing the 

parallelogram by draw¬ 

ing D a and D b paral¬ 

lel respectively to CB 

and CA, we shall find 

the number of inches 

in C a and Cb to be 

the same as the number of pounds indicated by the bal¬ 

ances A and B. 

Fig. 39. 

n 

109.—By the same principle that two forces, applied 
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Fig. 40. 

r 

to the same point, may, without change of effect, be re- Resolution of a 

tit • -i -1P1 ill, force into two 
placed by a single one, may a single force be replaced by 

two others, acting in given directions. Let a given force, 

applied to the point 0, be 

represented in direction and in¬ 

tensity by the line 0 r: its com¬ 

ponents, in any two assumed 

directions, as 0 A and 0 B, are 

thus found. Through the point 

r, the extremity of 0 r, draw 

r m and r n parallel, respec¬ 

tively, to OB and 0 A; the 

portions Om and On will repre¬ 

sent the components required. 

Make 0m = P; On - 

A OB = 9 = rnB= 180° - rn 0. Then, in the tri relationof 

Qj Ot — By the angle trigonometrical 

- rn 0. Then, in tl 

angle 0r n, because Om = rn = P, we shall have 

P2 + Q2 + 2 P Q cos 9, 

resultant to its 

two components, 

E2 

or 

B — y/P* T Q2 -p 2 P Q COS 9 . (31) value of resultant ; 

and because the angle 0 rn is equal to the angle r 0 m, 

and sin rn 0 — sin A OB, we also have, from the same 

triangle, 

ic : Q : : sin 9 : sin r 0 rn, 

B : P : : sin 9 : sin r On; 

whence, 

sin r Om 

sin r On = 

Q sin 9 

~~B~ 

P sin 9 

B 

> 
tnn\ its inclination to 

. . its components. 

§ 110.—We have heretofore supposed the resistance 
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\ 

Quantity of work 

when the 

resistance is not 

immediately 

opposed to the 

force; 

immediately opposed to the force destined to overcome 

it. Let ns now consider the case in which the resistance 

is exerted in any line of direction other than that of the 

force, and in which the point of application of the force 

can only move along the line of direction of the resistance. 

Let, for example, 

A R represent a force 

applied to the point A, 

which can only move 

in the direction A B. 

Decompose this force, 

which denote by R, 

into two components 

P and Q — the first per¬ 

pendicular to A B, and 

the other in the direc- d 

tion of that line, and, 

consequently, immedi¬ 

ately opposed to the resistance that may be overcome. 

Since the point A cannot yield in a direction perpendicular 

to A B, the component P can only tend to press it, without 

producing any work. The component §, is immediately 

opposed to the resistance, and, A A a be the small path 

described by the point of application A, the product 

§ X ifl, will measure the elementary quantity of work 

necessary to overcome the elementary quantity of resist¬ 

ance over the same path; such will be the measure of 

the effective quantity of work of the force R. 

Draw from the point a, a r perpendicular to A R; 

A r will obviously be the length of path described by 

A in the direction of the force i?, and we shall have, 

from the triangles Aar and A Q R, which are similar, 

having a ccaumon angle A, and each a right angle, 

equal to the A a : Ar : : R : Q; 
product of the 

force into the whence, 

path, estimated in . . 7^ . , . 

direction of force. yltlX Q A ? X R . . • (33), 
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which shows that the quantity of work of a force, not 

immediately opposed to a resistance, is equal to the product 

of the force into the length of path described by its point of 

application, estimated in the direction of the force. 

§ 111.—When a heavy body Quantity of work 

is compelled to move upon the of the weight of * 
x 1 body, moving on 

curve ABC, the elementary Fig. 42. a curve; 

quantity of work expended by 

its weight TFj in causing it to 

describe the elementary path 

; B C\ is, from what has just 

been shown, equal to the prod¬ 

uct W X V c', estimated upon 

the vertical line AD'. It is 

also the measure of the quan¬ 

tity of work expended in the 

direction of the curve. Add¬ 

ing together all the elementary 

quantities of work by which 

the body is made to describe 

the whole curve, it is plain that the sum, or the whole 

quantity of work expended by the weight, must be equal 

to the weight multiplied into the sum of the elementary 

paths V c', which make up the whole height A D' = II; 

or to W X H. This is also the measure of the quan¬ 

tity of work performed by the component of the weight, 

which acts in the direction of the motion, along the the same as that 

curve. But, from § 87, the double of this last quantity °fthl wetehun”1 

is equal to the living force of the body; that is to say, direction of 

to the product cunt' 

K x V; 
g 

in which V denotes the velocity of the body in the direc¬ 

tion of the curve, at the instant the work terminates; 

whence 
8 
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The velocity 

depends upon 

the height, and 

not on the path 

described. 

Elementary 

quantity of work 

of two forces 

applied to a 

point; 

when the 

projections of 

components fall 

on opposite sides 

of point of 

application; 

2 WII r= IT. F2, 
g 

or 
V2 = 2 g II; 

that is to say, the velocity acquired by a body in moving 

down a curve, under the action of its own weight, is the 

same as though the body had fallen vertically through 

the same height. And we see, from this investigation, 

that the quantity of work which a motor must expend, 

in elevating a weight along any inclined surface, is 

always measured by the product of the weight of the 

body, into the vertical height to which it is raised. 

§ 112.—It has just been shown, § 110, that the ele¬ 

mentary quantity of work of a force, of which the point 

of application is moved in a direction different from that 

of the force, is measured either by the product of this 

force into the length of the path described, estimated in 

the direction of the force, or by the product of the real 

path into that one of the two rectangular components 

of the force, which acts in the direction of the motion; 

and it must here be re¬ 

marked, that this component 

is nothing more nor less 

than the projection of the 

force on the direction of 

the motion. Accordingly, 

let us consider two forces, 

P and Q, applied to the 

point A, R their resultant, 

and a A the small path de¬ 

scribed by the point of ap¬ 

plication. Let fall from the 

points Q, P, and P, the perpendiculars Q Q\ R Rr, and 

P P', upon A a produced; the projection of the force 

P will be A P\ that of A Q': and that of the resul¬ 

tant P, A R' 

Fig. 43. 

R 
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Now, 

AR' = A P' — R' P', 

but A Q and R P, being equal and parallel, their projec¬ 

tions A Q' and R’ P' upon the same line, are equal, and 

hence 

AR' = APf — A Q/ 

and multiplying both members by the path A a, we have 

A R' X A a = A Pf x A a — A Q' X A a; 

the first member is the elementary quantity of work of 

the resultant R, the first term of the second member 

is the elementary quantity of work of the component P, 

and the last term, the elementary quantity of work of 

the component Q. And it must be remarked that the 

component A P' acts in the direction of the motion, while 

the component A Q' acts in the opposite direction; so 

that the effective quantity of work of these components, 

which is the same as that of the components P and Q, 

§ 110, is equal to the difference of the quantities of work 

taken separately. 

Had the motion taken 

place so as to cause the 

projections of the points 

Q and P to fall on the 

same side of the point A, 
a little consideration will 

show that the last equa¬ 

tion would become 

Fig. 44. 

AR' x Aa — A P‘ X A a + A Q' X A a, 

and that the effective quantity of action of the compo¬ 
nents A P' and A Q\ would be the sum of the quantities 

work of resultant 

equal to 

difference of 

work of 

components; 

when the 

projections fall 

on same side; 

the work of 

resultant equal t« 

sum of that of 

components. 
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The work of 

resultant equal to 

the algebraic 

sum of the work 

of its 

components. 

Motion about a 

fixed point. 

taken separately, and the equation may be written, gen¬ 

erally, 

A R' X A a = A P' x A a ± A Q' X A a . . (34). 

Hence, the elementary quantity of ivorh of the resultant 

of two forces, applied to a point, is equal to the algebraic 

sum of the quantities of ivorh of the two components. 

When the projection of a force falls on the same side 

of the point of application as the path described, and we 

give -the corresponding elementary quantity of work the 

positive sign, then when it falls on the opposite side, the 

work must have the negative sign. 

§ 113.—The small space A a, may be described in 

different ways. If we suppose, for example, that the 

point of application A is on an axle A 0, which turns 

horizontally about some point 0, taken arbitrarily in the 

plane of its motion, as in the case of a bark or mortar 

mill, the path A a becomes the 

small arc of a circle, which we 

may regard as a small right line 

perpendicular to A 0. From 

the point a, let fall the perpen¬ 

diculars a b, ad, and a c, upon 

the directions of the forces 

P, Q, and their resultant R; 

then will the elementary quan¬ 

tities of work due to these 

forces be respectively P x A b, 

Q X Ad, and R X A c ; and from § 112. 

R X Ac = P x Ab ^ Q x Ad. 

From the point 0, about which the motion takes 

place, let fall the perpendiculars Op, 0 q, and Or, upon 

the directions of the forces P, Q, and R, respectively; 

the triangles AO p and A a b are similar, since each has 

a right angle, and the angle A O p, of the first, is equal 

Fig. 45. 
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to the angle a Ah of the second, the sides A 0 and Op 

being, respectively, perpendicular to the sides A a and 

A h ; hence, 

whence, 

A h : A a : : Op : AO; 

A 7 ^ A a 
Ab = Op X j-gl 

and, in like manner, from the similar triangles Ada and 

0 A q, we have 

Ad = Oq . 

r ? .4 

and from the similar triangles A c a and A 0 r, 

Ac = 0rx_. 

these values, substituted in the above equation, give, 

after omitting the common factors, and making Or = r, 

0 q = q, and Op = p, 

Rr = P x p ± Q X q . . . (35). 

The effective quantity of work which a force is capable Moment of a 

of performing, while its point of application is constrained foice’ 

to describe an elementary path A a, about a fixed centre 

0, is called the moment of the force; the fixed point 0 

is called the centre of moments; and the perpendiculars the centre of 

p. q. and r. the lever arms of the forces P, Q, and R, j11011161113; a i i 7 x-7 7 lever arms; 
respectively. 

The elementary quantities of work performed by the 

forces P, $, and P, during the description of the path 

A a, are measured by the products P p, Q q, and R r, 

A a 
multiplied each by the constant ratio ^; and if this 
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the relative 

measure of a 

moment; 

the moment of 

the resultant of 

two forces. 

When the forces 

are not applied to 

tire same point; 

the moment of 

the resultant is 

still equal to the 

algebraic sum of 

the moments of 

the components. 

constant ratio be omitted, these products may be taken 

as the relative measures of the elementary quantities of 

work. Hence, the relative measure of a moment, is the 

product of the intensity of the force into its lever arm ; and 

from Eq. (35) we see that the moment of the resultant 

of two forces, applied to a point, is equal to the algebraic sum 

of the moments of the components. 

§ 114.—In what precedes, the two forces, P and Q, 

have been supposed to be applied to the same point; if they 

be applied to different points 

C and i?, it is evident that we 

may suppose two rigid bars, 

C A and B A, to be firmly 

attached to the body, and to 

coincide in direction with the 

given forces. These bars, if 

the forces act in the same 

plane, will meet at the point 

A, and the latter thus becom¬ 

ing invariably connected with 

the body, may be taken as the 

common point of application, without changing the effect 

of the forces. The resultant A R will be obtained by 

means of the diagonal of the parallelogram A P R Q, and 

the point D, where it meets the surface, may be taken 

as its point of application. If, now, the body be con¬ 

strained to move around any point, as 0, the common 

point of application A, will describe the small arc of a 

circle, which may be regarded as a small right line, to 

be projected on the directions of the forces, as in the last 

article; and the same reasoning will show us, that in this 

case also, the moment of the resultant is equal to the 

algebraic sum of the moments of the components. 

§ 115.—The relations which have just been established 

between the quantities of work, and between the mo- 
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ments of forces and of their resultant, will always obtain These relations 

wherever the point 0 be taken, since its selection was * herovor the 

entirely arbitrary; but these relations were obtained by centre of 

considering the motion of the point, common to the be 

directions of the forces, this point being assumed as their 

common point of application. To show that they are 

equally true in regard to the motion of the true points of 

application P, G[ and D, see the last figure, we have only 

to remark that the measure of the moment depends alone 

upon the intensity of the force, and the length of the 

perpendicular drawn from the centre of moments to its 

*line of direction, and is wholly independent of the posi¬ 

tion of the point of application. The moment of the or wherever the 

force P, for example, will be the same whether it be sup- p01“ts °.f 

posed applied at A, or at the point P, where its direction 

meets the surface of the body. The theorem of moments 

will be true, therefore, when the forces P and Q are not 

applied to the same point. 

§ 116.—If it be shown that the quantity of work of Extension of the 

a force is the same, whatever point be taken on its line theoi®“ °^the 

of direction as the point of application, it is obvious 

that the theorem of the quantity of work, estimated 

by the motion of the common point of union of two 

forces and their resultant, will be equally true of all 

cases in which the quantities of work of these forces are 

computed in reference to the motion of their respective 

points of application. Three cases may arise, according work estimated 

as the bodv has a motion of rotation, of translation, or 

of both combined. 

First case. The 

body and the di¬ 

rection A P, of 

the force P, being 

supposed to have 

a motion of rota¬ 

tion about the point (9, any two points, as A and B of the 

by any point of 

application on 

line of direction; 

Fig. 47. 

First—in moticn 

of rotation; 
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} 

line A P) will de¬ 

scribe arcs which 

are proportional to 

their distance, 0 A 

and 0 P, from 0; 

and we shall have 

Fig. 47. 

A a _ Bb 

A~0 ~ ~OB] 

but the quantity of work of the force P, estimated by the 

motion of its point of application supposed at A, will 

have, § 113, for its measure, 

7> ~ A a 
Px Op x -Qj-; 

or estimated by the motion of its point of application, 

supposed at P, will be measured by 

P X Op X 
Bb 

OB' 

Second—in 

motion of 

translation: 

Hence, the quantities of work are equal, being measured 

by the product of the intensity P, the length of the per¬ 

pendicular Op, and the equal factors ^ a Bb 
0 A' 

and 
OB' 

Fig. 48. 

■X 
4 a' a ^ 

/- 

Second case. If the 

body only have a 

motion of translation, 

any two points of ap¬ 

plication, as A and 

P, will describe the 

equal and parallel 

paths A a and B b, which will be projected upon the 

direction A P, in the equal paths A a' and Bb'; and the 

quantities of work in the two cases being P X Aa' and 

P X Bb\ are equal to each other. 

Third case. Suppose the line of direction iP of the 
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force P, to take tlie position Ax Bh in virtue of tlie com¬ 

bined motion of rotation and translation, and tlie points 

A and B to be transferred to the positions a and b. This 

motion of the points A and B may be regarded as resolved 

into a motion of rotation around the point 0, the centre 

of a circle, tangent 

to the two positions 

of the line of direc¬ 

tion, supposed in¬ 

definitely near each 

other, and of trans¬ 

lation along the sec¬ 

ond position of this 

line. By the first, 

the points A and B 

are carried in the 

arcs of circles to A1 

and Bh and by the 

! second, from these latter positions to a and b, thus making 

|: A a and Bb the actual paths described. Projecting these 

latter paths on the primitive direction of the force by the 

perpendiculars a a' and b bwe shall have for the quan¬ 

tities of work, considered in reference to the motion of the 

points A and P, P X A a' and P X B b\ respectively. 

But by projecting the points Ax and Bx on the primitive 

direction, by the perpendiculars Ax Ax' and Px P/, we have 
«‘ . 4 > • . 4 i i *./ ' 4 * 

: AaJ — A{ a' — AX'A, 

: Bb' = B'V - P/P; 

multiplying each equation by P, 

P X A a! — P X A{ a’ — Pxi/i, 

P X Bb' = P X B{V - P X P/ P. 

Now P X A{ a', and P X P/ b', are the quantities of 

work, on the supposition of a simple motion of translation 

Fig. 49. 

Third—when the 

motion is of 

translation and of 

rotation 

combined; 
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alone, in tlie direc¬ 

tion Ax B{, and these 

have been shown, 

in the second case, to 

be equal; whence, 

a1 = Bi#. 

no matter where 

the points of 

application be 

taken on the 

lines of direction; 

The products 

P X A{ A, 

and 

Px Bt!B, 

measure the quantities of work due to the motion of A 

and J5, on the supposition of a simple motion of rotation 

about 0, which have been shown to be equal, in the first 

case; whence, 

At! A = Pi'B; 

and consequently, 

P x A a' = P X BV 

the work of the Thus, the relation given in §112, between the quantity 

resultant, is equal 0f worp 0f the resultant of two forces, and the total quan¬ 
to the algebraic 

sum of the tities of work of the components, subsists in all cases, 

quantities of whatever be the points of application, and whatever be 

components. the nature of the motion. 

§ 117.—Resuming Eq. (35), 

Rr = Pp ± Qq} 

when the in which r, an(i <Z> denote the lengths of the lever arm 
resultant is zero, t of the resultant R and of the two components P and Q. 
or when its line -*• 

of direction we see that the moment R r, of the resultant, can only 

tnedpoint),USh a rec^uce to zero wlien die moments of the components P 
and Q are equal and have contrary signs. But the prod- 
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uct R r) becomes nothing, either when R — 0, or r — 0, 

In the first case, the resultant is nothing, and there will 

be an equilibrium independently of all other considera¬ 

tions. In the second case, the perpendicular r, which 

measures the distance of the line of direction of the 

resultant from the centre of moments, being nothing, 

indicates that the resultant passes through the fixed point. 

Again, the equality of the moments of the components^ 

necessarily implies an equality in the quantity of work 

performed by each, and these quantities, having different 

signs, destroy each other; hence, there will be an equi¬ 

librium about a fixed point, when the resultant of the forces 

which act upon the body, passes through this fixed point. 

Y. 

OF FORCES WHOSE DIRECTIONS ARE PARALLEL. 

Fig. 50. 

§ 118.—It has been shown of two forces whose direc¬ 

tions intersect: 1st, that the line 

of direction of the resultant, will 

intersect those of the compo¬ 

nents in the same point; 2d, 

that the-moment of the resul¬ 

tant is equal to the sum or dif¬ 

ference of the moments of the 

components, according as the. 

components tend to turn the 

body upon which they act, in 

the same or in opposite directions 

about the centre of moments. 

Now, these properties, being 

entirely independent of the po¬ 

sition of . the point of meeting 

0, and of its distance from the 

body or centre of moments, will not cease to be true when 

there will be an 

equilibrium. 

Theorem of the 

quantity of work, 

and of the 

moments equally 

true, when the 

forces are 

parallel. 
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the point 0 is so far removed as to make the directions 

of the forces sensibly parallel: whence we must conclude, 

that the line of direction of the resultant of two parallel 

forces is in the plane of the forces, is parallel to the direc¬ 

tion of the forces, and that the moment of the resultant, 

taken in reference to any point in the plane of the forces, 

is equal to the sum or difference of the moments of the 

components, according as they tend to turn the system in 

the same or opposite directions about the centre of mo¬ 

ments. 

Resuming Eq. (31), and re¬ 

volving the directions of the 

forces P and Q about their 

points of application A and B 

till they become parallel, and 

the forces act in the same direc¬ 

tion, the angle 9 will become 

zero, and we shall have 

Fig. 51. 

Value of 

resultant when 

the components 

act in same 

direction; 

R = VP* + Q> + 2PQ = P+Q' 

Again, revolving the directions 

as before, till they become par¬ 

allel and the forces act in op¬ 

posite directions, the angle 9 

will equal 180°, and Eq. (31) 

reduces to 

Fig. 52. 
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R = VP2 + (f -2 PQ = P - Q; value of resultant 

when components 

act in opposite 

whence we conclude, that the intensity of the resultant of direct,ons 

two parallel components, is equal to the sum or difference of rule; 

the intensities of the components according as these latter act 

in the same or in opposite directions. 

Now, resuming Eqs. (32), and changing the notation to 

suit the first figure in § 118, we have 
t i ' V cr , ; ' ■ 

sin R 0 A 
i T 

Q sin 9 

R 

sin POP 
P sin 9 

~R ; 4 

)■ 

in which, if we make 9 = 0, or 180°, we obtain 

* ^ v C, ... ^ * mS C \ 
j ' ' /\ ' ry a \ ■* i 

sin R 0 A = 0, 

sin ROB = 0; 

that is to say, the angle which the direction of the result- the direction of 

ant of two parallel forces makes with the directions of the ^paraneT °f 

components, is nothing; in other words, the direction of the components, is 

resultant of the parallel forces is parallel to that of the com- fhe components? 

ponents, which is a confirmation of what we said above. 

§ 119.—Passing thus to the 

limits of the case in which the 

directions of two forces P and 

Q, applied at the points A and 

B of any body, meet in a 

point; assume any point as K, 

in the plane of the forces, and 

let fall the perpendiculars Ida, 

Kb. Denote by R) the in¬ 

tensity of the resultant, sup¬ 

posed to act along the line R c 

Fig. 63. 

The theorem of 

moments true of 

parallel forces. 

? I • : 5- 



126 NATURAL PHILOSOPHY. 

Relation of 

resultant to its 

two parallel 

components; 

the distance of 

either component 

from resultant, 

proportional to 

the other 

component. 

then, from the principle of moments, will 

R x Kc = P X Ka ± Q x K b ; 

the npper or lower sign 

being taken, according as 

the forces tend to turn the 

body in the same or op¬ 

posite directions about the 

point K. 

Replacing R by its 

value P Q, the above 

becomes 

(P± Q) Kc = P X Ka ± Q x Kb; 

which, by an obvious reduction, becomes 

P (Kc - Ka) = Q(±Kb^z Kc); 

Dut 

Kc — Ka = ca; ± Kb rp Kc = ± be; 

whence 

P X ac = ± Q X be, 

or 
i 

* 

P : Q :: be : ac; 

that is to say, the line of direction of the resultant, divides 

the perpendicular distance between the lines of direction 

of the components, into parts which are reciprocally pro¬ 

portional to the forces. 
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§ 120.—Let the parallel 

forces P and Q, be applied 

to the points A and B. Join 

A and B by a straight line, 

and draw Ba' parallel to ba, 

then will 

FR a. 54. 

Be’ = be; c'af = ca; 

and because Cc' is parallel to A a\ the triangles Be' 0 and 

Ba' A, give the proportion, 

Bcr : c' a' BG : CA, 

whence 

P : Q i: BO : AC; 

that is to say, the line of di¬ 

rection of the resultant of any 

two parallel components, di¬ 

vides the line joining their 

points of application into 

parts 'which are reciprocally 

proportional to the intensities 

of the components. 

The above proportion 

gives by composition, 

Fig. 55. 

Rule for position 

of resultant; 

P± Q : P : : BC±A C : BG, 

P± Q : Q : : B O ± A C : AC; 
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or, replacing P ± Q by P, and B G ± A C by the whole 

line jBA, 
a i i. • v 

R : P :: AB : BC, 

R : Q : : A B : A C; 

relation of that is to say, the resultant of two parallel components is to 

component.either e'^ier component, as the length of the straight line joining the 

points of application of the components, is to the portion of this 

line between the point in which it is cut by the direction of the 

resultant, and the point of application of the other compo¬ 

nent. 

Fig. 56. 

Moments of § 121.—When two forces are parallel, their moments 

reference to an may not onv be taken in reference to a point, but also m 

axi8; reference to a right line, supposed fixed. Thus, suppose 

the forces P, Q, and 

their resultant P, to 

act along the parallel 

lines A P, B Q, and 

C P, respectively. 

Assume any line, as 

M P, at pleasure ; 

conceive a plane 

drawn through this 

line and perpendicu¬ 

lar to the plane of 

the forces, and let 

KL' be the intersec- 
• 

tion of these planes. From the point K, draw KL” per¬ 

pendicular to the direction of the forces 5 then, regarding 

moments referred K as the centre of moments, will 
to a centre; 

Rx KC = P x KA' + Q x KB'- 

whence 
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S-.PX KA' 1 0 KB' 
X KG' + V x KC'' 

But from the similar triangles, KA' A, KB' P, and 

KG' G, we have 

KA' _ KA 
KG' “ KG1 

KB' KB . 

KG' ~ KG' 

which, substituted in the above equation, gives, on clear¬ 

ing fractions, 

R x KG = P x KA + Q x KB . . . (36). 
i ! 

Dividing both members by R X K G, 

I p „ KA Q w 
1 ~ Ji X KG + Ji X KG' 

v From the points A, P, and G, draw the lines A a, P£, 

and 67 c, perpendicular to the line j5TL. Also, resolve forces replaced 

each of the forces P, Q, and P, supposed applied at A, P, components 

(7, respectively, into two components, one parallel, and the 

other perpendicular, to the line KL; and let A P", B Q", 
and GR" be the former, and A P', BQ\ and GR\ the 

latter of these components. 

In the similar triangles PAP', RGR\ and QB Q', 
we have, denoting the components iP', GR\ and B Q\ 
by P', R\ and Q\ respectively, 

p P' 
R ~ Rn 

Q Q'. 
R ~ R'1 ,.;roo * 

9 
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and from the similar triangles K A a, KCc, and KBb, 

KA A a 

K 0 “ c ’ 

KB _ Bb 

KC ~ Cc] 

which, values, substituted in the foregoing equation, give, 

after clearing the fractions, 

moments of 

components 

perpendicular to 

the axis; 

moments of the 

parallel 

components; 

moment of a 

force in reference 

to a fixed axis, 

defined; 

R' X Cc = P' x Aa + Q' x Bb . . (37). 

Fig. 56. 

The effective quan¬ 

tity of work per¬ 

formed by each of 

the forces P, Q, and 

P, may be replaced 

by the algebraic sum 

of the quantities of 

work performed by 

its components; but 

the effective quanti¬ 

ties of work of the 

components which are parallel to the line iTP, will be zero, 

since the points of application are constrained to move in 

planes at right angles to this fixed line, and hence the terms 

in Eq. (37) will, for reasons explained in § 113, be the 

measures of the relative quantities of work of the forces P, 

(), and P, being the products of the remaining components 

into the perpendicular distances of their respective lines 

of direction from points on the line KL. 

The moment of a force in reference to a line, is the effec¬ 

tive quantity of work which the force is capable of per¬ 

forming while its point of application is constrained to 

describe an elementary path about this line, considered as 

fixed ; and its relative measure is, the product of the com¬ 

ponent at right angles to the line, (the other being parallel 
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to it,) into the shortest distance from the fixed line to that 

of the direction of the force. 

The fixed line is called the axis of moments. the axis of 

moments. 

§ 122.—Dividing Eq. (36) by K C,J we find 

K A 

K 0 + Q 
KB 

* KGn 

and substituting the values of 

KA _ KB 

KO and K O' 

as given on the opposite page, we find, after clearing 

the fraction, 

R X Cc = PxAaJr Q x Bb; 

from which we see, that the product of the resultant of two Relation of the 

parallel forces into the perpendicular distance of its pointforcea t0 the 
A x x x distances of their 
of application from any given straight line, is equal to the points of 

sum of the products of the forces into the perpendicular aPPllcatlon f™ra 

distances of their respective points of application from the 

same line. It is easy to see that the same is equally true 

of any plane, since we have but to project the line joining 

the points of application of the forces upon the assumed 

plane, and take this projection as the axis of moments. 

§ 123.—ISTow let us suppose any number of parallel 

forces—for instance, five. Find the resultant of any two Resultant of any 

of them; compound this resultant with the third force, numlJei °f 

and the resultant of the first three with the fourth, and 
t • j 

so on. The final resultant thus obtained, will be equal 

in intensity to the sum of the intensities of the forces 

which act in one direction, diminished by the sum of 

the intensities of those which act in the opposite direction. 

Its action will be in the direction of the greater sum. 

And the moment of the resultant will be equal to the rule for ending; 

algebraic sum of the moments of the components. 

Men pulling upon parallel ropes, horses drawing upon 
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examples of 

parallel forces. 

The work 

performed by ti e 
resultant of 

parallel forces; 

equal tc ;he 

algebraic sum of 

the work of the 

components. 

their traces attached to whipple-trees, are examples of 

parallel forces. • 

§ 124.—Suppose a body to be drawn in one direction 
\ 

by any number of parallel forces P, Q, P, &c., and in the 

opposite direction, by the parallel forces P\ P', &c. 

If the points of the body move in 

parallel lines, it is plain that the 

paths described by the points of 

application will be equal to each 

other, and thus the quantity of 

work of any force, will be g:ven 

by the product of its intensity 

into the small path common to all 

the forces. The total work will 

be equal to the sum of the quan¬ 

tities of work performed by the 

forces P, Q, R, &c., diminished 

by the sum performed by the 

forces P, Q', P', &c.; that is to say, it will be equivalent 

to the product of the common path, multiplied into the 

algebraic sum of all the forces, or into the resultant. But 

this latter product is the quantity of work performed by 

the resultant. Hence, the quantity of work performed by 

the resultant of any number of parallel forces, is equal to 

the algebraic sum of the quantities of work performed by 

the components. 

§ 125.—-We have seen, § 122, that the product of the 

intensity of the resultant of several parallel forces into the 

perpendicular distance of its point of application from any 

plane, is equal to the sum of the products arising from 

multiplying the intensity of each force into the perpen¬ 

dicular distance of its point of application from the same 

plane. Denote this latter sum by K, the intensity of the 

resultant by P, and the perpendicular distance of its point 

of application from a given plane by r, then will 

Fig. 57. 
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Position of the 

resultant of 

parallel forces. 

and if the given plane be parallel to the direction of the 

forces, r will be tlie distance between it and a second plane 

containing the line of direction of the resultant. If we 

know the value of If, in reference to another plane, also 

parallel to the direction of the forces, the corresponding 

value of r, will give the position of a second plane, whose 

intersection with the first will give the line of direction of 

the resultant. Thus, the principle explained in § 122, 

may be employed to determine the line along which the 

resultant of several parallel forces acts. 

whence 

Rr = K, 

r — 
K 
R 5 

Fig. 58. 

J3 

§ 126.—To illustrate the principle of parallel forces, illustration of the 

let us take the example of the common steelyard, an p^n^forLs by 

instrument employed to ascertain the weight of different the steelyard, 

substances. It con¬ 

sists of a bar MN] 
which turns freely 

about an axis G sus¬ 

pended from a fixed 

point; the substance 

Q to be weighed, is 

placed at one end 

A, while a constant 

weight P is placed at a suitable point B, towards the other 

end. In order that there may be an equilibrium, it is 

necessary that the resultant of the forces P and Q shall 

pass through the fixed point C; in other words, 

JL1 

from which 

Q X A C = P X CB, 

BO = X AC; 
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The scale of the 

steelyard 

constructed.. 

Point of 

application of 

resultant of 
parallel forces; 
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or, if P be taken equal to one pound, then will 

PC— Q x AC. 

If Q be taken sue* 58- 

cessively equal to 1, 

2, 3, 4, &c. pounds, 

then will the corre¬ 

sponding values of 

B C: become A Cy 

2 AC, 3 AC, 4 AC, 

&c. Thus, if a scale of equal parts be constructed on the 

longer arm, having its zero at the point C) and the con¬ 

stant distance between the consecutive divisions equal to 

A C; the number of the division estimated from 0,\ on 

which the weight P is placed to hold Q in equilibrio, will 

„ indicate the weight of the latter. 

The construction of the steelyard depends, as we see, 

upon very simple principles; it gives rise, however, to 

considerations, which will be referred to when we come to 

treat of the lever. 

VI. 

CENTRE OF GRAVITY OF BODIES. 

§ 127.-—The intensity P, 

the resultant of two par¬ 

allel forces P and Q, do 

not depend upon the in¬ 

clination of these forces 

to the line A B, which 

connects their points 

of application, but will 

continue the same, 

however the direction 

of the forces may re¬ 

volve about these points 

and point of application C, of 

Fig. 59. 

v 
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of application, provided tlie forces continue parallel tc eacli 

other, and preserve unchanged the ratio of their intensities; 

for the intensity of the resultant is given by 

R = P ± ft 

and the point C, by 

which are wholly independent of the angle which the 

common direction of the forces makes with the line A B. 

So, likewise, if there be three forces P, Q, and we may 

join the point of application P, of the third force /SJ with 

that of the resultant P, and show, in like manner, that the there is one point 

through which 

the resultant will 
position of 0, the point of application of the resultant T 

of R and (that is, of P, Q, and $,) is entirely independ- always pass; 

ent of the inclination of the forces to the line CD. And 

as the same reasoning may be extended to any number of 

parallel forces, we conclude, that in every system of paral¬ 

lel forces, there is one point through which the resultant 

will always pass. 

This point is called the centre of parallel forces. the centre of 

parallel forces. 

§ 128.—Every body is composed of an indefinite num¬ 

ber of elementary heavy particles, which are the points of 

application of as many vertical or parallel forces, whose 

resultant is a force equal to their sum, and is called the 

weight of the body. The point of application of the weight weight of a body; 

is obtained by combining the parallel forces in the manner 

before explained; this point will be the centre of the sys¬ 

tem, and, because the forces are those which result from 

the action of gravity, it is called the centre of gravity, centre of gravity. 

The centre of gravity of any body may be defined, the 

point through which the line of direction of the iveight always 

passes. 

§ 129.—The centre of gravity of a body being the 

centre of all the vertical forces which solicit its heavy 
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Two methods of 

finding centre of 

gravity; 

first method— 

by suspension; 

second method— 

by poising; 

Fig. 60. 

A 

particles, this point must remain invariable, while the 

forces, without ceasing to be parallel, revolve about the 

points of application. Instead of causing the forces to 

rotate, let the body revolve. In this motion, the forces 

will preserve their vertical direction, and the line of 

direction of the weight always passing through the centre 

of gravity, there will result two very simple methods of 

finding the position of this point as long as the figure 

of the body remains unchanged. 

A body being suspended by means of a thread A C\ 

from the point A, will take such a position, that the effort 

exerted along the thread to sup¬ 

port it, will be in equilibrio 

with the weight, and thus, when 

the body comes to rest, the di¬ 

rection of the thread will pass 

through the centre of gravity G. 

If we change the point C\ to 

which the thread is attached, to 

C\ the body will assume a new 

position, and when it comes to 

rest again, we shall have a sec¬ 

ond line C' G, also passing 

through the centre of gravity, 

and whose intersection with the 

first, will determine the position of that point. 

By the same reasoning it follows, that a body will be 

supported upon a point, whenever the vertical through 

the centre of gravity passes through 

this point; and all positions of the 

body which satisfy this condition, 

give as many lines intersecting at 

the centre of gravity. The upper 

and lower points, in which any two 

of these lines pierce the surface, be¬ 

ing known, and connected by recti¬ 

lineal openings, these openings will 

Fig. 61. 
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give, by their intersection, the centre of gravity of the 

body. To find these upper and lower points, suspend traces of the 

the body, by a thread or rope, and when it comes to f.lunes through 

rest, suspend a plummet on each side, and in such posi- gravity found. 

tions that the plane of their threads shall contain the 

suspension line of the body; then, with a pencil, trace 

upon the body the intersection of this plane with its 

surface. Next, suspend the body from some other point, 

and repeat the same operation; the intersections of the 

two traces will give two of the points required; and the 

same for others. 

§ 130.—This method becomes impracticable in the ease 

of very heavy bodies, of those which are fixed, or of such 

as do not yet exist, and of which the construction is only 

in project. In general, when the form of a body is 

defined geometrically, or by a drawing, the centre of 

gravity is determined in this wise. Conceive the body to 

be divided into small portions by a series of planes; take 

the product of the weight of each portion into its distance 

from some assumed plane of reference, and take the sum 

of these products; this sum is, according to what we 

have seen of the principles of parallel forces, equal to 

the product of the entire weight of the body into the 

distance of its centre of gravity from the same plane. 

Hence, the distance of the centre of gravity from any plane, is 

egual to the sum of the products obtained by multiplying the 

weight of each element of the body into its distance from this 

plane, divided by the whole weight of the body. 

Find the distance, given by this rule, from any three 

arbitrary planes, and the position of the centre of gravity 

becomes known. This method, which becomes long and 

tedious in many instances, may be abridged according to 

circumstances, particularly when the object is to find the 

centre of gravity of homogeneous bodies. , A body is said 

to be homogeneous, when any two of its parts have the 

same weight under equal volumes. 

Centre of gravity 

found by 

computation; 

distance of centre 

of gravity from a 

plane; 

from three 

assumed 

planes; 

process may be 

abridged in the 

case of 

homogeneous 

bodies. 
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Centre of gravity 

of regular and 

homogeneous 

bodies; 

of a bar; 

of a bar with 

equal spheres at 

the ends; 

centre of gravity 

of regular and 

homogeneous 

bodies, at the 

centre of figure ; 

right prism; 

circle, &lc. ; 

centre of gravity 

of a surface; of a 

line. 

Body 

symmetrical in 

reference to a 

plane; 

§ 131.;—Experience shows ns that a bar A B, of wood, 

metal, or any other material, which is perfectly homo¬ 

geneous, will remain in 

equilibrio in a horizontal 

position, if suspended by 

its middle point G; and 

hence the centre of gravity 

of this bar is situated at 

the middle of its length. 

The bar is also found to 

remain in equilibrio when 

placed in a vertical posi¬ 

tion, if suspended by the 

central point of its end; 

and hence the centre of 

gravity is situated at the 

central point of its thick¬ 

ness. If the bar support 

at its ends equal spheres, 

it will still remain in equilibrio when suspended by its 

middle point, if placed in a horizontal position. 

The centre of gravity of a sphere is at its centre of 

figure, for when suspended by any one of its points, the 

direction of the suspending.thread always passes through 

that point. And it is a general principle, that the centres 

of gravity of all regular and homogeneous bodies are at 

their centres of figure. And, hence, a right prism or 

cylinder has its centre of gravity at the middle of its 

length, breadth, and thickness; a circle at its centre; and 

a right line at its middle point. 

By the centre of gravity of a surface, is understood 

that of a body of extreme thinness, such as paper, tin-foil, 

gold-leaf, &c.; and by the centre of gravity of a line, is 

meant that of a body whose breadth and thickness are 

very small as compared with its length. 

§ 132.—A body is said to be symmetrical in reference 
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to a plane, when the latter cuts into two equal parts every 

perpendicular which is drawn to it, and which is termina¬ 

ted by the opposite extremes of the body. This plane 

is called the 'plane of symmetry. 

A body is symmetrical in reference to a line, when it 

has two planes of symmetry passing through the line. 

This line is called a line of symmetry. 

A surface is symmetrical in reference to a line, when 

the latter cuts into two equal parts, all the perpendiculars 

to it which are terminated on opposite sides by the con¬ 

tour of the surface. 

In all cases, the centre of gravity of homogeneous symmet¬ 

rical holies, is situated in their planes, or lines of symmetry. 

Consider, for example, a 

curve having A B for its 

line of symmetry, and of 

which we have found the 

centres of gravity G and 

G, of the two halves 

A If B and A M B. 

These two halves being 

turned about the line of 

symmetry till one is ap¬ 

plied to the other, their 

centres of gravity will coincide; that is to say, the centres 

of gravity G and G, were, before the motion, situated 

upon a right line G G, perpendicular to the line A B. 

Hence, if the curves be supposed concentrated at their 

respective centres of gravity, G G becomes a right line, 

terminated by two material points whose common centre 

of gravity is at the middle point 0, on the line of symme¬ 

try. A similar reasoning may be applied to all bodies of 

symmetrical dimensions. 

The centre of gravity of a surface which has two axes 

of symmetry, is at the intersection of these axes. The 

transverse and conjugate axes of the ellipse, for ex¬ 

ample, being axes of symmetry, cut each other at the 
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plane of 

symmetry; 

symmetrical in 

reference to a 

line; line of 

symmetry; 

surface 

symmetrical in 

reference to a 

line; 

centre of gravity 

in planes and 

lines of 

symmetry; 

illustration in 

case of a 

symmetrical 

curve; 

centre of gravity 

of a surface with 

two axes of 

symmetry; 
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case of the 

ellipse ; 

rectangle; 

volume with one 

axis of 

symmetry; 

sphere many 

axes of 

symmetry. 

Centre of gravity 

of two 

homogeneous 

bodies, one 

within the other. 

i 

Fig. 64. 

Fig. 65. 

G- o 
t—G 

centre of gravity of the elliptical 

surface. For the same reason, the 

centre of gravity of a rectangle is 

at the intersection of the right 
lines joining the middle points of 
its opposite sides. 

When a volume has a right 
line of symmetry, its centre of gravity is on this line. A 
right cylinder, with an elliptical base, has two planes of 

symmetry, determined by the 
longer and shorter axes of 

the ellipse, its centre of grav¬ 

ity is, therefore, on the line 
G G, joining the centres of 

gravity of the bases, and at 
its middle point 0. 

Other bodies are divided symmetrically, in an infinity 

of ways. Such, for example, is the sphere of which all 
the planes of symmetry pass through the centre of figure; 

it is for this reason that this point is also its centre of 
gravity. 

§ 133.—If the regular homogeneous body contain 
within its boundary another homogeneous body of dif¬ 

ferent density, the centre of gravity of the whole mass is 
found, by first regarding it as of uniform density, and the 

same as that of the larger body ; the centre of gravity (9, 
obtained on this hypothesis, gives 

rise to a first approximation. We 

then conceive the weight w, of the 
body supposed homogeneous, to be 

concentrated at the centre of grav¬ 
ity 0, and subtracting this weight 

w from the total weight TFJ we ob¬ 

tain a difference W— w, neglected 
in finding the point 0. Let 0' be 

the centre of gravity of the volume corresponding to this 

Fig. 66. 
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difference; join 0 with O' by a right line, and divide this 

line at the point K, so that 

w X 0K = (W — w) K O'; 

the point K will be the common centre of gravity. 

§ 134.—Whenever a body may be divided into parallel when the layers 

layers, and the centres of gravity of these are situated on °‘abody have 

a right line, the centre of gravity of the whole body is also gravity on a right 

upon this line. For compounding the weights of any two lme‘ 

of these layers, supposed concentrated at their respective 

centres of gravity, and the resultant of these with the 

weight of a third, &c., it is easy to see, from the principle of 

parallel forces, that the point into which the whole weight 

must be concentrated will be on the line in question. 

§ 135.—If, for example, the parallelogram A B C D, centre of gravity 

supposed to possess a 

small thickness, be di¬ 

vided by planes par¬ 

allel to CD, into an 

indefinite number of 

strata or layers, the 

centre of gravity of 

each one will be at 

its middle point, and 

therefore on the line 

of a 

parallelogram; 

Fig. 67. 

F Ey joining the middle points of the opposite sides CD 
and A B; the centre of gravity of the parallelogram will, 

§ 134, also be on this line. In like manner, it may be 

shown to be on the line /W, joining the middle points of 

the opposite sides C B and DA; it must, therefore, be at 

their intersection 0. 
A similar reasoning will show that the centre of gravity 

of a parallelopipedon and cube, will be at the common of a 

intersection of three right lines joining the centres of an^c^T1*6*1011 

gravity of their opposite faces. 
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Centre of gravity 

of a triangle; 

where situated; 

common centre 

of gravity of 

three equal balls. 

§ 136—The triangle ABC, being divided into very 

thin layers, parallel to the side A G\ it follows, from wliat 

has just been said, that 

the centre of gravity of 

each layer, and, there- FlS- 68* 

fore, of the whole tri¬ 

angle, will be situated 
O 1 

upon the right YuiqBD, 

drawn from the vertex 

B to the middle of the 

side AC. For the 

same reason, the centre 

of gravity of the trian¬ 

gle will also be on the 

line A F\ drawn from 

the angle A to the middle of the opposite side CB; and 

hence it must be at the intersection G. 
Join F D. Since the sides A C and B C) are divided 

proportionally at the points D and F\ the line D F is 

parallel to A B; hence the triangles A G B and D G F 
are similar, and give the proportion 

A G GF AB FD; 

but, because the points F and D are at the middle of the 

lines B C and A C, it follows that F D is half of A B, 

and, therefore, from the above proportion, F G is half 

A G; or F G is one third of the whole line A F. Hence, 

the centre of gravity of a triangle, is on a line drawn from 
one of the angles to the middle point of the opposite side, and 

at a distance from this side equal to one third of the line. 

Thi& point is also the common centre of gravity of 

three equal balls, whose centres of gravity are situated at 

the angles of the triangle, for the centre of gravity of the 

balls A and 0 is at the middle point D, and this point 

being joined with B, the centre of gravity of the three 

balls will divide the line B D at the point G, so that B G 
shall be double G D. 
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§ 137.—To find tlie centre of gravity of any polygon, 

as A B CD E F) draw from any one of tlie angles, as A, 

the diagonals A C) A D, A E, 
&c., and thus divide the polygon 

into triangles. Find the centres 

of gravity g, g\ g", g'", &c. of 

each of these triangles by the 

rule above; join the points g and 

gf by the right line gg\ and de¬ 

note the areas of the triangles 

ABC and A CD by a and a\ 
respectively ; then will the centre 

of gravity of the area A B CD A, be found by the pro¬ 

portion 

a + a' : a : : g gr : g'G. 

Fig. 69. 

B 

In like manner, joining G and gn by a right line, and 

denoting the area of the triangle A D E by a", will the 

centre of gravity of the area A 
the proportion, 

a + of 4* cl" ' a" 

and so’ on to the last triangle ; 

&c., being the only unknown 

from the proportions. 

§ 138.'—A series of planes 

parallel to the base BBC, 
of the triangular pyramid 

A BCD, will give rise to a 

series of strata or layers per¬ 

fectly similar to the base, and 

all their centres of gravity 

will be situated upon a right 

line joining the centre of 

gravity of the base and the 

vertex, because they are all 

similarly situated to the base. 

B C D E A be found from 

:: Gg" : G Gf; 

the quantities g' G, G G', 
quantities become known 

Fig. VO. 

JL 

Centre of gravity 

of a polygon. 

A pyramid 

divided into 

layers parallel 

to the base; 
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Its centre of 

gravity found; 

As either of the solid angles may be taken as a vertex 

and the opposite face as a base, and as the dividing planes 

may be passed parallel to each 

of the bases, it follows that 

the centre of gravity of the 

pyramid must be upon the 

four lines drawn from the solid 

angles to the centre of gravity 

of the opposite faces, and must, 

therefore, be at their common 

point of intersection. 

Let 6r' and G" be the cen¬ 

tres of gravity of the triangu¬ 

lar faces ABB and BCD; 

join these points with the 

opposite vertices by the right 

lines A G" and C G\ their 

point of intersection (7, will be the centre of gravity 

of the pyramid. Join G' and G"; then, because the lines 

A E and E C are divided proportionally at the points 

G' and G", the line G' G" is parallel to A C\ the triangles 

G G' G" and G A C are similar, and give the proportion, 

G'G" : GG" :: AC : AG; 

but G' G” is one third of A C, and hence G G" is one 

third of A G, or one fourth of A G". The centre of 

where situated, gravity of a triangular pyramid is, therefore, on a line join¬ 

ing one of the angles with the centre of gravity of the opposite 

face, and at a distance from this face, equal to one fourth of 

the line. \ 

The common The same result mav be obtained for the common 

offour°efquTiVlty centre of gravity of four equal balls, whose centres of 

bails. gravity are situated at the four vertices of the pyramid. 

\ v i. V;; ' : :i: ' ■ v : ■ : "i ■ ^ 

§ 139.—The foregoing reasoning is equally applicable 

to a pyramid, of which the base is any polygon. For the 
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Fig. 71. 

centre of gravity is on a line drawn from the vertex S to centre of gravity 

the centre of gravity of the base, because it contains the of any pyramid • 

centres of gravity of all sections parallel to the base ; and 

if we conceive the pyramid divided 

into triangular pyramids by planes 

through this line, and through the 

angles A, B, G\ D, &c. of the base, the 

centres of gravity of these elementary 

pyramids, and therefore of the whole 

pyramid, will be situated in a plane 

parallel to the base, and at one fourth 

the distance from the base to the 

vertex; it must, therefore, be at the 

intersection of this line and plane. 

Hence, to find the centre of gravity of 

any pyramid, join the vertex with the centre of gravity of the where situated. 

base, and lay off a distance from the base on this line equal to 

one fourth of its length. 

This rule is also applicable to a cone, which may be centre of gravity 

regarded as a pyramid of an indefinite number of sides. of a cone. 

§ 140.—Since every polyhedron may be divided into ofany 

triangular pyramids whose weights may be supposed to polyhedron' 

act at their respective centres of gravity, and since, from 

the principles of parallel forces, the sum of the products 

which result from multiplying the weight of each partial 

pyramid into the distance of its centre of gravity 

from any plane, is equal to the product of the entire 

weight of the polyhedron into the distance of its centre 

of gravity from the same plane, the distance of the 

centre of gravity from three planes may be found, and 

thus its position determined. 

§ 141.—When a body is terminated by curved surfaces, of a body of any 

by planes, or by curve lines, it may be divided into smallfoira’ 

elementary parts, similar to the figures which have been 

already considered—as right lines, triangles, parallelo- 
10 
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the partial 

products found; 

the sura of these 

divided by the 

entire weight; 

illustration; 

when the force 

of gravity is 

constant and 

density uniform; 

grams, pyramids, parallelo- 

pipedons, polyhedrons, &c.; 

the sum of the products 

which result from multi¬ 

plying the weight of each 

into the distance of its cen¬ 

tre of gravity from some as¬ 

sumed plane, or right line, 

must be found, and this 

sum divided by the entird 

weight of the body; the result will be the distance of the 

centre of gravity from the plane or line. Let it be required, 

for example, to determine the centre of gravity of any plane 

area Cab Fdc; draw in its plane any right line A B, and 

divide the given area into a series of very thin layers, 

perpendicular to this right line. The layer aedb, may be 

regarded as a small rectangle, and, supposing its density 

uniform, its centre of gravity is at its middle point 0; 

denoting the density by J9, and the force of gravity by g, 

one of the partial products will be 

Fig. 72. 

b 

D- 9 
ac + db 

2 
r • 7~v a c db r e a 4- e c 

ef.iO = D-g---ef--- 

The other partial products being found in the same way, 

and their sum divided by the product of D g into the 

entire area CcdFb a C, determined by the method of § 46, 

will give the distance of the centre of gravity of this area 

from the line A B. Performing the same operation in 

reference to another line A E1 the centre of gravity is 

completely determined, being the intersection of two right 

lines, parallel respectively to A B and A E, and distant 

from them, equal to the results obtained by the above 

process. 

It is to be remarked, that when the force of gravity g 

is constant, and the density JD is uniform throughout the 

body, these quantities strike out, and leave the distance 

i 
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of tlie centre of gravity from the line, or plane, equal to the partial 

the sum of the products arising from multiplying the ele- 

mentary volumes into the distances of their respective volumes, 

centres from the line or plane, divided by the entire 

volume. 

§ 142.—The consideration of the centre of gravity is 

very useful in computing certain volumes and surfaces, 

which are found with considerable difficulty by the ordi- 

nary process. The screw, the curbs of stair-ways, surfaces 

of revolution generated by 

the rotation of a plane curve 

C D E about an axis A B) 

situated in its plane, are ex¬ 

amples. Suppose, in the case 

of a volume, the generating 

area C D E to be divided into 

small rectangles, of which the 

sides are parallel and perpen¬ 

dicular to the axis A B. Each 

rectangle will generate around 

the axis an elementary ring, 

and the sum of all these rings will give the volume of the 

solid of revolution. Let r denote the distance of the centre 

of gravity of one of these small rectangles from the axis; 

we know that the volume of the ring, of which the profile 

is the rectangle, is measured by the product of the area a 

of the rectangle, multiplied by the mean circumference of 

the ring, 2 r; for the annular base of such a ring being 

developed, will form a trapezoid, the half sum of whose 

parallel sides is equal to 2 * r, and hence we shall have for 

the value of the ring the expression 2 rf r a. The volumes 

generated by the other rectangles, whose areas are a', a", a'", 

&c., will be 2 t r' a,' 2 •* r" a", 2 * r'" a"\ &c. And de¬ 

noting by V the total volume generated, we shall have 

V = 2 (ar + oJ r' + a" r" 4* a>"r’" + &c*) 5 

A 

Fig. 73. 

v 

Use of the centre 

of gravity in 

computing 

volumes and 

surfaces; 
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relation of 

volume to 

generatrix and 

path of centre of 

gravity; 

but the quantity within the brackets, is the sum of the 

products which result from multiplying the elementary 

volumes of the generating 

area C E D, bv the distances 

of their respective centres of 

gravity from the line A B, 

which we know to be equal 

to the product of the whole 

area C E D, into the distance 

of its centre of gravity from 

the same axis. Denoting the 

area GED by A, the distance 

of its centre of gravity from 

A B by R, we, therefore, have 

Fig. 73. 

V=2 «RA.(38). 

If, instead of an area, we had considered a plane curve 

0 E, the quantities a, a', a", &c., 

would represent the lengths of ele¬ 

mentary portions of this curve, A 

would represent its entire length, 

B would be the distance of its 

centre of gravity G, from the line 

A B, and V would be the value of 

the surface generated by the entire 

curve about A B. Whence we 

derive this rule, viz.: The volume 

generated by the motion of any plane, 

or surface generated by the motion of 

rule; any line, is equal to the generatrix, multiplied by the path 

described by its centre of gravity ; the direction of the motion 

being perpendicular to the generatrix. 

This rule supposes the body to possess a constant pro¬ 

file, of which the plane is perpendicular to the path of the 

centre of gravity. 

Fig. 74. 
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Example 1st. Let it be required to 

find the volume generated by the ro¬ 

tation of the right-angled triangle 

ABC, about the side A B. The cen¬ 

tre of gravity G, being found by the 

rule already explained, draw G D 

perpendicular to A B. Then, in the 

triangles E G D and E B G\ we have 

CB : GD :: CE : GE 

whence 

GD = \CB; 

and 

; 2* G D = % CB, 

which is the length of the path described by the centre of 

gravity. The area of the triangle is 

\AB X CB; 

whence the volume V becomes 

Fig. 75. 

V = l«CB* X AB, 

which is the usual measure of the volume of a cone. 

Example 2d. Let it be required to 

find the surface generated by the rota¬ 

tion of the line C D, about A B. The 

centre of gravity of CD is at its middle 

point G; and GD', CA, and DB being 

perpendicular to A B, we have 

Fig. 76. 

A. D' jj 

GD' = l(AC + BD); 

and for the path described by G, 

A 

example—the 

volume of a 

cone; 

example—the 

surface of a conic 

frustum; 
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example—the 

volume of a 

stairway curb; 

excavation from 

ditches; 

rule holds for 

any portion of 

an entire 

revolution. 

Motion of 

translation; 

and hence, 

T7 2* A C + 2 * BD nT^ 
V — -77-. CD; 

2 

Fig. 77. 

which is the usual measure for the convex surface of a 

conic frustum. 

Example 3d. Let it be required 

to find the volume of the curb of 

a stairway, of a helical form. 

First, compute the area of a 

section a bec7, perpendicular to a 

mean helix gg, or that described 

by the centre of gravity; then 

multiply this section by the length 

of the mean helix. 

The excavation taken from a 

ditch, of which the profile is con¬ 

stant, may be estimated in the 

same way. 

In examples 1st and 2d, the 

centre of gravity is supposed to 

have described an entire circumfe¬ 

rence ; but had it moved through only an eighth, tenth, or 

any other fractional portion of a circumference, the volume 

generated would still, as in example 3d, have been given 

by the area of the generatrix into the extent of the path 

described. 

VII. 

MOTION OF TRANSLATION OF A BODY OR 

SYSTEM OF BODIES. 

§ 143.—A body, or system of bodies, is said to have a 

simple motion of translation, when all its elements describe, 

simultaneously, equal and parallel paths. 
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Denote by v the velocity which any motive force com¬ 

municates to all parts of the system during any small 

interval of time t. The force of inertia f of an element 

whose weight is ]>, will be given by the equation 

the measure of 

the inertia of an 

element; 
/ = £• J fJ 

V 

t ’ 

and the force of inertia /', of an element whose weight 

is/, by 

and so of all the others, provided the degree of velocity 

impressed upon all the elements is the same duiing the 

time t. Moreover, as each force of inertia is exerted in 

the direction of the path along which the elements respec¬ 

tively move, and as these are supposed parallel, the forces 

of inertia are parallel, and give a resultant equal in inten¬ 

sity to their algebraic sum. Denoting the intensity of this 

resultant by F, we have 

v / V + V' + V" + P'" + &c*\ . 
F = f + f +/" + &c- = T V----> 

and replacing the sum of the partial weights by the entire 

weight P, and — by the entire mass M of the system, we 
tj 

shall finally have 

F = M ■ .(39> 
L 

of that of th 

entire masa; 

It remains to find the invariable point of application of 

F. This point is called the centre of inertia. The intern centre of inertia 

sities of the forces f /', /", &c., are proportional to the 

weights p, p', p", &c., to which they are respectively 

applied, and thus the point of application of F, wiU coin¬ 

cide with that of the resultant of the forces p, p\ p , &c.; 
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measure of 

inertia in words. 

The force of 

gravity being 

constant, the 

centre of gravity 

and of inertia 

coincide; 

that is to say, with that of the entire weight P, which is 
V 

the centre of gravity of the system. Hence, the total 

force of inertia of a body, or system of bodies, having a simple 

motion of translation, is measured by the mass of the system, 

multiplied into the ratio which the small degree of velocity 

communicated bears to the time during which the velocity is 

impressed. A nd the total force of inertia has its point of appli¬ 

cation at the centre of gravity. 

This coincidence of the centre of inertia with the 

centre of gravity, results from the assumption that the 

force of gravity is the same in its action upon the different 

parts of the system. Had it been otherwise, that is to say, 

had the force of gravity varied in intensity from one ele¬ 

ment to another, the centre of inertia, being always at the 

centre of mass, would be different from the centre of 

gravity. 

The intensity of the force of gravity being regarded as 

these centres the same within the limits of a bodv on the earth’s surface, 
sensibly the same . -i , n. • . • ip •, i it 
in bodies on the the centre °1 inertia and oi gravity may be regarded as 

earth. coinciding, and hence these terms will be used indis¬ 

criminately. 

Quantity of 

motion of a 

body; 

§ 144.—Let V represent the velocity of a body having 

a motion of translation, supposed uniform at any instant; 

the quantity of motion of any one of its elements whose 

weight is p, is measured by 

and of an element whose weight is p\ 

and so for the other elements; and as these motions are 

parallel, their sum will give the quantity of motion of the 

entire body. Designating this quantity by Q, we shall 

have 
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Q = S±H+Jl±^L v — mv . . (40). us 

Thus the total quantity of motion, in any body having a 

motion of translation, is measured by the mass of the 

body into its velocity. 

§ 145.—When a certain degree of velocity v, is im-Motion of a 

pressed upon all the elements of a body during a very l^ody when t|10 
x L j o j direction of the 

short interval of time t, we have seen that the total force motive force 

of inertia is given by, Eq. (39), IZlT/T 

gravity; 

F = M x y; 

We have seen, also, that this force of inertia is exerted in 

the direction of the body’s motion, and through the centre 

of gravity. If, therefore, we suppose that at the instant in 

which the body has acquired the velocity v, a force equal 

to F is applied in a direction contrary to the motion, and 

at the centre of gravity, it will 

destroy the motion. This being 

supposed, if we apply at the 

centre of gravity of the body, a 

motive force W, it will commu¬ 

nicate to it a simple motion of 

translation. For this force X 

will be equal and directly op¬ 

posed to the force of inertia F, 

which it develops. This latter force F will be resolved 

into as many partial forces of inertia /, /', /", &c., as 

there are elementary portions of the body, and the inten¬ 

sities of these partial forces will be proportional to the 

respective weights of these elements. Denoting the masses 

of the elements by ra, m\ ra", &c., we shall have, 

Fig. 78. 

/ = 
I'Lf 
M ’ /' = 

m 

If F, f" = 

m n 

M 
Fj &c. 
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The degree of velocity which each of these forces im¬ 

presses upon the part on which it acts, will, § 82, be 

measured by 

/• t 

m ’ 
/'• * 

m f i 
f\i &0. 

m 

or, replacing/ f, /", &c., by their values as given above, 

simply by the expression 

F. t 

M ’ 

will be 

that of simple 

translation. 

and as this measure is the same as that before deduced, 

Eq. (39), for the degree of velocity impressed on the centre 

of gravity by the force F\ or its equal X, we see that, 

to impress a simple motion of translation upon any body, it is 

necessary that the line of direction of the motive force, or the 

resultant of the motive forces, when there are several, must pass 

through the centre of gravity ; and, reciprocally, if the line of 

direction of the force, or that of the resultant, in the case of 

several forces, pass through the centre of gravity, the body will 

have a simple motion of translation. 

Fig. 79. 

§ 146.—If the force X, were 

applied along the right line A B, 

Motion when the not passing through the centre 

.. ot gravity Or. it is easy to see 
pass through the o j 1 j 

centre of gravity; that the motion cannot be one 

of simple translation. For, if 

this latter motion obtained, the 

partial forces of inertia would 

have a resultant of which the 

line of direction would, from what we have seen, pass 

through the centre of gravity G; and if this resultant 

were replaced by an equal force F, applied along the same 

line and directly opposed to the motion, the latter would 

be destroyed, and an equilibrium would result. But it is 

impossible that two forces X and F\ applied to the ex¬ 

tremities of a physical line or bar A G, can produce an 
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equilibrium, unless they act in the direction of the bar. will be that of 

Hence, when a body receives the action of a force, of which t,anslallon an^ 

the direction does not pass through the centre of gravity, same time; 

its motion will not be that of simple translation, but will 

be compounded of a motion of translation and of rotation; 

that is to say, some one of its elements will move, for the 

instant, in a right line, while the others will rotate about 

it as a centre. 

To find this element C,\ conceive a plane to be drawn 

through it, parallel to the direction of its motion, and per¬ 

pendicular to the planes in which the other elements, for 

the instant, rotate, 

and let A B be its 

trace upon that one 

of these planes which 

contains the point (7, 

and its rectilineal 

path. Let ?72j be the 

projection of some 

one element m' upon 

this latter plane, and 

take C Cx to represent the velocity v of translation, and 

m2m3 the velocity of rotation acquired by the element m', in 

the small time t. Make mlm2 equal and parallel to CCx\ 

then would m1 m2 represent the velocity acquired by m', 

had the body moved with a simple motion of translation; 

but by virtue of the motion of rotation, the actual velocity 

acquired by m', in the direction of (7’s motion, is ml m2, 

diminished or increased by the projection of m2 m3 upon 

the line C Cx according to the direction of the rotation. 

Project the points mx, m2) and m3) upon A B, by the 

perpendiculars mY kh m2 k2, m3 k3; then will the actual 

velocity v\ acquired by m', parallel to (7’s motion, be 

ml rn2 — m2 o, or 

vf = v — m2 o; 

but 
■ ' . • _ ' „ » , • • _ , » 

m2o = m3 m2 X cos m3 m2 o — m3 m2 X cos Cx m2 k2) 

Fig. 80. 
position of the 

clement having 

a motion of 

translation. 

j3 
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Relative velocity 

of two elements 

of a solid body 

in motion; 

the same in a 

direction 

perpendicular to 

the former; 

denoting C mx — m2 = CL mz by r, mx hx = m2 7c? by yn 

and tlie velocity of rotation acquired by a point at tlie unit’s 

distance from 0, called tlie angular velocity, by Vh then will 

and 

m2mz — Fj r, 

cos Cx m2 7c2 = 

wbicb substituted above, give 

v' = V - Vly, 

Moreover, m3 o is the 

velocity of tlie ele¬ 

ment m’ perpendicu¬ 

lar to tlie direction 

of (7’s motion; and 

calling tliis velocity 

v", and tlie distance 

Q Jc2, xn we shall 

have 

Fig. so. 

v" = V1x/.(42). 

Denoting, as before, the weight of the element m’ by jo', 

and its force of inertia in the direction C C\ by /', we 

have 

and similar expressions for the inertia of the other ele¬ 

ments. Taking the sum of these, and representing the 

inertia of the entire mass by F, we have, from the princi¬ 

ple of parallel forces, 

. P" P"r 0 \ 
v‘+ ~a~'y“+ iry*"+ &cv; 9 9 
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or, denoting the entire mass of the body by i/J and the 

masses of the several elements by m', m", m"', &c., this 

reduces to 

value for the force 

of inertia of a 

body; 

Now the first term of the second member, which alone 

involves the motion of the point C, is wholly independent 

of the figure of the body and of the distribution of its 

elements. 

It will, therefore, remain the same whatever changes 

take place in its figure and size, provided its quantity of 

matter remain the same. The place of C\ as determined 

from any supposition consistent with this last condition, 

will, therefore, be its position generally. 

This being understood, conceive the whole body to 

contract gradually in all directions till it is concentrated 

in a single point; this point must, from necessity, be the 

centre of gravity which alone remains undisturbed during 

contraction, as it will during an expansion, being the 

centre of mass. The point (7, and the centre of gravity, 

not being disturbed by this change of volume, must 

coincide, and hence must always remain one and the 

same point. 

But when the plane in reference to which the products 

m' yn m" yin &c., are taken, passes through the centre of 

gravity, we have 

m! y, + m" yn + m’" ytn + &c. = 0; 

and the above equation reduces to 

always equal to 

the mass into ratio 

of the increment 

of velocity to that 

of the time. which is identical with Eq. (39). 
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The body will 

have a motion of 

translation; it 

will also rotate 

about the centre 

of gravity; 

value of the 

velocity of 

translation. 

Living force in a 

simple motion of 

translation. 

We conclude, therefore, 1st, that when a body is acted 

upon by one or more forces, its centre of gravity will move 

as though the forces were applied directly to it, provided their 

directions remain unchanged; 2d, that when the line of di¬ 

rection of the force, or that of the resultant of several forces, 

does not pass through the centre of gravity, the body will, in 

addition, rotate about this centre. 

The law which regulates the motion of the centre of 

gravity results from the above equation, for if X represent 

the resultant of all the forces, and F the total force of 

inertia, we have from the equality of action and reaction, 

X—F, which value of F, substituted above gives, after 

reduction, 

X. t 

M 

in which v is the velocity impressed in the very short 

interval t, from which we may pass to the velocity ac¬ 

quired at the expiration of any time, and thence to the 

space described. 

§ 147.—What has been before explained, applies also 

to the total living force possessed by a body having a sim¬ 

ple motion of translation. For v being the common 
v 

velocity of all the elements, — X v2, will be the living 
a 

force of that whose weight is p ; —- X v2 the living force 
a 

of that whose weight is p\ &c.; so that the sum of all 

these living forces, or the total living force, denoted by L, 

•ii -i o p + p' + p" + &c. , . , 
will be w x--; and representing the 

a 
entire mass of the system by M, as before, 

L = Mv 
2 

If the body have a motion of rotation as well as of 
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translation, then will the living force of m', in the direc¬ 

tion of the motion of translation be, Eq. (41), 
hr 

m' v'2 = m' (v — Vi y;)2 = m' v2 — 2v. V] m! yt + Vj2 m' y2; 

and in the direction perpendicular to the motion of trans¬ 

lation, Eq. (42), 

m v"2 = m! V2 x2; 

and similar expressions for the elements whose masses are 

m", m'", &c. Taking the sum of these, denoting the 

living force, as before, by L, and reducing by the equa¬ 

tions 

m' yJ + ra" yu + &c. = 0, 

yf + X? = r,a, 

v Vif + ®„* = 

&C. &C. = &C., 

m' 4* irin + m'" + &c. = M; 

we find 

L = Mv2 -f V2 (mf r2 + mn r 2 -f &c.); 

or, making 

m' r2 + m" r 2 + &c. = 2 m r2, 

L = Mv2 + U2. S m r2 , . . (43). 

§ 148.—The considerations which have now been 

developed, show that in the motion of translation of a 

body or system of bodies, the computations may be great¬ 

ly simplified, since we are permitted to disregard the 

shape of bodies, to suppose them concentrated about 

If the body have 

also a motion of 

rotation; 

the living force is 

equal to that due 

to translation, 

increased by that 

due to rotation. 
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General theorem 

—the quantity of 

work of weights; 

equal to the 

weight, into the 

projection of path 

of the centre of 

gravity. 

/ ; • 

their centres of gravity, and to reason upon these points 

as upon the total masses. 

§ 149.—We have seen that in all questions affecting 

the circumstances of simple motion of translation, we may 

regard the mass as concentrated about its centre of grav¬ 

ity. But when the different parts of a body receive 

motions which differ from each other, this concentration 

is generally inadmissible, since the partial forces of inertia 

not being parallel, their resultant will no longer be equal 

to their sum. If, however, we desire, in any case of the 

coexistence of various motions, to estimate the work per¬ 

formed by the weights of the parts of a body, during a 

given time, the action exerted by these latter forces being 

parallel, and their resultant or the total weight always pass¬ 

ing through the centre of gravity, we may still reason upon 

the motion of this point as though the mass were concen¬ 

trated at it, and disregard the motion of rotation of the 

other parts of the body about it. In this case, the quantity 

of work expended in every 

instance, will be obtained 

by taking the product of 

the weight into the path 

described by the centre of 

gravity, estimated in a ver¬ 

tical direction. If, for exam¬ 

ple, the centre of gravity of 

any body, as a bomb-shell, 

pass from the position G to 

G\ describing the curve G G\ we obtain the work done 

by the weight during the interval of time occupied in 

passing from one of these positions to the other, by mul¬ 

tiplying the weight of the shell into G'B, the projection 

of the path G G' on the vertical through G 

This theorem, in regard to the work performed by the 

weight, is by no means restricted to the motion of a single 

body, but extends to a collection of pieces, such as wheels, 

Fig. 81. 

t 
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bars, levers, &c., connected with, each other after the man¬ 

ner of ordinary machinery. If the quantity of work 

performed by each piece be computed, and the algebraic 

sum be taken, it will be found to be equal to the quantity 

of work performed by the weight of the whole system, 

acting at its centre of gravity, computed by the same rule. 

In general, let y>, y/, y>", &c., be the weights of the 

several pieces connected together; A, A', A", &c., the verti¬ 

cal distances passed over by their respective centres of 

gravity, in passing from one position to another, by virtue 

of their connection; P, the sum of all the weights or the 

weight of the entire system; and z, the vertical space 

described by the common centre of gravity: then will 

Pz = y> A -f y>'A' + p" A" 4- &e. . . . (44). 

To demonstrate this, let m, m', m", &c., be several 

bodies so connected as to be acted upon by each other’s 

weights. Let P de¬ 

note the weight of 

the entire system ; 

y>, y>'; y>", &c., the 

weights of the sever¬ 

al bodies m, m', m", 

&c.; Z, the distance 

of the common cen¬ 

tre of gravity from a 

horizontal plane AB; 

and II, H’, II", &c., the distances of the centres of gravity 

of the bodies m, m\ m", &c., from the same plane. Then, 

from the principle of the centre of gravity, will 

PZ - VIIA y>' IP + /'II" + &c.; 

and for a second position of the system, 

PZ/ = + y/ H’ + + &c.; 
u 

Fig. 82. 

7Tl 

Applies to all 

kinds of 

machinery; 

mathematical 

expression of the 

rule; 

demonstration of 

the rule; 



and subtracting the first from the second, 

couclusion and 

rule. 

Equilibrium of 

heavy bodies; 

partial quantities 

of work destroy 

each other; 

P(z-Z)=p{n-ii)+p\H;-H')+p"{ii,"-n')+ko. 

v ' ‘ ' ; ,r . i, . / , . 1. / 

And supposing the horizontal plane of reference to be 

below both positions of the entire system, Zt — Z is the 

vertical distance z, through Avhich the common centre of 

gravity has ascended or descended, according as Zt is 

greater or less than Z; If — II, II' — II', H/' — H" &c., 

are the corresponding distances h, li\ IT, through which 

the centres of gravity of the bodies m, m', m", &c., have 

ascended or descended. Moreover, the products P(Zt—Z\ 

p {IIj — II), p {II/ —II'), &c., are the quantities of work 

due to the entire weight and to the partial weights. 

Whence this rule, viz.: The total quantity of work due to the 

action of the entire lueight of any system, is equal to the sum 

of the quantities of ivork of the weights which ascend, dimin¬ 

ished by the sum of the quantities of work of the weights which 

descend. 

VIII. 

EQUILIBRIUM OF A SYSTEM OF HEAVY BOLUES. 

§ 150.—If the system of heavy bodies be so connected, 

and in such condition that the common centre of gravity 

continue on the same horizontal line, while the bodies are 

made to take different positions, then will Zt — Z = 2 = 0, 

and Eq. (44) becomes, 

p h + p' h' + p" h" + &c. = 0 . . (45); 

hence, the partial quantities of work of the several bodies 

destroy each other, and, therefore, there must be an equi¬ 

librium in the system, and the least extraneous effort 
4/ • 
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will impart motion. Such is the condition of equilib¬ 

rium of a system of bodies acted upon only by their 

own weights. The equilibrium presents itself under dif¬ 

ferent states according to the positions of the system. If the slightest 

the position be such that in a slight derangement the effo,tsu®cientt 

common centre of gravity descend, it will tend to descend 

more and more, and a certain quantity of work will be 

requisite to restore it to its primitive position. Such an* 

equilibrium is said to be unstable, because the system unstable 

tends of itself, on slight derangement, to depart from it. equUlbnum; 

On the contrary, if on slightly displacing the system, the 

common centre of gravity ascend, this displacement will 

require the expenditure of a certain quantity of work 

which the weight of the system tends to restore; the 

equilibrium is then said to be stable, because the system is stable 

urged by its own weight to return to its primitive state eqmllbrmm» 

when abandoned or left to itself. Finally, if during a 

slight derangement, the centre of gravity neither ascend 

nor descend, the quantity of work expended by the sys¬ 

tem is always nothing, the system will have no tendency 

of itself to return to, or depart from its first position, and equilibrium or 
i i i "i • ~i • /y> . indifference. 

the equilibrium is said to be indifferent 

§ 151.—Take a rod sus¬ 

pended at one end so as to 

turn freely about a hori¬ 

zontal axis A, and support¬ 

ing at the other a body 

which is symmetrical in 

reference to a line drawn 

from the axis A to the com¬ 

mon centre of gravity G. 

It is obvious that there will 

be an equilibrium when the 

rod is vertical. It is more¬ 

over stable; for in deflect¬ 

ing the system, the centre of 

Fig. 83. 

Jl. 

Illustration of 

stable 

equilibrium ; 

gravity will ascend while 
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illustration of 

unstable 

equilibrium; 

both kinds 

illustrated by 

means of the 

cone, 

Fig. 84. 

Gr' 

describing tire arc G G', about A as a centre, and a 

certain amount of work will be expended which the 

weight will restore as soon as the deflecting cause is re¬ 

moved. Indeed, the system will, when abandoned, per¬ 

form a series of oscillations, whose amplitude about the 

vertical A G, will diminish continually till it comes to rest. 

Now suppose the system inverted; if the rod be per¬ 

fectly vertical, the line of direc¬ 

tion of the weight will pass 

through the point of support A, 

and there is no reason wiiv the 
«/ 

system should move one way 

rather than another. It will there¬ 

fore be in equilibrio, but the equi¬ 

librium will be unstable; for, 

however slight the derangement, 

the centre of gravity G will de¬ 

scend along the circular path 

G G', described about A as a cen¬ 

tre, and a certain amount of work 

will be requisite to bring it back to its primitive position. 

When a cone A B 0, resting upon its base B 0' is 

inclined to the position A' B' 0, its centre of gravity G 

will ascend and describe an arc 

G G\ and if, in this inclined po¬ 

sition, it be abandoned by the 

disturbing force, it will return. 

When the cone is placed up¬ 

on its vertex, with its centre of 

gravity directly above that point, 

it will also be in equilibrio as it 

was when resting on its base, but 

the slightest motion will cause the 

centre of gravity to descend. The 

first position is one of stable, the 

second of unstable equilibrium. . 

An elliptical cylinder placed upon a horizontal plane 

Fig. 85. 

A: 
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ng as the 

also by an 

ellipsoid of 

Fig. 87. revolution; 

( / 
1 —— 

Fig. 88. 

Fig. 80. 

smaller or longer axis of its elliptical base, 

is perpendicular to tlie plane. 

A spherical ball upon a horizontal 

plane, is an example of equilibrium of 

indifference. The centre of gravity re¬ 

maining at the same level however the 

ball may be displaced, provided it pre¬ 

serve its contact with the plane, the quan¬ 

tity of work necessary to displace it will 

always be inappreciable, and the ball will, 

in consequence, have no tendency either 

to recede from or return to its primitive 

position. A perfectly circular cylinder 

on a horizontal plane is an example of 

the same kind. 

Some varieties of draw-bridges are but collections of 

pieces in a state of equilibrium of indifference. And to 

insure this state, it is only necessary that the common 

centre of gravity of the bridge and appendages, shall pre¬ 

serve the same level during the motion, in which case, 

the system will be in equilibrio in all possible positions. 

Wagons and carriages should, in strictness, require no 

work to move them on a horizontal plane, except to over¬ 
come their inertia, and should, therefore, be so constructed 
as to preserve their centres of gravity always on the same 

level. 

If, during the motion of a 

wheel, it is seen sometimes to 

quicken and sometimes to slack¬ 

en its motion, it is because the 

centre of gravity G is out of 
the axis of motion A, and, there¬ 
fore, alternately rises and falls 
during the rotation. A wheel 

whose centre of gravity is out 

of the axis of motion, passes 

equilibrium of 

indifference 

exemplified by 

the sphere; 

by some varieties 

of draw-bridges; 

Fig. 90. 

effect of throwing 

the centre of 

gravity out of the 

axis of a wheel. 



The common 

balance; 

the position of its 

centre of gravity; 

when stable; 

unstable; 

indifferent; 

in the course of a single revolution through the conditions 

of stable and unstable equilibrium, the former occurring 

when the centre of gravity G crosses the vertical line B G\ 

through the axis A, at the lowest point 0, and the latter 

when .it crosses the same line at the highest point O', of its 

path. 

The common balance consists of a horizontal arm 

A B, mounted upon a knife-edge D, resting upon the sur¬ 

face of a circular opening made in the end of a vertical 

frame C, which is supported by a hook attached to a 

fixed point B. The ends of the balance carry basins of 

equal weights, one of 

which receives a sub¬ 
rig. 91. 

stance to be weighed. 

and the other the stand¬ 

ard weights previously 

determined. The bal¬ 

ance may be stable, 

unstable, or indifferent, 

according as it tends 

to return to a horizon¬ 

tal position when de¬ 

flected from it, to over¬ 

turn, or to retain any 

position in which it 

may be placed. Refer¬ 

ring the entire system 

to any horizontal plane A' B', and taking the sum of the 

products which result from multiplying the weight of each 

piece by the distance of its centre of gravity from this 

plane, and dividing this sum by the weight of the entire 

balance; the quotient will give the distance of the com¬ 

mon centre of gravity of the moveable part of the appa¬ 

ratus from the plane A' B'. If this distance be less than 

FI), the distance of the knife-edge above the plane of 

reference, the balance will be stable; if greater, the bal¬ 

ance will be unstable; and if equal to this distance, the 

i: 
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balance will be indifferent. All of which supposes the centre or gravity 

common centre of gravity to fall somewhere on the vertical “n the '®*tlcal. , 
° J through the point 

line FD, passing through the knife-edge. of support. 

IX. 

EQUILIBRIUM OF SEVERAL FORCES, VIRTUAL 

VELOCITIES, AND MOTION OF A SOLID BODY. 

§ 152.—To find the conditions of equilibrium of several 

forces, P, Q, P, X, &c., applied to different points of a solid Equilibrium of 

body, take in the interior of the body three points a, 5, c, uponVfreebodj; 

and regard these points as the vertices of an invariable 

triangle cibc; resolve each force into three components 

whose directions shall pass through the given point of 

application and the vertices a, 5, and c. In this way we 

shall be able to replace the given forces by three groups 

of components, the directions of each group having a com¬ 

mon point at a, 5, or c. Each of these groups, having a 

common point, may be 

replaced by a single 92> 

resultant, and thus, the 

equilibrium of the giv¬ 

en forces be reduced 

to that of three forces. 

Call the resultant of 

the group having the 

common point a, XT; 

that of the group hav¬ 

ing the common point 

b, Y; and that of the 

group having the com- and these by 

mon point c, Z. These three forces being in equilibrio, three single 

the equilibrium will not be affected by supposing the three lorces’ 

the given forces 

may be replaced 

by three groups 

of components; 



168 NATURAL PHILOSOPHY. 

an equilibrium 

requires these 

three to act in the 

same plane; 

the resultant 

zero; 

the forces will be 

in equilibrio 

when the 

algebraic sum of 

Iho quantities of 

work is zero. 

lines ab, be, and ca, to become fixed in succession. The 

line a b being fixed, the forces X and Y, whose directions 

intersect it, will be destroyed by its resistance, and if the 

third force Z, does not 

Fig. 92. act in the plane a be, it 

will cause the system 

to turn about ab; the 

same may be shown of 

the forces X and Y. 

The forces, X, Y, Z, 

must, therefore, act in 

the same plane; and 

in order that they may 

be in equilibrio, the re¬ 

sultant of either two 

of them must be equal 

and directly opposed to the third; that is to say, the 

resultant of the three must be zero. If the resultant be 

zero, the quantity of work is zero. The quantity of work 

of X, Y, or Z, is equal to the algebraic sum of the quan¬ 

tities of work of the group of which it is the resultant, and 

thus the sum of the quantities of work of X, Y, and Z, 

may be replaced by that of the quantities of work of the 

forces grouped about a, b, and c. But these last, taken 

three by three, give the quantities of work of the proposed 

forces P, Q, P, jS, &c.; so that the sum of the quantities 

of work of the forces X, Y, and Z, is the same as the 

algebraic sum of the quantities of work of the forces P, Q, 

P, jS) &c. Whence we conclude, that several forces, acting 

upon the different points of a free body, will be in equilibrio, 

when the algebraic sum of the quantities of work of the forces 

is equal to zero. 

Now suppose the body to 

be slightly deranged from its 

state of rest, and let A A' be 

the path described by the 

point of application A, of 

Fig. 93. 

A' 
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tlie force P, in an indefinitely short time t. Draw 

A' n perpendicular to A P; An will be the space de¬ 

scribed by the point of application in the direction of the 

force, and the quantity of work performed by P during 

the derangement will be P X A ??, or Py>, denoting A n 

by p. 

The path A A' is called the virtual velocity of the force P; Virtual velocity, 

A n — p, the projection of the virtual velocity ; and the projectlon of 

product Pp, the virtual moment of the force P and virtual 

Denoting by q, r, s, &c., the projections of the virtual moment’ 

velocities of the forces §, P, P, &e., the quantities of 

work, or the virtual moments of these forces, will be, 

respectively, Q q, R r, P s, &c; and if the system be in 

equilibrio, we have, from the rule just demonstrated, 

Pp + Qq + Rr + Ss -j- &c. = 0 . . (46). 

This equation is but the mathematical expression of the principle of 

principle, known under the name—virtual velocities, which ultual 'el0CltlC8 

consists in this, viz.: when several forces are in equilibrio, 
the algebraic sum of their virtual moments is equal to zero. 

§ 153.—Any mechanical device that receives the 

action of a force or power at one point, and transmits a machine; 

it to another, is called a machine. 

Conceive a machine, composed of wheels whose axes 

are sustained by supports, and which communicate motion 

to each other, either bv 

teeth, chains, or straps, 

on their circumferen¬ 

ces. Suppose a force 

or power to be applied 

so as to turn the first 

wheel; this wheel will 

experience a resistance 

from the second; this 

resistance, in its turn, 

becomes, for the second 
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the process by 

which the action 

of a moter is 

transmitted; 

points of support 

replaced by 

active forces; 

wheel, a power which causes it to rotate also; the second 

will experience a resistance from the third wheel, which 

resistance becomes a 

power to give it mo¬ 

tion, and so on to the 

end. But each wheel 

experiences a reaction 

at the points of sup¬ 

port which keep it in 

position, and it is this 

reaction that becomes 

the means of transmit¬ 

ting the power to the 

following wheel; for 

if these points were 

unsupported, the wheels would cease to act upon each 

other and the power first applied could not be trans¬ 

mitted. 

Now, replace the supports, by the efforts of reaction 

which they exert: each piece or wheel will become a free 

body subjected to the action of the preceding piece, the 

resistance of the following, and the force of reaction by 

which we have replaced its point of support; and if the 

piece be in equilibrio. the algebraic sum of the virtual 

moments of this action, resistance, and reaction, must be 

equal to zero. 

Represent the power applied to give motion to the 

first wheel A by TFj, the resistance of the second wheel 

B by R2i and the reaction at the point of support of the 

first wheel, by Cx; the projection of the virtual velocity 

of Wx by ivh that of H2 by r2, and that of Cx by cx; then 

will 

Fig. 94. 

sum of the virtual TTr , n , rt n 
moments for first 'l ^1 ~b m ^1 ~b ^2 ^2 d , 

piece; 

denoting the resistance of the third wheel D by i?3, the 

reaction at the centre of the second wheel by C2\ and the 
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projections of tlieir virtual velocities by r3 and c£l respec* 

tivel v, 

B2r2 + C2c2 -f- B3 r3 — 0; 

and thus we may continue throughout the entire com¬ 

bination till we finally arrive at the last wheel, to which 

is opposed, as a final resistance, the work to be done. De¬ 

noting this resistance by Wc: the resistance of the last 

wheel to the action of the preceding by Ah, the reaction 

of the support of the last wheel by Ce ; and the projections 

of the corresponding virtual velocities by ivc, re, and cc, 

respectively, we shall finally have, 

Be ^e *"h Ce Cc “b He ^e — 0. 

But from the nature of the connection, the points of sup¬ 

port must not move; their virtual velocities, and there¬ 

fore the projections, must be zero. Hence, C1 cx — 0, 

C2 c2 = 0, . . . Ce ce = 0, and the preceding equations 

become 

Ti7! U\ + B2 7*2 = 0, 

B2 r2 + B-3 r3 = 0, 

Be Te + Wc We = 0, „ 

Subtracting the second from the first, and adding the 

third, subtracting from this result the fourth and adding 
\ 

the fifth, and so on to the last, we finally obtain 

TFj wx -f We we — 0 . . . (48); 

which shows us that the quantity of work of the final 

resistance is equal to the quantity of work of the power, 

or that no work is lost. In other words, the quantity 

of work of the forces which tend to turn the system in 

one direction is exactly equal to the quantity of work of 

those which tend to turn it in the opposite direction. 

same for second; 

also lor the last; 

virtual moments 

of points of 

support, zero; 

relation of motive 

force to the final 

resistance; 

no work lost. 
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Tool; work of 

power equal to 

that of tool; 

the work of 

friction and that 

employed to 

change figure; 

work estimated 

by a supposed 

displacement, to 

avoid inertia; 

the same in 

uniform motion; 

when the motion 

is variable, the 

work of inertia 

comes into the 

account. 

An examination of Eqs. (47), will show that the same 

remark is applicable to each piece of the combina¬ 

tion taken separately, and thus starting from the piece 

which first receives the action of the force, and pro¬ 

ceeding to that which does the work, and which, on this 

account, is called the tool, we see that the quantity of 

work of the power is equal to that of the tool. In a 

word, where forces work upon bodies through the medium 

of machinery, we must distinguish the powers from re¬ 

sistances, and we shall always find the work of the first 

to be equal to that of the second. 

If the bodies press against each other in a way to 

produce a change of figure and friction, new resistances 

arise which must be taken into account, and the work 

of these must be subtracted from that of the forces to 

obtain the work of the tool, and hence such resistances 

are, in general, a hinderance to the final work to be 

accomplished. 

If the equilibrium is to be maintained while the 

machine is at rest, then must the quantity of work be 

estimated by the aid of a supposed displacement, as in that 

case, the influence of inertia will be avoided. 

If the equilibrium is to exist during a uniform motion 

of the machine, the quantity of work must be computed 

from the actual motion of the points of application, for 

then the inertia will again be excluded. 

But if the equilibrium is to take place during an 

acceleration or retardation of the motion, the inertia of 

the pieces will no longer be zero, and must be compre¬ 

hended among the powers and resistances. The con¬ 

ditions of the motion must, however, always be the same; 

that is to say, the work of the powers must be equal to 

that of the resistances, augmented by the work of inertia 

when the motion is accelerated, and diminished by the 

same work when the motion is retarded. 

§ 154.—Whenever the forces applied to a body accel 
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erate or retard its motion, the inertia of the body is 

developed; and by virtue of the principle that action is 

equal and contrary to reaction, this inertia must be in 

equilibrio with the forces; that is, the quantity of work 

of inertia will be equal to the sum of the simultaneous 

quantities of work of the forces which urge the body in 

one direction, diminished by the quantity of work of 

those which urge it in the opposite direction. But we 

have seen, § 85, that when the body takes, at different 

instants of time, two velocities which differ from each 

other, the work of inertia is measured by half the differ¬ 

ence of the living forces possessed by the body at these 

instants, or by half the living force gained or lost in the 

interval, according as the motion has been accelerated or 

retarded. Hence, the total ivork of several forces acting upon 

a body, daring any time, is always equal to half of the 

living force gained or lost by the body during the same 

time. 

Suppose, for example, a projectile whose weight is P, to 

leave the point A with an initial velocity V. If its weight 

did not act, the body would pursue its iDrimitive recq 

lineal oath A T. 
j. 

But by virtue of 
. . Fig. 95. 

the weight, which 

would act alone 

in vacuo, the 

projectile is con¬ 

tinually deflected 

from this path, 

and will, in conse¬ 

quence, describe a 

curve line ABB; 

and we know, 

§ 112, that when a body describes any curve under the 

action of its weight alone, the work is equal to the 

weight of the body into the difference of level of its two 

positions. Thus, in the case before us, while the projectile 

Relation of the 

work of inertia to 

the work of all 

other forces; 

the total work of 

several forces, 

equal to half the 

living force lost 

or gained; 

illustration—the 

case of a 

projectile; 
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is passing from A to B, the work expended by its weight 

will be P X B G\ or P X IB, by making B G= H. 

Denoting by V', 

the yeloeity of the 

the living force at projectile at B, its 
two points; Hying force at this 

point will be 

Fig. 95. 

p 

9 
X Vr, 

and at A, it was 

P 

9 

and its loss of living force, in passing from A to B, 

loss or gain of 

living force; 

the half of which is the quantity of work of the extraneous 

forces, (in this case the body’s weight,) in the same time, 

and hence 

equal to double 

the work of the 

force; 

or 

(49). 

relation of 

velocity to 

difference of 

level; 

Thus the difference of the squares of the velocities in any 

two positions of the projectile, moving in vacuo, is equal 

to the difference of level of the two positions, multiplied 

by twice the force of gravity. When the projectile 

arrives at D, then will 

H = 0; and F2 - F'2 = 0; 
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that is to say, the velocity will be equal to what it 

was at A. 

From Eq. (49), it is obvious that while the projectile 

is oil the ascending branch of the curve, its velocity di¬ 

minishes, and while on the descending branch its velocity, 

on the contrary, increases. 

The description of the trajectory or curve ABB in 

vacuo, is obtained by very simple considerations, founded 

upon the independence of the motions of the same body, 

and of the action of forces which solicit it in the directions 

of these motions, (§ 106 and 107.) The body may be re¬ 

garded as animated by two motions, one horizontal in the 

direction A x, the other vertical in the direction A y. The 

initial velocities in the directions of these motions are the 

components of the 

initial velocity V, 
J ’ Fig. 96. 

computed by the 

principle of the 

parallelogram of 

velocities. After 

the body leaves the 

point A, it will be 

subjected to the 

action of no motive force in the horizontal direction; the 

horizontal component of its velocity will be constant, and 

the spaces described in this direction in equal times will 

be equal. Denote the angle x A T by a; the space de¬ 

scribed in the horizontal direction A x by x) and the time 

required for its description by t, then will 

x = Vcos at.(50). 

But in the vertical direction, the weight will, during 

equal times, diminish the component of the initial ve¬ 

locity, in that direction, by equal degrees; the motion 

will be uniformly varied, and the spaces described in tne 

direction of the vertical i y, in the time t, will be given 

by Eq. (12), after substituting T sin a for a. t for T and 

velocity same on 

the same level; 

velocity on 

ascending and 

descending 

branch of curve; 

the curve in 

vacuo found; 

space described 

horizontally in 

the time t: 
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space in same 

time in vertical 

direction; 

Uio true position 

of the projectile 

at auy instant; 

th# equation of 

the curve 

described—a 

parabola; 

range; 

angle of 

projection; 

g for vv Hence, denoting tlie vertical space by y, we get 

y = V sin at — \ g ft . . . (51). 

The true positions of tlie projectile, which, are but points 

of the curve A B D) are given by the intersections of a 

vertical and horizontal line drawn at distances from A, 

equal to the spaces y = A yh and x = A xh simultaneously 

described in these two directions. To find these distances, 

it will be sufficient to substitute a given value of t, in 

equations (50) and (51). 

Eliminating t from these same equations, and re¬ 

ducing, we find 

y = tan a . x — --oft . . (52); 
J 2F2.cos2a V 

which is an equation of a parabola. Hence, the curve 

described by a body when thrown in a direction oblique 

to the horizon, and acted upon alone by its own weight, is 

a parabola. 

The horizontal distance intercepted between the point 

of projection H, and the point JD where the projectile 

attains the same level, is called the range. The angle 

xA T — a, is called the angle of projection. 

To find the range, make y = 0, in Eq. (52), and find 

the corresponding value of x. Making y — 0, we have 

0 = tan a x 9 o 
tv • 

2 V2 COS2 a ‘ ’ 

whence 

x == 0, 

2 V2 sin a . cos a 
x —-- 

9 

and representing by A, the height 

we have 

A D = range; 

due to the velocity V, 

V2 = 2gh . . • (53); 
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and denoting the range by R, and recollecting that 

2 sin a . cos a — sin 2 a, 

we have, finally, 

This value for 

the range will be 

a maximum when 

a = 45°, in other 

words, the great’ 

est range corres- 

ponds to an angle 

of projection equal 

to 45°. 

Since 

sin 2 a = sin 2 (90° — a), 

it follows that the same range may be attained by two 

angles DAT and DAT', which are complements of 

each other. 

If in Eq. (54), we make a = 45°, then will 

R = 2 A, 

whence 

h — JR; 

and this in Eq. (53), will give 

V = VWg.(55). 

That is to say, if the range corresponding to an angle of 

45° be measured, the initial velocity may be readily 

found, being equal to the square root of the product of 

this range into the force of gravity. Squaring the above 

equation, we obtain 

V2 = Rg; 
12 

the value of the 

range; 

complementary 

angles give the 

same range; 

greatest range 

given by an angle 

of projection 

equal to 45°; 

value of initial 

velocity in terms 

of greatest range; 
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and denoting by IFJ the weight of the projectile, its living 

force on leaving the mouth of the piece from which it is 

thrown becomes 

TF 

9 
R IF; 

and the effective quantity of action impressed, denoted 

by Q, 
effective quantity 

of action 

impressed upon 

the projectile; 

eprouvette; 

examples of its 

use; 

Q = i R IF.(56). 

It is from this relation that are obtained the results 

of the eprouvette, a small mortar constructed to test the 

relative strength of different samples of gunpowder. For 

this purpose, a heavy solid ball is projected from it under 

an angle of 45°, with small but equal charges of different 

kinds of powder, and the relative strength is inferred 

from the effective quantity of action impressed. 

For example, suppose equal charges of two different 

samples of powder, give R = 1050 feet, and R = 1086 

feet; these values substituted successively in Eq. (56) 

give 

Q = IF. 525 

Q = W. 543; 

these results but 

approximations 

in air; 

so that, the weights of the projectiles being the same, 

the strengths of the two samples of powder will be to 

each other as 525 to 543. 

This supposes the motion to take place in vacuo. If 

the trajectory be described in the air, the resistance of this 

fluid will diminish the velocity of the projectile, the curve 

will cease to be a parabola, and the results above will be 

but approximations to the truth. But as the resistance to 

the motion of the same body in air varies as the square 

of the velocity, these approximations may be made as 

Rule. 



MECHANICS OF SOLIDS. 179 

close as we please by using small charges and very dense these 

• ,•-! approximations 
projectiles. , . . 
-v J made close by 

Taking the general case, without limitation as regards giving small 

the velocity of a body in air, the curve may still bevel0Clties* 

described, provided we have a table giving, in pounds or general case in 

any other unit of weight, the resistances corresponding to ^hlcb tbe. J 07 i o projectile is 

different velocities of different calibres. thrown into the 
i i . . . * 

Thus, knowing the initial velocity and its two com-air’ 

ponents, find from this table, in pounds, the value of the 

initial resistance, and its horizontal and vertical com¬ 

ponents at the commencement of the motion. Of these 

components, one is the motive force in the horizontal, and 

the other, added to the weight of the projectile, the tables of 

motive force in the vertical direction. With these forces, ^Xtlnce"0 

supposed constant during a very short time, compute by 

the laws of uniformly varied motion, the loss of velocity 

in these two directions during this short interval; subtract 

from the primitive components of the initial velocity, the 

loss in their respective directions; the remainders will be 

new component velocities, of which, find the resultant, 

and take from the tables the corresponding resistance. 

This new resistance treated in the same manner as that successive steps 

due to the initial velocity, will give a third resistance, and bf jvhl<lh to, 

this a fourth, and so on indefinitely. We thus obtain a of the projectile 

series of components, forces acting for a short time with h 

constant intensity in the horizontal and vertical direc¬ 

tions ; with these compute, by the laws of uniformly 

varied motion, the corresponding spaces described in their 

respective directions by the projectile. The total spaces 

simultaneously described, obtained by adding together 

the spaces corresponding to the same number of con¬ 

secutive intervals from the beginning of the motion, will 

give the distances, A and A yh which determine the 

points of the curve. The actual space described by the 

trajectory will be the development of this curve. 

at any instant and 
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X. 

MOTION AND EQUILIBRIUM OF A BODY ABOUT 

AN AXIS. 

Fig. 98. 

I 

The work of §155.—The principle demonstrated in §113, of the 
forces which turn n n 1 .in, 
a body about a work ot iorces acting upon a body, may be extended to 

fixed axis any case whatever. Let us now apply it to that of a 

body which is free to turn about a fixed axis with which 

it is invariably connected. 

Conceive a force i?, acting upon the point A of a body 

free to turn about a fixed axis Lll; resolve this force 

into two others, the one Q, 

parallel to L i/J the other P 

in a plane perpendicular to 

this line, and passing through 

the point of application A. 

Doing the same with regard 

to all the other forces acting 

-upon the body, the system 

will be reduced to two groups 

of forces, of which one will 

be parallel to the axis, and 

the other in planes at right 

angles to it. The algebraic 

sum of the quantities of work of the components is equal 

to that of the resultants. But the work of the first group, 

is equal to the product of their resultant, multiplied by 

the path described by the body in the direction of this 

resultant, that is to say, in the direction of the axis; but as 

is reduced to that the body is invariably connected with the axis, it cannot 

components in move in tliat direction, and the path described by the 

planes point of application of the resultant of the parallel group 

thoM^8.ICUlar t0 nothing, and therefore the quantity of work is nothing. 

Thus, the total quantity of work of the given forces is 
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reduced to tliat of their components, in planes perpen¬ 

dicular to the axis, and passing through the points of 

application. 

§ 156.—The quantity of work of forces applied to a 

body which can only have a motion of rotation is always, 

as we have just seen, reduced to that of their components 

in planes perpendicular to the axis, or, which is the same 

thing, to that of the projections of the forces on these 

planes. It remains to determine this work. 

Let P be one of these components, A its point of 

application upon the body, C the point of the axis in 

which it is cut by the perpendicu¬ 

lar plane containing the component ^ 

P. Let fall upon PA, the per¬ 

pendicular CD, and recall what 

has been demonstrated in § 116, 

viz.: that the quantity of work of 

a force is always the same wherever 

its point of application be taken 

upon its line of direction. The 

quantity of work of P, estimated 

by the path described by the point 

P, is the same as that estimated by 

the path of A. But the point D describes, in the short 

interval of time t, an arc S, of which CD is the radius, 

and, hence, the quantity of work of P will be P. 8. 

As all the points of the body are invariably connected 

with the axis and with each other, they will describe 

simultaneously equal angles, and consequently arcs pro¬ 

portional to their distances from the axis; hence if /Sj 

denote the length of arc described at the unit’s distance, 

and r the distance of the point D from the axis, then will 

8 = r 8h 

and the quantity of work of P becomes 

PrSu 

L 

The work of the 

components 

perpendicular to 

the axis; 

the quantity o- 

work of a sing« 

component; 



the same for 

other 

components; 
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and for forces of which P', P", &c., 

are the projections, at distances from 

the axis equal to r\ r", &c., respec¬ 

tively, we have the quantities of work 

measured by, 

PV*Si, P" r" &C. &c. 

Knowing that the total quantity 

of effective work of the given forces, 

which we will denote by Q, is equal to 

the sum of the work of those which tend to turn the body 

in one direction, diminished by the sum of the work of 

those which tend to turn it in an opposite direction, we 

shall have 

Fig. 99. 

L 

the effective work 

of all the 

components; 

Q = jS\{Pr + PV + P'V' + &c.) . . (57). 

conclusion; 

signs of the 

moments. 

But we recognize Pr, as the moment of the component 

P in reference to the axis, and the same of P' /, 

P" r", &c.; •whence, the effective work of the component, and 

consequently of the force itself is equal to the product arising 

from multiplying the arc described at the unit's distance from 

the axis, into the moment, in reference to the same line, of the 

projection of the force on the perpendicular plane; and 

Eq. (57) shows that the effective quantity of work of 

several forces, applied to turn a body about an axis, is equal 

to the arc described at the unit's distance multiplied by the 

algebraic sum of the moments of the projections of the forces 

on planes perpendicular to the axis. 

The sign of the moments of those forces which tend to 

turn the body in one direction, must be different from 

the sign of those which tend to turn it in an opposite 

direction; in other words, if the sign of the first be 

positive, that of the latter must be negative. 

§ 157.—If the given forces be in equilibrio about the 

axis, their total work will be zero, whether the body be 
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at rest or in motion ; a condition that can only be fulfilled 

by making, in Eq. (57), 

Pr + P' r' + P" r" + &c. = 0 . . (58); 

that is to say, several forces will be in equilibrio about a Fores m 

fixed axis, when the ahebraic sum of the moments, ineqmllbu01Q 

reference to this axis, of the projections of the forces on per- fixed axis. 

pendicular planes, is zero. 

§158.—When forces are applied to a body to turn Extension of the 

it about an axis, the motion of its particles can only take fnncipleofllving 
7 1 ^ forces to a motion 

place in planes perpendicular to the axis; if the forces be of rotation; 

not in equilibrio, the motion will be either accelerated or 

retarded, and will give rise to forces of inertia which act 

in the direction of the motion, and of which the quantity 

of work will be equal to that developed in the same time 

by the motive forces. When all the points of the body 

have simultaneously the same velocity, the total quantity 

of work of inertia is equal to the product arising from 

multiplying half the mass into the difference of the 

squares of the common velocity at the beginning and 

end of the interval for which the estimate is made. But 

when the different points have different velocities during 

the same time, which is always the case in a motion 

of rotation, it is necessary to estimate at the beginning 

and the end of the interval, the living force of each 

element of the body, to take the sum of those at the 

beginning, and the sum of those at the end; the difference 

of these sums will be the total increment or decrement 

of living force during the interval. The half of this 

living force being the work of inertia, and this latter 

being equal to that developed by the motive forces, or in rotation, the 

rather by their projections on planes perpendicular to the workofthe 
y x ° 1 11 perpendicular 

axis, it is easy to perceive that in the motion of rotation components, is 

of a body, the work of the perpendicular components of halfthe J 7 i Jr i increment of 

the forces is half of the increment of the living force living force, 

of the body. The process of estimating the living force 
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of a body having a motion of rotation will now be 

given. 

Estimate of the 

living force of a 

body turning 

about a fixed 

axis: 

s 
r % 

Fig. 100. 

§ 159.—Consider an element m of a body, situated 

distance r from an axis of rotation L M. Denote by V 

velocity which it has at any in¬ 

stant, and by p its weight, m its 

mass = —. Then will its living 
0 

force be —. or m V2. 
0 

If S denote the space described 

by m during a very short interval 

of time /, and SY the space de¬ 

scribed in the same time by a point 

at the unit's distance from the axis, 

we shall have 

S = r. aS;, 

and dividing both members by t, 

at a 
’ the 

(59); 

but we have seen that, in any motion whatever, the 

velocity is equal to the space described, during a very 

short interval of time, divided by this interval, hence 

llie angular 

velocity; 

s 
= y, 

_ U; 

relation of 

angular to 

absolute velocity; 

in which V[ is the velocity of the point at the unit’s dis¬ 

tance from the axis—in other words, the angular velocity; 

and Eq. (59) becomes 

r= r.rlt 
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and the living force of m becomes m r2 V2. The simul- 

taneous living force of m, is m' r1 V1: and so on of 

others; and the total living force of the entire body, 

denoted by L, becomes 

L = Vi (m r2 + m'r'2 -f- m" r"‘ + &c.) . . (60). living force of a 

rotating body; 

In which it is to be remarked, that if the living force 

changes, the factor V1 will alone vary, while the factor 
99 

(m r2 -}- mr rr + m" r" + &c.) will remain constant, and 

of course, appear in the estimate of the new living force. 

This quantity, which has been called the moment of inertia, 

let us designate by f and we have 

value of the 

I = mr2 + m'r'2 + m" r"2 + &c. . . (60)' 

L = V21.(60)"; 

whence we see, that the living force of a body which turns equal to the 

about an axis, is equal to the product of the square of its square of the 
' M M j j. j angular velocity 

angular velocity, multiplied by its moment of inertia. into the moment 

Let us suppose that at the end of a certain interval, ofine,tia’ 

the angular velocity becomes Vf, the living force L', 

will be 

L’ = V/l; 

and subtracting the preceding equation from this one, 

we get 

L' - L = I. (F/2 - V2) . . . (61), increment of 

living force 

during any 

for the increment of the living force during this interval, interval; 

which is double the quantity of work produced by .the 

motive forces, or their perpendicular components, during 

the same interval. Denote by F, the resultant of these 

components, and by E) the path described by its point 
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of application, estimated in its own direction during the 

interval in question; then will 

equal to twice the 

quantity of work 

of the motive 

forces in same 

lime. 

I. (F/2 — Vi) = 2F. E . . . (62). 

From this expression it is easy to deduce the nature 

of the quantity I. For if we suppose the change in the 

angular velocity to give 

F/2 - Vi = 1, 

then will 

I = 2 F.E; 

the moment of 

inertia; 

its measure. 

what is meant by whence we conclude, that the moment of inertia of any body, 

is twice the quantity of work exerted by its inertia, during a 

change in the square of its angular velocity equal to unity. 

It is measured by the sum of the products which arise 

fiom multiplying each elementary mass into the square 

of its distance from the axis, Eq. (60)'. 

Example 

illustrative of 

the preceding1 

principle; 

Fig. 101. 

§ 160.—By the aid of what has just been explained, we 

may find the intensity of a motive force which causes a 

body to rotate about an axis, when 

we know the angular velocity at 

any two given instants of time, and 

the path described by the point of 

application in the interval between 

them. And reciprocally, if the 

force and the path described by 

the point of application be given, 

we may deduce the angular accel¬ 

eration. Suppose a wheel, for ex¬ 

ample, mounted upon a horizontal 

arbor and turned around its axis by 

a weight P, suspended from a cord 

wound around the arbor; required 



tlie angular velocity Vx of the wheel when, moving from 

a state of repose, the weight shall have descended through 

a vertical height II. Let I denote the moment of inertia 

of the wheel, then will the living force acquired be I 

and we shall have, 

I. Vt = 2P.II; 

whence 

2 P. II ____________ • 
I ; 

and consequently 

2P.ll 

1 ' 

§ 161.—The fly-wlieel is a large ring, usually of metal, 

of which the circumference is thrown to a considerable 

distance from the arbor upon which it is mounted by 

means of radial arms, and is used to collect the work of 

a motor when the effort of the latter is greater than 

that required to overcome a given resistance, to be given 

out again when the resistance becomes greater than the 

effort of the motor. It is a kind of store-house in which to 

husband work for future use. 

Conceive one or more forces to act upon such a wheel 

during an interval separating two given instants at which 

the angular velocities are Vx and Vfl The increment 

of the living force of the fly-wheel will be equal to 

double the effective quantity of work of the motor, and 

we shall have, retaining the notation of § 159, 

I(V,'2 - F,2) = 2FE; 

or 

2 2 F. E 

wheel turned by 

the action of a 

weight; 

value of the 

angular velocity; 

application to the 

fly-wheel; 

increment of 

living force in 

any interval; 
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tue value of the 

difference of the 

squares of the 

velocities; 

the motion may 

be made to 

approach 

uniformity; 

use of fly- wheel; 

exemplified in 

the common 

eaw-mill. 

which gives the difference of the squares of the angular 

velocities. If the quantity of work developed by the 

motor remain the same during the interval, and, by 

changing the wheel, the moment of inertia increase, the 

fraction 

2 F. E 

and consequently the difference of the angular velocities 

at the beginning and end of the interval, will be less. 

And, as the moment of inertia is in the direct ratio of the 

mass into the square of its distance from the axis, it is 

plain that it is always possible so to construct a wheel as 

to make its motion approximate to uniformity, even 

though the motive force be very great. 

While the motion is accelerated, it is obvious that 

the work of the motor will exceed that of the resistance; 

the fly-wheel will acquire an increase of living force 

which it will retain till, on the contrary, the motion is 

retarded, when it will be again given out in aid of the 

motor, which now becomes less than the resistance. 

There are certain machines whose tool cannot perform 

its work without the fly-wheel. This is strikingly ex¬ 

emplified in the instance of the common saw-mill, in which 

it is obvious that the work during the ascent and descent 

of the saw is very different; the work of the motor 

exceeds that of the tool or saw during one semi-oscillation, 

while the reverse takes place during the other; in the 

first case, the saw is merely elevated and the fly-wheel 

absorbs living force; in the second, this living force is 

given out to aid the motor in overcoming the resistance 

opposed to the saw, which, in its descent, sinks into the 

wood and is thus made to perform its work. 

§ 162.—If the elementary mass m, receive in the short 

interval £, the velocity F, and we denote by / its inertia, 

we shall have, Eq. (28), 
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/ = 
m V 

t ’ 

ancl for any other masses m\ m", &c., whose 

velocities in the same time are V\ F", 

m! F' r = t ’ 

/" = &c. 

Distance from 

the axis at which 

the resultant 

inertia of a 

acquired rotating body is 

exerted; 

If, moreover, the masses m, m\ m", &c., form parts of 

a body which has a motion of rotation, their velocities 

will be proportional to their respective distances from the 

axis. Denoting these distances by r, r\ r", &c., and by 

Vi the small degree of velocity impressed upon the point 

at the unit’s distance from the axis, we shall have 

V = rVi; V' = r' Fj; F 

I 

which in the above equations give, 

= r” Vi; 

V, V, 
= ™ r . -J-; /' = m r . —; / 

rr 
J7~ value of the 

m" r"—b • partial forces of 

t inertia; 

But, if this increment of angular velocity Vh has been 

impressed upon the body by a force F; whose direction 

is perpendicular to the axis, and applied at a distance 

from it equal to i?, this force is the measure of the inertia 

of the body, and will be in equilibrio with all the partial 

forces of inertia f f\ f \ &c. But these latter act in 

directions tangent to the circles described by the masses 

??2, m', m", &c., about the axis, and hence, § 157, 

equilibrium of 

these with the 

motive force 

equal to their 

resultant; 

FR - (fr + /V + f"r" + &c.) = 0; 

or 

FR — -5d_(m?’2 + m'r'2 + m" r”u + &c.) = 0; 
t 
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but tlie expression within the brackets is the moment of 

inertia /, and therefore 

the moment of 

the inertia 

actually exerted; 
F. R 

distinction 

between this 

and what is 

usually called the 

moment of 

inertia; 

whence we see, that the moment of the inertia exerted by a 

body while receiving a motion of rotation about an axis, is 

equal to its moment of inertia in reference to the same axis, 

multiplied into the quotient arising from dividing the small 

degree of angular velocity communicated, by the element 

of the time during which it is impressed. Notwithstand¬ 

ing the close analogy which exists between the moment of 

the inertia of a body, and what has been called the moment 

of inertia, they must not be confounded with each other. 

The former is converted into the latter by making 

equal to unity. 

From Eq. (63) we find 

Vi 
t 

value for the 

angular velocity: 

F. R x t 
_ (64), 

from which, having given the motive force that im¬ 

presses a motion of rotation upon a body about an axis 

perpendicular to its direction, we may find, at each instant 

of time, the angular velocity communicated, provided we 

can calculate the moment of inertia of the body in 

reference to the same axis. And from this, it is possible, 

how used. by means of a curve which has for its abscisses the series 

of times t, and for its ordinates the velocities Vx acquired, 

to determine all the circumstances of the motion of rota¬ 

tion. 

Measures of the 

moments of 

inertia; 

§ 163.—The moment of inertia of a body with refer¬ 

ence to any axis, we have seen, is measured by the sum of 

the products which arise from multiplying each elemen¬ 

tary mass into the square of its distance from the axis. 
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Of all the moments of inertia of the same body, those are 

easiest obtained which refer to axes through the centre of 

gravity. It is, therefore, important to be able to find the 

moment of inertia with 

reference to any axis, 

by means of that taken 

with reference to a par¬ 

allel axis through the 

centre of gravity. 

Let GII be this 

latter axis, LM any 

parallel axis, m an ele¬ 

mentary mass of the 

body G KH, through 

which element conceive 

a plane to be passed per¬ 

pendicular to the axes, 

and cutting them at the 

points a and b. Join 

m with a and b, and let fall from m, the perpendicular 

m e upon a b. Designate mb by r, m a by r„ ab by 

D, and a e by cl; we shall have 

r2 = r2 + D2 + 2 Dc?, 

and multiplying by the mass m, 

m r2 = mr2 + m D2 + 2 mD d; 

and for the masses m', m", m'", &c., 

m' r'2 = m' r/“ + mr D2 + 2m' Del', 

191 

those in reference 

to axes through 

centre of gravity 

easiest obtained; 

that in reference 

to any axis, in 

terms of the 

moment in 

reference to a 

parallel axis 

through centre of 

gravity; 

to”/'2 = to"?-/'2 + to"Z>2 + 2 m"Dd", 

&c., &c., &c. 

JD, which is the distance between the two axes, remaining 

obviously the same in all. 
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the sum of all 

the partial 

moments; 

resulting value; 

conclusion. 

Value, when the 

linear dimensions 

of the bodies are 

small, in 

comparison with 

their distances 

from the axis; 

/ 

Adding these equations together, and denoting the 

moment of inertia in reference to the axis G H by Ih and 

that in reference to L M by I, we find 

I = Ix + B2 (m + mr + m" + &c.) + 2 B (m d + mr d' 

+ m" d" + &c.); 

but m -f ra' + m" + &c. 

is the entire mass of 

the body, and m d + 

m'd' + m" d" + &c. is 

the sum of the prod¬ 

ucts which result from 

multiplying each mass 

into its distance from a 

plane through the centre 

of gravity, which sum 

is equal to zero. Hence, 

designating the mass by 

i/, we have 

1=1! + MB2 .... (65); 

whence we conclude that, the moment of inertia of a body, 

taken with reference to any axis, is equal to the moment of 

inertia taken icith reference to a 'parallel axis passing through 

the centre of gravity, increased by the product of the entire 

mass of the body into the square of the distance from the centre 

of gravity to the first axis. 

It follows from this theorem, that if the distances 

of the particles of the body from its centre of gravity 

be small in comparison with the distance of this point 

from the axis of rotation, we may take, for the moment 

of inertia, simply the product of the mass into the square 

of the distance of the axis from the centre of gravity. 

Finally, if Eq. (65) be multiplied by the square of 

Fig. 102. 
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the angular velocity, Vh with which the body turns about 

the axis L M, we shall have 

V?.I = F,8/, + H.D*V? . . (66); value of the 
living force; 

but Vi I is the living force of the body ; V1 Ix is the 

living force it would have, if it rotated about a parallel 

axis through the centre of gravity with the same angular 

velocity If; M.DI 2 V2 is the living force of the same 

body supposed concentrated at its centre of gravity. 

Whence, the living force of a body which rotates about any 

axis, is equal to the living force of the same body concentrated expressed in 

at its centre of gravity, augmented by that ichich it would WOlds, 

qjossess if it turned, with the same angular velocity, about a 

parallel axis through the same centre. 

Finally, when the body is so small that f V2 may be 

neglected in comparison with M. D2 Vf, we have simply 

Fj I — JjT. D V-! ... (66y 5 ' value when the 

linear dimensions 

. . _ , , , , t^ie body are 
that is to say, the living force oi the body is equal to the very smaii as 

product of its mass into the square, D2 T^2, of the velocity compared with 
its distance from 

of its centre of gravity. the axis. 

§ 164.—Thus far the moment of inertia of a body has 

been expressed in terms of its elementary masses. If the Moment of inertia 

body be homogeneous and the specific gravity or weight of their linear 

of a unit of its volume be denoted by d, its elementary dimensions and 

volumes by a', a", &c., and masses by m,m\m\ &c., denslty’ 

we shall have 

and these in the general expression I, of the moment of 

inertia, give ■ 

I = —(ar2 + 4- a" r"2 + &c.); 
9 

its general value 
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rule; 

moment of inertia 

of a straight bar, 

in reference to a 

perpendicular 

axis through its 

middle; 

that of a right 

cylinder, in 

reference to its 

own axis; 

that of a circular 

ring, in reference 

to a 

perpendicular 

axis through its 

centre; 

NATURAL PHILOSOPHY. 

tliat is to say, to find the moment of inertia of any homo-1 

geneous body, find the value of a r2 + a' + a"r"3 -f &cM 

and multiply it by the quotient arising from dividing the 

specific gravity, or weight of a unit of its volume, by the 

force of gravity. 

§ 165.—1st. The moment 

of inertia of a straight bar 

whose length is a and cross 

section 5, in reference to an 

axis passing through its mid¬ 

dle pointed, and perpendicu¬ 

lar to its length, is given by 

Fig. 103. 

c Ql D 

Ix = b . (jo a3), — very nearly. 

2d. The moment of in¬ 

ertia of a right cylinder 

having a circular base, with 

respect to an axis through 

its centre of gravity, and 

coinciding with its axis of 

figure, is given by the equation 

Fig. 104. 

(±~ ±) 

x 
s 

T 
in which r is the radius of the base, c the length of 

the cylinder, and cr the ratio of the circumference to the 

diameter of a circle. 

3d. The moment of inertia of a circular ring, whose 

section by a plane through its centre of figure is rectangu¬ 

lar, taken with reference to an axis through its centre of 

gravity and perpendicular to its plane, gives 

Ix = 2 r a i (r2 + —) X 
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in which r is the mean radius, 

or that of a circle whose cir¬ 

cumference is midway be¬ 

tween the inner and outer 

surface of the ring, a the 

thickness parallel to the axis, 

and b the thickness in the 

direction of the radius. 

SOLIDS. ’ 19o 

Fig. 105. 

4th. That of a spherical 

segment taken in reference to 

a diameter passing through 

its centre of gravity, or mid¬ 

dle, gives 

Fig. 10G. 

that of a spherical 

segment, in 

reference to its 

versed sine; 

(I?J! - ifr + ioP) x —i 

in which / denotes the versed sine of the segment, and r 

the radius of the sphere; and for the entire sphere, 

tfr5 X —. 
9 

of a Bphere, in 

reference to a 

diameter; 

5th. That of a right cone 

having a circular base, taken 

with reference to the axis of 

figure gives, 

Fig. 107. 

that of a cone, in 

reference to its 

axis; 
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Pig. 108. 

that of a and that of a truncated right 
truncated right 

cone: 
cone, having circular bases, 

A = 
•K 

/5 r® — r 
a 

10 r — r' 

5 
x —; 

9 

in which r and r' are the radii of the greater and smaller 

bases respectively, and a the altitude. 

Fig. 109. 

6th. The moment of in¬ 

ertia of an ellipsoid is given 

by 

that of an 

ellipsoid, 

I\ = is* ctbc (7>2 + c2) X —; 
kJ 

in which a, &, and c denote the three axes, and the moment 

being taken with reference to the axis a. 

7th. That of a rectangular 

l. c 

parallelopipedon, of which the 

three contiguous edges are a, 

Z>, and c, taken with reference 

to an axis passing through its 
reciantfuiar . p •. /-y i 

parallelopipedon; Centre °f 8™% ff, and par- 
allel to the edge a, 

Fig. 110. 

that of a 

rectangular 

V 

l \ 

I\ = tV cl be (a2 + b2) X —• 
9 

The same taken in reference to an axis through the middle 

of the face a b and parallel to a, 

/ == TVabc(b2 4* 4c2) 
9 

the same for a 

different axis; 
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Fig. 111. f -V 8th. That of a right prism 

having a trapezoidal base of 

which the greater and less 

parallel sides are respectively 

b and b' and distance between 

them c, the altitude of the 

prism .being a, and the moment taken with reference to 

an axis through the middle of the side b, and parallel 

to the altitude a, 

that of a right 
; i 

prism with 

trapezoidal base; 

I = ac 
b + b' \ ,V + b’2 c b + 3 b’ 

2 M 24 + 6 b + b 

o \ 5 

-) x T 

Fig. 112, 

rm 

9th. If the trapezoidal 

base of the above prism 

be replaced by a segment 

of a parabola, of which 

c is the length of the 

transverse axis, and b 

that of the chord per¬ 

pendicular to it, and which terminates the parabola, the 

moment of inertia, with reference to an axis parallel to 

the altitude and passing through the middle of b, is' 

given by 

• '' V, ^ ' 

the same when 

the base become* 

' a segment of a 

parabola. 

/ = | ab c 
3.5.b2 + 16c2 

70 
\ <> 
) x ~* 
J 0 

,o3 sjciKW • ri' v 

H:.k i .tfS 

T) 0 

Fig. 113. 

j(’< ji -jmom od$ 

iv- *-,<» xdJi 

§166.—We shall close this subject with an example Application to 

for the sake of illustration, and we shall first take that examples; 

of a trip-hammer, whose 

weight is P, mounted up¬ 

on a handle in the shape 

of a rectangular paral- 

lelopipedon which turns 

freely about an axis (9, at 

right angles to its length. *--^ 

Denote by P, the distance 

of the centre of gravity of the head B from the axis 0. 

O 
w 

■ A 

n 

that of a common 

trip-hammer; 
•w 
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If the linear dimensions 

of the head be small com¬ 

pared with this distance, 

its moment of inertia will 

not differ much from 

Pig. 113. 

the moment of 

inertia of the 

head; 

P 
— x P2, 
9 

and that of its handle is given in reference to an axis 

through its centre of gravity by the 7th case, or 

that of the handle 

with reference to Clb C (a2 1 + 
its centre of 

gravity; 

and denoting by K, the distance of the centre of gravity 

of the handle from the axis, its moment of inertia, with 

reference to the axis 0, becomes, Eq. (65), 

5 abc //2 o\ . £ 7 Tr0 
— X -r-r- (5- + a2) + — a b c R3 
9 12 9 

or 

with reference to 

the axis; 

b2 + a\ . 

12 ) ’ 

since abc 5 = P', the weight of the handle. The total 

moment of inertia is, therefore, given by 

the moment of 

the entire 

hammer; 

P P' 
/ = —P2 + — 

9 9 

b2 + a2\ 

12 / 

The process for finding the moment of inertia of the 

fly-wheel is much simplified by the fact that all its parts 

moment of inertia are nearly at the same distance from the axis. Thus, by 
of the fly-wheei; cajqng the mean radius of the wheel, we may take 

P 2 2 
— P2 for mr2 + m' m" r" -f- &c.; and hence, 
9 : f. >. 
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' I 

P 
I = _£»; 

9 

and denoting the angular velocity of the wheel by Vh 

its living force will be, § 159, 

its value; 

P 

9 
X B2. Vl2. 

living force of 

the fly-wheel: 

To find the angular velocity of the wheel, count the num¬ 

ber of its revolutions in a given time, multiply this 

number by 2 tf, and divide the product by the number 

of seconds in the given time; the quotient will be the angular velocity 

angular velocity. Let Vx equal 9 feet; the weight A* experimentally. 

of the wheel 2000 pounds, and the mean radius B, 6 feet; 

omitting the fraction in the value of y, the expression for 

the moment of inertia becomes 

/, = 2000 x 33 = 2250; 

and for the living force, example. 

2250 x 81 = 182,250; 

the half of which, or 91,125 pounds, raised through one 

foot, is the quantity of work absorbed by the inertia of 

the wheel, to be given out when the moter ceases to act. 

§ 167.—Resuming Eq. (60)', we may make 

mr2 + on' r'2 + on" r" + &c. = MB , 

in which M is the entire mass of the body, and 

K = ± \/ 
onr2 + on' r'2 + on" r"2 4* &c* 

Ji 

Centre and radius 

of gyration; 

But this is equivalent to concentrating the entire onass onto 

a single point whose distance from the axis is A, without 
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definition; 

principal centre 

and radius of 

gyration; 

moment of inertia 

in terms of radius 

of gyration. 

Central forces; 

a body made to 

revolve about a 

fixed point by 

means of a bar; 

NATURAL PHILOSOPHY. 

changing the value of the moment of inertia. This point is 

called the centre of gyration, and the distance If is called 

the radius of gyration. As the moment of inertia varies 

with the position of the axis, there will be an infinite 

number of centres and radii of gyration, or as many 

of each as there are possible positions for the axis. When 

the axis passes through the centre of gravity, they are 

called the principal centre and radius of gyration. 

Denoting the principal radius of gyration by K\ we 

may write MK'2 for Ih in Eq. (65), and we have 

/ = MK + MU 

XI. 

CENTRAL FORCES. 

§ 168.—Conceive a bodv, whose weight is P, attached 
U *y 7 O 7 

to a fixed point C by a rigid bar A CJ and suppose it to 

have any velocity whatever in the direction AT\ perpen¬ 

dicular to the bar. If 

the body were free, it 

would, in virtue of its Fig. 114. 

inertia, move in the di¬ 

rection A T with a con¬ 

stant velocity. But not 

being free, the bar will 

keep it at the same dis¬ 

tance from C and cause 

it to describe the circum¬ 

ference of a circle about 

this point as a centre. There are, then, during this con¬ 

strained motion of the body, two central efforts exerted in 

the direction of the bar, the one by the bar to draw the 

body from the tangential path A T} the other by the body 
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to stretch, tlie bar out to that path. These forces are equal 

and directly opposed, because action and reaction are 

always equal and contrary. The first, or that which 

tends to draw the body within the tangent, is called 

the centripetal force, and the second, or that which tends centripetal force; 

to stretch the bar, the centrifugal force. The centrifu- centrifugal force; 

gal force is, then, the resistance which the inertia of a body in centrifugal force 

motion opposes to whatever deflects it from its rectilinear arises from 
-LJ- *■ J inertia; 

path. 

We will first suppose that the dimensions of the body 

are so small as compared with its distance from the fixed 

centre, that it may be regarded as a material point, 

animated with a velocity V. For the circle which it 

describes, we may substitute a regular polygon ABODE, substitution of a 

of a great number of very small sides and having its 01* e 

angles in the circumference. This being supposed, it is 

first to be shown that the material point will describe each 

of the sides of this polygon with the same velocity, or 

that there will be no loss of velocity in passing from one 

side to another. 

For this purpose, we remark, that if the body possess 

Fig. 115. 

ftt 

to prove there is 

no loss of velocity 

from the reaction 

of the curve; 

the velocity V at the moment of its arriving at B, the 

beginning of the side B C\ it will be animated, while 
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the body has two 

simultaneous 

velocities; 

the resultant of 

which has the 

direction of the 

side next to be 

described; 

no loss of 

velocity; 

describing this side, with two simultaneous velocities. 

One of these is the primitive velocity V = B W, in 

the prolongation of A B ; the other B U, in the direc¬ 

tion B 0, is a velocity due to the action of the centripetal 

force while the body is passing from the side A B to the 

side B C of the polygon. But we have seen, § 106, that 

when a body receives two simultaneous velocities in differ¬ 

ent directions, its resultant velocity will be the same as if it 

Fig. 115. 

w 

possessed them successively, and as though they were 

communicated one after the other in their respective direc¬ 

tions. Thus the resultant velocity B C', with which the 

side B C is described, coincides in direction with this 

side, otherwise the body would take some other path, 

which is contrary to the hypothesis. B U and WC' are 

equal and parallel, from the parallelogram of velocities, j 

The radius 0 B divides the angle ABC into the two 

equal angles ABO and 0 B C; the angle ABO is equal 

to the angle B W C\ and the angle OB C is equal to 

the angle B C' W; hence the angles BC'W and BWC 

are equal, and the side B O' is equal to the side B W; in : 

other words, the resultant velocity B C\ with which the 

side B C is described, is equal to the velocity B W which j 

the body had at the end of the side A B. Whence it 
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results, that the velocity communicated to a material point is velocity not 

not altered in its circular motion ; a result easy to foresee, deleting cause; 

since the centripetal force, acting in a direction perpen¬ 

dicular to the direction of the motion, cannot work effi¬ 

ciently ; it can neither accelerate nor retard the motion, 

and, therefore, can neither increase nor diminish the living 

force of the material point. 

Now observe, that BU — W C\ is the velocity genera¬ 

ted by the centripetal force in its own direction during 

the time the material point is passing to the side B C. 

Denote this time by t, and the centrifugal, which is equal 

though opposed to the centripetal force, by F\ and the 

mass of the point by 1/J then will the value of F) be given, 

Eq. (39), by the equation 

F = If- 
IFC' 

Draw the radius CO; the triangles BO C and BWC' to find value of 

are similar, because the angle OCB — OBQ is equal centnfu°alforce’ 

to the angle B C’ W, and the angle 0 B C is equal to the 

angle BWC'. Hence we have the proportion, 

BO BC BW WC'; 

or, denoting the radius B 0 by R, and replacing B W by 

its equal V 

R : BC :: V : WC'; 

whence 

WC = — 

and this, in the value for F) gives 

BC V 
F= M xj; 
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the measure of 

the centrifugal 

force; 

but B C, the element of the space, divided by t, the element 

of the time, is equal to the velocity EJ whence 

M: V2 

R 

equal to the 

living force 

impressed, 

divided by radius 

of curvature; 

Such is the expression for the centrifugal force. The 

numerator is the living force of the body, and the de¬ 

nominator is the radius of the circular arc which the body 

is describing for the instant; whence we conclude, that the 

centrifugal force of a body of small dimensions, as compared 

with its distance from the centre about which it revolves, is 

equal to the living force impressed *upon the body, divided by 

the radius of the circle described by its centre of gravity. 

Suppose, for example, that the weight of the body is 

100 pounds, that its centre describes a circle whose radius 

is 3 feet, with a velocity of 12 feet. 

illustration; 

M = 
100. 
32 ’ 

V = 12; V2 = 144; R = 

100 X 144 

32 x 3 
150 pounds; 

the body, therefore, tends to stretch the bar with an effort 

of 150 pounds. 

Denote by Vx the angular velocity; then will 

V2 = Vi R\ 

and this, in Eq. (67), gives 
expressed in 

terms of the F ~ M V? R.(68). 
angular velocity. ' 

§ 169.—Let us next take the 

case of a thin layer of matter 

DAB, rotating about an axis 0, 

perpendicular to its plane, with 

Extension to a an angular velocity Vv Taking 

dimensions; any one °f Lie elements of the 

layer whose mass is m, and de- 

Fig. 116. 

P P 
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noting its distance from the axis 0) by r, its living force 

will be 

mr2 Vij 

and its centrifugal force, 

r 
mr V{ 

centrifugal force 

of an element; 

which will act in the direction 0 m of the radius of the 

circle described by m about the centre 0. Through the 

point 0, draw in the plane of the layer, any two rectan¬ 

gular axes, as Ox and Oy. Resolve the centrifugal force 

into two components acting in the direction of these axes; 

these components and their resultant will be proportional 

to the sides and diagonal of the rectangle p 0 q m, and we 

shall have, denoting Op by x, Oq by y, the component 

parallel to the axis Ox by X, and that parallel to Oy 

by Y, 

r : x : : mr V{ : -V resolved into 

rectangular 

components; 

T7"^ 

mr Vi : r : y :: ry 
whence, 

X — m x V{ 
VY •% ' . V- ’' \ V» i 

Y = m y Vi ; 

and for any number of small masses m', m", &c., by using 

the same notation with accents, 

X' = w! x’ Fx2, 

X" = m"x"V1\ 

; • iifECUO.! 

componenta 

parallel to the 

axis x, for othor 

elements; 
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Yf II 

components 

parallel to the 

axis y; Y" II *
 

&c. = &c.; 

by this process all the centrifugal forces have been re¬ 

duced to two groups of forces acting upon the point (9, 

in the direction of the axes Ox and Oy: and from the 

principle of parallel forces, each group will have for its 

resultant, denoted by Xx and Yx respectively, 

Xx = V{ (m x + m' x' + m" x" + &c.), 

Yl — Y{ (my + m' y' + m" y" + &c.); 

that is, 

resultants 

parallel to the 

axes x and y ; 

« 

in which M* denotes the entire mass of the layer, and 

x, and y, the co-ordinates OP and 0 Q of its centre of 

gravity G. 

The resultant of the forces Xx and Yx is the entire 

centrifugal force of the layer; and this denoted by Fx, 

is, from the principle of the parallelogram of forces, 

X, = Vx M' xn 

Yx = Vx M' y,; 

Fi = Vi M'\j? + Vi M'\? = V?M' sJY+yi 

and making 

measure of the 

layer’s 

centrifugal 

force; 

Vx* -f- y* = 0 G = r, 

Fx = MX, Vj2; 

whence, the centrifugal force of a thin layer of matter 

revolving about an axis 'perpendicular to its plane, is equal 

to the square of its angular velocity, multiplied by the product 
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of its mass into the distance of its centre of gravity from the 

axis of rotation. This force is applied to the centre of 

gravity, since it acts in the direction 0 G. 

Now suppose any body, as A B (7, to turn around the centrifugal force 

axis L M. ‘Divide the body into thin layers whose planes °fz“ body of any 

are perpendicular to the 

axis. These layers will 

give rise to as many cen¬ 

trifugal forces acting at 

their centres of gravity, 

(7, Gf, G", &c. All 

these forces are perpen¬ 

dicular to the axis Lftf 

without being parallel to 

each other. Sometimes 

they have a single re¬ 

sultant, sometimes they 

will reduce to two forces, 

and sometimes they will 

reduce to nothing, de¬ 

pending upon the form 

and density of the body, 

and the position of the axis. In the last case, viz.: thatin the Iast case no 

in which the forces reduce to nothing, there will be n0 picssuie on axi8? 

pressure upon the axis. 

If the centres of gravity (7, G\ G", &c., be all on the 

same straight line parallel to L M, the centrifugal forces 

will be parallel, will act in the same plane, at the same 

distance R from the axis of rotation, and their resultant, 

which becomes equal to their sum, will pass through the 

centre of gravity of the entire mass, and we shall have 

Fig. m. 

may reduce to a 

single force, two 

forces, or to zero; 

F = Tj2 R + M” + M'n + &c.); 

and making 

M' + M" + if'" + &c. = If 

F = V12 R. K • 

the centres of 

gravity ui the 

layers on same 

line parallel to 

the aiis; 
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the centrifugal 

force the same 

as though the 

body were 

reduced to centre 

of gravity; 

examples. 

Illustration of the 

action of the 

centrifugal force; 

the horse 

travelling in a 

circle; 

his inclination; 

» •'a.'ivt 'v 

that is to say, the centrifugal force of a 

tions perpendicular to the axis, have 

gravity in a straight line parallel to 

the axis, is the same as though the 

entire mass were concentrated at the 

common centre of gravity. This sim¬ 

plification is peculiar to the sphere, 

the cylinder, and surfaces of revolu¬ 

tion generally whose axes of figure 

are parallel to the axis of rotation. 

body, ivhose sec* 

their centres of 

Fig. 118. 

J? 

Fig. 119. 

§ 170.—The centrifugal force accounts for a multitude 

of interesting facts. When a horse is made to travel in 

the circumference of a circle, 

his centrifugal force will 

vary as his mass and the 

square of his velocity; when 

the latter is doubled, his cen¬ 

trifugal force is quadrupled; 

when trebled, it is made 

nine times as great, &c., so 

that it would soon become 

sufficient to overturn him 

or to cause him to recede 

from the centre 0. It is to resist this effort that horses, 

under these circumstances, are seen to incline their bodies 

inward, and this inclination is determined by that of the 

resultant of his centrifugal force and weight, as the line 

of direction of this resultant must pierce the plane 

of his path somewhere within the polygon formed by 

joining his feet. 

If, then, we lay off upon the vertical and horizontal 

drawn through his centre of gravity G, the distances 

GP and G F, to represent his weight and centrifugal 

force respectively, and construct the rectangle P G FP, 

the diagonal GP will give the inclination sought. Deno¬ 

ting the weight of the. horse by P, , his distance from the 
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centre by 72, and his actual velocity by V, we have 

P V2 

0 
F 

72 ’ 

and consequently the pressure or 

GR = P\ 1 + 
F4 

his oblique 

pressure on the 

ground; 

g0-Rr 

Fig. 120. 

a wagon making 

a short and rapid 

turn; 

4 

a ►,F 

Finally, in order that the horse may not slip, the surface surface of his 

BA of his path, must be perpendicular to G R. path; 

When a horseman rapidly turns a corner, he leans 

his body towards the centre of the curve which he is a horseman 

describing, to bring the resultant of his weight andturnmgacoraer: 

centrifugal force to pass between his points of support 

in the stirrups. 

When a wagon makes a quick turn, its centrifugal force 

tends to overthrow it towards the convex side of the curve 

it describes; and the risk of 

upsetting is directly propor¬ 

tional to its weight and the 

square of its velocity, and 

inversely proportional to the 

radius of the curve. This 

is why the exterior of the 

roadway is usually elevated 

in short turnings, and car¬ 

riages diminish their speed 

when approaching them. 

The sling, the axe, the 

sabre, &c., exert upon the 

hand, when we give them 

a circular motion, a traction 

equal to the centrifugal force. 

The common wheel is usually 

composed of fellies A, A, &c., 

connected with the nave jV, 

by means of radial arms, l, l, 

it 

1 

inclination of 

roadway; 

y / 

Fig. 121. 

other examples— 

the sling, axe, 

sabre, &c.; 

14 

common 

carriage-wheel 
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action upon the 

fellies of the 

common wheel. 

Centrifugal force 

at earth’s 

surface; 

that of a body 

whose weight is 

p : 

&c., and the centrifugal force is constantly acting when 

the wheel is in motion to draw these arms from their 

places, to enlarge the circumference, and thus to detach 

the fellies from each other; hence the tire not only pro¬ 

tects the wheel from the wear and tear arising from the 

roughness of the road, but also counteracts the effect of 

the 'centrifugal force. 

§ 171.—We know that the earth revolves about its 

axis A A' once in twenty-four hours, and that the cir¬ 

cumferences of the parallels 

of latitude have velocities 

which diminish from the 

equator to the poles ; the 

centrifugal force will hence 

diminish. To find the law 

of this diminution, let P be 

the weight of a body on the 

surface of the earth in any 

parallel of which R' is the 

radius, its centrifugal force 

will, Eq. (68), be 

Fig. 122. 

— • v?R’-. 
9 

in which Vi is the angular velocity of the earth. Sub- 

p 
stituting M for —, we have 

0 

F = M Vl2 R\ 

Denoting the equatorial radius CE — CP, by R, and 

the angle CPC' = P CE, which is the latitude of the 

place, by <p, we have in the triangle P C C\ 

R' = R cos <p; 
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which substituted for R' above gives 

L , F = M Vi R cos 9 . . . . (69). 

Now, the only variable quantity in this expression, 

when the same mass is taken from one latitude to another, 

is 9; whence ice conclude that the centrifugal force varies as 

the cosine of the latitude. 

The centrifugal force is exerted in the direction of the 

radius R' of the parallel of latitude, and therefore in a 

direction oblique to 

the horizon TT’. 

Lay off on the pro¬ 

longation of this ra¬ 

dius, the distance 

P If to represent 

this force, and re¬ 

solve it into two 

components P N 

and P T,\ the one 

normal, the other 

tangent to the sur¬ 

face of the earth; 

the first will dimin¬ 

ish the weight P by its entire value, being directly opposed 

to the force of gravity, the second will tend to urge the 

body towards the equator. 

The angle IIP N is equal to the angle PCE, which 

is the latitude, denoted by 9; whence the normal com¬ 

ponent 

PN = PII x cos 9 = F. cos 9 = M Vi R cos 29, 

Fig. 123. 

and 

P T — P H sin 9 = F. sin 9 — M V\ R. sin 9 cos 9; 

law of variation 

of centrifugal 

force; 

the centrifugal 

force resolved 

into a vertical 

and horizontal 

component; 

value of vertical 

component; 

horizontal 

component; 
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its value; 

effect upon tho 

weights of bodies 

and figure of the 

earth: 

! 

cause of the 

present figure of 

the earth; 

but 

sin <p . cos 9 = J sin 2 cp; 

therefore 

P T = J M Vi B sin 2 cp 

whence we conclude, that the diminution of the weights of 

bodies arising from the centrifugal force at the earth's surface, 

varies as the square of the cosine of the latitude ; and that all 

bodies are, in conse¬ 

quence of the cen¬ 

trifugal force, urged Fig. 123. 

towards the equator 

by a force which 

varies as the sine of H 

twice the latitude. 

At the equator 

and poles this latter 

force is zero, and at 

the latitude of 45° 

it is a maximum, 

and equal to half 

of the entire centrifugal force at the equator. 

At the equator the diminution of the force of gravity 

is a maximum, and equal to the entire centrifugal force; 

at the poles it is zero. The earth is not perfectly 

spherical, and all observations agree in demonstrating 

that it is protuberant at the equator and flattened at the 

poles, the difference between the equatorial and polar 

diameters being about twenty-six English miles. IfVe 

suppose the earth to have been at one time in a state of 

fluidity, or even approaching to it, its present figure is 

readily accounted for by the foregoing considerations. 

The weight of a body which varies, according to the 

Newtonian hypothesis, directly as the mass and inversely 

as the square of the distance from the centre of the earth, 
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is, therefore, on account of a difference of distance and of weight of the 

the centrifugal force of the earth combined, less at the 8*™test at the 

equator than at the poles. poles and least at 

To find the value of the centrifugal force at thethe equator ’ 

equator, make, in Eq. (69), M = 1 and cos 9 = 1, which 

is equivalent to supposing a unit of mass on the equator, 

and we have 

F = V?R. centrifugal force 

at the equator; 

The angular velocity is equal to the absolute velocity, 

divided by the equatorial radius of the earth. The abso¬ 

lute velocity is equal to the circumference of the equator 

in feet, divided by the number of solar seconds in one 

siderial day: 

Diameter of earth in miles 7925.Log. 

<7T .3.1416 Locr. 

Feet in one mile.5280 .Log. 

Circumference of earth in feet.Log. 

Length of a sid. day in Sol: seconds, 86400X0.997269, Log. 

Absolute velocity in feet.Lo 

Radius of earth in feet. . 
g- 

Log. 

3.8989993 

0.4971507 

3.7226340 

8.1187840 

4.9353259 

3.1834581 computed; 

7.3206032 

Angular velocity V\ Log. 5.8628549 

2 
Square of angular velocity V ...Log. 1.7257098 

Radius of earth in feet.Log. 7.3206032 
/ '- 

Centrifugal force at equator. .0.1112. 9.0463130 

Thus the value of the centrifugal force at the equator is its value; 

0.1112 of one foot. 

By the aid of this value, it is very easy to find the 

angular velocity with which the earth should rotate, to to find angular 

make the centrifugal force of a body at the equator equal 

to its weight; for by the present rate of motion we weights at the 
n , ’ equator; 
find 

01112 = VfR, 
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result; 

the weight of all 

bodies affected. 

Motion in a 

circular groove, 

when plane of 

groove is 

horizontal; 

and by the new rate of motion 

82^1937 = Vf 11; 

f . 
in which 32.1937 is the force of gravity at the equator. 

Dividing the second by the first, and we find 

32.1937 _ F,'2 

0.1112 F/ 
289, nearly; 

whence 

Vi = 17Fl5 

that is to say, if the earth were to revolve seventeen times 

as fast as it does, bodies would possess no weight at the 

equator; and the loss of weights at the various latitudes 

from the equator to the poles diminishing in the ratio of 

the squares of the cosines of latitude, the weights of all 

bodies, except at the poles, would be affected. , 

§ 172.—If we now sup¬ 

pose the body, instead of 

being connected with the 

point C by means of a rigid 

bar, to move about the same 

point in a circular groove, 

the effects, as regards the 

centrifugal force, will ob¬ 

viously be the same, since 

the body will be constrained, 

by the resistance of the 

groove, to remain at the sai 

Fig. 124. 

distance from the centre. 

If the plane of the groove be horizontal, the pressure of 

the body against the side will be constant and equal to the 

centrifugal force, that is to say, to 
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If- 

But if tlie plane of tlie groove be vertical, the weight 

of the body will also exert its influence; for the weight 

being resolved into two components, one tangent and the 

other normal to the curve at the place of the body, the 

latter will sometimes act with, and sometimes in opposi¬ 

tion to the centrifugal force, while the former will some¬ 

times increase and sometimes diminish the velocity; so 

that the pressure becomes greater or less than the cen¬ 

trifugal force depending upon these two circumstances. 

Knowing one of the velocities which the body may have, 

it is easy, by the principle of living forces, to And the 

others. Take the body at its lowest point m\ and denote 

its velocity, supposed known, by V\ and let it be re¬ 

quired to And its velocity at any other point m, whose 

vertical height above m' is II. Denote the velocity at this 

latter point by Vf then will the loss of living force in 

passing from m' to m be 

MV'2 - IIV2] 

and this being equal to double the quantity of action of 

the weight denoted by IK, in the same interval, which 

quantity of work is 2 TKZ7, we have, 

M (V'2 — V2) = 2 WH; 

replacing M by its equal 
W 

0 ’ 

and reducing 

% 

when vertical, 
the effect of the 
body’s weight; 

from one velocity 
to find the others; 

v = \f vfi - Toil. 
value of velocity 
at any point; 
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Denoting by II tbe beiglit due to the velocity Vwe 

have 

V'2 = 2 g H'; 

which in the above equation gives 

same in terms of 

difference of level 

of the points; V = V2g(H' - H). 

velocity greatest 

at lowest point; 

least at the 

highest. 

gain and loss of 

iving force. 

Thus, the velocity of the 

body will be diminished 

by the action of its weight 

during its ascent, while, on 

the contrary, it will be in¬ 

creased during the descent, 

being always the same at 

points situated on the same 

horizontal line. The ve¬ 

locity will be greatest at the 

lowest and least at the high¬ 

est point. During the de¬ 

scent, the body will acquire living force by absorbing the 

work of its weight, which living force will again be 

destroyed during the ascent because it is opposed to the 

weight. 

Centrifugal force 

of a body which 

describes any 

curve; 

§ 173.—When a body, in vir¬ 

tue of the motive forces which 

act upon it, describes a curve in 

space, the effect is the same as 

though it passed over the arcs of 

the successive oscillatory circles 

of which the curve is composed. 

If the positions of the centres C, 
C\ C", &c., of these successive 

circular arcs be known, as well 

as their radii A C: A! C\ A" C", 
&c., the curve will be given 

Fig. 125. 
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by the series of arcs A A\ A' A", A" A'", &c., de¬ 

scribed about these centres, and terminated by these radii. 

And it will be easy, from the consideration of the centrifu¬ 

gal and motive forces, to obtain for every point of the 

curve, the position of the centres and the magnitudes of the 

radii of the oscillatory circles, and, consequently, to trace 

the path described by the body. 

Let P denote the resultant of the motive forces which to trace the curve 

act upon the body at any particular point as A; M the ^centrifugal0 

mass of the body ; V its velocity, of which the direction forces; 

is A T; and r the radius A C; then will the centrifugal 

force be measured by 

MV2 

r 

But the bodv, in describing the curve, does not abandon 

the small arc A A\ and must therefore be retained on it 

by a force equal and directly opposed to the centrifugal 

force; in other words, the motive force A P, being re¬ 

solved into two components, one tangent and the other 

normal to the curve, this latter must be equal to the 

centrifugal force. Denote the normal component by y>, 

then will 

whence 

MV2 

MV2 
r = - 

P 

■ ■ (70); 

• • (71). 

value of the 

normal 

component of the 

motive force; 

radius of 

curvature; 

Such would be the radius of the initial arc A A', provided 

the velocity V were constant during its description. This 

condition cannot, however, be fulfilled, since the tan¬ 

gential component of the motive force will either increase 

or diminish the velocity. It will be sufficient to make 

n + nr 
2 
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terminal velocity 

on the initial arc 

to be found; 

its valve; 

value of mean 

velocity; 

value of radius; 

value of arc 

described; 

Fig. 125. 

in which n and n' denote the velocities of the body at the 

beginning and ending of the arc. The former of these 

must be given, being the ini¬ 
tial velocity; the latter must 

be found, and for this pur¬ 

pose we remark, that as the 

arc is described in a very short 

time, say the tenth of a second, 

the motive force, and therefore 

its tangential component, may 

be regarded as constant during 

this interval. Denoting the 

tangential component by q, and 

the time by £, we have, from 

the laws of uniformly varied 

motion, Eq. (11), and (30)' 

nr = n + JLt 
M h 

and 

n + n' 
V = --- = n + 

2 M 
t . . (72); 

which, in Eq. (71), gives 

M (n + 2 M*) 
r — 

V 
■ (73). 

This distance being laid off" from the point A, upon the 

perpendicular to the tangent A T, will give the centre C. 
The length of the arc, denoted by 5, is found from Eq. 

(10), or 

nt + I -jyr t3 . 
J M ■ ■ (74). 

The law of the motive force being known, the intensity 

of its action on the body at A' becomes known, and its 
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component perpendicular to the tangent A' T\ denoted by 

p'j will give 

value of normal 

component of 

motive force; 

or 

, M V'2 
T = -* 

Jf)' 1 

in which r' is the radius of the arc A' A", and V', the 

mean velocity with which it is described. 

Denoting the new tangential component by q', we find, 

in the same way as before, 

JP 
MV ,2 

r 

n" = nf + 
M ’ 

Tr, n” + n' , , o' 
V' = -^-- = nr + ~~t; 

2 M 

which in the equation above gives 

' v 2 

*■(”'+aV) 
V = 

J?r 

terminal velocity 

on second arc; 

radius of second 

arc; 

and this being laid off, as before, upon the perpendicular 

to the tangent A' T\ will give the centre C’. 
The length of the arc A' A", denoted by -s', will be 

found from 

length of second 

arc; 
s' = n't + 

2 M 

Finding the value of the motive force at A", its nor¬ 

mal and tangential components p" and q", as well as the 

mean velocity V", we obtain the value of the radius 

C" A", and the position of the centre C"; the tangential the same process 

component and time will give us the length of the new for other aiC3 ’ 



220 NATUKAL PHILOSOPHY. 

application to the 

case of a bomb¬ 

shell thrown into 

the air; 

resistance of air; 

components of 

the weight of the 

bomb; 

T 

oscillatory arc, and thus the description of the curve may 

he continued to the end. 

To apply this general case to a particular example, 

take the instance of a bomb thrown into the air. The 

forces here are, that arising from the explosive action 

of the powder and which gives the initial velocity, the 

resistance of the air, and the weight of the bomb. 

Let A be the mouth 

of the piece, of which the 

axis coincides with the rig. 126. 

line A T. This line will 

be tangent to the path de¬ 

scribed by the bomb at 

the point A. Denote the 

weight of the bomb by W, 
the initial velocity by w, 

and the resistance of the 

air due to this velocity by 

f The value of / may 

be taken from a table giv¬ 

ing the resistances corre¬ 

sponding to different velocities and calibres. Through A 
draw A II parallel to the horizon, and denote the angle 

TA H by a; lay off upon the vertical through A, the 

distance A W to represent the weight of the bomb, and 

resolve this weight into two components: one, A c = y>, 

normal to the tangent A T; and the other, A m = h: in the 

direction of this line. The angle WAc is equal to the 

angle TA H = a; and hence, 

y> = W cos a, 

h == W sin a; 

and since the resistance of the air is directly opposed to 

the motion, the force in the direction of the tangent, after 

the initial impulse, is retarding, and becomes 
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q = h + / = — (Wsin « + /); 

therefore 

n = n 
W sin a + f 

1T~^~ t, 
and 

V = n - 
W sin a + / 

~~2M 
• t 

this value and that of p, in Eq. (71), give 

M (n — 
W sin a + / ' 2 

2 M ) 
r — 

W COS a 

tangential 

component; 

terminal velocity; 

mean velocity; 

radius of initial 

arc; 

and writing, in Eq. (74), for q its value, we find 

5 n t 
1 W sin a + / 

5 M~ 

length of initial 

arc; 

Through the 

point A, draw an 

indefinite perpen¬ 

dicular to the line 

A T, and lay off 

from A the dis 

tance A C\ equal 

to r; with 0 as a 

centre, r as radius, 

describe the arc 

A A' equal to 5. 

This will give the 

initial arc. 

The linear di¬ 

mension of an arc 

at the unit’s dis- 

Fig. 127. 

r 

construction; 
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length of arc at 

unit’s distance 

from the centre; 

its value in arc; 

angle of the 

tangents at the 

initial points of 

two consecutive 

arcs ; 

angle of 

projection at the 

beginning of the 

second arc; 

tance from G) is 

and denoting the ratio of the circumference of the circle to 

its diameter by tf, we have 

2 * : 860° 

860° X sm 
2 * r 

in which 2 denotes 

the number of de¬ 

grees in this arc, 

or the value of the 

angle A GAr. But 

this angle is equal 

to that made by the 

tangents A T and 

A’ T’ at the extrem¬ 

ities of arc A A'; 
and the angle which 

the tangent at the 

beginning of the 

second arc, A' A" 
makes with the ho¬ 

rizon, or the angle 

T A' H’, will be 

Pig. 128. 

u — z = a'. 

Pursuing the same operation as before, we find 

jp' = W COS a', 

y — W sin a'; 
7 * 

and taking from the tables the resistance f, corresponding 



MECHANICS OF SOLIDS. 228 

to the new velocity n\ we construct in the same way the 

second arc A' A", &c., &c. 

It is to be remarked, that as the angle denoted succes¬ 

sively by a, a', &c., diminishes in passing from arc to arc, it 

will presently become equal to zero, at the summit, and after¬ 

ward take the negative sign; in the first case, the tangential variation in the 

component of the weight of the bomb will be zero, its sign angles of 
x ° 70 projection; 

will then change, and instead of being a retarding, it will 

become an accelerating force. Hence, in this curve, three three parts of the 

portions are to be distinguished, viz.: the ascending branch, curve; 

the descending branch, and that immediately about the 

summit. 

The resistance of the atmosphere to the motion of 

bodies in it, is found to vary as the square of the velocity 

of the moving body, and some idea of the intensity of this 

resistance may be formed from the fact, that a twenty-four range in 

pound shot, projected under an angle of 45°, in vacuo, j^r^^^ere and 

with a velocity of 2000 feet a second, would have a range 

of 125000 feet, while the same ball, projected under the 

same circumstances in the atmosphere, would only attain 

to the range of 7800 feet; about one-seventeenth of the 

former. 

§ 174.—The laws of the 

centrifugal force may be il¬ 

lustrated experimentally by 

means of the whirling-table. 
This consists of a frame¬ 

work upon which are mount¬ 

ed two vertical axes. Upon 

the top of each axis is fast¬ 

ened a circular block B, B, 
having a groove cut in the 

circumference for the recep¬ 

tion of an endless cord (7, (7, 

(7, which also passes round 

a wheel IF This wheel is 

Fig. 124. 
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arrangement of 

the parts of the 

table; 

scale and 

moveable 

weights; 

example first; 

provided with a crank and handle H, for the purpose 

of communicating motion to the whole. The circular 

blocks are so made, that their circumferences, around 

which the cord passes, may be varied to change the velo¬ 

city of rotation. A piece of wood d d, is mounted upon each 

of the circular blocks, by means of screws, to support two 

polished horizontal metallic bars 5, Z>, along which a small 

stage jS may slide with as little friction as possible. This 

stage is connected with an¬ 

other jS\ which slides freely 

on a pair of vertical bars b\ b\ 
by means of a piece of flex¬ 

ible catgut passing over the 

p,p\ in such manner 

as to lift the stage S' in a 

vertical, when motion is com¬ 

municated to S in a hori¬ 

zontal, direction. 

The stage S' is placed 

with its centre immediately 

over the axis of motion. 

On the piece d d is a grad¬ 

uated linear scale, having its 

zero in the axis, for the purpose of measuring the distance 

of the stage S from the centre of motion. A series of 

weights W'j W, in the shape of small circular plates, 

complete this part of the apparatus. The weights, being 

perforated in the centre, are kept in place by a vertical 

pintle rising from the middle of each stage. 

Example ls£. Load one of the stages with the weight 

5, and place it over the division 8 of the scale; load the 

other stage S with the weight 2, and place it over the di¬ 

vision 5; make the circumference of the first circular block 

double that of the second. The angular velocity of the 

first being Vh that of the second will be 2 Vv When 

motion is communicated, the centrifugal forces will, 

Eq. (68), be, respectively, 

Fig. 124. 
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5 X 8 F,2 and 2x5x4 F/, 

or 

40 F,2 and 40 F,s; 

that is to say, the centrifugal forces will always be equal result; 

to each other. Hence, if the stages S' be loaded equally, 

they will be drawn up simultaneously. 

Example 2d. Ketaining the same ratio as before between example second: 

the angular velocities, viz., Fj and 2 Fj, load one of the 

stages /S with weight 6, and place it over the division 8 of 

the scale; load the other stage /S with weight 3, and place it 

over the division 7. When rotation takes place, the cen¬ 

trifugal forces will be, respectively, 

6 x 8 F,2 = 48 F,2 

3 x 7 x 4 F,2 = 81 F,2, 

the ratio of which is 

48 _ 12 

84 “ 21 ’ 

and hence, if the first stage S' be loaded with 12 weights, resuU. 

and the second with 21, they will rise together, and with a 

little care may be kept suspended by properly regulating 

the motion. 

If the particles of which a body is composed may 

move among each other, that is, if the body be soft, a 

change may be effected by the action of this force in its 

figure. 

Such a body of a spherical form, revolving about one when a rotating 

of its diameters, acquires a flattened shape in the direction of spherical 

of this diameter or axis, because the parts that lie in the figure, it acquires 
, n . . . n it a flattened shape; 

plane oi the greatest circumference which can be drawn 

perpendicular to the axis, that is, in the plane of the body’s 

equator, have the greatest centrifugal force, while those 
15 
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experimental 

Illustration. 

Principle of 

the areas; 

a body in motion 

under the action 

of the central 

force; 

in the neighborhood of the poles have the least; the 

former will, therefore, recede from and the latter approach 

the centre. Hence the inference in regard to the causes 

of the flattened figure of the earth. 

Example 3d. On the vertical axis a b, is an armillary 

sphere, composed of elastic wires, fitting 

round the axis by means of a ring, 

which holds them all together. By Fig. 130. 

this contrivance it is possible for the b 
elastic wires to assume an elliptical 

figure, having a shorter vertical diame¬ 

ter. Screw this apparatus into the 

middle of the circular block of the 

whirling table, and give to the whole 

a rotatory motion; the wires, instead 

of their original form represented by 

the dotted lines, will assume, in conse¬ 

quence of the centrifugal force, the figure shown in the 

dark lines. 

§ 175.—When a body 

moves with uniform mo¬ 

tion. it passes over equal 

spaces in equal times. 

Thus, suppose the body 

to start from A, and to 

move uniformly in the 

direction from A to B; the 

line A B being divided 

into equal spaces A m', 

m'm", m" m"\ &c., these 

spaces will be described 

in equal times. If the several points of division be joined 

with any point as (7, off the line, a series of triangles A Cm', 
m’Cm", m" Cm"", &c., will be formed, all having a com¬ 

mon vertex and equal bases lying in the same straight line. 

The areas of these triangles will, therefore, be equal, and 

Fig. 131. 

B 
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will have been described in equal times during the motion 

of the body by the line joining it with the point C. 

If when the body arrives at m', it receive an impulse 

in the direction from m' to G\ which would cause it, if 

moved from rest, to describe the path m' nJ in the same 

time that it would have described m! m" if unmolested, 

then will it describe, in the same time, the diagonal m! mt the forces erst 

of the parallelogram constructed upon m' nt and m'm" imPul8ive» 

, as sides. The line m" mn being parallel to m' C, the 

triangles C m'm" and C mr mu will have the same base 

C m', and equal altitudes; their areas will therefore be 

equal; hence the triangles C Am' and C m’ mtl will be 

equal. In like manner, if when the body arrives at mtn 

it receive another impulse directed towards C, which 

would cause it to describe mu n/n in the time it would 

have described mu 0 — m! mi/ if undisturbed at m/y, it will 

describe the diagonal mti min of the parallelogram con¬ 

structed upon mn 0 and mn nu as sides; the triangle 

C mu mitt will be equal to the triangle C mn 0 = Cm' mn 

= C A m'. These equal triangles are described in equal 

intervals of time by the line joining the moving body 

with the centre C. If now the impulses towards C be 

applied at intervals of time indefinitely small, the force 

may be considered incessant, the sides of the polygon then incessant 

A m\ mf m/n mu m;//, &c., will become indefinitely small, 

and the polygon itself will not differ from a curve. The 

line which joins the body and the centre (7, is called the 

radius vector; and the incessant force acting in the direction radius vector, 

of this line towards the centre, is called the centripetal force. 

1Vhence ice conclude, that when any body having received areas describes 

a motion, is acted upon by a centripetal force, of which the by ratlms vector 
1 ± u x j i j proportional to 

direction is oblique to that of the motion, its radius vector will the time of 

7 *7 7 • 7 ,• description; 
describe equal areas in equal times. 

And conversely, if the radius vector of a body moving in 

a curve, be found-to describe equal areas in equcd times about, 

a fixed point, the body must be urged towards this fixed point, 

by a centripetal force, for the equality of the triangles 
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conversely, tlie 

areas being equal 

in equal times, 

the force must 

tend to the fixed 

point; 

ratio of areas to 

the times. 

Measure of the 

centripetal force; 

0 m'm" and 0 mr mu) 131* 

C mu 0 and C mu miin 

&c., depends upon the 

lines m" mtn 0mJ/n &c., 

being respectively paral¬ 

lel to nr\! C) mu 0, &c.; 

drawn from the positions 

in which the body re¬ 

ceives the deflecting im¬ 

pulses to the centre C. 

Denote the area by 

A, and the time in 

which it is described by t; the ratio of A to t, mast, 

from what has jnst been shown, be constant. Denote this 

constant by a, and we shall have 

A 

~ ~a’ 

or 

A — at.(74)'; 

and making t equal to unity, we find 

A = a; 

from which we conclude, that a denotes the area described 

in the unit of time. 

§ 176.—Let a body de¬ 

scribe the curve A B under 

the action of a centripetal 

force directed to the cen¬ 

tre G; and suppose m and 

m' to be two positions of 

the body very near to each 

other. Draw the tangent 

m Q to the curve at the place 

Fig. 132. 
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m, and draw mr Q parallel to the radius vector Cm, and 

m' n parallel to the tangent. If the centripetal force had 

ceased to act at m, the body would have described m Q in 

the time that it has actually described m m'. Again, if the 

body had been moved from rest at m by the centripetal 

force alone, it would have described the path m n = m' Q) 

in the same time; the path m n is, therefore, the path due 

to the action of the centripetal force. The places m and m' 

being very near each other, the centripetal force may be 

considered as constant during the passage of the body from 

the one to the other. Denote the velocity which the cen¬ 

tripetal force can generate in the body at m, in a unit of 

time, by then, Eq. (7), will 

m n = iv, t2, 

whence 

2 m n 
v, = 2 } 

but, Eq. (74)', 

t = A 

a 

and substituting this for £, we find 

2 a? X ran 

V‘ = A* ■ 

Multiplying both members by the mass of the moving 

body, denoted by JiJ we have 

Mvt — 
2 Ma2 X ran 

2* * 

Draw from m', the line m' h perpendicular to Cm, then, 

because A is the area of the triangle C m m\ will 

components of 

the actual 

velocity; 

value of the 

acceleration due 

to the centripetal 

force; 

A = \ Cm X m’ h, 
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the intensity of 

the centripetal 

force; 

versed sine; 

altitude of the 

sector; 

value of the 

intensity of the 

force in words. 

Phenomena of 

the heavenly 

bodies; 

t 

which in the above equation gives 

Mvt = 8 Mo? x 
m n 

Cm1 X li 

The distance tow is called 

the versed sine of the arc 

m m\ and m’ h the altitude 

of the sector; the first mem¬ 

ber, or Mvn is the quantity 

of motion which the centrip¬ 

etal force can generate in 

a unit of time, and there¬ 

fore measures its intensity; 

whence we conclude that, the intensity of the centripetal 

force by which a body is made to describe a curve, is always 

equal to eight times the mass of the body into the square of the 

area described by its radius vector in a unit of time, multiplied 

by the versed sine of the elementary arc and divided by the 

square of the radius vector into the square of the altitude of 

the sector. 

XII. 

MOTIONS OF THE HEAVENLY BODIES. 

§ 177.—The phenomena of the heavenly bodies may 

be divided into three classes: the first, comprehending the 

motion of revolution round the sun; the second, the mo¬ 

tion of rotation about their respective centres of inertia; 

and third, their figure and the oscillations of the fluids on 

their surfaces. It is only proposed to consider the force 

which produces the motion of revolution, and the orbits 

which the bodies would, if undisturbed, describe. 

Observation has established three laws respecting the 
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motion of the planets, which, from their discoverer, are laws of Kepler: 

called Kepler’s laws, viz.: 

1st. The planets move in plane curves, and the radius 1st law; 

vector of each describes round the centre of the sun, areas 

proportional to the times of their description. 

2d. The orbits of the planets are ellipses with the centre of 2d law; 

the sun in one of the foci. 

3d. The squares of the times of revolution of the different 3d law; 

planets are to one another as the cubes of their mean distances 

from the sun or semi-major axes of their orbits. 

These laws relate only to a motion of translation, and only relate to 

must, therefore, be limited to the motion of the centres of ™otl°n of 
7 7 translation. 

gravit}7 of the planets. 

Fig. 133. 

§ 178.—From the first of these laws, and the prin¬ 

ciple of areas proportional to the times, explained in § 175, 

it follows that, the centripetal force which keeps the planets in Consequences of 

their orbits is directed to the centre of the sun, and that this fi,stlaw’ 

body is, therefore, the centre of the system. 

The consequence of the second law relates to the varia¬ 

tion which takes place in the intensity of the centripetal 

force arising from a change in the body’s place, and may be 

determined thus. Let 

m and m', be two con¬ 

secutive places of the 

planet moving in an 

ellipse of which C A 

and C B are the semi- 

transverse and semi- 

conjugate axes, and 

having the sun, towards 

which the centripetal 

force is directed, in the 

focus S. Draw m' n parallel to the tangent m Q, and pro¬ 

duce it till it meets m C\ drawn to the centre of the ellipse, 

in the point v; let fall the perpendicular m h upon the 

radius vector Sm; join the body at m with the other focus 

that of the second 

deduced; 
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Construction of 

the figure; 

value of the 

versed sine; 

value of the 

altitude of sector; 

S'; draw S' JS and CD 

parallel to the tangent 

on Q, and produce m C. 

to the curve at G. 

The tangent Q Q' 

makes equal angles, 

Q on S and Q'm S', 

with the line drawn 

from the place on to 

the foci, and because 

S' A is parallel to this 

tangent, the triangle 

mS' N is isosceles, making S'm — Non; and because CD 

is parallel to S' N, and CS is equal to CS', the distance 

NL is equal to LS; hence mL = mS .g e(^ua| 
A 

to the semi-transverse axis CA = A. Denote the semi- 

conjugate axis by B. 

In the similar triangles mnv and m L C, we have, 

mn : mv : : m L : on C; 

whence, writing A for m L, we have 

Fig. 133. 

mn — 
A .on v 

on C 

Again, drawing m F perpendicular to D C, we have, 

from the similar right-angled triangles onLF and m' h n, 

on n 

whence, writing A for m L, we have 

m n -Ft 2 
X on F 
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and, dividing tlie last equation by this one, we have 

m n 

/ 7 ^ m h 
A3 X 

m v 

m G 
X == 

m' n X m F 

ratio of the 

versed sine to the 

square of altitude 

of sector; 

The equation of the ellipse, referred to the conjugate 

diameters Cm and CD, gives, because the points n and v 

will sensibly coincide for consecutive places of the body, 

m n = 
CD2 

Cm 
X mv X v G ; 

which, substituted for m' n above, we find 

mn . 0 Cm 
., = A3 X =2-;-o-; 

m' A CD' x m F X v G 

the same, in other 

terms; 

and, because the rectangle of the semi-axes is equivalent 

to the parallelogram constructed upon the semi-conjugate 

diameters CD and Cm, we have 

Cl? x W#2 ^ A2 x 2?2; 

moreover, the points m and m being contiguous, G v will 

not differ sensibly from 2 Cm.. Making these substitutions, 

the above equation reduces to 

mn A 

and, multiplying both members by 
8Ma2 

its final value; 

8 Ma? X 
m n 

m' h X S m 

4 Ma2 A w 1 
■ X-3-Q • 

B2 £ TO 
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✓ 

The first member we have seen, Eq. (74)", is the intensity 

of the centripetal force at m. Calling this force F and 

writing r for the radius vector Sm, we finally have 

value of the 

force; 

„ 4 Jla2 A 1 

F= B* X r 

consequence of 

the second law; 

Every thing being constant in the second member but 

r, it follows that, the force which urges a planet towards the 

sun, varies inversely as the square of the planet’s distance from 

that body. 

The consequence of the third law is not less important, 

and may be evolved thus. Multiply both members of the 

last equation by tf2 A2 B2, and we have 

to find the 

consequence of 

the third law; 

F«*A*B* = 4ir2JfaM3 x / 

divide both members of this equation by Fa2, and there 

will result 

«2A2B2 ±«2M 1 

-5- = —TT- X ^l3 X -»• 
a2 d r* 

periodic time; 

Now, * A B is the area of the entire ellipse; a is the area 

described by its radius vector in a unit of time; hence 

rf AB 
—-— is the number of units of time in one entire revolu- 

a 

tion of the planet, called the periodic time. Denote this 

by T, and substitute it for and we get 
a 

the value of its 

square; T2 - 4 fM ■ J, • ^ 
In like manner for any other planet, whose mass is 

M', mean distance A', radius vector r', periodic time T\ 

and centripetal force F\ we have 

2 4 ‘TT2 t\ fr 1 q 
T’ — . . A' • 

F' r'2 ’ 
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and dividing this equation by the one above 

T'2 IF F. r2 . - \ / A'3 ratio of the 

squares of 

periodic time?; T2 ~ MF'.r* ~ A3’ 

But, by the third law, 

T'2 A'3 

T2 ~ A3 ’ 

whence 

M' Fr2 

MF'r~ 

or i r i *■ V 4/ : 

F „ F' 
jfX = jp X /. 

centripetal 

acceleration; 

F 
Now — is the velocity which the centripetal force can 

generate in one unit of time, or, which is the same thing, 

it is the measure of the acceleration due to the force 

F' 
which acts upon the planet M; so, likewise, -jp is the 

acceleration due to the centripetal force which acts upon 

the planet M'; and resolving the above equation into the 

proportion 

F Fr 11 
__ . _ . . __ . _ consequence of 

M. Al’ T2 T'2 1 the third law; 

we see that the forces which urge two different planets 

towards the sun, are to each other in the inverse ratio of 

the squares of the distances; so that the same law which 

regulates the intensity of the force in a single orbit, also 

extends to different planets revolving in different orbits.* 

If r be made equal to /, then will the accelerations due 

to the centripetal force be equal; that is to say, if all the 
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at same distance, planets were brought to the same distance from the sun, 

leeeten!tions^re eac-^ mass would be urged towards that body with 

equal; the same intensity; and as the different planets might be 

inverted in respect to the order of their distances from 

the sun, without the relation of the periodic times as 

expressed by the third law being affected, it follows that 

the force which acts upon all the planets is absolutely the 

same in kind, and is only qualified, in intensity, by a 

change of distance. These considerations led Newton to 

Newtonian 

hypothesis of 

universal 

gravitation; 

consequences of 

this hypothesis; 

the orbits might 

have been 

ellipses, 

parabolas, or 

hyperbolas. 

adopt the celebrated hj^pothesis which laid the foundation 

of physical astronomy, viz.: that all bodies attract each 

other with an energy which is directly proportional to their 

masses and inversely proportional to the squares -of their dis¬ 

tances from each other. 

Starting from this hypothesis, it is easy to solve by a 

process not suited to an elementary work like this, the 

converse problem of that which led to the consequence of 

the second law, and to show, that a heavenly body may 

describe any one of the conic sections having the sun at 

one of the foci, depending upon the relation which subsists 

between its velocity and the energy with which the body 

and the sun attract each other. The orbit will be a para¬ 

bola, an ellipse, or hyperbola, according as the square of the 

body’s velocity is equal to, less, or greater than, twice the 

attractive force, multiplied by the distance from the sun. 

The angular 

velocity; 

§ 179.—Let C m m' be 

the sector described in the 

unit of time: take the dis¬ 

tance Gb equal to unity, 

and describe, with C as a 

centre and Cb as radius, 

the arc bd = sn which will 

measure the angular velo¬ 

city. With G as a centre, 

Fig. 134. 

and Gm! = r as radius, describe the arc m' h'; then will 
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Supposing the unit of time small, in which case m' will 

he very near to m, m' h will he sensibly equal to m' h\ 

in C to m' C\ and we have for the area of the sector Cm ra', 

whence 

| Cm x m’ h! = 1^5, = a; 

its value; 

Fig. 135. 

from which we find that, the angular velocity of a planet law of its 

about the sun, varies inversely as the square of its distance or vanatlon • 

radius vector, 

Supposing the planet 

to describe the ellipse 

ABPD, having the sun 

at the focus S, the ex¬ 

tremities A and P of the 

transverse axis are call¬ 

ed, the former the Aphe¬ 

lion, and the latter the 

Perihelion. The angular 

velocity of the planet is 

the least at aphelion and 

greatest at perihelion. 

Again, denote the angle 

C m Q by a, and suppose 

the motion of the body on 

the small arc m mr uniform, 

which we may do without 

sensible error, the length of 

m m' will measure the ve¬ 

locity of the planet at m, 

since it is described in a 

unit of time. Hence 

D 

Fig. 136. 

aphelion; 

perihelion; 

angular velocity 

greatest at 

perihelion and 

least at aphelion; 

absolute velocity; 

m m' sin a = m' h = V. sin «, 
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value of the 

absolute velocity; 

the same in 

different terms; 

its law of 

variation; 

greatest at 

perihelion and 

least at aphelion. 

Centripetal force 

diiectcd to the 

centre of an 

elliptical orbit; 

and the area of the triangle or sector Cmm' will be 

i F. sin a x r; whence 

F. r sin a 

or 

r . sin a* 

Draw the , tangent m Q to 

the curve at the point m, 

and from C let fall the per¬ 

pendicular C Q, then in the 

right-angled triangle C Q m, 

will 

Fig. 136. 

C Q — r . sin a — Pi 

which substituted above gives 

F = 
2 a 

V ’ 

that is to say, the velocity of a planet in its orbit, varies in¬ 

versely as the length of the perpendicular let fall from the 

centre of the sun upon the tangent drawn to the orbit at the 

bodfs place. 

From this it follows that the velocity of the planet will 

be greatest at perihelion and least at aphelion. 

§ 180.—It will be found convenient when we come 

to discuss the nature of light, to know that when a body 

describes an ellipse under the action of a force directed 

towards the centre of that curve, the force will vary 

directly as the length of the radius vector, and that the 

periodic time will be the same for all ellipses, great and 

small. 
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Let tlie body, under 

the action of a force di¬ 

rected to the centre C1 

describe the ellipse of 

which C A and C B are 

the semi-axes, denoted 

respectively by A and 

B; and suppose m and 

m' to be two of its con¬ 

secutive places. Draw 

the tangent m Q at the 

point m, and parallel to this tangent draw the diameter 

D D\ perpendicular to which, draw from m the line m K. 

From m' draw m' n parallel to the tangent till it meets the 

radius vector C m in ti, and let fall upon the same radius 

vector the perpendicular m’ h. 

The equation of the ellipse, referred to its conjugate 

diameters Cm and CD, gives 

Fig. 137. 

whence 

— 2 CD* 
m n —-t X m n x n (r 

Cm 

m n 

/ 2 y-y 2 
m n X (J m 

-CD* X n (P 

Because mr n and m'h are respectively perpendicular to 

the lines m K and m C, the angles h mf n and Cm K are 

equal, and the angles at K and h being right angles, the 

triangles mr nh and CmK are similar, and give the pro¬ 

portion 

} 2 / i 2 2 
m n : m h : : G m : m K ; 

whence 

m' li 
m' n X m K 

77=2 
Cm 

to find the law: 

value of the 

versed sine; 

value of the 

square of sector's 

altitude; 
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ratio of the 

versed sine to 

square of sector’s 

altitude; 

same in different 

terms; 

value of the 

centripetal force; 

the law of its 

variation; 

to lind the 

periodic time; 

dividing tlie last equation by this one, we have 

m n C m 
. — * * --- 

Hli In '1 X UK1 X n G 

But the rectangle of the semi-axes is equivalent to the 

parallelogram described upon the semi-conjugate diame¬ 

ters, hence 

CD2 x bV = A2 x D2; 

moreover, n G is sensibly equal to 2 Cm; making these 

substitutions above, there will result 

-3 
m n C m 
__ _. __• 

m/l1 ~ 2A2B2’ 

multiplying both members by 8 Ma2, and dividing by 

Cm, we have, Eq. (74)", 

SMo? X 
m n 

Cm x m' h‘ 
= F 

4 Ma* 

A2 B2 
X Cm, 

in which M is the mass of the body. Finally, writing r 

for Cm, we find 

F = 
4 M a2 

iFB2 

that is to say, the centripetal force which will cause a body to 

describe an ellipse when directed to the centre of that curve, 

varies directly as the radius vector. 

Multiply both members of the last equation by 

<7r2 A2 B2, and we have 

F. k2 A2 B2 = X r. 

Dividing both members of this equation by F a2, and we 

have 
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*2 A2 B2 
= 4<r2 

er 

M 

F 
r = 4-ff2 X 

F_ 

M 

A B 
taking tlie square root, and recollecting that-is the 

a 
periodic time = T\ we find 

value of the 
periodic time; 

The quotient is the measure of the acceleration due 

to the centripetal force, which we have just found to vary 

directly as the radius vector. This makes the radical ex¬ 

pression constant; hence T must also be constant. 

Whence we conclude, generally, that when any number 

of bodies are solicited towards a fixed point by forces which 

vary directly as the distances of the bodies from that point, they conclusion. 

will describe ellipses, or circles, one of the varieties of the 

ellipse ; and that they will all perform their revolutions in the 

same time. 

XIII. 

THE PENDULUM. 

§ 181.-—A body M Q N, suspended 

from a horizontal axis A, about which 

it may swing with freedom under the 

action of its own weight, is called, in 

general, a compound pendulum. When 

the body is reduced to a material 

heavy point, and the medium of con¬ 

nection with the axis is without 

weight, it is called a simple pendu¬ 

lum. 

Fig. 138. 

Compound 

pendulum; 

simple 

pendulum; 
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haa no real 

existence; 

©Sect of friction 

and resistance 

of air; 

figure of 

pendulum and 

mode of 

suspension; 

knife-edge and 

bob; 

The simple pendulum is but a 

mere conception, and yet the ex¬ 

pression for its length, which may 

easily be found in a manner soon 

to be explained, is of great prac¬ 

tical importance. 

When the pendulum is at rest, 

in such position that its centre of 

gravity G is below and on the ver¬ 

tical line passing through the axis 

A, it will be in a state of stable equi¬ 

librium, § 151; but as soon as it is 

deflected to one side, as indicated 

in the figure, and abandoned to 

itself, it will swing back and fortli 

about the position of equilibrium, 

into which it will finally settle in 

consequence of the resistance of 

the air and friction on the axis. 

If these causes of resistance were 

removed, the pendulum would con¬ 

tinue its motion indefinitely; but 

this cannot be accomplished in 

practice, and hence such figure and 

mode of suspension are resorted to 

as to give these impediments the 

least possible influence. 

The pendulum is usually mount¬ 

ed upon a knife-edge A as an axis, 

resting upon a well-polished plate 

of metal, or other hard substance, 

B; and the figure of the pendulum 

is that of a flat bar C, supporting 

at its lower end a heavy lenticular¬ 

shaped mass D) called a lob. 

One entire swing of the pen¬ 

dulum, by which its centre of 

Fig. 139. 

h; 
q2T 

Fig. 140. 

JX 

Fig. 141. 
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Fig. 142. 

to find time of a 

single 

oscillation; 

notation; 

gravity is carried from tlie extreme limit G of its path, 

on one side of the vertical AL, to G" on the other, is oscillation; 

called an oscillation. 

To find the time of 

a single oscillation, call 

the weight of the entire 

pendulum, W; its mass, 

M; its angular velocity 

at any instant, V1; its 

moment of inertia with 

reference to the axis of 

suspension, I; the dis¬ 

tance of its centre of 

gravity from the axis, 

D ; the vertical distance 

P G\ through which the 

centre of gravity must 

descend from its highest point G to arrive at any point 

G\y. 

The living force of the pendulum when the centre of 

gravity reaches the point GJ will, § 159, be 

I. I?, 

and the quantity of work of the weight will be 

Wy = Mgy, 

and hence 

I Vi = 2 Mg y. 

The point C on the line A G at the unit’s distance from 

A, will, during the motion, describe an arc similar to 

G G\ and the vertical distance GtPn denoted by y, 

through which this point will fall while G is passing to 

G\ will be given by 

;0 0 
living force; 

work of the 

weight; 

•'••'.n Via o, 
ni {it* 

fidl of the centre 

of gravity * y = Dy,; 
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square of the 
angular velocity; 

square of the 

time required to 

describe a very 

email arc; 

to find the arc 

described in the 
small time; 

and this, in the above equation, gives 

/. V:t2 = 2 Mg By,; 

whence 

Denoting by s, the small distance described by the 

point C during the very short interval £, succeeding the 

instant at which the angular velocity is Vx, we shall have 

which, in the preceding equation, gives 

if. D 

I 

whence 

M.D 2 gy,‘ 

Taking A if equal to 

unity, let Q B 0" be 

the arc described in 

one oscillation by the 

point ifj and if if the 

small arc st described 

in the time t, immedi¬ 

ately succeeding the 

instant at which the 

angular velocity is Vv 

Draw MB perpendi¬ 

cular to the vertical 

Fig. 143. 

ji 

V- 
V 
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A B, and NQ perpendicular to ME: then, in the similar 

triangles A ME and MN Q, we have 

Q N : EM : : MN : A M; 

and because A M is unity, and MN is sif 

one value for 

the arc; 

But from the property of the circle 

EM —\J 2^AbTeH - WS2 =\JYeB - Eli\ 

and if we take the arc OB 0" very small, the versed sine 

EB will be a very small fraction, and its second power 

may be neglected in comparison with the first. Whence 

EM = V2 EB; 

which, in the value of sJ above, gives 

_ QX 
s‘ ~ EM' 

s = - 
' V2EB’ 

and this, in the value for ^2, gives 

another value for 

the arc; 

,2 _ _J__i QNL 
M.D ■kg ' y,B E 

Upon BD as a diameter, describe a semi-circumference 

DmnB, and through the points Mand N, the extremities 

of the arc sy, draw the horizontal lines Mm and Nn, cut¬ 

ting this semi-circumference in the points m and n. Draw 

the radius 0 m, and the vertical n q. From the property 

of the circle we have 

another value for 

the square of the 

time; 

m E2 = BE x ED = BE x PM = BE x y,; 
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Fig. 143. 

= JL-. J_. 9£1 
M.D 4 g mi]*' 

and, taking the square root, 

value of the 
element of the i ■=. 1- 
time; 

The two triangles m 0 E and mqn are similar, and give 

4 

I QE 
g . M. 1) m E' 

X 

qn — QE : mE :: nm : Om; 

whence 

Q N nm ~ —- - _ • 
m E 0 m1 

Jf . K 

and this substituted above in the value of t, gives 

i 
g . M. D 

X 
n m 

Om 

proportional to Such is the value of the time required to describe the 

arc on^hfcircie elementary arc ME, which we see is proportional to 

whose diameter the arc mn, or to the projection of ME on the semi- 
is versed sine of 
ai-c of oscillation; circumference described upon DB as a diameter, every 

other quantity in the second member of the equation being 
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constant; and hence, the time required to describe the 

whole arc GMB., which is obviously the sum of all the the time of 

elementary times of describing the elementary arcs MK makinsa 

&c., must be equal to found; 

V 
/ 

g . M. 1) 
X 

0 m 

into the sum of all the projections of MiVJ &c, on the 

semi-circumference DmB; but this sum is the semi¬ 

circumference itself; and denoting the time from 0 to B1 

or that of a semi-oscillation, by 4 T) we have 

\T = i V 
I 

X 
DmB 

g . M. D Om ’ 

but 

DmB 

Om 
= «r = 3.1416, 

its value; 

the ratio of the circumference to the diameter; whence, 

T 
I 

g.M.D 
(75). time of a single 

oscillation; 

From this formula we see that the duration is inde¬ 

pendent of the amplitude of the oscillation, when this 

amplitude is small; and a pendulum slightly deflected 

from its vertical position and abandoned to itself, will 

oscillate in equal times whatever be the magnitude of the 

arc, provided it be inconsiderable. Such oscillations are isochronal 
• -i . i 7-7 7 oscillations; 

said to be Isochronal. 

If the number of oscillations performed in a given in¬ 

terval, say ten or twenty minutes, be counted, the duration 

of a single oscillation will be found by dividing the whole time of a single 
. n n 1 oscillation found 
interval by this number. from 

Thus, let 6 denote the time of observation, and N the observation; 

number of oscillations, then will 
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the same for a 

second place; 

forces of gravity 

are as squares of 

number of 

oscillations in 

same time. 

Simple 

pendulum; 

■V;' 

mass 

concentrated in a 

single point; 

T N * . M. JJ’ 

and if the same pendulum be made to oscillate at some 

other location during the same interval 6, the force of 

gravity being different, the number N' of oscillations will 

be different; but we shall have, as before, gr being the 

new force of gravity, 

6 A / 7 
N' ~ * V,'. M. U ’ 

Squaring and dividing the first by the second, we find 

N'2 

N2 

that is to say, the intensities of the force of gravity, at 

different places, are to each other as the squares of the 

number of oscillations performed in the same time, by the 

same pendulum. Hence, if the intensity of gravity at one 

station be known, it will be easy to find it at others. 

§ 182.—Resuming the general value for /, Eq. (65), we 

have 

1=1! + B2M; 

which value of in Eq. (75), gives 

4 /, + D*M 

g . M. JJ 

If, now, we suppose the entire mass of the pendulum to 

be concentrated into a single point, and this point con¬ 

nected with the axis by a medium without weight, we 

have 



MECHANICS OF SOLIDS. 249 

= 2 m r2 = 0 J moment ot inertia 
. in reference to 

the centre of 

since the centre of gravity must also go to that point, and gravity; 

r = r' = r" = &c. = 0; whence, writing l for the new value 

assumed by B) which now becomes the distance from the 

axis to the single heavy point, we have 

lime of oscillation 

of the simple 

pendulum; 

which is the expression for the time of oscillation of a 

simple pendulum of which l is the length. 

If the time of oscillation of the simple, be the same as 

that of the compound pendulum, we shall have, from Eqs, 

(75) and (78), 

v- I 
g.M.B 

or 

I I, + MB2 

~ M.B ~ MB 

m which case l is called the equivalent simple pendulum; equivalent simple 

that is to say, the length of a simple pendulum which will pendulum ’ 

oscillate in the same time as a compound pendulum whose 

moment of inertia in reference to the axis of suspension is 

I, whose mass is iij and of which the axis of suspension is 

at a distance from the centre of gravity equal to B. 

The point situated on a line drawn through the centre centre of 

of gravity of the pendulum, perpendicular to the axis of osclllation; 

suspension, and at a distance from that axis equal to l, is 

called the centre of oscillation; and is that point of which 

the circumstances of oscillation would in nowise be altered 

were the entire pendulum concentrated into it, or were it 

disconnected from the other points of the pendulous mass, 

its connection with the axis being retained. 
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Axes of 

suspension and 

of oscillation are 

reciprocal; 

§ 183.—A line drawn through the centre of oscillation, and 

parallel to the axis of suspension, is called the axis of oscilla¬ 

tion. The axes of suspension and of oscillation are reciprocal. 

Let B' denote the distance of the axis of oscillation 

from the centre of gravity; then will 

l = I) + I)'. 

Invert the pendulum and make the axis of oscillation the 

axis of suspension, take V for the new equivalent simple 

pendulum, then will 

new equivalent 

simple 

pendulum; 

V = 
f + j/zr 

M. B t ) 

but we have, from the foregoing equation, 

B' = l - B; 

and this, in the preceding value for l\ gives 

V = 
It + M(l - Bf 

M. {I - D) 

Again, from Eq. (79), we have 

l - D A 
Ml) ’ 

substituting this in the above value for l\ we finally get 

r _ A + MD* _ _ 
MB ~ ’ 

the simple 

pendulum the 
same; 

that is to say, when the axis of oscillation is taken as ttie 
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^ axis of suspension, the old axis of suspension becomes the 

• new axis of oscillation. In other words, these axes are conclusion; 

reciprocal. This furnishes an experimental method for 

finding the length of any equivalent simple pendulum, equivalent 

which is the more valuable in view of the great difficulty Jou,fd°flP0mdUlUm 

of computing the moment of inertia of a compound pendu- experiment; 

lum by the ordinary calculus, owing to the peculiar forms 

of that instrument rendered necessary by the circumstan¬ 

ces under which it is employed. But before proceeding 

to the explanation of this method, it will be proper to 

premise, that the time of oscillation of a compound pendu¬ 

lum will be a minimum, when, in Eqs. (78) and (79), 

It + D*M 

MU 

L- J)2 

D = \ 

value of 

equivalent simple 

pendulum; 

/ 
is the least possible; or replacing by its value K/2, 

deduced from Eq. (66)" by making D — 0, the expression 

ir3 + d2 

n 

must be the least possible. 

But it may easily be shown, either by trial, or by a 

simple process of the calculus, that this expression is a 

minimum when 

K' = D, 

and consequently 

l = 2 K' ; length of the 

shortest 

equivalent simple 

that is to say, the time of oscillation of a pendulum will pendulum; 

be the least possible when the axis of suspension passes 

through the principal centre of gyration, and the length 
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usual form of the 

compound 

pendulum; 

device to change 

the position of 

the centre of 

gravity; 

position of 

centre of gravity; 

pendulum made 

to oscillate during 

game time; 

of the equivalent simple pendulum is twice tlie principal 

radius of gyration. 

Let A and A' be two acute 

parallel prismatic axes firmly con¬ 

nected with the pendulum, the 

acute edges being turned towards 

each other. The oscillation may 

be made to take place about either 

axis by simply inverting the pen¬ 

dulum. Also, let M be a sliding 

mass capable of being retained in 

any position by the clamp-screw 

H. For any assumed position of 

if, let the principal radius of gyra¬ 

tion be G G; with G as a centre, 

GCas radius, describe the circum¬ 

ference CSS'. From what has been explained, the time 

of oscillation about either axis will be shortened as it 

approaches, and lengthened as it recedes from this circum¬ 

ference, being a minimum, or least possible, when on it. 

By moving the mass J/, the centre of gravity, and there¬ 

fore the gyratory circle of which it is the centre, may be 

thrown towards either axis. The pendulum bob being 

made heavy, the centre of gravity may be brought so near 

one of the axes, say A\ as to place the latter within the 

gyratory circumference, keeping the centre of this circum¬ 

ference between the axes, as indicated in the figure. In 

this position, it is obvious that any motion in the mass M 

would at the same time either shorten or lengthen the 

duration of the oscillation about both axes, but unequally, 

in consequence of their unequal distances from the gyra¬ 

tory circumference. 

The pendulum thus arranged, is made to vibrate about 

each axis in succession during equal intervals, say an hour 

or a day, and the number of oscillations carefully noted; 

if these numbers be the same, the distance between the 

axes is the length l of the equivalent simple pendulum; 

Fig. 144. 
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if not, then the weight M must be moved towards that 

axis whose number is the least, and the trial repeated, till 

the numbers are made equal. The distance between the distance between 

axes may be measured by a scale of equal parts. measured • 

From this value of Z, we may easily find that of the 

simple second''s pendulum; that is to say, the simple pendu- simple second’s 

lum which will perform its vibration in one second. Let pendulum’ 

N be the number. of vibrations performed in one hour 

by the compound pendulum whose equivalent simple 

pendulum is l; the number performed in the same time 

by the second’s pendulum, whose length we will denote by 

Z', is of course 3600, being the number of seconds in 1 hour, 

and hence, from Eq. (78), 

1* 

N 

lh 
36005 

= T = *• \P~\ 
v 9 

and because the force of gravity at the same station is 

constant, we find, after squaring and dividing the second 

equation by the first, 

V = 
Z. A2 

(3600s)2 
(80). its length; 

Such is, in outline, the beautiful process by which Kater 

determined the length of the simple second s pendulum 

at the Tower of London to be 39.13908 inches, or 3.26159 value at London 
Vi • v 

feet. 

As the force of gravity at the same place is not sup¬ 

posed to change its intensity, this length of the simple 

second’s pendulum must remain for ever invariable; and, basis of the 
, , t _ , , English system 

on this account, the English have adopted it as the basis of weights and 

of their system of weights and measures. , For this purpose, measures; 

it was simply necessary to say that the 3.2 ix 59 th Part 

the simple second’s pendulum at the Tower of London shall 
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English linear 

foot; 

the gallon; 

avoirdupois 

ounce; 

apparent force 

of gravity at 

London; 

length of the 

simple second’s 

pendulum, a 

function of the 

latitude; 

be one English foot, and all linear dimensions at once re¬ 

sult from the relation they bear to the foot; that the gallon 

shall contain i^V11 of a cubic foot, and all measures of 

volume are fixed by the relations which other volumes 

bear to the gallon; and finally, that a cubic foot of distilled 

water at the temperature of sixty degrees Fahr. shall weigh 

one thousand ounces, and all weights are fixed by the rela¬ 

tion thev bear to the ounce. 

It is now easy to find the apparent force of gravity at 

London; that is to say, the force of gravity as affected by 

the centrifugal force and the oblateness of the earth. The 

time of oscillation being one second, and the length of the 

simple pendulum 3.26159 feet, Eq. (78) gives 

1 = * 
3.26159 

9 

whence 

g = *2 (3.26159) = (3.1416)2. (3.26159) = 32.1908 feet. 

From Eq. (78), we also find, by making T one second, 

and assuming 

l = x + y cos 2 

we have 

= x + y cos 2 . . . . (81). 
it 

Now starting with the value for g at London, and 

causing the same pendulum to vibrate at places whose 

latitudes are known, we obtain, from the relation given in 

Eq. (76), the corresponding values of g) or the force of 
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gravity at these places; and these values and the cor-force of gravity 

.responding latitudes being substituted successively in ^dlfferent 

Eq. (81), give a series of equations involving but two un¬ 

known quantities, which may easily be found by the method 

of least squares. 

In this way it has been ascertained that 

tf2. x = 82.1808 and *2. y = — 0.0821; 

whence, generally, 

g = 32.1803 - 0.0821 cos 2 + . . (81)'; Force of gravity 

in any latitude; 

and substituting this value in Eq. (78), and making 

T= 1, we find 

l = 3.260o8 — 0.008318 COS 2 4^ • • (82). length of simple 
second’s 

pendulum in any 

Such is the length of the simple second’s pendulum at latitude; 

any place of which the latitude is 4^. 

If we make — 40° 42' 40", the latitude of the City- 

Kail of New York, we shall find 

ft. in. length at City 

l = 3.25938 = 39.11256. iiaiiofNew 
York; 

The principles which have just been explained, enable 

us to find the moment of inertia of any body turning 

about a fixed axis, with great accuracy, no matter what its moment of inertia 

figure, density, or the distribution of its matter. If the ^mpie^*18 

axis do not pass through its centre of gravity, the body pendulum; 

will, when deflected from its position of equilibrium, 

oscillate, and become, in fact, a compound pendulum; and 

denoting the length of its equivalent simple pendulum by 

Z, we have, Eq. (79), 
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its value; 

simple second's 

pendulum known 

from latitude; 

the body’s 

equivalent 

simple 

pendulum; 

distance from 

centre of gravity 

to axis found ; 

value of the 

moment of 

inertia; 

or, since 

W 

9 ’ 

W 
— .D.l = I . 
9 

in which. W denotes the weight of the body. 

Knowing the latitude of the place, the length V of the 

simple second’s pendulum is known from Eq. (82); and 

counting the number N of oscillations performed by the 

body in one hour, Eq. (80), gives 

7 _ V . (3600)2 

L ~ ~N* * 

To find the value of D) which is the distance of the 

centre of gravity from the axis, attach a spring or other 

balance to any point of the body, say its lower end, and 

bring the centre of gravity to a horizontal plane through 

the axis, which position 

will be indicated by the 

maximum reading of the 

balance. Denoting by a the 

distance from the axis C 

to the point of support D, 

and by b the maximum in¬ 

dication of the balance, we 

have, from the principles 

of moments, 

b a 

Fig. 145. 

The distance a may be measured by a scale of equal parts. 

Substituting the values of WD and l in the expression 

for the moment of inertia, Eq. (83), we get 

b . a . V. (3600)2 

9 . N* 
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If the axis pass through the centre of gravity, as, for the moment of 

inertia found 

when the axis 

passes through 

the centre of 
t 

example, in the fly-wheel, take Eq. (79), 

Ix + MB2 
l = 

MB 

whence 

Ix = M.B .1 -MB2 (85). 

Fig. 146. 

gravity; 

Mount the body upon a 

parallel axis A, not pass¬ 

ing through the centre of 

gravity, and cause it to vi¬ 

brate for an hour as before; 

from the number of these 

vibrations and the length 

of the simple second’s pen¬ 

dulum, the value of l may 

be found as before; M is 

known, being the weight 

IF divided by g ; and B may be found by direct measure¬ 

ment, or by the aid of the spring balance, as already 

indicated; whence Ix becomes known. 

example of tho 

fly-wheel; 

§ 184.—When a body, 

B Q N C receives a motion 

of rotation about an axis 

A, which is here supposed 

perpendicular to the plane 

of the paper, each elemen¬ 

tary mass m, will develop 

a force of inertia whose di¬ 

rection is perpendicular to 

the shortest line connecting 

it with the axis, and whose 

intensity will be measured by 

Fig. 147. 

m . r 

Find the point of 

application of the 

resultant inertia 

of a rotating 

body; 

inertia exerted by 

an elementary 

mass during an 

elementary lime; 
17 



Fig. 147. notation; 

co-ordinate 

planes; 

in wliicli r is the distance 

of m from the axis, and Vx 

the elementary amount of 

angular velocity generated 

in the very small portion 

of time denoted by t. 

Through the axis A, 

pass two planes at right 

angles to each other, and 

let their traces on the paper 

be A x and A y. Deno¬ 

ting the co-ordinates Ap and A r[ of ??2, referred to these 

planes, by x and y: respectively, we shall have 

x 
cos vi A p = —, 

, v 
cos m A q — —. 

Jfesolve the force of inertia, above given, into two compo¬ 

nents in the directions of these planes. The component 

parallel to the plane of which the trace is A y, will be 

component of the 

inertia parallel to 

the plane Ay; 
m r * 

X 

r 1 

and that parallel to the plane whose trace is A x, will be 

that parallel to 

the plane Ax; 
m r 

u y ru 
-■V = J 'T’ 

and for other elementary masses m', m", &c., of which the 

co-ordinates are x'y', x" y", &c., we shall have the com¬ 

ponents 

mr x' . m" x" —, &c., 
t ’ t 

m' Vf • p m"y" &c.; 

the same for 

other elementary 

mas sea; 
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tlie resultant of the components parallel to the plane A y, 

will be 

resultant of the 
X^ components 

parallel to Ay, 

and of the components parallel to the plane A x, 

K V 
--{my + m' y' + my" -f* &c.) = —1 M yt; 
t t 

resultant of those 
parallel to A x ; 

—l- Cm x 4- m' x' + m 
t K 

"x" -f &c.) Zi 
t 

in which M denotes the entire mass of the rotating body, 

and xt and yt the co-ordinates of its centre of gravity. 

And the intensity of the general resultant will, from the 

parallelogram of forces, be 

M V x? + yf 
V, 
— M. D; 
t 

resultant of the 
whole; 

in which D represents the distance of the centre of gravity 

G, of the whole mass, from the axis. The direction of its direction; 

this resultant will be perpendicular to A (7, drawn 

through the centre of gravity perpendicular to the axig, 

as will readily appear by reference to its components 

parallel to the planes A y and A x found above. 

The moment of this force, with reference to the axis, 

will therefore be its intensity multiplied into some dis¬ 

tance as A 0 — L, on this line, or 

--1 If. D . L. 
t 

its moment; 

But, Eq. (63), the sum of the moments of all the forces of 

inertia actually exerted, in reference to the axis A, is <equal 

to the product of the entire moment of inertia^'/,, multiplied 

V. 
by the ratio —, therefore t 
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point at which 

the resultant 

inertia of a 

rotating mass is 

exerted; 

shock 

experienced 

by the axis when 

the body is 

struck; 

do intensity; 

or 

L = 
I 

M. D 
• • (86); 

Fig. 148. 

whence we conclude that, the 'point at which the resultant 

inertia of a rotating mass is exerted, is on a line drawn 

through its centre of gravity perpendicular to the axis, and at 

a distance from the axis equal to the moment of inertia divided 

by the product of the mass into the distance of the centre of 

gravity from the axis. 

This being understood, suppose a 

force F applied at the point C in a di¬ 

rection perpendicular to the line A 0, 

and immediately opposed to the direc¬ 

tion of the motion; this force would 

obviously tend to bend the line A 0, 

the point A being retained by the 

axis, and the point 0 being urged 

onward by the inertia concentrated 

at it. If the force be suddenly ap¬ 

plied, the axis must receive a shock, 

and to estimate its intensity de¬ 

note by X the distance A C; then, from the principles of 

parallel forces already explained, we have 

L : L - X : : F : S; 

whence 

s = = ^(1 - §) . . (87), 

or, substituting the value of L, Eq. (86), 

MB 
S = F (l-- • X). . . (88). 

If we suppose the body at rest, and desire to apply the 
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force F so as to communicate no shock, we make 

jS = 0, 

the blow applied 

so as to 

communicate no 

shock to the axis; 

a condition that can only he satisfied by making 

whence 

1 
MV 

T~ X x - 0; 

I 
MV 

= L = AO. 
distance from the 

axis at which it 

must be applied; 

There being no shock to the axis, it can oppose no resist¬ 

ance to the motion of rotation, and hence we infer that 

this latter will be the same as though the body were per¬ 

fectly free. The point 0 is, on this account, called the 

centre of percussion, which may be defined, that point of 

a body retained by a fixed axis, at which it may be struck in a 

direction perpendicular to the plane of the centre of gravity 

and axis without communicating any shock to the axis. 

The centre of per¬ 

cussion may be found Fig. 149. 

experimentally thus:— 

lay the axis C upon a 

support A A, and per¬ 

mit the body to fall up¬ 

on a moveable edge B) 

resting on a horizontal 

plane; when this edge 

is placed in such position that the axis 0 will not move 

when the body falls upon it, the centre of percussion will 

be immediately above the point struck. Since the dis¬ 

tance of the centre of percussion from the axis is equal to 

centre of 

percussion 

defined; 

centre of 

percussion found 

experimentally; 

I 
MV ’ 
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1 

to put a 

pendulum in 

motion, the 

force should bo 

applied to centre 

of oscillation. 

The shock may 

be positive, 

nothing, or 

negative; 

centre of 

spontaneous 

rotation; 

it must be at tlie centre of oscillation. To move a pen¬ 

dulum without communicating action to its axis, the force 

must be applied at the centre of oscillation. 

§ 185.—Resuming Eq. (87), 

we see that the shock upon the 

axis A will be positive, that is to 

say, will act in the direction of 

the impressed force F: as long as 

X is less than L: when X is equal 

to L) there will be no shock; 

when X is greater than X, there 

will again be a shock, but with a 

negative sign, which indicates 

that it will be exerted in a direc¬ 

tion opposite to that of the im¬ 

pressed force. Now these shocks 

in opposite directions, with a neutral point , can only 

arise from an effort of the particles, which are situated on 

opposite sides of the axis, to move in contrary directions 

when the body is struck at the centre of oscillation; and 

as the effect upon the neutral point A is the same in this 

latter case, whether the body be retained by an axis or a 

force, it follows that every free body, when struck, in gen¬ 

eral, begins to move for the instant, but only an instant, 

about a single point. This point is called the centre of 

spontaneous rotation. If the blow be impressed at any 

point, as 0, the centre of spontaneous rotation will be upon 

the axis corresponding to the point 0 as a centre of oscil¬ 

lation, and hence its distance from the latter will be given 

by 

Fig. 150. 

distance of centre 

of spontaneous 

rotation from 

direction of blow; 

L = 
I 

MB 
. (89); 

and since the centre of oscillation and axis of suspension 

are reciprocal, I will denote the moment of inertia taken 
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witli reference to an axis through the point 0, and D the 

distance of the latter from the centre of gravity. 

Deferring to Eq. (88), if the axis be supposed to pass 

through the centre of gravity, D will be equal to zero, and 

relation of 

centre of 

spontaneous 

rotation to centre 

of oscillation; 

that is to say, no matter where the force F be applied, its the entire shock 

entire effect will be communicated to the centre of gravity, ^0^sunicated t0 

which is a confirmation of the result given in § 146. centre of gravity; 

If the line of direction of the force pass through the 

centre of gravity, P, in Eq. (89), will be zero, and the dis- if direction of 

tance of the centre of spontaneous rotation will be at an ^ugi^ntre 

infinite distance from the point of impact; in other words of gravity, the 

the body will not rotate, which is another result of § 146. vota[e< 

§ 186.—Let Q be a body 

suspended from an axis A 

perpendicular to the plane 

of the figure. This body be¬ 

ing at rest, suppose it to be 

struck at the point T by an¬ 

other body P, moving in the 

direction TL at right angles 

to the surface of contact, 

and in a plane perpendicu¬ 

lar to the axis A. Denote 

by m and w the mass and 

weight of the impinging 

body, and by V its velocity 

before the impact. At the 

instant of meeting there will 

be developed a force of com¬ 

pression F, which will act 

equally upon each body alom 

site directions. The pressure 

Fig. 151. 

the line T L, but in oppo- 

upon both bodies, which is 

nothing when they begin to touch each other, will aug- 

Collision of a 

body having a 

motion of 

translation 

against another 

retained by a 

fixed axis; 
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the action and 

reaction variable; 

measure of the 

force of reaction; 

moment of action 

equal to moment 

of reaction: 

ment by degrees as tliey ajn 

proach to the state of great¬ 

est compression; so that P, 

although always represent¬ 

ing a number of pounds 

weight, is, nevertheless, not 

a fixed, but a variable quan¬ 

tity. We may disregard for 

a moment the body Q, and 

suppose the force F applied 

to the body P, considered as 

free; the force will deprive 

this body of a series of small 

degrees of velocity denoted 

by v) each in the small time 

£, so that its measure at any 

instant will, Eq. (39), be given 

Fig. 151. 

by 

m v 

But the force F also acts upon the body Q, and turns it 

about the axis A, generating in it, during the same in¬ 

terval of time t, an angular velocity vt; and the forces of 

inertia thence arising, must be in equilibrio with the force 

F; in other words, the sum of the moments of the first in 

reference to the axis A, must be equal to the product of 

the force F into the perpendicular A C} drawn from the 

axis to the line of direction TL. Hence, Eq. (63), 

F.AG = /.y; 
6 

and substituting the value of F above, and dividing by 

A C\ which we will represent by the single letter y>, 

m . v I.v. _ __ / • 

t ~ p . t ’ 
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or, finally, 

p . m . v = I. vr result for a single 

instant of time; 

Denote by v\ v'\ vn\ &c., the small degrees of velocity 

lost by the body P, during the first, second, third, &c., 
intervals of time t, supposed to be always of the same 

length; and by v/t v’\ v/", &c., the angular velocities ac¬ 

quired by the body Q during the same intervals; we 

shall have 

the same for 

other instants of 

time; 

&c. = &c.; 

p . m . v’ = Iv/’, 

p . m v" — I v/r, 

by taking the sum of the whole, 

p (y' + v"+ vr"+ vlv + &c.) m — I (y/+ v/"+ &c.); 
the sum of the 

whole; 

and denoting by U the whole velocity lost by the body 
P, and by V\ the whole angular velocity gained by the 

body Q during the entire action, we shall have 

U = v' -f- v" -f* v"r + vly + &c., velocity lost; 

Vx — v/+ v/'+ v/"+ v/v + &c.; angular velocity 

gained; 

whence, by substituting above, 

result for the 

p.m.U = IVt . . . . (90). entire duration 
of the impact; 

l • ‘ ’ I 

If the bodies be not elastic, it will only be necessary to 
consider the impact from the instant in which they first 
come in contact, to that in which the body P has lost its 

excess of velocity over that part of Q into which it be¬ 
comes imbedded; for, as soon as the body P has taken the 
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if the bodies be 

not elastic, they 

will ultimately 

constitute a 

single one; 

angular velocity 

generated by the 

impact. 

Application to 

the balistic 

pendulum; 

its construction; 

angular velocity of tlie other about the axis, there will be 

no effort to regain lost figure, and the two bodies will 

turn about A as though they constituted but a single 

one. 

But the angular velocity of Q about A being Vh the 

velocity of P vail be p Vh and we shall have 
# 

u = V — p Fl5 

substituting this value of U in Eq. (90), we find 

pm(V - pVx) = IVX; 

whence 

p . m . V 

m . p2 + I 

which gives the angular velocity of the body struck, after 

the impact, in terms of its moment of inertia, the mass 

and velocity of the impinging body, and the distance from 

the axis to the path described by its centre of gravity. 

§ 187.—In artillery, 

the initial velocity of 

projectiles is ascertained 

bv means of the balistic 

pendulum, which consists 

of a mass of matter sus¬ 

pended from a horizon¬ 

tal axis in the shape of 

a knife-edge, after the 

manner of the compound 

jdendulum. The bob is 

either made of some 

unelastic substance, as 

wood, or of metal pro¬ 

vided with a large cavity 

Fig. ] 52. 
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filled with, some soft matter, as dirt, which receives the 

projectile and retains the shape impressed upon it by the 

blow. 

Denote by V and m, the initial velocity and mass of the 

ball; Vi the angular velocity of the balistic pendulum after notation; 

the blow, I and If its moment of inertia and mass. Also 

let r represent the distance of the centre of oscillation of 

the pendulum from the axis A. That no motion may be 

lost by the resistance of the axis arising from a shock, the the pendulum 

ball must be received in the direction ot a line passing centre of 

through this centre and perpendicular to the line A 0. oscillation; 

This condition being satisfied, we have 

p = r, 

and Eq. (91) becomes 

Fx = 
m V 

m r 2 + 11 

from which we find 

V = 
(in r2 + T)Vl 

m r 

value for the 

(92) J velocity of 

projectile; 

the velocity V becomes known, therefore, when Vt is 

known, since all the other quantities may be easily found 

by the methods already explained. To find Fj, denote 

by II the greatest height to which the centre of gravity 

of the pendulum is elevated by virtue of this angular 

velocity; then, since the moment of inertia of the ball is 

m r2, we have, from the principle of the living force, 

(I + m r2) Vi = 2 (If + m) g II; 
equation of living 

force; 

whence 

(I + m r2) T? __ 2 JJ' 

(M + m) g 
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Denoting by T tbe time of a single oscillation of the 

pendulum after it receives tbe ball, we bave, Eq. (75), 

time of a single 

oscillation of 

balistic 

pendulum; 

T — « 

I + m r2 

(3/ + m) D . g 

D being tbe distance from tbe axis to tbe centre of grav¬ 

ity; whence, 

I -f- m r2 D T2 

(M 3- m) g <x2 ’ 

and tbis value, substituted in tbe equation of tbe living 

force, gives 

JDT2 

whence 

angular velocity 

of the pendulum; 

also 

moment of inertia 

of the whole; 
I + m r2 

(.M + m) g . D . T2' 

and because, Eq. (78), 

time of oscillation 

of the equivalent 

simple 

pendulum; 

we find 

length of this 

jendulum; 

Substituting these values of Vh I + mr2 and r in Eq. (92), 

we find 

I 

V = ~ V2HD . 
M + m _ • 

m 



MECHANICS OF SOLIDS. 269 

or, replacing tlie masses by the weight divided by the 

force of gravity, 

V = j, V2BJJ x 
W + w 

w 

simpler value for 

velocity of 

projectile; 

Fig. 153. 

in which W and w denote the weights of the pendulum 

and ball respectively. 

Observe that H is the height to 

which the centre of gravity rises in 

describing the arc of a circle of 

which D is the radius. Let G Gr K 
be half of the circumference of 

which this arc is a part, G and G' 
the initial and terminal positions of 

the centre of gravity during the 

ascent; draw GrR perpendicular to 

KG. Then, because AG = D, and 

GR — H\ we have, from the proper¬ 

ty of the circle, 

to find the radical 

part of this 

value; 

EG' = V1T(21) - i/); 

and if the pendulum be made large, so that the arc G G' 
shall be very small, which is usually the case, H may be 

neglected in comparison with 2 D, and therefore 

value of radical 

part found; . EG' = V 2H.D; 

V2 HD is half the chord of the arc described by the 

centre of gravity in one entire oscillation. Denoting this 

chord by (7, and substituting above, we have 
velocity of 

~ Th + W 
- • \j • - 
T to 

projectile in 

terms of the 

chord of the arc 

of vibration; 

From this equation, we may find the initial velocity h ; 

and for this purpose, it will only be necessary to have the 
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duration of a single oscillation, and the amplitude of the 

arc described by the centre of gravity of the pendulum. 

The process for finding the time has been explained. To 

to find the arc of find the arc, it will be sufficient to attach to the lower ex¬ 
vibration ; n , , 

tremity ot the pendulum a pointer, and to fix on a perma¬ 

nent stand below, a circular graduated groove, whose 

centre of curvature is at A; the groove being filled with 

some soft substance, as tallow, the pointer will mark on 

it the extent of the oscillation. Knowing thus the arc, 

denoted by 4, and the value of D, found as already 

described, § 133, we have 

R Gr' = ^ C = D . sin J A ; 

whence 

its value found; 

and finally 

C — 2 D . sin $• A; 

final value of 

velocity. 

SIMPLE MACHINES. 

A machine 

defined. 
§ 188.—A machine is any device by which the action 

of a force is received at one set of points and transmitted 

to another set, where it may either balance or overcome 

the action of one or more opposing forces and perform its 

effective work. The force impressed is usually called the 

power, and that overcome, the resistance. We proceed to 

discuss the simple machines, so named because some one 

or more of them enter as elements into the composition of 
all machinery. 



MECHANICS OF SOLIDS. 271 

# 

XIV. 

FUNICULAR MACHINE. 

the former united by knots, and the latter by joints or 

‘'consists of an assemblage of cords or bars; Funicular 

machine; 

hinges. The cords are supposed, for simplification, per¬ 

fectly flexible, the bars perfectly rigid, and both inexten- 

sible, without weight, and devoid of inertia. The weight 

and inertia of the several parts of every machine, are 

usually small when compared with the intensity of the weight and 

power and resistance ; and when this is not the case, they 

may be estimated and taken into the account by the the power and 

methods already explained. The hypothesis of inextensi- 

bility is also admissible, because when a cord or bar is ex- ^extensibility 

tended or the latter compressed under the action of one or admisslble? 

of several forces, the maximum change of dimensions is 

soon attained, after which the figure remains unaltered 

during the subsequent action. 

Let the extremities 

of the straight cord 

AB be solicited by Flg' lo4 

several forces. Each 

force may be resolved 

into two components, 

one in the direction 

case of a single 

cord; 

of the cord, the other 

at right angles to it. Since the cord is perfectly flexible, 

if it be in equilibrio, the perpendicular components at each conditions of 

end must destroy each other, otherwise they would pro- t(iJlllbuum» 

duce flexure. The components in the direction of the 

cord must reduce to two forces, which are equal in in- forces must act 

tensity and immediately opposed. They must also act to tc^Sjr.etch the 

Since the cord is perfectly flexible, 

equilibrium; 

to stretch the 

cord; 

stretch the cord, for compression would only bend it and 
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in the case of a 

bar, the forces 

may also act to 

compress it; 

action of the 

molecular 

springs; 

the tension the 

same throughout, 

except when 

vertical; 

cords never 

equally strong 

throughout; 

in practice, cords 

and bars are 

weaker as they 

are longer. 

the action of one force conic! not be transmitted to tlie 

point of application of the other. 

If instead of a cord we suppose a bar, the conditions 

of equilibrium will be the same, only that the bar being 

inflexible, the forces in the direction of its length may act 

either to stretch or to compress it. By recalling what was 

said of the physical constitution of bodies, we may regard 

the molecular forces as so many springs which, as soon as 

an effort is made to disturb the particles from their posi¬ 

tions of rest, are extended or compressed everywhere 

equally by the equal and contrary forces which act at the 

ends of the cord or bar. Hence the tension, that is, the 

effort by which any two consecutive elements are urged to 

approach each other or to separate, in the direction of the 

cord or bar, must be equal throughout, and equal to one 

of the equal forces in question, except when the cord or 

bar is vertical; in which case, the tension at any point 

is increased by the weight of all the particles below it. 

When a cord or bar is subjected to a force of traction, 

it stretches, and may even break. If it be equally strong 

throughout, the rupture ought to take place simulta¬ 

neously at all its points, and yet this is never found to be 

the case in practice, and it is because bars and cords 

are not homogeneous, and break at the weakest point. 

When two pieces of cord of the same kind, are of the 

same length, no reason can be assigned why one should 

break rather than the other under the same resistance; 

but when of unequal length, the chance of rupture is 

greater for the longer; and this is the reason why cords 

and ropes, which to all external appearances are the 

same in kind, are generally found to be weaker as they 

are longer. 

§ 190.—We have seen that when forces which act 

upon the extremities of a cord are in equilibrio, the re¬ 

sultant of those acting at one end, must be equal and 

directly opposed to that of those acting at the other; and 
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Fig. 155. 

a 
-a77'77S, vsst:.'-, , ss, 

A 

tliat tlieir common line of direction must coincide Avitli 

tliat of the cord. The work of these resultants must 

be equal, and hence we conclude that the work of the 

forces which act at one end of a cord is equal to the 

work of those which act at the other. The work of each 

resultant must also be equal to that of the tension of the 

cord at any one of its 

points, as C; and to 

find the value of this 

work, it is only neces- V 

sary to multiply this 

tension by the path 

described by the point 

0 in the direction of 

the tension. Thus the 

quantity of work of several forces applied to one end of a 

cord, is equal to the quantity oj work of its tension. In the 

example of the common device for ringing large bells, 

it is usual to attach to one end A of a rope, which con¬ 

nects with the ma¬ 

chinery of the bell, 

several cords C: upon 

each of which a man 

may pull. It would 

be difficult to estimate 

the work performed 

by each man, because 

his effort, as well in 

intensity as direction, 

varies at each instant; 

but there is a general cj cx c\ 

tension exerted upon 

the main rope, and the 

quantity of work of this tension is equal to the sum of the 

effective quantities of work of the several men. The effort 

of each man is resolved into two components, one in the 

direction of the main rope A B, the other perpendicular to 
18 

The work of the 

forces which act 

at the ends of a 

cord must be 

equal; 

quantity of work 

of the forces 

applied to one 

end of a cord is 

equal to that of 

the tension; 

Fig. 156. 

example of the 

bell-ropes; 
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it. The perpendicular components must 

while the parallel components are alone 

ducing useful work. The 

produce fatigue, and 

exhaust uselessly the 

strength of the men. 

effect of And, although the to- 

perpendicular to tal quantity of WOrk IS 
the main rope of transmitted to the main 
the bell; . 

rope, yet the disposi¬ 

tion of inclined cords 

be in equilibrio, 

effective in pro- 

perpendicular components only 

Fig. 157. 

is a source of real loss, 

which is the greater in 

proportion as the incli¬ 

nation is greater. It 

is for this reason that 

effect of a hoop, a rigid hoop mn is so 

introduced as to sepa¬ 

rate the cords, and give 

the portions to which the efforts are immediately applied 

parallel directions. 

Equilibrium of 

several cords 

meeting in a 

point; 

equilibrium of a 

sliding knot; 

§ 191.—When several forces act upon cords which meet 

in a point and are united by a knot, the tension of any 

one is equal to the resultant of the efforts exerted upon 

the others, and the equilibrium requires that this same- 

tension shall be equal and directly opposed to the force 

which solicits the cord in question. Hence, when forces 

are applied to cords which meet in a knot, the condition 

of their equilibrium requires that the effort of any one 

shall be equal and directly opposed to the resultant of all 

the others. 

Wdien a force P is applied to a point D) which may 

slide along a cord whose ends A and B are fixed, the 

equilibrium of the point J) requires that the direction of 

the force P shall bisect the angle A D B formed by the 

portions of the cord separated by the bend at D; for 
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tlie force P must be equal and directly opposed to tlie 

resultant of the tensions on DA and D13; but the 

whole cord ADD be- 

mg continuous, these 

Fig. 15S. tensions must be equal, 

since the tension is the 

same throughout; if, 

therefore, the distance 

DC be laid off on 

P D produced, pro¬ 

portional to the inten¬ 

sity 1\ and from 6', the 

lines Cm and Cn be 

drawn parallel to D B 

and DA respectively, 

the figure Cm D n will be a rhombus, because D m and 

I) n, which represent the tensions, must be equal. 

An example of this mode of action is furnished by the 

manner of suspending a common lantern L from a small 

pulley A, of which the 

groove receives the 

cord A D B) whose 

ends are fastened to 

hooks at A and B. 

The weight of the lan¬ 

tern will cause the pul¬ 

ley to move till the 

direction of the weight 

bisects the angle made 

Fig. 159. 

by the branches of the 

cord; the pulley will 

then come to rest and remain in a state of stable equilib¬ 

rium. The equilibrium will be stable because, being a 

heavy system, the centre of gravity is the lowest possible ; 

and to show this, it will be sufficient to remark that the 

length of the entire cord being constant, the point D will, 

when in motion, describe an ellipse of which A and B are the 

direction of the 

force applied to 

the knot, must 

bisect the angle 

of the two parts 

of the cord; 

example in the 

mode of 

suspending the 

common lantern • 

the pulley will 

be in stable 

equilibrium when 

at the lowest 

point; 
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position of the 

horizontal 

tangent; 

when the pulley 

is replaced by a 

knot; 

tension will not 

be the same 

throughout; 

the conditions of 

the equilibrium 

will be the same 

as those of three 

oblique forces; 

tension on one 

branch ; 

Fig. 159. 

Fig. 100. 

foci, and as tlie direc¬ 

tion P 0\ of the weight 

of the lantern, bisects 

the angle A B B, it will 

be perpendicular to the 

tangent to the curve at 

B, which must therefore 

be horizontal, and no 

poin£ of the curve can 

lie below it. 

If the pulley be. re¬ 

moved and the lantern 

be attached by a knot 

arbitrarily to some point 

as B, the freedom of 

motion will be destroyed, 

the tension will no lon¬ 

ger be the same through¬ 

out, and the conditions 

of equilibrium will be 

those of forces applied 

to three cords meeting 

at a single point. Produce the vertical PB, and lay off 

B C to represent the weight of the lantern. Denote its 

weight by W; the tension on BA by a, and that on BB 

by b; the angle ABB by 9, and ABC by d; then, 

drawing Cn and Cm, parallel respectively to BA and 

BB, we have, from the parallelogram of forces, 

W : a : : sin 9 : sin (9 — 6), 

W : b : : sin 9 : sin 6; 

whence 

a — 
W. sin (9 — 6) 

sin 9 
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W. sin 6 

sin 9 

tension on the 

other; 

inclined has the 

greatest tension; 

If 6 be less than <p — 0, a will be greater than b ; that is 

to say, the tension will be the greater upon that branch with branch most 

which the direction of the weight makes the least angle. 

If the cord ABB be drawn into a straight horizontal 

line, 9 will become equal to 180°, the sine of which is zero, 

and the tensions a and b will become infinite; in other 

words, there is no force sufficiently great to bring the no force sufficient 

whole cord to a horizontal position. 
to make the cord 

horizontal. 

§192.—Let US 

now consider a 

polygon A B CD, 

composed of an 

assemblage of 

cords or bars, and 

acted upon at the 

angular points by 

the forces P, Q, 
Bj S. Moreover, 

let IV" and N' be 

two forces draw¬ 

ing on the points 

A and P, in the 

directions A A’ and DD\ respectively; these latter forces 

will represent the efforts exerted at the two extremities 

where the polygon is attached to fixed supports. The con¬ 

ditions of equilibrium about each of the several angles are 

the same as in the preceding case, and the figure formed by 

the sides, in turning about the angular points to satisfy 

them, is called a funicular polygon. This figure must be 

such that the equilibrium will subsist at each angle. If, 

therefore, any one of the forces, as P, be resolved into two 

components in the directions of the sides D C and B G\ 

adjacent to its point of application, these components will 

To find 

conditions of 

equilibrium of 

the funicular 

polygon; 

equilibrium must 

subsist at each 

angle; 
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be equal and directly opposed to tlie tensions of the 

is independent of sides. The equilibrium is entirely independent of the 

and\vin 1 u'bsist ^eilo^1 °f ^ie s^es; and will subsist when these are re- 
when the sides 

are zero; 

conditions of 

equilibrium in 

words. 

duced to zero, in which case, all the forces and tensions 

will be transferred parallel to their primitive directions to 

the same point; and as each side is drawn by two equal 

and contrary tensions, these latter will disappear or 

destroy each other, so that the conditions of equilibrium 

of several forces applied to a funicular polygon is, that these 

forces shall remain in equilibria when transferred parallel to 

their primitive directions and applied to a single point. 

When the forces 

are parallel, the 

polygon and 

direction of forces 

are in same 

plane; 

the polygon a 

collection of 

heavy bars; 

Fig. 1G2. 

§ 193.—If all the forces P, (), if, &c., be weights, and 

the polygon in equilibrio, since the force if will be in 

the plane of the 

sides B C and 

CD, adjacent to 

the angle C; the 

force Q equally 

in the plane of 

the sides B C and 

A B; the sides 

A B, B C, and 

CD, will be in 

the plane of the 

parallel forces Q 

and if. In the 

same way it may 

be shown that the 

entire polygon 

and the forces 

applied to it are 

in the same plane. If the potygon be a collection of 

O' 

/! / • vr 

vL i ; 
I » I / 

M 

heavy bars, each side will be solicited by its own weight 

in addition to the weights applied to the angles. Denote 

by w the weight of the bar A B; this weight must pass 

through the centre of gravity of AB. Kesolvc it into two 
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components acting at the extremities of the bar. If the 

bar have the same cross section throughout and be of 

homogeneous density, the components at A and B will be 

i w. In like manner, if w' be the weight of the side BO.\ weight of sides 

the components at B and C will be \ w\ and so on for the ^-aiief mt° 

other sides. Thus the angles B and C will be acted upon components; 

by the weights J {w + w') and J (wr + w") respectively, 

that is, by the half sum of the weights of the adjacent 

sides. The extreme ends will each be acted upon by half 

the weight of the adjacent side; and thus we have but to 

consider the polygon as without weight and solicited by 

forces applied to its angular points. Since all the weights 

P, Q, P, S) and the weights iu,w\wr\ &c., are maintained 

in equilibrio by the reaction J¥ and JST' of the fixed points, 

which are equal to the tensions of the sides A' A and BI)' 

respectively, the resultant of these tensions must be equal resultant of 

and directly opposed to that of all the weights. If, there- c^iand03'0113 

fore, the lines A A' and BB' be produced, their inter-opposed to that 

section 0 will give one point through which the resultant 

of the weights P, Q, P, P, and that of the polygon, will 

pass; and this resultant being vertical, if the distance OM 

be laid off, by any scale of equal parts, so as to contain as 

many linear units as there are pounds in P + Q + Ii -f S + 

w + w' T vj'\ &c., and two lines MTJ and 31L be drawn value of extreme 

through M parallel respectively to A A' and BB\ the dis-tensions found* 

tances 0 V and 0 TJ will give, by the same scale, the 

tensions at A' and B\ or the values of N and N!. 

If the polygon be only subjected to the action of its 

own weight, the line OM may be drawn vertical^ 

through its centre of gravity. 

§194.-—It is often of great practical importance to Method of finding 
, . . , . , n n . , i the tensions of 
know the tensions on the sides of a funicular polygon the side3. 

subjected to the action of weights, in order to proportion 

the dimensions of its several parts. 

Let A B CB E be a polygon in equilibrio, under the 

action of the weights P, Q, R, S) rJ] including the 
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funicular polygon 

in equilibrio 

under the action 

of weight9; 

determination of 

a single tension; 

general 

construction for 

finding the 

tensions; 

weights of the sides, and 

the extreme forces N 

and iV', of which the di¬ 

rections are A A' and 

EE', respectively. De¬ 

note the tension of the 

side A B by th that of 

B 0 by 4 that of CD by 

4 &c. Since the equi¬ 

librium subsists about 

each angle, as A for example, the force N which acts from 

A to A', is equal and directly opposed to the resultant of 

the two forces P and tx; and if A n be taken on the pro¬ 

longation of A' A to represent E, the parallelogram Ap n o, 

constructed on iw as a diagonal, will give Ap for the 

weight P, and pn for the value of the tension 4 This 

being understood, draw the horizontal line a e) upon which 

lay off the distances a'a, ah, h c, c d, de, proportional to the 

weights P, Q} P, JS, and 

T From the point a' 

draw a'S perpendicular 

to A A', and proportional 

in length to the tension JVj 

and join S with the sev¬ 

eral points a, h, c, d, and 

e; then will a S, bS\ ciS,\ 

d and e S7 represent, 

respectively, the ten¬ 

sions th 4 4 4? and Nr. 

For the two triangles 

Apn and arSa are sim¬ 

ilar, because a'S and a' a are respectively perpendicular te 

A n and Ap; lienee the angles S a' a and p A n are equal; 

moreover, the sides about these equal angles are propor¬ 

tional by construction and we, therefore, have 

An = N : pn — 4 :: a'S : Sa; 

Fig. 164. 

A' 
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and if a' 8 represent tlie tension jVJ 8 a must represent the 

tension 4. For the same reason, ab being proportional to demonstration; 

Q, the third side b 8, of the triangle a 8 b., will be propor¬ 

tional to 4, since the three forces th Q1 and 4, are in 

equilibrio about the point B. Finally, since a a' and a' 8 

are perpendicular to the directions A p and A n of the 

forces P and 2VJ a 8 will be perpendicular to the side A B 

of which it measures the tension 4. It will be the same 

of B C and b 8,\ and so on. Therefore, when a funicular lines which 

polygon is in equilibrio under the action of weights, if a rePresent the 
r f ° _ 1 > . ° tensions, 
series of distances be taken on a horizontal line propor-perpendicular to 

tional to these weights, the lines drawn through the points of the 

of division perpendicular to the corresponding sides of polygon; 

the polygon will meet in a point, and the lengths of these 

perpendiculars, included between the common point of 

intersection and the horizontal line, will measure the 

tensions of the sides of the polygon. The point 8 is point of tensions, 

called the point of tensions. 

§ 195.—The sides of the polygon may be very short 

and only subjected to the action of their own weight, The catenary; 

which would be the case with a heavy chain A CB sus- 

nended from its 
JL 

extremities. The 

polygon of equi¬ 

librium then be¬ 

comes a curve, 

called the catenary. 

This curve is em¬ 

ployed to give 

form to arches and 

domes. The use 

of the catenary for 

such purposes may 

be illustrated by 

conceiving a series 

of equal spherical balls held together by mutual attrac- 

Fig. 165. 

C' 

’ its use in the 

arts; 

c 



282 NATURAL PHILOSOPHY. 

illustration by a 

string of balls; 

sides of the 

polygon, the 

chords of the 

balls; 

the string of balls 

reversed; 

points of contact 

extended to 

tangent planes; 

arch-stones or 

voussoirs; 

tions, but with perfect freedom to slide the one over the 

other. Such a collection of balls would resemble a string 

of beads, and if 

supported at the 

ends would, under Fig. 1G5. 

the action of their 

own weights, as¬ 

sume the form of 

the catenary, or 

rather funicular 

polygon, of which 

the sides would be 

the chords of the 

spheres joining the 

points of contact. 

If the whole ar¬ 

rangement be re- 

versed, and the balls, instead of being suspended, be sup¬ 

ported upon the ends as fixed points, after the manner in¬ 

dicated in A' C' B\ the figure will remain unchanged and 

the balls will still be in equilibrio; for, the action of the 

weights will be the same as before, and the reciprocal action 

of the balls upon each other will simply be changed from a 

force of extension to one of compression. If we now suppose 

the points of contact to be extended into tangent planes, 

and the spaces 

between filled up 

with solid matter, 

as wood, stone, or 

metal, we shall 

have a perfect sys¬ 

tem of voussoirs 

or arch-solids in 

equilibrio under 

the action of their 

Fig. 1GC. 

own weight, re¬ 

quiring no aid from friction or any other principle of sup- 
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port. The tangent planes or joints of the voussoirs will be position oftho 

normal to the curve. The catenary is also employed inJoins; 

suspension-bridges supported upon two or more parallel also used in 

chains stretched across a river. In the construction of 8usPen810n* 
bridges. 

such catenaries it is important to determine the tension at 

the ends, in order to secure an adequate resistance at 

those points. 

§ 196.—The catenary A CB, suspended from two General 

points A and 25, is nothing more, as we have seen, than J,atenai. . 

a heavy polygon in equilibrio, and whose sides are indefi¬ 

nitely small; so that, if upon a horizontal line, a length • 

A'B' be taken proportion¬ 

al to its weight, and this 

length be divided into a Fig. 167. 

number of §qual parts, 

there will exist a certain 

point S such, that all the 

right lines drawn from it 

to the points of division, 

will be perpendicular to 

the small successive sides 

or elements of the cate¬ 

nary, and that the lengths 

SA', SFSC', &c., of 

these lines, are propor¬ 

tional to the tensions of 

the same elements. Of all 

the tensions, the least is 

given by the line SO', 

drawn perpendicular to 

the horizontal line A' B'. 

But the element of the cat¬ 

enary to which this tension 

corresponds being itself 

horizontal, it will occupy 

the lowest point of the curve. This length becoming greater 

construction to 

find the tension 

of the different 

points of the 

catenary; 

least tension at 

lowest point; 
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tension greater 

as the element is 

at a greater 

distance from the 

lowest point; 

elements of equal 

tensions form 

equal angles with 

the vertical 

through lowest 

point; 

catenary 

symmetrical in 

reference to this 

line; 

on same level the 

extreme tensions 

are equal; 

position of the 

point of te isions. 

and greater in proportion as the oblique lines SF\ &c., 

recede from the perpendicular S C', the tensions of the 

elements of the catenary will increase in proportion as 

they are at a greater distance from the lowest point. 

Whence it follows, that 

the tension is the greatest 

possible at the extremi¬ 

ties A and B. Two equal 

tensions S F' and S Gr ', 

appertain to two elements 

equally distant from the 

lowest point C: moreover, 

these elements form equal 

angles with the vertical 

L C passing through this 

point; hence, these ele¬ 

ments, M and N) are situ¬ 

ated on the same horizon¬ 

tal line MN, and the chord 

HN, as well as all similar 

chords, will be divided 

equally by this vertical 

line. The catenary is, 

therefore, a symmetrical 

curve in reference to 

a vertical line passing 

through its lowest point. 

It follows, also, that when 

the extremities or attached points A and B are on the 

same horizontal line, the extreme tensions are equal, and 

that the point of meeting which determines the tensions 

is upon the perpendicular drawn through the middle 

of the horizontal line A' B\ which is proportional to 

the weight of the catenarv. A and D being, for exam- 

pie, the two points of suspension, and A' B’ being the 

length proportional to the weight of the catenary AC D, 

SC\ perpendicular to A! B' and passing through the 

Fig. 167. 

I? 

a- 
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point jS, will divide ACB' into two equal parts A' C' 

and O'D'. 

§ 197.—Two catenaries, (last figure), ACB and a c b similar 

are similar when the points of suspension A and B of the catenanes; 

one, and a and b of the other, are situated upon parallel 

right lines, and when their lengths A CB and acb are 

proportional to the distances A B and a b, between their 

points of suspension. If the equilibrium subsists in the 

catenary ACB, this equilibrium will not be disturbed if the 

length of its elements and its other dimensions be propor¬ 

tionally diminished indefinitely, § 192. Therefore, when equilibrium 

A CB is reduced to the size acb, the equilibrium will not mdependentof 

only exist, but there will be no one of its parts which will 

not be parallel and proportional to the corresponding part 

of the original. But since the elements of the smaller 

catenary acb are parallel to those of the larger A C B, 

all the tensions of the former are comprised within the 

angle A'SB', which contains the different tensions of the 

latter. We have, then, but to find in this angle, the posi- tensions of one 

tion of a line a'b' parallel to A' B', which represents the f*om those ofa 

weight of the smaller catenary, as A'B' represents the similar one; 

weight of the larger, and the slightest consideration will 

show that the two tensions Sf and SF' situated upon the 

same line converging to S will appertain to parallel ele¬ 

ments of the two curves. These are called homogeneous homogeneous 

tensions. But because A'B' and a’V are parallel, we tcnsions’ 

have the proportion 

Bf SF' a' bf A'B' 

whence we conclude that, in two similar catenaries, the ten- tensions of 

sions of elements similarly situated are to each other as the situated 

weigh is of the catenaries. we as the weights 

of the entire 

curves. 
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To construct the 

catenary from its 

weight, length, 

and the point of 

tensions; 

198.—Let A' B' 

be a horizontal line pro¬ 

portional to the weight 

of the catenary, S the 

point of tensions. Di¬ 

vide the line A' B\ and 

the length of the cate- 

nary into the same and 

a great number of equal 

parts; those of the cate¬ 

nary may be regarded 

as its elements, and 

those of A' B' their 

corresponding weights. 

S3' . . . SB'; these will be perpendicular to the different 

elements of the catenary. From any point A, on BA. 

draw A 1 perpendicular to S A and equal to an element 

of the catenary; from the point 1 draw 1-2 perpendicular 

to $1' and equal to an element; again 2-3 perpendicular 

to S2', and equal to an element, and so on to the end. 

The polygon AL-1-2-3 . . . B, will approximate to the re¬ 

quired catenary the nearer in proportion as the number of 

divisions is greater. 

Fig. 1G8. 
O 

S7 

Draw the lines SA, Slr, S2\ 

to draw a tangent 

to any point of 

the catenary. 

The point of ten¬ 

sions B gives the means 

of drawing a tangent 

to the catenary at any 

point. Let E be the 

given point, and let A' e 

represent the weight of 

the portion A E of the 

catenary; through e 

and S draw the indefi¬ 

nite line e G, and from 

E draw E G perpen¬ 

dicular to e jS[EG will 

be the tangent line. 

Fig. 1G9. 
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§ 199.—The point 

of tensions in the cate¬ 

nary depends upon the 

intensity and directions 

of the extreme ten¬ 

sions. For A' B' being 

the horizontal line proportional to the weight of the entire 

catenary, if from the extremities A' and Br arcs be de¬ 

scribed with radii proportional to the extreme tensions, 

their intersection S will give the point of meeting. 

The process for find- 

Fig. no. 

ing the extreme ten¬ 

sions must of course 

depend upon the data 

given. Let us first sup¬ 

pose the catenary A CB 

to be given and traced 

Fig. m. 

A L B 

out. It is evident from 

the conditions of equi¬ 

librium, that the verti¬ 

cal 0 L drawn through the intersection 0 of the extreme 

Determination of 

the point of 

tensions; 

to find the 

extreme tensions 

from the curve 

traced; 

tangents A 0 and B 0, will pass through the centre of 

gravity of the catenary. If, therefore, a distance 0 G be 

taken on this line to represent the entire weight of the 

catenary, and the parallelogram 0B’ G Ar be constructed 

upon the tangents, the sides 0 A' and OB’ will represent 

the tensions at A and B respectively. 

But if only the two 

points A and B of 

suspension, the weight, 

and entire length of the 

catenary be given, the 

process for finding the 

extreme tensions is as 

follows, viz.: Take a 

small chain and sus¬ 

pend it against a ver- 

Fig. II2. 
to find the 

extreme tension? 

from the points 

of support, the 

weight, and 

length of the 

curve; 
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figure found by 

means of a small 

chain; 

the tensions 

found by 

construction; 

tical plane from two 

points a and b, situated 

upon a right line paral¬ 

lel to A B, and whose 

distance apart shall be 

to the distance from A 

to B, as the length of 

the smaller chain is 

to the length of the 

longer. The smaller 

chain being thus sus¬ 

pended, measure by 

means of a spring balance the tension exerted at the points 

a and b. The tensions on the points A and B produced by 

the larger chain, will be equal to the tensions at a and &, 

multiplied by the number of times which the weight of the 

larger chain contains that of the smaller. § 197. 

Instead of measuring with a spring balance the tensions 

at the ends of the catenary, we may proceed as follows: 

Draw through the low- 

Fig. 172. 

Fig. 173. cst point of suspen¬ 

sion a, a horizontal 

line cutting the oppo¬ 

site branch of the small 

chain in the point d. 

Upon a horizontal line 

take the distance a' V 

to represent the weight 

of the entire chain, and 

lay off the distance a'd! 

proportional to the 

length a c d. The por¬ 

tion a c d of the cat¬ 

enary would be in 

equilibrio if the point d were fixed and the remainder db 

removed ; the point of tensions for a c d, and therefore for 

a c 5, will, from what has already been explained, be found 

% 
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somewhere on the perpendicular C' If drawn to the mid¬ 

dle of a'd'; assume it at 0, and by means of this point 

and the line cc' l>\ construct a catenary after the manner construction of 

of § 198, and let a e be the resulting distance between its an approximate 

points of support. Through 0 draw a perpendicular to 

Cr If, and lay off upon it from the point 0, the distance 

Og — a e — a b, to the right when a e is greater than a b, 

and to the left when the reverse is the case. Assume 

another point as 0' below 0, and do the same as before; we 

shall find a new point g\ say to the left of Cr If; repeat 

the process with points between 0 and O’ several times, 

and pass through the points g, g\ g", &c., thus determined, 

a curve; its intersection S with G' If .will be the true 

point of tensions. The distances Sa' and Sbr will repre¬ 

sent the extreme tensions. 

§ 200.—We have seen that in the 

catenary the tensions at the different 

points are different, and that the small¬ 

est tension is at the lowest point. This 

is still true when the catenary becomes 

a vertical chain loaded with a weight. 

For the lowest link supports only the 

attached weight Q; the link C' only 

supports the weight Q and link (7, 

and so on to the -topmost link, which 

supports all below it; so that if the 

chain were proportioned to the tension 

of its different parts, it would be made 

stronger above than below. 

§ 201.—The point S being 

the point of meeting of the 

tensions, and A! B' a hori¬ 

zontal line representing the 

weight of the catenary, we 

have seen that the tension at 

Fig. 175. 

B' 

Direct measure o 
the tension on 

any point of the 

catenary; 

Fig. 174. The smallest and 

greatest tension 

of a vertical 

chain. 

19 
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construction; 

the tension at any 

point is the 

hypothenuse of a 

right-angled 

triangle; 

tension m 

horizontal 

direction; 

in vertical 

direction: 

effect of these 

tensions on piers. 

JD is represented by the length I)' S} and that at 0J 

the lowest point, by SGr, perpendicular to A' !>', the 

lengths A’])’ and D' C representing, respectively, the 

weights of the portions 

A D and 1) C of the 

curve; that is to say, 

the tension at any 

point D, is represent¬ 

ed by the hypotlie- 

nuse of a right-angled 

triangle, of which one 
O 7 

side represents the ten¬ 

sion at the lowest point 

of the curve, and the 

other the weight of 

that portion of the cate¬ 

nary included between 

the lowest point and the 

point whose tension is 

to be found. Hence, the 

tension at any point of 

the curve, estimated in a 

horizontal direction, is 

constant and equal to the entire tension at the lowest point; 

and estimated in the vertical direction, is equal to the weight of 

that portion of the catenary included between this point and Vie 

lowest point. 

The horizontal tensions at A and B are therefore the 

same, although they may be situated on very different 

levels. If the catenary be suspended from the tops of 

piers, the vertical components will promote their stability 

by pressing them down, while the horizontal components 

will tend to overturn them. 

§ 202.—It is comparatively easy to compute the ex¬ 

treme tensions of the catenary when the versed sine of its 

arc is small. Let A CB be a catenary, of which CD, the 

Fig. 175. 

.V 

Fig. 176. 

B' 
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t 

distance of the lowest point below the horizontal line BA, To find extreme 

is very small. The curve being in equilibrio, the equi-‘;ensions ™hen 
^ o x ; i the versed sine of 

Fig. m. 
the curve is 

small; 

librium of the part B C will not be disturbed by taking the 

point C as fixed, and regarding it and the point B as the 

points of suspension. But because of the smallness of 

D C, the curvature must be very small, and the centre of 

gravity of B C may, without sensible error, be regarded as 

at the middle point G. The tangents CHand B G\ at the notation; 

points of suspension, will intersect at G' on a vertical line 

drawn through the point G. Denote by rI\ the tension at 

B; by jP0, the tension at C; and by y>, the weight of the 

portion B C. 

Because the three forces y>, l7, and T0, are in equilibrio 

about the point G\ we have 

p : Tq : : BII : II G\ 

p : T :: BE : B G'; 

whence 

IIG' 

BE ’ 

BG' 

BE * 

tension at lowest 

point; 

tension at highest 

point; 

Observe that BII is the versed sine, which denote by f; 

and, because B G C may be regarded a right line, E G' is 

half the semi-space BD, which semi-space denote by l. 

Then, since the triangle B G' II is right angled, 

BG' = \] B1L* + Q'H1 
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Substituting these quantities in the above equations; we 

find 

horizontal 

tension or thrust; 

V 

The first expresses the tension at the lowest point, which 

we have seen is equal to the horizontal thrust at the points 

of suspension. The second gives the entire tension at the 

same points, which must be known in order to adjust the 

dimensions of the chain. 

tension at highest 

point. 
T JP 

/■ 
\//2 + i! 

4 

Application to 

suspension- 

bridge ; 

§ 203.—To conclude the subject of the catenary, and 

show the application of the preceding principles, take the 

case of a bridge suspended from two parallel chains 

extended from one bank of a river to the other. 

To the different 

points, A, j£>, 0, &c., 

of the catenaries, or 

rather to the anodes of 
O 

the funicular polygons 

thus formed, are attach- 

suspendingrods; ed vertical suspending 

rods, which are united 

at the bottom in pairs 

by transverse pieces 

called sleepers; these 

receive a set of longi- 

Fig. 178. 

joists; tudinal joists, which, in their turn, support the floor plank. 

The distances between the suspending pieces in longitudi¬ 

nal direction are supposed equal. These equal portions 

of the roadway included between two consecutive sleep- 

scetions; ers, are called sections. Each sleeper is loaded with half 

the section which precedes and half that which follows it; 

that is to say, with the weight of an entire section. This 
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weight is known, and 

determines the cross sec¬ 

tion of the suspending 

rods. The weight of the 

suspenders being small 

compared with that of 

the roadway, may be 

neglected, and thus the 

weight of the bridge 

will be equally distribu¬ 

ted. 

Draw a horizontal 

right line, and take 

uv proportional to the 

weight of the bridge; 

let S be a point such 

that S u shall be perpendicular to the side U A, and 

proportional to its tension. Take upon u v, the portions 

u a, a l\ &c., 23roP°rtional to the weights supported at the 

angles A, B, &c.; the converging lines a S, b S) &c.; will be 

proportional to the tensions on the sides A B, &c., and the 

perpendicular Sd, to the tension on the horizontal side of 

the polygon. First, find the difference of level between any 

two consecutive angles, as A and B. Draw the horizontal 

line BA", and the two triangles AA"B and Sad, will be 

similar and give 

A A" : A" B :: ad : Sd; 

whence 

AA" = ^sTacl 

Because of the equality of distances between the sus¬ 

pending rods, A"B will be constant. Moreover, ad and 

Sd being proportional respectively to the weight of the 

portion A' 1)\ and the tension tQ upon the horizontal side, 

Fig. 179. 

each pair of 

suspending rods 

supports the 

weight of one 

section; 

tensions on the 

sides of the 

funicular 

polygon; 

difference of level 

between two 

consecutive 

angles; 
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if we denote by w the weight of a unit of length of the 

bridge, 

ratio of weight of 

half the bridge to 

the horizontal 

tension; 

which in the preceding gives 

ad uA'D' -- • 
~Kd ~ t0 1 

A A" 
uA" B.A'D' _• 

but u A”B is the weight of a section of the bridge. 

Denoting this by jp, we have 

A A” = £- . A'D' 

value of the 

difference of level 

of two 

consecutive 

angles; 

and denoting the constant ratio of the weight p to the 

tension tQ at the lowest point by h, 

A A" = h.A'U; 

from which we conclude, that the difference of level 

of two consecutive angles, is equal to the constant ratio 

h, multiplied by the horizontal distance of the higher of 

the two angles from the lowest angle of the funicular poly¬ 

gon. Denoting by Z the constant length of a section, 

and beginning at the lowest angle 7f, the horizontal 

distances will be successively Z, 2 Z, 3 Z . . . n Z, for the 

1st, 2d, 3d, . . . nil\ angle to the right and left. Tims the 

difference of level between the lowest angle K and the 

next in order (7, is hi; between 

C and _Z>, 2 hi; between B 

and A, 3 hi, &c. The heights 

difference of level of the angles (7, B, A, &C., 

the polygon ab°Ve tlie ]°West point A, Will 

above the lowest p© respectively hZ, hi A 2 hZ, 
fin prl o • 

hi A 2 hi + Shi, hi A 2 hi A 

3 hi + 4/rZ, and, in general, 

Fig. 180. 
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if there be n sections between the lowest angle and that un¬ 

der consideration, the height of the latter above the former 

will be given by the expression 

+ -b 11) — hi. n 
n + 1 

2 

height of the nth 

angle above the 

lowest one; 

In this expression, if we make successively n = 1, n = 2, 

n =3, n = 4, &c., we have hi, 3 hi, 6 h l, 10 /j Z, &c., 

for the heights of 1st, 2d, 3d, 4th, &c., angles above the 

horizontal side of the funicular polygon. 

The locus of all these 

angles is a parabola, for 

if y = KP — MU de¬ 

note the height of one 

of these angles above 

the lowest point K, n 

being the number of its 

place from the latter, we 

have 

Fig. 181. 

the locus of the 

angles is a 

parabola; 

y hi .n 
n + 1 

9 

and making 

n l = x = KM, 

7 ~b 1\ h , j. x 

y = M-r-)* = 2(i + I)t; 

or • 

y 
equation of the 

locus of the 

angles; 

this is the equation of a parabola, of which the vertex is 
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to tliG right of the point K, and at a distance from it 

equal to 

place of the 

vertex of the 

locus curve; 

X = 
1 
2 5 

it is below the horizontal side by the distance 

HK' = y 

a quantity so small that 

it may be neglected in 

practice. 

Moreover, from the 

property of the parabola, 

the squares of the ordi¬ 

nates are to each other 

to find the point as the abscisses; that is 
in which the 

vertical through to say, 
the vertex cuts 

the line of 

supports; 
AP2 : BQ2 

Fig. 182. 

: MA NB; 

and from the similar triangles obtained by joining A 

and B, 

AP2 : BQ3 : : PO2 : QO2; 

whence 

PO2 : QO- :: MA : NB; 

or 

PO2 X NB = Q0° x MA; 

but 

PO = OK — KP — OK - MA, 

Q 0 = QK - OK — NB — K0} 
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which, substituted above, give 

(iOK - MAf x NB = (NB - KOf . Jfbi; 

developing the squares and reducing, we get 

K0‘ MA X NB. 

Fig. 183. 

T 

construction for 

finding the 

position of the 

lowest point; 

That is to say, the distance KO, at which the vertical line distance of this 

drawn through the vertex of the curve cuts the chord ponflt above th0 

joining any two of its points, is a mean proportional be¬ 

tween the heights of these points above the vertex. This 

property furnishes an easy method of finding the lowest 

point K on the level MN. For this purpose, join the points 

of suspension U and V, 

by the cord U V; draw 

the horizontal line UP 

through the lower point 

U, and produce it till it 

cuts the vertical VN in 

P'. Upon the distance 

P' V describe the semi¬ 

circle VTP\ and from 

the point N draw the 

tangent N’T; with N as 

a centre and NT as a radius, describe the arc TT' till it 

cuts VN in T\ and through the point T' draw a hori¬ 

zontal line; this line will cut the cord UV in the point 0, 

through which draw a vertical line OP, and its intersection 

with the horizontal side will give the lowest point Iv. 

Taking this point as the extremity of the horizontal side, 

and laying off on the line MN the equal lengths of the and the abscisses 

. •, . n . . . . , ,-i °f the angular 
sections; the points of division will correspond to tnepoints. 

vertical ordinates h l, 8 Id, 6 Id, . . . n . —k This 

last appertaining to the point C7J whose height h is given, 
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ratio of the 

weight of a 

section to 

horizontal tension 

found; 

from which the 

lengths of the 

suspenders are 

known; 

and horizontal 

tension found; 

tension on side 

next in order; 

that on the 

second in order; 

that on third; 

that on the nth in 

order; 

/ 

we liave 

= h; 

whence we have 

7 2 h _ 
k = ——-rw/i .... (97); 

n ()i + 1) l N J 7 

and hence the lengths of the several suspenders h l, 3 h l. 

&c., are known. 

We have seen that 

p _ 2 h 

t0 ~ n (n + 1) ( 

and therefore 

to 
n (n + 1) . I. p 

2Ti 

the tension on the horizontal side is, therefore, also known. 

The tension on the side next in order to the horizontal 

side is 

VV + p\ 

that of the second in order 

Vtf + (2 p)\ 

that of the third 

V~t02 + (3 p'f, 

and so on to 

A2 + 
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wliicli is the tension on the nth side from the horizontal 

one. 

If the points U and V be on the same level, it is 

obvious that the curve or polygon becomes symmetrical 

in reference to the vertical OK, in which case it is only 

necessary to find the lengths of the suspenders for one data necessary to 

half the bridge. Having given the points of suspension mak0 known the 
. ° ° 1 17 dimensions of the 

their horizontal distance apart, and the level of the lowest bridge, 

side of the funicular polygon, it is easy to determine the 

dimensions of every part of the bridge. 

XY. 

OF BODIES BESTING UPON EACH OTHER, AND 

UPON INCLINED PLANES. 

Fiur. 184. 
O 

§ 204.—When two bodies touch and compress each Action and 

other, there is immediately a depression or yielding m af di t 

direction perpendicular to the surfaces at the point of apparent contact; 

contact, which indicates that the reaction of the two bodies 

takes place in the same direction; that is to say, in the 

direction of the normal common to both surfaces. Let us 

suppose one of the two bodies as A to 

be solicited by forces of which the re¬ 

sultant shall coincide with this nor¬ 

mal, and that the other body A' is 

fixed; it is plain that the reaction of 

the latter body will destroy this resul¬ 

tant, and that the body A will remain 

at rest. But the equilibrium will also 

subsist if the body A' be replaced by a 

force equal to the reaction which it exerts on the body A, 

while this latter body is perfectly free to move and acted 

upon by this new force in conjunction with the given forces. 

This property of all bodies, by which they resist the re¬ 

action and 

reaction of two 

bodies; 
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the principle of 

the reaction of 

two bodies 

extends to 

several. 

Illustration; 

the bodies havin, 

but one point of 

contact; 

conditions which 

will keep a body 

at rest against a 

plane. 

ciprocal action of each other in directions normal to both 

surfaces at the common point of contact, extends to the 

general case of a single body pressing upon two or more 

bodies at the same time. The reaction of these last are so 

many real forces which may be substituted for the resisting 

bodies at the several points of contact, and in virtue of this 

substitution, the conditions of equilibrium of the first body 

will be the same as though it were free to move in any 

direction whatever. Let us examine the circumstances of 

the simple case of a body resting upon a plane, and having 

first but one point of contact, then two, three, &c. 

§ 205.—Let us consider a 

sphere subjected to the action 

of its own weight, and rest- Fig. 185. 

ing upon a level plane A B 

with a single point of contact 

m. Since the reaction takes 

place in the direction of the 

perpendicular to the plane 

through the point of contact, 

and must be in equilibrio with the weight W of the 

sphere, the centre of gravity G must be upon a vertical 

line, in order that the weight and reaction may destroy 

each other. In like manner, when a body rests upon any 

plane whatever, and is solicited by forces, no matter how 

directed, their resultant must be perpendicular to the plane, 

and pass through the point of contact; for if the resultant 

were oblique, it might be resolved into two components, 

one normal, and the other parallel to the plane; the first 

would be destroyed by the reaction of the plane, while the 

latter would put the body in motion. In order, therefore, 

that a body, supported against a plane, and having a 

single point of contact with it, shall be in equilibrio, it is 

necessary, 1st, that the resultant of the forces which act upon 

it he perpendicular to the plane; and 2d, that this resultant 

pass throu/jli the point of contact. 
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Fig. 186. 

§ 206.—But when the body 

has two points of contact, A 

and B, with the plane, it is not 

necessary that the resultant of 

the forces shall pass through 

either. It will be sufficient if 

it meet the line A B in any 

point between A and i>, and be perpendicular to the 

plane. For the reaction of these points of support being 

both perpendicular to the plane, their resultant, which is 

parallel to them, will also be perpendicular to it: this 

resultant and that of the forces acting upon the body 

must be in equilibrio; they must, therefore, be equal and 

directly opposed; in other words, the resultant of the 

forces acting upon the body must admit of being resolved 

into two components, respectively equal and directly op¬ 

posed to the resistances at the points of support. But 

these latter act in the same direction, so also must the for¬ 

mer, and hence their resultant will have its point of appli¬ 

cation between A and B; and this resultant being parallel 

to its components, will be perpendicular to the plane. 

If the body be laid on a horizontal plane, the equi¬ 

librium will subsist whenever the vertical drawn through 

the centre of gravity intersects the line joining the points 

of support somewhere between them. 

If the body have 

two points of 

contact the 

resultant need 

not pass through 

either; 

it must be normal 

to the plane, and 

intersect the line 

joining the points 

of contact; 

when the plane is 

horizontal. 

§ 207.—Now let us suppose three or more points of 

contact. The resistances of these points are perpendicular case of three or 

to the plane, and cannot maintain the forces which act upon moiepoint3’ 

the body in equilibrio unless the resultant of the latter 

may be decomposed into components which are respectively 

equal and directly opposed to these resistances; this 

resultant must, therefore, be perjDendicular to the plane, 

and as its components must act in the same direction, resultant sun 

its point of application will, from the principles of parallel ^J^nthe*1 

forces, be within the polygon formed by joining the points polygon of 

of contact. If the line of direction of the resultant, pierce 00 lUct ’ 



302 NATURAL PHILOSOPHY. 

if the resultant 

pierce the plane 

without the 

polygon of 

contact, the body 

will overturn; 

eTort by which 

the body is urged 

to overturn. 

to, ex¬ tile plane in a point 

terior to the polygon which 

connects the points of support, 

the body will tend to overturn 

around the edge a b of this 

polygon nearest to m; if the 

line of contact be a curve, the 

body will overturn about the 

tangent nearest to to. The ef¬ 

fort by which the body will 

be urged to overturn is meas¬ 

ured by the intensity of the 

resultant of the forces, into 

the shortest distance from its 

line of direction to that about 

which the motion of rotation takes place. 

Fig. 18t. 

Fig. 188. 

a 

Examples; 

table having but 

three feet; 

when the feet are 

in same right 

line; 

will overturn 

unless the weight 

pass through this 

line; 

Fig. 189. 

§ 208.—-The conditions of equilibrium of a heavy 

sphere, resting upon a horizontal plane, have already 

been considered. Let us ap¬ 

ply the same principles to 

other examples, and take first 

the • case of a heavy body 

resting upon a table having 

but three feet. If the feet be 

upon a horizontal plane and 

in the same right line, and the 

vertical line through the 

centre of gravity be noj in 

the vertical plane passing 

through this line, the table 

will overturn towards the 

side on which the centre of 

gravity is situated, and with 

an effort equal to the product 

of the weight into the distance 

A g of the projection of the 
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Fig. 191 

Fig. 192. 

centre of gravity from the line a a' of rotation. This 

product is called the moment of stability. If the distance 

A g is zero, the weight will pass through the line of 

support, and there will be an equilibrium; but it will 

be unstable, since the centre of gravity will be at the 

highest point. 

If the three feet be not in the same right line, and the 

weight pass within the tri¬ 

angle formed by joining the 

feet, the table will be in 

equilibrio. But if the line 

of direction of the weight 

pass without the triangle of 

the feet, the table will over¬ 

turn about the nearest edge 

a b. In the first case,’ the 

equilibrium is stable, because 

no derangement can take 

place about the line of either 

two of the feet without caus¬ 

ing the centre of gravity to 

ascend. And, generally, if 

the table have any number 

of feet, there will be stable 

equilibrium whenever the 

line of direction of the weight 

passes within the polygon 

formed by joining them. 

The effort with which the 

table or any other body will 

resist a cause which tends to 

upset it, is measured by the 

product of its weight into the 

shortest distance A g from the 

line of direction of the weight 

to the line ab about which 

the motion is to take place; 

moment of 

stability; 

Fig. 194. 

if the feet bo not 

in same right 

line; 

stable 

equilibrium; 

in case of any 

number of feet 

the resultant 

must pass 'within 

the polygon; 

effort by which 

a body resists a 

cause to overtu c 

it; 
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moment of 

stability of a 

heavy body; 

the same 

principles apply 

to solids resting 

on plane faces; 

example of the 

cube and right 

prism; 

stability 

diminishes as the 

centre of gravity 

is higher; 

Inclined prism; 

and this effort will be smaller in proportion as the dis¬ 

tance Ay is less. For this reason, the moment of stability 

of a heavy body is the smallest moment of its weight 

taken with reference to the different lines of its polygonal 

base. 

The conditions are the 

same if the body rest upon 

a plane face bounded by a 

polygon or curve. The equi¬ 

librium will exist when the 

line of direction of the weight 

passes within the base. Such, 

for example, is the case with 

the cube resting upon a level 

plane; also with a right prism, 

whatever its height, only that 

its stability diminishes as the 

height increases; for, in pro¬ 

portion as the centre of grav¬ 

ity G is more and more ele¬ 

vated, the angle GAB be¬ 

comes less and less, and the 

centre of gravity will not have 

to be raised so much above its 

position of rest when the body 

is overturned about the eds;e 

Fig. 195. 

Fig. 190. 

aa\ as it would if the angle GAB were greater, or the 

centre of gravity lower. In proportion as the centre of 

gravity is placed higher and higher above the same base, 

the body will approach more and more to the condition of 

unstable equilibrium. 

An inclined prism will pre¬ 

serve its equilibrium as long 

as the direction of its weight 

falls within its base. The dif¬ 

ficulty of overturning it will 

be less in proportion as the 

Fig. 197. 



MECHANICS OF SOLIDS. 305 

Fig. 198 

distance A rj becomes smaller. 

When rj falls without the base, 

the prism will overturn of 

itself. The Tower of Pisa, 

though considerably inclined, 

^preserves its equilibrium be¬ 

cause the line of direction of 

'its weight passes within its 

bule. A pile of dominos or 

bricks, in which each one pro¬ 

jects beyond that immediately 

below it, will preserve its 

equilibrium till the line of 

direction of the weight of the 

entire pile falls without the 

domino or brick at the bottom, when it will overturn. 

We see, therefore, that the natural stability of bodies in¬ 

creases as their bases increase, and the heights of their 

centres of gravity decrease; and that it is the greatest possi¬ 

ble when the centre of gravity is at the centre of figure of 

the base. This is the reason why walls are usually made 

of elements like brick, cut-stone, &c., placed with their 

faces vertical, and laid upon large bases, called foundations. 

If the heavy bodies are solicited by other forces than 

their weights, the resultant of the whole, weight included, 

must act in the direction of a line passing within the base. 

The resultant of the extraneous forces may unite with the 

weight and increase the stability of the body. Thus an 

inclined prism, the direction 

G g of whose weight falls 

without the base A B, would, 

if abandoned to itself, over- 

i turn; whereas, if it were act¬ 

ed upon by a force in the di¬ 

rection GE, of such intensity 

as to give, with the weight, 

a resultant which intersects 

will overturn 

when weight falls 

without the base; 

Tower of Pisa; 

inclined pile of 

brick; 

stability increases 

as the base 

increases and as 

the centre of 

gravity is lower; 

heavy bodies 

solicited by other 

forces than their 

weights; 

Fig. 200. 

these may act to 

increase the 

stability; 

20 
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equilibrium 

stable; 

moment of 

stability; 

illustration of tlie 

foregoing in the 

construction of 

sustaining walls; 

principle of 

counterforts; 

moment of 

natural stability; 

NATURAL PHILOSOPHY. 

tlie base at 0, it would be 

supported, and the equilib¬ 

rium would be stable. Re¬ 

ciprocally, the weight W of 

the prism is opposed to the 

force GE —F, when the latter 

acts to turn the solid about 

the edge A. The measure of 

this opposing effort is 

W.Ag; 

and in this vie ay, Ave see that the moment of the natural 

stability Avill increase as A g increases. I 

In Avails destined to support an embankment of earth or j 

a head of Avater, in order to resist the thrust with greater 

effect, the loAver exterior edge A is throAvn as far as con¬ 

venience Avill permit from the 

vertical line Gg of the weight. 

This is done either by an 

exterior slope B A, or by 

masses of masonry 0' called 

counterforts, attached to the 

back of the Avail. It will be 

sufficient, in general, for the 

stability of the wall, if the 

Fig. 201. 

resultant of its Aveight W and 

the pressure against it, inter¬ 

sects the base A D. The 

moment of natural stabilitv 
%/ 

of such structures is always 

equal to the product of the 

weight into the distance Ag; 

and therefore the figure of 

the cross-section of the Avail 

may be varied at pleasure 

without injury to the sta- 

Fig. 202. 
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Fig. 203. 

Fig. 204. 

bility, provided this product remain the same. Hence the 

external slope may be suppressed, if the thickness of the 

wall be so increased that its augmented weigiit shall com¬ 

pensate for the diminution in A<j. 

If the ground upon which 

the wall rests be compressible, 

it will not be sufficient that 

the resultant of the weight 

and pressure pass within the 

base; it must also pass through 

its centre of figure; otherwise 

there would be more pressure 

on one side of this point than 

on the other, and the wall 

would incline in that direc¬ 

tion. 

If the load of a two- 

wheel cart be such that 

the direction of its weight 

does not intersect the axle- 

tree, it will tend to overturn 

on the side of the. weight, 

and will either exert a pres¬ 

sure upon the horse or an 

effort to lift him from the 

ground, according as the 
C / o 

weight passes in front or in 

rear of the axle-tree. If the 

centre of gravity of the load 

be immediately above the 

axle-tree on a level road, 

then, when the cart is as¬ 

cending a slope, the weight 

will pass behind, and the ten¬ 

dency of the load will be to 

lift the horse; while, on the 

contrary, when the cart is 

external slope 

and weight; 

when the ground 

is compressible, 

the resultant 

should intersect 

middle of the 

base; 
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the tendency is descending a slope, the tendency of the load will be to 

horse*8th° throw a pressure upon him. If the centre of gravity be 

on the axle-tree, the horse will experience no effort of the 

kind referred to. 

It dined plane; 

defined by ratio 

of height to base 

a body on an 

inclined plane; 

the body may 

slide or roll; 

conditions of 

equilibrium; 

§ 209.—Let ALP represent 

the section of an inclined 

plane in the direction of its 

greatest declivity. Although 

the plane be indefinitely pro¬ 

longed, it will be sufficiently 

defined by the relation of the 

base A G to the height CB, 

corresponding to a given 

length A B. o 

Fig. 207. 

C 

Conceive a heavy body resting upon this plane, and of 

which G is the centre of gravity. The equilibrium of this 

body requires, 1st, that its weight shall intersect the plane 

within the polygon formed by joining the points of con¬ 

tact; 2d, that the weight shall be perpendicular to the 

plane. This last condition cannot be satisfied for any but 

a horizontal plane, since the weight is always vertical. If 

the weight be replaced by its two components, one perpen¬ 

dicular and the other parallel to the plane, the former will 

be destroyed by the resistance of the plane, while the latter 

will cause the body to move in the direction of its length 

BA. If the direction of the weight meet the plane within 

the polygon of contact, the parallel component will cause 

the body to slide, otherwise it will cause it to roll. This 

last will happen in the case of a spherical ball, since the 

weight will not meet the plane in the single point of con¬ 

tact m. 

Let a force P be applied in the direction G S) next figure, 

to prevent the body from moving down the plane. Since 

the body must be in equilibrio under the action of its weight 

W and the force P, these must have a resultant, and this 

resultant must be perpendicular to the plane and intersect 
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Fig. 208. 

S 

it witliin the polygon of contact, or in the case of the plane in which 

sphere, at the point m. The force P must, therefore, be the force must 

applied in a vertical plane which passes through the 

centre of gravity, and which is, at the same time, perpen¬ 

dicular to the inclined plane. 

Lay off on the vertical through the centre of gravity 

(7, the distance G G' to represent the weight IF, through 

the same point draw G M 

perpendicular to the inclined 

plane, and through G\ the 

line G' M parallel to the di¬ 

rection of the force P; from 

the point M draw M Q paral¬ 

lel to G G’; the distance G Q 

will represent the intensity 

of the force P, and GM that 

of the resultant, P, of W and 

P. From the principle of the 

parallelogram of forces, we have 

„ „ . intensity of the 

W : P : P : : sin Q G M : sin Gr G Q : sin G' G M; force found 
analytically; 

but G Gr and G M being respectively perpendicular to 

A C and A B, the angle A is equal to the angle G' G M, 

and we have 

force found by 

construction; 

sin G' G M — sin BA C — 
BC 

AB 

and this substituted in the foregoing proportion gives, after 

reduction, 

W : B: Pi: AB.siuQGM: AB. sin G' G Q : B C; 

from which we find 

P = 
BC_ 

A B . sin Q G M 
/QQ\ . value of the 

^ ’ force: 

sin G' G Q 

sin Q G M 
(100). 

value of the 

pressure against 

the plane; 
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power applied 

parallel to the 

plane; 

If tlie power P bo ap¬ 

plied parallel to the 

plane, the angle Q G M 

— 90°; and the angle 
i o 

Gr G Q becomes the sup¬ 

plement of the angle 

A B C; whence we have 

Fig. 209. 

sin Q G M — sin 903 = 

sin G' G Q — sin A B C = 

which, in the above equations, give 

i; 

A C_ 
AB ; 

value of force; P = w 
B_C 

AB ) 

value of the 

pressure against 

the plane; 
R = IF • 

A C 

A B * 

relation of power, 

weight, and 

resistance of 

plane; 

power applied 

parallel to the 

base; 

That is to say, when the 'power is applied parallel to the 

plane, 1st, the power will he to the weight as the height of the 

plane is to its length; 2d; the resistance of the plane will he to 

the weight as the base of the plane is to its length. 

If the power be ap¬ 

plied parallel to the base 

of the plane, the angle 

Q G M becomes equal to 

the angle A B C, because 

G Q and G M are respec¬ 

tively perpendicular to 

B C and A B; and the 

angle G' G Q becomes 

90°, whence 

Fig. 210. 

Ji 

relation of tho 

angles; 

sin Q G M = sin A B 0 
A O 

AB1 

sin G' G Q = 1; 
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? 

which, in Eqs. (99) and (100), give 

P = TF • 

B w • 

BC 

AC1 value of power; 

AB 
pressure on 

A C' plane; 

That is to say, when the power is applied parallel to the hctse 

of the plane, 1st, the power will he to the weight as the height relation of power, 

of the plane is to its base: 2d, the resistance of the plane will we!?ht’and 
J J- ' i j l resistance; 

be to the weight as the length of the plane is to its base. 

In the application of the power parallel to the plane, 

the power will always he less than the weight. When 

applied parallel to the base, the power will be less than limits within 

the weight, while the inclination of the plane is less than thepower 

45°. When the inclination is 45°, the power and weight weight, 

will be equal. When the inclination exceeds 45°, the 

power will be greater than the weight. 

§ 210.—Let us now 

consider the motion of a 

heavy body on the in¬ 

clined plane. The body 

being acted upon by its 

weight G Gr alone, this 

may be resolved into two 

components, the one G M, 

perpendicular, the other 

G 2VJ parallel to the plane. 

The first will be totally 

destroyed by the resistance of the plane, while the second 

will be effective in giving motion. Denote the weight of 

the body by TF, the height B C of the plane by 7i, and its to find the 

length A B by l/ then, from the similarity of the triangles theTeigia °f 

ABC and G G’ N, will Parallel t0 the 
plane; 

Fig. 211. 
Motion of a 

heavy body on 

an inclined 

plane; 

TF : GN :: l : h; 
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Its value; 

the motion is that 

arising from the 

action of a 

constant force; 

it will be 

uniformly 

varied; 

component of the 

force of gravity in 

direction of the 

plane; 

the motion may 

be regulated by 

varying the 

inclination of the 

plane; 

whence 

GN = J • W; 

and because the incli¬ 

nation of the plane is 

the same throughout, the 

ratio will be constant, 
6 

from the top to the bot¬ 

tom ; whence we see that 

the motion of the same 

body down the plane, is 

that arising from the ac- 

Fig. 211. 

tion of a constant force. 

It will, therefore, be uni¬ 

formly varied, and the circumstances of motion will be 

given by the laws of constant forces. 

Substituting Mg for TPJ we have 

GN= jJfg; 

and making M equal to unity, and denoting by g' the 

corresponding value of the component G N, we find 

Such is the intensity of the force of gravity in the direc 

tion of the inclined plane. This may be varied at pleasure 

by changing the ratio y; in other words, by altering the 

inclination of the plane. Now, since the velocities im¬ 

pressed during the first unit of time on the same body, 

moved from rest, are proportional to the forces producing 

them, the motion may be made as slow as we please by 

diminishing y. It was in this way that Galileo discovered 
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bodies; 

tlie laws which regulate the fall of heavy bodies. These in this way 

being the same as for bodies moving on an inclined plane, discovered the 

it was easy so to regulate the inclination of the plane as to laws of failing 

enable him to note and compare the spaces described, times 

elapsed, and velocities acquired, with each other. 

If the body be 

mounted upon wheels, 

as in the case of the 

loaded cart referred to 

in § 208, it will be 

urged to roll along the 

inclined plane by an 

effort of which the 

measure is 

Fig. 212. 

when the body 

is mounted on 

wheels it will 

roll; 

example of the 

loaded cart; 

IF. D; 

in which IF denotes 

the weight of the cart 

and its load, and D 

the perpendicular distance m l) from the point of contact moment of the 

ra, to the line of direction Ob of the weight TF effort by winch 
’ ° rotation is 

produced. 

XVI. 

FRICTION AND ADHESION. 

• 

§ 211.—When two bodies are pressed together, expe- Friction; 

rience shows that a certain effort is always required to 

cause one to roll or slide along the other. This arises manifested when 

almost entirely from the inequalities in the surfaces 0f two b°diea aj® 

contact interlocking with each other, thus rendering it and one is moved 

necessary, when motion takes place, either to break them ovei the othei ’ 

off, compress them, or force the bodies to separate far 

enough to allow them to pass each other. This cause of 

resistance to motion is called friction, of which we distin- 
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sliding and 

rolling friction; 

\ 

the measure of 

its intensity. 

Intensity 

measured by 

spring balance; 

the indication of 

the balance, -when 

the motion is 

uniform is the 
• 

measure; 

the most valuable 

experiments are 

those of M. Morin; 

guisli two kinds, according as it accompanies a sliding or 

rolling motion. The first is denominated sliding, and the 

second rolling friction. They are governed by the same 

laws; the former is much greater in amount than the 

latter under given circumstances, and being of more import¬ 

ance in machines, will principally occupy our attention. 

The intensity of friction, in any given case, is measured 

by the force exerted in the direction of the surface of 

contact, which will place the bodies in a condition to resist, 

during a change of state, in respect to motion or rest, only 

by their inertia. 

§ 212.—The friction between two bodies may be meas¬ 

ured directly by means of the spring balance. For this 

purpose, let the 

surface CIJ of 
Fig. 213. 

one of the bod- 

when laid upon 

it, may press 

with its entire weight. To some point, as E, of the body 

M\ attach a cord with a spring balance in the manner 

indicated in the figure, and apply to the latter a force F 

of such intensity as to produce in the body Mr a uniform 

motion. The motion being uniform, the accelerating and 

retarding forces must be equal and contrary; that is to say, 

the friction must be equal and contrary to the force F, of 

which the intensity is indicated by the balance. 

The experiments on friction which seem most entitled 

to confidence, are those performed at Metz by M. Morin, 

under the orders of the French government, in the years 

1831, 1832, and 1833. They were made by the aid of a 

contrivance, first suggested by M. Poncelet, which is one 

of the most beautiful and valuable contributions that 
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where these 

experiments may 

be found; 

conclusions from 

these 

experiments; 

theory has ever made to practical mechanics. Its details 

are given in a work by M. Morin, entitled “NouveUes 

Experiences sur le Frottement.” Paris, 1838. 

The following conclusions have been drawn from these 

experiments, viz. : 

The friction of two surfaces which have been for a 

considerable time in contact and at rest, is not only differ- 

ent in amount, but also in nature from the friction of sur¬ 

faces in continuous motion ; especially in this, that the 

friction of quiescence is subjected to causes of variation 

and uncertainty from which the friction during motion is 

exempt. This variation does not appear to depend upon 

the extent of the surface of contact; for, with different 

pressures, the ratio of the friction to the pressure varied 

greatly, although the surfaces of contact were the same. 

The slightest jar or shock, producing the most imper¬ 

ceptible movement of the surfaces of contact, causes the 

friction of quiescence to pass to that which accompanies 

motion. As every machine may be regarded as being 

subject to slight shocks, producing imperceptible motions 

in the. surfaces of contact, the kind of friction to be em¬ 

ployed m all questions of equilibrium, as well as of motions 

of machines, should obviously be this last mentioned, or 

that which accompanies continuous motion. 

The LAWS of friction which accompanies continuous 

motion are remarkably uniform and definite. These laws 

are : 

1st. Friction accompanying continuous motion of two 

surfaces, between which no unguent is interposed, bears a 

constant proportion to the force by which those surfaces 

are pressed together, whatever be the intensity of the force. 

2d. Friction is wholly independent of the extent of the 

surfaces in contact. 

3d. Where unguents are interposed, a distinction is to be 

made between the case in which the surfaces are simply third law; 

unctuous and in intimate contact with each other, and that 

in which the surfaces are wholly separated from one another 

in machinery, 

the friction which 

accompanies 

motion to be 

considered; 

the lawrs of this 

friction are 

uniform and 

definite; 

first law; 

second law • 



316 NATURAL P IIIL O S O PIIY. 

by an interposed stratum of the unguent. The friction in 

these two cases is not the same in amount under the same 

influence of pressure, although the law of the independence of extent 

unguents; 0f surface obtains in each. When the pressure is in¬ 

creased sufficiently to press out the unguent so as to bring 

the unctuous surfaces in contact, the latter of these cases 

an apparent 

exception to 

•econd law; 

three conditions 

of the surfaces in 

respect to 

friction; 

fourth law; 

remarkable 

instance of the 

uniformity of 

these laws; 

passes into the first; and this fact may give rise to an 

apparent exception to the law of the independence of the 

extent of surface, since a diminution of the surface of con¬ 

tact may so concentrate a given pressure as to remove the 

unguent from between the surfaces. The exception is 

however but apparent, and occurs at the passage from one 

of the cases above-named to the other. To this extent, 

the law of independence of the extent of surface is, there¬ 

fore, to be received with restriction. 

There are then three conditions in respect to friction, 

under which the surfaces of bodies in contact may be 

considered to exist, viz.: 1st, that in which no unguent 

is present; 2d, that in which the surfaces are simply 

unctuous; 3d, that in which there is an interposed stratum 

of the unguent. Throughout each of these states the 

friction which accompanies motion is always proportional 

to the pressure, but for the same pressure in each, very 

different in amount. 

4th. The friction, which accompanies motion, is always 

independent of the velocity with which the bodies move; 

and this, whether the surfaces be without unguents or 

lubricated with water, oils, grease, glutinous liquids, 

syrups, pitch, &c., &c. 

The variety of the circumstances under which these 

laws obtain, and the accuracy with which the phenomena 

of motion accord with them, may be inferred from a single 

example taken from the first set of Morin’s experiments 

upon the friction of surfaces of oak, whose fibres were 

parallel to the direction of the motion. The surfaces of 

contact were made to vary in extent from 1 to 84; the 

forces which pressed them together from 88 to 2205 
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pounds; and the velocities from the slowest perceptible 

. motion to 9.8 feet a second, causing them to be at one time 

accelerated, at another, uniform, and at another, retarded; 

yet, throughout all this wide range of variation, in no result ; 

instance did the ratio of the pressure to the friction differ 

from its mean value of 0.478 by more than of this same 

fraction. 

Denote the constant ratio of the normal pressure P, to 

the entire friction F: by f; then will the first law of fric- first law 

tion be expressed by the following equation, expressed by an 
x J j. ; equation; 

F 

p=f (101); 

wnence 

F = /. P. 

Fig. 214. 

This constant ratio / is called the coefficient of friction, 

because, when multiplied by the total normal pressure, 

the product gives the entire friction. 

Assuming the first law of friction, the coefficient of 

friction may easily be obtained by means of the inclined 

plane. Let W denote the 
9 

weight of any body placed 

upon the inclined plane 

AB. Resolve this weight 

G G' into two components, 

one GM perpendicular to 

the plane, and the other 

parallel to it. Because the 

angles G' G M and BAC 

are equal, the first of these 

components will be 

coefficient of 

friction; 

its value found 

by means of the 

inclined plane; 

component of the 

weight 

perpendicular to 

the plane; W. cos A, 
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that parallel to 

the plane; 

the friction on 

the plane; 

friction and 

parallel 

component 

equal; 

value of the 

coefficient of 

friction; 

angle of friction; 

limiting angle of 

resistance; 

and the second, 

IF. sin A, 

in which A denotes the 

angle BAG. 

The first of these com¬ 

ponents determines the total 

pressure upon the plane, 

and the friction due to this 

pressure, will be 

/. IF cos A. 

The second component urges the body to move down 

the plane. If the inclination of the plane be gradually 

increased till the body move with uniform motion, the 

total friction and this component must be equal and 

opposed; hence 

/. IF. cos A = IF. sin A ; 

Fig. 214. 

whence 

sm A , 
-- = tan A. 
cos A 

Vvre, therefore, conclude, that the unit or coefficient of 

friction between any two surfaces, is equal to the tangent 

of the angle which one of the surfaces must make with the 

horizon in order that the other may slide over it with a 

constant velocity, the body to which the moving surface 

belongs being acted upon by its own weight alone. This 

angle is called the angle of friction or limiting angle of 

resistance. 

The values of the unit of friction and of the limiting 

angles for many of the various substances employed in the 

art of construction, are given in the following tables: 
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TABLE I. 

Experiments on Friction, without Unguents. By M. Morin. 

The surfaces of friction were varied from .o3336 to 2.7987 square feet, 

the pressures from 88 lbs. to 22o5 lbs., and the velocities from a scarcely 

perceptible motion to 9.84 feet per second. The surfaces of wood were 

planed, and those of metal filed and polished with the greatest care, and 

carefully wiped after every experiment. The presence of unguents was 

especially guarded against. 

SURFACES OF CONTACT. 

Oak upon oak, the direction of the ) 
fibres being parallel to the motion ) 

Oak upon oak, the directions of the 3 
fibres of the moving surface being 
perpendicular to those of the quies- 
cent surface and to the direction of 
the motion;};., 

Oak upon oak, the fibres of both sur¬ 
faces being perpendicular to the 
direction of the motion - - - - 

Oak upon oak, the fibres of the' 
moving surface being perpendicular 
to the surface of contact, and those > 
of the surface at rest parallel to 
the direction of the motion - - 

Oak upon oak, the fibres of both sur-d 
faces being perpendicular to the [ 
surface of contact, or the pieces [ 
end to end. 

Elm upon oak, the direction of the ) 
fibres being parallel to the motion ) 

Oak upon elm, ditto§. 
Elm upon oak, the fibres of the mov-d 

ing surface (the elm) being perpen- | 
dieular to those of the quiescent >- 
surface (the oak) and to the dircc 
tion of the motion.. 

Friction of 
Motion.* 

Friction of 
Quiescence.! 

C
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t 
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n

. 

L
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f 
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C
o
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o

fF
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c
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o
n

. 

L
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g
 

A
n
g
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 o
f 

R
e
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st
a
n
c
e
. 

0.478 25° 33' 0.625 32° 1 

0.824 17 58 0.540 28 23 

o.336 18 35 

0.192 IO 52 0.271 i5 10 

- 
• 

0.43 23 17 

0.432 23 22 0.694 34 46 

0.246 13 5o 0.376 20 37 

0.45o 

1 

24 16 0.570 29 41 

* The friction in this case varies but very slightly from the mean, 
f The friction in this case varies considerably from the mean. In all the experi¬ 

ments the surfaces had been 15 minutes in contact. 
4 The dimensions of the surfaces of contact were in this experiment .947 square feet, 

and the results were nearly uniform. When the dimensions were diminished to .043, a 

tearing of the fibre became apparent in the case of motion, and there were symptoms of 
the combustion of the wood; from these circumstances there resulted an irregularity in 

the friction, indicative of excessive pressure. 
§ It is worthy of remark that the friction of oak upon elm is but five-ninths of that 

of elm upon oak. 
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TABLE I.—continued. 

SURFACES OF CONTACT. 

Ash upon oak, the fibres of both sur¬ 
faces being parallel to the direction 
of the motion. 

Fir upon oak, the fibres of both sur¬ 
faces being parallel to the direction 
of the motion. 

Beech upon oak, ditto. 
Wild pear-tree upon oak, ditto - - 
Service-tree upon oak, ditto - - - 
Wrought iron upon oak, ditto* - - 
Ditto, the surfaces being greased and 

well wetted. 
Wrought iron upon elm. 
Wrought iron upon cast iron, the 

fibres of the iron being parallel to 
the motion. 

Wrought iron upon wrought iron, the 
fibres of both surfaces being par¬ 
allel to the motion. 

Cast iron upon oak, ditto - - - - 
Ditto, the surfaces being greased and 
wetted. 

Cast iron upon elm. 
Cast iron upon cast iron - - - - 
Ditto, water being interposed be¬ 

tween the surfaces. 
Cast iron upon brass. 
Oak upon cast iron, the fibres of the 

wood being perpendicular to the 
direction of the motion - - - - 

Hornbeam upon cast iron—fibres par¬ 
allel to motion. 

Wild pear-tree upon cast iron—fibres 
parallel to the motion .... 

Steel upon cast iron. 
Steel upon brass. 
Yellow copper upon cast iron - - - 

Ditto oak - - - - 
Brass upon cast iron. 
Brass upon wrought iron, the fibres of 

the iron being parallel to the mo¬ 
tion . 

Wrought iron upon brass - - - - 
Brass upon brass. 

Friction of 
Motion. 

C
o

ef
fi

ci
en

t 
o
fF

ri
c
ti

o
n
. • 

O 

fs I 
£ 

1-3 

o.4oo 21° 49' 

o.355 r9 33 

o.36o l9 48 

0.370 20 J9 
0.400 21 49 

0 619 3i 47 

0.256 i4 22 

0.252 i4 9 

0.194 10 59 

0. i38 7 52 

0.490 26 7 

0.195 11 3 
0. l52 8 39 

o.3i4 17 26 

0.147 8 22 

0.372 20 25 

0.394 21 31 

0.436 23 34 

0.202 11 26 

O. l52 8 39 
0.189 10 49 
0.617 3i 4i 

0.217 12 i5 

0.161 9 9 

0.172 9 46 
0.201 11 22 

Friction of 
Quiescence. 

C
o

ef
fi

ci
en

t 
o

fF
ri

c
ti

o
n

. 

L
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it
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g
 

A
n
g
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f 
R

e
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a
n
c
e
. 

0
 

t'- 
tr>

 

6
 29° 4D 

0.520 27 29 

o.53 27 55 

o.44o 23 45 
0.570 29 41 

0.619 31 47 

0.649 33 0 

0.194 10 59 i 
i 

0.137 

[ 1 
7 49 

0.646 32 52 

0.162 9 l3 

0.617 

j 
31 41 ' 

* In the experiments in which one of the surfaces was of metal, small particles of 
the metal began, after a time, to be apparent upon the wood, giving it a polished 
metallic appearance; these were at every experiment wiped off; they indicated a 

wearing of the metal. The friction of motion and that of quiescence, in these experi¬ 
ments, coincided. The results were remarkably uniform. 
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TABLE I.—continued. 

Friction of Friction of 
Motion. Quiescence. 

SURFACES OF CONTACT. -*-» A q5 12 S3 O 
§ .2 r=i C 3 QJ .A fcc-- 2 a o p 

e-c Ss-s 
S S3 
is* 

0 0 

O 

H ® is 

.§ ri 
o o i-3<;ph 0 0 nicpi 

Black leather (curried) upon oak* - 
Ox hide (such as that used for soles 

0.265 i4° 5C 0.74 36° 3i' 

and for the stuffing of pistons) upon 
oak, rough. 

0.52 27 29 o.6o5 3r ir 

Ditto ditto ditto, smooth 0.335 18 3i o.43 23 17 
Leather as above, polished and har¬ 

dened by hammering. 
0.296 16 3o - - 

Hempen girth, or pullev-band, (sangle' 

de chanvre,) upon oak, the tibres of 
the wood and the direction of the 
cord being parallel to the motion 

Hempen matting, woven with small 
cords, ditto. 

0.52 27 29 0.64 32 38 

0.32 17 45 0.5o 26 34 

Old cordage 1-|- inch in diameter, ditto! 0.52 27 29 0.79 38 19 
Calcareous oolitic stone, used in build-1 

ing, of a moderately hard quality, 
called stone of Jaumorrt—upon the 0.64 32 38 0.74 36 3i 

same stone * -., 

Hard calcareous stone of Brouck, of' 
a light gray color, susceptible of 
taking a tine polish, (the muschel- 

o.38 20 4 9 0.70 35 0 

kalk,) moving upon the same stone _ 

The soft stone mentioned above, upon 
the hard. 

o.65 33 2 0.75 36 53 

The hard stone mentioned above, up- 
on the soft. 

0.67 33 5o 0.75 36 53 

Common brick upon the stone of Jau- ! 
mont. \ o.65 33 2 o.65 33 2 

Oak upon ditto, the fibres of the wood 
being perpendicular to the surface 
of the stone. 

o.38 20 49 o.63 32 i3 

Wrought iron upon ditto, ditto - - 0.69 34 37 0.49 26 7 
Common brick upon the stone of Brouck 0.60 3o 58 0.67 33 5o 
Oak as before (endwise) upon ditto - o.38 20 4 9 0.64 32 38 
Iron, ditto ditto - - 0.24 13 3o 0.42 22 47 

* The friction of motion was very nearly the same whether the surface of contact 

was the inside or the outside of the skin.—The constancy of the coefficient of the friction 

of motion was equally apparent in 4he rough and the smooth skins. 
f All the above experiments, except that with curried black leather, presented the 

phenomenon of a change in the polish of the surfaces of friction—a state of their sur¬ 

faces necessary to, and dependent upon, their motion upon one another. 

* 
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TABLE II. 

Experiments on the Friction of Unctuous Surfaces. 

By M. Morin. 

In these experiments the surfaces, after having been smeared with an 

unguent, were wiped, so that no interposing layer of the unguent prevented 

their intimate contact. 

SURFACES OF CONTACT. 

Oak upon oak, the fibres being paral¬ 
lel to the motion. 

Ditto, Hie fibres of the moving body ) 
being perpendicular to the motion ) 

Oak upon elm, fibres parallel - - - 
Elm upon oak, ditto. 
Beech upon oak, ditto. 
Elm upon elm, ditto. 
Wrought iron upon elm, ditto - - 
Ditto upon wrought iron, ditto - - 
Ditto upon cast iron, ditto - - - - 
Oast iron upon wrought iron, ditto - 
Wrought iron upon brass, ditto - - 
Brass upon wrought iron - - - - 
Cast iron upon oak, ditto - - - - 
Ditto upon elm, ditto, the unguent ) 

being tallow.) 
Ditto, ditto, the unguent being hog’s \ 

lard and black lead.j 
Elm upon cast iron, fibres parallel - 
Cast iron upon cast iron - - - - 
Ditto upon brass. 
Brass upon cast iron. 
Ditto upon brass. 
Copper upon oak. 
Yellow copper upon cast iron - - 
Leather (ox hide) well tanned upon ) 

cast iron, wetted.) 
Ditto upon brass, wetted - - - - 

Friction of 

Motion. 

Friction of 

Quiescence. 

go 
•— o. 
u o 

« «« 
O o 

O 

.1=3 
* 7. 

2 5P M 

-<-» -1 
— *"« 

5.2 
.— «—> 
0 u 

<E £ 
W -H 

63 

O 

«?*§ 

2 g>‘33 

l—i ^ pH 

CO 
/"N

 

o’ 6° 10' O.39O 21° 19 

o. i43 8 9 o.3i4 17 26 

o. i36 7 45 
* 

o. 119 6 48 0.420 22 47 
0.33o 18 16 
0. i4o 7 59 
0. i38 7 52 
0.177 10 3 

0.118 6 44 
0. i43 8 9 
0.160 9 6 
0.166 9 26 
0.107 6 7 0.100 5 43 

0.125 7 8 

0.137 7 49 

0.135 7 42 0.098 5 36 
0.144 8 12 
O. l32 7 32 
0.107 6 7 
0.134 7 38 j 0.164 9 *9 
0.100 5 43 
0.115 6 34 

229 2 54 0,267 f 4 57 

0.244 i3 43 

The distinction between the friction of surfaces to 

which no unguent is present, those which are merely 

unctuous, and those between which a uniform stratum of 

the unguent is interposed, appears first to have been 

remarked by M. Morin; it has suggested to him what 
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and of Coulomb 

illustrative of 

appears to be the true explanation of the difference be¬ 

tween his results and those of Coulomb. lie conceives, cause of the 

that in the experiments of this celebrated engineer, the dlscrePancy 

requisite precautions had not been taken to exclude un- results of Morin 

guents from the surfaces of contact. The slightest unc- 

tuosity, such as might present itself accidentally, unless 

expressly guarded against—such, for instance, as might 

have been left by the hands of the workman who had 

given the last polish to the surfaces of contact—is sufficient 

materially to affect the coefficient of friction. 

Thus, for instance, surfaces of oak having been rubbed example 

with hard dry soap, and then thoroughly wiped, so as to hi 

show no traces whatever of the unguent, were found by 

its presence to have lost fds of their friction, the co¬ 

efficient having passed from 0.478 to 0.164. 

This effect of the unguent upon the friction of the effect of friction 

surfaces may be traced to the fact, that their motion upon ^t°hno^lfaces 

one another without unguents was always found to be at- unguents; 

tended by a wearing of both the surfaces; small particles of 

a dark color continually separated from them, which it was 

found from, time to time necessary to remove, and 'which 

manifestly influenced the friction: now with the presence 

of an unguent the formation of these particles, and the 

consequent wear of the surfaces, completely ceased. In¬ 

stead of a new surface of contact being continually pre¬ 

sented by the wear, the same surface remained, receiving 

by the motion continually a more perfect polish. 
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TABLE III. 

Experiments on Friction with Unguents interposed. By M. Morin. 

The extent of the surfaces in these experiments bore such a relation to 

the pressure, as to cause them to be separated from one another throughout 

by an interposed stratum of the unguent. 

Friction Friction 
of of 

Motion. Quiescence. 

SURFACES OF CONTACT. 1 i g g UNGUENTS. 
.2- O .r-> O 

« v- *42 
g = y 
« '2 O fc, 
O 

SE ® 2 
8 * 

Oak upon oak, fibres parallel o. 164 0.440 Dry soap. 
Tallow. Ditto ditto - - - - 0.075 0.164 

Ditto ditto - - - - 0.067 - Hogs’ lard. 
Ditto, fibres perpendicular o.o83 0.254 Tallow. 
Ditto ditto - - - - 0.072 - Hogs’ lard. 
Ditto ditto - - - - 0.25o - Water. 
Ditto upon elm, fibres parallel 0.136 - Dry soap. 
Ditto ditto ... . 0.073 0.178 Tallow. 
Ditto ditto ... . 0.066 - Hogs’ lard. 
Ditto upon cast iron, ditto - 0.080 - Tallow. 
Ditto upon wrought iron, ditto 0.098 - Tallow. 

Beech upon oak, ditto - - - o.o55 - Tallow. 
Elm upon oak, ditto ... 0.137 o.4n Dry soap. 

Ditto ditto - - - - 0.070 0.142 Tallow. 
Ditto ditto - - - - 0.060 - Hogs’ lard. 
Ditto upon elm, ditto - - 0.139 0.217 Dry soap. 
Ditto upon cast iron, ditto - 0.066 - Tallow. 

( Greased, and 
WrougkLiron upon oak, ditto 0.256 0.649 •< saturated with 

( water. 
Ditto ditto ditto 0.214 - Dry soap. 
Ditto ditto ditto o.o85 0.108 Tailow. 
Ditto upon elm, ditto 0.078 - Tallow. 
Ditto ditto ditto 0.076 - Hogs’ lard. 

Olive oil. Ditto ditto ditto o.o55 - 

Ditto upon cast iron, ditto - 0. io3 - Tallow. 
Ditto ditto ditto 0.076 - Hogs’ lard. 
Ditto ditto ditto 0.066 0.100 Olive oil. 
Ditto upon wrought iron, ditto 0.082 - Tallow. 
Ditto ditto ditto 0.081 - Hogs’ lard. 

Olive oil. Ditto ditto ditto 0.070 0. ii5 
Wrought iron upon brass, ) 

fibres parallel.j 
0. io3 - Tallow. 

Ditto ditto ditto 0.075 - Hogs’ lard. 
Olive oil. Ditto ditto ditto 0.078 - 

Cast iron upon oak, ditto 0.189 - Dry soap. 
( Greased, and 

Ditto ditto ditto 0.218 0.646 ■< saturated with 
( water. 

Ditto ditto ditto 0.078 0.100 Tallow. 
Ditto ditto ditto 0.075 - Hogs’ lard. 
Ditto ditto ditto 0.075 0.100 Olive oil. 
Ditto upon elm, ditto 0.077 - Tallow. 
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TABLE III.—Continued. 

Friction 
ok 

Motion. 

Friction 
ok 

Quiescence. 

SURFACES OF CONTACT. -♦-a ^ • 
s § 
«•- ~ E w u 
su ’C 
O Ui 
O 

a a 
0 0 a- •;* 

SE 0 « s, 
0 t. 
0 

UNGUENTS. 

Cast iron upon elm—fibres ) 
parallel.J 

O.oGl - Olive oil. 

j Hogs’ lard and 
Ditto ditto ditto O.O9I 

( plumbago. 

Ditto, ditto upon wrought iron - 0.100 Tallow. 

Cast iron upon cast iron - - o.3i4 - Water. 

Ditto ditto --- - 0.197 - Soap. 
Ditto ditto ... - 0.100 0.100 Tallow. 

Ditto ditto - 0.070 0.100 Hogs’ lard. 
Ditto ditto .... 0.064 - Olive oil. 

j Lard and 
l plumbago. 

Tallow. 

Ditto ditto .... o.o55 • ” 

Ditto upon brass - - - - 0.1 o3 - 
Ditto ditto ... . 0.075 - Hogs’ lard. 
Ditto ditto ... . 0.078 - Olive oil. 

Copper upon oak, fibres parallel 0.069 0.100 Tallow. 

Yellow copper upon cast iron 0.072 0. io3 Tallow. 

Ditto ditto - - - 0.068 - Hogs’ lard. 

Ditto ditto - - - - 0.066 - Olive oil. 

Brass upon cast iron ... 0.086 0.106 Tallow. 

Ditto ditto 0.077 - Olive oil. 

Ditto upon wrought iron - 0.081 - Tallow. 
\ Lard and 
} plumbago. Ditto ditto - 0.089 

Ditto ditto - 0.072 Olive oil. 

Ditto upon brass - - - - o.o58 - Olive oil. 

Steel upon cast iron - - - 0. io5 0.108 Tallow. 

Ditto ditto - 0.081 - Hogs’ lard. 

Ditto ditto ... - 0.079 - Olive oil. 

Ditto upon wrought iron - 0.093 - Tallow. 

Ditto ditto - - - - 0.076 - Hogs’ lard. 

Ditto upon brass - - - - o.o56 - Tallow. 

Ditto ditto - - - - o.o53 - Olive oil. 
( Lard and 

Ditto ditto - - - - 0.067 ( plumbago. 
( Greased, and 

Tanned ox hide upon cast iron o.365 - saturated with 
( water. 

Ditto ditto - 0.159 - Tallow. 

Ditto ditto .... 0.13 3 0.122 Olive oil. 

Ditto upon brass - - - - 0.241 - Tallow. 

Ditto ditto .... '0.191 - Olive oil. 

Ditto upon oak - - - - 

Hempen fibres not twisted,' 
moving upon oak, the fibres 
of the hemp being placed in 
a direction perpendicular to >- 

the direction of the motion, 
and those of the oak parallel 

to it.. 

0.29 0.79 W ater. 

( Greased, and 

0.332 0.869 ■) saturated with 
( water. 



TABLE III.—continued. 

conclusions in 

regard to olive 

oil and lard; 

tallow not so well 

suited to metal. 

Adhesion; 

1- 
Friction 

of 
Motion. 

Friction 

of 

QUIESCENCE. 

UNGUENTS. SURFACES OF CONTACT. 

1 
1 

C
o

ef
fi

ci
en

t 
o

f 
F

ri
c
ti

o
n

. 

C
o

ef
fi

ci
en

t 
o

f 
F

ri
c
ti

o
n

. 

The same as above, moving 
upon cast iron. 
Ditto ditto - - - - 

Soft calcareous stone of Jau-' 
mont upon the same, with a 
layer of mortar, of sand, and 
lime interposed, after from 
10 to 15 minutes’ contact 

- 

0.194 

0.153 

_ 

0.74 

Tallow. 

Olive oil. 

A comparison of the results enumerated in tlie above 

table leads to the following remarkable conclusion, easily 

fixing itself in the memory, that with the unguents hogs' 

lard and olive oil interposed in a continuous stratum between 

them, surfaces of wood on metal, wood on wood, metal on 

wood, and metal on metal, ivhen in motion, have all of them 

very nearly the same coefficient of friction, the value of that 

coefficient being in cdl cases included between 0.07 and 0.08, 

and the limiting angle of resistance therefore between 4° 

and 4° 85'. 

For the unguent tallow the coefficient is the same as the 

above in every case, except in that of metals upon metals ; this 

unguent seems less suited to metallic surfaces than the others, 

and gives for the mean value of its coefficient 0.10, and for its 

limiting angle of resistance 5° 48'. 

§ 213.—Besides friction, there is another cause of re¬ 

sistance to the motion of bodies when moving over one 

another. The same forces which hold the elements of 

bodies together, also tend to keep the bodies themselves 

together, when brought into sensible contact. The effort 

by which two bodies are thus united, is called the force of 

Adhesion. 
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Familiar illustrations of the existence of this force are 

furnished by the pertinacity with which sealing-wax, wa¬ 

fers, ink, chalk, and black-lead cleave to paper, dust to 

articles of dress, paint to the surface of wood, whitewash 

to the walls of buildings, and the like. 

The intensity of this force, arising as it does from the 

affinity of the elements of matter for each other, must vary 

with the number of attracting elements, and therefore with 

the extent of the surface of contact. 

This law is best verified, and the actual amount of ad¬ 

hesion between different substances determined, by means 

of a delicate spring-balance. For this 

purpose, the surfaces of solids are reduced 

to polished planes, and pressed together to 

exclude the air, and the efforts necessary 

to separate them noted by means of this 

instrument. The experiment being often 

repeated with the same substances, having 

different extent of surfaces in contact, it 

is found that the effort necessary to pro¬ 

duce the separation, divided by the area 

of the surface, gives a constant ratio. 

Thus, let S denote the area of the surfaces 

of contact expressed in square feet, square 

inches, or any other superficial unit; A, 

the effort required to separate them, and 

a the constant ratio in question, then will 

A 

S = 

or, 

Fig. 215. 

A = a . 8. 

The constant a is called the unit or coefficient of adhesion, 

and obviously expresses the value of adhesion on each 

unit of surface, for making 

illustrations of 

the force of 

adhesion ; 

its intensity 

depends upon tlui 

extent of the 

surface of 

contact; 

measured by the 

spring balance; 

mode of 

operation; 

coefficient of 

adhesion; 

8 = 1, 
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we have 

A = a. 

adhesion between 

solids and 

liquids; 

mode of 

ascertaining its 

amount in any 

case; 

Fig. 216. 

precaution to be 

observed; 

attraction of fluid, 

elements for each 

other and for 

those of solids; 

diversity in the 

action of bodies 

in this respect; 

To find the adhesion between solids and liquids, sus¬ 

pend the solid from the balance, with its polished surface 

downward and in a horizontal posi¬ 

tion; note the weight of the solid, 

then bring it in contact with the hor¬ 

izontal surface of the fluid and note 

the indication of the balance when 

the separation takes place, on draw¬ 

ing the balance up; the difference 

between this indication and that of 

the weight will give the adhesion; 

and this divided by the extent of sur¬ 

face, will give, as before, the coeffi¬ 

cient a. But in this experiment two 

opposite conditions must be carefully 

noted, else the cohesion of the ele¬ 

ments of the liquid for each other 

may be mistaken for the adhesion of 

the solid for the fluid. If the solid 

on being removed take with it a 

layer of the fluid; in other words, if the solid has been 

wet by the fluid, then the attraction of the elements of the 

solid for those of the liquid is stronger than that of the 

elements of the liquid for each other, and a will be the 

unit of adhesion of two surfaces of the fluid. If, on the 

contrary, the solid on leaving the fluid be perfectly dry, 

the elements of the fluid will attract each other more pow¬ 

erfully than they will those of the solid, and a will denote 

the unit of adhesion of the solid for the liquid. 

It is easy to multiply instances of this diversity in the 

action of solids and fluids upon each other. A drop of 

water or spirits of wine, placed upon a wooden table or 

piece of glass, loses its globular form and spreads itself 
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over tlie surface of the solid; a drop of mercury will not 

do so. Immerse the finger in water, it becomes wet; in 

quicksilver, it remains dry. A tallow-candle or a feather 

from any species of water-fowl remains dry though dipped 

in water. Gold, silver, tin, lead, &c., become moist on 

being immersed in quicksilver, but iron and platinum do 

not. Quicksilver when poured into a gauze bag will not 

run through; water will: place the gauze containing the 

quicksilver in contact with water, and the metal will also 

flow through. 

Solids which become wet on being immersed in a fluid, 

lose this property if covered with any matter not similarly 

affected by that particular fluid. A drop of water placed 

upon a wooden table or piece of glass, smeared with oil or 

tallow, will not spread, but retain its globular shape and 

roll off, if the surface be sufficiently inclined. Pour water 

fiom a clean common glass tumbler nearly full, and it will 

run along the exterior surface; smear the rim with hogs’ 

lard or tallow, and the fluid will flow clear of the tumbler. 

The living force with which the elements of the water in 

contact with the glass tend to leave the tumbler by the 

pressure from behind, is, in a great measure, overcome by 

the attraction between the glass and water, and they are 

thus made to flow along the surface, while the viscosity of 

the water, or the attraction of the fluid particles for 

each other, drags the remote elements after them ; and thus 

the water, under the combined action of its living force, 

adhesion for the glass and viscosity, becomes spread out 

into a sheet of which the plane is normal to the surface of 

the tumbler. When the tumbler is smeared with grease, 

the adhesion is so much reduced as to offer but feeble 

opposition to the living force with which the water reaches 

the edge of the tumbler, it will, therefore, pass the edge 

after the manner of a projectile. Quicksilver poured out 

of a glass or wooden vessel will, in like manner, flow clear 

of the outer surface ; but the contrary will happen if a tin 

vessel be used. 

Illustration of thi9 

diversity; 

effect of covering 

surfaces with 

lard, oil, &c.; 

illustrated in the 

flow of water 

from a tumbler; 

explanation ; 

case of 

quicksilver 

poured from 

different kinds of 

vessels; 
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effect of 

interposing a 

fluid between 

surfaces in 

contact; 

it is difficult to 

find the adhesion 

between the 

rubbing surfaces 

of machinery; 

this adhesion 

may be 

disregarded; 

except in watches 

and the like. 

The adhesion of solids is apparently increased by intro* 

ducing a liquid between them. The fluid fills up the ex¬ 

isting inequalities of the surfaces, and thus, by increasing 

the number of points of contact, increases the adhesion by 

an amount equal either to that of the fluid particles for 

each other, or to that of the fluid for the solid for which 

it has the least affinity, depending upon whether the solids 

are wetted or not by the interposed fluid. This is strikingly 

exemplified by means of common window-glass, blocks of 

wood, metallic plates, and the like. 

It is difficult to ascertain the precise value of the force 

of adhesion between the rubbing surfaces of machinery, 

apart from that of friction. But this is attended with little 

practical inconvenience, as long as a machine is in motion. 

The experiments of which the results are given in the table 

of § 212, and which are applicable to machinery, were 

made under considerable pressures, such as those with 

which the parts of the larger machines are accustomed to 

move upon one another. Under such pressures, the adhe¬ 

sion of unguents to the surfaces of contact, and the oppo¬ 

sition to motion presented by their viscosity, are causes 

whose influence may be safely disregarded as compared 

with that of friction. In the cases of lighter machinery, 

however, such as watches, clocks, and the like, these con¬ 

siderations rise into importance, and cannot be neglected. 

Friction on a 

plane; 

normal 

component of 

the weiglit; 

§ 214.—Let any body J1J rest with one of its faces in 

contact with the inclined plane A B. Denote its weight 

by Wj and suppose it to be solicited by a force F in 

the direction G Q, making with the inclined plane the 

angle QGq, which denote by <p. Denote the inclination 

BAG of the plane to the horizon by a. Besolve the 

weight W= G G' into two components, Gp and Gp\ one 

perpendicular and the other parallel to the plane. The 

angle G' Gp being equal to the angle BA C, the first of 

these components will be, 

W. COS a • 
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Fig. 217. 

and the second, 

W . sin «. 

In like manner, resolve the force F = G Q, into two com¬ 

ponents Gq and Gq\ the first normal and the second 

parallel to the plane. The first of these will be, 

F. sin cp ; 

and the second 

F. cos (p. 

The total pressure upon the plane will be 

W. cos a — F. sin <p; 

• j 

and the friction thence arising 

/ ( W. cos a — F. sin cp); 

parallel 

component of 

the weight; 

normal 

component of 

the force; 

its parallel 

component; 

pressure upon 

the plane; 

corresponding 

friction; 

in which / denotes the coefficient of friction. The force 

which solicits the body in the direction of the plane 
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will be, 

whole force in 

direction of the J? # cos <p — fF # gin a. 

plane; 

This will tend to accelerate the body; the friction will 

tend to retard it. When they are in equilibrio, the body 

will either have a uniform motion or be just on the eve 

of motion; which condition will therefore be expressed by 

F. cos 9 — TF sin a = / (TF cos a — F. sin 9); 

whence 
force necessary to 

hold the body in 

equilibrio, or to 

keep it in 

uniform motion 

up the plane; 

Here the force F will be the smallest possible, or will be 

applied under the most advantageous circumstances, when 

the denominator is the greatest possible, since all the 

quantities in the numerator are constant. To ascertain 

the relation between the quantities of the denominator 

to satisfy this condition, 

draw G Q making with 

the plane A B the angle 

Q GB equal to 9; from 

G lay off the distance 

G b equal to unity, and 

draw be perpendicular 

to find under to A B; then will 
what angle to the 

plane this force 

may be applied (J C — COS 9, 

to greatest 

advantage ; 

* be — sin 9. 

Take the distance G e equal to f and we have 

eel = f sin 9. 

Fig. 218. 

Q 

F = 
W{f cos a + sin a) 

cos 9 + /. sin 9 
.. (102). 
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Make G h equal to e d, and there will result 

he = cos 9 + /. sin 9, 

which is the value of the denominator in Eq. (102). Draw 

G h perpendicular to G Q, and erect at h a perpendicular 

to A B, then, because the angle 7c G h is the complement 

of B G Q = 9, will 

7c h = G li cot 9; 

or, substituting the value of G7i, as given above, 

1c h — f. sin 9 . cot 9 = / cos 9. 

Join 1c and b, and it will be obvious that h c is the pro¬ 

jection of the line 7c b on A B, and that this projection 

will be the greatest possible when 7c b is parallel to A B; 

that is, when 7c7 1 and be are equal; which condition is 

expressed by the equation, 
9 

/ cos 9 = sin 9, 

or 

sm 9 
- = tan 9: 
cos 9 

that is to say, the power will be applied to the greatest ad¬ 

vantage, ivhen its direction makes with tiie inclined plane an 

angle of which the tangent is equal to the coefficient of tiie 

friction between the plane and tiie body on it. 

If the plane be horizontal, the angle a will be zero, and 

Eq. (102) reduces to 

F=_Z/__. 
cos 9 + J sin 9 

value of the 

denominator; 

the value of the 

tangent of this 

angle; 

conclusion; 

value of the force 

when plane ia 

horizontal; 
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when in 

equilibrium on 

eve of motion 

down the plane; 

Finally, if the body is to be retained in equilibrio on 

the eve of motion up the plane, the condition for this 

purpose is given by Eq. (102) as it stands, but if the equi¬ 

librium is maintained on the eve of motion down the plane, 

the friction will act in aid of the force F\ and the equation 

becomes 

the value of the 

force; 

W (sin ot — / COS a) 

cos 9 — / sin 9 

infinity of forces 

that will maintain 

the equilibrium. 

whence it follows, that there are an indefinite number of 

different values for the force between F and F' which will 

maintain the body in equilibrio on the plane. If the body 

be in motion up the plane, the force whose intensity is F 

will make it uniform; if in motion down the plane, the 

force Avhose value is F' will make it uniform. The im¬ 

portance of this will be perceived when Ave come co treat 

of the screw. 

Quantity of work 

on the inclined 

plane; 

usual direction of 

the power; 

§ 215.—The inclined plane is one of the most useful 

machines employed in the arts, and facilitates the trans¬ 

portation of the heaviest burdens to considerable eleva¬ 

tions. To build a stone Avail, for instance, to any height, 

the labor of many men Avould be required to elevate the 

necessary materials in a vertical direction, Avhereas that 

of a few accomplishes the same end 0ATer a ramp or 

inclined plane Avhose slope is sufficiently gentle to admit 

the easy passage of 

men, horses, carts, &c. 

Burdens are convey¬ 

ed up inclined planes 

by applying the power 

parallel to its length, 

and the force for this 

purpose is given by 

Eq. (102), after ma¬ 

king the angle 9 equal 

c 
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to zero, that is by 

F = IF (sin a 4- f cos a). 

Multiplying both members by AB, the distance through 

which F is exerted, we have, 

F x AB — IF [A B sin a + f. A B cos a]; 

which reduces to 

F x AB = TF. B C A f. IF. M <7.. (104). 

The first member is the quantity of work performed by 

the power in moving the burden from the bottom to the 

top of the plane ; and this, we see, is equal to the quantity 

of work which the weight of the burden would have per¬ 

formed if raised vertically through the same height, in¬ 

creased by the quantity of work which the friction due to 

a pressure equal to the entire weight, would have exerted 

through a distance equal to the horizontal projection of 

the plane. 

If the burden be rolled, in which case the friction may 

be disregarded, or if it be transported in any way to avoid 

the friction, f would be zero, and we should have 

F. A B = W.BG. 

That is to say, the work in the direction of the plane is 

equal to the work in the vertical direction. What, then, 

is gained by the use of the plane? Why nothing more 

than the ability, which it gives, of putting in motion by a 

feeble power, applied in the direction of its length, a burden 

which the same power could not move vertically upward. 

Resuming Eq. (101), we shall find that what is true 

of an inclined plane is equally true of a curved surface, 

its value; 

its quantity of 

work; 

this value 

expressed in 

words; 

value when the 

body is rolled; 

advantage of the 

plane; 
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such as that of a 

all equally true of common road OT rail- 
inclined curved t 

surfaces; r0atl 0 Ver an ^da¬ 
ting piece of ground. 

For, portions of the 

road, as Ab,b b', V b", 

&c.. may be taken so • %/ 
short as to differ in¬ 

sensibly from a plane, 

in which case we 

Fig. 220. 

shall have, by denoting the intensities of the forces on these 

several elementary planes by F\ F", F”', &c. 

F' x Ab = W.bc + /. IF. Ac, 

forces on 

elementary 

portions of ths 

surface; 

F" x bb' = IF. b'c' + /. IF. be', 

% 

F’" x b'b" = W.b"c" +/. TF. V c", 

&c., = &c., -p &c. 

Adding these equations together, and denoting the first 

member, which will be the total amount of work in the 

direction of the surface, by Qr, we have • 

total quantity of 

work on entire Q' — IF \b C *p b' C -p b" c" -j- &C.] -p f TF \_A C -p b Cr 

8urface; + b'c" + &c.]; 

and supposing the burden to reach the highest point L, 

we shall have 

be + Vc’ + b"c" + &c. = 

Ac + be' rp b' c" + &c. = A M; 

which, in the above equation, give 
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Q' = w. LM -f /. W. A M . . . (105). quantity of work 
in the ascent; 

After passing the highest point X, the weight acts in 

favor of the force applied in the direction of the plane, and 

the first terms of the second members will all change their 

signs; and denoting the quantity of work in the direction 

of the plane from X to B by Q", we shall have, by the 

same process, 

Q" = - W.LB' + /. W. Br B .. (106); 

adding this to Eq. (105), and denoting the total quantity 

of work in the direction of the planes from A to B by Q, 

we find 

Q = Q'+ Q" = W[ML -LB'] +fW[AM+ BB'\ 

or 

quantity in the 

Q = W X BO + f. W. AC.. (107). ascent and 
descent; 

Now it is to be remarked, that every trace of the path 
/ 

actually described by the burden whose weight is IF, has 

disappeared from this value for the quantity of work; this 

latter is, therefore, wholly independent of this path, and 

for the same burden, only depends upon the difference of 

level from A to X>, and the horizontal distance A C between 

these points; so that, the work would be the same as quantity of work 

though the load had been transported from A to B along tho “h Jh^sp;Uh 

one continuous plane. Nothing is said here of the resist- had been 

ance of the atmosphere, which, like the friction, would be 

a cause of opposition to the motion. 

§ 216.—We are now prepared to measure the tension Tension of cords; 

of a cord arising from the action of its own weight. For 
22 
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the tension of a 

cord arising from 

Us own weight; 

weight of a given 

portion; 

this weight 

resolved into 

components; 

this purpose take the 

cord PA IIF,; resting 

upon any surface of 

which A is the high- 

est point, and con¬ 

sider the part A F 

which tends by its 

weight to move in 

the direction from A 

to F. Omit the con¬ 

sideration of friction 

for the present, and 

the question will con¬ 

sist in this, viz.: to 

find a force which, acting in the direction of its length,, 

will keep the cord in equilibrio. This force must be 

equal and directly opposed to the tension on the part 

A F. Designate by TF, the weight of a unit of length 

of the cord ; then considering the element whose length is 

MN, its weight will be 

W. MJST. 

Through the centre of gravity 0 of this element, draw the 

vertical 0 G to represent this weight, which resolve into • 

two components G Q and Q 0, the one perpendicular- 

and the other parallel to the cord. The first will be 

destroyed by the reaction of the surface; the second will 

act to move the cord in the direction of its length, and 

therefore to produce tension. Draw M Nr perpendicular 

and NN' parallel to the horizon; then will the triangles 

G Q 0 and MNNr be similar, both being right-angled 

triangles, and the angle Q G 0 of the one, equal to the 

angle MNN! of the other, because the side G Q is per¬ 

pendicular to JihVj and 0 G to NNr; hence the pio- 

portion, 

Fig. 221. 

Q 0 : 0 Q : : MN‘ : MN; 
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I 

whence 

QO = 
OG x MN' 

MN ' 

component of 

weight parallel 

to the cord; 

Denote the tension by t, which will be equal to Q 0; 

0 G represents the weight, equal to IF X MN; and pro¬ 

jecting the points A, M, N} F\ P, upon the vertical by the 

horizontal lines Act, Mm, Nn, Ff and Pp, we have 

MN’ equal to mn, and the last equation becomes, 

IF x MN X mn _ ^ 

'MN 
m n. 

value of the 

tension for a 

single element; 

The second member is the weight of a portion of the cord 

equal in length to the vertical projection mn of the element 

MN. Now the length A F is composed of a number of 

elements, each one of which produces, in like manner, a 

tension equal to the weight of a portion of the cord of the 

same length as its vertical projection. The tension on 

each element is transmitted in the direction of the cord to 

the elements above. Hence, the entire tension at any 

point of the cord, is measured by the weight of a portion tension at any 

equal in length to the vertical projection of all the cord py^wXhTo? 

below it. Thus, if F be the end of the cord, the ten-the vertical 

sion at A will be measured by the weight of a portion of fh^cordbeiowitj 

the cord equal to af provided no motion take place. In 

like manner, the tension at A, arising from the weight of 

A P, will be measured by the weight of a portion equal to 

ap, so that if the cord have no fixed 

point it will move in the direction of 

the lower end F, under the action of 

a force equal to 

IF (af — a p). 

If the ends of the cord be upon the 

same level, or if the cord be endless, it 

will be in equilibrio. 
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§ 217.—We shall now take into consideration the fric- 

Friction of a cord tion of a cord when sliding around any body, say a fixed 
sliding around a 

fixed cylindrical 

beam: 

construction of 

the figure and 

notation : 

Fig. 223. 

cylindrical beam in 

a horizontal position. 

Let the cord support 

at one end a weight 

W) and be subjected 

to the action of a 

force F applied at 

the other end. If 

the force communi¬ 

cate motion, it must 

not only raise the 

weight 114 but must 

also overcome the 

friction between the 

cord and solid. If 

the surface were perfectly polished, the friction would be 

zero, and the force F would be equal to the weight W, in 

the case of an equilibrium. Divide the enveloping portion 

of the cord, a, th t2, 4> &c., into an indefinite number of 

very small and equal parts, and draw through the points 

of division, th t2, 4» &c., tangents to the cord; these 

tangents will intersect, two and two, at the points b, b\ b", 

&c., and the extreme ones will coincide with the straight 

portions of the cord to which the force and weight are 

applied. The points of division being extremely close, 

the arcs will be sensibly confounded with their chords 

a q, 4 4, 4 4> &c- The tension of the cord on the tangent 

to find the 

tension on a 

single element of 

the cord; 

a&, with which the cord sensibly coincides, is obviously 

equal to ITJ if we neglect the weight of the cord. Let 4 
be the tension which acts at 4 on the second tangent b V ; 

this tension must overcome the weight W and the friction 

on the arc 4 <4 comprised between the points of contact. 

Denote by jo the pressure exerted by this element upon 

the cylinder, and by / the coefficient of friction, then 

will 
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4 — 4F" *-f~ fp. its value ; 

To find the pressure, we will still disregard the weight 

of the cord, and remark that the two tangents a b and b 4 

are equal. Moreover, if we construct the rhombus a m 4 6, 

and consider ab as proportional to the weight W] this 

same side will represent the tension of the cord from a to 

4. The diagonal b m, will be normal to the chord a 4, and 

therefore to the surface of the cylinder, and being the to find the normal 

resultant of the tensions at a and 4 will be the pressure J)ress"fe ansmg 

arising from the tension, and consequently equal to p. 

The triangles a 0 4 arid m a b are similar, because they are 

both isosceles, and the angle 0 of the one is equal to m a b 

of the other; hence 

mb : a 4 : • • 0 a; 

m b represents the pressure p; a 4 may be taken equal to 

the arc of which it is chord, which denote by s; ab 

represents the weight W; and Oa is the radius of the 

cylinder, which denote by if, and the proportion may 

be written 

p : s : : W : R: 

whence 

s . W 

-R-' 

value of this 

normal pressure: 

and this, substituted in the value of 4, gives 

value of the 

_ . _ . , j. tension on first 
Denoting by 4, the tension along the third tangent element nearest 

b" 4, and at the third point of division 4, this tension must the resistance; 
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overcome the tension 
t 1 

ti and friction pro¬ 

duced by the elemen- 

to find tension on tary arc U th equal in 

order; length to a th or 5. 

In a word, t2 will be 

circumstanced in re¬ 

spect to tx as q was in 

regard to W. Hence 

Fig. 223. 

its value; 
k (l + /♦ 

R / 

and if 4, 4? t5l . . . tn be the tensions on the consecutive 

tangents, and at the points 4? 4 4 • • • 4 in order 

around the beam, we shall have 

/■ 

values for the 

successive 

tensions in order 

around the beam; 

k ~ 4 V 1 + R )' 

4 - 4 (1 + ). 

4 — 4 — i ( 1 + /£ 
R 

Multiplying these equations together and dividing out the 

common factor, we have 

value of the 

tension on the 

last element of 

contact; 

4 = W[ 1 + f± 
R 

i n 

The tension tn, being the last in order, brings us to the 

straight portion of the cord to which F is applied, and, 

therefore, tn must be equal to F; whence 
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F= "A+■£)"• 

Developing this bj the rules for the binomial theorem, 

we have 

r=w[1+„.Jj + ^>g 
n (n - 1) (n - 2) f3s> 

+ f tytg + &c-l 

It must be remembered that s was taken indefinitely 

small, and therefore for any definite extent of contact 

between the cord and cylinder, n must be indefinitely 

great; hence the numbers 1, 2, 3, 4, &c., connected with n 

by the sign minus, may be neglected in comparison with 

n; this gives 

__ ttt" -t n fs n2 f2 s2 
F = W [1 H-FJ-b r,J ~tT5 + 

n3/3 s3 

R 2 . R2 ' 2.3 . R* 
-f &c.]: 

but n s is equal to the entire arc enveloped. Denote this 

by /S', and the above becomes 

F - IF [1 + + 
fS p S2 

2 . R‘ 
+ 

P& 
2.3 . Ri 

-f- &c.] : 

the quantity within the brackets is the development of the 
f_s 

function e R> whence 

fs 

F = W X eu . . . . (108), 

in which e = 2.71825, the base of the Hap. system of 

logarithms. 

relation botween 

the power and the 

resistance; 

this value 

developed; 

under a different 

form; 

final relation 

between the 

power and the 

resistance; 
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example to 

illustrate; 

Suppose the cord to be wound around the cylinder 

three times, and / = then will 

S = 3 . 2 = 6 X 3.1416 . R = 18.849 R} 

and 

F = IF x e*x 18,849 = W X (2.71825)6,2832 ; 

or 

F= IF. 535.3; 

importance of 

friction; 

its absolute 

necessity. 

that is to say, one man at the end IF could resist the com¬ 

bined effort of 535 men, of the same strength as himself, 

to put the cord in motion when wound three times around 

the cylinder. This explains why it is that a single man, 

by a few turns of her hawser around a dock-post, is 

enabled to prevent the progress of a steamboat although 

her machinery may be in motion. Here friction comes in 

aid of the power, and there are numerous instances of 

this; indeed, without friction many of the most useful 

contrivances and constructions would be useless. It is 

by the aid of friction that the capstan is enabled to do its 

work ; the friction between the rails of a railroad and the 

wheels of the locomotive enables the latter to put itself and 

its train of cars in motion. But for the friction between 

the feet of draft animals and the ground, they could per¬ 

form no work; nor, indeed, could any animal walk or 

even stand with safety, if it were deprived of the aid of 

this principle. 
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XVII. 

THE WEDGE. 

description and 

use: 

§ 218.—Tims far we have only considered the cases of The wedge; 

a body pressing against a single surface. The same body 

may also act against two or 

more surfaces at the same time. 

Such, for example, is the case Fig. 224. 

with the Wedge, which consists A B 

of an acute right triangular 

prism ABC, usually employed 

in the operation of separating 

and splitting. The acute di¬ 

hedral angle ACb, is called the 

edge; the opposite plane face 

Ab, the bach; and the planes definitions; 

A c and Cb, which terminate in 

the edge, the faces. The more 

common application of the 

wedge consists in driving it, by 

a blow upon its back, into any substance which we wish to 

split or divide into parts, in such manner that after each common 

advance it shall be supported against the faces of the ^Pe^a.tl0n of the 

opening till the work is accomplished. 

§ 219.—The blow by which the wedge is driven for¬ 

ward will be supposed perpendicular to its back, for if it 

were oblique, it would only tend to impart a rotary motion, 

and give rise to complications which it would be unprofit- the blow upon 

able to consider. And to make the case conform still fur- ^p^rpendkuiiiT 

ther to practice, we will suppose the wedge to be isosceles, to the back; 
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to find the 

resultant of the 

reactions on the 

faces; 

construction and 

notation; 

value of the 

resultant; 

to find resultant 

of frictions; 

Fig. 225. 

n 

The wedge ACB being inserted in the opening a Jib, 
and in contact with its jaws at a and b, we know that the 

resistance of the latter will be 

perpendicular to the faces of the 

wedge. Through the points a 
and b, draw the lines a q and bp 
normal to the faces A C and 

B C; from their point of inter¬ 

section 0, lay off the distances 

Oq and Op equal, respectively, 

to the resistances at a and b. 
Denote the first by Q, and the 

second by P. Completing the 

parallelogram Oqmp, Om will 

represent the resultant of the 

resistances Q and P. Denote 

this resultant by iP, and the 

angle ACB, of the wedge, by 

6, which, in the quadrilateral 

a Ob C, will be equal to the 

supplement of the angle a Ob 
— p 0 q, the angle made by the directions of Q and P. 
From the parallelogram of forces we have, 

Rr =z P2 -f. Q2 -\r 2PQ cosp Oq — P2 + Q2 — 2 P Q cos 6; 

or 

R' — V P2 + Q2 — 2 P Q cos 6. 

The resistance Q will produce a friction on the face A 0 
equal to / Q, and the resistance P will produce on the face 

B 0\ the friction fP; these act in the directions of the faces 

of the wedge. Produce them till they meet in (7, and lay 

off the distances Cqr and Cp' to represent their intensities, 

and complete the parallelogram Oq' O'p'; 0 O' will repre- 
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sent tlie resultant of the frictions. Denote this by R", 

and we have, from the parallelogram of forces, 

• — t 

-S"3 =/2<23 + /2P3 + 2f2 P Q cos 6 ; 

or 

__._ value of the 

R" — f V P“ T Q2 ~b 2 jP Q COS d. resultant of the 

frictions; 

The wedge being isosceles, the resistances P and Q will be 

equal, their directions being normal to the faces will inter¬ 

sect on the line CD, which bisects the angle C= 6 • and 

their resultant will coincide with this line. In like manner the wedge being 

the frictions will be equal, and their resultant will coincide lsosceles’ 

with the same line. Making Q and P equal, we have, 

from the above equations, 

R' = P V 2 (1 - cos d), 

But 

R" = fP V 2 (1 + cos d). 

1 — cos $ = 2 sin2 J d, 

1 + cos d = 2 cos2 J d; 

whence we obtain, by substituting and reducing, 

R’ = 2 P . sin -J- 

22" = 2/.P. cos id; 

and further, 

• i, iAB 
sm \ d = i 217» 

cos d 
CD 
A C ’ 

these values 

result; 

or thes9; 

circular functions 

in terras of 

elements of the 

wedge; 
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therefore, 

Anal value of 

these resultants; 

Denote by F the intensity of the blow on the back of the 

wedge. If this blow be j nst sufficient to produce an equi* 

librium bordering on motion forward, call it F'; the fric¬ 

tion will oppose it, and we must have, 

value of the blow 

when the wedge 

is on the eve of F' = R' -f- R " = P • 
moving forward; 

If, on the contrary, the blow be just sufficient to prevent 

the wedge from flying back, call it F"; the friction will 

aid it, and we must have, 

zl + V'p-z§--(“> 

R' = P- 
AB 
A G 

R" =2 f-P 
CD 
A 0 

value, when on 

the eve of moving 

back; 

F" = P- 
A B 
A G 2 f-P- 

G.D 
~A~G 9 . . (110). 

limits within 

which the blow 

may vary to 

produce no 

motion; 

The wedge will not move under the action of any force 

whose intensity is between F' and F". Any force less 

than F", will allow it to fly back; any force greater than 

F' will drive it forward. The range through which the 

force may vary without producing motion, is obviously, 

= 4/P. 
GD 
A G V 

which becomes greater and greater, in proportion as GD 
and A G become more nearly equal; that is to say, in pro¬ 

portion as the wedge becomes more and more acute. 

The ordinary mode of employing the wedge requires 

that it shall retain of itself whatever position it may be 

driven to. This makes it necessary that, Eq. (110), 
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p. — = 2 f-P 
AC J 

CD 
A C v 

j>AB f p CD 
or P —r-7^ <2 f-P 

A C A C Y ) 

conditions that 

the wedge may 

retain the place 

to which it i3 

driven; 

or, omitting the common factors and dividing both members 

of the equation and inequality by 2 CD, 

\AB 
CD 

or 
\AB 

CD < f; 

but 
\AB 

CD 
is the tangent of the angle A CD; hence we 

conclude, that the wedge will retain its place when its semi- conclusion; 

angle does not exceed that whose tangent is the coefficient 

of friction between the surface of the wedge and the sur¬ 

face of the opening which it is intended to enlarge. 

Resuming Eq. (HO), and supposing the last term 

of the second member greater than the first term, F" be¬ 

comes negative, and will represent the intensity of the 

force necessary to withdraw the wedge; which will obvi¬ 

ously be the greatest possible when A B is the least pos¬ 

sible. This explains why it is that nails retain with such why nails retain 
1 . , c their places. 

pertinacity their places when driven into wood, &c. 

§ 220.—One of the 

most important uses 

of the wedge, is in its 

application to what 

is called the Wedge 
Press. This, in its 

simplest form, con¬ 

sists of a truncated 

wedge A B (7, which, 

by a blow upon its 

back, is made to slide 

between two blocks, 

B' and B"; one of 
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these blocks rests 

description, against a fixed sup¬ 

port Tf, and the 

other against some 

yielding substance 

K' to be pressed. 

This machine is fre¬ 

quently employed 

to pack goods, wool, 

cotton, skins, and 

uses,&.c.; the like; and to 

express the vege¬ 

table oils and juices 

from seeds, fruit, 

&c. The quantity of 

work performed by 

the power will obvi¬ 

ously be the prod- 

quantity ot work uct of the intensity 
of the power; n ,i n m • , 

ot the torce r into 

the distance, in a 

direction perpen¬ 

dicular to the back, 

through which the 

wedge has been 

driven. Call this 

distance x, by 

which multiply 

both members of 

Eq. (109), and wri¬ 

ting F for F' we have 

Fig. 226. 

Fig. 227. 

-A. o Ay ~B 

its value; Fx = p.cc.iL?- + 2 f-P-x CD 
A C 

To obtain from this expression for the quantity of work 

of the power, a relation which will enable us to compare 
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the intensity F with the reaction of the substance K', to find relation 

let ABC be the primitive position of the wedge, and between 

A3B3 C3 any subsequent position; letting fall from A3 the resistance; 

perpendicular Az o on the back; A3 o will be equal to x. 
Moreover, B4B3 is the distance through which the whole 

wedge has been moved towards the yielding substance Kr, 
and will, therefore, be equal to the distance through which 

the reaction of the latter has been exerted. Call this dis¬ 

tance s, and the intensity of the reaction jS. Draw A3A4 notation and 

parallel to CB; then, in the triangles A A3A4 and B3B4B, constructlon» 

the sides AA3, and A3A4 are respectively equal and paral¬ 

lel to BB3 and BB4, and, consequently, A A4 will be equal 

to B4 B3 — s. * The two triangles A3 A A4, and A B C, are 

similar, and give the proportion 

A3o : AA4 :: CD : AB; 

or 

whence 

AB; 

x 
CD 
AB' 

relation of the 

elementary paths 

of power and 

resistance; 

If there were no friction, there would be no obstruction 

to the free transmission of the effect of the force F to the 

substance to be compressed. But, making/ zero, we have, 

Eq. (112), 

Fx — P • x 
AB # 

A C ; 

and, from the principle of virtual velocities, 

work of the 

power without 

friction; 
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whence 

Px = jSs X 
A 0 
A B‘ 

9 

Now substituting this value for P x, and the above value 

for x, in Eq. (112), and it reduces to 

relation of 

quantities of 

work, of power, 

resistance, and 

friction; 

F • 5 9A = Ss + 2f-s-s-AL 
A B J A B 

(113). 

The first term of the second member is, obviously, the 

effective quantity of work done, being the reaction of the 

yielding body multiplied into the distance through which 

this reaction has been exerted, or through which the body 

has been compressed. This, we see, is less than the quan¬ 

tity of work of the power F\ by the quantity 

quantity of work 

absorbed and 

lost; 

2/.S.S X 
CD, 
AB’ 

which has been totally absorbed, and therefore lost, in 

consequence of the friction. This loss is often very great, 

and to illustrate, suppose the reaction B to be 1000 

pounds, and that the back of the wedge A B is ^ of its 

length CD; then will 

lbs, lbs. 
illustration by an 20 . F. S ~ 1000 . S + 40 . f. S . 1000; 

example; 

and, taking /= XV, 

lbs. lbs. 
20 .F.s=z 1000.5 + 4000 5. 

numerical loss; Assigning any particular value to s we please, it appears 

that the useful effect is only 1000 5, while the loss from 

friction is 40005, and that the work performed by the 
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force F is 5000 s. Dividing the above equation by 20 s, 

we get 

lbs. lbs. lbs. 

F = 50 + 200 = 250; 
numerical value 

of the power; 

which is much less than 1000, the value of the reaction S. 
Hence we see that the advantage of the wedge press con- defect of the 

sists in this, viz.: by its aid the work may be executed machine* 

with comparatively a feeble power. The machine is, how¬ 

ever, defective, on account of the large amount of work 

absorbed by its friction. 

§ 221.—As before remarked, the wedge is driven Effect of the blow 

forward by a blow on its back. This mode of employing 111 the use of the 
j i J o wedge; 

force is an additional source of loss of work. When a 

hammer strikes the wedge, two periods are to be dis¬ 

tinguished, viz.: the first corresponds to the duration of 

the shock, that is to say, from the instant the hammer 

touches the wedge to that in which the greatest com¬ 

pression of the wedge and hammer takes place; the sec¬ 

ond follows immediately and includes the interval during 

which the reaction of the body to be pressed gives rise to 

the resistance called and to the frictions due to the 

pressures P and Q. While the wedge is acquiring motion 

under the blow, during the first period, its inertia acts as 

a resistance; in the second period, the inertia becomes a 

power to overcome the resistance S. The blow develops explanation o* 
-i the effect-* 

at each instant, between the hammer and wedge, real 

pressures, which are measurable in pounds; and these 

pressures are greater, for the same effect, in proportion as 

the duration of the shock or blow is shorter. The wedge 

will, in the first period, have a motion from the action of 

these pressures in consequence of its lateral compression ; 

the inertia due to this motion being opposed by the lateral 

parts of the machine will give rise to friction, which fric¬ 

tion, together with the inertia exerted by the wedge in 
23 
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loss of living 

force; 

its measure; 

loss of living 

force from 

permanent 

change of 

figure. 

Tlio wedge in 

universal use; 

its different 

figures; 

acquiring an increased velocity under tire continued action 

of tlie hammer, will be in equilibrio with these pressures. 

The work of these frictions, during the first period, 

will be absorbed by the machine, and therefore lost to the 

inertia or living force of the wedge when this living force 

becomes, in the second period, a power to overcome the 

resistance S. The quantity of action, or half the living 

force, preserved by the wedge at the close of the first 

period, and with which it enters upon the work to be 

performed during the second, will be given by the rule 

furnished in Eq. (113), and from which it appears, that 

this quantity of action will be equal to the quantity of 

action of the hammer on the back of the wedge during 

the first period, diminished by that consumed by the fric¬ 

tion due to the wedge’s inertia within the same period. 

But this is not all. A part of the work of the hammer 

is consumed by the permanent change of figure of the 

wedge arising from the violence of the action. Thus we 

see, that a considerable portion of the living force with 

which the hammer begins its work, is lost by change of 

figure, and by friction due to the sudden development of 

inertia; neither of which would take }3lace under a force 

of gradual and ordinary pressure. 

§ 222.—Notwithstanding the disadvantages arising 

from the great and wasteful consumption of work which 

accompanies the employment of the wedge, this machine 

is in universal use. It has not, however, always the 

Fig. 228. 
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prismatic figure. It sometimes lias tlie form of a pyramid it may be a 

with three, four, or more edges; in which case, the rela- pyramid; 

tions between the power and resistance when in equilibrio 

are altogether analogous to those of the prism; the power 

applied to the back is equal and directly opposed to the 

resultant of the resistances and the frictions against the 

faces. The wedge may also have the form of a truncated a truncated 

pyramid or prism. Often it is nothing more than a cone pyraraid’or even 

at the extremity of a cylinder. 

Examples in tools. Almost all the tools employed in examples in 

the arts have some relation to the wedge; such as the tools ’ 

different kinds of knives, axes, shears, scissors, files, 

chisels, SawS, hoes, ploughs, &C.; &C. All Wedges, of what- rules in regard to 

ever kind and however emoloyed, are destined to act by the <lo"ieecf 

their pointed ends, and the shape of this should be regula¬ 

ted with special reference to the object in view. If too 

acute, it will break off; if too obtuse, it will not penetrate; 

and the angle adopted is generally the result of a com¬ 

promise between these difficulties, determined by the 

nature of the material of which the wedge is made and 

that of the substance to be worked. If 

the substance to be worked be hard, 
Fig. 229. 

as cold iron, copper, &c., the basil angle 

abc should be large; this angle in 

the chisel of a carpenter’s plane, which 

is only intended for wood, is about 30° ; 

it is made still more acute in knives 

employed to cut the softer substances, 

meat, bread, and the like. 

§ 223.—All rotating pieces, such as wheels supported f riction of 

upon other pieces, give rise by their motion to friction. loUfltingpiec<iS 

This is an important element in all computations relating 

to the performance of machinery, and cannot safely 

be neglected. It seems to be different according as 

the rotating pieces are kept in place by trunnions or by trunnions; 



pivots; 

definition and 

description of a 

trunnion; 

boxes; 

definition and 

description of 

pivots and tteir 

sockets; 

Fig. 230. 

A. 

ci\ 

B 
la 

u 

pivots. By trunnions 
are meant cylindrical 

projections a a from 

tlie ends of tlie arbor 

A B of a wheel; they 

are usually made as 

small in diameter as 

may be found consist¬ 

ent with the requisite 

strength, and are so 

placed that their axes 

coincide with that of 

the arbor which is 

perpendicular to the 

plane of the wheel. 

The trunnions rest on 

the concave surfaces 

of cylindrical boxes 

CD, with which they 

usually have a small 

surface of contact m, 
the linear elements of 

both being parallel. 

Pivots are shaped like 

the trunnions, but 

support the weight of 

the wheel and its ar¬ 

bor upon their circu¬ 

lar ends, which rest 

against the bottom 

of cylindrical sockets, 

EFCHIK. If the forces which give motion to the 

wheel press its pivot against the cylindrical surface of the 

socket, the friction will partake of the nature of that due 

to the trunnion as well as the pivot; but this is usually 

prevented by special arrangements in the mounting of the 

wheel. Of the two frictions here referred to, one takes 
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place between tlie end of the pivot and the circular bottom nature of the 

of the socket, and is in all respects similar to that of two on the 

surfaces sliding over each other. The friction due to the 

motion of the trunnion has been found by Coulomb to be 

much less than that of the pivot; and there is also less friction on 

adhesion on account of the smallness of the surface of trunnions less 
than on pivots. 

contact. A table of the coefficients of friction which ac¬ 

companies the motion of trunnions will be given in its 

proper place. 

Fig. 233. 

§ 224.—It is not sufficient in case of rotary motion, To find the value 

to know the ratio of the friction to the pressure; we must of the frictlon of 
x the pivot against 

also know how the friction arising from the peculiar ar- the bottom of its 

rangements of the rubbing parts as just indicated, acts with socket; 

respect to the other forces. We shall first take the case 

of the pivot turning around 

its axis. Let N denote the 

force, in the direction of the 

axis, by which the pivot is 

pressed against the bottom 

of the socket. This force 

may be regarded as passing 

through the centre of the 

circular end of the pivot, 

and as the resultant of the 

partial pressures exerted up¬ 

on all the elementary sur¬ 

faces of which this circle 

is composed. Denote by A 
the area of the entire circle, 

then will the pressure sustained by each unit of surface be 

N 
A 5 

pressure on unit 

of surface; 

and the pressure on any small portion of the surface 
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pressure on a 

single elementary 

surface; 

the 

corresponding 

friction; 

moment of thi3 

friction; 

to find the 

moment of the 

friction on a 

single sector; 

denoted by a, will obviously be 

a . N 
~A~; 

and the friction on the same will be 

/. a . JST 
A * 

Tin's friction may be regarded as applied to the centre of 

the elementary surface a ; it is opposed to the motion, and 

the direction of its action is tangent to the circle described 

by the centre of the element. Denote the radius of this 

circle by r, then will the moment of the friction be 

j. a . N 
f ' ~A ' r' 

If we now consider all the elementary surfaces within the 

sector A 0 B, of which the angle at C is very small, we 

may regard the frictions on 

these elements as parallel to 
r Fig. 233. 

each other, and perpendicular 

to the radius 0 C,\ which 

bisects the angle A CB; in 

virtue of their parallelism, 

their resultant will be equal 

to their sum; and, because 

of their equality on equal 

elementary surfaces, the line 

of direction of this resultant 

will pass through the centre 

of gravity of the sector A CB. 
But this sector being very 

acute, will not differ from an isosceles triangle, of which 
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the equal sides, and perpendicular drawn to the base from 

the vertex C) will be sensibly equal to each other and to 

i?, the radius CA of the circle: whence the distance of 

the resultant friction on the sector from the centre C will 

be J R. Substituting the small sector for a, and § R for 

r, in the foregoing expression, and we have, for the moment 

of the friction on the sector, 

N 
A 

• sect. A C B X 
the value of this 

moment; 

and the same is true of any other sector. If the moments 

be taken for all the sectors which make up the circle, and 

these be added together, we shall have the moment of the 

entire friction. The quantity / 
N 
A 

• § R, is constant, 

and hence the sum of these moments will be 

sum of all the 

similar momenta; 

• J R X (sum of the sectors A OB); 

but the sum of all the sectors is equal to the area of the 

circle, or A ; whence the moment of the friction on the 

entire base of the pivot is 

f.N.lR. 
moment of the 

friction on the 

entire end of the 

pivot; 

whence we conclude, that, in the friction of a pivot, ice may 
regard the whole friction due to the pressure as acting in a 
single point, and at a distance from the centre of motion equal 
to two thirds of the radius of the base of the pivot. This mean lever of 

distance is called the mean lever of friction. 

It may happen, that the extremity of the pivot, in¬ 

stead of rubbing upon an entire circle, is only in contact when the friction 

with a ring or surface comprised between two concentric annular 

circles. This occurs when the arbor of a wheel is urged 
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find friction 

against a ring; 

moment on a 

sector of the 

larger circle; 

in the direction of its 

length by a force A a- 

gainst a shoulder deb a. 
Denoting, as before, the 

area of the ring which 

sustains the pressure 

by Ay the moment of 

the friction on the ele¬ 

mentary sector ABC 
is, as before found, 

J R X sector ACB; 

in which R denotes the radius of the larger circle. Again, 

the moment of the friction on the sector A' C B' is 

that on the 

smaller; 
• JR' X sector ArCBr; 

and the difference, 

that on an 

element of the 

ring; 

|/ • —j- [.R X sector A CB — Rr sector A'CBf\ 

will be the moment of the friction on the surface, A'B'BA. 
Taking the moments for the remaining elementary surfaces 

which make up the ring, and adding them together, 

observing that the sums of the sectors make up the areas 

of the circles to which they respectively belong, we find, 

for the moment of the friction on the whole ring, 

moment for the 

entire ring; 3/ A (R X area of circle R — R' X area of circle R'] 

But the area of the circle whose radius is R, is 
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* R2; 

that of the circle whose radius is R\ is 

«R'2; 

and the area A of the ring, is 
\ 

« (E2 - E’2). 

Substituting these values in the above expression, we find 

if. JV X 
E3 - E 'l 

E2 - E'2' 

Finally, denote by l the breadth of the ring, that is, the 

distance A' A; by r, its mean radius or distance from C to 

a point half way between A! and A, and we shall have 

R = r + \ l, 
4 

E’ = r - il; 

substituting these values above and reducing, we have 

/•-WX [r + * • -£] • • (115); 

and making 

r + 
l2 

12 r 
— r n 

we obtain, for the moment of the friction on the entire ring, 

/• N-r, (115)'. 

The quantity rt is called the mean lever of friction for a 

ring. Since the whole friction / iVJ may be considered as 

applied at a point whose distance from the centre is J i?, or 

area of one circle; 

that of the other; 

area of the ring; 

moment of 

friction on the 

ring; 

same in different 

form; 

mean lever 

arm; 
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work consumed 

by friction; 

its value for an 

entire circle; 

its value for a 

ring; 

work consumed 

by friction in a 

unit of time; 

for a ring; 

l2 

r, — r + -7:—, according as the friction is exerted over an 
' lAt 

entire circle or over a ring; and since the path described 

bj this point lies always in the direction in which the 

friction acts, the quantity of work consumed by it will be 

equal to the product of its intensity f N into this path. 

Designating the length of the arc described at the unit’s 

distance from 0 by sn the path in question will be either 

Ills,, or r, s,; 

and the quantity of work either 

■ *, •/• N 

for an entire circle, or 

f-N(r + 

for a ring. Let Q denote the quantity of work consumed 

by friction in the unit of time, and n the number of revo¬ 

lutions performed by the pivot in the same time; then will 

5, = 2 * x n; 

and we shall have 

Q = | rf . R ./. N. n . . . (116) 

for the circle, and 

Q = 2*.f.lT.(r + ~)-n. . (117) 

for a ring ; in which = 3.1416. 

The coefficient of friction f when employed in either 

of the foregoing cases, must be taken from the tables in 

§ 212. 
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1 

I 

From these expressions, it ap¬ 

pears that the quantity of work con¬ 

sumed by friction, in a given time, 

augments with the radius of the piv¬ 

ot, or mean radius of the ring ; and 

as this work is always opposed to the 

motion, there is an advantage in re¬ 

ducing these radii as much as possi¬ 

ble, consistently with the strength of 

the pivot. With this view, the pivots 

are sometimes made in the form of 

a truncated cone, and often with a 

convex ellipsoidal or spherical ter¬ 

mination, and the socket having a 

corresponding shape, it will only be 

necessary to consider the small cir¬ 

cle of contact which arises from the 

compression of the material. 

Referring to the expressions (114) and (115)', we see, 

that to obtain the moment of friction, in the case of the the moment of 

pivot, either for an entire circle or ring, we multiply the the fnctlon; 

coefficient of friction, as given in the table of § 212, by the 

pressure, and this product by the mean lever. And referring 

to Eqs. (116) and (117) we find, that the quantity of work is quantity of work 

obtained by multiplying the moment of friction into the path ofthefuctlon> 

described by a point at the unit's distance from the centre of 

motion. 

Example. Required the moment of the friction on a example of the 

• i f* i • i • • ■] , pi *11*1 circular base y 

pivot ot cast iron, working m a socket ot brass, and wliicli 

supports a weight of 1784 pounds, the diameter of the 

circular end of the pivot being 6 inches. Here 

Fig. 235. 
work consumed 

by friction 

proportional to 

mean lever; 

pivots should be 

as small as 

possible; 

conical and 

spherical 

terminations; 

m. ft. 

R = 6 = 3= 0.25, 

N = 1784, 

/ = 0.147; 

numerical value 

of elements; 
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value of the 

moment; 

work consumed 

in unit of time; 

example of the 

annular base; 

numerical value 

of the elements; 

value ol the 

moment; 

which, substituted in expression (114), gives 

lbs. ft 

0.147 X 1784 X | X 0.25 = 43.708. 

And to obtain the quantity of work in one unit of time, 

say a minute, there being 20 revolutions in this unit, we 

make n — 20, and n — 3.1416 in Eq. (116), and find, 

Q = i x 3.1416 X 0.25 x 0.147 x 1784 x 20 

= 5492.80; 

that is to say, during each unit of time, there is a quantity 

of work lost which would be sufficient to raise a weight 

of 5492.80 pounds, through a vertical distance of one foot. 

Example. Eequired the moment of friction, when the 

pivot supports a weight of 2046 pounds, and works upon 

a shoulder whose exterior and interior diameters are 

respectively 6 and 4 inches; the pivot and socket being 

of cast iron, with water interposed. 

= 1 inch, 

r = 2 + 0.5 = 2.5 inches, 

(1)2 in. ft. 

r, = 2.5 + =2.5333 = 0.2111, 

A = 2046 pounds, 

/ = 0.314; 

which, substituted in expression (115)1, gives for the mo¬ 

ment of friction, 

lbs. ft. 

0.314 x 2046 X 0.2111 = 135.62. 

The quantity of work consumed in one minute, there 



MECHANICS OF SOLIDS. 365 

being supposed 10 revolutions in that unit, will be found 

by making in Eq. (117), as before, « = 3.1416 and 
n = 10, 

Q = 2 X 3.1416 X 0.314 X 2046 x 0.211 x 10 

= 8517.24; 

work consumed 

in unit of time ; 

that is to say, friction will, in one unit of time, consume a 

quantity of work which would raise 8517.24 pounds 

through a vertical distance of one foot. The quantity rule for finding 

of work consumed in any given time would result from ^Jork in any 

multiplying the work above found, by the time reduced 

to minutes. 

§ 225.—The friction on trunnions and axles, which we Friction on 

now proceed to consider, gives a considerably less co- axles. 

efficient than that which accompanies the kinds of motion 

referred to in the tables of § 212. This will appear from 

the following table, which is the result of careful experi¬ 

ment, viz.:— 

TABLE IV. 

Friction of Trunnions in their Boxes. 

Ratio of friction to 
pressure when the 
unguent is renewed. 

By the 
ordinary 
method. 

Or, con¬ 
tinuously. 

( 0.07 ) 

1 t0 r ( 0.08 ) 
o.o54 

0.08 

o.o54 
o. i4 

o.o54 
o.o54 

o. i4 - 

( 0.07 ) 

\ot0os\ 
o. 16 

o.o54 

o. 16 - 

o. 19 - 

KINDS OF MATERIALS. 

Trunnions of cast iron 
and boxes of cast iron. 

Trunnions of cast iron 
and boxes of brass. 

STATE OF SURFACES. 

Unguents of olive oil, hogs’ 
lard, and tallow - - - 

The same unguents moist¬ 
ened with water - - - 

Unguent of asphaltum - 
Unctuous. 
Unctuous and moistened 

with water - - - - 

Unguents of olive oil, hogs’ 
lard, and tallow - - - 

Unctuous. 
Unctuous and moistened 

with water - - - - 
Very slightly unctuous* - 

* The surfaces began to move about. 

/ 
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9 

TABLE TV.—continued. 

KINDS OF MATERIALS. 

Trunnions of cast iron 
and boxes of lignum- ■< 
vitae. 

Trunnions of wrought 
iron and boxes of cast 
iron. 

Trunnions of wrought 
O 

iron and boxes of - 
brass. 

Trunnions of wrought 
iron and boxes of lig- 
num-vitae. 

Trunnions of brass and 
boxes of brass. 

Trunnions of brass and j 
boxes of cast iron. j 

Trunnions of lignum- 
vitae and boxes of 
cast iron. 

Trunnions of lignum- 
vitae and boxes of 
lignum-vitae. 

STATE OF SURFACES. 

Without unguents* - - 
Unguents of olive oil and ) 

hogs’ lard.) 
Unctuous with oil and 

hogs’ lard. 
Unctuous with a mixture 

of hogs’ lard and plum¬ 
bago 

Unguents of olive oil, tal¬ 
low, and hogs’ lard - - 

Unguents of olive oil, hogs’ 
lard, and tallow - - - 

Old unguents hardened - 
Unctuous and moistened 

with water - - - - 
Very slightly unctuousf - 
Unguents of oil or hogs’ 
lard. 

U nctuous. 
Unguent of oil - - - - 
Unguent of hogs’lard- - 

Unguents of tallow or of 
olive oil - - • 

r of | 

Unguents of hogs’ lard - o o 

Unctuous. 

Unguent of hogs’ lard o o 

Ratio of friction to 
pressure when the 
unguent is renewed, 

By the 
ordinary 
method. 

O. 18 

O. 10 

0.19 

0.25 

o. 11 

0.19 

o. 10 

0.09 

0.12 

o. i5 

Or, con¬ 
tinuously. 

0.090 

o.o54 

o.o54 

0.07 

to investigate tho 

friction of 

trunnions; 

Let us now examine tlie part performed by friction in 

connection with the forces which give motion. We have 

seen that the contact of the trunnion with its box is 

along a linear element, common to the surfaces of both. 

A section perpendicular to its length would cut from 

the trunnion and its box, two circles tangent to each 

other internally. The trunnion being acted on only by 

* The wood being a little unctuous, 

t The surfaces began to move about. 
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its weight, would, when at rest, give this tangential 

point at o, the lowest point of the section poq of the box. 

If the trunnion be put in motion by the application of a 

force, it would turn 

around the point of 

contact and roll in¬ 

definitely along the 

surface of the box, 

if the latter were 

level; but this not 

being the case, it will 

Fig. 236. 

ascend along'the in¬ 

clined surface op to 

some point as m1 

where the inclina¬ 

tion of the tangent 

u m v is such, that 

the friction is just 

sufficient to prevent the trunnion from sliding. Here let 

the trunnion be in equilibrio. But the equilibrium requires 

that the resultant of all the forces which act, friction in¬ 

cluded, shall pass through the point m and be normal to 

the surface of the trunnion at that point. The friction is ap¬ 

plied at the point m; hence the resultant N of all the other 

forces must pass through m in some direction as m d; the 

friction acts in the direction of the tangent; and hence, in 

order that the resultant of the friction and the force N shall 

be normal to the surface, the tangential component of the 

latter must, when the other component is normal, be equal 

and directly opposed to the friction. 

Take upon the direction of the force iVJ the distance 

m d to represent its intensity, and form the rectangle 

adb m, of which the side m b shall coincide with the 

tangent; then, denoting the angle dm a by cp, will the com¬ 

ponent of N perpendicular to the tangent be 

position of 

trunnion when it 

begins to slide on 

its box; 

point in which 

the resultant 

intersects the 

surface of box; 

tangential 

component of 

resultant, equal 

and opposed to 

friction; 

N. cos 9 ; 
normal 

component; 



368 NATUKAL PHILOSOPHY. 

friction due to 

this component 

tangential 

component; 

value of the unit 

of friction; 

to find the point 

of contact; 

and the friction due to this pressure will be 

f. N. cos <p. 

The component of N, in the direction of the tangent, 

will be 

N. sin 9 ; 

and as this must be equal to the friction, we have 

f. N. cos. 9 = N. sin 9 .• . (118); 

whence 

f — tan 9; 

that is to say, the ratio of the friction to the pressure on 

the trunnion, is equal to the tangent of the angle which 

the direction of the resultant N of all the forces except 

the friction, makes with the normal to the surface of the 

trunnion at the point of contact. This gives an easy method 

of finding the point of con¬ 

tact. For this purpose, we 

have but to draw through 

the centre A, a line A Z) par¬ 

allel to the direction of JVj 

and through A the line A n, 

making with A Z an angle 

of which the tangent is f; 

the point m, in which this 

line cuts the circular section 

of the trunnion will be the 

point of contact. 

Because madb, last fig¬ 

ure, is a rectangle,' we have 

Fig. 237. 

72 

N2 = N2 cos2 9 + N2 sin2 9; 
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and, substituting for N2 sin2 9 its equal f2 N2 cos2 0, 

have 

We to find the -value 

of the total 

friction; 

N2 == N2 cos2 9 + f2 N2 cos2 9 = N2 cos2 9 (1 + f2); 

whence 

^■cos9 = N X —:———; 
VTT+ /2 

and multiplying both members by ^ 

y*. jY. COS 9 — -A * — ..-• • (119); its value; 

v 1 + p 

but the first member is the total friction; whence we con¬ 

clude, that to find the friction upon a trunnion, we have but to 

multiply the resultant of the forces which act upon it, by the rule; 

unit of friction, found in Table IY, and divide this product by 

the square root of the square of this same unit increased by 

unity. 

This friction acting at the extremity of the radius R of 

the trunnion and in the direction of the tangent, its moment 

will be 

N • -x B . ■ . (120). 
v'T + Z* 

moment of the 

total friction; 

And the path described by the point of application of the 

friction being denoted by Rsn the quantity of work of 

the friction will be 

N. R . sJ x /_ 

vi+/! 
quantity of work 

of friction; 

in which st denotes the path described by a point at the 

unit’s distance from the centre of the trunnion. Denoting, 
24 
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as in the case of the pivot, the number of revolutions per¬ 

formed by the trunnion in a unit of time, say a minute, by 

n ; the quantity of work performed by friction in this time 

by Qj ; and making « = 3.1416. we have 

s, — 2 at . n ; 

and 

quantity of work 

in a unit of time ; 
Qj — 2 * • R. n • N • / 

V l + f* 
• (122) 

When the trunnion remains fixed and does not form part 

of the rotating body, the latter will turn about the trun¬ 

nion, which then takes 

axle; 

Fig. 238. 

the name axle, having the 

centre of motion at A, the 

centre of the eye of the 

wheel; in this case, the 

lever of friction; lever of friction becomes 

the radius of the eye of 

the wheel. As the quan¬ 

tity of work consumed by 

friction is the greater, Eq. 

(122), in proportion as this 

radius is greater, and as the radius of the eye of the wheel 

must be greater than that of the axle, the trunnion has the 

advantage, in this respect, over the axle. 

The value of the quantity of work consumed by fric- 

Mction same for tion is wholly independent of the length of the trunnion or 

axle, and no advantage is therefore gained by making it 

trunnion better 

than the axle in 

regard to friction 

long and short 

trunnions and 

axles. shorter or longer. 

Trunnions 

be small as 

possible; 

§ 226.—If we examine Eq. (122), we find that, all other 

things being equal, the value of the work consumed by 

friction will depend upon the radius R of the trunnion, and 

should that as the latter diminishes, in the same proportion will 

this consumption diminish. The trunnion should, therefore, 

be made as small as possible, and of the hardest and 
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pressure: 

Fig. 239. 

strongest material, as steel. The consumption of work by consumption of 

friction may also be diminished by lessening the force A; 'V0lkb^lctlul) 
J J cd * lessened by 

but with these two exceptions there is no way of avoiding diminishing the 

the effects of friction for 

given materials. When 

the trunnion is employed to 

support a piece which sim¬ 

ply oscillates through an 

arc, as in the case of the 

pendulum and weighing- 

balance, the knife-edge 

may be used to great ad- advantages of the 

vantage, for, in that case, the radius R is reduced to the knife'edse as an 

smallest conceivable length, and the work of friction to 

almost nothing. 

Fig. 240. 
Friction of 

rolling motion: 

§ 227.'—There is ano¬ 

ther species of friction yet 

to be mentioned, viz : that 

which arises from the roll¬ 

ing of one body over 

another. As the surfaces 

of contact are in this case 

applied to each other, and 

separated in a direction 

perpendicular to that of 

the motion, there would, 

at first view, appear to be 

no friction, nor would 

there if the surfaces were 

perfect—that is to say, 

free from all irregularities. But there can, in practice, be 

no such surface; when bodies are brought in contact in 

the manner here referred to, the slight protuberances on 

the surface of one will enter into the corresponding cavi- but in actual 

ties on that of the other, after the manner of so many 19 

wedges, and cannot be again withdrawn without giving 

no friction In 

rolling motion if 

surfaces were 

perfect; 
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this kind of 

friction, as well 

as adhesion, may 

be neglected; 

friction of the 

second kind; 

illustration; 

illustration of its 

practical 

substitution for 

sliding friction. 

rise to an amount of friction due to tlieir dimension, depth 

of insertion, and nature of material. Here adhesion 

assumes a value which is appreciable, as compared with 

this friction, but both together are found, in practice, to 

be exceedingly small, and generally, adhesion in rolling, as 

well as in sliding friction, may, without much error, be neg¬ 

lected. In general this friction, called friction of the second 
r 

kind, is less in proportion as the diameter of the rolling 

body is less. A wheel of two feet diameter, loaded with 

a weight of 100 pounds, and rolling over a piece of level 

and smooth ground, only gives rise to a friction of 0.03 

of the pressure—that is to say, to only three pounds. The 

wheels of carriages meet often with considerable resist¬ 

ance when rolling over compressible or rough ground, but 

this is because the carriage must be raised over the in¬ 

clined planes formed in front by the sinking of the wheels,. 

or over obstacles which project above the common surface. 

The little resistance to motion arising from friction of the 

second kind, is well illustrated by the comparative facility 

with which heavy blocks of stone are often transported 

upon rollers over considerable distances. A roadway 

is first usually made by 

placing straight pieces of 

timber along the ground 

to prevent the rollers from 

sinking into it; the stone 

is then mounted upon the 

rollers, which are placed 

upon these pieces at right 

Fig. 241. 

angles to their length, and 

drawn in the direction of 

the road by the applica¬ 

tion of any convenient power. As fast as a roller is de¬ 

tached from behind, it is brought forward and interposed, 

in time to prevent the stone from tipping forward in con¬ 

sequence of its centre of gravity getting in advance of the 

leading roller. The quantity of work necessary to con- 
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vey a stone over any considerable distance, in this way, is 

incomparably less than if it were to rest with its face 

against the ground. 

§ 228.—The different kinds of friction may be so com¬ 

bined as to diminish both its intensity and the quantity of 

its work. Thus, let 

a pair of wheels CD 

be mounted upon an 

axle, and suppose a 

force FJ applied to 

the latter, parallel to 

a level plane A B, to 

put it in motion. De¬ 

note the weight of the 

axle and its load by 

TTJ that of the wheels by w. Suppose, for a moment, that 

the wheels are firmly connected with the axle and that they 

cannot rotate, but, when put in motion, must slide along 

AB; the force FJ requisite to impart motion and keep it 

uniform, will be given by the equation 

F, = (W + w)f . . . (123); 

Fig. 242. 

in which / is the coefficient of sliding friction between the 

wheels and plane A B. Next, suppose the wheels capable 

of turning about the axle, and the force requisite to keep 

the motion uniform to be denoted by Fu. This force, 

acting to communicate motion, will give rise to friction 

between the circumference of the wheel and the plane 

A B1 and also between the axle and the inner surface of 

the eye: the latter will yield first, and the whole will 

move forward, the wheels having a rotary as well as a 

progressive motion. The friction at the axle will, Eq. 

(119), be 

N • f 
v l + f2 ’ 

Employment o 

rolling to 

diminish sliding 

friction; 

case of a common 

cart; 

force necessary to 

keep it in uniform 

motion when 

sliding; 

friction on axle 

when rotating; 
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in which f denotes the coefficient of friction at the axle. 

The weight W is thrown upon the axle and acts vertically; 

the force F u applied also to the axle, acts horizontally, 

and hence 

normal pressure 

on axle; 

and the friction at the axle becomes 

N = VW + fj; 

friction on the 

axle; 

Denote the radius of the wheel by E) and that of its eye 

by r, and the space described by a point at the unit’s dis¬ 

tance from the centre of motion by s,; then will the quan¬ 

tity of work of this friction be 

VW* + F* X 
f 

VTT/,2' 

quantity of work 

of friction; 
VW + FJ x f 

Vi + /* 
X r v 

The path described by the point of application of the 

power, and in the direction of the power, will be equal to 

the development of the arc of the circumference of the 

wheel corresponding to the arc sn that is to say, to Es„ 

and hence the quantity of work of the power will be 

work of the 

power; f„ R *,; 

whence we have 

F„Rs, = Vtf3 + IF} x f 

vA +/, 
— X r. s.; 
• o • 7 

from which we find 

power to keep 

the cart in ^ 
uniform motion Fn = ID •J' 
when the wheels 

are turning; 

li 
1 +f2) 1 

f? 
1 + ff x W, 
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Tlie value of f being a small fraction, as will appear from 

Table IV., the fraction 

this factor equal 

to unity; 

will differ but slightly from unity, and hence may bo 

replaced by unity, which will give 

. . (124). 
practical relation 

of power to load ; 

Dividing this by Eq. (123), we find 

W.f x 
(W + w)f It 

(125). 

relation of the 

powers to 

produce sliding 

and rolling 

motion; 

Here W is less than W + w ; ft is, by the tables, less than 

f and r is usually very much less than It, so that the 

second member must be a small fraction, and Fn conse¬ 

quently, much greater than Fn. This is the theory of theory of the 

carriage-wheels of every kind, of castors, rollers for smooth- cari'iase-wheei. 
° . &c.; 

ing ground, and the like. 

Example. Suppose a carriage with four wheels, whose 

joint weight is 50 pounds, to be loaded with 2040 pounds, 

the weight of the axle-trees and body being together , 

equal to 320 pounds. Let the wheels be of cast iron, the 

axles of wrought iron, the radius of the eye half an inch, 

that of the wheel one foot and a half, and suppose an un- example— 

guent of tallow and the carriage placed upon a rail-track camage on 
° ° A x railway; 

of wrought iron. Here 
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numerical value 

of the elements; 

ratio of the 

forces; 

value of one in 

terms of the 

other; 

conclusion; 

runners 

substituted for 

wheels on ice; 

lbs. 

W = 2040 + 320 = 2360, 

lbs. 

50, 

lbs. 

W + V) =.2410, 

f = Table IV. . . . 0.08, 

/ = Table 1.0.194, 

ft. 

r —. 0.042, nearly, 

ft. 

R =.1.5; 

and Eq. (125), 

2360 0.08 

2410 X 0.194 

0.042 

1.5 
0.0113; 

or 

Ft = 88.49 . Fu; 

that is to say, the force requisite to put the carriage in mo¬ 

tion when its wheels are free to rotate, is only about one 

eighty-eighth part of that which would be necessary to 

drag it, were its wheels locked. 

If we examine Eq. (125), we shall find that by taking 

f equal to zero, the force Fu will be vastly greater than 

Fn and the wheels will not turn. Now, although this 

extreme case can never occur in practice, yet, when a car¬ 

riage is placed upon ice, we approximate to it; and this is 

why runners are usually substituted for wheels, under 

such circumstances. The same equation explains why it 

is that so much more advantage arises from large wheels 

than small ones. 

Multiplying both members of Eq. (124), by Rsn we find 

equality of the 

work of friction 

and of power; 
F„Rs, — W .f.r. st; 
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the second member is obviously the work performed by 

friction, as the first is that performed by the power Fu. 

Denoting by n the number of revolutions performed by 

the wheels, we have 

= 2 k . n ; 

which, in the above equation, gives 

FuRs/ = W .f X 2 k r . n. 

path described hj 

point at unit’s 

distance from 

axis of axle; 

Denote the distance travelled by d, then will 

d 

U ~~ 2 « R' 
0 

number of 

revolutions of the 

wheel; 

and 

F„Rs, = W-f • ■ d (126). 
work of power 

and of friction; 

If we make d equal to one mile = 5280 feet, and take 

the dimensions and other elements the same as in the last 

example, we shall find example; 

F„ R ■ s, 
2360 X 0.08 X 0.042 X 5280 

1.5 
27912, nearly; 

in words, the work expended in moving the carriage one 

mile, or the work consumed by its friction, is equivalent 

to that which would raise 27912 pounds through a vertical 

height of one foot. 

When a trunnion is destined to support considerable method by which 

weight, its dimensions must be proportion ably large ; but as “e&ry be 

the radius of the trunnion increases, the effect of friction will reduced; 

increase in the same ratio. To avoid the inconvenience 
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device for 

diminishing 

friction; 

work of friction 

when wheels 

cannot turn; 

friction on the 

smaller 

trunnions; 

that would arise from this, when great freedom of motion 

is desirable, we may have recourse to the following device. 

Conceive the trunnion A to 

rest upon the circumferences 

of two equal wheels, sup¬ 

ported upon smaller trun¬ 

nions C,C\ whose distance 

apart is slightly greater than 

the radius of the wheels. 

Resolve, by the parallelo¬ 

gram of forces, the pressure 

upon the larger trunnion 

into two components, normal to the circumferences of the 

wheels; these will be transmitted to the smaller trunnions 

0 and O', where they will be supported. Denote these 

components by JST and N'. If the wheels could not turn, 

the friction between their circumferences and the larger 

trunnion would be /iVand f'N'; and the quantity of work 

consumed by this friction would be 

{fN + f'N') R.s,; 

in which Rt denotes the radius of the larger trunnion, and 

s/ the arc described by a point at the unit’s distance from 

its axis. If, on the contrary, the wheels may turn, the 

frictions on the trunnions C and C' will yield before that at 

the circumference of their wheels, and from what has just 

been shown, Eq. (124), the frictions there become 

Nf- b and N'f . £; 

in which r and r' denote the radii of the smaller trunnions, 

and R and R' the radii of their corresponding wheels; 

and thus the quantity of work of friction will become 

Fig. 243. 

JL 

work of friction; (Nf.^ + N'f 
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a quantity obviously much less tlian tliat obtained 

above. 

If the wheels and their trunnions be of the same size, 

and the trunnions as well as their boxes be of the same 

material, the above expression becomes 

J, ■ {N + N') ■ j{ ■ R,s,; 

the value of this expression may be made as small as we 

please, indeed inappreciable, in a practical point of view, 

by selecting surfaces and unguents for which f is the least 

possible, and making r very small. A beautiful applica¬ 

tion of this principle is exhibited in Atwood's machine, 

which will be referred to hereafter. 

XYIII. 

STIFFNESS OF CORDAGE. 

§ 229.—Let us now con¬ 

sider a wheel turning freely 

about an axle or trunnion, 

and having in its circum¬ 

ference a groove to receive 

a cord or rope. A weight 

IF, being suspended from 

one end of the rope while 

a force F is applied to the 

other extremity to draw it 

up, the latter will experience 

a resistance in consequence 

of the rigidity of the rope, 

Fig. 244. 

comparison of 

results; 

work of friction, 

when wheels 

same size and of 

same material; 

used in Atwood’s 

machine. 

Resistance from 

stiffness of 

cordage; 

¥ 
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measure of the 

rigidity of 

cordage; 

the value of 

this measure; 

stiffness on a 

wheel whose 

diameter is 

unity; 

stiffness on a 

wheel of any 

diameter; 

which opposes every effort to bend it around the wheel. 

This resistance must, of necessity, consume a portion of 

the work of the force F. 

The measure of the resist¬ 

ance due to the rigidity of 

cordage has been made the 

subject of experiment by 

Coulomb; and, according to 

him, it results that for the 

same cord and same wheel, 

this measure is composed of 

two parts, of which one re¬ 

mains constant, while the 

other varies with the weight 

W] and is directly propor¬ 

tional to it; so that, designa¬ 

ting the constant part by 

/f, and the ratio of the variable part to the weight W 

by /, the measure will be given by the expression 

K + I. W; 

in which K represents the stiffness arising from the natural 

torsion or tension of the threads, and / the stiffness of the 

same cord due to a tension resulting from one unit of 

weight; for, making W = 1, the above becomes 

K + I. 

Coulomb also found that on changing the wheel, the stiff¬ 

ness varied in the inverse ratio of its diameter; so that if 

K + I. W 

be the measure of the stiffness for a wheel of one foot 

diameter, then will 

K + I. W 

2 R 

be the measure when the wheel has a diameter of 2 R. A 

Fig. 244 
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table giving the values of K and I for all ropes and cords data from which 

employed in practice, when wound around a wheel of one 

foot diameter, and subjected to a tension arising from a measure ot 
• stilTucss * 

unit of weight, would, therefore, enable us to find the stiff¬ 

ness answering to any other wheel and weight whatever. 

But as it would be impossible to anticipate all the dif¬ 

ferent sizes of ropes used under the various circumstances of 

practice, Coulomb also ascertained the law which connects these data 

the stiffness with the diameter of the cross-section of the abndged; 

rope. To express this law in all cases, he found it neces¬ 

sary to distinguish 1st, new white rope, either dry or moist; 

2d, white ropes partly worn, either dry or moist; 3d, tarred different 

ropes ’ 4th, packthread. The stiffness of the first class he kindsofl°Pe> 

found nearly proportional to the square of the diameter of 

the cross-section; that of the second, to the square root of 

the cube of this diameter, nearly; that of the third, to the 

number of yarns in the rope; and that of the fourth, to the laws which 

the diameter of the cross-section. So that, if S denote the °° 

resistance due to the stiffness of any given rope; d the 

ratio of its diameter to that of the table; and n the ratio 

of the number of yarns in any tarred rope to that of the 

table, we shall have for 

New white rope, dry or moist. 

K + I. W 
S = d‘ 

2 B 
(127). 

that for new 

white rope; 

Half worn white rope, dry or moist. 

3 K + I. W 
(128). old white rope; 

S = n 

Tarred rope. 

K+I.W 
2 R 

(129). tarred rope; 

tS = d • 

Packthread. 

K + I.W 
2 R 

(ISO). packthread; 
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for new white 

ropes, dry; 

for new white 

ropes, moist; 

TABLES 

OF weights necessary to bend different ropes around a wheel 

ONE FOOT IN DIAMETER. 

No. 1. White Ropes—new and dry. 

Stiffness proportional to the square of the diameter. 

Diameter of rope 
in inches. 

Natural stiffness, 
or value of K. 

Stiffness for load of 
1 lb., or value of /. 

lbs. lbs. 

0.39 0.4024 0.0079877 

O.79 I.6097 o.o3i95oi 

I . 57 6.4389 0.1278019 

3.15 25.7553 0.5i12019 

No. 2. White RorES—new and moistened with 

WATER. 

Stiffness proportional to square of diameter. 

Diameter of rope 
in inches. 

Natural stiffness, 
or value of K. 

Stiffness for load of 
1 lb., or value of I. 

lbs. lbs. 

0.39 0.8048 O.OO79877 

O.79 3.2194 o.o3i95oi 

1.57 12.8772 0.1278019 

3. i5 51.5111 0.5i12019 

Squares of the ratios 
of diameter, or val¬ 

ues of d2. 

Ratios d. Squares 

d\ 
1.00 1.00 

1.10 1.21 

1 .20 1.44 
1.3o 1.69 

1.4o 1.96 

1,5o 2.25 
1.60 2.56 
1.70 2.89 

1.80 3.24 

1.90 3.6i 

2.00 4.oo 

No. 3. White Ropes—half worn and dry. 

Stiffness proportional to the square root of the cube 
of the diameter. 

old white ropes, 

dry; 

No. 4. White Ropes—half worn and moistened 

WITH WATER. 

Stiffness proportional to the square root of the cube 
of the diameter. 

old white lopes, 

moistened; 

Diameter of rope 
in inches. 

Natural stiffness, 
or value of K. 

Stiffness for load of 
1 lb., or value of I. 

lbs. lbs. 

0.39 0.8048 0.0079877 

0.79 2.2761 0.052.5889 
1.57 6.4324 0.0638794 
3. i5 18.2037 0.1806578 

Diameter of rope 
in inches. 

Natural stiffness, 
or value of K. 

Stiffness for load of 
1 lb., or value of I. 

lbs. lbs. 

0.39 0.40243 0.0079877 

0.79 I.i38oi 0.0525889 
1.57 3.21844 0.0638794 
3.15 9.ioi5o 0.1806573 

Square roots of the 
cubes of the ratios 
of diameters, or val- 

73 
ues ol d 2. 

Ratios or 

d. 
Power 'f 

or d 1. 

1.00 1.000 

1. IO 1.154 
1.20 1.315 
I .3o 1.482 

1 .4o 1.657 
i. 5o 1.837 

1.60 2.024 

1.70 2.217 

1.80 2.4i5 
1.90 2.619 

2.00 2.828 
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No. 5. Tarred Ropes. 

Stiffness proportional to the number of yarns. 

[These ropes are usually made of three strands twisted around each other, each 

strand being composed of a certain number of yarns, also twisted about each other 

in the same manner.] 

No. of yarns. 
Weight of 1 foot in 

length of rope. 
Natural stiffness, or 

value of K. 
Stiffness for load of 

1 lb., or value of /. 

lbs. lbs. lbs. 

6 0.021I O.I534 0.0085198 

i5 o.0497 O.7664 O.OI98796 

3o I .Ol37 2.A97 O.0411799 

For packthread, it will always be sufficient to use the 

tabular values given above, corresponding to the least 

tabular diameters, and substitute them in Eq. (130). An 

example or two will be sufficient to illustrate the use of 

these tables. 

Example 1st Required the resistance due to the stiff¬ 

ness of a new dry white rope, whose diameter is 1.18 

inches, when loaded with a weight of 882 pounds, and 

wound about a wheel 1.64 feet in diameter. 

Seek in Table No. 1 the diameter nearest that of the 

given rope ; it is 0.79 ; hence 

d = 079 = 1-5 nearly’ 
• r. 

and from the table at the side, 

d2 = 2.25. 

From Table No. 1, opposite 0.79, we find 

K = 1.6097, 

* 

I = 0.03195; 

which, together with the weight W = 882 lbs., and 
ft- . 

2 R — 1.64, substituted in Eq. (127), give 

for tarred ropes; 

examples to 

illustrate the use 

of Table No. 1; 

elements 

obtained from 

the tables; 
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result; 

example to 

illustrate Table 

No. 4; 

data from the 

table; 

result; 

S = 2.25 

lb. lb. 

1.6097 + 0.03195 x 882 

1.64 

lbs. 

40.817, 

which is the true resistance due to the stiffness of the rope 

in question. 

Example 2d. What is the resistance due to the stiffness 

of a white rope, half worn and moistened with water, 

having a diameter equal to 1.97 inches, wound about a 

wheel 0.82 of a foot in diameter, and loaded with a weight 

of 2205 pounds ? 

The tabular diameter in Table No. 4, next below 1.97, 

is 1.57, and hence ' 

d = = 1.3 nearly; 

the square root of the cube of which is, by the table at 

the side, 

= 1.482. 

In Table No. 4 we find, opposite 1.57, 

K = 6.4324, 

I = 0.06387; 

ft. 

which values, together with W = 2205 lbs., and 2 R = 0.82, 

in Eq. (128), give 

S = 1.482 X 

lbs. 

6.4324 + 
lb. 

0.06387 X 2205 

0.82 

lbs. 

266.109, 

which is the required resistance. 

Example 3d. What is the resistance due to the stiffness 

of a tarred rope of 22 yarns, when subjected to the action 
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of a weight equal to 4212 pounds, and wound about a example to 

wheel 1.3 feet diameter, the weight of one running foot of ^rateTabIe 

the rope being about 0.6 of a pound ? 

By referring to Table No 5, we find the tabular number 

of yarns next below 22 to be 15, and hence 

n 
22 
15 

1.466 nearly. 

In the same table, opposite W] we find 

K = 0.7664, 
data obtained 
from the table: 

I = 0.019879; 

which, together with W = 4212, and 2 H = 1.3, in Eq. 

(129), give 

S = 1.466 
0.7664 + 0.019879 X 4212 

1.3 

lbs. 

95.188. result; 

Example 4dh. Required the resistance due to the stiff¬ 

ness of a new white packthread, whose diameter is 0.196 example to 

inches, when moistened or wet with water, wound about a lllustrate the 

wheel 0.5 of a foot in diameter, and loaded with a weight packthread; 

of 275 pounds. 

The lowest tabular diameter is 0.39 of an inch, and 

hence 

d = 
0.196 

0.390 
= 0.5 nearly. 

In Table No. 2 we find, opposite 0.39, 

K = 08048, 
data from Table 

No. 2; 

I = 0.00798; 
as 
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result. 

Work due to 

stiffness of 

cordage; 

NATURAL PHILOSOPHY. 

which, with W — 275, and 2 R = 0.5, we find, after sub¬ 

stituting in Eq. (130), 

„ A _ 0.8048 + 0.00798 X 275 _ 0 
A = O.o-—~z-- — z.jjj. 

0.5 

§ 230.'—The resistance just found is expressed in 

pounds, and is the amount of weight which would he 

necessary to bend any . 

Fig. 245. 

m 

given rope around a ver¬ 

tical wheel, so that the 

portion A E, between 

the first point of con¬ 

tact A, and the point E, 

where the rope is attach¬ 

ed to the weight, shall 

be perfectly straight. 

The entire process of 

bending takes place at 

the bending takes this first or tangential 
place at the first pQjn^ . fQr if motion 

point of contact; 1 

be communicated to the 

wheel in the direction 

indicated by the arrow¬ 

head, the rope, supposed not to slide, will, at this point, 

take and retain the constant curvature of the wheel, till 

it passes from the latter on the side of the power F. 

When, therefore, by the motion of the wheel, the point m 

of the rope, now at the tangential point, passes to m', the 

working point of the force S will have described in its own 

path described by direction the distance A D. Denoting the arc described 

by a point at the unit’s distance from the centre of the 

wheel by sn and the radius of the wheel by R, we shall 

have 

the working 

point; 

AD = R 
i f 

and representing the quantity of work of the force S) 
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L, we get 

L = S. R Sj ,* 

replacing S by its value in Eqs. (127) to (130), 

L = Rsidl 
work of the 

stiffness; 

3 
in which. dJ represents the quantity <i2, d2) n, or e?, in Eqs. 

(127), (128), (129), or (130), according to the nature of the 

rope. 

Example. Taking the 2d example of § 229, and sup- examples; 

posing a portion of the rope, equal to 20 feet in length, 

to have been brought in contact with the wheel, after 

the motion begins, we shall have 

lbs. 

L = 20 X 266,109 - 5322.18; result; 

that is, the quantity of work consumed by the resistance 

due to the stiffness of the rope, while the latter is moving in words, 

over a distance of 20 feet, would be sufficient to raise a 

weight of 5322.18 pounds through a vertical height of 

one foot. 

XIX. 

WHEEL AND PULLEY. 

§ 231.—A plane wheel, 

free to turn about its 

trunnions or axle, support¬ 

ed in a fixed box, may 

be moved in either di¬ 

rection bv two forces F 

and Q, which act in its 

Fig. 246. 

Wheel ana 

pulley; 
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equilibrium of 

two forces acting 

upon the 

circumference of 

a wheel; 

the lorces must 

be equal; 

when friction is 

taken into the 

account; 

relation of work 

of power, 

resistance, and 

friction; 

relation of these 

forces 

Fig. 246. 
plane, and tangent to its 

circumference at A and B. 

These forces, acting in the 

same plane, perpendicular 

to the axle, and tending 

to turn the wheel in oppo¬ 

site directions, will be in 

equilibrio when the ele¬ 

mentary quantity of work 

developed by each is the same with contrary signs. But 

the points of application A and B: belonging to the same 

circumference, the paths which they simultaneously de¬ 

scribe will be equal; and since the product of these paths 

by the forces F and Q must be equal, it follows that when- 

ever the forces are in equilibrio, they must also be equal. 

This supposes the wheel free to turn, without obstruc¬ 

tion of any kind. But if we consider the friction at the 

trunnion or axle, then, supposing the equilibrium still to 

exist, but the wheel on the eve of motion in the direction 

of the force F, the elementary quantity of work of the 

latter must be equal to that of the resistance Q: increased 

by that of the friction; in which case F and Q will not be 

equal; and denoting the radius of the wheel by R, that 

of its trunnion or eye by r, and the resultant of F and Q 

by 2VJ we shall have 

FRs/ — QRsJ+fF.rsJ . . (132); 

in which f is the coefficient of friction at the axle or trun 

nion, and st the arc described by a point at the unit’s dis 

tance from the axis during motion. Dividing by R sv, we 

find 

F = Q + fN ■ ~ . . . . (133). 

From which we might conclude the value of F\ but that 

Nm unknown, being the resultant of i^and Q. 
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Now, two cases may arise, viz.: either the value of r 

may he very small in comparison with R, or it may not. 

In the first case, any error committed in the determination 

of F would but slightly affect the value of F\ since only 

T 
the small fractional portion of N is taken. We may, 

therefore, be content with an 

To obtain this, we first 

omit the consideration of 

friction, which will make 

f= 0, in the above equa¬ 

tion, which then reduces 

to 

F= Q. 

•s 

Denote by 9 the angle 

A MB, which the two 

forces F and Q make with 

each other; then, from the 

parallelogram of forces, 

will 

approximate value for F. 

Fig. 247. 

M 

F = V F2 + Q2 + 2 F Q . cos 9; 

and, because F and Q are, in this case, equal, 

but 

N = Q V 2 + 2 cos 9; 

2 + 2 cos 9 = 4 cos2 \ 9; 

N = Q x 2 cos i 9; 

two cases may 

arise; 

to find the 

resultant of the 

power and 

resistance; 

its value; 

or this; 

and finally this 

whence 
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value of resultant 
under a more 

convenient form; 

rule; 

quantity of work; 

value of the 

force; 

Inferences; 

but joining A and B by a right line, as also M and (7, we 
have the angle A M0, equal to \ <p, and 

cos J <p = sin M C A 
AD _ ADt 
AC ~ R ’ 

which, substituted above, gives 

AB 
R 1 

since 2 AD = A B. That is to saj, the resultant N is 

obtained by multiplying the resistance Q, by the chord of 

the arc between the tangential points, and dividing the 

product by the radius of the wheel. This value of N] 

substituted in Eqs. (132) and (133), gives 

FR, QRs, + /. rstQ 
AB 
R 

(134), 

f = Q+ f-iQx^-- (135); 

the first of which will 
give the quantity of work 
of the power, and the 

latter the relation of the 
power F to the resistance 
Q, necessary to produce 
an equilibrium. The first 
shows that the work of 
the power is equal to the 
work of the resistance, in¬ 
creased by that consumed 

by friction. 

We now come to the 
second case, viz.: that in 
which r is not very small 

Fig. 241 

M 

* 
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m comparison with R. And first we remark, that F is case in winch 

always greater than Q, and that the resultant obtained g!™™°n 1S not 30 

under the hypothesis of F being equal to Q, is, therefore, 

too small. Calling Nx this latter resultant, we have 

A B first 
Aj = Q * ——— . . . . (136); approximation to 

the resultant; 

and this value, substituted in Eq. (133) for Aj gives 

first 
• Aj — Fi . . (137). approximation to 

the power; 
F=Q + 1[.f 

Now if JSfi be too small, it is obvious that Fx will also be 

too small. But this value of Fx is greater than Q, and if 

we find the resultant of two forces each equal to Fu or 

make 

Tji A 7? second 
A = -A- - = Aij . . . (138); approximation to 

li resultant; 

it is obvious that Na will be too great, and so of the value 

F= Q + li ^ = F* 

second 
approximation to 
the power; 

Thus the true value of F is greater than and less than i 

A2, and as these two values will not differ much, we may 

take the true value of F to be an arithmetical mean 

between them, that is, 

or 

Fx + F2 
Q » 

mean of the 
approximations; 

value of the 
power; 
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final Aralue of 

power; 

quantity of 

work; 

conclusion. 

Pulley; 

description; 

and mode of 

applying the 
power; 

and eliminating and jV2, by means of Eqs. (136), (137), 

and (138), we find 

Q+fiQ 
AB 
It Tr] • • (139); 

and multiplying each member by Rsn 

FBs, = QRs, +frS,Q^- [l + \/A . . (140). 

The first will determine the condition of the equilibrium, 

and the second the quantity of work. 

§ 232.—The pulley is a small wheel having a groove 

in its circumference for the reception of a rope, at one 

end of which is attached the power F\ and at the other 

Fig. 248. 

the resistance Q. The pulley may turn either upon trun 

nions or about an axle, supported in what is called a 
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block. This is usually a solid piece of wood, through block; 

which is cut an opening large enough to receive the 

pulley, and allow it to turn freely between its cheeks. 

Sometimes the block is a simple framework of metal. 

When the block is stationary, the pulley is said to be fixed puiiey; 

fixed. The principle of this machine is obviously the 

same as that of a simple wheel, and to the discussion principle the 

of § 231 we have but to add the consideration of the same as lhat of 
° the wheel; 

stiffness of the rope, to have all the circumstances of 

its action. The quantity of work due to the stiffness of 

the rope is given by Eqs. (127) to (130) inclusive. 

Now, when the motion is uniform, or when the pulley 

is about to turn in the direction of the power F, the quan¬ 

tity of work of the latter must be equal to the work of 

the resistance §, increased by that of the friction and stiff¬ 

ness of the rope; and denoting the radius of the pulley 

by i?, that of the trunnion or eye of the pulley, as the 

case may be, by r, and the arc described at the unit’s dis¬ 

tance from the axis by sn we must have 

quantity of work 

of power; 

3 

in which dt denotes'either d2, d c?, or w, in Eqs. (12 7) to 

(130), according to the kind and condition of the rope; 

and JVJ the resultant of all forces except friction. 

Dividing by R sjy we obtain 

F = Q + dt 
value of the 

power; 

Make 

and the above becomes 
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different form of 

same; 

resultant of all 

the forces except 
friction; 

the most general 

value for the 

power; 

♦ 

the same in 

known terms; 

F = Q‘ + fTt ' N; 

and replacing N by its value 

VF* + Qf + 2 FQ, cos <p, 

in which <p denotes the angle A MB\ 
made by the branches of the rope 

not in contact with the pulley, and 

we get 
i 

F = Q, + fji V F» + Q? + 2 F Qt cos <p. 

Transposing Qn squaring and solving the equation with 

reference to F, and we have 

1 + (/ ~ ) cos <f> 

(141). 

V (1+ cos^) [2 — (/I)2(i_cos0)] 

Taking the upper of the double sign, because the motion 

takes place in the direction of F; replacing QJ by its value, ! 

and calling the angle A OB, enveloped by the rope, 6, in 

which case, 

cos 9 = — cos d, 

we finally obtain 

Fig. 249. 

M 

F= 
Q + <*, 2 R 

1 ~(/if) ■cosd 

(142.) 

+ / • ~ -\f (l — cos 0) [2 — (/ )2 (1 _j_ cos 0)-| 
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When the two branches of the 

rope are parallel, then will 

6 = 180° ; cos & = — 1; and the 

equation becomes, 

Fig. 250. 

F = 
+ ' 2 R ) 

1 + / — 
J R 

1 - f — 
J R 

value when the 

(143). branches of the 

rope are parallel; 

If the rope be perfectly flexible, and the friction be 

zero, then will K— 0, 1= 0, /= 0, and 

F= Q; 

that is, the power will always equal the resistance in the fixed 

pulley, when there is neither friction nor stiffness of cordage. 

To obtain the quantity of work, multiply both members 

of Eq. (142) by R and there will result 

FR st — 
QR*, + ld,(K+rQ)st 

1 ir)”0080 

< (144). 

+/-£-. V(\- cos 9) [2- (/ ) (1 + cos 0)] 

general value for 

the quantity of 

work of the 

power; 

In finding the value of JSr, the weight of the pulley 

was not considered, and for the reason that in practice 

it is usually small; the friction arising from its action weight of the 

may, therefore, in general, be neglected. Should it be negilctedT ^1^ 

desirable, however, in any case, to take it into account, 

it is easily done. Eor this purpose, find, by the paral¬ 

lelogram of forces, the resultant of the weight of the but it may be 

pulley and the force Q, both of which are known, and th<5 
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example for 

illustration; 

i. ’ 

conditions of the 

proposition; 

tabular elements; 

numerical values 

of the data; 

quantity of work; 

Fig. 251. 

NATUKAL PHILOSOPHY. 

employ tills resultant instead of Q in finding tlie value 

of id 

Example. Requi¬ 

red the quantity of 

work necessary to 

raise 500 pounds of 

coal, through, a ver¬ 

tical elevation of 50 

feet, by means of a 

rope passing over a 

fixed pulley, in such 

a position that the 

power F shall be ap¬ 

plied in a horizontal 

direction; the pul¬ 

ley, which is of lig- 

num-vitae, is 1.25 feet in diameter; the radius of its eye is 

0.05 feet; the axle of wrought iron, lubricated with hogs’ 

lard; the rope is white, half worn, and has a diameter of 

one inch. 

Here 6 = 90°, and cos 6 = 0; in Table IY. § 225, 

/= 0.11; Table No. 3, § 229, d, = d§ = 1 1 
3 

l 

0.79, 

(1.2)2 nearly = 1.315; 77= 1.13801; 7= 0.0525889; 

R = 0.625 ; r = 0.05 ; R sy = 0.625 X st = 50 ; whence 

50 r 
sj — - = 80 feet; Q = 500 lbs.; and / — = 0.0084. 

UiO^O 7l 

These data in Eq. (144) give 

FR s, = (500 x 50+ 1.315 _U3801 + °->0 >2 >:) X 000 80) (l + 0.0084 V2-(0.0084)2 :J 

or 

FRSj = 26250.17. 

If there were no friction, or stiffness of cordage, then 

would 
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FRs, = QRs, = 25000.0; value without 

friction and 

stiffness; 

whence 26250.17 — 25000 = 1250.17 is the loss due to 

stiffness of cordage and friction, which would be sufficient loss due to 

to raise 1250.17 pounds through 1 foot of altitude, or ^^s;and 

1250.17 

50 
= 25 pounds through the given height of 50 feet; 

a result well calculated to impress us with the necessity of 

including these resistances in all estimates of work. 

F = 
26250.17 

Rs, 

26250.17 *** , 
-= 525 nearly. 

50 J 

numerical value 

of the power. 

Fig. 252. 

§ 233.—Thus far the axis of the pulley is supposed 

to have remained immoveable. We shall now consider Moveable pulley; 

the case in which the pulley is supported upon a rope in 

its groove, one end of the rope being attached to a fixed 

hook A, while the other is acted upon by the force F. The description; 

pulley is embraced by a kind of iron or other metallic 

fork whose prongs are per¬ 

forated near the ends for the 

reception of the axle, and 

whose shank terminates in a 

hook to which the resist¬ 

ance W is attached. The 

pulley is, in this case, said 

to be moveable. Denote the 

resistance to be overcome 
* A * * * 

and put in motion, by W; 

the tension of the rope be¬ 

tween the fixed hook and 

tangential point H by Q; 

let the other notation be the 

same as in the case of the 

fixed pulley. 

The quantity of work of F must be equal to that of the 

notation; 
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tension Q, increased by tlie work due to the stiffness of j 

the rope and friction; that is, 

quantity of work; ft ft ^ _ Qft S/ _|_ ^ K +J9.ftSj + rf Ws, . . (145). 

Dividing both members by R s;, 

value of the 

power; F-« + d',I-h9 + iJw- 

The pulley being sup¬ 

posed either on the verge 

of rotary motion in the di¬ 

rection of Fj or rotating 

uniformly, it is obvious that 

W will be equal and di¬ 

rectly opposed to the result¬ 

ant of F and Q; and that 

Q will be equal and directly 

opposed to the resultant of 

to and the tension F and W. This latter re- 

flIldPend;the sultant being found by the 

parallelogram of forces, Eq. 

(31), and in its value that of 

F\ in last equation, substitu¬ 

ted for F,J the force Q will be¬ 

come known in terms of TTJ 

the friction, and stiffness of 

cordage; and this value of 

Q, being substituted in Eq. 

(145), will give the work in 

terms which are known. 

The method here indi- 

thesume cated is perfectly rigorous, 

approximation; ^Ut is Somewhat long, and 

may be avoided by resort- 

Fig. 252. 

Fig. 253. 
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ing to an approximation which in practice is sufficiently 

accurate. If F and Q be supposed for an instant equal, 

we have seen that 

R. IF 

AB ’ 
approximate 

value for tension 

which, substituted for Q in Eq. (145), gives 

FRs, = K+I. W. 

+ d, 

R 

AB 
Sj . . (146) ; quantity of work; 

+ T ,fW. Sj. 

dividing by R 

F=W- -^- + d 
AB^ ' 

K+ I-W- 
R 

2 R 

AB , vr 

-+fR 
W. . (147). 

value of the 

power; 

If we suppose the stiffness of the rope and friction zero, 

there will result, 

power, when 

stiffness and 

friction are zero; 

or 

F : W :: R : A B; 

F =W 
R 

AB1 

that is to say, the power is to the resistance as the radius of relation of power 

the pulley is to the chord of the arc enveloped by the rope. and resistance, 

Example. Let the pulley be of cast iron and turn example; 

upon a wrought-iron axle, greased with tallow; the di- 
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data from the 

tables; 

data of the 

example; 

numerical result; 

same with 

neither stiffness 
nor friction; 

work of stiffness 
and friction. 

ameter of the pulley 1.3 feet, and that of its eye 0.045 

feet; the diameter of the rope, which is new, white and 

dry, 1.4 inches; the weight W, 3462 pounds; the height 

40 feet, and let the chord A B be equal to the diameter 

of the pulley. 

By reference to the proper tables, we find 

/ = 0.07; d, = d1 = = (1-8)2 nearly = 3.24; 

K = 1.6097; 7= 0.0319501; 

and from the given data, 

R = 0.65; r = 0.0225; AB = 1.3; Rs, = 40; 

40 
st — -q ■ = 61.538 nearly; and W = 3462 ; 

which, substituted in Eq. (146), give 

FRst = 
+ 3.24 X 

3462 X X C1.538 

1.G097 + 0.031950 X 3462 X 
0.65 

L3 
•X 61.538 

+ 0.07 X 0.0225 X 3462 X 61.538 

71279.85: 

with neither friction nor stiffness of cordage, the quantity 

of work would be simply 

FRs, — 3462 
(0.65)2 

1.30 
61.538 = 69239.5; 

the difference 71279.35 - 69239.5 = 2039.85 is the loss 

due to the causes just named. 
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The muffle; 

definition and 

description; 

§ 234.—The Muffle is a 

collection of pulleys in two 

separate blocks or frames. 

One of 'these blocks is at¬ 

tached to a fixed point A, 

by which all of its pulleys 

become fixed, while the other 

block is attached to the re¬ 

sistance Q, and its pulleys 

thereby made moveable. A 

rope is attached at one end 

to a hook h at the extremity 

of the fixed block, and is 

passed around one of the 

moveable pulleys, then about 

one of the fixed pulleys, and 

so on, in order, till the rope 

is made to act upon each 

pulley of the combination. 

The power F is applied to 

the other end of the rope, 

and the pulleys are so pro¬ 

portioned that the parts of 

the rope between them, when 

stretched, are parallel. Now suppose the power F to p. 

communicate uniform motion to the resistance Q. Denote the pulleys; 

the tension of the rope between the hook of the fixed 

block and the point where it comes in contact with the 

first moveable pulley, by h ; the radius of this pulley by 

Hi, that of its eye by ry; the coefficient of friction on 

the axle by f; the constant and coefficient of the stiffness notation; 

of cordage by K and i, as before; then, denoting the ten¬ 

sion of the rope between the last point of contact with the 

first, moveable, and first point of contact with the first 

fixed pulley, by t2, the quantity of work of the tension t2 

will, Eq. (145), be 
26 

arrangement of 

the rope; 

application of the 

power and 
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work of the 

tension on first 

ascending 

branch; 

moment of this 

tension; 

moment of 

tension on second 

descending 

branch; 

moment of 

tension on second 

ascending 

branch; 

same on third 

descending 

branch 

components of 

the resistance; 

4 Rx s, = 4 A, s, + d, KRi s, + / (4 + 4) n ; 
2 A’, 

dividing by s, 

4-^i = 4 Ri + d/-+ 4) ri • • (148). , 

Again, denoting tlie tension of that part of the rope which 

passes from the first fixed to the second moveable pulley 

by 4; the radius of the first fixed pulley by A>, and that 

of its eye by r2, we shall, in like manner, have 

4 dd2 — 4 Ao + dj - ^ ji - A2 + /(4 + 4) r2 • • (149). 

And denoting the tensions, in order, by 4 and t5l this last- 

being equal to A, we shall have 

rr . y, 
4 ^4 = 4^4 + d/ —- • A3 + /(4 4* 4) r3 • • (150), 

FRt = 4 A + <*, ^2)/- A +/«. +F)ri. . (151); 

so that we finally arrive at the force A, through the ten¬ 

sions which are as yet unknown. The parts of the rope 

being parallel, and the resistance Q being supported by 

their tensions, the latter may obviously be regarded as 

equal in intensity to the components of Q; hence 

4 + 4 + 4 + 4= Q • • (152); 

which, with the preceding, gives us five equations for the 

determination of the four tensions tmd power A This 
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would involve a tedious process of elimination, which 

may be avoided by contenting ourselves with an approxi¬ 

mation which is found, in practice, to be sufficiently 

| accurate. 

If the friction and stiffness be supposed zero, for the method of 

moment, Eqs. (148) to (151) become approximation; 

II 4 -4q) 

4 -44 — 4 -44, 
II ■4
-0

 4 -^4) 

FR4 = 4 Ra ; 

friction ana 

stiffness zero; 

from which it is apparent, dividing out the radii Ru R2) the tensions 

iK3, &c., that 4 — 4) 4 — 4) 4 — 4) A=4; and hence, Eq. becomee(iual 

(152) becomes 

whence 

4 

resistance equal 

to tension on one 

branch multiplied 

by the number of 

pulleys; 

the denominator 4 being the whole number of pulleys, 

moveable and fixed. Had there been n pulleys, then 

would 

general value for 

the tension; 

With this approximate value of tx we resort to Eqs. (148) 

to (151), and find the values of t2) t3, tA, &c. Adding all 

these tensions together, we shall find their sum to be 

greater than and hence we infer each of them to be too 
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,1 ' . 

large. If we now suppose the true tensions to be propor¬ 

tional to those just found, and whose sum is > Q, we 

may find the true tension corresponding to any erroneous 

tension, as th by the following proportion, viz.: 

to find the true 

from the 

approximate 

tension; 

Qi ■ Q 11 : A 4; 

example to 

illustrate; 

or, which is the same thing, multiply each of the tensions 

Q 
found by the constant ratio -f-, the product will be the true 

Vi 
tensions, very nearly. The value of £4 thus found, substi¬ 

tuted in Eq. (151), will give that of F. 

Example. Let the radii Rh i?3, and i?4, be respectively 

0.26, 0.39, 0.52, 0.65 feet; the radii r4 = r2 = r3 = r4 of 

the eyes = 0.06 feet; the diameter of the rope, which is 

white and dry, 0.79 inches, of which the constant and 

coefficient of rigidity are, respectively, K = 1.6097 and 

I — 0.0319501; and suppose the pulley of brass, and its 

axle of wrought iron, of which the coefficient / = 0.09, 

and the resistance Q a weight of 2400 pounds. 

Without friction and stiffness of cordage, 

approximate 

value of first 

tension; 
4 - 244°° = 60(T 

1 ' t i 

Dividing Eq. (148) by Rh it becomes, since di = 1, 

4 -4 + V/1’+1f + «• 

Substituting the value of Rh and the above value of th 

and regarding in the last term t2 as equal to th which 

we may do, because of the small coefficient !) f we 
R\ 

find 
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600 

1.6097 + 0.0319501 x 600 
■ + 2 X (0.26) 

+ X 0.09 x (600 + 600) 

628.39. 

Again, dividing Eq. (149) by i?2, and substituting this 

value of 4 and that of i?2, we find 

lbs. 

4 = 673.59. 

Dividing Eq. (150) by A3, and substituting this value of 4, 

as well as that of i?3, there will result 

lbs. 

4 = 709.82; 

whence 

Qi — tiJrt2-\- 4 + t4 

and 

600 

-f 628.39 

+ 673.59 

+ 709.82 

y = 2611.80 

£ 
Qi 

2400 

2611.80 
0.919; 

which will give for the true values of 

4 - 0.919 X 600 = 551.400 

4 = 0.919 x 628.39 = 577.490 

4 = 0.919 X 673.59 = 619.029 

4 = 0.919 x 709.82 = 652.324 

approximate 

value of second 

tension; 

t. 

approximate 

value of third 

tension; 

approximate 

value of fourth 

tension; 

resultant of these 

tensions; 

ratio of the 

approximate to 

the true 

resultant; 

true tension; 

2400.243 
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The above value for q = 652.324, in Eq. (151), will give, 

after dividing by i?4 and substituting its numerical value, 

r 
652.324 

• 1.6097 + 0.03195 x 652.324 

+ 2 X 0.65 

+ 4^ X 0.09 X (652.324 + F); 
O.bo 

and making in the last factor F — 4 = 652.324, we find 

numerical value 

of the power; 

lbs. lbs. lbs. lbs. 

F = 652.324 + 17.270 + 10.831 = 680.425. 

work absorbed 

by friction and 

stiffness of 

cordage. 

Thus, without friction or stiffness of cordage, the intensity 

of F would be 600 lbs.; with both of these causes of 

resistance, which cannot be avoided in practice, it becomes 

680.425 lbs., making a difference of 80.425 lbs., or nearly 

one seventh; and as the quantity of work of the power is 

proportional to its intensity, we see that to overcome fric¬ 

tion and stiffness of rope, in the example before us, the 

motor must expend nearly a seventh more work than if 

these sources of resistance did not exist. 

Wheel and axle; 

description; 

and application 

of power and 

resistance; 

§ 235.— Wheel and Axle is a name given to a machine, 

which consists of a wheel mounted upon an arbor, supported 

at either end by a trunnion resting in a box. The plane 

of the wheel is at right angles to the axis of the arbor; 

the power F is applied to a rope wound around the 

wheel; the resistance Q is applied to another rope, wound 

in the opposite direction about the arbor, and also acts in 

a plane perpendicular to the axis of motion. The power 

is generally applied in the plane of the wheel, other¬ 

wise, being oblique to the axis, it would be necessary 

to resolve it into two components, one perpendicular 

and the other parallel to that line; the latter compo- 
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Fig. 255. 

effect of an 

oblique 

application 

of the power; 

process where 

power does not 

act in plane of 

wheel 

when the power 

acts in the plane 

of the wheel; 

nent would press the shoulder of the arbor against the 

face of the box, and increase the effect of friction by 

increasing its “lever arm.” It may happen, however, that 

the particular object to be accomplished will sometimes 

make it inconvenient to 

satisfy this condition of 

keeping the action of 

the power in the plane 

of the wheel, in which 

event, it will be easy to 

find the pressure arising 

from the parallel com¬ 

ponent of the power or 

resistance, and to com¬ 

pute the friction by 

the rules already given. 

Supposing the power 

and resistance to act in 

planes at right angles to 

the axis, we remark, that 

the plane of the wheel 

in which the power acts, 

and the plane perpen¬ 

dicular to the axis, through the direction of the resistance, 

will cut from the arbor equal circles. Through the point 

E, at which the rope is tangent to the circle in the latter of 

these planes, and the axis, conceive a plane to be passed ; 

it will cut the circle in the plane of the wheel on the 

opposite side of the arbor in Er, and the line joining E 

and E' will intersect the axis in I, making El E' 1. 

At the point E' apply two opposite forces Ql and Q2, construction; 

parallel and each equal to the resistance Q. These forces 

will produce no effect upon the system. The resultant of 

the two equal and parallel forces Q and Qx will be equal 

to their sum, will pass through /, will be resisted by the 

axis, and produce no work, except what may arise from 

the friction due to its action on the trunnion. The equi- 
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forces which 

maintain the 

equilibrium or 

motion uniform; 

pressure upon 

the trunnions; 

friction on the 

trunnions ancl its 

work; 

quantity of work ; 

friction of 

trunnions, same 

effect whe/ever 

applied; 

librium, if tlie machine be at rest, or its uniform motion, 

if at work, must, therefore, be maintained by the power F.J 

the force Q2l the friction, and the stiffness of cordage. To 

this end, the resultant of F) Q2, and stiffness of cordage 

must intersect the axis. At the point of intersection, 

conceive this resultant to be replaced by its primitive 

components, and there will then act upon the axis the 

forces F, Q2l Q -f Qh and the resistance due to stiffness of 

cordage. Each of these forces being resolved into two 

parallel components acting on the trunnions A and B, 

there will result two groups of forces, one applied to each 

trunnion. Denote the resultant of the group acting on 

the trunnion A by JiJ that of the group acting on the 

trunnion B by M\ then will the frictions be respectively 

f M and f M'; and, employing the usual notation, the 

quantities of work will be f Mr s{ and f M' r' -sn the radii 

of the trunnions, and their friction being unequal. 

The quantity of work of the power F\ must be equal 

to that of the resistance Q2, augmented by the work of the 

stiffness of cordage and friction, and hence, denoting the 

radius of the wheel by if, and that of the arbor by if', 

F-J2S = Q,H'- s. + d/^^All's.+fMrs.+f’H’r's,; 

but if the trunnions and boxes are supposed of the same 

size and material, 

FRs, = ft R' s' + d, F's, + f(M + M') r sr 

9 

The quantity M-f M\ being the sum of the pressures 

upon the trunnions, the last term shows that the friction is 

the same as though the resultant of all the forces were 

applied to a single trunnion in any arbitrary position, and, 

therefore, at the centre of the wheel. But this would re¬ 

duce all the forces to the same plane, in which case Q would 

take the place of Q2, and Qx and Q2 would disappear from 
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the system. Hence, denoting the resultant of the entire 

system of forces by iVJ and writing Q for its equal Q2, the 

above equation becomes 

Fils, = QR's, + d, It's, +fN• (153); 

and, dividing by ifs, 

T7I r\^r 7 I Q E' r -AT r M ~ i\ 
F= Q~ +d, —-77 • T{ • • (154). 

if 2 if' Zf 

Now, N being the resultant of all the forces of the system 

except friction, it is the resultant of F, Q, and dt ; 
f A it 

or, since Q and dt —act in the same direction, it is 

“I- IC) 
the resultant of F and Q + d, —^ fin(l ^ we 

pursue the method explained in § 232 

Make 

Q + d, = <2, . . (155); 

then wil. 

F = ft ^ + / • N ' i (166)- 

If we neglect the consideration of frictibn for a moment, 

and find the resultant 2VJ of F and Qh or of 

T) t 

Qi ~jr and Qu 

f-0 A ] V ; ; '/ * " ' ' .. • ■: 

we shall have, denoting the inclination of the power to the 

resistance by 9, 

/ Rn R’ / R' /R’ \ 
a2+ q^+2cos 9=a 1 ■+z (w+2 cos 9).. im; 

quantity of work; 

value of the 

power; 

find the resultant 

of all the forces 

but friction; 

by 
approximation, 

first 

approximation 

for resultant; 
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first 

approximation 

for power; 

the first 

approximation 

generally 

sufficient; 

when it is not, 

a second 

approximation 

must be made; 

geometrical 

indication; 

second 

approximation 

for resultant; 

second 

approximation to 

value of the 

power; 

and this for iVJ in Eq. (156), gives 

?=Q*+fN'=F,. (158). 

Now the value of was too small for N, because we 

r 
omitted the term fN- in the value for F; and, hence, 

is too small for F; but the deficiency is less and less, in 

r 
proportion as the fraction fj^ is smaller and smaller. In 

ordinary practice there will be but little difference between 

the true value of F and that given by Eq. (158). 

In cases wherein r is considerable in comparison with 

F, a further approximation will be necessary; and to ac- 

Rr 
complish this, we remark, that Fl is greater than Q1 , and 

n 
Qi therefore less than Fx and that if this latter be 

combined with Fh to 

obtain a second re¬ 

sultant JV2l this last 

will be too large, and 

when substituted in 

Eq. (156), for iVj will 

give a value F2 for 

F\ which will also be 

too large. The mean 

of the two values of 

F1 and F2 will be the 

practical value of F. 
The value of Ff2 is given by the equation, 

Fig. 256. 

K = Fi \A+ Jr + 2 cos 9). . (159); 

and 

F,= 0.4 +fN'; 
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wlience 

F 
_ Fl-\- F2 _ ~ Rf , r iAq 4- N2 
-2-Ti +fR 2 

mean of the 

. (160).two 
approximations: 

Tc find the quantity of work, multiply both members 

by Rs4 replace Qx by its value, and we have 

K+IQn, f\+n2 FRs4 = Q R' S4 -\-d4 ———- -- R ' S4 -\-fr • st-—-- . . (161). quantity of work; 
Z JX A 

Fig. 251. 

Examine. Required the quantity of work necessary to 

raise two tons of coal from the bottom to the top of a pit 

which is 80 feet deep, 

by means of the 

wheel and axle. The 

diameter of the wheel 

is 4 feet; that of 

the axle, 1 foot; 

that of the trunnion, 

which is of wrought 

iron, working in cast- 

iron boxes and lubri¬ 

cated with hogs’ lard, 

1.5 inches; that of 

the rope, which is 

white, half-worn, and 

dry, 1.5 inches; and 

the power acts in a 

horizontal direction. 

example to 

illustrate; 

Here R = 2 feet; R' = 0.5 feet; r = 0.125 feet; data of the 

question and 

: 2.619 ; tables; / = 0.07; dt = d = 
V0.79/ 

E = 1.13801; I = 0.0525889; 

80 

3 •> 
■ (1-9) 

Q = 4000 lbs.; 

R' s4 =80 feet; s4 

or cos <p = 0. 
0.5 

= 160 feet; and <p = 90°, 

These data, substituted in Eq. (155), give 
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value of first 

resultant; 

value of second 

resultant; 

value of power; 

lbs. lbs. 

1.13801 -f 0.0525889 X 4000 ,K„00ft 
Qx = 4000 -f 2.619 . -———-= 4553.89; 

and this, in Eq. (157), making cos 9 = 0, and substituting 

for its value — 0.25 feet, we find 

M = 4553.89 VT + (0.25)3 = 4694.04. 

R’ r . 
This and the values of Q„ jr, f, and in Eq. (158), give 

Fx = 4553.89 X 0.25 -f 0.07 X 4694.04 X 0.0625 = 1159.008 ; 

R 
which, substituted with the values of jp and cos 9 = 0, in 

Eq. (159), gives 

jsr2 = 1159.008 Vl + (4)2 = 4778.68 ; 

hence, 

'Ri + Rs2 
2 

4694.04 + 4778.68 

2 

lbs. 

= 4736.86; 

which, with the values already found for Qh in Eq. (160), 

gives 

F = 4553.89* X 0.25 + 0.07 X 
0.125 

2 

lbs. 

4736.36 = 1159.19. 

Here it may be proper to direct the attention to the slight 

difference between the values of F and Fh showing that the 

first approximation, as given by Eq. (158), will generally 

be sufficient. 
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Finally, from Eq. (161), we obtain 

- ; ’ V: " h'r’' ■. ! 7, oi mw 

lbs. ft. 

FRs, = 4000 x 80 + 44311.20 + 663.07 = 364974.27. quantity of work; 

The first term of tlie second member == 320000, is the 

value of the work without any resistance from friction and 

stiffness of cordage; the sum of the remaining terms 

= 44974.27, is the work of friction and stiffness of rope; 

Fence it appears, that the loss arising from the latter 

causes, is nearly one seventh of the work which, without 

them, would be required to accomplish the object. This 

loss would be sufficient, without the hinderance from fric- loss of work by 

tion and stiffness ot cordage, to raise more than a quarter gtiffnes9 f 

of a ton through the given height. cordage. 

If, in Eq. (154), we make / = 0, and disregard the 

stiffness of cordage, we find 

F = Q • . . . . (162); 

that is to say, in the wheel and axle, the power is to the 

resistance as the radius of the axle is to that of the icheel. 

§ 236.—Wheels are often so combined in machinery as combination of 

to transmit the motion impressed upon some one of them, wheels; 

according to certain conditions, determined by the object motion 

to be accomplished. This is usually done by one or other tra"smi“ed by 

of the following means, viz.: 1st. By endless ropes, hands, ropes, and 

or chains, passing around cylindrical rollers, called drums, chams’ 

mounted upon arbors; 2d. By the natural contact of these by natural 

drums ; 3d. By projections called teeth or leaves, accord- 3^teeth 

ing as these projections are upon the surfaces of wheels or 

arbors. The communication of motion by these means is 

always accompanied by friction, which it is important in 

practice to know, since it may not be disregarded. 
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§ 237.—When two 

Resistance due to wheels cire connected 
stiffness of bands ^ ^ otber by 

and ropes; J 

means of an endless 

band or rope d cb e, 

passing around the 

drums A and Z?, 

mounted upon the 

arbors of the wheels, 

a sufficient force ^ap¬ 

plied to one of them 

Fig. 258. 

friction between 

the bands and 

drum; 

motion due to 

difference of 

tension; 

will put it in motion; this motion will be communicated to 

the other as long as the friction between the band and drums 

is sufficient to prevent the former from sliding over the 

latter, and thus a resistance Q, applied to the second wheel, 

may be overcome. The motion of the drum B is ob¬ 

viously due to the difference of the tensions in the two 

branches d c and e b ; and applying the power as indicated 

in the figure, the tension of d c must be greater than that 

of e b. Denoting the first of these by T, and the latter by £, 

the force which moves the drum B will have an intensity 

equal to T — t; and the quantity of its work must be 

equal to that of Q, increased by the work of friction on 

the trunnions of the common arbor. Denote the radius 

of the drum B by Z?2; that of the wheel to which Q is 

applied by R"; that of its trunnion by r2; the arc de¬ 

scribed by the point at the unit’s distance from the axis of 

motion by s2, &c., then will 

work of 

difference of ( T— £) R2S2 — Q R" <S2 + fdSf2V2S2 . . (163). 

tension; 

The action of the force F produces the difference of ten¬ 

sion T — tj and its work must, therefore, be equal to that 

of T — t augmented by the work of friction on the trun¬ 

nions of the arbor of the wheel to which F is applied. 

Denote the radius of this wheel by R\ that of its drum 

by Rl} that of its trunnion by r1} the arc described at the 
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unit’s distance by sh and we have 

FR's1 — (T — t) Ris1 + f Nx. r1,?i . . (164). 

Adding these equations together, we get 

FR' + (T— t) R.a •„ = (T- 0 Rx sx + Q R" s2 + /iV2 r2 ,s2 + q q; 
% 

but because all parts of the band have the same velocity, 

the circumferences of the drums must move at the same 

rate; hence 

R% ^2 ~ -^1 s1 ? 

which will reduce the above equation to 

FR' sx — QR" s2' + / A2 r2 s2 + fJSfxrls1 . . (165). 

Whence we see that the work of F is equal to the work 
n 

of Q, increased by that of the friction upon the two sets of 

trunnions ; and the same may be shown of any number of 

wheels thus connected. 

In this equation, N~2 is the resultant of the forces Q, T\ 

and t; and of F1 rl\ and t. To find these resultants it 

will be necessary to know T and t. 

The difference T — t only exists while the system is in 

motion; when at rest, and the force does not act, this dif¬ 

ference is zero, or T is equal to t In passing from rest 

to motion, we may assume that one increases just as much 

as the other diminishes, and if the common tension at rest 

be represented by Th and the increment of the one and 

decrement of the other in passing from rest to motion 

be denoted by //, then will 

T= Tx + Tl; and t = Tx - II . . (166); 

work of tho 

power; 

circumferences oi 

the drum have 

the same 

velocity; 

work of the 

power; 

inferences; 

value of the 

tensions; 
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tension at rest 

arbitrary; 

should be just 

sufficient to 

prevent sliding; 

relation of the 

two tensions; 

difference of 

tensions; 

from which T and t may be found when rJ\ and II are 

known 

The tension Tx is entirely arbitrary. It should be as 

small as possible, to produce the requisite friction between 

the band and the drums to avoid sliding during the mo¬ 

tion, for if greater than this, it will only increase the 

pressure and, therefore, the friction on the trunnions, un¬ 

necessarily. In general, it will be sufficient if this friction 

be great enough to prevent sliding under the effect of Q, 

at the surface of the drum of the wheel to which Q is 

applied. But this effect, neglecting friction on the trun- 

R,r 
nions and stiffness of cordage, is Q -jj. That is to say, 

a force whose intensity is given by this expression, when 

applied to the surface of the drum, will produce the same 

effect as Q; and the friction between the drum and strap 

must be at least equal to this force to prevent sliding. 

The branches dc and eb of the band are solicited respect¬ 

ively by the two forces TlJr 11^ and T1 — II; and these 

substituted in Eq. (108), the first for F and the second foi 

W1 we find, 

fs 
Tx + H= (A - H) e*»; 

subtracting Tx — H from both members of this equation, 

and we have 

f£ 
Tx +ff-(T1-H) = (A - II) eR2 - (Tt - //); 

the first member reduces to 2II; that is to say, to the dif¬ 

ference of tensions on the two branches of the band, which 

must be equal to the effect of Q at the surface of the drum; 

whence 

2 H = Q.-~ . . . . (167), 
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H) V (168); 
same in terms of 

the friction,, &c.; 

tension at rest; 

from which two equations we may compute II and (7j, and 

therefore, Eq. (166), T and t; and, finally, the resultants 

N2 and Nx by the rules for the composition of forces. 

Example. Required the tension of a band necessary to 

produce friction enough to move a wheel, when subjected 

to a resistance of 1000 pounds, the radius of the wheel example; 

being 0.5 foot, and that of the drum 2 feet, and the arc of 

the drum enveloped by the band 180°. Let the band be 

of black leather, and the surface of the drum of oak. 

Here R2 — 2 feet; R" — 0.5 feet; Q = 1000 lbs.; 

f = 0.265, (see Table I, § 212;) S — * R2 = 3.1416 R2\ 

Q 
R tr 

II 

f) K lbs. 

1000 X = 250; 

H = * Q 
R” 
IL 

lbs. 

= 125; 
half difference of 

tensions; 

Tx — II — 
Q 

R” 
I! 250 

f£ 

(eR> - 1) 
(2.7l82818)°-‘205 X 3J41G _ 1* lesser tension 

The first term of the denominator may be easily found by 

the aid of logarithms, as follows: 

Log [(2.7182818)0-83251] = Log 2.718281 X 0.83251 

= 0.4342942 X 0.83251 

= 0.361554 nearly; 

the natural number of which is 2.2991, whence 

value found by 

the aid of 

logarithms; 

Tx - II = t 
250 250 

2.2991 - 1 

lbs. 

= 192.44. value; 

27 

1.2991 
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greater tension; 

to find the 

resultant; 

value of power; 

velocity of the 

circumferences 

equal; 

final value of 

power when the 

motion begins in 

its direction; 

Adding 211= 250 lbs., we have 

lbs. 

7\ + II = T = 442.44. 

The arc of the drum enveloped by the band being 180° 

the tensions T and l must be parallel, and their resultant 

T2 = T-\-1= 634.88 lbs., which being combined with Q = 
1000, according to the principles of the composition of 

forces, will give N& and with F will give Nh whence every 

thing required to determine the quantity of work in Eq. 

(165) is known. 

If Eq. (165) be divided by R'sn it becomes 

F= fj4+/'yA-r+/^4! R' sx E 

but 

Ra s2 — Risi) 

whence 

ii 
Sl 

A. 
It’ 

and by substituting above, 

F= Q 
R". Rx 
R'. R, +/■#* jy lb 

-— + /■• iv; • A- 
r2 j 1 w ’ 

which is the relation subsisting between F and Q, in case 

of an equilibrium bordering on motion in the direction of 

F: or in the direction of uniform motion. 

If we disregard the friction, then will 

R" . Ry 
R'. r; 

Without friction; 
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Fig. 259. 

When the motion from one wheel and mxle is communi- combination of 
. i i • n , i • -i • wheels and axles 

cated to a second machine ot the same kind, by passing without frictiorv. 

the band about the 

axle of the wheel 

to which the power 

F is applied, and 

the wheel of that 

to whe se axle Q is 

applied, then will 

ifj be the radius of 

the first axle, and 

IL that of the sec¬ 

ond wheel, and the 

preceding equation 

gives us this rule, 

viz.: 

When the friction is so small that it may he disregarded’, relation of power 

the power F will he to the resistance Q, as the product of the t0 the iesistance’ 

radii of the axles to that of the radii of the wheels, in the case 

of an equilibrium or uniform motion. 

Fig. 260. 

§ 238.—In the preceding discussion, no mention is made Rigidity of 

of the resistance arising from the stiffness of cordage. bands maj be 

When the connection or gearing is made by bands, these 

are so thin as to possess considerable flexibility, and their 

opposition to bending may, in practice, be safely neglected. 

If the connection 

be made by an end¬ 

less rope, the op¬ 

position to motion 

takes place at the 

points where the 

rope bends in pass¬ 

ing on to the drums, 

and not at all at 

the points where 

it leaves the latter 

rigidity of ropeft; 
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value of the 

resistance at one 

point; 

at another; 

at another; 

rigidity of chains; 

each link a 

trunnion in its 

box; 

and becomes straight. Thus at the point a, the resist¬ 

ance is 

, K + I.Q 
a, ■ 2 R„ , 

at the point b it is 

,7 If + It 

2 Ii.2 ’ 

and at the point d it is 

K + IT 

and, finally, at the points / and e it is nothing. These 

resistances must be included among those to be overcome 

by the power F. 

If the connection be made by an endless chain, each 

link, as it turns in the next one in order, may be regarded 

as a trunnion revolving in its box; and each, as it comes 

to be applied to the drum, revolves about the next one 

through an angle E'HE, equal to D CD', the angle 

through which the drum revolves to produce the contact; 

and taking the sum of all these angles, it is obvious that, 
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although, each link revolves through a very small angle, 

yet this sum must he equal to the angle through which the 

drum has turned to produce it. 

Denoting by r the radius of the inner circular arc in notation, &c.; 

which the end of each link is shaped, s2 the arc described 

by the point at the distance of unity from the axis of the 

drum B, / the coefficient of friction, and T and t the ten¬ 

sions on the two branches of the chain, then will the work 

of friction among the links at the points/ and b respec¬ 

tively, (figure before the last,) be 

fTrs2,, and ftrs2\ 

work of friction 

among the links, 

at one set of 

points; 

and denoting by sx the arc described by a point at the dis¬ 

tance of unity from the axis of the drum A, the work of 

friction at the points d and e will be, respectively, 

/ Tr Sj, and ftrs1\ the same for 

another set; 

and the whole amount of this kind of work will be 

fr (T + t) (sa + «,). whole work of 

this friction; 

Recollecting that the points on the surfaces of the drums 

must have the same velocity, viz.: that of the different 

links of the chain, we have 

velocity of 

circumference of 

drums equal; 

in which R2 and Rx are respectively the radii of the drums 

B and A. From this relation we find 

which, substituted above, gives 

. (169). 

value of the work 

of friction among 

the links; 



example; 

data; 

quantity of work 

of friction. 

Resistance from 

friction on the 

teeth of wheels; 

conditions of 

construction of 

the teeth; 

Example. Let T and t have the values of the last ex¬ 

ample, (that of the strap,) and suppose r = 0.03, the chain 

of wrought iron, for which we find in the table of § 225, 

(assuming that f is the same for trunnions of wrought iron 

in boxes of the same material, as for trunnions of wrought 

iron and boxes of cast iron,) / = 0.07; also let the radius 

of the drum B be four times that of the drum A ; then will 

the expression (169) for a single revolution of the drum B: 

in which case s2 = 2 X 3.1416 = 6.2832, become 

lbs. lbs. 

0.07 X 0.03 X 6.2832 (442.44 + 192.44) (1 + 4) = 41.88, 

that is, the work lost in consequence of the friction among 

the links of the chain, during one revolution of the drum 

of the wheel to which the resistance is applied, is sufficient 

to raise a weight of nearly 42 pounds through one foot of 

vertical height. 

§ 239.—Let us now suppose the circumferences of the 

wheels to be furnished with teeth, which interlock with 

each other, so that 

a force being im¬ 

pressed upon one Fig- 262. 

wheel, it cannot 

move without com¬ 

municating motion 

to the other. 

The teeth are 

usually curved, and 

so shaped as to 

have a common 

normal B1 JJ2, at 

their point of con¬ 

tact m, where the 

action of one and 

the reaction of the other take place; and although the 

point of contact alters its position, as the wheels rotate, 
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9,<\ % 

*4. 

..--Aw-:-—-A:,. 
* \ . z; 

7?/ 

-'-'77 

yet tlie place of Fig- 263. 

tliis normal does .«... 

not change, but re¬ 

mains stationary, 

and the point of \ 
i 

contact is always \ 

on it. We will not 

stop to explain the 

constructions by 

which this is ac¬ 

complished ; it will be sufficient for our present purpose 

to be assured of its practicability, and that we may pro¬ 

ceed on the supposition that it has been executed in the 

case under consideration. 

From the centres Cx and C2 of the wheels, let fall upon 

the normal Dx D2) the perpendiculars C\ l)l and C2 D2. 
The points Dx and D2 must, during the rotation of the 

wheels, have the same absolute velocity, and therefore the 

number of revolutions of the wheel whose centre is Cj, in 

a given time, must be to that of the wheel whose centre is 

C2, in the same time, inversely as the perpendiculars C\ Dh 
and C2 D2; or, because of the similar triangles Cx B Dx and 

C2B1)o, inversely as the distances CXB and C2B. The 

circles described about Cx and C2 as centres, with radii 

C\ B and C2 B) respectively, are called the primitive circles. 

These circles and their radii may be easily found from the 

consideration just named. It will be our object to find a 

force which, applied tangentially to these circles at J5, will 

produce the same effect as friction on the teeth. 

Denote by Q the resistance acting at a distance R 
from the axis of the wheel whose centre is C2. The effect 

of this resistance acting at D2, in the direction of the 

normal Dx B2l will, from the principles of the wheel and 

axle, be Qh given by the relation 

Qi — Q 
R 

Co Do 
. . . (169)'; 

conditions of 

preserving a 

constant normal 

at the point of 

contact; 

relative velocities 

of the two 

wheels; 

primitive circles; 

effect of the 

resistance at the 

distance of 

common normal; 
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and this Ql will be the pressure at the point m. Its fric 

tion will be 

value of the 

friction on the 

teeth; 
/ Qi, 

to obtain the 

quantity of work 

of this friction; 

Fig. 263. 

z; 
% 

c* ..'/■ % 

7ft 

acting in the direction qx q2: tangent to both teeth at their 

point of contact. The elementary quantity of work of 

this friction will be 

equal to its intensi¬ 

ty, multiplied into 

the elementary dis¬ 

tance by which the 

rubbing points now 

at m, separate in 

the direction of this 

tangent; which dis¬ 

tance is obviously 

equal to that by 
• • 

which the points 

ql and q2f the extremities of the perpendiculars let fall 

from Cx and C2 upon the common tangent, approach to or 

recede from each other. Denoting the elementary path 

described by a point at the unit’s distance from Cx by sh 
and that described at the same distance from C2 by s2j the 

paths described by ql and q2 will be, respectively, Cx qx X 

and C2 q2 X s2; and because the points qx and q2 must move 

in the same direction when the tangent q2 qx passes between 

the centres Cx and C2) the elementary path of friction will 

be equal to the difference of these paths, and its elemen¬ 

tary quantity of work will equal 

the value of this 

work; 
f Ql [^2^2 X 52 Cx qx X <Sj]. 

Designating the radii of the primitive circles whose cen¬ 

tres are Cx and C2 by Rx and i?2, respectively, we have, 

because of the equal velocities of the circumferences of 

these circles, 
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whence 

B1Sl = JR, 2 ,92 > 
relation of the 

paths at unit’s 

distance from the 

two centres; 

Moreover, drawing through the point B the line zh 
parallel to the tangent q2 qh and denoting the angle m B Ch 
which is the complement of the angle Cx B zl7 by <p, and 

the distance m B by h, we find 

C2q2 = B2 cos 9 + h, 

Cx qx = Bi cos (p — h; 

lever arms of the 

friction; 

these values of s27 C2 q2, and Cx qh substituted in the ex¬ 

pression for the elementary work of friction, give 

/«■ * *■ (-t+ 
work of friction; 

Denote by w the intensity of a force which, applied 

tangentially to the primitive circles at B, will produce the 

same effect as the friction. Its elementary work will be 

w Bi sl7 and hence 

" • A h = f Ql A *1 (5l_+_5?) ; 

or 

w = f Qxh Bi 4* Bo 
BXB^~ 

. (170). 

tangential force 

at the 

circumference of 

primitive circle; 

Represent the angle B Cxm by A. In practice, the 

angle m B Cx does not differ much from 90°, and we may 

take 

h = B1 tan & • 



another form for 

tangential force 

at primitive 

circumference; 

to find the mean 

value of the 

angular distance 

of point of 

contact; 

altitude of a mean 

triangle; 

and because 6 is generally very small, tlie tangent may be 

replaced by the arc, and 
/ 

h — Iix &; 

which, substituted above, gives 

- x ■ • (171> 

The value of 6 varies from a maximum to zero on one 

side of the line of the centres 01 C2l and from zero to a 

second maximum on the opposite side of this line; the 

first maximum corresponds to that position of m in which 

any two teeth come first in contact, and the second to that 

in which the contact ceases; the intermediate or zero value 

occurs when m is on the line of the centres. The quantity 

6 being thus variable, it must be replaced by a constant, 

and this constant must be a mean of all the values between 

the two maxima. Designating the first of these by and 

the second by lay 

off the distance AE 
= ; erect at A the 

perpendicular A G = 
; draw GE: then 

will the ordinates of 

this line which are 

parallel to AG repre¬ 

sent the different val¬ 

ues of 6, and the area 

of the triangle E A G will be the sum of all the values of 

& between and zero. Again, make EB = b2; erect at 

B the perpendicular BG'" = &2-, draw G’"E: the area 

of the triangle EBG"’ will be the sum of all values of 

6 between zero and 62. Make 

Fig. 2G4. 

o' A 

O' 
*V" *' 

\ \ ** • •* 

\ 

.<' \ * • 

A. E x Ji 

BO h2 + h2 

^1 + V 
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complete tlie rectangle B O', and draw A 0; then will tlie construction; 

triangle ABO be equivalent to the sum of the triangles 

AEG and EBG and therefore equivalent to the sum 

of all values of 6 between b and d2j the mean of which is 

obviously the middle ordinate. 

xy — \ B0 = 
b2 + b2 _ (h 4~ b)2 ~ 2 Vh 

2 (b + b) 2 (b + b) 
b 4* b b b 

2 b 4* b 

Neglecting the last term as insignificant, 

mean value of 

angular distance 

of point of 

contact; 

xy b + b 
2 

Multiplying by Bh we find that (b 4- b) is the interval 

between the place of the first and last point of contact of 

the same pair of teeth, estimated on the circumference of 

the primitive circle; denoting this interval by a, and sub¬ 

stituting in Eq. (171), we find 

w 
4- 7?2 a 

2 

tangential force 

at primitive 

circumference; 

Denote the number of teeth on the wheel whose centre is 

Gy by nh and the number on the wheel whose centre is C2 
by n2; then, because the teeth and intervals between them 

must be the same on each circumference, in order to work 

freely, 

2 Rx _ 2 * R2 

which, substituted above, gives 

distance from the 

place of first to 

that of last point 

of contact; 

W = /• Qy 4 + 1 
n2 =/■*■ Qi 

n2 4- nx 
nx n2 

Replacing Qt by its value given in Eq. (169)', and recollect- 
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final value of 

tangential force 

which is 

equivalent to 

friction; 

its quantity of 

work; 

example; 

data; 

work; 

result. 

The screw. 

ing that, within the limits supposed, C2 E2 becomes R2, we 

finally have 

w 
R (n2 + n-i n R fn2 H 

Q ‘ r2 \—h Tic 
. (172). 

To find the quantity of work, multiply both members of 

this equation by R2s2) which will give 

= f«s2QR ■ ”2 +—\ . . (173). 
7l2 Tli 

% 

Example. Required the work consumed in each revo¬ 

lution by friction on the teeth of a wheel whose arbor is 

subjected to a resistance equivalent to 1000 pounds, the 

number of teeth on the wheel being 64, and that of the 

connecting wheel being 192 ; let the teeth be of cast iron, 

and suppose the radius of the arbor equal to 0.8 foot. 

Here, R = 0.8; Q = 1000 lbs.; s2= 2 X 3.1416 ; * = 

3.1416; f= 0.152 ; n2 = 64; nx = 192 ; and, therefore, 

lbs. 64-1- 192 
w 722s2 = 0.152 X 3.1416 X 6.2832 X 1000 X 0.8 = 50; 

that is to say, the quantity of work consumed in one revo¬ 

lution by friction on the teeth, in the case supposed, is suf¬ 

ficient to raise 50 pounds through a vertical distance of one 

foot. 

XX. 

i 
THE SCREW. 

The Screw, regarded as a mechanical power, is a device 

by which the principles of the inclined plane are so 

applied as to produce considerable pressures with great 

steadiness and regularity of motion. 
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Fig. 265. 

mode of 

generating; 

§ 240.—To form a clear idea of tlie figure of the screw screw with 

audits mode of action, conceive a right cylinder ah, with S(*uaiemict’ 

circular base, and a rectangle abcm having one of its sides 

a b coincident with a surface element, while its plane passes 

through the axis of this cylinder. 

Next, suppose the plane of the rect¬ 

angle to rotate uniformly about 

the axis, and the rectangle itself 

to move also uniformly in the di¬ 

rection of that line; and let this 

twofold motion of rotation and of 

translation be so regulated, that in 

one entire revolution of the plane, 

the rectangle shall progress in the 

direction of the axis over a distance 

greater than the side ab, which 

is in the surface of the cylinder. 

The rectangle will thus generate a projecting and winding 

solid called a fillet, leaving between its turns a similarly the miet, channel, 

shaped groove called the channel. Each point as m in the and the hellx’ 

perimeter of the moving rectangle, will generate a curve 

called a helix, and it is obvious, from what has been said, 

that every helix will enjoy this property, viz.: any one of 

its points as m, being taken as an origin of reference, as 

well for the curve itself as for its projection on a plane 

through this point and at right angles to the axis, the dis¬ 

tances d! m', d" m", &c., of the several points of the helix 

from this plane, are respectively proportional to the circu- properties of a 

lar arcs md\ md", &c., into which the portions mm', mm", e 1X’ 

&c. of the helix, between the origin and these points, are 

projected. 

The solid cylinder about which the fillet is wound, is 

called the newel of the screw; the distance mm'", between newel; 

the consecutive turns of the same helix, estimated in the 

direction of the axis, is called the helical interval. The helical interval; 

surfaces of the fillet which are generated by the sides of 

the rectangle perpendicular to the axis, are each made up 
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relative position 

and inclinations 

of the different 

helices; 

Fig. 266. 

the nut 

fillet of the nut 

of a series of helices, all of which have the same interval, 

though the helices themselves are at different distances from 

the axis. The inclination of the different helices to the 

axis of the screw, increases, therefore, from the newel to 

the exterior surface of the fillet, the same helix preserving 

its inclination un¬ 

chan ged througho ut. 

The screw is re¬ 

ceived into a hole in 

a solid piece B of 

metal or wood, called 

a nut or burr. The 

surface of the hole 

through the nut is 

furnished with a wind¬ 

ing fillet of the same 

shape and size as the 

channel of the screw, 

which it occupies; 

Avhile the fillet of the 

latter fills up the 

channel of the nut, 

formed by the turns 

of its fillet, whose 

. inner surface is thus 

brought in contact 

with the newel. 

From this arrangement it is obvious that when the nut 

relative motion of is stationary, and a rotary motion is communicated to the 

screw and nut; screWj the latter will move in the direction of its axis ; also 

when the screw is stationary and the nut is turned, the nut 

must move in the direction of the length of the screw. In 

the first case, one entire revolution of the screw will carry it 

longitudinally through a distance equal to the helical inter¬ 

val, and any fractional portion of an entire revolution will 

carry it through a proportional distance; the same of the 

nut, when the latter is moveable and the screw stationary. 
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The resistance Q is applied either to the head of the screw, 

or to the nut, depending upon which is the moveable ele¬ 

ment ; in either case it acts in the direction DC of the 

axis. The power F is applied at the extremity of a bar application of the 

G H connected with the screw or nut, and acts in a plane resistance and 
1 -1 power; 

at right angles to the axis of the screw. Denote the per¬ 

pendicular distance of the line of direction of F from the 

axis of the screw by i?, and the helical interval by A; then 

will the quantity of work of the power F) in one revolu¬ 

tion, supposing it to retain the same distance from the axis, 

be 

work of the 

F x 2 * R j power in one 

revolution; 

and the quantity of work of the resistance will be 

Q X A. 
work of the 

resistance; 

The power F and resistance Q, both act to press the fillet 

of the screw and that of the nut together, the first acting 

at right angles to, and the latter in the direction of the 

axis. To find the work of friction thence arising, it will 

be necessary to find a force Fh parallel to F\ whose effect 

at the fillet is the same as that of F, acting at the distance 

11 from the axis, and to resolve both F1 and Q into two 

components, one normal and the other parallel to the 

common surface of the pressing fillets. But the surfaces 

being warped, the normals at their different points will be 

oblique to each other, and so inclined to the axis that the 

normal components of the resistance §, near the newel, 

will be less than those towards the outer surface of the interm«diak? 

fillet, while the reverse will be the case with the power Fv helix ’ 

The resolution must, therefore, be made with reference to a 

normal at a helix midway between the newel and outer sur¬ 

face. This helix, like all others, is situated upon the sur¬ 

face of a cylinder of which the axis coincides with that of 

the screw. Denote the radius ctf this cylinder C mlv by r 
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construction; 

projection of 

intermediate 

helix; 

development of 

the intermediate 

helix; 

resolution of the 

power and 

resistance into 

components; 

Conceive a tangent plane to this cylinder at any point, as 

m:v, and two cutting-planes normal to the axis, and at a 

Fig. 267. 

diagonal 

note the length of the 

Fig. 268. 

distance from each other equal to a helical interval, and 

equally distant from mlv. If we now develop the portion 

of the cylindrical surface, included between the cutting- 

planes, on the tan¬ 

gent plane, the sur¬ 

face of the cylinder 

will become a rectan¬ 

gle whose base A E 
is equal to 2 ^ r, and 

whose altitude EB is 

equal to h; and the 

helix will become the 

A B. De- 

x 

D 

X \ 
\ 

% 

helix A B by l. Then 

draw the normal mIV L, and resolve Q and F1 as before 

stated. Since Q = mlv K is perpendicular to A E' and 

Lm™ perpendicular to A B, the angles Lmxv K and EA B 
are equal; also, since F1 = ImIV is perpendicular to B E, 

the angles Imiy L and ABE are equal, and the triangles 

ABE, ImIV0, and L mlvK, being right angled, are similar, 

and give the proportions 

l : 2«r : : Q : L mIV, 

l : h : : F1 : mIV 0; 
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whence 

T iv 2 k r Q L mlv = ——", 
6 

n h . 
mlv = --—- ; 

L 

and tlie total pressure, which is equal to the sum of mlv 0 
and mIV L, becomes 

2 k r Q h Fx 
l l ’ 

and the friction 

^(2irr Q + hF,)_ 
J l ’ 

and since in one revolution the path described by this 

friction is the diagonal A B = Z, its quantity of work 

will be 

/(2 * r Q + h Fx); 

and because the work of the power F must equal the 

work of the resistance Q) increased by that of the friction, 

we have 

2 * R . F — Qli + f(2*rQ + F1h). 

But the effect of F and Fx being the same, their quantities 

of work must be equal, and hence 

2 at' BF — 2 r Fx] 

whence 

normal 

component of 

resistance; 

normal 

component of 

power; 

total normal 

pressure; 

friction; 

its quantity of 

work in one 

revolution; 

work of power 

equal that of 

resistance 

increased by 

work of friction; 

23 

F, = 
r 
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work of power; 

value of the 

power; 

work of power; 

work absorbed by 

friction; 

relation of power 

and resistance 

without friction; 

stated in words; 

which substituted in the preceding general equation, 

we get 

2 nRF = Qh +f(2*rQ + F ~h)\ 

i j V: N ,.v 

and finding the value of F\ 

hr + 2/V r2 

2 «Rr -flih ’ * * 
(174). 

Multiplying both members by 2 * R; then adding and. 

subtracting Qh, in the second member of this equation, 

we find 

7)2 i_ A <71-2 j»2 

2*Jt.F= Qh+fQ'A±±-L. . (175), 

in which the work absorbed by friction is given by the 

last term ; that is to say, by 

rn A2 + 4ir2r2 
/Q ■ 

If we neglect the consideration of friction, or make / = 0, 

we find, from Eq. (174), simply 

F Q x 
Jl 

YFTV 

that is, the power is to the resistance as the helical interval 

is to the circumference described by the extremity of the 

perpendicular, drawn from the axis to the direction of 

the power. From which it is obvious that the power of 

the screw may be increased, either by diminishing the 

distance between the thread or fillet, or bv increasing the 

distance of the power from the axis. 

If we examine the expression 
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/ Q 
h2 + 4 V2 T2 
2* r- fti 

Fig. 269. 

we shall find that the numerator of the fractional factor 

increases more rapidly than the denominator for any 

increment in the value of r, the radius of the mean helix. 

For this reason, r should be made as small as possible 

consistently with sufficient strength. 

Let b 0 be the radius of 

the interior helix, or that 

of the newel, and a 0 that 

of the exterior helix; it is 

usual to make the projection 

a />, of the fillet, equal to the 

thickness a d, measured in 

the direction of the axis; 

and for facility of execution, 

the dimensions of the chan¬ 

nel are made equal to those 

of the fillet, that is to say, 

c’bis made equal to ad; in 

which case, the helical in¬ 

terval a a' will be equal to 

2 ad — 2 ab, when there is 

but a single fillet. Should 

there be two fillets, which 

are often employed to increase the helical interval without 

changing the size of the newel, and therefore of r. then 

will the helical interval be 4 a b. Considerations affecting 

the union of sufficient strength with least friction, have 

suggested this general rule in regard to the dimensions of 

the fillet, viz.: make the projection ab equal to one third 

of the radius Ob of the newel, or 

a b l Ob. 

This will give 

Ob = Sab; 

435 

radius of 

intermediate 

helix should be 

small; 

proportion of the 

different parts of 

the screw; 

rule; 

radius of the 

newel; 
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radius of 
intermediate 

helix 

work of friction; 

its final value; 

example; 

result. 

Endless screw; 

and 

Ob + \ab = r = 3 ah + i®b = \ab; 

and because h — 2 ah, 

which substituted for r, in the expression for the friction, 

gives 

1 + *2.449 

> 

22 
and making « = — to which it is very nearly equal, the 

expression reduces to 

/ X Qh 
122 

11 ~f 

To apply this to a particular example, let the screw be 

made of wrought iron, and the nut of brass, and suppose 

an unguent of tallow, in which case / = 0.103, see Table 

III, § 212 ; hence the value of the friction becomes 

1.152 X Qh; 

which, substituted in Eq. (175), gives 

2kB.F = Qh + 1.152 Qh = 2.152 Qh; 

whence we see, that friction occasions a loss of work 

greater than the whole work performed by the resistance. 

§ 241.—The endless screw is employed to transmit a 

very slow motion, and, at the same time, to overcome con¬ 

siderable resistance. It is a short screw, with square fillet, 
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and so supported as to revolve freely about its axis, with 

no motion of translation. It 

of a crank. The fillet pass¬ 

es between teeth on the 

circumference of a wheel 

of which the axis is per¬ 

pendicular to that of the 

screw. The resistance Q 
is applied to the circum¬ 

ference of the arbor of the 

wheel. The rubbing faces 

of the teeth, instead of be¬ 

ing parallel to the axis of 

the wheel, are slightly in¬ 

clined to that line, so as 

to make them parallel to 

the surface of the fillet 

when the latter is brought 

is usually turned by means 

Fig. 270. 

i;.. n 

use and 

description; 

surface of teeU 

inclined to axis 

of motion; 

name: 

in contact with the teeth. 

A rotary motion being communicated to the screw, its fillet 

presses against the teeth of the wheel; and as the screw 

can have no longitudinal motion, the wheel must turn 

about its axis. As the teeth are withdrawn towards one operation and 

end of the screw, others are interposed towards the other ieasonfo1 the 

end, and thus an endless motion may be kept up; hence 

the name of the machine. 

A plane through the 

axis of the screw and per¬ 

pendicular to that of the 

wheel, will cut from the 

rubbing surfaces of the 

fillet and teeth a profile; 

and if we confine our¬ 

selves to what takes place 

in this plane during the 

motion, we shall find that 

the circumstances will be 

Fig. 271. 

section by a plane 

through the axis 

of the screw 
perpendicular to 

the axis of the 

wheel; 
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circumstances of 

action same as 

those of two 

wheels with 

teeth; 

quantity of work; 

value of the 

power; 

friction; 

the same as those of two 

wheels acting upon one 

another through the inter¬ 

vention of teeth; for, as 

the screw turns about its 

axis to bring different 

parts of the fillet in this 

cutting plane, the section 

ab will move in the direc¬ 

tion from A to L>, driving 

the section be of the tooth 

before it. 

Let Q/ be the force applied at b in the direction A B, 

which is tangent to the circumference whose centre is on 

the axis of the wheel, and whose radius is Gb = Bn and 

which will sustain the resistance Q in equilibrio: then de¬ 

noting by N the resultant of Qand §, by r the radius 

of the arbor, and by rt that of the trunnion, will 

Q, R,s, = Qrs, + fNr.s,; 

Fig. 271. 

in which s/ is the arc described at the unit’s distance from 

the axis of the wheel. 

Dividing by Risn 

Q> = Qi +fNii • • • (176> 

Find, by the process explained in §235, Eqs. (157) to (160), 

the value of Q{ and N. The pressure upon the tooth at b 

will thus be known, being equal to Qr This pressure pro¬ 

duces a friction upon the teeth of which the value is 

^ n + n' 
Q,-— t n n f Q, tTT 

wherein n denotes the number of teeth on the wheel whose 

centre is (7, and nr the number on the other. But the cir- 
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cumference of this latter wheel being a right line, is in¬ 

finite as well as the number of its teeth; hence 

and the foregoing becomes 

reciprocal of the 

number of teeth 

on section of 

screw; 

value of the 

friction • 

which must be added to QJ to obtain the force necessary 

to turn the wheel and to obtain the total pressure on the 

fillet of the screw. This sum, which is 

«,+/;• «, = «,( i+/0 
being substituted for Q in Eq. (175), will give 

total pressuro on 

the fillet; 

2 «RF = G(i+/£)*+/G(i+/£) 
+4 c2 r*2 

2 *r —fh ’ 

or 

2*RF — Q,( 1 + /-) F/t+ /• -f~+ . . (177). T"tilyo 
^'V n L J 2«r — fhA v ' 0fi)0wer; 

of work 

2 at r — /A. 

In the discussion of the screw, no reference has been 

made to the friction on the pivots and collars by which friction on pivots 

the screw is kept in position. It will always be easv to andcol,ars 

find this, in any particular case, by the rules for finding 

the friction upon pivots, sockets, and shoulders or rings, 

explained in § 223. 
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XXL 

THE LEVER. 

The lever; 

fulcrum; 

levers divided 

into different 

orders; 

first order; 

second; 

third; 

examples of 

different orders of 
levers. 

§ 242.—The Lever is a 

solid bar A B, of any form, 

supported by a fixed point 
0, about which it may freely 
turn, called the fulcrum. 

Sometimes it is supported 
upon trunnions, and fre¬ 
quently upon a knife-edge. 
Levers have been divided 
into three different classes, 

called orders. 
In levers of the first 

order, the power F and re¬ 
sistance Q are applied on 
opposite sides of the ful¬ 
crum 0; in levers of the 
second order, the resistance 
Q is applied to some point 

between the fulcrum 0 and 
point of application of the 
power F; and in the third 
order of levers, the power 
F is applied between the 
fulcrum 0 and point of 
application of the resist¬ 

ance Q. 
The common shears fur¬ 

nish an example of a pair 
of levers of the first order; 

the nut-crackers of the sec- 

Fig. 272. 
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ond; and fire-tongs 

of the third. In all 

orders, the conditions 

of equilibrium are the 

same. 

§ 243.—When the lever is supported upon a point, the Equilibrium of 

equilibrium requires that the resultant of the power and ^.^vte^em 

resistance shall pass through this point in order to be fulcrum is a 

destroyed by its reaction; to have a resultant, the power pomt’ 

and resistance must lie in the same plane, and as the re¬ 

sultant will also be in 

this plane, the power, 

resistance, and ful¬ 

crum, must be in the 

: same. If the result¬ 

ant pass through the 

fulcrum, its moment 

taken in reference 

thereto must be zero, 

which requires that 

the moment of the 

power shall be equal 

to that of the resist¬ 

ance. That is, when 

a lever A B is in equilibrio and solicited by the power F moment of power 

and resistance Q, 0 being the fulcrum, it we draw from resistance. 

this latter point Om and On, perpendicular respectively 

to the direction of the power and resistance, then will 

F X Om = Q X On. 

If the lever turn upon trunnions, then will the moment of when lever is 

the power F, be equal to that of the resistance increased ti3n°ions;°n 

by the moment of the friction on the trunnion. Designa¬ 

ting the radius of the latter by r, then will 

Fig. 2Y3. 

c 

power, resistance, 

and fulcrum in 

same plane; 



F X Om = Q X On + fN.r; moment of power 
equal to that of 

resistance, plus 

that of friction; in winch. N is the resultant of F and Q. 

Multiplying both members by sn we have 

work of the 

power. 
F X Om X st = Q X On x sJ + fNr. s{; 

that is to say, the quantity of work of the power F) must he 

equal to that of the resistance Q, increased by the quantity of 

work of the friction. 

use and § 244.—The lever is not intended to produce a con- 

teTeT-1^63 °f the tinuous rotation, but is usually employed to move a heavy 

burden or great resistance through a short distance during 

each separate effort of the power. 

It is not, therefore, always necessary to make it turn 

about trunnions which generally operate to disadvantage; 

since these, to afford 

sufficient resistance, 

must be large, which Fig. 274. 

increases the term 

fNr sn or the quan¬ 

tity of work absorbed 

by friction. If the 

lever be laid upon a 

simple knife-edge, r 

becomes zero, and the 

foregoing equation be¬ 

comes 

Q 
O p 

n § I 
.. 

1 

relation of power 

to resistance on 

an edge for a 

fulcrum ; 

F X Om X st — Q X On x sn 

making the quantity of work of the power equal to that 

of the resistance. The advantage of this machine, the 

usually the lever most simple of all, is, that it transmits without loss, the 

loss the power to wor^ °f the power to the resistance. But this is not all, 

resistance; a simple change in the point of support or fulcrum, which 
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may be made at pleasure, gives the means of establishing 

any desired relation between the power and resistance. 

If, for example, the point of support 0 is placed so that 

the distance On is one thousandth part of 0m) then will 

F 
1000 5 

whence we see that with a very small power we may hold to effect a given 

in equilibrio an enormous resistance; but as the quantity purpose,a 
x I i. j diminution of 

of work of the resistance must equal that of the power, power increases 

the path described by the point of application of the latter ltspath; 

must increase in the same proportion. 

To give an idea of the time necessary to raise a heavy 

burden through a moderate height with the lever, suppose 

the weight to be raised is 2000000 pounds, and that it is 

to be elevated five feet. The quantity of work will be 

2000000 lbs. X 5 ft. = 10000000 lbs. Supposing a man to 

act by his weight = 150 lbs. at the end of a lever, he would example to 

have to describe a path equal in length to 
10000000 

“150 

illustrate this; 

66666 feet, nearly. If in each second of time he move the 

point of the lever at which he applies his weight, through 

66666 
a distance of 0.2 ft., he will require ——— = 333333 

u.z 
seconds nearly, = 92.6 hours nearly, = 9.26 days, suppo¬ 

sing the man to labor 10 hours a day: in fact a man left 

to his individual efforts would never accomplish such a 

task. 

This example shows us that the lever is only useful for practical use of 

momentary efforts, and when the burden, being considera- lnelc'or‘ 

ble, is to be moved through a very small distance. 
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XXII. 

ATWOODS MACHINE. 

Atwood’s 

machine; 

objects of the 

machine; 

Fig. 215. 

ir 

§245.—We sliall terminate this branch of our subject 

with a discussion of an instrument whose object is an ex¬ 

perimental verification of the laws of constant forces. This 

instrument is the invention of Atwood, an English philoso¬ 

pher, and bears his name. Before proceeding to describe 

it, let us first find the circumstances of motion under the 

general case of which the machine in question is but a 

particular instance. For this purpose, let AB and A D be 

two inclined planes 

having a common 

altitude A E; II 

and H\ two wheels 

of different diame- 

the general case terS mounted Upon 

of which this . ■i n 
the same arbor, to 

which they are 

firmly attached, 

and of which the 

axis is supported 

upon trunnions par¬ 

allel to the com¬ 

mon intersection of 

the two planes ; W 

and W two weights supported upon the inclined planes 

by means of cords c and c' wound, the first about the 

one body ascends wheel II and the second about the wheel the cords be- 

descends ;°ther parallel to the inclined planes. Xow if the weight 

W be made sufficiently heavy, it will overcome all 

opposition to motion and slide down the plane A B, while 

machine is a 

particular 

example; 



Fig. 276. tlie weight IF' must 
from its connection 

move up the plane 

A D. It is required 

to find the circum¬ 

stances of motion. 

Denote the angle 

which the planes 

A B and A D make 

respectively with the vertical A E) by 9 and 9'; the radius 

of the wheel H by B, that of H' by B\ and that of the 

trunnion by r. The pressure of IF upon the plane A B 

we have seen, is 

to investigate the 

circumstances of 

motion; 

W sin 9 • 

that of IF' on the plane AD is 

IF' . sin 9' 

components of 

the weights 

normal to the 

planes; 

and the friction on the planes A B and A D will be, re¬ 

spectively, 

/ IF. sin 9, and /IF' sin 9'. 
friction due to 

these pressures; 

The stiffness of the cord c', which alone opposes the mo¬ 

tion since the cord c unwinds, is, § 229, 

stiffness of cord 

which winds; 

in which d, represents d2, n, or d in Eqs. (127) to (130), 

inclusive, according to the cord or rope used, and (Q) 

the tension of the cord c'. This latter is equal to the 

component of IF' parallel to the plane AD= IF'cos9', 

increased by the friction due to its normal component 

K+ J.(0. 
' 2 R’ 
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= /IF sin 9'; that is to say, 

tension of the 

cord that winds; (Q) = TF cos 9' +/ IF sin 9' = TF (cos o' + / sin 9'); 

which, substituted in the expression above, for the stiffness 

of the cord c', gives 

its stiffness; d. 
K 4- I. IF (cos 9' + /. sin 9') 

2~R' 

At the instant motion be¬ 

gins, let the centres of grav¬ 

ity of W and IF be at G' 

and Gn respectively, and in 

any subsequent instant at 

G" and Gu; denote the dis¬ 

tance G'G" by cc, and G{Gti 

by x\ then will x and x' be 

the paths described by the 

centres of gravity parallel to the planes in the interval; 

and 

length of paths in 

direction of X COS 9, and x' COS 9', 

weights; 

will be the corresponding distances in the direction of the 

weights. 

The quantity of work performed by W will be 

quantity of work; IkX COS 9, 

and that performed by TF in the same time, 

quantity of work; — IF x' COS 9', 

and the total quantity of work of both will be 

Fig. 276. 

A 

total quantity; IFX COS 9 — TF X* COS 9'. 
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The quantity of work absorbed by friction on the plane 

A B is 

/. IF. x sin 9, 

and that absorbed by friction on the plane A D is 

/. W' xf sin 9', 

and the total quantity absorbed by friction will be, sup¬ 

posing the unit of friction the same on both planes, 

f(Wx sin 9 + W x' sin 9'). 

The quantity of work absorbed by the stiffness of the cord 

c' will be 

j K + I. W (cos 9' -f f sin 9') , 

a‘ Yli’ ' *' 

The work consumed by friction on the trunnions will be 

f'N.r . Sj; 

in which N is the resultant of the tensions of the cords c 

and cin other words, is the diagonal of a parallelogram, 
« 

of which the contiguous sides have 

IF cos 9 — / IF sin 9, and IF' cos 9' + /IF'sin 9', 

for their values, and 9 + 9' for their inclination to each 

other. Sj is the arc described at the unit’s distance from 

the axis. 

The work absorbed by the inertia of the wheels and 

arbor, or, which is the same thing, half the living force of 

work absorbed by 

friction on one 

plane; 

that on the other; 

work absorbed by 

all the frictions; 

work absorbed by 

stiffness of cord; 

work absorbed by 

friction on 

trunnions; 

components of 

the pressure on 

trunnions; 
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work absorbed 

by the inertia of 

wheels and 

arbor; 

living force of 

one body; 

that of the other; 

quantity of action 

in the two 

bodies; 

work of the 

weights equal to 

the living forces 

of moving parts 

and the work of 

friction and 

stiffness; 

the wheels and arbor will, be 

JVL = 
2 2g ’ 

in which Yx is the angular velocity, and I the moment of 

inertia. 

Denote by Vthe velocity of the body whose weight is 

Wj and by V' that of the body whose weight is W*; the 

living force of the first will be 

wv2 

and that of the second, 

W V'2 _• 

and the quantity of action in the two bodies, will be 

W V2 + IF' V'2 

The quantity of work of the weights produces the 

living force of the bodies, that of the wheels and arbor, 

as well as the work of friction and that of the stiffness of 

cordage; hence 

r w v2 + W' V'2 

2 9 

Wx cos (p — W x' cos <y = 

4- / (Wx sin (j> -p \Vr xr sin <pr) 

, 7 , K 4- IW' (cos 0'4- fsin $') 
4- Cl, X----- 

4-f'Nrs, + 
V2 h . . (178). 

The variables in this equation, for the same inclination of 

the planes, are V) F', Ft, cc, x', and s/; but these, by the 
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nature of the system, are connected by the following rela- 

tions, viz.: 

F : V' : : R \ Rr V' = 
VR' 

R 
■ • (179), 

x : nr? • • to • « R : R! xr = 
x R' 

R 
. . (180), 

1 : R :: : x = 
X 

R 
• • (181), 

R : F : : 1 : Vi ■■■ Vi = 
F 

R 
. . (182). 

These values of F', x\ and sbeing substituted in 

Eq. (178), will give 

Rr 
IFXC03(j)  IF' X — COS (p' 

A'2 
IFF2 -f IF' V2 -jp- 

2 g 

R' 
-f- / ( Wx sin <p -f- IF' x — sin <p') 

Rr K -f- /IF' (cos 0' -f- /* uin <p) 
+ d,x~---- 

x V2 L 

and solving this equation with respect to F2, 

V2=x 2 g 
R'2 /, w+w-1F+rj-~1 

. 

R' 
IF. cos p — IF' • — • cos <pr 

it 

R' 
■ /(IF*sin<p -f- IF- — • sin <p') 

7 R' K4-1. IF', (cos +/sin <p) 
’ tty * “3— • - 

' R 2 R' 

The coefficient of x containing no variable, we find 

that the space described by the body on the plane A B, 
29 

i elation between 

the angular 

velocities and 

npace3; 

equation (178) In 

different terms; 

value for the 

square of the 

velocity; 
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varies as the square of its velocity. lienee the motion is, 

motion uniformly § 68, Eq. (8), uniformly varied; and the coefficient of x is 

twice the velocity which the force producing this motion 

is capable of generating in a unit of time. Making 

varied; 

value of the 

velocity 

generated 

in a unit of time: 

A = 
.7 

w+ W'w + *f‘ 

Rr 
IF. cos (p — IF' • — • cos <p' 

JL1/ 

•/(IF sin (f> -j- IF' ~ • sin </»') 
JL l* 

. R' K+ /. IF', (cos F + f sin ft') 

drR-- - 

.(182)' 

the foregoing equation may be written 

s<ia,“rcorihe V2 = x.2A . . . . (18S). 
velocity; ' 

Since the motion is uniformly varied, if T denote the time 

of describing the space .r, then will Eq. (7) become 

space described ; x = \AT2 . 

writing A for vh and x for S: substituting this for x 

above, we find 

v2 = a2 r2, 

or 

value of velocity; V — AT.(185). 

Eqs. (183), (184), and (185), give the laws of uni- 

iaws of uniformly formly varied motion, or, as it is usually expressed, the 

varied motion; iaws of constant forces. These laws are, 1st. The velocities 

are to each other as the times in which the force produces them; 

2d. The spaces described, are to each other as the squares of 

the velocities acquired in describing them; or as the squares of 

the times in which they are described. 
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Any device that will 

make the time in which the 

motion takes place com¬ 

paratively great, while the 

velocity acquired shall be 

small, will enable us to 

verify these laws from ob- m ^ A 

servation. For this pur¬ 

pose, A must be small. By 

reference to Eq. (182)', we 

find that A may be dimin¬ 

ished at pleasure b}^ increas¬ 

ing the angle 9, or decreasing 

9'; this will increase the 

effect of friction, which op¬ 

poses, while it will diminish 

the component of IF, which 

aids the motion. Or A may 

be diminished, by diminish¬ 

ing the angles 9 and 9', 

the difference between the 

weights IF and IF' and that 

between R and R’. Owing 

to the uncertainty of friction 

it is better to accomplish the 

object by the latter method, 

and this Atwood has done. 

Ilis machine consists es¬ 

sentially of a fixed pulley 

II, over which passes a cord 

having attached to each ex¬ 

tremity a basin s, for the 

reception of weights; a ver¬ 

tical graduated scale r of 

equal parts, say inches, to 

measure spaces; and a pen¬ 

dulum clock h which beats 

Fig. 277. 
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Fig. 211. 
seconds, to mark tlie time. 

The basins are short cylin¬ 

ders of brass, having a wire 

e coincident with tire axis 

and projecting some three 

or four inches beyond the 

upper bases; the cord is at¬ 

tached to the ends of these 

wires. The weights are either 

circular plates m, or bars n, 

of greater or less thickness, 

depending upon the purpose 

for which they are employed. 

Both are perforated at the 

centre, and a channel is cut 

from the hole to the margin 

to permit the cord/to enter, 

that the weights may be 

dropped upon the basins. 

The scale piece r is pro¬ 

vided with three sliding 

stages, two of which a and 

a' are rings, and the third c 

is plane. The rings, whose 

diameters are less than the 

length of the bar-weights, 

serve to take the latter from 

a descending, or to add them 

to an ascending basin. The 

office of the plane stage, is 

to arrest the motion of a 

descending basin. 

A fourth and revolving 

stage o, connected by an arm 

d with an arbor 7c, in front, 

is used to support the basin 
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bearing tlie greater load opposite the zero point of the device for 

scale. The arbor is also connected by means of a second ^djust*ng the 
J basin to the z 

arm with the escapement-wlieel of the clock. This stage of scale; 

may be thrown from under the basin when the seconds’ 

hand reaches a particular point on the dial plate; thus 

causing the motion to begin at a particular instant, and 

from the zero of the scale. 

If we examine the value of A, we shall find that for 

Atwood’s machine, cp and <p' are both zero, and therefore 

sin 9 = 0; sin <p' = 0 ; cos 9 = 1; 

moreover R is equal to Rand hence 

COS cp' 
reduction of 

general equation 

to the case of 

Atwood’s 

machine; 

R!_ 

R 
1. 

The cord is very fine, and usually made of raw silk but 

slightly twisted, so that the term involving the stiffness of omissions; 

cordage has no appreciable value, and may be neglected. 
% 

The arbor of the pulley or wheel rests upon circumferences 

of four other wheels of large radii compared with the radii 

of their trunnions, after the manner explained in § 228, so 

that the term involving the friction on the trunnions may 

also be neglected without appreciable error. 

Making the foregoing substitutions and omissions in the o o o 

value for A, we find 

W — W' 

W + W' 4- g 
r 
R2 

corresponding 

value of the 

general 

coefficient; 

The circumference of the wheel has the same velocity 

as the points of the cord, and therefore the same as the 

basins. Designate by M’\ the mass which if concentrated 

in the circumference of the wheel would have a moment 
\ 
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moment of inertia 

of the wheel; 

velocity 

generated in 

unit of time; 

space; 

velocity; 

experimental 

determination of 

the weight TV"; 

of inertia equal to that of the wheel, then 

M" R3 = I; 

whence 

M" = 
I 
1$; 

and tliis, substituted above, gives 

A — g 
17 - 17' 

17 + W + g M 
Tr = g9' 

17 - 17' 

17 + 17' + 17 
m 

in which 17" denotes the weight of the mass M". 

This value of A, substituted in Eqs. (184) and (185), 

gives 

x 
17 - 17' 

17 + 17' + 17 // i a T°-. . (186), 

w - w 
W + ~W + W" 

(187). 

Before proceeding to verify the laws expressed by these 

equations, it ay ill be necessary to determine the constant 

weight 17". For this purpose load the machine by placing 

the same number of circular weights in each basin; then 

add a bar-weight to the basin, which moves in front of the 

scale. The basins being of the same weight, the difference 

17— 17' will be the weight of the bar; the sum 17+ 17', 

will be the sum of the weights of the basins, increased by 

that of the circular weights added, and that of the bar, all 

of which are known. Now place the basin Avliich carries 

the bar at the zero of the scale, by means of the revolving 

stage; set the clock in motion, and, supposing the bar to 

commence its descent at a particular beat of the clock, 

t 
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note whether the bar is taken off by the upper ring stage, 

coincidently with any subsequent beat of the clock; if it 

is, then the distance of the ring below the zero of the scale 

being substituted for x, and the number of seconds elapsed the experiment 

from the beginning of motion till the bar is removed, be- iepeal^dtl11 
a o * coincidence of 

ing substituted for I7 in Eq. (186), will enable us to find TV", clock beat with 

since all the other quantities in that equation are known. jgXtafned;<U 

If the removal of the bar and the beat of the clock be not 

coincident, the ring stage must be shifted, and the experi¬ 

ment repeated till the coincidence is obtained. 

Example. Let each basin weigh 11 units, and suppose 

14 units of weight to be placed in each basin, and a bar example; 

weighing 1 unit to be added to the basin in front of the 

scale, then will 

TV - TV' = 1, data; 

TV + TV = 51; 

making <j — 32 feet = 384 inches; \<j — 192 inches. Sub¬ 

stituting these values in Eq. (186), we find 

x 
1 

51 + TV" 
•192 X T2; 

corresponding 

value of space, 

whence 

TV" 
192 

X 
value of W”. 

Now supposing the bar to be removed at the end of the 

third second, and that we find x, or the space described by 

the bar to be 27 inches, then will 

TV" = 
192 

27 
X (3)2 - 51 = 64 - 51 = 13; numerical value 

of TV"; 

that is to say, the moment of inertia of the wheel will have 
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conclusion; 

space for the 

particular 

machine; 

velocity in the 

same; 

experimental 

verification; 

times; 

spaces: 

velocities; 

verification; 

the same effect to resist motion as tlie inertia of thirteen 

nnits of weight placed in the basins. 

Substituting this value for W" in Eqs. (186) and (187), 

they become 

x 
W — W 

W + W + 13 
iff T2- • (188), 

V = 
W - W' 

W + W + 13 
gT. . . (189); 

and, loading the machine as before, 

x = i X 192 X T2 = 3 T\ 

7 = f4 X 384 X T = 6 T. 

Making T equal to 

1, 2, 3, 4, &c. seconds; 

the corresponding spaces will be 

3, 12, 27, 48, &c. inches; 

and the corresponding velocities, 

6, 12, 18, 24, &c. inches. 

Place the basin with the bar-weight at the zero of the 

scale, and connect with the clock; adjust the ring so as 

to remove the bar when its basin reaches the 3 inch 

mark, and place the plane stage at the 9 inch mark 

= 3 + 6. The clock being put in motion, the bar will 

strike the ring at the first beat of the clock after it begins 

to descend, and its basin will strike the plane stage at the 

second beat. The bar being removed, there will be no 
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excess of weight in either basin, and the motion will be- motion uniform 

•n ,i r • „ -i after the bar is 
come uniform, there being no reason why it should be , 

accelerated rather than retarded. To show that the motion 

will be uniform, repeat the experiment, placing the plane 

stage first at 1 foot 8 inches, then at 1 foot 9, then at • 

2 feet 8 inches, and so on, adding 6 inches each time, 

and it will be found that the basin will be arrested at the its proof; 

third, fourth, fifth, &c., beats of the clock after its motion 

begins; thus showing that the spaces described are pro¬ 

portional to the times, which is the characteristic of uni¬ 

form motion. Next adjust the ring so as to remove the 

bar when its basin reaches the 12 inch or 1 foot mark, and 

place the plane stage at the 2 feet mark, it will be repetition of the 

found that the bar will strike the ring at the second beatexpenment; 

after its motion begins, and that the scale will be arrested 

at the third beat. That the motion is uniform after the 

removal of the bar may be shown, as before, by repeating 

the experiment, and adding 12 inches each time to the 

space to be described after the bar is arrested. In the 

same way all the other results may be verified. 

If a bar-weight be placed upon the second ring, and the illustration of 

latter be so adjusted that the ascending basin shall take ietauled motlon 

it up at the moment the bar on the descending basin is 

removed, the motion will become retarded, and we shall 

have the case of a body projected vertically upward from 

rest with a velocity equal to that of the basins. The 

plane stage being placed at a distance below the ring 

which takes off the descending bar, equal to that through 

which the latter has descended, it will be found that the an the laws 

basin will just reach this stage at the instant the motion ^efauofhelly 

is destroyed by the action of the ascending bar. All the bodies may be 

laws which regulate the fall of heavy bodies may be machine^thi3 

verified by means of Atwood’s instrument. 
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Impact of bodies; 

direct impact; 

direct and central 

impact; 

direct and 

eccentric impact; 

oblique impact; 

XXIII. 

IMPACT OF BODIES. 

§ 246.—'When a body in motion comes into collision 

with another, either at rest or in motion, an impact is 

said to arise. 

We have seen, § 204, that the action and reaction 

which take place between two bodies, when pressed to¬ 

gether, are exerted along the same right line, perpendicu¬ 

lar to the surfaces of both, at their common point of 

contact. 

When the motions of the centres of gravity of the two 

bodies are qmrallel to this normal before collision, the im¬ 

pact is said to be direct. 

When this normal passes through the centres of grav¬ 

ity of two bodies which come 

into collision, and the mo¬ 

tions of these centres are 

along that line, the impact is 

said to be direct and central. 

When the motion of the 

centre of gravity of one of 

the bodies is along the com¬ 

mon normal, and the normal 

does not pass through the 

centre of gravity of the oth¬ 

er, the impact is said to be 

direct and eccentric. 

When the path described 

by the centre of gravity of 

one of the bodies, makes an 

angle with this normal, the 

impact is said to be oblique. 
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Bodies resist, by their inertia, all effort to change 

either the quantity or the direction of their motion. 

When, therefore, two bodies come into collision, each will 

experience a pressure from the reaction of the other; and 

as all bodies are more or less compressible, this pressure 

will produce a change in the figure of both; the change 

of figure will increase till the instant the bodies cease to 

approach each other, when it will have attained its 

maximum, and the bodies will have the same velocity. 

The molecular spring of each will now act to restore the 

former figures, the bodies will repel each other, and finally^ 

separate. 

In the impact of bodies, three periods must therefore 

be distinguished, viz.: 1st., that occupied by the process 

of compression; 2d., that during which the greatest com¬ 

pression exists, and in which it is obvious the bodies have 

the same velocity; 8d., that occupied by the process, as 

far as it extends, of restoring the figures. We are also 

carefully to distinguish the force of restitution from the force 

of distortion; the latter denoting the reciprocal action ex¬ 

erted between the bodies in the first, and the former that 

exerted in the third period. 

The greater or less capacity of the molecular springs 

of a body to restore to it the figure of which it has been 

deprived by the application of some extraneous force 

when the latter ceases to act, is called its elasticity. 

The ratio of the force of distortion to the force of resti¬ 

tution, is the measure of a body’s elasticity. This ratio is 

sometimes called the coefficient of elasticity. When these 

two forces are equal, the ratio is unity, and the body is 

said to be perfectly elastic ; when the ratio is zero, the body 

is said to be non-elastic. There are no bodies that satisfy 

these extreme conditions, all being more or less elastic, 

but none perfectly so. 

circumstances of 

figure during the 

collision; 

three periods of 

the impact; 

force of 

restitution and of 

distortion; 

elasticity defined; 

coefficient of 

elasticity; 

perfect elasticity; 

non elastic. 

§ 247.—Suppose two bodies A and B to move in the 

same direction, the body A to overtake B, and the impact 
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Direct impact of 

two bodies; 

notation; 

equality of action 

and reaction; 

gam and loss of 

motion equal; 

to be direct. The forces of distortion and of restitution, 

arising as they do from the reciprocal action of the bodies 

npon each other, are real pressures, measurable in pounds, 

and are capable of generating in each body, in a given 

time, a certain quantity of motion. Denote the intensity 

of this force, at any instant of the impact, by F; the 

small velocity lost by 

the body J., in the 

short time during Fig. 281. 

in the same time, by 

the action of the same 

force, by v'; also denote the mass of A by M, and that of 

B by Mr; then will F, which may be called indifferently 

the action of one body or the reaction of the other, be 

measured by Mv, or IF v'; and, because of the equality 

of action and reaction, 

Mv = i/V. 

That is to say, the quantity of motion lost or gained by one 

of the bodies, in any small time, is equal to that gained' 

or lost by the other; and if we take the sum of all the- 

quantities of motion lost or gained by each of the bodies,. 

we shall have the whole quantity of motion gained or lost! 

by the one, equal to that gained or lost by the other., 

Denoting the entire gain or loss of velocity of the body Ai 

by Vn that of the body B by Vjn we shall have 

M Vj = W F„. 

But the force F acts in opposite directions upon the two 

bodies, and hence, if we give the positive sign to the 

velocity generated in one body, that of the other must be 
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negative; tliat is, if VJ be counted positive, Vit must be 

negative, which will make 
forces producing 

these act in 

opposite 

directions; 

or 

If Vt + M' V„ = 0. 

That is to say, the algebraic sum, or the whole quantity of quantity of 

motion of the 

system constant. 
motion lost and gained will be zero ; and in every stage of the 

impact the quantity of motion in the entire system will, there¬ 

fore, be the same as before the impact began. 

§ 248.—At the instant the bodies have ceased to ap- to find the 

proach each other, they will have attained their greatest ^nent^f 

compression, and, considering their condition before the greatest 

... . . . „ . . . compression; 
retrocession begins under the action ot the molecular 

springs, it is obvious that they may be regarded as a single 

body, having a common velocity. Denote this velocity by 

U; also denote the velocity of the body A, before the 

impact, by V; that of the body B, before the impact, by 

V'j the masses being If and IT as before. The whole 

quantity of motion before the impact will be 

MV + M' V', 

and that at the instant of greatest compression will be 

(if -f- If) TJ. But these, by the last article, must be 

equal, or 

(if + If) U = MV + M' V';' 

whence 

the value of this 

velocity • 

That is to say, when two bodies moving in the same 
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expressed in 

word?; 

direction have a direct impact, the common velocity, at the 

instant of greatest compression, is equal to the sum of the quam 

tides of motion before the impact, divided by the sum of the 

masses. 

If the bodies moved in opposite directions, either V or 

V' would be negative, say V'} and 

value when 

bodies move in 

opposite 

directions. 

]fV — IF V' 
U= \r i, . . . (191). 

M + IF v J 

§ 249.—The velocity lost by the body A, up to the 

instant of greatest compression, is obviously equal to 

V — Uj 

Velocity gained 

up to greatest 

compression; 

and that gained by the body B is equal to 

U - V'; 

the force of distortion will, therefore, be measured by 

force of 

distortion; 

M(V- U), 

or by 

M'(U- V'). 

Denote by Vt the velocity which A loses by the force 

of restitution; and by Vjn that which B gains by the 

action of the same force; the force of restitution will be 

measured by 

force of 

restitution; M ¥, or W Yu; I 

r ' 

and if e denote the coefficient of elasticity, then, from the 
definition 

coefficient of 
elasticity; M Vt ! 

M{V - U) ~ e’ j 
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M' F„ 

M'(U — V) 

whence 

V, = e(V - TJ) . . . (192), 

F„ = e{TJ — V') . . . (193). 

That is to say, the velocity which A loses by the force of 

restitution, is equal to the coefficient of elasticity, into the 

velocity which it lost by the force of distortion; and the velocity 

gamed by B by the same force, is equal to that which it gained 

by the force of distortion, into the coefficient of elasticity. 

The total loss of velocity which A will experience by 

the impact will be 

V — U + e(V - TJ)- 

; * 

and the entire gain of B will be 

U - V' + e (U — V'). 

Denote by v the velocity retained by A, and by v' that 

which B has after the impact; then, since the velocity 

retained by A, must be equal to that which it had before 

the impact, diminished by its loss, 

v = V- V + U - e(V- U) = (l + e) U - eV; 

and as B must, after the impact, have its primitive 

velocity increased by its gain, 

v' =V'+ U -V'+ e{U-V’) = (1 + e) U - e7'; 

and substituting for U its value in Eq. (190), we have 

n , .MV+M'V' T/r 
v = (1 + e)——■ — e V. . (191), 

M + M' 

403 

coefficient of 

elasticity; 

velocities lost 

and gainfcu, 

the same 

expressed in 

words; 

loss of velocity of 

the impinging 

body* 

gain of the other; 

velocity of the 

impinging body 

after the impact * 
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velocity of the 

other after the 

impact; 

in words; 

when the bodies 

meet. 

When one of the 

bodies is at rest: 
/ 

coefficient of 

elasticity; 

its value when 

the masses are 

equal; 

V 
n , XMV+M'V' 

(1 + e) —mTT eV'. . (195). 

Thus, the velocity of either body after impact, is equal to the 

coefficient of elasticity increased by unity, multiplied into the 

common velocity at the instant of greatest compression, and 

this product diminished by the product of the coefficient of 

elasticity into the velocity of the body before impact. 

If tlie body B move to meet the body Af its velocity 

will be negative, and the above reduce to 

, M V — M' V' 
v = (l+e) - eV . . (196), 

, n , , MV-M’ V , 
* = (1 + e)' M + jr— + eV ■ ■ (197)- 

§ 250.—If the body B be at rest when the body A 

impinges against it, then will V' be zero, and 

v = (1 + e) 
MV 

M + M 
T/~eV. . (198), 

?/ = (1 -f e) 
MV 

M+M' * 

From the last equation we find 

MV-1 • 

. (199). 

. . (200); 

and when the masses of the bodies are equal, or M = M\ 

2 v' . 
e y 1 • • . . (201); 

which suggests a very easy method of finding the co¬ 

efficient of elasticity of any solid body. For this purpose, 
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Fig. 282. 

turn a pair of spherical balls of the same weight from the experimental 

body whose coefficient of elasticity is to be found; suspend 

them by silken strings, so that when the latter are vertical elasticity; 

the balls shall just touch each other, be upon the same 

level, and have their centres opposite the zeros of two cir¬ 

cular graduated arcs whose 

centres of curvature are at 

the points of suspension. 

The body A being drawn 

back to any given degree 

upon its scale and abandon¬ 

ed, will descend and impinge 

against the body B with a 

velocity due to a height 

equal to the versed sine of 

the arc which it describes 

before the impact; the body 

B will ascend on the oppo¬ 

site arc to a height due to the velocity with which it 

leaves A; this height will be the versed sine of the arc 

described by B before it begins to descend again. The 

arcs being known, their versed sines are easily computed 

from the properties of the circles. Denoting these versed 

sines by h and A', then will 

description of 
instrument, and 
mode of using it; 

V = V 2 g h, 

v' = V 2 ghr; 

which, substituted in the value of e, gives 

velocity of 
impinging bod} 
and that of the 
body struck; 

. . (202). coefficient of 
elasticity; 

Example. Two ivory balls of equal weights, and there¬ 

fore of equal masses, were made to collide in the manner 
30 
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example of two 

ivory balls; 

height of fall of 

the colliding 

body; 

height due to the 

velocity of the 

body struck; 

numerical value 

of the coefficient; 

example of the 

collision of ivory 

balls; 

I 

above described. One descended through an arc of 20 

decrees, and the other ascended through an arc of 18 

degrees and 30 minutes; required the value of e. 

By tables of natural sines and cosines, we find 

nat. cos 20° — 0.9396926; I 

versed sin 20° = 1 — 0.9396926 = 0.0603074; 

and denoting the radius of the circular scale by R, we 

have 

h = 0.0603074 E. \ 

■ , •• 

Again, 

nat. cos 18° 30' = 0.9483236; 

versed sin 18° 30' = 1 — 0.9483236 = 0.0516764; 

h’ = 0.0516764 R; 

and 

v? 0516764. A 

0.0603074.A 
— 1 = 2 V 

'0.0516764 
0.0603074 

0.85138; 

whence we conclude that the coefficient of elasticity of 

the specimen of ivory employed, is about 0.85; that of 

glass will be found to be about 0.93, and that of steel 

about 0.56. 

Example. Two ivory balls, whose masses are repre¬ 

sented by 6 and 4, move in the same direction with 

velocities of 10 and 7 feet a second respectively. What 

is the velocity of each after impact ? The conditions j 

of the question require that the larger mass 6 shall over-j’j 

take the smaller mass 4, because the former has the greater 

velocity. Hence 
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M = 6; 7 = 10; 
e = 0.85. given data* 

J/'= 4; F'= 7; 

These data, in Eqs. (194) and (195), give 
A... i-i: I MJU v* . !. ■ / ff 

60 T 28 a v in Fgo v = 1.8o ——- — 0.8o X 10 = 7./8, 
velocities alter 

impact; 

f .. o- 60 4* 28 n /-r .aqo F = 1.8o-— _ o.8o x 7 = 10.33. 

Example. Let the same balls move in opposite direo another example 

tions so as to meet, each with the same velocity as before. 

The same data, substituted in Eqs. (196) and (197), give 

cr> _ oq ft. 
v = 1.85 — - 0.85 X 10 = - 2.58, 

fif) — 98 /«. 
v' = 1.85 — -jg-+ 0.85 x 7 = 11.87. 

§ 251.—Now suppose the bodies A and B to move, oblique impact 

the first with a velocity V in the direction from E towards 

Fj and the second with a 

velocity V' in the direction 

from Q towards D; and let 

the collision take place at H. 
Through the point //, draw 

the common normal IIN, 
and resolve each of the ve¬ 

locities V and V' into two 

components, one in the di¬ 

rection of the normal and 

the other in the direction of 

the tangent plane at H. For 

this purpose designate the an¬ 

gle F ON by cp, and D Ot N 

Fig. 283. 
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normal 

velocities; 

tangential 

velocities 

components of 

velocity in 

direction of the 

normal after 

impact; 

tangential 

components of 

velocity after the 

impact; 

by 9'; the components in the direction of the normal, 

will be 

V cos 9, and V' cos 9'; 

and those parallel to the tangent plane, will be 

V sin cp, and Vr sin 9'. 

If the bodies were animated by these last velocities 

alone, they would not collide, but would in general move 

by one another without exerting any pressure; and hence ’ 

the impact will be wholly due to the components in the ; 

direction of the normal; but these acting along the same 

line perpendicular to the surfaces at their common point 

of contact, will give rise to a direct impact, and denoting 

the velocities of the bodies A and B after impact by v and 

v\ and the angles which their directions make with the 

normal by & and respectively, we shall have, from Eqs. 

(194) and (195), 

cos 0 = (1 -J- c) 
M V cos <p -{- M' V' cos cp' 

M -f M' 
e V cos cp. . . (203), 

v' cos Qr = (1 -J- e) 
M V cos <p -(- M' V' cos <p' 

M + M' — e V' cos <pf. . (204). 

Moreover, because the effects of the impact arising from 

the components of the velocities in the direction of the 

normal will be wholly in that direction, the components 

of the velocities of each body before and after the impact 

at right angles to the normal, will be the same, and hence 
v' ! / % 

v sin 6 = V sin 9 . . . (205), 

i 
v' sin 6' = V' sin 9' . . . (206). 

^ 7 U 

Squaring Eqs. (203) and (205), adding, extracting th( 1 

1 
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square root, and reducing by tbe relation, 

cos2 6 -f- sin2 4 = 1, 

we find 

velocity of the 
/r ~M Fcos (/> 4- M' V' .cos <br __ -,a , . . . , . 

V = y [ (1 + e)-—-e Fcos </>] + V* sin2 </>.. (2071; impinging body 

and treating Eqs. (204) and (206) in the same way, 

after the impact; 

velocity of the . f~c~- . v M Fcos 0 + M' V’ cos d)' ,-i2. t r „ , , 
[(1 -{- e)-Yr i iT77-eV'coS(p J -f- F,2sm*0'.. (208). body struck after 

M + M’ 

Again, dividing Eq. (205) by Eq. (203), we have 

the impact; 

tan & 
V sin <p 

(1 + e) 
M Vcos <p q-if' V' cos 9' 

ir+~3f' 

direction of the 

-. . (209) J first body’s 

e Fcos 9 motion; 

and, dividing Eq. (206) by (204), 

tan 6r= 
V' sin 9' 

(1 + c) 
M Vcos <p + M' V’ cos 9' 

jT-m/7 
—eV' cos 9' 

that of the 

* (210)* second ; 

The Eqs. (207) and (208) will make known the velocities, 

and (209) and (210) will give the directions in which the 

bodies will move, after the impact. 

Now suppose the body B at rest, and its mass so great suppose one body 

that the mass of A is insignificant in comparison, then 

will V' be zero, M' may be written for if + if', and 

very large and at 

if 

M 
7 will be a fraction so small that all the terms into reductions; 

which it enters as a factor may be neglected. Applying 

these considerations to Eq. (207), we find 

v = V V e2 cos2 9 + sin2 9 ; 

velocity of the 

impinging body * 
after impact; 
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direction of the 

impinging body’s 

motion after 

impact; 

graphical 

illustration of this 

rfesult; 

body will not 

rebound when 

non-elastic; 

in perfectly 

elastic bodies the 

angle of 

incidence equal 

to angle of 

reflection; 

and to Eq. (209), 

tan 6 
tan <p 

e 
(211). 

The tangent of 6 being negative, shows that the angle 

NHKJ which the direction 

of A's motion makes with 

the normal NN' after the 

impact, is greater than 90 

degrees; in other words, 

that the body A is driven 

back or reflected from B. 
This explains why it is that 

a cannon-ball, stone, or oth¬ 

er body thrown obliquely 

against the surface of the 

Fig. 2S4. 

earth, will rebound several 

times before it comes to rest. 

If the bodies be non-elastic, or, which is the same thing, 

if e be zero, the tangent of 6 becomes infinite; that is to 

say, the body A will move along the tangent plane, or if 

the body B were reduced at the place of impact to a smooth 

plane, the body A would move along this plane. 

If the body were perfectly elastic, or if e were equal to 

unity, which expresses this condition, then would Eq. 

(211) become 

tan 6 = — tan 9 . . . . (212); 

which means that the angle NHF= Ell’N' becomes equal 

to KIIJV'. The angle EHN' is called the angle of inci- 

dence, the angle KHN\ commonly, the angle of reflection. 

Whence we see, that when a perfectly elastic body is 

thrown against a smooth, hard, and fixed plane, the angle 

of incidence will be equal to the angle of reflection. 

If the angles 9 and 9' be zero, then will cos 9 = 1, cos 

9' = 1, sin 9 = 0, and sin 9' = 0, and Eqs. (207) and (208) 

; 
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become 

„ , ,MV+M'V' Tr 
v = (1 + 4—gq; JT~ " e ^ 

, „ , x i/ F + Jf' F' 
u = (1 + e> M+ IF-c 7 ' 

case of direct 

impact; 

the same as Eqs. (194) and (195); and passing to the 

limits, non-elasticity on the one hand and perfect elasticity 

on the other, we have, in the first case, e = 0, and 

MV -f M' V' 
M + M' 

M V + M’ V: 
M + ~W~~ 

. . (213), 

bodies 

non-elastic, 

and in the second, e = 1, consequently 

v = 2 
MV + M' V' 

M + M' 

MV + M' V' 
M + M' 

V . . (215), 

bodies perfectly 

elastic. 

V' . . (216). 

§ 252.—The equations which have just been deduced, 

are sufficient to make known the circumstances of motion oblique and 

of the centres of gravity of the colliding bodies, for we eccentuc Impact; 

have seen, § 146, that whenever a body is acted upon in a 

direction normal to its surface, its centre of gravity will 

move as though the force were applied directly to that 

point. But we have also seen, in the same article, 
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that when the direction of 

in the eccentric the force do6S not pa&S 
impact the bodies through the centre of grav- 
wiU rotate; ° . 

ity, which is the case m 

the eccentric impact, the 

body will also have a ro¬ 

tary motion. 

Employing the same no¬ 

tation as before, and sub¬ 

tracting Eq. (203) from the 

identical equation, 

V cos 9 = V cos 9, 

we find 

Fig. 285. 

loss of velocity of 

one body in 

direction of 

normal; 

V cos 9 — v cos 6 — (1 + e) 
M' (Fcos 9 - Vr cos 9') 

M + M' 

the first member is the loss of velocity of the body A in 

the direction of the normal, during the impact; and mul¬ 

tiplying both members by the mass of A — M) we have, for 

the quantity of motion lost in the direction of the normal, 

motion lost in 

that direction; 
M ( V cos 9 — v cos 6) = (1 + e) 

MM' (Vcos 9 - Vr cos 9') 

M+ M' 

If the force of which either member of this equation meas¬ 

ures the intensity, and of which the direction coincides 

with the normal, does not pass through the centre of grav¬ 

ity, it will give rise to rotary motion. From the centre of 

gravity G', of the body B\ let fall the perpendicular G' C' 
construction; upon the normal, and denote its length by b ; also denote 

the angular velocity of the body B by sn and its moment 

of inertia with reference to an axis through the centre of 

gravity, and perpendicular to the plane of the normal and 

centre of gravity, by Ix; then, because the angular velocity 
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is equal to the moment of the impressed force divided by 

the moment of inertia, Eq. (64), 

/i , N7 MM' 

= (1 + e) ^ 3T+1J7 x 
V cos 9 — V cos cp 

z (217). of one of the 

bodies; 

Also let fall from the centre of gravity G of the body A, 

the perpendicular G G upon the normal, and call its length 

a. Since the reaction of the body B, which is equal to the 

action of A, does not pass through the centre of gravity 

of the latter, it will communicate a rotary motion; and, 

denoting the angular velocity of A by s;;, we shall have, 

= (1 + e) a 
MM' 

JT+J£,X 
V cos 9 — V' cos 9' . angular velocity 

7 of the other; 

in which // is the moment of inertia of the body A. in 

reference to an axis through its centre of gravity and 

perpendicular to the plane containing this point and the 

normal. 

In what precedes, no reference is made to friction, but thus far no 

it is obvious that this principle cannot be wholly dis- takenoffHction" 

regarded; for the bodies acting upon each other in the 

direction of the normal with a pressure of which the 

measure is 

.. , » MM' , Tr TT, ,N 
C +«) • 379 M- (vcos* ~ 7 cos f); 

this pressure will give rise to friction, whose intensity is 

measured by 

/(I + e) 
MM' 

W+M 
-r (V cos 9 — V' cos 9'); 

and this acting in the direction of the tangential com¬ 

ponents of the velocities will accelerate the one and retard 

measure of the 
friction; 
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tangential force 

to overcome 

friction; 

limits within 

which friction 

may act 

to produce 

rotation; 

quantity of 

tangential motion 

lost; 

the other. Let U, denote the tangential velocity lost by 

the body A; then, the force exerted to overcome the 

friction will be measured by 

MUr 

Now if the tangential velocities be equal, it is obvious that 

the bodies will move together in the direction of the tangent, 

M Ul will be zero, the friction will not be called into action, 

and the bodies will not rotate from friction. If the tan¬ 

gential velocities differ by ; 

equal to the friction, then 

will the whole of the latter 

be exerted to produce ro¬ 

tation. If the tangential 

velocities be such as to 

give to If U, any value 

between these limits, a 

part only of friction will be 

exerted, and this part alone 

will determine the rotation. 

If the difference of the tan¬ 

gential velocities be such 

as to make M U] greater 

than the friction, the bodies 

will slide along each other 

and rotate at the same 

time; the latter motion 

being due to the entire 

friction, and the former to 

value of this force. 

Denote by n, the ratio oi 

quantity that will make M U, 

Fig. 285. 

the excess of MU, over the 

' the friction to MUn then will 

MU, = nf{l -f e) MW 
‘ M+-JP 

(V cos 9 V' cos ?'). 

Let fall from the centres of gravity of the two bodies the 

perpendiculars GT and G' T\ upon the tangent TT', 
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denote the length of the first by at and that of the second 

by br Then will the angular velocity of the body B, 

produced by friction, be 

nf( 1 + e) b 
MM' 

' M~+~W' 
V cos <p — V' cos <p' 

7- 

and that of the body A, 

angular velocitj 

of one body due 

to friction; 

angular velocity 

of the other, due 

to friction; 

whence the whole angular velocities of the two bodies 

will become 

nf{l + e) a, 
MM' 

M + M' 
Vcos v — V' cos cp' 

T 

. MMr V cos (b — V' cos d,' .. , .. . 
*/=(!+«)• ,f.L -—-(4 + «/W M + W 

M M' V cos b — V' cos V , , 
*// = t1 + e) • W I IT, *-n-(« + n/a/)- J/ 4- J/' 

whole angular 

velocity of the 

bodies; 

If the bodies be spherical and homogeneous, the nor¬ 

mal will always pass through the centre of gravity, b and a 
will reduce to zero, and the rotation will be due to friction 

alone. If the impact be direct, then (p and cp' will be zero , particular cases 

there will be no tangential components of the velocities °nigu,e* 

MUn and consequently n will reduce to zero, and the 

rotation will be due to the eccentricity of the impact. 



PART SECOND. 

Condition of all 

bodies depends 

upon the 

molecular forces 

a solid; 

a liquid; 

a gas or vapor * 

MECHANICS OF FLUIDS. 

-- 

I. 

INTRODUCTORY REMARKS. 

§ 253.—We have seen, § 13, that the physical condition 

of every body depends upon the relation subsisting among 

; its molecular forces. When the attractions prevail greatly 

over the repulsions, the particles are held firmly together, 

and the body is called a solid. In proportion as the differ¬ 

ence between these two sets of forces becomes less, the body 

is softer, and its figure yields more readily to external 

pressure. When these forces are equal, the particles will 

yield to the slightest force, the body will, under the ac¬ 

tion of its own weight, and the resistance of the sides of a 

vessel into which it is placed, readily take the figure of the 

latter, and is called a liquid. Finally, when the repulsive 

exceed the attractive forces, the elements of the body tend 

to separate from each other, and require either the applica¬ 

tion of some extraneous force or to be confined in a closed 

vessel to keep them together; the body is then called a 

gas or vapor, according to the greater or less pertinacity 

with which the repulsive retain their ascendency over the 

attractive forces. In the vast range of relation among the 

molecular forces, from that which distinguishes a solid to 
/ O 
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that which determines a gas or vapor, bodies are found in solids, liquids, 

all possible conditions—solids run imperceptibly into ^06^01^ 

liquids, and liquids into gases. Hence all classification of 

bodies founded on their physical properties alone, must, of 

necessity, be arbitrary. 

§ 254.—Any body whose elementary particles admit of Definitions, &c.; 

motion among each other, is called a fluid—such as water, a fluid; 

wine, mercury, the air, and, in general, liquids, gases, and 

vapors; all of which are distinguished from solids by the 

great mobility of their particles among themselves. This 

distinguishing property exists in different degrees in dif¬ 

ferent liquids—it is greatest in the ethers and alcohol; it 

is less in water and wine; it is still less in the oils, the 

sirups, greases, and melted metals, that flow with difficulty, * 

and rope wdien poured into the air. Such fluids are said 

to be viscous, or to possess viscosity. Finally, a body may viscous fluids; 

approach so closely both a solid and liquid, as to make it 

difficult to assign it a place among either class of these 

bodies, as paste, putty, and the like. paste; putty. 

incompressible; 

§ 255.—Fluids are divided in mechanics into two Classification of 

classes, viz.: compressible and incompressible. The term in- flmds> 

compressible cannot, in strictness of propriety, be applied compressible and 

to any body in nature, all being more or less compressible; 

but the enormous power required to change, in any sensible 

degree, the volumes of liquids, seems to justify the term, 

when applied to them in a restricted sense. The gases and 

vapors are highly compressible. All liquids will, there- liquids 

fore, be regarded as incompressible; the gases and vapors gageg and vapor8 

as Compressible. compressible 

incompressible; 

§ 256.—There are many fluids that readily pass from 

the compressible to the incompressible class, when sub¬ 

jected to moderate increase of pressure, and reduction of 

temperature. These are called vapors, and are such as arise vapors; 

from the application of heat to liquids, particularly when 
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vapors 

distinguished 

from mists arid 

clouds; 

gases 

distinguished 

from vapors: 

atmosphere; 

Its composition ; 

mechanical use 

of oxygen; 

proof of the 

existence of 

vapors and gases; 

atmospheric 

resistance; 

used as a moter. 

confined in closed vessels, as in the instance of steam in 

boilers. Vapors are generally invisible, and must not be 

confounded with the mists and clouds which are often seen 

suspended above the surface of the earth, and which are 

nothing more than water, in the form of small vesicles 

filled with air, and supported by the buoyant action of the 

atmosphere. Others of the compressible fluids are more 

permanent, requiring very great pressure and reduction of 

temperature to bring them to a liquid form. All such fluids 

are called gases. The most familiar instance of this class 

of bodies is the atmosphere which surrounds us on every 

side and in which wo live. It envelops the entire earth, 

reaches far beyond the tops of our highest mountains, and 

pervades every depth from which it is not excluded by the 

presence of solids or liquids. It is even found in the pores 

of these bodies. It plays a most important part in all 

natural phenomena, and is ever at work to influence the 

motions and to modify the results of machinery. It is 

essentially composed of oxygen and nitrogen, in a state of 

mechanical mixture. The former is a supporter of com¬ 

bustion, and, with the various forms of carbon, is one of 

the principal agents employed in the development of me¬ 

chanical power. 

The existence of air, gases, and vapors, is proved by a 

multitude of facts. Contained in a flexible and imperme¬ 

able envelope, they resist pressure like solid bodies. The 

gas in an inverted glass vessel plunged into water, will not 

yield its place to the liquid, unless some avenue of escape 

is provided for it. 'Those winds, hurricanes, and tornadoes 

which uproot trees, overturn houses, and devastate entire 

districts, are but air in motion. Air opposes, by its inertia, 

the motion of solid bodies through it, and this opposition 

is called its resistance. Finally, we know that wind is 

employed as a moter to turn windmills and to give motion 

to ships of the largest kind. 

§ 257.—Many bodies take, successively, the solid, liquid, 
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or vaporous state, according to the heat to which they are 

subjected. AVater, for instance, is solid in the state of ice change of state; 

and snow, liquid in its ordinary condition, and vapor when 

heated in a closed vessel. The process by which a body 

passes from a solid to a liquid state, is called liquefaction or liquefaction; 

fusion j from a liquid to a state of vapor, vaporization or vaporization; 

volatilization ; that by which a vapor returns to a liquid, condensation; 

condensation ; and a liquid to a solid, solidification or concjela- solidification. 

tion. Some bodies appear to take but two of these states, 

while others constantly present themselves only under one, 

which is the case with the infusible solids and permanent 

gases, including among the latter, the atmospheric air ; but 

the number of these bodies is constantly diminishing in 

the progress of physical science. 

§ 258.—The subject of the mechanics of fluids, is usual- Mode ot 

ly divided, as before remarked, into hydrostatics and hydro- considf ins tho 

dynamics, the former treating of the equilibrium of fluids, hydrostatics; 

and the latter of their motions; and not unfrequently the hidlod>naraics’ 

compressible fluids are discussed under a separate head 

called pneumatics. In the present instance, these divisions pneumatics; 

will not be adhered to, as it is believed the wdiole subject 

may be presented in a manner more connected and per¬ 

spicuous by disregarding them. And in the discussions 

which are to follow, the fluid will be considered as with¬ 

out viscosity; that is to say, the particles will be supposed 

to have the utmost freedom of motion among each other. 

Such a fluid is said to be perfect. The results deduced perfect fluid, 

upon the hypothesis of perfect fluidity will, of course, 

require modification when applied to fluids possessing 

sensible viscosity. The nature and extent of these modi¬ 

fications can be known only from experiments. 
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4 

i.evel surface; 

when at rest; 

normal to the 

resultant of the 

forces which act 

upon the surface 

particles; 

level surface 

defined; 

11. 

MECHANICAL PRINCIPLES OF FLUIDS. 

§ 259.—From tlie nature of a fluid, it is obvious that 

when a force is applied to any one of its particles, the latter 

must move in the direction of the force, unless prevented 

by the reaction of the surrounding particles; but these 

being equally free, can only react to prevent motion, by 

being supported or acted upon by opposing forces. From 

this arises a general law, viz.: that when a fluid is in 

equilibrio, its free surface is always normal to the re¬ 

sultants of the forces which solicit each of its surface 

particles. For if the result¬ 

ant OF of the forces which 

act upon any one of these 

particles 0 were oblique to 

the surface A B) this result¬ 

ant might be resolved into 

two components, one 0 F' 

normal, and the other OF" 

tangent to the surface; the 

former would be destroyed by the reaction of the fluid 

mass supposed in equilibrio, while the latter would move 

the particle along the surface, and with the greater facility 

in proportion as similar components tend to move the 

particles to which they are applied in the same direction. 

Hence the supposition of an oblique resultant is inconsist¬ 

ent with the equilibrium. This free surface which every 

fluid in equilibrio presents in a direction normal to the 

resultant of the forces which act upon each of its surface 

particles, is called a level surface. Hence every heavy 

Fig. 286. 
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fluid upon the earth’s surface in a state of repose, presents 

its upper or free surface normal to the direction of the level surface of 

force of gravity. If the earth did not rotate about an heavy flulds ’ 

axis PP\ thus giving rise to a centrifugal force, every 

such surface would be a portion of the surface of a sphere, 

having its centre at the centre of the earth; but its cen¬ 

trifugal force M G\ combined 

with the weight M G of each 

element, giving rise to a re¬ 

sultant MN slightly oblique 

Fig. 287. 

to the direction of the weight, 
figure of the level 

surface of heavy 

fl uids; 

every free surface is in strict¬ 

ness a portion of the surface 

of a spheroid of revolution, 

flattened at the poles and 

protuberant at the equator. 

The great size of the earth, and the limited field that 

may be brought under observation at the same instant, 

will scarcely permit us however to distinguish any visible visible portions 

portion of fluid surface from a plane. Instance, the sen3lbly plajie: 

ponds, lakes, ocean. The same is true of the atmosphere. 

This fluid being elastic, its elements tend to recede from 

each other and from the earth’s surface; in proportion as 

it expands, the repulsive action becomes less; the weight 

of the elements tends to draw them towards the earth; 

at the upper surface of the atmosphere these opposing case of the 

forces, which act towards and from the centre of the earth, atmosPhere* 

become equal, and the further retrocession of the particles 

is impossible. The atmosphere would, under the opera¬ 

tion of these causes alone, come to a state of rest, and 

present an exterior boundary similar to that of the earth. 

§ 260.—Let the vessel ABB 0 contain a heavy fluid, 

or a fluid acted on only by its own weight; the upper 

surface B/S will, from what we have seen, be horizontal 

when at rest; and it is obvious that this position of the 

surface will not be disturbed, or in the least altered, if the 
31 



482 NATURAL PHILOSOPHY. 

A homogeneous 

heavy fluid in 

vessels 

communicating 

freely will stand 

in all at the 

same level; 

experimental 

illustration; 

portion of the fluid indicated by the shaded parts of the 

second figure were to become solid, leaving the fluid 

portions E rl\ F If 

II 6r, communicating 

freely with each oth¬ 

er ; that is to say, the 

surfaces at E, I] and 

6r, of the communi¬ 

cating fluid would be 

upon the same level. 

Whence we conclude, 

that a heavy fluid, as 

water or mercury, 

poured into several ves¬ 

sels ■which communi¬ 

cate freely with each 

other, will, when in 

Fig. 2S8. 

B 

equilibria, have its upper surface in all the vessels on the 

same level. This important fact is easily illustrated by 

experiment. A is a 

vessel at the bottom 

of which is a horizon¬ 

tal tube connecting 

freely with the vessels 

B and C\ and having 

a stop-cock I) inter¬ 

posed, so that the con¬ 

nection may be inter¬ 

rupted or established 

at pleasure. Fill A 

with water, the stop¬ 

cock being closed. 

When the water in A 

is at rest, open the 

Fig. 289. 

cock D; the water will descend in A and ascend in B and 

C till it comes to the same level in all. 

If the vessel C be broken off at E, the water will over- 
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flow at this point till it sinks in the vessels A and B to 

the level of E. 

To the operation of this principle we are indebted for 

the transfer of water from remote locations to artificial 

reservoirs for the supply of cities and towns. Springs 

also owe their existence to it. The greater part of the 

solid crust of the earth consists of various strata ranged 

one above another; many of these are of a loose and po¬ 

rous nature and are penetrated with clefts, whilst others 

are more dense and free from flaws. Through the former 

of these, rains and melted 

this principle 

determines the 

transfer of water 

to artificial 

reservoirs from 

remote points; 

Fig. 290. snows find their way to 

the latter, where their fur¬ 

ther progress is for a time 

checked, till the water 

accumulates in sufficient 

quantity to force its way 

through the sides of hills 

and mountains, and often 

at points of considerable 

elevation. When the 

harder and impervious strata form the outer crust of 

mountain ranges, they often force the water to take an 

oblique underground course through porous strata, that 

extend to considerable 

it is also the 

cause of springs • 

depth and reach to re¬ 

mote districts. Here, 

if a channel be provi¬ 

ded for the water by 

boring through the hard 

crust which confines it, it 

will spout forth or over¬ 

flow, in its effort to gain 

the level of its source 

in the distant mountain. 

This constitutes an Arte¬ 

sian well, a name derived 

Fig. 291. 

ami is the cause 

of the discharge 

from Artesian 

wells. 
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from the French province Artois, where, according to 

account, this mode of obtaining water was first practised. 

Principle of 

equal pressures; 

a heavy fluid; 

several vessels 

communicating; 

several columns 

of unequal 

weights 

supporting each 

other; 

§ 261.—From the principle of fluid level, it is easy to 

pass to that of equal pres¬ 

sure. Suppose a vessel, 

A B D CF E, in which the 

branches E F and B D 0 

have a free communica¬ 

tion with the part A B; 

then if water, mercury, 

wine, or any other fluid, be 

poured in either at A, A, 

or 0, and the whole be 

suffered to come to rest, 

the surface at IK of the 

fluid in the part A B, at 

L in the branch E F, and 

at M in the branch BBC, 

will be upon the same 

level. 

Through the point A, taken at pleasure below the sur¬ 

face of the fluid, conceive a horizontal plane to be passed. 

It is obvious that the weight of the fluid contained in the 

vessel below P A Q can contribute nothing to the support 

of the columns L P, 10, and M Q, since this weight acts 

downward; and the equilibrium would obtain if the fluid 

contained in the part of the vessel below PAQ were 

without weight. This fluid may therefore be regarded as 

solely a means of communication between the columns 

IP, 10, and MQ, in such manner that it will transmit 

the pressure resulting from the weight of the columns 

L P and M Q to support the weight of 10, and recipro¬ 

cally. If now, instead of the columns IP, 10, and MQ 

of the fluid, pistons were applied to the surfaces at P, A 0, 

and Q, and were separately urged downward by pressures 

respectively equal to the weights of these columns, the 

Fig. 292. 
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equilibrium would manifestly obtain in like manner. Or 

if a pressure equal to that arising from tlie column M Q weight of 

be applied to tbe surface Q, while the columns LP and coUimn3 °f fll,ld 
x L v' replaced by 

I0 remain, the equilibrium will still subsist, and this, pressures upon 

whatever be the directions and sinuosities at F\ &c. pistons; 

The weight W of the column Q M is measured by b. h. d. g ; 

in which b is the area of the base at Q, h the height Q fl/J 

d the density of the fluid, and g the force of gravity. The 

weight W of the column 10 is measured by b'.h.d.g, in 

which b' is the area of the base N 0, the other quantities 

being the same as before. Dividing the latter by the 

former, we find 
• * 

ratio of the 

weights of 

columns of equal 

altitudes; 

hence, the weights are to each other as the bases b' and b. 

Now these weights act in the same direction, and are 

unequal; they cannot, therefore, maintain each other in 

equilibrio, unless the pressure arising from the column 

10 were transmitted by the fluid down the vessel NB, up 

the sinuous vessel BDQ to §, and there diminished in 

the ratio of the base NO to that at Q. In like manner, 

the pressure from the column M Q must be transmitted by 

the fluid down the tube Q DH, up the vessel BN to the 

base N 0, and there increased in the proportion of the base 

at Q to that at N. 

That is, the forces applied to two pistons in a vessel filled forces on two 

pistons are in 

equilibrio when 

rectly proportional to the areas of the pistons to which they are proportional to 

respectively applied. If the areas b and b' of the pistons ^0^ °f the 

become equal, the forces will be equal, and this, whatever 

be the actual dimensions of the pistons. Whence we con¬ 

clude, that the force impressed upon a fluid, is transmitted by 

it equally in all directions ; and that every surface exposed to pressure 

the fluid will receive a pressure which is directly proportional equally ?naii 

to its extent. Moreover, this pressure will be perpendicular directions; 

to the surface, for if it were oblique, it might be replaced 

with fluid, will be in equilibrw when their intensities are di- 

W = V .h.d.g = V_ 

W b . h . d . g b 
. (219) 
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pressure always 

normal to the 

surface; 

value of the 

pressure 

transmitted; 

1st. rule; 

pressure 

transmitted 

when the 

pressure is 

applied to a unit 

of surface; 

2d. rule; 

illustration by the 

anatomical 

Biphon; 

by its two components, one normal, tlie other parallel to 

the surface; the former would be destroyed by the resist¬ 

ance of the surface, while the latter would give motion to 

the fluid, which is contrary to the supposition that the 

fluid is in equilibrio. 

From Eq. (219) we find 

W' = W- f . . . . (220); 
0 

whence we have this rule for finding the amount of pres 

sure transmitted to any surface, viz.: Multiply the intensity 

of the pressing force into the ratio obtained by dividing the area 

to which the pressure is transmitted, by that to which the force 

is directly applied. Making b — 1, W will be the pressure 

upon the unit of surface, and Eq. (220) becomes 

W = W. bf ... . (221); 

whence we have this second rule for finding the pressure 

transmitted to any given surface,'viz.: Multiply the intensity 

of the force applied to the unit of surface by the area of the 

surface to which the pressure is transmitted. 

The truth of these deductions is finely illustrated by 

the Anatomical Siphon. A short 

cylindrical vessel A, made of 

metal, and open at one end, is 

connected with an upright glass 

tube fh, say half an inch in diame¬ 

ter, open at the top. The vessel 

is filled with water, and closed 

by tying over it a bladder, on 

which a plate of wood or metal 

is laid to receive weights W'. 

Water is now poured down the 

glass tube fh; the water in A, 

with its superincumbent weights 

W', will be raised by the pressure 

Fig. 293. 



MECHANICS OF FLUIDS. 487 

arising from the weight of that portion of the fluid in 

the glass tube above the level of the bladder. Let this 

difference of level be 50 inches, then will the volume, in 

cubic feet, of the pressing water, be 

in. in. 

* K2 x 50 _ 3.1416 X (0.25)2 x 50 
1728 1728 

c.ft. 

0.00568. 

Now one cubic foot of water weighs sixty-two and a 

half pounds, whence the weight of the pressing column or 

W becomes, in pounds, 

lbs. lb. 

W = 62.5 X 0.00568 = 0.355. 

The area of a section of the glass tube is 

in. 

b = «IZ2 = 3.1416 X (0.25)2 = 0.196; 

or, in square feet, 

b — = 0.00186, nearly. 

Let the diameter of the vessel A be one foot then will 

V = 3.1416 X (0.50)2 = 0/7854; 

and these values of TLJ 5, and b\ substituted in Eq. (220), 

give 

n us. 

W = °-855 O0I36 = 204'8’ nearlj : 

that is to say, the trifling weight of three tenths of a pound 

sustains in equilibrio a weight of more than two hundred 

and four pounds; a result usually denominated the hydro¬ 

static 'paradox. 

illustrated by a 

numerical 

example; 

weight of the 

pressing column; 

area of a section 

of the tube; 

diameter of the 

larger vessel; 

weight sustained; 

hydrostatic 

paradox; 



488 NATURAL PHILOSOPHY. 

if the bladder 

were removed 

the water would 

rise in the larger 

vessel; 

verification. 

Multiplication of 

power by the 

principle of equal 

transmission of 

pressure; 

If the bladder were removed, and the vessel extended 

upward to the line ed, on a level with the fluid in the 

tube, the water would rise in it to that height, when it 

would come to rest. The volume of the added water, in 

cubic feet would be 

in. 

^ X 0.7854 = 8.272; 
jlA 

and allowing 62J pounds to each cubic foot, the weight 

of distilled water at 60° Fall. gives 

lbs. 

3.272 X 62^ = 204.5, nearly, 

as before. 

III. 

WORK OF THE POWER AND OF THE RESISTANCE. 

Fig. 294. 

§ 262.—It follows from Eq. (220), that a given power 

may be multiplied at pleasure by this principle of equal 

transmission of pressure. It will be sufficient for this 

purpose, to provide a strong 

vessel for the reception of a 

fluid, and to connect with it 

a pair of pistons whose sur¬ 

faces bear to each other any 

desired ratio; the power F 

being applied to the smaller 

piston b will be transmitted 

to the larger V and made to 

hold in equilibrio or over¬ 

come almost any given re¬ 

sistance R applied to the 

latter. B ut we are not, there- 
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fore, to infer that there is any gain in the quantity of work no work guimd. 

performed, for if we multiply Eq. (220) by the distance however; 

HI—s' through which the larger piston may have been 

moved by the pressure transmitted to it, we have, by 

writing R for W', and F for W, 

5' V 

~b~ 
. . (222). work of the 

resistance; 

The product s'b\ being the area of the larger piston into 

the distance III, is the measure of the volume of fluid 

which has passed into the chamber CE, by the action of 

the power F upon the smaller piston; and if we regard the 

water as incompressible, this must be equal to the volume 

of fluid which has been pressed out of the chamber A B. 

Supposing the smaller piston to have been depressed to 

and denoting the distance H' I' by 5, this latter volume 

will be measured by sb, and, therefore, from what has just 

been remarked, 

whence 

volumes of the 

fluid equal; 

which, substituted above, gives 

work of power 

Bs' = Fs.(223). equal to that of 

resistance; 

The first member of this equation is the work performed 

by the resistance, the second that performed by the power, 

whence we conclude, that in hydraulic machines depending conclusion; 

upon the transmission of pressure, as in other machines, the 

work of the power is equal to that of the resistance. 

If the friction of the pistons against the sides of their friction and 

respective chambers and the viscosity of the fluid be taken v scos y’ 

into the account, the work of these must be added to the 
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the hydraulic 

machine enables 

a feeble power to 

perforin what 

it could not 

without it; 

general principle 

of all machines; 

this principle 

employed to 

prove that of 

equal pressure; 

term Rs\ which would make the effective quantity of 

work, measured by Rs', actually less than the work of the 
power. What then is gained? The answer is the same 

as before, viz.: the machine gives to a feeble power the 
ability to perform, by a succession of efforts, an amount 

of work which it could not accomplish by a single one. 

It would be quite within the physical capabilities of an 

individual to raise to the summit of a wall a ton of bricks, 

by taking a few bricks at a time, wnereas an effort to ele¬ 

vate the whole at once by his unassisted strength would 

prove an utter failure. And this is true of all kinds of 

machinery; whenever a given amount of work is accom¬ 

plished by the application of a diminished power, the space 

through which the latter is exerted must be proportionally 
increased. 

Had this principle, together with the incompressibility 

of the fluid, been assumed at the outset, it would have 

been an easy matter to deduce Eq. (220), and therefore the 

principle of the equal transmission of pressure; for, the 
volume of the fluid remaining the same, we should have 

and the quantity of work of the power and resistance 

being equal, gives 

Rs' = F s ; 

dividing the first of these equations by the second, we find 

_ b 
R ~ F} 

whence 

pressures are 

proportional to 

the surfaces. 

F : R : : b : V; 

that is to say, the pressures are directly proportional to 
the areas of the pistons to which they are applied, when 
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there is an equilibrium, or when the pistons have a uniform 

motion. 

Fig. 295. 

§ 263.—One of the most interesting and important 

applications of the principle of equal transmission of 

pressure is exhibited by the Hydraulic or Bramah's Pr CSS. Hydraulic press; 

The main features of this machine are the following: A 

large and small 

metallic cylinder 

A and a, are 

made to commu¬ 

nicate freely with 

each other by a 

duct-pipe r. Wa- 

ter stands in both 

of the cylinders, 

and each is provi¬ 

ded with a strong 

piston. The pis¬ 

ton Sof the larger 

cylinder carries a 

strong head-plate 

P, which works in a frame, so as to move directly towards 

or from a plate R which is stationary. The substance to 

be pressed is placed between these two plates. The piston 

in the small tube a is worked by a lever c d, of the second 

order, having its fulcrum at c, the piston-rod being attached 

at h, while power is applied at d. The pressure exerted by 

the smaller piston on the water is transmitted by the latter 

to the piston S. 

Let the diameter of the cylinder a be half an inch, that its power 

of the larger 200 inches, then will 

description, and 

mode of applying 

the power; 

illustrated by an 

example; 

V _ (200)2 
h ~ {\f 

160000; 

and suppose the distance cd to be equal to 50 inches, and 
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data; 

power applied at 

smaller piston; 

value of 

resistance; 

path of the power 

at smaller piston; 

its numerical 

value for one foot 

of path of the 

resistance; 

c b to 1)6 one inch, and let a man throw his weight, say 

150 pounds, on the point d; then from the property of 

the lever will the force F, applied to the smaller piston, be 

given by the proportion 

in. in. lbs. 

1 : 50 : : 150 : F; 

whence 

lbs. 

F = 150 X 50 = 7500. 

Substituting these values for F and y in Eq. (222), and 

omitting the common factor s', we find 

lbs. lbs. 

R = 7500 X 160000 = 1200000000; 

thus an effort equal in intensity to a weight of one hundred 

and fifty pounds applied at d, is capable of holding in 

equilibrio a poAver, or of maintaining in uniform motion a 

body subjected to a constant resistance, equal to one 

billion two hundred million pounds. 

Dividing both members of Eq. (223) by F\ we find 

s — 
R. s' 

F ’ 

substituting the above values for R and F,\ and suppose the 

piston-head to have been raised through the distance of 

one foot, we have 

s — 
1200000000 

7500 
= 160000’; 

and because the power applied at d must pass over 50 

times this distance, we find 

160000 x 50 = 8000000’ 
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or 

8000000 

5280 

miles. 

= 1515, 
path of the 

power; 

for the distance described by the power to compress the 

resistance one foot, or to raise a weight equivalent to the 

resistance through that height. The hydraulic press is 

used in the arts to press paper, cloth, hay, to uproot trees, 

to test the strength of ropes, chains, building materials, uses of the 

and guns; and two were recently employed with success hydraulic Press 

to raise, through a vertical height of more than one 

hundred feet, the great iron viaduct-tube, weighing up¬ 

ward of eighteen hundred tons, over the Menai Straits. 

IV. 

PRESSURE OF HEAVY FLUIDS. 

O 

Fig. 296. 

E O' 13 

§ 264.—Let us now examine the pressure which a Pressure of heavy 

heavy fluid exerts on the base of a vessel in which it is fluld3’ 

contained. For this 

purpose, let ABB O 
be a vessel containing 

a heavy fluid, as wa¬ 

ter, in equilibrio. The 

upper surface A B of 

the fluid will be hori¬ 

zontal. Conceive a 

horizontal plane G H 
to be passed, and sup¬ 

pose the fluid below this plane, or that contained in the fluid below 

the portion GGDH. to be devoid of weight; then it is thehorizontal 
1 1 07 stratum devoid 

obvious, from our previous principles, that the weight of of weight; 

any slender vertical column, as El, will exert a pressure 
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each element ary 

column 

sustaining all the 

others; 

pressure upon 

the base; 

weight of the 

pressing filament; 

pressure upon 

the base; 

Fig. 296. 

at I, which is distributed equally in all directions through 

the fluid G C DII, and that this pressure acts equally 

upward to oppose the 

descent of the other 

columns which stand 

vertically over the 

plane GH; the col¬ 

umn El alone keeps, 

therefore, in equi- 

librio all the other 

columns of the mass 

AGUE; conse¬ 

quently, the mass G CDII, being still supposed without 

weight, there will result no pressure upon the base CD, 
except that which arises from the weight of a single fila¬ 

ment El, which being transmitted equally to all the 

points of the base CD, the pressure on the latter will be 

given by Eq. (220); that is, by 

W w ■ h-- 
b ’ 

in which W is the weight of the column El, b the area 

of its base, V the area of the base CD, and W' the pressure 

which it sustains. 

Denoting the height of the column El by h, its weight 

W will be given by 

IE = li .b . D. g ; 

in which D denotes the density of the fluid, and g the force 

of gravity. 

Substituting this above for W, we find 

W' = h . V . D . g . . . (224). 

If now the plane GII be depressed so as to leave all 

the heavy fluid above it, this plane will coincide with 
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tlie bottom, I will come to and h will become the ver¬ 

tical height EI' of the surface of the fluid above the 

base. 

But the product V h is obviously the volume C 0 O' B weight of the 

of the fluid contained in a right cylinder or prism having column which 

for its base, the base of the vessel; DM. h is the mass of this pressure; 

cylinder or prism, and D .br .h .g is its weight. Whence 

we conclude, that the pressure exerted by a heavy fluid 

upon the horizontal base of a vessel containing it, is equal 

to the iveiglit of a column of this fluid, whose base is the base 

of the vessel, and ivhose altitude is equal to the depth of this 

base below the surface of the fluid. 

In this measure for the pressure on the base of a vessel 

containing a heavy fluid, there is nothing at all relating pressure 

to the figure or actual volume of the vessel, and we are, 11KlePendent of 

hence, to infer that this pressure is wholly independent of and quantity of 

both, and will always be the same whenever the area of ^dp;iessinf 

the base and altitude 

of the fluid are the 

same. The right cyl¬ 

inder, inverted and 

erect truncated cones, 

having equal inferior 

bases I>, B, B, and 

the same altitude /?, 

will, when filled, con¬ 

tain very different 

volumes of fluid, yet 

the bases will all 

experience the same 

amount of pressure 

from the weight of 

the fluid, if it be the 

same in kind, or of 

the same density. 

The experimental 

verification of this 

Fig. 297. 

illustration: 

Fig. 298. 

A n 

1) 

Fl 

i r—i ed 
II I£ II B 

J) 

-'■'C 

right cylinder, 

truncated cone, 

both erect and 

in verted; 
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experimental 

verification of 

this fact; 

description of the 

apparatus for the 

purpose; 

details of the 

experiment; 

apparent paradox is easy. A D C B is a glass tube, of 

which the ends are open and bent upward; the end 

B is furnished with 

a brass ferrule upon 

which a screw is cut 

for the reception of a 

mate-screw H around 

the bottom of the ves¬ 

sels F; F\ and F", 

also open at both 

ends. On the end A 

is a sliding ring of 

metal or wood. At 

A is a short wire that 

may be moved up and 

down, and is held in 

any desired position by friction. 

Pour mercury in either end of the bent tube till it rises 

to any desired level, say that of the dotted line; next, screw 

either of the vessels, say A, on its place at A, and fill it with 

water. The water passing freely through to the surface of 

the mercury will press upon the latter by its weight and 

force it up the end A. When both fluids come to rest, 

move the ring on the end A to a level with the mercury to 

mark its place, and press the wire E down to the surface 

of the water to determine its height. Now draw off the 

water by the stop-cock 6r, remove the vessel F and replace 

it by F\ and fill with water as before; when the level 

of the water reaches the end of the wire E, the mercury 

will be found to have reached the ring on the end A. 

The experiment being repeated with the slender vessel 

F'\ not even half as thick as the tube A D CB1 the mer¬ 

cury will again be found at the ring. In all these ex¬ 

periments, the base pressed is the same, being a section 

of the bent tube at the level of the mercury; and the 

altitude is the same, being the difference of level of the 

mercury in the end B and lower extremity of the wire Et 

Fig. 298. 

deductions; 
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when the mercury in the end A stands at the level of the 

ring. The quantities of water employed in the three cases conclusion, 

are very different, and yet the pressures exerted by their 

weights are the same. 

§ 265.—The pressure of a heavy fluid upon a horizon- Pressure of a 

tal plane, enables us to pass to that on a plane inclined a^fsuncun 

under any angle whatever to the horizon, and thence to surfaces; 

the pressure on a curved surface. 

Let A B I) C be a vessel 

with plane or curved sides, 

and filled with a lieavv fluid; 

suppose GII and G' II' to 

be two horizontal planes in¬ 

definitely near each other. 

The layer of fluid between 

these planes may be consid¬ 

ered as without weight, and as transmitting the pressure 

of the superincumbent fluid to the surface of the vessel 

with which this layer is in contact; and the pressure 

upon this surface will be the same as though it were in 

either of the two planes in question. Designating the ex¬ 

tent of this elementary surface by b\ and the depth EI by 

h\ the measure of this pressure will be 

D . g . V . h'; 

in which D and g denote respectively the density of the 

fluid and force of gravity. In like manner, the pressure 

upon any other elementary portions b", b"\ b"'\ &c., of 

the surface at distances li", h"\ and h'"\ &c., respectively, 

below the upper surface of the fluid, will be 

D . g . b" . Jl", D . g . b"r . E'\ &C. ; similar pressures, 

and the pressure upon the entire surface will obviously be 

the sum of these; or, if the total pressure be denoted by 
32 

pressure upon an 

elementary 

inclined surface; 

Fig. 299. 

A j: 7? 

\ 
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total pressure 

upon the entire 

surface; 

I 

value of this 

pressure in 

weight; 

expressed in 

words; 

example first; 

distance of centre 

of gravity below 

the surface; 

NATURAL PHILOSOPHY. 

P, then will 

P = Dg{b'hf + b"h" + V"h"’ + &c.). 

But if we take the upper surface of the fluid as a plane 

of reference, and denote by b the entire area of which 

b\ b", &c., are the elements, and of which the distance of 

the centre of gravity from this plane of reference is A, then, 

from the principle of the centre of gravity, will 

bh = V A' + b" A" + b'"h"' + &c; 

which, substituted above, gives 

P = P> . g . b . h . . . . (225); 

that is to say, the pressure exerted by a heavy fluid against \ 

the surface of any vessel in which it is contained, is measured 

by the iveight of a column of the fluid having for its base the 

surface pressed, and for its altitude the depth of the centre of 

gravity of this surface below the upper level of the fluid. 

Example ls£. Required the pressure against the inner 

surface of a cubical vessel filled with water, one of its 

faces being horizontal. Call the 

edge of the cube a, the area of each 

face will be a2, the distance of the 

centre of gravity of each vertical 

face below the upper surface will be 

\ a, and that of the lower face a ; 

whence, the principle of the centre 

of gravity gives, 

Fig. 300. 

h 
4 a2 X + a2 X a 

5 a2 

3 
5 a. 

Again, 

surface pressed; b = 5 a2; 
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md these, substituted in Eq. (225), give 

P — D .g .b .h = D .g . 3 a3. 

Tow Dg X 13 — Dg, is the weight of a cubic foot of water 

62.5 lbs. whence 

lbs. 

P = 62.5 X 3 a3. 

[ake a = 7 feet, then will 

lbs. 

P = 62.5 X 3 X (7)3 = 27562.5. 

The weight of the water in the vessel is 62.5 a3, yet the 

$1 pressure is 62.5 X 3 a3, whence we see that the outward 

^■pressure to break the vessel, is three times the weight of 

itl the fluid. 

(j Example 2d. Let the vessel be a 

sphere filled with mercury, and let 

rl its radius be P. Its centre of grav¬ 

ity is at the centre, and therefore 

below the upper surface at the dis¬ 

tance P. The surface of the sphere 

being equal to that of four of its 

Fig. 301. 

great circles, we have 

whence 

b = 4 k P2\ 

b.h = 4*7^; 

and, Eq. (225), 

P = 4 .D .g . P3. 

The quantity Dg X l3 == Dg, is the weight of a cubic foot 

value of tlio 

pressure; 

in pounds; 

its numerical 

value 

conclusion; 

example second; 

surface pressed; 

volume whose 

weight is equal 

to the pressure; 

whole prcssviv; 
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pressure in 

pounds; 

its numerical 

value; 

ratio of weight of 

pressing fluid to 

pressure; 

example third; 

value of 

pressure; 

weight of 

pressing fluid; 

ratio of weight to 

pressure. 

of mercury = 843.75 lbs., and therefore, substituting the 

value of * = 3.1416, 

lbs. 

P = 4 x 3.1416 X 843.75 . R3. 

Now suppose the radius of the sphere to be two feet, then 

will R3 = 8, and } 

lbs. lbs. 

P = 4 X 3.1416 X 843.75 X 8 = 84822.4. 

The volume of the sphere is |* R3; and the weight of the 

contained mercury will therefore be £ * R3g D — W. Di¬ 

viding the whole pressure by this, we find 

_ O. j 
w 

whence the outward pressure is three times the weight of 

the .fluid. 

Example 3d. Let the vessel be a cylinder, of which the 

radius r of the base is 2, and altitude \ 6 feet. Then will1 

b . h — r l (r + l) = 3.1416 X 2 X 6 X 8; 

which, substituted in Eq. (225), 

P = 301.5936 x Eg, 

and 

W = 3.1416 X 22 X 6 X Eg = 75.398 X Eg; 

whence, 

P _ 301.5936 xDg_ 
W 75.3984 . Dg ~ 5 
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Fig. 302. 

geometrical 

representation 

and notation; 

hat is, the pressure against the vessel is four times the 

weight of the fluid. 

§266.—Although the pressure of a heavy fluid de- centre of 

oends upon the position of the centre of gravity of the piessme’ 

surface pressed, yet the resultant of all the elementary 

oressures passes through a different point, the position of 

which for a plane surface 

may be thus found. Let 

E IF be any plane, and MN 

the intersection of this plane 

oroduced with the upper 

urface of the fluid which 

presses against it. Denote 

the area of any elementary 

portion n of the plane EIF 

oj b'; and let m be the pro¬ 

jection of its place upon the 

upper surface of the fluid; 

draw mM perpendicular to 

MN) and join n with M by the right line nil, the latter 

will also be perpendicular to MN, and the angle nMm 

will measure the inclination of the plane EIF to the sur¬ 

face of the fluid. Denote this angle by <p, the distance 

mnby A', and Mn by r'; then will 

h' = r' sin <p. 

The pressure of the fluid upon the element n will, Eq. 

(225), be 

D . g .b' . h' = D g b’ r' sin <p; 

and its moment, in reference to the line MN as an axis, 

2 
D gbf r' sin <P ; its moment; 

distance of an 

elementary 

pressed surface 

below the fluid 

surface; 

pressure upon 

this element; 

and for any other elements of which b", b&c., denote the 
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momenta of the 

elementary 

pressures; 

depth of centre 

of gravity of the 

whole area 

pressed; 

whole pressure; 

moment of the 

entire pressure; 

distance of the 

point of total 

pressure from the 

axis; 

areas, we have, in like manner, 

D g b" r"2 sin 9, 

D g V" r'"2 sin 9, 

&c., &c. 

Denoting by h the depth of tlie centre of gravity of the 

area EIF below the surface of the fluid, and by r the dis¬ 

tance of that point from the line ME, we shall have 

h — r sin 9 ; 

and, for the total pressure upon EIF\ 

P = D. g . b. h = D gbr sin 9, 

in which b denotes the area of EIF; and if x denote the 

distance of the point of application of this pressure from 

the line MN, its moment will be 

D gbr sin 9 . x. 

But the moment of the entire pressure must be equal to 

the sum of the moments of the partial pressures, and hence 

Dgbrx sin 9 = Eg sin 9 (br r'2 + b" r"2 + V" r'"2 + &c.) ; 

whence 

t , 7 n r/2 

r + V'r"* + b’"r'" + &c. 

b r 
. . (226). x 
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Fig. 302. 

The numerator of the second member, is the moment interpretation of 

of inertia of the plane E IF; the denominator is the the Iast equation; 

product of the area of the plane itself by the distance of 

its centre of gravity from the axis, and as a similar ex¬ 

pression would result if the 

pressures were referred to any 

other line in the plane EIF 

as an axis, it follows from 

§ 184, Eq. (86), that the result¬ 

ant pressure passes through 

the centre of percussion of 

the surface pressed. This 

point is called the centre of 

pressure. It is that point in 

the surface to which, if a single 

force be applied in a direction 

contrary and equal to the total 
coincident with 

pressure exerted upon it, the surface will remain in cqui- centre of 

lihrio. percussion. 

centre of 

pressure; 

defined; 

§ 267.—The principles which have now been explained, Application of 

are of high practical importance. It is not only interest-the Pre^edins 
° 1 1 J principles; 

ing, but necessary, often to know the precise amount of 

pressure exerted by fluids against the sides of vessels and 

obstacles exposed to their action, to enable us so to adjust 

the dimensions of the latter as to give them sufficient 

strength to resist. Reservoirs in which considerable 

quantities of water are collected and retained till needed 

for purposes of irrigation, the supply of cities and towns, 

or to drive machinery; dykes to keep the sea and lakes 

from inundating low districts; artificial embankments objects to which 

constructed along the shores of rivers to protect the th(Tar?1 
° x applicable; 

adjacent country in times of freshets; boilers in which are 

pent up elastic vapors in a high state of tension, to be 

worked off at pleasure to propel boats and cars, and to 

give motion to machinery generally, are examples. 
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thickness of the 

sustaining wall of 

a reservoir; 

pressure against 

the face; 

suppose the wall 

may slide ; 

weight of the 

wall; 

friction on the 

ground; 

condition of 

stability ; 

Let AB CD be a section or 

profile of the wall of a reser¬ 

voir, MN the upper surface of 

the water, and EEr the bottom. 

Denote the length of the wall 

by l, the depth EE of the water 

against its face, supposed verti¬ 

cal, by cl; then will the surface 

pressed be measured by Id; the 

distance of the centre of gravity 

of this surface from the upper 

level of the water will be \d 

whence the whole pressure will be 

D .g .1. d2 

T 

in which D is the density of the water, and g the force of 

gravity. The inner surface of the wall being vertical, this 

pressure is exerted in a horizontal direction, and must be 

resisted by the wall. Now the wall, if it move at all, may 

either slide along its base D G\ or turn about the horizontal 

edge passing through C. First, let us suppose it slides. 

Denote the depth of the face A D by d\ the mean thick¬ 

ness m n by t; then will the weight of the wall be 

D'. g . I. clr. t; 

and, denoting the coefficient of friction between the wall 

and earth byf the whole friction will be 

/. Dr. g . I. d'. tj 

in which JD' is the mean density of the wall; and the 

condition of stability will be satisfied as long as we have 

D aid2 r7V v 

—2— = fD ffldt; 

Fig. 303. 
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from which, we find 

value of mean 

thickness; 

The density of water is usually taken as unity, and on 

ordinary earth, the value of f for masonry, does not vary 

much from J, whence 

value of the 

thickness in 

ordinary cases; 

The thickness is the only unknown quantity, since d and 

d' must result from the capacity of the reservoir. 

If the wall tend to turn about the edge C, then must suppose the wall 

the moment of its weight be equal to the moment of the may rotate about 
° ^ the front line of 

pressure when both are taken in reference to that line, its base; 

Let G be the centre of gravity of the profile A BCD, 

and denote the distance C 0 of its projection upon the 
i _ 

base of the wall from C, by r. Then, from the assumed 

figure of the profile, we shall have 

ratio of lever arm 

of the wall to its 

thickness; 

in wdiich n is known; and the moment of the weight of 

the wall will be 

— = n, or r = n t, 
t ’ 5 

3 d2 

2Drdr' 

D d2 

~ 1)' X 2fcT 

D'. g .1. d'. t2. n. moment of the 

weight of wall; 

The centre of pressure O', being that of a rectangle of 

which the side through N is horizontal, is at a distance 

below N equal to § of NE, or from the bottom point E 

equal to J d; and adding the distance ED denoted by 

a, the moment of the pressure, in reference to C, will be 

Dgld2 

2 (-H + a); 
moment of tho 

fluid pressure; 
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condition of 

stability; 

thickness of the 

wall; 

tnickness of 

water-pipes, 

boilers, &c.; 

surface pressed; 

and, to insure stability, we must have 

Bald2 
D'gld't-n = g-. (id + «); 

A 

whence 

1 B d2(d + 3 a) 

6n B' d' 

If the water come to the bottom of the wall, and 

reservoir be full, then will 

a — 0, d — d\ 

and 

Next, let A B C be a sec¬ 

tion of a cylindrical water- 

pipe or boiler perpendicular 

to the axis, the inner surface 

of which is subjected to a 

pressure of jp pounds on each 

superficial unit. Denote by 

R the radius of the interior 

circle, and by l the length of 

the pipe or boiler parallel to 

the axis; then will the sur¬ 

face pressed be measured by 

2 * R\ 

and the whole pressure, by 

Fig. 304. 

whole pressure 2 < Rip. 
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If, in virtue of this pressure, tlie pipe stretches so that its 

interior radius becomes R -f r, it is obvious that the small 

distance r will denote the path described by the whole 

pressure, and its quantity of work will be 
• .. • V • * 1 , ' . 

2 * R ip r. 

The interior circumference before the application of the 

pressure was 2 * R, and afterward, 2 * {R + r); the differ¬ 

ence of which, or 

2 # (R -f- r) — 2 rf R — 2 rf r, 

is obviously the distance through which the resisting 

molecular forces of the material of which the pipe or 

boiler is made, have acted during the stretching process. 

Denote the resistance which the material of the pipe or 

boiler is capable of opposing, without losing its elasticity, 

to a stretching force on a section of one superficial unit, 

by B; the length of the pipe or boiler by l; and its thick¬ 

ness by t. The intensity of the force which a section 

parallel to the axis is capable of resisting will be Bit, and 

its quantity of work 

Bit X 2 # r. 

» 

But by virtue of the principle of the transmission of work, 

this must be equal to the work of the pressure, and we 

have 

2 if Bit r = 2 nr Rip r; 

whence 

, _ Rp 
- -g-. 

suppose the pipe 

to stretch • 

quantity of work; 

path of the 

resisting 

molecular action; 

the quantity of 

work of this 

force; 

condition of 

stability; 

thickness. 

The value of p is easily estimated in the case of water 

in a pipe, by the rules just given. In the case of steam in 
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a boiler, it may with equal ease be found by rules to be 

given presently. The value of B is readily obtained from 

the following table giving the results of experiments on 

the strength of materials:— 

TABLE. 

The Tenacities of different Substances, and the Resistances 

WHICH THEY OPPOSE TO DIRECT COMPRESSION. 

,4 k . 

W . 
g £3 * . 

SUBSTANCES EXPERIMENTED ON. 

£ o 
•PH 1pH 

1 
^ 33 
0 *3 

0 « 

.S~ & 

- s-a 

O 
0 (D o ~~ cJ oc c3 

G C C 
O O CT1 

® s 
6 -Z C3 rj 

VI p J1 £3 ~ 
O D 

a> G 
S-C 
k a. 

«5 A Of=H O, 55 A 

Wrought iron, in wire from ) 

l-20th to l-30th of an v 
inch in diameter - - J 

6o to 91 Lame 

in wire, l-10th of an inch 36 to 43 Telford 
in bars, Russian (mean) 27 Lame 

English (mean) 25£ — 

hammered - - 3o Brunei 
rolled in sheets, and cut ) 

lengthwise - - - - ) i4 Mitis 

ditto, cut crosswise 
in chains, oval links 6 in. ) 

clear, iron 1^- in. dia. ) 
ditto, Brunton’s, with ) 

stay across link - - ) 

18 

21^ Brown 

25 Barlow 

Cast iron, quality No. 1 - - 6 to 7! Hodgkinson 38 to 41 Hodgkinson 
2 - - 6 to 8 — 37 to 48 * 

3* - 6 to 2^ — 51 to 65 — 

Steel, cast. 44 Mitis 
cast and tilted - - - 60 Rennie 
blistered and hammered — 

shear . ^7 — 

raw. 5o Mitis 
Damascus. 3t — 

ditto, onre refined - 36 _ 

ditto, twice refined - 44 — 

Copper, cast. H Rennie 52 Rennie 
hammered .... i5 —1 46 
sheet . 21 Kingston 
wire. 27i 

Platinum wire. J7 Guyton 
Silver, cast. 18 

wire ------ 17 
Gold, cast. 9 — 

wire. i4 — 

Brass, yellow (fine) - - - 8 Rennie 73 — 

Gun metal (hard) - - - 

Tin, cast. 

16 — 

2 —• 7 — 

* The strongest quality of cast iron, is a Scotch iron known as the Devon Hot Blast, 
No. 3: its tenacity is 9f tons per square inch, and its resistance to compression G3 tons. 

The experiments of Major Wade on the gun iron at West Point Foundry, and at Boston, 

give results as high as 10 to 16 tons, and on small cast bars, as high as 17 Ions.—See 
Ordnance Manual, 1850, p. 402. 
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TABLE—continued. 

SUBSTANCES EXPERIMENTED ON. 
T

en
ac

it
y
 i

n
 

T
o

n
s 

p
er

 
S

q
u
ar

e 
In

ch
. 

N
am

e 
o
f 

E
x¬

 
p

er
im

en
te

r.
 

C
ru

sh
in

g
 

F
o
rc

e 
in

 T
o

n
s 

p
er

 S
q
. 

In
ch

. 

N
am

e 
o
f 

E
x¬

 
p

er
im

en
te

r.
 

Tin wire. 3 Bennie 
Lead, cast. 4-5tlis — 3£ Rennie 

milled sheet - - - - i£ Tredgold 
wire. 1.1 Guyton 

Stone, slate (Welsh) - - - 5.7 
Marble (white) - - - 4 - 1.4 — 
Givry ------ 1 
Portland. £ - 1.6 — 
Craigleith freestone - 2.4 — 
Bramley Fall sandstone - - 2.7 — 
Cornish granite - - - - - 2.8 —• 
Peterhead ditto - - - - - 3.7 — 
Limestone (compact blk) - - 4 — 
Purbeck. - - 4 — 
Aberdeen granite - - - - 5 — 

Brick, pale red ... - . i3 - .56 — 
red. - - .8 — 
Hammersmith (pavior’s) - - 1 — 

ditto (burnt) - - - 1.4 —1 
Chalk. - - .22 —- 
Plaster of Paris - - - - .o3 
Glass, plate. 4 
Bone (ox). 2.2 
Hemp fibres glued together 4i 
Strips of paper glued together i3 
Wood, Box, spec, gravity .862 9 Barlow 

Ash..6 8 — 
Teak - - - - .9 7 — 
Beech - - - - .7 5 — 
Oak - - - - .92 5 — i-7 — 
Ditto - - - - .77 4 — 
Fir .... .6 5 — 
Pear - - - - .646 41 — 
Mahogany - - - .637 3£ — 
Elm. 6 - .57 — 
Pine, American - - - 6 - .73 — 
Deal, white - - - - 6 - .86 — 

In the result just obtained for the value of t, no atten¬ 

tion has been paid to the pressure upon the ends of the 

boiler or pipe, but these are usually made thick enough to 

throw the chances of breaking altogether upon the cylin¬ 

drical portion of the surface. 
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Equilibi iam of 

floating bodies; 

a body wholly 

immersed in a 

fluid; 

Y. 

EQUILIBRIUM OF FLOATING BODIES. 

§ 268.—The rules for finding the pressure against the 

sides of vessels are equally applicable to the determination 

of the pressure on the surfaces of bodies, however sub¬ 

jected to the action of a homogeneous heavy fluid. But 

when it is the question to ascertain the circumstances that 

determine a heavy body to be in equilibrio or in motion, 

when immersed in a heavy fluid, it is usual to employ the 

results deduced from the following considerations. 

Suppose a vessel A to contain 

any heavy fluid in a state of rest. 

All parts of the fluid being in equi- Fig. 305. 

librio, it is obvious that this state 

will in no respect be altered by sup¬ 

posing any portion B to become 

solid without changing its density. 

This solid is entirely immersed in 

the fluid, with which it has the same 

density, and is in equilibrio. Now 

this solid is urged downward by its 

weight, which passes through its 

centre of gravity. This weight can only be in equilibrio 

with a single force when the latter is directed vertically 

upward through the centre of gravity of the body, which 

centre coincides with that of the fluid converted into a solid, 

or that of the displaced fluid. But the only forces that 

act upon the solid besides its weight, are the pressures of 

the surrounding fluid; whence we conclude that 

1st. The pressures upon the surface of a body entirely im¬ 

mersed in a fluid, have a single resultant, and that this result¬ 

ant is directed vertically upward. 

first result; 



MECHANICS OF FLUIDS. 511 

2d. The resultant of all the pressures is equal, in intensity, sect ’ rcsuH; 

to the weight of the displaced fluid. 

3d. The line of direction of the resultant, passes through third result; 

the centre of gravity of the displaced fluid. 

4tli. The horizontal pressures destroy each other. fourth result; 

Again, if without altering the volume of this solid, we 

give it an additional quantity of matter, it is obvious that 

the weight of this latter will cause it to descend, that is, 

sink to the bottom of the vessel. Or if, without altering 

its volume, we conceive a portion of matter taken from its 

interior, the equilibrium will again be destroyed, the weight 

of the solid will be diminished by that of the subducted 

matter, the resultant of the pressures will prevail, and the 

body will rise to the surface, through which it will con¬ 

tinue to ascend, till the weight of the fluid displaced by 

the part immersed, is equal to that of the entire body. 

In the first case, the density of the body will be in¬ 

creased, containing a greater quantity of matter under the an immersed 

same volume, and in the second the density will be dimin- !?odfy wlU 9I,nk or 

ished ; and as the density of the original body was the as its density is 

same as that of the fluid, we see that when the density of fhan tiuflof the 

an immersed body is greater than that of the fluid, it ivill sink fluid; 

to the bottom; when less, it ivill rise to the surface, and float. 

It follows, also, from what has been said above, that 

when a body is immersed in a fluid, it will lose a portion of 

its weight equal to that of the 

displaced fluid. This is beau¬ 

tifully illustrated by what 

is usually called the “ cylin¬ 

der and bucket ” experiment. 

Place a hollow cylinder a, 

in one of the scales of a 

balance; suspend to this., 

scale a second cylinder b, of 

solid metal, exactly fitting 

the former, and in the oppo¬ 

site scale put a weight c, that 

Fig. 306. 

the body will lose 

a portion of its 

weight equal to 

that of the 

displaced fluid ; 
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cylinder and 

bucket 

experiment; 

weight of the 

Immersed solid 

transmitted to the 

vessel; 

experimental 

proof; 

this principle 

used to find 

weight of ships, 

fcc.; 

Fig. 306. shall restore the equilibrium 

of the balance. Now im¬ 

merse the cylinder J in a 

vessel W of water, the scale 

of the weight c will de¬ 

scend ; fill the cylinder a 

with water taken from the 

vessel TFJ the beam of the 

balance will return to its 

horizontal position. 

The weight lost by the 

solid is transmitted through 

the fluid to the vessel, in the same w*iy that the weight of a 

person in bed is transmitted through the latter to the bed¬ 

stead, and thence to the floor. This is proved, experiment¬ 

ally, thus: Place a tumbler of water in one of the scales 

A of a balance, bring the beam to a horizontal position by 

means of the empty hollow cylinder a of the last experi¬ 

ment and a weight c; sus¬ 

pend the solid cylinder b by 

means of a thread from a 

detached ring i?, and depress 

it till it is wholly immersed 

into the water of the tum¬ 

bler; the scale A will fall; 

fill the cylinder a with water 

of the same temperature and 

density as that in the tum¬ 

bler ; the equilibrium will 

be restored. 

This important principle, 

which determines the circumstances under which a body 

will rest upon a fluid, is frequently employed to ascertain 

the weights of large floating masses, such as ships, boats, 

and the like, which are entirely beyond the capacity of our 

ordinary weighing machines. For this purpose the vol¬ 

ume, in cubic feet, of the immersed part is computed from 

Fig. 263. 
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the known figure and dimensions of the body, and this is weight of a ship’s 

multiplied by the known weight of a cubic foot of water, carso; 

which is 62.5 pounds avoirdupois; the product is the 

weight of the floating body, in pounds. By taking in this 

way the difference of weights of a ship, with and without 

her cargo, the weight of the latter may be ascertained. 

The upward action by which an immersed body appa¬ 

rently loses a portion of its weight, is called the buoyant buoyant effort of 

effort of the fluid; and as the line of direction of this effort afluid; 

passes through the centre of gravity of the displaced fluid, 

this point is called the centre of buoyancy. The vertical centre of 

line through the centre of buoyancy, is called the line of buoyancy; 

support. The weight of a body acting at its centre of grav- line of support; 

ity downward, and the buoyant effort at the centre of 

buoyancy upward, the body can only be in equilibrio 

when the line joining these centres is vertical, for it is only 

then that the forces are directly opposed. When the line 

joining the centre of buoyancy and the centre of gravity 

of the floating body is vertical, it is called the line of rest, line of rest; 

When the equilibrium exists, it may be stable, unstable, stable, unstable, 

or indifferent. If stable, the body will not overturn when equilibrium; 

careened; if unstable, it will; if indifferent, the body will 

retain any position in which it may be placed. 

Let MQN repre¬ 

sent a section of any 

body, as a boat at ' 

rest upon the water, 

of which the upper 

surface is AB, called 

the plane of floatation. 

When this plane is 

produced through the 

boat, it will divide her 

into two partial vol¬ 

umes, the lower of 

which being supposed for an instant to coifsist of water, 

would weigh as much as the entire boat and her load, and 
33 
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series of cutting 

planes; 

oscillations of the 

boat; 

position of the. 

line of rest 

during the 

equilibrium; 

this whatever be her position, whether careened or erect. 

Whence it follows, that if a series of planes M' iV', M" A", 

&c., be passed, making the volumes M'QNr, M" QNn, 

&c., respectively equal to MQN, these planes will, each 

in its turn, come to coincide with the plane of floatation, 

whenever the boat, in the process of careening, takes a 

suitable position. But these planes may be regarded as so 

many tangent planes to a curved surface abc, which may 

be conceived as invariably connected with the boat. Now 

the effect, as regards the careening motion, will be the same 

as though this surface were the boundary of a physical 

axis which is made 

to roll back and forth 

on the plane of float¬ 

ation, regarded as a 

physical surface, after 

the manner of the 

pendulum axis on 

its supporting plane, 

during an oscillation. 

When the boat has 

a position of equi¬ 

librium, the line of 

Fig. 308. 

G 

support and of rest coincide, and are normal to this 

surface at its lowest point c. As the boat careens, the 

line of support, being always vertical, will still be normal 

to this axis surface at its lowest point, being that in which 

it is tangent to the plane of floatation; hence each of these 

normal lines must in turn become a line of support. If 

two normals a 0 and a'O, which lie in the same plane, be 

drawn at tangential points answering to two consecutive 

positions of the boat, these normals will intersect at some 

point 0, which point will, obviously, be the momentary 

centre of rotation, when the plane of floatation coincides 

with M" N". When one of these normals coincides with 
% 

the line of rest, the point 0 is called the metacentre, being 

the point of intersection of the line of rest, with an adjacent 

metacentre; 
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line of support. But we have seen tliat the equilibrium of 

a heavy body which may turn about a fixed point, will be 

stable or unstable, according as the centre of gravity during 

a slight departure from a position of equilibrium is com¬ 

pelled by the connection to ascend or descend; and it is 

obvious that, in the present case, the centre of gravity will 

ascend or descend on making a slight derangement of the 

line joining the centres of buoyancy and of gravity from 

the line of rest, according as the centre of gravity is below 

or above the metacentre. Whence we see, that the equilib¬ 

rium will be stable when the centre of gravity is below the meta¬ 

centre’, unstable when the relative positions of these points are 

reversed, and indifferent when these centres coincide, for then a 

slight derangement ivill cause no motion in the centre of gravity. 

It is also obvious that the stability of the equilibrium will 

be the greater, in proportion as the centre of gravity of the 

floating body be at a greater distance below the centre of 

buoyancy. It is for this reason that ships sent to sea 

without cargoes are provided with ballast of stone, sand, 

or other heavy mat¬ 

ter, to diminish the 

chances of upsetting. 

The buoyant effort 

of water is used to 

great advantage in 

raising heavy sunken 

masses. For this pur¬ 

pose it is usual to 

connect two or more 

boats A and B, by means of a substantial cross-beam; to 

fill them nearly full of Avater, that they may sink asknv as 

possible, and while in this condition to attach the body to 

be raised to the cross-beam by means of a taught chain or 

rope, and then to pump the Avater from the boats; the ten¬ 

sion upon the chain will be equal to the Aveight of the 

water pumped from the boats. If it is the question to 

raise a sunken boat, one of the most effective means is to 

defined; 

the nature of the 

equilibrium 

determined by 

the relative 

positions of the 

centres; 

object of ship- 

ballast : 

Fig. 309. 

buoyant effort 

used to raise 

sunken masses; 

a common rrioda 

of employing ttitf 

principle 
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force empty and water-tight barrels between her deck and 

hull. 

Level strata in 

heterogeneous 

fluids; 

mixture of 

different fluids 

having no 

affinity for each 

other; 

will form level 

strata; the most 

dense lowest; 

the same results 

from the 

properties of the 

centre of gravity 

§ 269.—We have just seen that when a body is im¬ 

mersed in a fluid, it loses a portion of its weight equal to 

that of the displaced fluid, and that it will sink or rise to 

the surface, depending upon its relative density. This is 

universally true whatever be the size and number of the 

bodies immersed. If, therefore, one fluid be poured into 

another for which it has no affinity, as oil into water, it 

will sink to the bottom or rise to the surface and float, 

according as its density is greater or less than that of the 

fluid into which it is poured. The elements of the lighter 

fluid will act as so many immersed bodies till they reach 

the surface of the heavier fluid, where, being freed from the 

buoyant action of the latter, the}^ will arrange themselves, 

under the efforts of their own weight, into a stratum of 

which the upper surface will, like that of the fluid below it, 

be perpendicular to the direction of the force of gravity. 

What is here said of two, is equally applicable to three, 

four, or any number of fluids of different densities mixed 

together; whence we conclude, that such fluids will come to 

rest only after arranging themselves into LEVEL STRATA in the 

order of their densities ; the most dense being at the bottom and 

the least dense at the top. This is confirmed by daily obser¬ 

vation, and may be easily illustrated by pouring mercury, 

water, and oil, into a common tumbler. The mercury 

will come to rest at the bottom, the oil at the top, the 

upper surfaces of all being level. 

The same conclusion follows from the consideration, 

that these fluids when mixed constitute a heavy system, 

which, we have seen, can only come to a state of stable 

; equilibrium when its centre of gravity is at the lowest 

point, a condition only fulfilled by the arrangement, in 

respect to density, just described. 

If the elements of one fluid have an affinity for those 

‘•of another, this affinity will, when the fluids come into con- 
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1(j| tact, counteract the buoyant action of the heavier fluid, they wm not 

and the lighter will be held in a state of mixture. In- ®b't‘Jm when the 
° fluids have an 

stance wine and water, water and alcohol, brandy and affinity for each 

water, and the like. 
other. 

VI. 

SPECIFIC GRAVITY. 

§ 270.—The specific gravity of a body, is the weight specific gravity 

of so much of the body, as would be contained under a defined; 

unit of volume. 

It is measured by the quotient arising from dividing 

the weight of the body by the weight of an equal volume 

of some other substance, assumed as a standard; for the its measure; 

ratio of the weights of equal volumes of two bodies being 

always the same, if the unit of volume of each be taken, 

and one of the bodies become the standard, its weight will 

become the unit of weight. 

The term density denotes the degree of proximity density; 

among the particles of a body. Thus, of two bodies, that 

will have the greater density which contains, under an 

equal volume, the greater number of particles. The force 

of gravity acts, within moderate limits, equally upon all illustration; 

elements of matter. The weight of a substance is, there¬ 

fore, directly proportional to its density, and the ratio of 

the weights of equal volumes of two bodies is equal to the 

ratio of their densities. Denote the weight of the first 

by W] its density by D, its volume by EJ and the force 

of gravity by y, then will Eq. (26)' 

W = g.D.V; 
measure for the 

weight of a body j 

and denoting the like elements of the other body by Wn 
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weight of a 

second body; 

ratio of the 

weights; 

same when the 

volumes are 

equal; 

specific gravity; 

specific gravity 

and density 

expressed by 

same number! 

for same 

standard. 

Choice of a 

standard; 

Dn and U we have 

w, = g. D,. V, 

Dividing the first by the second, 

W _ c) BY _ D V 

w, a D, V, D, V,' 

and making the volumes equal, 

W D 

W. D, 
• • . (227). 

Now suppose the body whose weight is Wt to be assumed 

as. the standard both for specific gravity and density, then 

will Dt be unity, and 

W 

s = IV, = ° ■ 
• • (228); 

in which S denotes the specific gravity of the body whose 

density is D; and from which we see, that when specific 

gravities and densities are referred to the same substance 

as a standard, the numbers which express the one will 

also express the other. 

§ 271.—Bodies present themselves under every variety 

of condition—gaseous, liquid, and solid; and in every kind 

of shape and of all sizes. The determination of their specific 

gravity, in every instance, depends upon our ability to find 

the weight of an equal volume of the standard. When a 

solid is immersed in a fluid, it loses a portion of its weight 

equal to that of the displaced fluid. The volume of the 

body and that of the displaced fluid are equal. Hence the 

weight of the body in vacuo, divided by its loss of weight 

when immersed, will give the ratio of the weights of equal 
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volumes of tlie body and fluid; and if the latter be taken 

as the standard, and the loss of weight occupies the de¬ 

nominator, this ratio becomes the measure of the specific 

gravity of the body immersed. For this reason, and in 

view of the consideration that it may be obtained pure at 

all times and places, water is assumed as the general stand- water assumed as 

ard of specific gravities and densities for all bodies. the ®tandard for 

Sometimes the gases and vapors are referred to atmo-and density; 

spheric air, but the specific gravity of the latter being 

known as referred to water, it is very easy, as we shall gases sometimes 

presently see, to pass from the numbers which relate to atmospheric air 

one standard to those that refer to the other. 

§ 272.—But water, like all other substances, changes its varying density 

density with its temperature, and, in consequence, is notofwate1’ 

an invariable standard. It is hence necessary either to 

employ it at a constant temperature, or to have the means 

of reducing the specific gravities, as determined by it at 

different temperatures, to what they would have been if 

taken at a fixed or standard temperature. The former is 

generally impracticable; the latter is easy. 

Let D denote the density of any solid, and S its specific reduction to a 

gravity, as determined at a standard temperature corre- temperature • 

sponding to which the density of the water is Dr Then, 

Eq. (227), 

specific gravity at 

one temperature; 

Again, if S' denote the specific gravity of the same body, 

as indicated by the water when at a temperature different 

from the standard, and corresponding to which it has a 

density D„, then will 

same at another 

temperature; S’ = 
D 

D n 

4.0 ‘Ul Dividing the first of these equations by the second, we 
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ratio of these 

soecific gravities; 

specific gravity 

reduced to a 

standard; 

expressed in 

words; 

density of water 

at different 

temperatures; 

ii- 

volume of a 

slender cylinder; 

have 

£ = A,. 
S' 1), ’ 

whence 

S = S' • jf- . . . . (229); 

and if the density D, be taken as unity, 

S = S' • Dn . . . . (230). 

That is to say, the specific gravity of a body as determined at 

the standard temperature of the water, is equal to its specific 

gravity determined at any other temperature, multiplied by the 

density of the water corresponding to this temperature, the 

density at the standard temperature being regarded as unity. 

To make this rule practicable, it becomes necessary to 

find the relative densities of water at different temperatures. 

For this purpose, take any metal, say silver, that easily 

resists the chemical action of water, and whose rate of ex¬ 

pansion for each degree of Fahr. thermometer is accurately 

known from experiment; give it the form of a slender 

cylinder, that it may readily conform to the temperature 

of the water when immersed. Let the length of the cylin¬ 

der at the temperature of 32° Fall, be denoted by l) and 

the radius of its base by ml; its volume at this tem¬ 

perature will be, 

* m2l2 X l — * m213. 

Let nl be the amount of expansion in length for each 

degree of the thermometer above 32°. Then, for a tem¬ 

perature denoted by £, will the whole expansion in length 

be 

its expansion; nl X (t — 32°), 
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and the entire length of the cylinder will become 

l + nl {t - 32°) = l [1 + n (t - 32°)] ; 
its increased 

length; 

which, substituted for l in the first expression, will give 

the volume for the temperature t equal to 

[1 + n (t - 32°) ]3. 
its increased 

volume; 

The cylinder is now 

weighed in vacuo and 

in the water, at dif¬ 

ferent temperatures, 

varying from 32° 

upward, through any 

desirable range, say 

to one hundred de¬ 

grees. The temper¬ 

ature at each pro¬ 

cess being substituted 

above, gives the vol¬ 

ume of the displaced 

fluid; the weight of 

the displaced fluid is 

known from the loss 

of weight of the cyl¬ 

inder. Dividing this 

weight by the vol¬ 

ume, gives the weight 

Fig. 310. 

experimental 

determination of 

the density of 

water at different 

temperatures; 

of the unit of volume 

of the water at the temperature t. It was found by Stampfer, 

that the weight of the unit of volume is greatest when the greatest density 

temperature is 38.75 Fahrenheit’s scale. Taking the den- at 

sity of water at this temperature as unity, and dividing the 

weight of the unit of volume at each of the other tem¬ 

peratures by the weight of the unit of volume at this, 
o 

38.75, the following table will result:— 
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' 

TABLE 

of the Densities and Volumes of Water at different Degrees 

of Heat, (according to Stampfer,) for every 2J Degrees of 

Fahrenheit’s Scale. 

(Juhrbuck dcs Polytcchn is cl ten Institutes in JVein, Bd. 1G. 5. 70.) 

\ 
t 

Temperature. 
A/ 

Density. 
Diff. V 

Volume. 
Diff. 

o 
32.00 
34.25 

0.999887 
0.999950 63 

I.000113 
i.oooo5o 63 

36.5o 0.999988 38 1.000012 38 
38.75 1.000000 12 1.000000 12 
41 . oo 0.999988 12 1.000012 12 
43.25 0.999952 35 r.000047 35 
45.5o 0.999894 58 1.000106 59 
47-75 0.999813 81 1.000187 81 
5o.oo 0.999711 102 1.000289 102 
52.25 0.999687 124 1.000413 124 
54.5o 0.999442 i45 1.ooo558 i45 
56.75 0.999278 164 1.000723 165 
59.00 0.999096 183 1.000906 i83 
61.25 0.998893 202 1.001108 202 
63.5o 0.998673 220 1.001329 221 
65.75 0.998435 238 1.001667 238 
68.00 0.998180 255 1.001822 255 
70.2.5 0.997909 271 1.002095 273 
72.50 0.997622 287 1.002384 289 
74.75 0.997320 302 1.002687 3o3 
77.00 0.997003 317 1.oo3oo5 318 
79.25 0.996673 33o 1.oo3338 333 
81.5o 0.996329 344 1.oo3685 347 
83.75 0.995971 358 1.oo4o45 36o 
86.00 0.995601 370 1.004418 373 
88.25 0.996219 382 1.004804 386 
90.60 0.994825 394 I.005202 398 
92.75 0.994420 4o5 1.oo56i2 4io 
95.00 0.994004 4i6 1.006032 420 
97.25 0.993579 4s5 1.006462 43o 
99.50 0.993145 434 1.006902 44o 

With this table it is easy to find the specific gravity by 

means of water at any temperature. Suppose, for example, 

the specific gravity S' in Eq. (230), had been found at the 

temperature of 59°, then would Du in that equation, be 

0.999095, and the specific gravity of the body referred to 

water at its greatest density, would be given by 

S = S' x 0.999095. 
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The column under the head V, will enable us to determine relation of 

how much the volume of any mass of water, at a tempera- volame3ofthe 

ture t, exceeds that of the same mass at its maximum den- fluid at different 

sity. For this purpose, we have but to multiply the volume temperatures* 

at the maximum density by the tabular number corre¬ 

sponding to the given temperature. 

§ 273.—Before proceeding to the practical methods of moments used 

finding the specific gravity of bodies, and to the variations ,ofin<i,ho 

m the processes rendered necessary by the peculiarities of a body; 

the different substances, it will be necessary to give some 

idea of the best instruments employed for this purpose. 

These are the Hydrostatic Balance and Nicholson's Hy¬ 

drometer. 

The first is simi¬ 

lar in principle and 

form to the common 

balance. It is provi¬ 

ded with numerous 

weights, extending 

through a wide range, 

from a small fraction 

of a grain to several 

ounces. Attached to 

the under surface of 

one of the basins is 

a small hook, from 

which may be sus¬ 

pended any body by 

means of a thin plat¬ 

inum wire, horse-hair, or any other delicate thread that mode of attaching 

will neither absorb nor yield to the chemical action of the thebody? 

fluid in which it may be desirable to immerse it. 

Nicholson’s Hydrometer consists of a hollow metallic ball Nicholson’s 

A, through the centre of which passes a metallic wire, hJ'drometer5 

prolonged in both directions beyond the surface, and sup¬ 

porting at cither end a basin B and B'. The concavities 
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description, and 

conditions the 

instrument must 

satisfy. 

of these basins are turned in the 

same direction, and the basin B' is 

made so heavy that when the in¬ 

strument is placed in water the 

stem G C' shall be vertical, and a 

weight of 500 grains being placed 

in the basin B, the whole instru¬ 

ment will sink till the upper surface 

of distilled water, at the standard 

temperature, comes to a point C 

marked on the upper stem near its 

middle. This instrument is pro¬ 

vided with weights similar to those of 

Balance. 

Pig. 312. 

the Hydrostatic 

Process for 

finding specific 

gravity of a solid 

heavier than 

waterby the 

balance; 

§ 274.—(1). If the body be solid, insoluble in water, and 

will sink in that fluid, attach it, by means of a hair, to the 

hook of the basin of the hydrostatic balance; counterpoise 

it by placing weights in the opposite scale; now immerse 

the body in water, and restore the equilibrium by placing 

weights in the basin above the body, and note the tem¬ 

perature of the water. Divide the weights in the basin to 

which the body is not attached by those in the basin to 

which it is, and multiply the quotient by the density cor¬ 

responding to the temperature of the water, as given by 

the table; the result will be the specific gravity. 

Thus denote the specific gravity by S, the density of 

the water by Bin the weight in the first case by 1FJ and 

that in the scale above the solid by w, then will 

specific gravity; 

when the body is 

lighter than 

water; 

(2). If the body be insoluble, but will not sink in water, as 

would be the case with most varieties of wood, wax, and 

the like, attach to it some body, as a metal, whose weight 

in the air and loss of weight in the water are previously 
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r 

found. Then proceed exactly as in the case before, to find 

the weights which will counterpoise the compound in air process 

and restore the equilibrium of the balance when it is im- descnbed; 

mersed in the water. From the weight of the compound 

in air, subtract that of the heavier body in air; from the 

loss of weight of the compound in water, subtract that of 

the heavier body; divide the first difference by the second, 

and multiply by the density of the water answering to its 

temperature, and the result will be the specific gravity 

of the lighter body. 

Example. 

A piece of wax and copper in air 

Lost on immersion in water - - 

Copper in air. 

Loss of copper in water - - - 

Then 

IF + W' - IF' = 438 - 388 - 50 = W, 

w + wr — w' = 95.8 — 44.2 — 51.6 = iv. 

specific gravity 
of wax; 

(3). If the body readily dissolve in ivater, as many of 

the salts, sugar, &c., find its apparent specific gravity in 

some liquid in which it is insoluble, and multiply this 

apparent specific gravity by the density or specific gravity when the body 

of the liquid referred to water at its maximum density as ]®solublcl« 

a standard; the product will be the true specific gravity, fluid; 

If it be inconvenient to provide a liquid in which the 

solid is insoluble, saturate the water with the substance 

Temperature of water 43.25, 

Bu = 0.999952, 

S = D.. X — = 0.999952 X -A = 0.968. 
w 51.6 

grs. 
— 438 =: IF + IF', example; . 
= 95.8 = W + W\ the of wax; 

= 388 = IF', 

= 44.2 = w’. 



and find the apparent specific gravity with the water thus 

saturate the saturated. Multiply this apparent specific gravity by the 

ilody^am/pioceed density of the saturated fluid, and the product will be the 

as before; specific gravity referred to the standard. This is a com¬ 

mon method of finding the specific gravity of gunpowder, 

the water being saturated with nitre. 

(4). If the hocly he a liquid, select some solid that 

when the body is will resist its chemical action, as a massive piece of glass 

aliquid; suspended from fine platinum wire; weigh it in air, then 

in water, and finally in the liquid; the differences between 

the first weight and each of the latter, will give the 

weights of equal volumes of water and the liquid. Divide 

the weight of the liquid by that of the water, and the 

quotient will be the specific gravity of the liquid, pro* 

rule; vided the temperature of water be at the standard. If the 

water have not the standard temperature, multiply this 

apparent specific gravity by the tabular density of the 

water corresponding to the actual temperature. 

example; 

Example. 

grs. 
Loss of glass in water at 41°, 150 = w\ 

u “ sulphuric acid, 277.5 = w, 

specific gravity 

of sulphuric acid; 
s 277.5 

160 
X 0.999988 = 1.85. 

(5.) If the body be a gas or vapor, provide a large glass 

flask-sliaped vessel, weigh it when filled with the gas; 

when the body is withdraw the gas, which may be done by means to be ex- 

a gas oi vapoi, p}aineq presently, fill with water, and weigh again ; finally, 

withdraw the water and exclude the air, and weigh again. 

This last weight subtracted from the first will give the 

weight of the gas that filled the vessel, and subtracted 

from the second will give the weight of an equal volume 

process; of water; divide the weight of the gas by that of the 

water, and multiply by the tabular density of the water ! 
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answering to the actual temperature of the latter; the result 

will be the specific gravity of the gas. 

The atmosphere in which all these operations must be influence of the 

performed, varies at different times, even during the same atmo3Phere; 

day, in respect to temperature, the weight of its column 

which presses upon the earth, and the quantity of moisture 

or aqueous vapor it contains. That is to say, its density 

depends upon the state of the thermometer, barometer, 

and hygrometer. On all these accounts corrections must temperature; 

be made, before the specific gravity of atmospheric air, or pressure; 

that of any gas exposed to its pressure, can be accurately 

determined. The principles according to which these cor¬ 

rections are made, will be discussed when we come to treat moisture; 

of the properties of elastic fluids. 

To find the specific gravity of a solid by means of 

Nicholson’s Hydrometer, place the instrument in water, mode of using 

and add weights to the upper basin till it sinks to the mark Nlcholso“8 

on the upper stem ; remove the weights and place the solid solids; 

in the upper basin, and add weights till the hydrometer 

sinks to the same point; the difference between the first 

weights and those added with the body, will give the 

weight of the latter in air. Take the body from the upper 

basin, leaving the weights behind, and place it in the lower 

basin; add weights to the upper basin till the instrument 

sinks to the same point as before, the last added weights 

will be the weight of the water displaced by the body; 

divide the weight in air by the weight of the displaced 

water, and multiply the quotient by the tabular density of 

the water answering to its actual temperature; the result 

will be the specific gravity of the solid. 

To find the specific gravity of a fluid by this instru¬ 

ment, immerse it in water as before, and by weights in the also for fluids; 

upper basin sink it to the mark on the upper stem ; add 

the weights in the basin to the weight of the instrument, 

the sum will be the weight of the displaced water. Place 

the instrument in the fluid whose specific gravity is to be 

found, and add weights in the upper basin till it sinks to 
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the mark as before; add these weights to the weight of the 

instrument, the sum will be the weight of an equal vol¬ 

ume of the fluid; divide this weight by the weight of the 

water, and multiply by the tabular density corresponding to 

the temperature of the water, the result will be the spe¬ 

cific gravity. 

The scale 

areometer 

description; 

the principle of 

this instrument; 

§ 275.—Besides the hydrometer of Nicholson, which 

requires the use of weights, there is another form of this 

instrument which is employed solely in the determination 

of the specific gravities of liquids, and its indications are 

given by means of a scale of equal parts. It is called 

the Scale-Areometer. It consists, gen¬ 

erally, of a glass vial-shaped vessel 

A, terminating at one end in a long 

slender neck C, to receive the scale, 

and at the other in a small globe B) 

filled with some heavy substance, as 

lead or mercmy, to keep it upright 

when immersed in a fluid. The appli¬ 

cation and use of the scale depend 

upon this, that a body floating on the 

surface of different liquids, will sink 

deeper and deeper, in proportion as 

the density of the fluid approaches 

that of the body; for when the body 

is at rest its weight and that of the 

displaced fluid must be equal. Deno¬ 

ting the volume of the instrument by 

V, that of the displaced fluid by V', 

the density of the instrument by J9, and that of the fluid 

by D', we must always have 

conditions of 

equilibrium; 

in which g denotes the force of gravity, the first member 

the weight of the instrument, and the second that of the 

gVD^g V'D'; 
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displaced fluid. Dividing both members by D' Vt and 

omitting the common factor ?/, we have 

ratio of densities 

equal to that of 

the volumes 

inversely; 

In which, if the densities be equal, the volumes must be 

equal; if the density D' of the fluid be greater than I), or 

that of the solid, the volume V of the solid must be greater 

than V', or that of the displaced fluid; and in proportion 

as D' increases in respect to D, will V' diminish in lespect 

to FJ that is, the solid will rise higher and higher out 

of the fluid in proportion as the density of the latter is in¬ 

creased, and the reverse. The neck C of the vessel should 

be of the same diameter throughout. To establish the 

scale, the instrument is placed in distilled water at the 

standard temperature, and when at rest the place of the construction of 

surface of the water on the neck is marked and numbered thescdle> 

1; the instrument is then placed in some heavy solution 

of salt, whose specific gravity is accurately known by 

means of the Hydrostatic Balance, and when at rest the 

place on the neck of the fluid surface is again marked and 

characterized by its appropriate number. The same pro¬ 

cess being repeated for rectified alcohol, will give another 

point towards the opposite extreme of the scale, which 

may be completed by graduation. 

To use this instrument, it will be sufficient to immerse use; 

it in a fluid and take the number on the scale which coin¬ 

cides with the surface. 

To bring into view the circumstances which determine 

the sensibility both of the Scale-Areometer and Nicholson’s 

Hydrometer, let s denote the specific gravity of the fluid, sensibility of the 

c the volume of the vial, l the length of the immersed 11)9tlumeut’ 

portion of the narrow neck, r its semi-diameter, and w the 

total weight of the instrument. Then will ^r2, denote the 

area of a section of the neck, and tfr2Z, the volume of fluid 

displaced by the immersed part of the neck. The weight, 
34 

D _ V' 

1)’ ~ V 
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therefore, of the whole fluid displaced by the vial and 

neck will be 

weight of fluid 

displaced 
sc + s * r21; 

but this must be equal to the weight of the instrument, 

whence 

condition of the 

equilibrium; 
W = S (c + •* T2 l), 

from which we deduce 

specific gravity ; 
W 

c + ne r2 V 

length of neck 

immersed; 

Now, immersing the instrument in a second fluid whose 

specific gravity is s', the neck will sink through a distance 

l\ and from the last equation we have 

length immersed 

for second fluid; 
l' == 

w s' c 

ne r1 s' 

l = 
■w — sc 

<K T? S 
(231). 

subtracting this equation from that above and reducing, 

we find 

difference of 

specific gravity; 

Inference; 

sensibility of 

Nicholson’s 

hydrometer; 

The difference l— V is the distance between two points on 

the scale which indicates the difference s' — s of specific 

gravities, and this we see becomes longer, and the instru¬ 

ment more sensible, therefore, in proportion as iv is made 

greater and r less. Whence we conclude that the Are¬ 

ometer is the more valuable in proportion as the vial por¬ 

tion is made larger and the neck smaller. 

If the specific gravity of the fluid remain the same, 

which is the case with Nicholson’s Hydrometer, and it 

becomes a question to know the effect of a small weight 
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added to the instrument, denote this weight by w\ then 

will Eq. (231) become 

V = 
w -f wf — sc 

it r2 s 
* 

subtracting from this Eq. (231), we find 

r - i = 
10 

rf T2, S 

From which we see that the narrower the upper stem of 

Nicholson’s instrument, the greater its sensibility. 
* , % . - ‘ o. ‘ ^ Z ' - 1 

TABLE 

of the Specific Gravities of some of the most important Bodies. 

[The density of distilled water is reckoned in this Table at its maximum 38J° F.=1.000.] 

Name of the Body. Specific Gravity. 

I. SOLID BODIES. 

(1) Metals. 

Antimony (of tlie laboratory) - - 4.2 — 4.7 
Brass - - - 7.6 — 8.8 
Bronze for cannon, according to Lieut. Matzka 8.4t4 — 8.974 
Ditto, mean .... - - 8.758 
Copper, molten - - - 7.788 — 8.726 
Ditto, hammered ... - - 8.878 — 8.9 
Ditto, wire-drawn ... - - 8.78 
Gold, molten - - - 19.238 — 19.253 
Ditto, hammered ... - - 19.361 — 19.6 
Iron, wrought - 
Ditto, cast, a mean ... 

- - 7.207 — 7.788 i 
- - 7.25i 

Ditto, gray .... - - 7.2 
Ditto, white - - - - - 7.5 , 
Ditto for cannon, a mean - - - 7.21 — 7.3o 
Lead, pure molten ... - - 11.33o3 i 
Ditto, flattened - - - 11.388 
Platinum, native ... - - 16.0 — 18.94 

’ ‘• ; i Ditto, molten - - - - - 20.855 
Ditto, hammered and wire-drawn - - 21.25 i 

Quicksilver, at 32° Fahr. - - - 13.568 — 13.698 
Silver, pure molten - - - 10.474 
Ditto, hammered ... • - 10.5i — 10.622 
Steel, cast - - - - 7-9T9 
Ditto, wrought - - - 7.840 , ; 
Ditto, much hardened - - 7.818 I, | 

Ditto, slightly - -- - - 7.833 : 
Tin, chemically pure - - - 7.291 
Ditto, hammered ... - - 7.299 — 7.47^ 
Ditto, Bohemian and Saxon - - 7.312 

531 



TABLE—continued. 

Name of the Body. Specific Gravity. 

Tin, English - - - ... i - 7.291 

Zinc, molten. - 6.861 - - 7.215 

Ditto, rolled. - 7.191 

(2) Building Stones. 
' 

Alabaster ----- - 2.7 - 3.0 
Basalt. - 2.8 - - 3.i 

Dolerite. - 2.72 - 2.93 

Gneiss ------ - 2.5 - 2.9 

Granite. - 2.5 - 2.66 

Hornblende. - 2.9 - - 3.i 

Limestone, various kinds - - - - 2.64 - - 2.72 

Phonolite. - 2.5i - - 2.69 

Porphyry ------ - 2.4 - - 2.6 

Quartz. - 2.56 - 2.75 

Sandstone, various kinds, a mean - 2.2 - - 2.5 
Stones for building ... - - 1.66 - - 2.62 

Syenite. - 2.5 — - 3. 

Trachyte - - - 2.4 - - 2’6 

Brick ... - - 1.41 - 1.86 

(3) Woods. 

Alder ..... 

Fresh-felled. 
0.8571 

| Dry. 
o.5ooi 

Ash ------- - 0.9036 o.644o 
Aspen . - 0.7654 o.43o2 
Birch - - - - 0.9012 0.6274 

Box. - 0.9822 0.5907 

Elm. - 0.9476 0.5474 
Fir. - 0.8941 o.555o 

Hornbeam. - 0.9452 0.7695 

Horse-chestnut ----- - 0.8614 0.5749 
Larch ------ - 0.9206 0.4735 
Lime. - 0.8170 0.4390 

Maple - 0.9036 0.6592 

Oak. - 1.0494 0.6777 j 
Ditto, another specimen ... - 1.0754 0.7075 i 

Pine, Finns Abies Ficea - - - - 0.8699 0.4716 1 

Ditto, Pinus Sylvestris - - 0.9121 o.55o2 
Poplar (Italian) - - 0.7634 0.3931 

Willow ------ - 0.7155 0.5289 

Ditto, white. - 0.9859 0.4873 

(4) Various Solid Bodies. 

Charcoal of cork - . 0.1 

Ditto, soft wood - - 0.28 — - o.44 
Ditto, oak. - 1.573 

Coal. - 1.232 — - i.5io 
Coke. - 1.865 
Earth, common. - 1.48 

rough sand. - 1.92 

rough earth, with gravel - 2.02 
: 

moist sand. - 2.o5 j 

gravelly soil - - 2.07 

day. - 2. l5 
clay or loam, with gravel - 2.48 , . ■ 1 
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TABLE—continued. 

Name of the Body. Specific Gravity. 

Flint, dark • • . 2.542 
Ditto, white - - - - 2.741 
Gunpowder, loosely filled 

coarse powder 
in 

m 0.886 
musket ditto - - - - 0.992 

Ditto, slightly shaken down 
musket-powder - . 1.069 

- 2.563 Ditto, solid - - - - 2.248 — 
Ice .... - - - - 0.916 — - 0.9268 

Lime, unslacked - - - - 1.842 

Resin, common - - - - - 1.089 

Rock-salt - - - - - 2.257 
Saltpetre, melted - - - - 2.745 

Ditto, crystallized - - - - 1.900 
- 2.24 Slate-pencil - - - - 1.8 

Sulphur - - - - - 1.92 — - i-99 
Tallow - - - - - 0.942 

Turpentine - - - - 0.991 

Wax, white - - - - 0.969 

Ditto, yellow - - - - 0.965 

Ditto, shoemaker’s - - - - 0.897 

II. LIQUIDS. 

Acid, acetic ... 1 .o63 

Ditto, muriatic - - - - - 1.211 

Ditto, nitric, concentrated - - - - 1.521 — - 1.522 

Ditto, sulphuric, English - - - - 1.845 

Ditto, concentrated (Nordh.) - - - 1.860 

Alcohol, free from water - - - - 0.792 

Ditto, common - - - - - 0.824 — - 0-79 
Ammoniac, liquid - - - - 0.875 

Aquafortis, double - - - - 1.3oo 

Ditto, single - - - 1.200 

Beer - • - _ - 1.023 — - i.o34 

Ether, acetic - - - - 0.866 
1 

Ditto, muriatic - - - - - o.845 — - 0.874 

Ditto, nitric - - - - 0.886 

Ditto, sulphuric - - - - 0.715 
- 0.953 Oil, linseed - - - - 0.928 — 

Ditto, olive - - - - 0.915 
- 0.891 Ditto, turpentine - - - - 0.792 — 

Ditto, whale - - - - 0.923 
- 13.598 Quicksilver - - - - 13.568 - 

Water, distilled - - - - - 1.000 

Ditto, rain - • • - 1.0013 

Ditto, sea - • - • . 1.0265 — - 1.028 

Wine ... - - - - 0.992 — - i.o38 

III. GASES. 

‘Atmospheric air = y^Tf = 

Water— 1. 
Temp. 38J° F. 
0.ooi3o 

Barometer 
30 In. 

Temp. = 34°. 
1.0000 ' 

Carbonic acid gas - - - - 0.00198 I.5240 

Carbonic oxide gas - - - - 0.00126 0.9569 

Carbureted hydrogen, a maximum - - 0.00127 0.9784 

. Ditto, from coals - - - \ 0.00039 
o.ooo85 

0.3ooo 
o.55o6 
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use of a table of 

specific gravities; 

weight of any 

body; 

weight of a cubic 

foot of distilled 

water at 

maximum 

density; 

TABLE— Continued. 

Name of the Body. Specific Gravity. 

Chlorine. 

Water = 1. 
Temp. 38f° F. 
0.00321 

Barometer 
31) In. 

Temp. = 34°. 
2.4700 

Hydriodic gas. - o.oo577 4.443o 

Hydrogen ----- - O.00008^5 0.0688 
Hydrosulphuric acid gas ... - o.ooi55 I.1912 
Muriatic acid gas - - 0.00162 I.2474 
Nitrogen. - 0.00127 0.9760 
Oxygen ------ - o.ooi43 I.1026 

Phosphureted hydrogen gas - 0.001i3 O.87OO 
Steam at 212° Fahr. - - - - - 0.00082 0.6235 
Sulphurous acid gas - - 0.00292 2.2470 

The knowledge of the specific gravities or densities of 

different substances is of great importance, not only for 

scientific purposes, but also for its application to many of 

the useful arts. This knowledge enables us to solve such 

problems as the following, viz.:— 

1st. The weight of any substance may be calculated, 

if its volume and specific gravity be known. 

2d. The volume of any body may be deduced from its 

specific gravity and weight. Thus we have always 

W = gD V; 

in which g is the force of gravity, D the density, V the 

volume, and W the weight, of which the unit of measure 

is the weight of a unit of volume of water at its maxi¬ 

mum density. 

Making D and V equal to unity, this equation becomes 

! T v, = g; 
j 

but if the density be one, the substance must be water at 
O 

38.75 Fahr. The weight of a cubic foot of water at 

60° is 62.5 lbs., and, therefore, at 38.75, it is 

62.5 

0.99914 

lbs. 

62.556 ; 
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whence, if the volume be expressed in cubic feet, volume in cubic 

feet; 

lbs. 

W - 62.556 x D V. . . (232), 

m which IF is expressed in pounds; and if the unit of 

volume be a cubic inch, 

weight of a body 

in pounds, 

volume being in 

cubic feet; 

Also 

W = ~~ JDV= 0.0362011) V, . 
172o 

(233). 

weight in 

pounds, 

volume in cubic 

inches; 

w. 
lbs. 

62.556 . D 

volume in cubic 

feet; 

V. = 
w. 

lbs. 

0.036201. D 
. . . (235). 

volume in cubic 

inches; 

Example 1st Required the weight of a block of dry example first; 

fir, containing 50 cubic inches. The specific gravity or 

density of dry fir is 0.555, and V = 50; substituting these 

values in Eq. (233), 

lbs. weight of 50 

W = 0.036201 X 0.555 X 50 = 1.00457. cubic inches of 

fir; 

Example 2d. How many cubic inches are there in a example second; 

12-pound cannon-ball? Here W is 12 pounds, the mean 

specific gravity of cast iron is 7.251, which, in Eq. (235), 

give 

12 
0.036201 X 7.251 

45.6. 
volume of a 12* 

pound cannon¬ 

ball. 
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YII. 

COMPRESSIBLE FLUIDS. 

Peculiarities of 

gases and vapors; 

contract and 

expand according 

to pressure * 

conditions of 

rest; 

no marked 

variety of 

fluidity; 

usually 

transparent; 

*mall density; 

§ 276.—The properties of liquids which have now been 

considered, are common to all fluids. But gases and 

vapors have, in addition, properties peculiar to themselves 

which we iioav proceed to consider. 

Gases and vapors differ mostly from liquids, in the 

readiness with which they yield a portion of their volume 

and contract into smaller spaces when subjected to an 

augmentation of external pressure, and diffuse themselves 

in all directions when this pressure is withdrawn. These 

distinguishing properties are due to the repulsive forces or 

molecular springs by which the particles are urged to 

separate from each other, and which make it impossible 

for compressible fluids, that are also highly elastic, ever 

to be at rest, unless these forces are opposed by the reaction 

of inclosing surfaces, as the sides of vessels, or the appli¬ 

cation of some other antagonistic forces acting inwardly, 

as in the case of the earth’s attraction upon our atmosphere. 

Besides these essential peculiarities, there are other 

characteristics that distinguish compressible fluids, usually 

denominated aeriform bodies, from the other forms of 

aggregation. Between solids and liquids, a gradation is 

observable, and in the degree of fluidity of the latter, a 

strongly marked variety obtains—as in tar, oil, water, 

ether, and the like; but between compressible and incom¬ 

pressible fluids, these connecting links are less obvious. 

Again, as a general rule, gases are highly transparent, 

for most part colorless, and therefore invisible, and are 

distinguished from all other bodies by their small degree 

of density and consequent low specific gravity. 
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The atmosphere, as being the most important of the 

aeriform bodies, may be taken as the representative of the atmosphere the 

whole class, as regards their mechanical properties. It is t>pe of the class 

to this class of bodies, what water is to liquids. It exists 

all over the earth, and its ever-active agency in the pro¬ 

duction of phenomena, makes it not less interesting than 

important to determine the laws of its equilibrium and 

motion. 

(1) The compressibility and elasticity are easily shown compressibility 

by inclosing the air in a bag of some impervious substance, 8hown. 

as india-rubber, and pressing it with the hand; the hand 

will experience a resistance, while the volume of the con¬ 

fined air will diminish: on removing the hand, the bag 

will be distended by the elasticity 

of the air, and restored to its for¬ 

mer dimensions. Air-pillows and 

cushions, in common use, are famil¬ 

iar illustrations. 

(2) A is a two-necked bottle con¬ 

taining some liquid, as water, B an 

inflated bladder, or india-rubber 

bag, attached by the neck to one of 

the mouths. A glass tube a b, open 

| at both ends, is fitted air-tight to 

the other mouth, its lower end a 

reaching nearly to the bottom of 

the bottle. On compressing with 

the hand, the air in the bladder or 

bag, the liquid will be seen to 

mount up the tube. 

(3) Herds Ball.—A hollow globe 

a, from which the external air can 

be excluded by turning a cock b, 

contains a tube that reaches nearly 

to the bottom, and fits in the neck by 

a screw. Fill the vessel about half 

full of water, screw in the tube c d7 

Fig. 314. india-rubber bag; 

india-rubber bag 

connected with a 

two-necked 

bottle; 

Fig. 315. 

Hero’i ball; 
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principle of the 

lire-engine; 

Hero’s fountain; 

description; 

mode of action; 

Fig. 315. breathe through, c, and close the 

stop-cock b ; the breath will ascend 

through the water, mingle with the 

air in the space a, take from it a 

portion of its volume and thus in¬ 

crease its elasticity, which, reacting 

upon the surface of the water, will 

force the latter up the tube cd on 

turning the cock b. On this princi¬ 

ple depend the operations of the air-chamber in fire- 

engines and similar machines. 

(4) Hero's Fountain.—In this apparatus, also, the com¬ 

pression of air and consequent increase of elasticity, are 

manifested in producing a water-jet. 

Two vessels a and g are united by 

a tube t, open at both ends, extend¬ 

ing from the upper surface of the 

lower vessel to near the top of the 

other. A pipe c d, provided with a 

stop-cock b) screws into the top of 

the vessel a, and extends nearly to 

its bottom, as in Hero’s Ball. Upon 

the top of this vessel is a basin n o, 

from the bottom of which a pipe ef 

open at both ends, passes clear 

through, nearly to the bottom of 

the vessel g. The tube c d, being 

unscrewed, is removed, and after 

pouring water into the vessel a till 

its surface comes nearly to the up¬ 

per end of the tube £, the pipe c d is 

replaced, and the stop-cock b closed. 

Water is now poured into the basin no ; this will descend 

through the tube e f into the vessel y, and expel a portion 

of its air by forcing it up the tube t into the vessel a; 

there, finding no means of escape, it will be compressed, 

and its increased elasticity made to act upon the water 
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precisely as in the case of the Ball. The water will con- conditions of 

tinue to descend through the tube ef from, the basin, till rest> 

the increasing elasticity of the air becomes equal to the 

pressure arising from a head of water equal to the differ¬ 

ence between the level of the water in the basin and that 

in the lower vessel, when the flow will cease, and every 

thing will come to rest. In this condition of things turn 

the cock 5, and the water will spout through the tube c d. 

The fluid in the upper vessel being thus ejected, there will conditions to 

be room for more air; this will pass from the lower vessel 

through the tube t, and the water will again descend from 

the basin to the vessel g. The water discharged by the 

jet falls into the basin n o, and is ready, in its turn, to pass 

down the tube ef. A constant flow is thus maintained as 

long as the fluid in the vessel a remains above the bottom 

of the tube c d. 

(5) The Cartesian Devil.—This is a well-known figure, 

constructed so as to float in a glass vessel of water, above cartesian devil; 

the surface of which a portion of air is confined in such 

manner, that if this air be com¬ 

pressed, the figure will descend, and 

rise again when the compression • rig- 31 

ceases. It is thus contrived: In 

the middle of the figure a is a small 

capillary tube b, through which so 

much water is admitted into the in- description; 

terior of the body as to make its 

mean density a little less than that 

of the water in which it is to float. 

Being thus adjusted, the figure is 

immersed in a wide-mouthed glass 

vessel, over which a piece of blad¬ 

der or sheet of india-rubber is then 

stretched to confine the air over the 

fluid. The finger being now pressed 

upon the bladder or india-rubber, motion of the 

the air will be compressed, the increased elasticitythusp.ro- figure’ 
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explanation of 
the motion. 

duced will be exerted upon the water, which will be forced 

by it through the tube b) the mean density of the figure 

will be increased, and it will sink to the bottom; on re¬ 

moving the finger, the air above the water as well as that 

in the figure, being relieved from the pressure, expands, the 

water is forced back through the tube b into the vessel 

again, and the figure will rise to the surface in consequence 

of diminished mean density. 

VIII. 

THE AIR-PUMP. 

Air-pump, or 
air-syringe ; 

§ 277.—Seeing that the air expands and tends to diffuse 

itself in all directions when the surrounding pressure is 

lessened, it may be rarefied and brought to almost any de¬ 

gree of tenuity. This is accomplished by an instrument 

called the Air-Pump or Exhausting Syringe, one of the 

most important pieces of apparatus used by the natural 

philosopher. It will be best understood by describing one 

of the simplest kind. It consists, essentially, of 

1st. A Receiver R, or chamber from which the exterior 

air is excluded, that the air within may be rarefied. This 

the receiver; is commonly a bell-shaped glass vessel, with ground edge, 

over which a small quantity of grease is smeared, that no 

air may pass through any remaining inequalities on its 

surface, and a ground glass plate m n imbedded in a metallic 

table, on which it stands. 

2d. A Barrel B, or chamber into which the air in the 

receiver is to expand itself. It is a hollow cylinder of 

metal or glass, connected with the receiver R by the com¬ 

the barrel and 
piston; 

munication ofg. An air-tight piston P is made to move 

back and forth in the barrel by means of the handle a. 
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Fig. 318. 

graphical 

representation; 

■■.V'vW.^.AsV.vvVv-X' 

...... 

Wr 

Fig. 319. 

3d. A Stop-cock h, by means of which the communica¬ 

tion between the barrel and receiver is established or cut 

off at pleasure. This cock is a conical piece of metal fitting stop-cock, or 

I air-tight into an aperture just at the lower end of the bar- valve; 

rel, and is pierced in two directions; one of the perfora¬ 

tions runs transversely through, as shown in the first figure, 

and when in this position the communication between 

the barrel and receiver is 

established; the second 

perforation passes in the 

direction of the axis from 

the smaller end, and as it 

approaches the first, in¬ 

clines sideways, and runs 

out at right angles to it, 

as indicated in the second 

figure. In this position 

of the cock, the communication between the receiver and 

barrel is cut off, whilst that with the external air is opened. 

Now, suppose the piston at the bottom of the barrel, 

and the communication between the barrel and the receiver mode of action; 

established; draw the piston back, the air in the receiver 

will rush out, in the direction indicated by the arrow-head, 

through the communication o fg, into the vacant space 

within the barrel. The air which now occupies both the 

description of 

stop-cock; 
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mode of 
operation; 

barrel and receiver is less dense than when it occupied the 

receiver alone. Turn the cock a quarter round, the com¬ 

munication between the receiver and barrel is cut off, and 

that between the latter and the open air is established; 

push the piston to the bottom of the barrel again, the air 

within the barrel will be delivered into the external air. 

Turn the cock a quarter back, the communication between 

the barrel and receiver is restored; and the same operation 

as before being repeated, a certain quantity of air will be 

transferred from the receiver to the exterior space at each \ 

double stroke of the piston. 

<o find the degree To find the degree of exhaustion after any number of 
of exhaustion; double strokes of the piston, denote by D the density of 

the air in the receiver before the operation begins, being the 

same as that of the external air; by r the capacity of the 

receiver, by b that of the barrel, and by p that of the pipe. 

At the beginning of the operation, the piston is at the 

bottom of the barrel, and the internal air occupies the re¬ 

ceiver and pipe; when the piston is withdrawn to the 

opposite end of the barrel, this same air expands and 

occupies the receiver, pipe, and barrel; and as the density 

of the same body is inversely proportional to the space 

it occupies, we shall have 

ratio of the 

densities; 
r + p 4- b : r p :: D : x; 

in which x denotes the density of the air after the piston 

is drawn back the first time. From this proportion, we 

find 

first diminished 

density; x — D • r + P,. 
r + p + b 

s 
The cock being turned a quarter round, the piston pushed 

back to the bottom of the barrel, and the cock again 

turned to open the communication with the receiver, the 

operation is repeated upon the air whose density is x) and 
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we have 

-f p + b : r + p D 
r + p 

+ p + b 
X j ratio of densities; 

in wliich. x' is the density after the second backward mo¬ 

tion of the piston, or after the second double stroke; and 

we find 

D • (__r_ 
\r -f- p + b) ’ 

second 

diminished; 

and if n denote the number of double strokes of the piston, 

and xn the corresponding density of the remaining air, 

then will 

/ r + p \n 

\r + p + b) ’ 

the 7«th 

diminished 

density; 

From which it is obvious, that although the density of 

the air will become less and less at every double stroke, 

yet it can never be reduced to nothing, however great n 

may be; in other words, the air cannot be wholly removed 

from the receiver by the air-pump. The exhaustion will 

go on rapidly in proportion as the barrel is large as com¬ 

pared with the receiver and pipe, and after a few double the air can nevei 

strokes, the rarefaction will be sufficient for all practical exhausted from 

purposes. Suppose, for example, the receiver to contain the receiver; 

19 units of volume, the pipe 1, and the barrel 10; then 

will 

r + P = 20 = 
r + p + b 30 3 * 

and suppose 4 double strokes of the piston; then will illustration; 

n = 4, and 

+ P 
+ p + b/ 

= 0.197, nearly; 
81 ’ J 

n density after 4th 

double stroke; 
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rarefaction by 

best pumps; 

gauges ; 

objects, and 

construction; 

scale of the 

gauge, and 

position; 

first inventor; 

improvements; 

that is, after 4 double strokes, the density of the remaining 

air will be but about two tenths of the original density. 

With the best machines, the air may be rarefied from four 

to six hundred times. 

The degree of rarefaction is indicated in a very simple 

manner by what are called gauges. These not only indicate 

the condition of the air in the receiver, but also warn the 

Fig. 320. 

fi 

operator of any leakage that may take place either at the 

edge of the receiver or in the joints of the instrument. 

The mode in which the gauge acts, will 

be better understood when we come to 

discuss the barometer; it will be suffi¬ 

cient here simply to indicate its con¬ 

struction. In its more perfect form, it 

consists of a glass tube, about 60 inches 

long, bent in the middle till the straight 

portions are parallel to each other; one 

end is closed and the branch termina¬ 

ting in this end is filled with mercury. 

A scale of equal parts is placed between 

the branches, having its zero at a point 

midway from the top to the bottom, the 

numbers of the scale increasing in both directions. It is 

placed so that the branches of the tube shall be vertical, 

with its ends upward, and inclosed in an inverted glass 
/ 

vessel, which communicates with the receiver of the air- 

pump. 

Kepeated attempts have been made to bring the air- 

pump to still higher degrees of perfection since the time 

of Otto von Guericke, burgomaster of Magdeburg, who 

first invented this machine in 1560. Self-acting valves, 

opening and shutting by the elastic force of the air, have 

been used instead of cocks. Two barrels have been given 

to the air-pump instead of one, so that an uninterrupted 

and more rapid rarefaction of the air is brought about, 

the piston in one barrel being made to ascend as that of 

the other descends. The most serious defect in the air 
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Damp was, that the atmospheric air could not be entirely the most serious 

sjected from the barrel, but remained between the piston oiderp^mps• 

md the bottom of the barrel. This intervening space is 

filed with air of the ordinary density at each descent of 

the piston ; when the cock is turned, and the communica¬ 

tion re-establisli'ed with the receiver, this portion of air 

forces its way in and diminishes the degree of rarefaction 

Fig. 321. 

section of one of 

the most 

approved 

pumps; 

already attained. If the air in the receiver is so far rare¬ 

fied, that one stroke of the piston will raise only such a 

quantity as equals the air contained in this space, it is plain 

that no further exhaustion can be effected by continuing 

to pump. This limit to rarefaction will be arrived at the limit* to 

sooner, in proportion as the space below the piston is the defect above. 

larger 5 whence one chief point in the improvements has 

35 
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. . . ■ . . . *1 
been to diminish this space as much as possible. AB is a 

highly polished cylinder of glass, which serves as the bar- 

description of the rel of the pump; within it the piston works perfectly air- . 
impioved pump, ^g-p^ rppe pjs^on consists of washers of leather soaked in : 

oil, or of cork covered with a leather cap, and tied together 1 

about the lower end C of the piston rod by means of < 

two parallel metal plates. The piston-rod Cb, which is • 

section of tho 

pnmp •, 

Fig. 321. 

use of oil; 

shape of the 

lower end of 

piston-rod; 

toothed, is elevated and depressed by means of a cog-wheel 

that is turned by the handle M. If a thin film of oil be 

poured on the upper surface of the piston the friction will 

be lessened, and the whole will be rendered more perfectly 

air-tight. To diminish to the utmost the space between 

the bottom of the barrel and the piston-rod, the form of a 

truncated cone is given to the latter, so that its extremity 
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may be brought as nearly as possible into absolute contact 

with the cock E ; this space is therefore rendered indefi¬ 

nitely small, the oozing of the oil down the barrel con¬ 

tributing still further to lessen it. The exchange-cock E cxchange-cock; 

has the double bore already described, and is turned by a 

short lever, to which motion is communicated by the rod 

cd. The communication GIIis carried to the two plates communication; 

I and Aj on one or both of which receivers may be placed; 

the two cocks A7 and 0 below these plates, serve to cut off cut-off cock 

the rarefied air within the receivers when it is desired to 

leave them for any length of time. The cock 0 is also an 

exchange-cock, so as to admit the external air into the cock to readmit 

receivers. lhe au ’ 

Pumps thus constructed have advantages over such as advantages of 

work with valves, in that they last longer, exhaust better, this kllld of 5 J o? ? pump. 

and may be employed as condensers when suitable receivers 

are provided, by merely reversing the operations of the 

exchange valve during the motion of the piston. 

§ 278.—The following are some of the most interesting 

experiments performed with the aid of an air-pump, show¬ 

ing the expansive force of the atmosphere, and also the 

relations between air of ordinary density and that which 

is highly rarefied:—• 

1st. Under a receiver place a bladder tied tightly about Experiments with 

the neck and partly filled with air ; exhaust the air in the au pump’ 

receiver, and that confined within the bladder will gradu- first experiment; 

ally distend, proving experimentally the expansive force 

of atmospheric air. When the air is readmitted into the 

receiver, the bladder will resume its former dimensions. 

An analogous appearance will be exhibited if a jar, over 

which some india-rubber has been tied, be placed beneath second; 

a receiver, and the air be then exhausted. 

2d. The expansive force of our atmosphere is further 

shown if a long-necked flask, or retort, be inverted so that 

its mouth shall be below the surface of some water con¬ 

tained in a vessel, and the whole be placed under the 
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receiver of an air-pump; when the 

air within the receiver is rarefied, 

showing also the that which was contained in the 
expansion of air; ■, 

bulb, expanding, escapes through 

the water; and on readmitting the 

atmosphere the water will rise and 

occupy the space vacated by the air. 

3d. The transfer of a fluid from one flask to another. 

Let there be a fluid in the flask A. The neck of this flask 

contains a glass tube fitted air-tight into it, and reach- 

third, illustrating ing almost to the bottom; the tube being bent twice 

the same right angles, the other end 

passes freely through the neck of a 

second bottle B. Place this appa¬ 

ratus under the receiver of an air- 

pump, and exhaust; the fluid will 

mount up from the bottle A and 

pass through the tube over into the 

bottle B. Readmit the air, the fluid will pass back again. 

4th. Place Hero’s ball under the receiver when half 

filled with water, and exhaust; the expansion of the air 

within will send the water up through the tube in a jet. 

principle; 

Fig. 323. 

f rTS 

fourth. 

Atmospheric 

resistance 

illustrated; 

§ 279.—When a piece of metal and a feather are aban¬ 

doned to their own weight in the air, they fall with very 

different velocities. The cause is the great disparity in 

the extent of surfaces exposed to the resistance of the air 

as compared with the weights. 

Let a and b be two wheels re- Fig. 324. 

sembling the arms of a windmill, 

with this difference only, that the 

vanes of b shall strike the air with 

their broad faces, whilst those of a 

shall cut it edgewise; each has a 

separate axis on which it revolves. 

By means of a mechanical contri¬ 

vance a rapid rotary motion is com- 
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municated to them. In order that this may act under 

a receiver, a rod must be made to pass through an air¬ 

tight leather stuffing-box e; at the end of the rod is a 

curved arm d, which drives the wheels. If the rotation 

take place in vacuo, the two wheels a and b will cease to 

revolve simultaneously ; whereas, if the motion take place 

in the ordinary atmosphere, the resistance of the latter 

will bring b to a stand long before a ceases to turn. 

§ 280.—The atmosphere is the ordinary medium through 

which sound is transmitted to the ear. In proportion as 

the air becomes more rarefied, the transmission of sound 

through it becomes more feeble. 

Under a receiver furnished with a leather stuffing-box, 

place a bell whose clapper may be struck by a rod passing 

through the box, taking care to place the bell on some soft 

unelastic substance, to prevent its communicating sound to 

the plate of the pump and thus to the external air. The 

annexed figure represents such an 

apparatus, which may, however, be 

considerably varied: a is the bell, 

b the clapper attached by a spring 

to a thin plate of wood c, into 

which the support of the bell is 

screwed ; g is a leather drum stuffed 

with horse-hair, fitting into the 

upper wooden plate c, and into a 

lower plate d, by which the whole 

apparatus is fastened down to the 

plate of the pump; lastly, h is the 

lever by which the clapper is agi¬ 

tated. After about 10 strokes of the piston, the sound 

becomes sensibly more feeble, and if the exhaustion be 

continued long enough it will cease altogether. 

Air is necessary to respiration. Place a bird beneath 

the receiver of an air-pump; a few strokes of the piston will 

cause it to make convulsive struggles, and death will soon 

Fig. 325. 

ip 

description and 

use of the 

instrument. 

Effects of 

rarefaction on 

sound; 

instrument by 

which this may 

be illustrated; 

air is necessary to 

respiration; 



place a bird in 

the receiver of a 

pump and 

exhaust; 

air is necessary to 

combustion. 

The atmosphere 

has weight 

ensue unless ai r be admitted. Warm- 

blooded animals, as birds, die if 

rarefaction be carried to a small 

degree; cold-blooded animals, on 

the contrary, endure a high degree 

of rarefaction. Many birds ascend to 

considerable heights in the atmo- 

sphere, and it may be hence inferred 

that the density of the air at these altitudes is greater than 

that in the exhausted receiver of an air-pump. 

Air is necessary to combustion. Introduce a taper into 

a bell-shaped receiver full of atmospheric air, and observe 

the time it will continue to burn. Light the taper again, 

place it beneath the receiver and exhaust quickly, after it 

has been replenished with fresh air; the flame will expire 

much sooner than before. 

To the same cause it is owing that in vacuo no light is 

produced by striking a flint and steel together. 

Fig. 326. 

IX. 

WEIGHT AND PRESSURE OF THE ATMOSPHERE. 

§ 281.—From the resistance which the atmosphere 

opposes to the motion of bodies through it, we might 

infer that it has weight as well as inertia. That it has 

weight is obvious from the fact that the atmosphere 

incases, as it were, the whole earth: if it were destitute 

of weight and subjected only to the repulsive action 

among its own particles, it would recede further and 

further and extend itself throughout space. But the 

existence of weight in the atmosphere may be shown 

experimentally, thus:— 
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! 

Take a flask of some two or three inches in diameter, 

having an air-tight stop-cock. Suspend it from one end 

; of the balance-beam and as¬ 

certain its weight when filled 

-with air. Exhaust the air, 

by means of the air-pump, 

and the flask will be found 

lighter than before; readmit 

the air, it will regain its for¬ 

mer weight. Force into the 

flask an additional quantity 

of air, by means of the air- 

pump, used as a condenser, and the weight will be found 

to be increased. 

Since the atmosphere has weight, it must exert a 

pressure upon all bodies in it. To illustrate the truth the ah-exerts a 

of this, fill with mercury a glass tube, about 32 or 33 pressure upon aU 

inches long, and closed at 

one end by an iron stop-cock. 

Close the open end by press¬ 

ing the finger against it, and 

invert the tube in a basin of 

mercury; remove the finger, 

the mercury will not escape, 

but remain apparently sus¬ 

pended nearly 30 inches 

above the level of the mer¬ 

cury in the basin. 

If we consider the cir¬ 

cumstances attending this 

experiment, it will be seen 

that the tube containing the mercury forms with the 

basin a system of communicating tubes, as in § 260. Now 

the atmosphere rests on the mercury in the basin, and is 

excluded by the glass from that in the tube, above which effect of 

there is therefore a vacuum. Withdraw the atmosphere withdrawinsthe 

from the surface of the mercury in the basin, and, by the atmosphere; 

uuuica w limit u 

Fig. 328. 

73 

experiment to 

illustrate this; 

Fig. 327. 

experiment to 

show this; 
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an instrument 

well suited to 

exhibit the l'ucts 

of this 

experiment; 

description and 

use; 

inference from 

this experiment; 

law of equilibrium of fluids, the mercury will descend in 

the tube till it comes to a level with that without; restore 

the pressure of the atmo¬ 

sphere, and the mercury in 

the tube will again rise to 

its former height. This is 

well illustrated by the fol¬ 

lowing device. R is a re¬ 

ceiver closed air-tight at the 

top by means of a metallic 

plate ; a is a tube filled with 

mercury after the manner 

just described, and termina¬ 

ting at the open end in an 

inverted vial-shaped vessel 

—this tube passes air-tight 

through the plate on the 

receiver ; b is a second tube 

bent in'the manner indicated 

in the figure, and, like the 

tube a, it terminates at one end in a vial-shaped vessel, 

but is open at both ends; this tube communicates with 

the receiver by passing through the metallic plate at top, 

and thus a connection is established between the open air 

and the interior of the receiver. Mercury being poured 

into the vial of the tube b, it will rise to the same level 

on either side of the bend m, and the communication 

between the interior of the receiver and exterior air 

will be interrupted. The receiver being placed upon the 

plate of the air-pump and the air exhausted, the mercury 

will descend in the tube a, and ascend in the tube b to¬ 

wards the bend at the top; readmit the air into the 

receiver, the mercury will rise in the tube a and fall in the 

tube b. 

From this we see, that the atmospheric air presses on 

the mercury, and indeed upon the surfaces of all bodies 

exposed to it, with a force sufficient to maintain the quick- 

Fig. 329. 
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silver in the tube at a height of nearly 30 inches ; whence, 

the intensity of its pressure must he equal to the weight of a 

column of mercury whose base is equal to that of the surface 

pressed and whose altitude is about 30 inches. The force thus 

exerted is called the atmospheric pressure. 

The absolute amount of atmospheric pressure was first 

discovered by Torricelli, a pupil of Galileo ; the tubes 

employed in the experiments are called, on this account, 

Torricellian tubes, and the vacant space above the mercury 

in the tube is called, the Torricellian vacuum, to distinguish 

it from that of a receiver, which is frequently called the 

Guerickian vacuum, from Otto von Guericke, who first 

invented the air-pump. 

The pressure of the atmosphere at the level of the sea 

will support a column of mercury 30 inches high. Now, 

if we suppose the bore of the tube to have a cross-section 

of one square inch, the atmospheric pressure up the tube 

will be exerted upon this extentvof surface, and will sup¬ 

port 30 cubic inches of mercury. Each cubic inch of 

mercury weighs 0.49 of a pound—say half a pound—from 

which it is apparent that the surfaces of all bodies, at the level 

of the sea, are subjected to an atmospheric pressure of fifteen 

pounds to each square inch. 

The body of a man of ordinary stature has a surface of 

about 2000 square inches ; whence, the whole pressure to 

which he would be exposed, at the level of the sea, is 

15 pounds X 2000 = 30000 pounds. 

The pressure of the atmosphere, resulting as it does 

from its weight, it is an easy matter to estimate the weight 

of the entire atmosphere of the earth. It will be sufficient 

to compute, from the known diameter of the earth, the 

extent of its surface in square inches, and to multiply this 

by fifteen ; the product will be the weight in pounds. 

When the height of the mercury in the Torricellian 

tube is 30 inches, the atmospheric pressure will support in 

vacuo a column of water 34 feet, the specific gravity of 

mercury being 13.6 referred to water as a standard. This 

atmospheric 

pressure; 

Torricellian 

tubes; 

Torricellian 

vacuum: 

atmospheric 

pressure at the 

level of the sea; 

pressure upon 

the surface of a 

man; 

weight of tho 

entire 

atmosphere; 

column of water 

supported by the 

atmospheric 

pressure; 



554 NATURAL PHILOSOPHY. 

Magdeburg 

hemispheres; 

description and 

mode of using; 

examples of 

Guericke’s 

hemispheres; 

the forcing of 

fluid through 

pores of solids; 

has been verified by Hanson and Sturm, who actually 

performed the experiment at Leipzig. 

The atmospheric pressure is exhibited in a most stri¬ 

king way by means of the Magdeburg hemispheres. These 

are two hollow hemispheres, of brass or copper, whose 

edges fit air-tight, each hemisphere being furnished with a 

strong ring or handle, one of them also having a tube with 

stop-cock. Place the two hemi¬ 

spheres together, connect them with 

the communication-pipe of the air- 

pump, exhaust the air, and turn the 

stop-cock, and disconnect from the 

pump. It will be found that great 

force will be necessary to pull the 

hemispheres asunder. If the diame¬ 

ter of the hemispheres, as in the case 

of those employed by Guericke, in 

one of his experiments, were 2 feet, 

the number of square inches in a 

great circle would be 

Fig. 330. 

31416 X 452.39, 

and the force, estimated in pounds to overcome the pres¬ 

sure, would be 

15 X 452.39 = 6785.85. 

In the experiment referred to 

above, there were successively from 

14 to 30 horses harnessed to the 

hemispheres, without effecting the 

separation. 

The pressure of the atmosphere 

will force fluids through such solid 

bodies as are porous. Let R be a 

long receiver, provided with a tube 

Fig. 331. 
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Fig. 332. 

atmospheric 

pressure is 

exerted in everj 

direction; 

and stop-coclc C at one end, for the purpose of connecting 

with the air-pump, and at the other a perforated metallic 

plate a a, into which fits, air-tight, a wooden cup b, whose instrument to 

pores are in the direction of the axis of the tube. This exhibit this; 

cup being filled with mercury, and the air exhausted by 

the air-pump, the mercury will fall in a fine shower down 

the receiver. The tube below is made to enter the re¬ 

ceiver, and to curve over at the top to prevent the mer¬ 

cury from falling into the communication-pipe of the 

pump. 

The atmosphere presses not only 

downward, but upward, and later¬ 

ally in all directions. This is shown 

by the following experiment: The 

two hemispheres A and B) are con¬ 

nected by a tube in such manner 

that one of them may turn about a 

joint CJ while the other is stationary. 

Place the hemisphere A upon the 

plate of the air-pump, and upon B 

lay a plane plate of glass or metal fitting it air-tight. Ex¬ 

haust the air, and the hemisphere B may be turned in any 

direction without its plate falling off. This equal pressure 

of the atmosphere in all directions, is of great practical 

utility, as we shall presently see when we come to speak 

of siphons and water-pumps. To this pressure it is owing 

that flies, and other insects, are 

enabled to support themselves upon 

smooth vertical walls, and in in¬ 

verted positions upon the ceilings 

of rooms, &c. The feet being flat 

and flexible, are brought close a- 

gainst the wall or ceiling so as to 

exclude the air, the centre of the 

foot is then drawn away, leaving the margin in contact; 

a partial vacuum is thus formed, and the external pressure 

of the air is sufficient to support the weight of the insect. 

Fig. 333. 

exemplification 

of this in the 

adhesion of 

insects to walla 

and ceilings. 
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Mariotte’s law; 

connecting the 

pressure, density, 

and elasticity; 

the instrument 

for compressing 

the air; 

mode of using it; 

X. 

mariotte’s law. 

§ 282.—We have seen that the 

atmosphere readily contracts into a 

smaller volume when pressed exter¬ 

nally, that it as readily regains its 

former dimensions when the pres¬ 

sure is removed, and that it is, 

therefore, both compressible and 

elastic. Let us now consider the 

law which connects the pressure, 

density, and elasticity. For this pur¬ 

pose, procure a siphon-shaped tube 

ABB, open at A, the end of the 

longer branch, and hermetically 

sealed at the end D of the shorter 

branch. Place between the branch¬ 

es, and parallel to them, a scale of 

equal parts, say inches, having its 

zero on the 1 ine o o. 

Pour in, at the open end A, as 

much quicksilver as will fill the 

horizontal part of the tube, and 

bring its upper surface to the zero 

line in both branches; a quantity of atmospheric air of 

ordinary density will then be confined in the shorter 

branch. The expansive action of this air, resisting, as it 

does, the pressure of the external air, is measured by the 

weight of a column of mercury, whose base is a section of 

the tube and height 30 inches. Pour into the longer 

branch an additional quantity of mercury; it will rise in 

Fig. 334. 

JL 
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the shorter branch, and cause the air above it to be com¬ 

pressed into a smaller space, but the heights at which it 

will stand in the two branches will be different. The 

difference between these two heights, added to 30 inches, 

will be the altitude of the column of mercury, whose 

weight is just sufficient to resist the expansive action of 

the confined air. Now it is found by trial, that when the 

air in the shorter branch is compressed into half its primi¬ 

tive volume, the difference of level of the mercury in the 

two branches is just 30 inches, thus making the compress¬ 

ing force double what it was before; that wdien it is 

compressed into one third of its original volume, the dif¬ 

ference of level is 60 inches, thus trebling the pressure; 

when compressed into one fourth, the difference of level is 

90 inches, thus quadrupling the pressure, and so on. 

Hence we see, that in compressing the same quantity of 

air into smaller spaces, the volumes occupied by it are in¬ 

versely proportional to the pressures. 

This law holds equally when the 

air, instead of being compressed, is per¬ 

mitted to expand. Let a b be a glass 

tube, about 33 inches long, one end a, 

being fitted with an air-tight cock, and 

the entire length of the tube being 

graduated in inches. Open the cock a, 

immerse the tube with its open end 

downward into the vessel A, previously 

half filled with mercury, which will, of 

necessity, stand at an equal height within 

and without the tube. Now close the 

cock a, and so confine a portion of air 

at its ordinary density within the tube 

above the surface of the mercury. 

Elevate the tube any distance what¬ 

ever, taking care that its open end shall 

be below the surface; the air will ex¬ 

pand, and fill a larger portion of the 

Fig. 335. 

details and 

rationale of the 

experiment; 

volumes are 

inversely 

proportional to 

the pressures; 

instrument for 

expanding the 

air; 

description and 

mode of using; 
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weight of the 

suspended 

column of 

mercury plus 

elastic force of 

confined air, 

equal to 

atmospheric 

pressure; 

experiments 

made at Paris; 

expression of 

M ario tie’s lav/. 

tube, though a column of mercury will still stand at an ele¬ 

vation above the outer level, so that the weight of this 

column, with the elastic force of the inclosed air, counter¬ 

balances the natural pressure of the atmosphere. The pres¬ 

sure therefore which the included air sustains, is equal to 

the weight of a column of mercury 30 inches high, minus 

that of the column supported in the tube. Let the 

space full of air above the mercury in the closed tube 

be 3 inches; lift up the tube so that this space shall 

be 6 inches, the mercury will be found to stand in 

the tube 15 inches above that in the outer vessel. Here 

the volume of the air is doubled, and the pressure 

upon it is 30 — 15 = 15 = one half of 30, what it was 

before. Again raise the tube till the volume of air be¬ 

comes 9 inches long, the mercury in the tube will be 

found to stand 20 inches higher than in the outer vessel; 

here the volume is three times its primitive volume, and 

its pressure 30 — 20 = 10 = one third of 30, its original 

pressure; whence the law is manifest. 

By experiments made at Paris, it has been found that 

this law obtains when air is condensed 27 times, and rare¬ 

fied 112 times. Other gases obey it also, till the pressure 

becomes a few atmospheres less than that at which they 

assume a liquid form. 

The density of the same quantity of matter is inversely 

proportional to the volume it occupies. If, therefore, P 

be the pressure upon a unit of surface necessary to pro- 

duce a density unity, p the pressure corresponding to a 

density Z>, then, according to this law, will, 

p = PD.(236). ^ 

This law was investigated by Boyle and Mariotte, the 

former in 1660, and the latter in 1668, and is now known 

as Marioites law. 



MECHANICS OF FLUIDS. 559 

XI. 

LAW OF THE PRESSURE, DENSITY, AND TEM- 
« 

PERATURE. 

§ 283.—It is a universal law of nature that heat ex- Law connecting 

panels all bodies, and is ever active in producing changes the p*‘essm®’ 
r ' j. o o density, and 

of density. We have now to consider the law of this temperature; 

change in air. 

It has been ascertained, experimentally, that air, sub¬ 

jected to any constant pressure, will expand 0.00208th of 

its volume at 32° Fahr., for each degree of the same scale 

above this temperature; so that if V\ be the volume of the 

air at 32°, and V its volume at any other temperature £, 

then will 

V = Vx [1 + (t - 32°) 0.00208]. . . (237). 

If D, be the density at 32°, under a pressure y>, and 

D that at the temperature t, under the same pressure, 

then, because the densities are inversely as the volumes, 

will 

rate of the air’a 

expansion; 

volume for any 

temperature 

under a constant 

pressure; 

V[ : U [1 + (t- 82°) 0.00208] : : D : D,; 
\ - t 

whence 

D = - 
D. 

!■+<*- 32°) . 0.00208 

density at any 

temperature 

under a constant 

pressure; 

If pt denote the pressure necessary to restore this air to 

the density Dn we shall have from Mariotte's law 

_A_ 
1 + (t - 32°) 0.00208 
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pressure to 

produce at a 

given 

temperature a 

density at 32° 

under a given 

pressure; 

weight of a 

column of 

mercury at t°; 

pressure to 

produce a unit of 
« 

density at t°; 

same in different 

form; 

density at t° 

under a constant 

pressure; 

whence 

p, = p [1 + (< - 82°) 0.00208] . . (239). 

/ . } 

Again, let the pressure be produced by the weight of 

a column of mercury, having a base unity, and an altitude 

lin) taken at a given latitude, say that of 45°, in order that 

the force of gravity may be constant. Denoting the den¬ 

sity of the mercury by Djn its weight will be 

D u K g j 

- * 

in which g' denotes the force of gravity at the latitude 

of 45°. ; 

Substituting this fory>, in Eq. (236), we have 

A, K a' = PI>; \ 

whence 

p = PjjAl£- 
D ’ 

and substituting the value of D, given in Eq. (238), this 

becomes 

p = PuPti a_L [1 + (t - 82°) 0.00208] . . (240). 

From Eq. (236), we have 

D = -A. 
P ’ 

and substituting the value for P above, we get 

D pP, 
h„ g' [! + («“ 32°) 0.00208]’ 
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Denote by h the height of the column of mercury at 32°, 

necessary to produce upon a unit of surface the pressure 

p, then will 

p = I)„h9'; 

which, substituted for p above, gives, after striking out the 

common factors, 

weight of a 

column of 

mercury at 3UC 

equal to the 

constant 

pressure; 

I) = 
D.h 

h„ [1 + (t - 32°) 0.00208]’ 

density at t° 

under u constant 

pressure; 

Now, when hn becomes 30 inches, then will take the 

value given in the table of § 275 opposite the name of 

the gas or vapor under consideration, and we have, for 

the practical application of that table, 

D = £' x 
h 

density of any gaa 

answering to a 

80 1 + (t - 82°) 0.00208 ’ 
. (240)'; fven 

>• / > fp.mner; temperature and 

barometric 

column; 

m which D, is the tabular specific gravity or density, h 

the height of the column of mercury expressed in inches, 

and D the density of the gas pressing upon the mercury. 

Example. What is the density of atmospheric air, when 

the barometer stands at 26 inches and thermometer at example to 

42° ? In this case, D. will be found in the table to be .... . . 

0.0013, whence 

illustrate the use 

^ 0.0013 
D = — X 

26 

30 1 + (42° - 32°) 0.00208 
= 0.0011. 

We are now prepared to understand how the values of 

En‘ in the table just referred to, were obtained, and of 

which no explanation has, thus far, been made. 

It will be recollected that, when referred to the same to obtain the 

standard, the numbers which express the specific gravities u of gases, 

of bodies also express their densities, and that the specific &c.; 
36 
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specific gravity 

of any body; 

standard 

temperature and 

pressure for 

density of gases, 

&c.; 

tabular value for 

density; 

vessel for finding 

the weights and 

volumes of gases; 

gravity of a body is tlie ratio obtained by dividing the 

weight of the body by that of an equal volume of the 

standard substance. The gases and vapors are incessantly 

changing their densities, on account of the varying pres¬ 

sures and temperatures to which they are subjected. 

Tabulated densities must, therefore, correspond to a 

standard of temperature and of pressure. Thirty-two 

degrees Fahrenheit’s scale is adopted for the former; and 

the weight of a column of mercury, at the same tempera¬ 

ture, having an altitude equal to thirty inches, and resting 

upon a base whose area is a superficial unit, is taken for 

the latter. 

By a very simple transformation of Eq. (240)', we find 

n _ 30 X [1 + (t - 32°) 0.00208] n 

' i x 

To make this formula applicable to any gas, it will only 

be necessary to observe h, by means of a barometer in the 

atmosphere; t, by a thermometer 

in contact with the gas; and to find 

D, corresponding to these quan¬ 

tities, by the following process: 

Provide a glass vessel A, whose 

mouth may be closed by a stop¬ 

cock jB, air-tight, and of which 

the bottom terminates in a long 

narrow tube C} closed at the end. 

Let the capacity of this vessel be 

carefully ascertained by filling it 

with water, and pouring this water 

afterward into a graduated vessel; 

also let the tubular portion O be 

graduated and numbered by tenths, 

hundredths, &c., so that the num¬ 

bers shall increase towards the 

smaller end, and express that portion of the entire capacity 

Fig. 336. 
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of tlie vessel, regarded as unity, wliicli is comprised be¬ 

tween its mouth B and these numbers. 

This being understood, denote the weight of this ves¬ 

sel by Wv ; that of a volume of air, or of the gas under 

consideration, equal to the contents of the vessel, and notation; 

under the pressure A and temperature /, by Wa ; the buoy¬ 

ant effort of the atmosphere, under the same pressure and 

temperature, by e / and the weight required to counter¬ 

poise the vessel filled with gas by W1: then will 

weight of vessel 

tilled with air; 

Connect with the air-pump, and exhaust as far as conve¬ 

nient; close the stop-cock, disconnect and weigh again, and 

denote the weight necessary to counterpoise the vessel 

with its rarefied air by W2, and we shall have 

weight of vessel 

filled with 

rarefied air; 

in which TFa< denotes the weight of the rarefied air re¬ 

maining in the vessel. 

Subtracting this from the equation above, we find 

weight of the 

extracted air ; 

which is obviously the weight of the extracted air. 

Now immerse the vessel in water, mouth downward, 

and open the stop-cock ; the liquid will enter, and taking 

care to keep its level on the inside and outside the same, 

the water will come to rest at or near some one, of the 

graduated points on the tube. The air or gas within will 

then have the same elasticity as the external atmosphere, 

and the reading h of the barometer becomes applicable to 

the gas. This graduated point will make known the volume of the air 

volume V of air or gas extracted; and, knowing its ^xtIJCtedlulder 

weight, that of a volume equal to the contents of the pressure; 

whole vessel, which wre have denoted by Wa, may be 
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weight of the 

vessel full of 

air under the 

barometric 

pressure; 

weight of the 

vessel full of 

water; 

found from tlie proportion 

V : W, - W3 : : 1 : Wa; 

whence 

W - W2 

r 
= wa. . . ■ (P). 

Next fill the vessel with water, and weigh, again; denote 

the counterpoising weight by W3, and the weight of the 

contained water by Ww, and we shall have 

TF3 = Wv + Ww - e; 

and subtracting Eq. (u), we find 

w3 - Wi = Ww - Wa; 

adding Eq. (Z>), we find 

W3 - Wi + 
TFi - W2 

V 
w • ’ ’ W ) 

ratio of the 

weights of equal 

volumes of water 

and gas; 

and dividing Eq. (b) by this one, we get 

Wi - w2 

(1F3 - Wi) V + Wi - w2 

wa 
Wo 

Multiplying both members by the tabular density d of 

water corresponding to the temperature of that employed, 

and dividing both numerator and denominator of the first 

member by — W% we finally get 

density of the 

air; 

■V’ -If >'• 

i !• 

^3 - y w9 

Wi - W2 

But the second member is the specific gravity or density 

D of air or gas, under the pressure h and temperature t 
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Whence, to find the value of Z>, we have this rule, viz.: 

Weigh the vessel full of the gas under consideration; 

exhaust, and weigh a second time; find, by admitting process for 

water, the volume of gas exhausted by the pump; fill ®ndl"g lhe .. 

with water, and weigh a third time; then divide the dif- gravity of a gas. 

ference between the last and first weights by the differ¬ 

ence between the first and second; multiply this quotient 

by the volume exhausted ; increase this product by unity, 

and divide the tabular density of water, corresponding to 

its observed temperature, by this sum. The value of D, 

thus found, and the observed values of h and t, being sub¬ 

stituted in the value for Dn this latter may be found and 

tabulated. 

XII. 

BAROMETER. 

§ 284.—The atmosphere being a heavy and elastic fluid, The barometer; 

is compressed by its own weight. Its density cannot be 

the same throughout, but diminishes as we approach its density and 

upper limits where it is least, being greatest at the surface pressure of the 
^ x i a o atmosphere at 

of the earth; If a vessel filled with air be closed at the different places; 

base of a high mountain and afterward opened on its 

summit, the air will rush out; and the vessel being closed 

again on the summit and opened at the base of the moun¬ 

tain, the air will rush in. 

The evaporation which takes place from large bodies 

of water, the activity of vegetable and animal life, as well 

as vegetable decompositions, throw considerable quantities 

of aqueous vapor, carbonic acid, and other foreign ingre- foreign 

dients temporarily into the permanent portions of the in"ied‘ent9inUie 
i- j jr x air, and its 

atmosphere. These, together with its ever-varying tern-change of 

peraturc, keep the density and elastic force of the air in a densit}» 

state of almost incessant change. These changes are indi- 

* 



barometer; 

weather-glass; 

description of 

the barometer; 

column of 

mercury in 

cquilibrio with 

atmospheric 

pressure; 

common 

mountain 

barometer; 

De Luc’s siphon 

barometer; 

cated by the Barometer, an instrument employed to measure 

the intensity of atmospheric pressure, and frequently called 

a weather-glass, because of certain agreements found to ex¬ 

ist between its indications and the state of the weather. 

The barometer consists of a glass tube about thirty-four 

or thirty-five inches long, open at one end, partly filled 

with distilled mercury, and inverted in a small cistern also 

containing mercury. A scale of equal parts is cut upon a 

slip of metal, and placed against the tube to measure the 

height of the mercurial column, the zero being on a level 

with the surface of the mercury in the cistern. The elastic 

force of the air acting freely upon the mercury in the cis¬ 

tern, its pressure is transmitted to the interior of the tube, 

and sustains a column of mercury whose weight it is just 

sufficient to counterbalance. If the density and conse¬ 

quent elastic force of the air be increased, 

the column of mercury will rise till it 

attain a corresponding increase of weight; Fig. 337. 

if, on the contrary, the density of the air 

diminish, the column will fall till its di¬ 

minished weight is sufficient to restore 

the equilibrium. 

In the Common Barometer, the tube 

and its cistern are partly inclosed in a 

metallic case, upon which the scale is 

cut, the cistern, in this case, having a 

flexible bottom of leather, against which 

a plate a at the end of a screw h is made 

to press, in order to elevate or depress 

the mercury in the cistern to the zero of 

the scale. 

Be Luc's Siphon Barometer consists 

of a glass tube bent upward so as to form 

two unequal parallel legs: the longer is 

hermetically sealed, and constitutes the 

Torricellian tube; the shorter is. open, 

and on the surface of the quicksilver 
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the pressure of the atmosphere is exert¬ 

ed. The difference between the levels 

in the longer and shorter legs is the 

barometric height. The most conve¬ 

nient and practicable way of measuring 

this difference, is to adjust a moveable 

scale between the two legs, so that its 

zero may be made to coincide with the 

level of the mercury in the shorter leg. 

Different contrivances have been 

adopted to render the minute variations 

in the atmospheric pressure, and conse¬ 

quently in the height of the barometer, 

more readily perceptible by enlarging 

the divisions on the scale, all of which 

devices tend to hinder the exact meas¬ 

urement of the length of the column. 

Of these we may name Morland’s Diagonal, and Hook’s 

Wheel-Barometer, but especially Iduygen’s Double-Barom¬ 

eter. 

The essential properties of a good barometer are: width 

of tube; purity of the mercury; accurate graduation of the 

scale; and a good vernier. 

Heat affects the density of mercury as well as that of 

all other bodies. When its temperature is increased, it 

expands ; when diminished it contracts. The same atmo¬ 

spheric pressure will sustain the same weight—in other 

words, the same quantity of mercury; but the same quan¬ 

tity of mercury will occupy different volumes, according 

to its temperature, and the same atmospheric pressure will, 

hence, sustain a longer column when the temperature is 

high than it will when the temperature is low. The indi¬ 

cations of the barometer must, therefore, be reduced to 

what they would have been, if taken at a standard or fixed 

temperature, without which reduction they would be 

utterly worthless. 

From the experiments of Dulong and Petit, it is found 

moveable or 

sliding scale; 

different devices 

for appreciating 

slight changes of 

barometric 

column; 

effects of 

temperature; 
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expansion of 

mercury; 

barometric 

column reduced 

to standard 

temperature; 

attached 

thermometer; 

example for 

illustration; 

data; 

reduced column. 

Barometer used 

to measure the 

elasticity of 

confined gases, 

&c.; 

that mercury expands Par^ volume for each 

degree of Fahrenheit’s scale by which its temperature is 

increased, and that it contracts according to the same law 

as its temperature is diminished. If, therefore, T denote 

the standard temperature, and T' the temperature of ob¬ 

servation ; b the altitude which the barometer would have 

at the standard temperature, and b' the observed altitude, 

then will, 

b = b’ [l + = V [1 + (T- n 0.0001001] .. (241); 

when Tr becomes T] b' will be equal to b. 

A thermometer is usually attached to the barometer 

tube for the purpose of observing the temperature of the 

mercury. 

Exam-pie. Observed the barometric column to stand at 

29.81 inches, while its thermometer gave a temperature of 

93°. What would have been the column under the same 

pressure, had the temperature of the mercury been 32° ? 

Here we have 

in. 

V = 29.81, 

T’ = 93.00, 

T = 32°.00, 

T - T> = _ 61.00; 

and 

in. in. 

b = 29.81 [1 - 61 x 0.0001001] = 29.63. 

§ 285.—The barometer may be used not only to meas¬ 

ure the pressure of the external air, but also to determine 

the density and elasticity of pent-up gases and vapors, 

and furnishes the most direct means of ascertaining 



MECHANICS OF FLUIDS. 569 

the degree of rarefaction in the receiver of an air-pump. 

When thus employed, it is called the barometer-gauge, barometer gauge; 

Fig. 339. 

co 

45 

x u 

4 

SO 

In every case it will only be necessary to establish a 

free connection between the cistern of the barometer-and 

the vessel containing the fluid whose elasticity is to 

be indicated; the height of the mercury in the tube, 

expressed in inches, reduced to a standard temperature, 

and multiplied by the known weight 

of a cubic inch of mercury at that 

temperature, will give the pressure in 

pounds on each square inch. In the 

case of the steam in the boiler of an 

engine, the upper end of the tube is 

sometimes left open. The cistern A is 

a steam-tight vessel, partly filled with 

mercury, a is a tube communicating 

with the boiler, and through which the 

steam flows and presses upon the mer¬ 

cury ; the barometer tube be, open at 

top, reaches nearly to the bottom of the 

vessel A, having attached to it a scale 

whose zero coincides with the level of 

the quicksilver. On the right is marked 

a scale of inches, and on the left a scale 

of atmospheres. 

If a very high pressure were exerted, 

one of several atmospheres, for example, 

an apparatus thus constructed would re¬ 

quire a tube of great length, in which 

case Mar lottos manometer is considered 

preferable. The tube being filled with 

air and the upper end closed, the sur¬ 

face of the mercury in both branches 

will stand at the same level as long 

as no steam is admitted. The steam 

being admitted through ri, presses on 

the surface of the mercury a and forces 

2_ 

2 

i 

1 
li 

m 
=11 

Fig. 340. 

its use and 

application; 

scale of inches 

and another cf 

atmospheres; 

Mariotte’s 

manometer; 



rts mode of 

action. 

Levelling by 

means of the 

barometer; 

it tip the branch b c, and the scale from 

b to c marks the force of compression 

in atmospheres. The greater width of 

tube is given at a, in order that the 

level of the mercury at this point may 

not be materially affected by its ascent 

up the branch b c, the point a being the 

zero of the scale. 

§ 286.—Another very important use 

of the barometer, is to find the differ¬ 

ence of level between two places on the 

earth’s surface, as the foot and top of a 

hill or mountain. 

Since the altitude of the barometer depends on the 

pressure of the atmosphere, and as this force depends upon 

the height of the pressing column, a shorter column will 

exert a less pressure than a longer one. The quicksilver 

in the barometer falls when the instrument is carried from 

the foot to the top of a mountain, and rises again when 

restored to its first position: if taken down the shaft of a 

mine, the barometric column rises to a still greater height. 

effect of change At the foot of the mountain the whole column of the 

hei^hTof the11 thG atmosphere, from its utmost limits, presses with its entire 

barometer; weight on the mercury; at the top of the mountain this 

weight is diminished by that of the intervening stratum 

between the two stations, and a shorter column of mercury 

will be sustained by it. 

It is well known that the surface of the earth is not 

uniform, and does not, in consequence, sustain an equal 

atmospheric pressure at its different points; whence 

effects of the mean altitude of the barometric column will vary 
u-reguiaj-ity °f the at cqfferen^ piaces. This furnishes one of the best and 

most expeditious means of getting a profile of an ex¬ 

tended section of the earth’s surface, and makes the 

barometer an instrument of great value in the hands of 

the traveller in search of geographical information. 
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of the places; 

To find the relation which subsists between the alti¬ 

tudes of two barometric columns, and the difference of 

level of the places where they exist, conceive the atmo¬ 

sphere to be divided into an indefinite number of elementary 

horizontal strata of equal thickness, and so thin that the relation between 

density from the top to the bottom of the same stratum th®baiometnc 
J -1 columns and 

may without error be regarded as uniform, the density difference of level 

varying from one stratum to another. 

Then, commencing at any 

elevated position (9, above 

the level of the sea, denote 

by p the pressure exerted _ 

upon the unit of surface by 

the whole column of atmo- — 

sphere above this point. The 

density of the stratum of air 

A, immediately below this 

point, will be due to this pressure; call this density D, 

then, from Mariotte’s law, Eq. (236), will 

Fig. 341. 

<) 

- Jl_ 
_^. J3 

-<-- C 

. JJ 

<— OE 

p — P D J elastic pressure; 

in which P is the pressure necessary to produce, on a unit 

of surface, a unit of density. From this equation, we 

have 

density 

corresponding; 

The weight of so much of this stratum as stands upon a 

unit of surface will be 

g Dli — p • ih. 
p ’ 

weight of a small 

column on unit 

of surface; 

in which h denotes the indefinitely small height common 

to all the strata, and g the force of gravity. 

The pressure upon the unit of surface of the second 

stratum B1 will be p) transmitted through the first stratum. 
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pressure on unit 

of surface of 

second stratum; 

weight of second 

stratum; 

same under 

another form; 

pressure upon 

unit of surface of 

third stratum; 

augmented by tbe weight of this stratum found above; 

and, denoting this pressure by p\ we shall have 

p’=p+p.aJL = p(i + ihy 

Denoting by D' the density of the second stratum B, 

we have again by Mariotte’s law 

P PD\ 

or 

jy = 

P' 

and for the weight of this stratum upon a unit of surface, 

,/ . 9h g h Dr = p' 
P ’ 

and substituting the value of p\ found above, 

gli\ gh 
g h Bf — p 1 + 

P P 

The pressure upon the unit of surface of the third stratum 

(7, will be the pressure transmitted through the second 

stratum, increased by the weight found above for this same 

stratum; hence, denoting this pressure byy>", will 

+# + ,(, +¥)%=?(i +ci) (i+9)=,(,+ii)\ 

and in the same way will the pressure p"\ upon the fourth 

stratum, be given by the equation 

p'” — V (l + 
gh 

P 

same for fourth 

stratum ; 

and so on to the surface of the earth: and supposing n to 

denote the number of strata between these limits, then will 



MECHANICS OF FLUIDS. 573 

pressure upon 

unit of surface 

of nth stratum; 

in which pn denotes the pressure at the lowest station. 

Developing the second member of this equation by the 

binomial formula, and dividing by p) we have 

Pn = P (1 + 
g h 

IP 

, n 

pn -i gh n(n— 1) g2h2 n(n— l)(n—2) #3A3 
—— — 1 -f- u —7-7 H—■-——— • ’ rA,,- -r -- 
P P 1.2 P2 1.2.3 ps 

ratio of the upper 

&C. and lower 

pressure; 

The strata being indefinitely thin, the number in any 

definite altitude will be indefinitely great, and this being 

the case in the above series, it is obvious that the numbers 

1, 2, 3, &c., connected with n by the minus sign, may be 

disregarded without sensibly impairing the result, which 

will give 

Pn 

V 
= 1 + 

ngh 

~P~ 
n2 g2 h2 

+ + 
ns gz A3 

1.2P2 1.2.3 P3 
+ &c. same reduced; 

But the second member is equal to 

ngh 

e F ’ 

in which e = 2.7182818, the base of the ISTaperian system 

of logarithms. Whence, 

same under 

different form; 

But n being the number of strata, and h the common 

height of each, nh will be equal to the difference of level 

between the first and last points. Calling this 2, and 

taking the ISTaperian logarithm of both members, we find, 

after substituting 2, 

pn 

V 

ngh 
e~P~. 

Pn _ PL. 
p P ’ 

Naperian 

logarithm; 
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common 

logarithm; 

difference of 

level; 

ratio of pressures 

in terms of 

barometric 

columns: 

same reduced to 

a standard 

temperature T; 

value of force of 

gravity ; 

value for 

difference of 

level; 

and passing to the common logarithms 

M. Log 
Pn _ gz 

p’ p 

in which M denotes the reciprocal of the modulus of 

common system; whence we have 

the 

MP T 
3 = - ♦ Log pn 

9 P 

Denote by bn the height of the barometric column 

the lower station, where the pressure is pn) and by b 

at the upper station where the pressure is p, then will 

at 

that 

Pn 

P 

bn 

T~; 

and reducing the barometric column b to the temperature 

of bn taken as the standard, we have, Eq. (241), 

pn bn 

p b[l -f (T- T') 0.0001001]’ 

in which T becomes the temperature of the mercury at 

the lower, and T' that at the upper station. Moreover, 

we have, Eq. (81)', 

ft. 

g = 32.1808 [1 - 0.002551 cos 2 +], 

or 

g = g' (1 — 0.002551 cos 2 40; 

ft. 

in which g' = 82.1808, the force of gravity in the latitude 

of 45°. 

Substituting these values of g, and the value of P 

given by Eq. (240), in the value for z above, and we find 

MD„ h„ ! + (/.- 32) 0.00208 uzuo r „„ r 1 n 
W X '°S Ly X 1 + {T— T') o.oooloolj* D. 1 — 0.002551 cos 
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In tin’s it will be remembered that t denotes the tem¬ 

perature of tlie air; but this may not be, indeed scarcely 

ever is, the same at both stations, and thence arises a dif- difficuIty arising 

ficulty in applying the formula. But if ire represent, for [1™ 

a moment, the entire factor of the second member into air at the two 
^ stations * 

which the factor involving t is multiplied, by X, then we 

may write 

z = [l + (t - 32°) 0.00208] X. 
difference of level 

for constant 

temperature; 

If the temperature of the lower station be denoted by t , 

and this temperature be the same throughout to the upper 

station, then will 

temperature 

Zj = [1 + (t, - 32°) 0.00208] X. throughout the 
same as at lower 

station ; 

And if the actual temperature of the upper station be 

denoted by t\ and this be supposed to extend to the lower 

station, then would 

s' = [1 + (t - 32°) 0.00208]. X. 
temperature 

same as upper 

station; 

How if tt be greater than t\ which is usually the case, 

then will the barometric column, or &, at the upper station 

be greater than would result from the temperature t\ since 

the air being more expanded, a portion which is actually 

below would pass above the upper station and press upon 

the mercury in the cistern; and because b enters the de- mean value of 

nominator of the value X, s. would be too small. Again, dlfferenceo1 

by supposing the temperature the same as that at the one; 

upper station throughout, then would the air be more 

condensed at the lower station, a portion of the air would 

sink below the upper station that before was above it, and 

would cease to act upon the mercurial column b, which 

would, in consequence, become too small; and this would 

make s' too great. Taking a mean between s; and s' as 

the true value, we find 
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true value for 

difference of 

level; 

value for 

difference of 

level; 

find the value of 

the coefficient; 

its value; 

final value for 

difference of 

level; 

data for its use; 

NATURAL PHILOSOPHY. 

3 = [1 + $(*, + t' - 64°) 0.00208] X. 
A 

Replacing X by its value, 

_ JUB„h„ m ! + !(*,+ *'— 64°) 0.00208 r fc._1_ 

1 D, 1 — 0.002531 cos 2 ¥ * " 3‘ L b X 1 -f (71 — T') 0.0001001-1 * 

The factor we have seen, is constant, and it 

only remains to determine its value. For this purpose, 

measure with accuracy the difference of level between 

two stations, one at the base and the other on the summit 

of some lofty mountain, by means of a Theodolite, or 

levelling instrument—this will give the value of z ; observe 

the barometric column at both stations—this will give b 

and bn; take also the temperature of the mercury at the 

two stations—this will give T and T'; and by a detached 

thermometer in the shade, at both stations, find the values 

of tt and V. These, and the latitude of the place, being 

substituted in the formula, every thing is known except 

the coefficient in question, which may, therefore, be found 

by the solution of a simple equation. In this way, it is 

found that 

^~7) ~ 60345.51 English feet; 

which will finally give for z, 

2=6034&. L±iA±ikrTF) ™0208 
1 — 0.002551 cos 

0.00208 [-fin w 1 "I 
2 ¥ X 0?‘ L b X 1 + (T— T) 0^0001001-1' 

To find the difference of level between any two 

stations, the latitude of the locality must be known; it 

will then only be necessary to note the barometric 

columns, the temperature of the mercury, and that of 

the air at the two stations, and to substitute these observed 

elements in this formula. 
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Much labor. is, however, saved by the use ot a table labor saved i*v a 

for the computation of these results, and we now proceed tab,e; 

to explain how it may be formed and used. 

Make t 

60345.ol [1 + (tj + t' — 64) 0.00104] = A, 

- B, 
1 — 0.002551 cos 2 4 

1 + (T - T') 0.0001 
= a 

mode of 

computing one, 

Then will 

abbreviated 

formula; 

AT) T ^ * ^Tl z = *A B • Log. —--—, 

z = A B • [Log. O + Log. bn — Log. 5]; 

and taking the logarithms of both members, 

Log. z = Log. A -{- Log. B + Log. [Log. C + Log. bn — Log. 6] . . (242). its logarithm; 

I 

Making + t' to vary from 40° to 162°, which will be variations of the 

sufficient for all practical purposes, the logarithms of the ^perature of 

corresponding values of A, are entered in a column, under 

the head A, opposite the values tt + t\ as an argument. 

Causing the latitude 4* 1° vary from 0° to 90°, the variations in 

logarithms of the corresponding values of B are entered latltude • 

in a column headed B, opposite the values of 4- 

The value of T — Tr being made, in like manner, to 

vary from — 30° to -f 30°, the logarithms of the cor¬ 

responding values of C are entered under the head of CJ 

and opposite the values of T — T'. In this waff a table 

is easily constructed. That subjoined, was computed by variations in 

Samuel Howlet, Esq., from the formula of Mr. Francis 01 

Baily, which is very nearly the same as that just described, 

there being but a trifling difference in the coefficients. 
37 



Table for finding- Altitudes 

. 
Detached Thermometer. 

t.+ t A I A 6-H A A 

4o 4.7689067 75 4.7859208 110 4.8022936 i45 4.8180714 

4i .7694021 76 .7863973 111 .8027625 146 .8i85i4o 

4* .7698971 77 .786S733 112 .8032109 147 .8189559 

43 .770391i 78 .7873487 113 .8036687 148 .8193975 

44 .7708851 79 .7878236 114 .8041261 149 .8198387 

45 .7713785 80 .7882979 115 ,8o4583o i5o .8202794 

46 .7718711 81 .7887719 116 ,8o5o395 151 .8207196 

47 •7723633 82 .7892451 ”7 .8o54953 I 52 .82 1 l594 ! 

48 .7728548 83 .7897180 118 .8059509 153 .8215988 

49 •7733457 84 .7901903 n9 .8o64o58 154 .8220377 

5o •7738363 85 .7906621 120 .8068604 155 .8224761 

5i .7743261 86 .7911335 121 .8073144 156 .8229l4l 

52 •7748i53 87 .7916042 122 .8077680 15j .8233517 

53 •7753o42 88 .7920745 I 23 .8082211 158 .8237888 

54 .7757925 89 .7925441 124 .8086737 159 .8242256 

55 .7762802 90 •793oi35 125 .8091258 160 .8246618 

56 
i 

.7767674 91 .7934822 126 .8095776 161 .8250976 

57 .7772640 92 .7939504 127 .8100287 162 .8255331 

58 .7777400 93 .7944182 128 .8104795 163 8259680 

59 .7782256 94 .7948854 129 .8109298 164 . 8264024 

6o .7787105 95 .7953521 :3o .8113796 165 .8268365 

6i .7791949 96 .7958184 131 .8118290 166 .8272701 

62 .7796788 97 .7962841 i32 .8122778 167 .8277034 
63 : .7801622 98 .7967493 i33 .8127263 168 .8281362 

64 . 7806450 99 .7972141 134 .8131742 169 .8285685 

65 .7811272 100 .7976784 135 .8136216 170 .8290005 

66 .7816090 IOI .7981421 i36 .8140688 171 .8294319 

67 .7820902 102 .79S6054 j37 .8i45i53 172 .8298629 

68 .7825709 io3 .7990681 138 .8149614 173 .8302937 

69 .783o5i1 104 •79953o3 139 .8154070 174 .8307238 

70 .#353o6 io5 • 7999921 140 .8i58523 175 .8311536 

71 .7840098 106 .8oo4533 i4i .8162970 176 .83i583o 

72 .7844883 107 .8009142 142 .8167413 177 .8320119 

73 .7849664 108 .8013744 i43 .8171852 178 .83244o4 

74 4-7854438 109 4.8oi8343 i44 4.8176285 179 4.8328686 
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with the Barometer. 

Latitude. Attached Thermometer. 

V B 
♦ 

T—T C C 

o° 0.0011689 + — 

3 .0011624 o° 0.0000000 0.0000000 

6 .001i433 1 .0000434 9.9999566 

9 .0011117 2 .0000869 .9999131 

12 .0010679 3 .oooi3o3 .9998697 

i5 .0010124 4 .0001737 .9998262 

18 .0009459 5 .0002171 .9997828 

21 .0008689 6 .0002605 .9997393 

2 4 .0007825 7 .ooo3o39 .9996959 

27 .0006874 8 .ooo3473 .9996524 

3o .ooo5848 9 .0003907 .9996090 

33 .0004758 10 .ooo434i •9995655 

36 .ooo36i5 11 .0004775 .9995220 

39 .0002433 12 .ooo52o8 .9994785 

42 .0001223 i3 .ooo5642 .9994350 

45 .0000000 i4 .0006076 .9993916 

48 9.9998775 i5 .ooo6510 .9993481 

49 .9998372 16 .0006943 .9993046 

5o .9997967 17 .0007377 .9992611 

5i .9997566 18 .0007810 .9992176 

52 .9997167 J9 .0008244 .9991741 

53 .9996772 20 .0008677 •999i3o5 

54 .9996381 21 .0009111 .9990870 

55 .9995995 22 .0009544 .9990435 

56 .99956i3 23 .0009977 .9990000 

57 .9995237 24 .ooio4r1 .9989564 

58 .9994866 25 .0010844 .9989129 

59 .9994502 26 .0011277 .9988694 

6o .9994144 27 .0011710 .9988258 

63 .9993115 28 .ooi2i43 .9987823 

66 .9992161 29 .0012576 .9987387 

69 .9991293 3o .0013009 .9986952 

75 .9989852 8i o.ooi3442 9.9986516 

81 .9988854 

9° 9.9988300 
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rule lor 

computing 

difference of level 

with a 

barometer; 

example first; 

observed data; 

height of 

Guanaxuato; 

Taking Eq. (242) in connection with, this table, we have 

this rule for finding the altitude of one station above 

another, viz.:— 

Take the logarithm of the barometric reading at the lower 

station, to which add the number in the column headed C oppo¬ 

site the observed value of T— T', and subtract from this sum 

the logarithm of the barometric reading at the upper station; 

take the logarithm of this difference, to which add the numbers 

in the columns headed A and B, corresponding to the observed 

values of tj + tr and f; the sum will be the logarithm of the 

height in English feet. 

Example. At the mountain of Guanaxuato, in Mexico, j 

M. Humboldt observed at the 

Upper Station. Lower Station. 

o o 

Detached thermometer, tr = 70.4; tt = 77.6. 

Attached “ T' — 70.4; T — 77.6. j 
Barometric column, b = 23.66 ; bn = 30.05. 

What was the difference of level ? 

Here 

tj + t' = 148; T — T' = 7.2; Latitude 21. j 
ini 

To Log. 30.05 = 1.4778445 

Add C for 7?2 = 0.0003165 ’ ji 

1.4781610 
in. 

Sub. Log. 23.66 = 1.3740147 

Log. of- - - - 0.1041463 = - 1.0176439 

Add A for 148° - - - - = 4.8193975 

Add B for 21°.. 0.0008689 

6885A. 3.8379103; 

whence the mountain is 6885.1 feet high. 
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It will be remembered tliat the final Eq. (242) was de- barometric 

duced on the supposition that each stratum of air pressed fo™ulatrue onl5 

with its entire weight on that below it, a condition which wind; 

can only be fulfilled when the air is in equilibrio—that is to 

say, when there is no wind. The barometer can, therefore, 

only be used for levelling purposes in calm weather. More¬ 

over, to insure accuracy, the observations at the two stations 

whose difference of level is to be found, should be made 

simultaneously, else the temperature of the air may change observations at 

during the interval between them; but with a single in- b°th ®t^tlons 

strument this is impracticable, and we proceed thus, viz.: simultaneously 

Take the barometric column, the reading of the attached 

and detached thermometers, and time of day at one of the 

stations, say the lower; then proceed to the upper station, 

and take the same elements there ; and at an equal interval or at equal 

of time afterward, observe these elements at the lower mter'alsapart; 

station again ; reduce the mercurial columns at the lower 

station to the same temperature by Eq. (241), take a mean 

of these columns, and a mean of the temperatures of the 

air at this station, and use these means as a single set of 

observations made simultaneously with those at the higher 

station. 

Example. The following observations were made to de- example second; 

termine the height of a hill near West Point, 1ST. Y. 

Upper Station. 

Detached thermometer, V — 57 ; t. 

Attached “ T = 57.5 ; T 

Lower Station. 

(1) (2) 

56 and 61. 

56 5 and 68. observed data; 

111. lit. 111. 
Barometric column, b = 28.94; bn = 29.62 and 29.63. 

First, to reduce 29.63 inches at 63°, to what it would 

have been at 56.5. For this purpose, Eq. (241) gives 

b(1 + T-T X 0.0001) = 29.63 (1 - 6.5 X 0.0001) = 29.611. reduction 



582 NATURAL PHILOSOPHY. 

Then 

reduced column; bn 
29.62 + 29.611 in. 

= 29.6105, 

temperature at 

lower station; t, = 

56 + 61 
= 58.5, 

m) 

I 
t, + V = 58.5 + 57- - = 115.5, 

T — T — 56?5 - 57!o - = - 1. 

tit. 

To Log. 29.6105 = 

Add C for —1° = 

in. 

computation; 

height of the hill. 

Sub. Log. of 28.94 = 

Log. of - - - - 

Add A for 115.5 - 

Add B for 41.4 

ft• 
632.07 • 

1.4714458 

9.9999566 

1.4714024 

1.4614985 

0.0099039 = - 

I 

3.9958062 

4.8048112 

0.0001465 

2.8007639; 

whence the height of the hill is 632.07 English feet. 

XIII. 

PUMPS. 

§ 287.—Any machine employed for raising water from 

one level to a higher, in which the agency of atmospheric 

Pumps; pressure is employed, is called a Pump. There are various 
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kinds of pumps ; the more common are the sucking, forcing, different kinds, 

and lifting pumps. 

Fig. 342. 

piston-valve; 

sleeping-valve; 

§288. d he Sucking-Pump consists of a cylindrical sucking-pump; 

body or barrel B, from the lower end of which a tube D, 

called the sucking-pipe, descends into the water contained 

in a reservoir or well. In the interior of the barrel is a 

moveable piston C, surrounded with leather to make it piston; 

water-tight, yet capable of moving up and down freely. 

The piston is perfora¬ 

ted in the direction 

of the bore of the 

barrel, and the orifice 

is covered by a valve 

F called the piston- 

valve, which opens 

upward; a similar 

valve E, called the 

sleeping-valve, at the 

bottom of the barrel, 

covers the upper end 

of the sucking-pipe. 

Above the highest 

point ever occupied 

by the piston, a dis¬ 

charge pipe P is in¬ 

serted into the barrel; 

the piston is worked 

by means of a lever H, or other contrivance, attached to 

the piston-rod G. The distance A A', between the highest 

ami lowest points of the piston, is called thq play. To ex- play; 

plain the action of this pump, let the piston be at its low¬ 

est point A, the valves E and F closed by their own 

weight, and the air within the pump of the same density 

or elastic force as that on the exterior. The water of the 

reservoir will stand at the same level LL both within and operation of the 

without the sucking-pipe. Now suppose the piston raised pump; 

discharge-pije; 
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1 

action during the 

ascent of the 

piston; 

equilibrium; 

action during the 

descent of the 

piston; 

the result of a 

few strokes of the 

piston; 

greatest altitude 

of lower limit of 

the play; 

to its highest point A', the air contained in the barrel and 

sucking-pipe will tend by its elastic force to occupy the 

space which the piston leaves void, the valve E will, there¬ 

fore, be forced open, and air will pass from the pipe to the 

barrel, its elasticity diminishing in proportion as it fills a 

larger space. It will, therefore, exert a less pressure on the 

water below it in the sucking-pipe than the exterior air does 

on that in the reservoir, and the excess of pressure on the 

part of the exterior air, will force the water up the pipe till 

the weight of the suspended column, increased by the elastic 

force of the internal air, becomes equal to the pressure of 

the exterior air. When this takes place, the valve E will 

close of its own weight; and if the piston be depressed, 

the air contained between it and this valve, having its 

density augmented as the piston is lowered, will at length 

have its elasticity greater than that of the exterior air; 

this excess of elasticity will force open the valve F,\ and 

air enough will escape to reduce what is left to the same 

density as that of the exterior air. The valve F will then 

fall of its own weight; and if the piston be again elevated, 

the water will rise still higher, for the same reason as 
t 

before. This operation of raising and depressing the 

piston being repeated a few times, the water will at length 

enter the barrel, through the valve F,\ and be delivered 

from the discharge-pipe P. The valves E and F closing 

after the water has passed them, the latter is prevented from 

returning, and a cylinder of water equal to that through 

which the piston is raised, will, at each upward motion, be 

forced out, provided the discharge-pipe is large enough. 

As the ascent of the water to the piston is produced by 

the difference of pressure of the internal and externa^ air, 

it is plain that the lowest point to which the piston may 

reach, should never have a greater altitude above the 

water in the reservoir than that of the column of this 

fluid which the atmospheric pressure may support, in 

vacuo, at the place. 

From a little reflection upon what has been said of the 
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Fig. 343. 

Al 

to find the 

relation of the 

play to the other 

dimensions; 

operations of this pump, it will appear that tlie rise of fact upon which 

water, during each ascent of the piston after the first, ^ the water 

depends upon the expulsion of air through the piston- 

valve during its previous descent. But air can only issue- 

through this valve when the air below it has a greater 

density, and, therefore, greater elasticity, than the external 

air; and if the piston may not descend low enough, for 

want of sufficient play, to produce this degree of compres¬ 

sion, the water must cease to rise, and the working of the 

piston can have no other effect than alternately to com¬ 

press and dilate the same air between it and the surface of 

the water. To ascertain, therefore, 

the relation which the play of the 

piston should bear to the other 

dimensions, in order to make the 

pump effective, suppose the water 

to have reached a stationary level 

X, at some one ascent of the piston 

to its highest point A', and that, in 

its subsequent descent, the piston- 

valve will not open, but the air 

below it will be compressed only to 

the same density with the external 

air, when the piston reaches its 

lowest point A. The piston may be 

worked up and down indefinitely, 

within these limits for the play, with¬ 

out moving the water. Denote the play of the piston by a; 

the greatest height to which the piston may be raised above 

the level of the water in the reservoir, by b, which may 

also be regarded as the altitude of the discharge-pipe; the notation; 

elevation of the point X1 at which the water stops, above 

the wmter in the reservoir, by x ; the cross-section of the 

interior of the barrel by B. The volume of the air volume of tho 
J % confined air, 

between the level X and A will be when the piston 

is at its lowest 

point; 

hypothesis in 

respect to rise of 

water; 

B X (b — x — a); 
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volume of same 

air expanded 

when piston is at 

highest point; 

weight of the 

column of water 

which the first 

will support; 

weight supported 

by the second; 

ratio of the 

heights; 

condition of 

equilibrium; 

altitude of point 

of stopping; 

the volume of this same air, when the piston is raised to 

A', provided the water does not move, will bo 

B(b - x). 

Represent by h the greatest height to which water may be 

supported in vacuo at that place. The weight of the 

column of water which the clastic force of the air, when 

occupying the space between the limits X and A, Avill 

support in a tube, with a bore equal to that of the barrel, 

is measured by 

B h . g . D; 

in which D is the density of the water, and g the force of 

gravitja The weight of the column which the elastic 

force of this same air will support, when expanded between 

the limits X and A\ will be 

BK'.g.D; I 
li 

.. ■ .,. i 

in which h' denotes the height of this new column. But 

from Mariotte’s law we have 

B(b — x — a) : B(b — x) :: BNg D : BhgD; 

whence 
* ’* 7 

7, 7 o — x — a 
h = h • —;-. 

o — x 

But there is an equilibrium between the pressure of the 

external air and that of the rarefied air between the limits 

X and Awhen the latter is increased by the weight of 

the column of water whose altitude is x. Whence, omit¬ 

ting the common factors, B, D, and y, 

• 7 f ,7 b X ~~ Cl 7 

x + h = x 4- h * —j-= h; 
o — x 

or, clearing the fraction and solving the equation in refer¬ 

ence to fc, we find 

x =; j b ± \ V ¥ — 4 a h . . (243). 

i 
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When x has a real value, the water will cease to rise, condition of 

but x will be real as long as b2 is greater than 4 ah. If, on stoppaso; 

the contrary, 4 ah is greater than b2, the value of x will 

be imaginary, and the water cannot cease to rise, and the 

pump will always be effective when its dimensions satisfy 

this condition, viz.:— 

or 

4 a h > b2, 

a > 
b2 

4 h ’ 
condition of 

incessant flow; 

that is to say, the play of the piston must be greater than the rule for pjay of 

square of the altitude of the upper limit of the play of the piston thepiston5 

above the surface of the ivater in the reservoir, divided by four 

times the height to which the atmospheric pressure at the place, 

where the pump is used, will support water in vacuo. This 

last height is easily found by means of the barometer. 

We have but to notice the altitude of the barometer at the value of A 

the place, and multiply its column, reduced to feet, by [ound bfthe 
1 J 1 i J barometer; 

13^, this being the specific gravity of mercury referred to 

water as a standard, and the product will give the value 

of h in feet. 

Example. Required the least play of the piston in a 

sucking-pump intended to raise water through a height 

of 13 feet, at a place where the barometer stands at 28 example; 

inches. 

Here 

Barometer, 

b = 13, and ' b3 = 169. 

in. 
oo 

= 2.333 feet. data; 

Play = a > 

h = 24133 X 13.5 = 31.5 feet. 

b2 

4 h 4 X 31.5 

169 /*• 
= 1.341+; resulting limit for 

play; 

that is, the play of the piston must be greater than one 

and one third of a foot. 
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quantity of work 

of the raoler in 

the sucking- 

pump ; 

pressure on top 

of piston; 

pressure on the 

under surface of 

piston; 

pressure to be 

overcome by the 

power; 

weight to be 

overcome; 

The quantity of work performed by 

the motor during the delivery of water Kg- 344. 

through the discharge-pipe P) is easily 

computed. Suppose the piston to have 

any position, as JiJ and to be moving 

upward, the water being at the level 

LL in the reservoir, and at P in the 

pump. The pressure upon the up¬ 

per surface of the piston will be equal 

to the entire atmospheric pressure de¬ 

noted by A, increased by the weight of 

the column of water IIP', whose height 

is c', and whose base is the area B of 

the piston; that is, the pressure upon 

the top of the piston will be 
• * ' * r . . ♦ 

A + Be' gD, 

in which g and D are the force of gravity and density of 

the water, respectively. Again, the pressure upon the un¬ 

der surface of the piston is equal to the atmospheric pres¬ 

sure A, transmitted through the water in the reservoir and 

up the suspended column, diminished by the weight of the 

column of water NM below the piston, and whose base is 

B and altitude c; that is, the pressure from below will be 

A — Beg D, 

and the difference of these pressures will be 

A + Be gT> — (A — BegD) = Bg D (c + c'); 

but, employing the notation of the sucking-pump just 
described, 

c + c = b; 

whence the foregoing expression becomes 

Bb . g . D; 
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which is obviously the weight of a column of the fluid 

whose base is the area of the piston and altitude the 

height of the discharge-pipe above the level of the water 

in the reservoir. And adding to this the effort necessary to which friction 

to overcome the friction of the parts of the pump when in mustbeadded; 

motion, denoted by <p, we shall have the resistance which 

the force A, applied to the piston-rod, must overcome to 

produce any useful effect; that is, 

F — Bb g D + <p. 
value of the 

motive force; 

Denote the play of the piston by p, and the number of its 

double strokes, from the beginning of the flow through 

the discharge-pipe till any quantity Q is delivered, by n; 

the quantity of work will, by omitting the effort necessary 

to depress the piston, be 

Fnp = Up\Bb . g D + <p] ; quantity of work; 

or estimating the volume in cubic feet, in which case p 

and b must be expressed in linear feet and B in square 

feet, and substituting for g D its value 62.5 pounds, we 

finally have for the quantity of work necessary to deliver 

a number of cubic feet of water Q = Bnp, 

Fnp — np [62.5 . Bb + cp] (244); 

quantity requisite 

to deliver a given 

number of cubic 

feet; 

in which <p must be expressed in pounds, and may be 

determined either by experiment in each particular pump, 
* i 

or computed by the rules already given. 

It is apparent that the action of the sucking-pump 

must be very irregular, and that it is only during the 

ascent of the piston that it produces any useful effect; sucking-pump 

during the descent of the piston, the force is scarcely ”c‘®^ar in lt9 

exerted at all, not more than is necessary to overcome 

the friction. 

§ 289.—What is usually called the lifting-pump, does Lifting-pump; 

not differ much from the sucking-pump just described, 
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positions of the 

barrel and pipe 

reversed in this 

pump; 

mode of action; 

the result of 

several strokes 

of the piston; 

work estimated 

by the same rule 

as for sucking- 

pump ; 

except that the barrel and 

sleeping-valve E are placed 

at the bottom of the pipe, and 

some distance below the sur¬ 

face of the water L L in the 

reservoir; the piston may or 

may not be below this same 

surface when at the lowest 

point of its play. The pis¬ 

ton and sleeping valves open 

upward. Supposing the pis¬ 

ton at its lowest point, it 

will, when raised, lift the 

column of water above it, 

and the pressure of the ex¬ 

ternal air, together with the 

head of fluid in the reservoir above the level of the sleep¬ 

ing-valve, will force the latter open, the water will flow 

into the barrel and follow the piston. When the piston 

reaches the upper limit of its play, the sleeping-valve will 

close and prevent the return of the water above it. The 

piston being depressed, its valves F will open and the 

water will flow through them till the piston reaches its 

lowest point. The same operation being repeated a few 

times, a column of water will be lifted to the mouth of the 

discharge-pipe P, after which every elevation of the piston 

will deliver a volume of the fluid equal to that of a cyl- 

inder whose base is the area of the piston and whose 

altitude is equal to its play. 

As the water on the same level within and without the 

pump will be in equilibrio, it is plain that the resistance 

to be overcome by the power, will be the friction of the 

rubbing surfaces of the pump, augmented by the weight of 

a column of fluid whose base is the area of the piston, and 

altitude, the difference of level between the surface of the 

water in the reservoir and the discharge-pipe. Hence the 

quantity of work is estimated by the same rule, Eq. (244). 

Fig. 345. 
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If we omit for a moment tlie consideration of friction, and 

take but a single elevation of the piston after tlie water 

has reached the discharge-pipe, n will equal one, 9 will be 

zero, and that equation reduces to 

Fp = 62.5 Bp x b; 

but 62.5 X Bp is the quantity of fluid discharged at each 

double stroke of the piston, and b being the elevation 

of the discharge-pipe above the water in the reservoir, 

we see that, the work will be the same as though that 

amount of fluid had actually been lifted through this 

vertical height, which, indeed, is the useful effect of the 

pump for every double stroke. 

§ 290.—The for¬ 

cing-pump is a fur¬ 

ther modification of 

the simple sucking- 

pump, The barrel 

B and sleeping-valve 

E are placed upon 

the top of the suck¬ 

ing-pipe M. The 

piston F is without 

perforation and valve, 

and the water, after 

being forced into the 

barrel by the atmo¬ 

spheric pressure with¬ 

out, as in the sucking- 

pump, is driven by 

the depression of the 

piston through a lat¬ 

eral pipe H into an 

air-vessel JVJ at the 

bottom of which is 

Fig. 346. 

work for one 

elevation of 

piston; 

measure of the 

useful effect. 

Forcing-pump, 

description; 

action of the 

piston and 

sleeping-valve; 

air-vessel; 
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second 

sleeping -valve; 

discharge-pipe; 

action of the 

air-vessel, second 

valve; 

quantity of work 

in forcing-pump; 

a second sleeping- 

valve E 'j opening, 

like tlie first, upward. 

Througli the top of 

the air-vessel a dis¬ 

charge-pipe K passes, 

air-tight, nearly to the 

bottom. The water 

when forced into the 

air-vessel by the de¬ 

scent of the piston, 

rises above the lower 

end of this pipe, con¬ 

fines and compresses 

the air, and this, re¬ 

acting by its elastici¬ 

ty, forces the water 

up the pipe, while the 

valve Er is closed 

by its own weight 

and the pressure from 

above, as soon as the 

piston reaches the lower limit of its play. A few 

strokes of the piston will, in general, be sufficient to raise 

water in the pipe K to any desired height, the only limit 

being that determined by the power at command and the 

strength of the pump. 

During the ascent of the piston, the valve E' is closed 

and E is open; the pressure upon the upper surface of 

the piston is that exerted by the entire atmosphere; the 

pressure upon the lower surface is that of the entire 

atmosphere transmitted from the surface of the reservoir 

through the fluid up the pump, diminished by the weight 

of the column of water whose base is the area of the 

piston and altitude the height of the piston above the 

surface of the water in the reservoir; hence the resistance 

to be overcome by the power will be the difference of 

Fig. 346. 
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these pressures, which is obviously the weight of this 

column of water. Denote the area of the piston by B, its 

height above the water of the reservoir at one instant by 

y, and the weight of a unit of volume of the fluid by w, 

then will the resistance to be overcome at this point of the 

ascent be 

w . B .y; 

and denoting the indefinitely small space described by the 

piston from this position by s, the elementary quantity of 

work will be 

w By . s. 

In like manner, denoting by y\ y”, y"\ &c., the different 

heights of the piston, and by s', s", s'", &c., the correspond¬ 

ing elementary spaces described by it, the elementary 

quantities of work of the power will be 

wBy's', wBy”s\ wBy"'s'", &c.; 

and the whole quantity of work during the entire ascent, 

will be 

' w \Bys + By’s' + By"s" + By'" s'" + &c.]; 

but Bs is the volume of a horizontal stratum of the fluid 

in the barrel, and Bs X y is the product of this volume 

into the distance of its centre of gravity from the surface 

of the fluid in the reservoir; and the same of the others. 

Hence, if yt denote the height of the centre of gravity of 

the play p of the piston, in other words, of its middle 

point, then will 

BrpyJ — By s + By's' + By"s" -f &c.; 

resistance to be 

overcome by the 

power; 

its measure; 

elementary 

quantity of work; 

same for different 

positions of 

piston; 

work during one 

entire ascent; 

equivalent 

expression for 

the same; 

and 

38 

to . Bp . y, 
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work during one 

descent; 

its measure; 

work during one 

double stroke; 

same; 

work for any 

number of double 

strokes; 

motion made 

regular in 

forcing-pump; 

1 

will measure the quantity of work of the motor during one 

ascent of the piston. During the descent of the piston, 

the valve E is closed and E' open, and as the columns 

of the fluid in the barrel and discharge-pipe, below the 

horizontal plane of the lower surface of the piston, will 

maintain each other in equilibrio, the resistance to be 

overcome by the power will, obviously, be the weight of a 

column of fluid whose base is the area of the piston,.and 

altitude, the difference of level between the piston and 

point of delivery P; and denoting by z, the distance of 

the central point of the play below the point P, we shall I 

find, by exactly the same process, fl 

w B p‘ 

for the quantity of work of the motor during the de-: 

scent of the piston; and hence the quantity of work 

during an entire double stroke will be the sum of these,; 

or 

W Bp (y, + z,). 1 

But yt + zt is the height of the point of delivery P above 

the surface of the water in the reservoir, and denoting this, 

as before, by 5, we have 

w Bp b ; 

and calling the number of double strokes n, and the whole 

quantity of work Q, finally have 

Q — n iv . Bp b . (245). 

If we make zt = yn or b — 2 yn which will give yt — —> 
Jj 

the quantity of work during the ascent will be equal to 

that during the descent, and thus, in the forcing-pump, the 

work may be equalized and the motion made in some 
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degree regular. In the lifting and sucking pumps, the 

motor has, during the ascent of the piston, to overcome 

the weight of the entire column whose base is equal to the it is very 

area of the piston, and altitude the difference of level be- !TififUlar *nthe 

tween the water in the reservoir and point of delivery, and sucking-pumpu 

being wholly relieved from this load during the descent, 

when the load is thrown upon the sleeping-valve and its 

box, the work becomes exceedingly variable, and the 

motion irregular. 

XIY. 

THE SIPHON. 

§ 291.—The siphon is a bent tube of unequal branches, siphon; 

open at both ends, and is used to convey a liquid from a 

higher to a lower level, over 

an intermediate point higher 

than either; and although 

its discussion more naturally 

appertains to the motion of 

fluids, its analogy with the 

pumps, renders a descrip¬ 

tion of it here proper. The 

siphon having its parallel 

branches vertical and plun¬ 

ged into two liquids whose 

upper surfaces are at LM 

and L' the fluid will stand 

at the same level both within and without each branch 

of the tube when a vent or small opening is made at 0. 

If the air be withdrawn from the siphon through this 

vent, the water will rise in the branches by the atmo¬ 

spheric pressure without, and when the two columns 

Fig. 347. 

description; 

mode of using 
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conditions of the 

flow; 

explanation; 

motion due to 

the excess of 

pressure «p the 
shorter branch; 

pressure up the 

shorter branch; 

unite and the vent is stopped, the liquid will flow from 

the reservoir A to A\ as long as the level If M' is below 

L M, and the end of the shorter branch of the siphon is 

below the surface of the liquid in the reservoir A. 
The cause of this apparent paradox will be manifest 

from the following consideration, viz.: The atmospheric 

pressures upon the surfaces L M and Lr M\ tend to force 

the liquid up the two branches of the tube. When the 

siphon is filled with the liquid, each of these pressures is 

counteracted in part by the weight of the fluid column in 

the branch of the siphon that dips into the fluid upon 

which the pressure is exert¬ 

ed. The atmospheric pres¬ 

sures are very nearly the 

same for a difference of level 

of several feet, by reason of 

the slight density of air. The 

weights of the suspended 

columns of water will, for 

the same difference of level, 

differ considerably, in. conse¬ 

quence of the greater density 

of the liquid. . The atmo¬ 

spheric pressure opposed to the longer column will there- i 

fore be more diminished than that opposed to the shorter, 

thus leaving an excess of pressure at the end of the shorter 

branch, which will produce the motion. Thus, denote by 

A the intensity of the atmospheric pressure upon a surface 

a equal to that of a cross-section of the bore of the siphon; 

by h the difference of level between the surface L M and 

the bend 0 of the siphon; by h' the difference of level be¬ 

tween the same point 0 and the level L’ M'; by D the 

density of the liquid ; and by g the force of gravity: then 

will the pressure, which tends to force the fluid up the 

branch which dips below L M, be 

A — ah Dg ; 

Fig. 347. 
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and that which tends to force the fluid up the branch 

immersed in the other reservoir, be 

A — ah' D g ; 

and subtracting the second from the first, we find 

aDg (ft' — A), 

for the actual intensity of the force which urges the fluid 

within the siphon, in a direction from the upper to the 

lower reservoir. 

Denote by l the entire length of the siphon. It is 

obvious that this will be the distance over which any one 

stratum will move, while subjected to the action of the 

above force, and that the quantity of action will be meas¬ 

ured by 

a D g (Jir — h) l. 

The mass moved will be all the fluid in the siphon which 

is measured by all) ; and if we denote the velocity by V, 

we shall have, for the living force of the moving mass, 

alD.V2; 

and because the quantity of action is equal to half the 

living force, we find 

^ a DIV2 
a D g ill' — h) l = -^-5 

whence 

V = VY7j (h' - A); 

from which it appears, that the velocity with which the liquid 

will flow through the siphon, is equal to the square root of 

twice the force of gravity, into the difference of level of the fluid 

pressure up tlio 

longer branch; 

pressure which 

determines the 

flow; 

quantity of action 

in passing a 

siphon full from 

the upper to 

lower reservoir; 

living force; 

velocity of the 

flow; 
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flow will cease 

when the water 

in the reservoirs 

comes to same 

level; 

practical 

application of 

the siphon; 

mode of using it 

for draining 

purposes; 

greatest elevation 

over which the 

water may be 

raised. 

in the two reservoirs. When the fluid in the reservoirs 

comes to the same level, the flow will cease, since, in that 

case, h' — h — 0. 

The siphon may be employed to great advantage to 

drain canals, ponds, marshes, and the like. For this pur¬ 

pose, it may be made flexible by constructing it of leather, 

well saturated with grease, like the common hose, and fur¬ 

nished with internal hoops to prevent its collapsing by the 

pressure of the external air. 

It is thrown into the water 

to be drained, and filled; 

when, the ends being plug¬ 

ged up, it is placed across 

the ridge or bank over which 

the water is to be conveyed; 

the plugs are then removed, 

the flow will take place, and 

thus the atmosphere will be 

made literally to press the water from one basin to another, 

over an intermediate ridge. 

It is obvious that the difference of level between the 

bottom of the basin to be drained and the highest point 0, 

over which the water is to be conveyed, should never 

exceed the height to which water may be supported in 

vacuo by the atmospheric pressure at the place. 

Fig. 348. 

0 

XY. 

MOTION OF FLUIDS. 

Motion of fluids; § 292.—The purpose now is to discuss the laws which 

govern the motion of fluids; and we shall begin with 

those that relate to liquids. Suppose ABDC to be 

any vessel containing a heavy fluid whose upper level is 
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1%. 349. 

SL n 

AV//4 
vv?/' 

flow of liquids 

from vessels, 

through 

apertures: 

n 

AB. If a small opening ab be 

made in tlie vertical side of the 

vessel, the pressure from within will 

urge the fluid out, and this pres¬ 

sure being greater as we descend 

to a greater distance from the upper 

surface A B, the fluid will flow with 

a greater velocity and in greater 

quantity during a given time, in 

proportion as the opening is made 

nearer the bottom. The quantity 

of fluid discharged in a unit of time, as a second, is called 

the expense. The liquid on leaving the vessel forms a expense; 

continuous stream called the vein or jet, which takes the vein or Jet ? 

form of the curve described by a body thrown per¬ 

pendicularly from the side of the vessel with the velocity 

which the fluid has at its exit, and afterward acted upon 

by its own weight. This, we have seen, is a parabola. in shape, a 

At every point of this parabola, the weight of the fluid parabola; 

tends to alter its velocity, but at the orifice, the ve¬ 

locity is determined solely by what takes place within 

the vessel. 

If the orifice be in the horizontal bottom, as at a'b\ 

the jet will be vertical, and the liquid will flow down¬ 

ward; if, as at d, the orifice be in 

a horizontal face pressed vertically 

upward, the jet will also be vertical, 

and the liquid will ascend on leav¬ 

ing the vessel. In general, when 

the sides of the vessel are thin, the 

direction of the vein will be per¬ 

pendicular to the surface through 

which the orifice is made. 

Fig. 850.. direction of tho 

vein determined 

by the face of the 

vessel. 

§ 293.—The interior surface of every vessel containing Motion through 

a heavy fluid is subjected, as we have seen, to a pressure oufices’ 

therefrom, which depends upon the extent of surface and 
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to And the 

velocity of a fluid 

flowing freely 

through an 

orifice in a thin 

plate; 

permanent flow; 

equal volumes 

flow through the 

different sections 

in same time; 

data; 

equal volumes; 

the distance of its centre of gravity 

below the upper level of the fluid. 

At the moment an orifice a b is 

made, the fluid at its mouth is urged 

by this pressure to leave the vessel, 

the neighboring particles crowd to¬ 

wards the opening, describing paths 

which converge towards and lead 

through it. This movement is soon 

propagated in some modified degree 

to all parts of the fluid, and speedily each point of space 

within the vessel becomes distinguished by the constant 

velocity which every particle of the fluid mass that passes 

through it will there possess. It is from this instant, when 

the motion of the fluid becomes permanent, that we are to 

consider the flow. 

If the fluid be incompressible, it is obvious that the 

same volume will flow through each horizontal section of 

the vessel above the orifice in the same time, and that this 

volume must be equal to that dis¬ 

charged through the orifice. De¬ 

note by A the area of the section 

NB of the interior of the vessel, at 

the upper surface of the fluid; by a 

the area of the orifice M 0; by s 

the distance through which the up¬ 

per stratum NB descends in any 

indefinitely small portion of time; 

and by S the distance 0 O' through 

which the stratum at the mouth of 

orifice passes in the same time. The volume of the fluid 

which flows through the section NB in this time will be 

measured by As; and that through the orifice, by a S* 

and because these must be equal, we have 

As = a S; 

whence 

Fig. 352. 
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ratio of spaces 

and areas of 

sections; 

But because the distances 5 and S are described in the 

same time, they will be proportional respectively to the 

velocities of the strata which describe them; and denoting- 

the velocity of the stratum at the upper surface by v, and 

that of the stratum at the orifice by V, we have 

ratio of spaces 

and velocities; 

which, substituted above, gives 

s v 

= V’ 

s __ a 

77 ~ X 

ratio of velocities 

and areas; 

That is to say, the velocities of the strata are inversely 

proportional to the areas of the sections through which 

they flow, and from which we obtain 

v _ a 

V “ T 

a 
V = V • —r 

A 
. . (246). 

velocity through 

any section; 

Again, since the flow is permanent, it is obvious that 

the living force of the fluid mass N' B' MQ must always 

be the same. Denote this by L, and let w represent 

the weight of the fluid mass in NBB' N\ equal to that 

in M M' O' 0; then will the living force of the mass 

NBMQ be 

living force of 

the interior fluid; 

that of a portion 

within and that 

at the jet; 

and subtracting the first from the second, we find for the 

difference of living force of the same mass NBMQ, and 

T . W Q L + — v2, 
9 

and that of the mass B' N' Q M' O' 0 be 

W Tr2 
L + - V ; 

9 
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difference of 

living force ol 

me same 

mass; 

work of the 

weight of the 

entire fluid; 

work at the end 

of any 6hort 

interval; 

that at the 

beginning; 

work during the 

interval; 

B' N' Q M M' O' 0: moving with the velocities v and V 

respectively, the expression 

'lO r TT-2 0\ 

— ( V — v“). 
9 

The quantity of work performed 

by the weight of this same mass 

in the interval between its oc¬ 

cupying the space NB M Q, and 

B' N' Q M' O' 0, is, as we have 

seen, equal to this weight multi¬ 

plied by the vertical distance 

through which its centre of gravity 

may have descended in the interval. 

Let G' be the centre of gravity 

of the whole mass when in the position NB M Q, and 

G" when it occupies the space Br N' Q M' O' 0. Denote 

the vertical distance of G' below the upper surface NB 

by h\ that of G" below the same surface by A", and the 

weight of the entire fluid by TV] then will the quantity of 

work of this weight be 

TV(Ji" - h') = Wh" - Wh!; 

and calling the distance of the centre of gravity of the 

mass MM'O' 0 below the upper surface, h'"; that of the 

centre of gravity of the mass N’ B' MQ below the same 

surface, l; and denoting the weight of this latter mass by 

W' ; we have, from the principles of the centre of gravity, 

TVh" = W' l + w Ji"\ 

TVh' = TV' l + iv is; 

in which denotes the distance of the centre of gravity 

of the mass NBBr N' below the surface NB; whence 

Wh" - Wh' = w ill'" - Is); 

- Fig. 352. 
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but li"—\s is the vertical distance between the centres of 

gravity of the masses NB B' N' and MM' O' 0, and when 

these masses are considered as elementary, this distance 

becomes the depth of the centre of gravity of the orifice 

below the upper level of the fluid. Denote this distance 

by A, and the quantity of work of the weight of the fluid 

while the stratum NB is passing to Nr B\ and the stratum 

M 0 to M' 0\ becomes 

w h. the same; 

If the upper surface be subjected to any pressure, as that 

of a piston or the atmosphere, then will the quantity 

of work due to this pressure be 

elementary work 

p A S j from external 

pressure above; 

in which p denotes the pressure exerted upon the unit of 

surface. If, moreover, the fluid at the orifice be also sub¬ 

jected to a like pressure inward, this pressure would be 

transmitted to the lower face of the stratum whose area is 

A, and its work wrould be measured by 

pf As ; 
elementary work 

from external 

pressure below; 

and taking the difference, we have, for the effective work 

of these pressures, 

(p' — p) As. 
effective work of 

external 

Now A s D g = w, from which 

pressures; 

. w volume of the 

As ~ Dg' 
stratum; 

and, substituting this above, we have 

{p' - p) As = {p - effective work; 

whence the whole quantity of work due to the weight of 
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total effective 

work; 

the fluid and the pressures at the upper surface and the 

orifice, becomes 

wh + (p'-p)AL; 

and because the difference of the living force at the begin¬ 

ning and end of any interval, is equal to twice the quantity 

of action in this interval, we have 

quantity of work 

equal half gain 

of living force; 
- (72 - v2) = 2 w (h + 

P' ~ P\ 

Dg )’ 
1 
J 

or, dividing out the common factor, multiplying by g, 

and substituting for v its value, given in Eq. (246), we 

have 

whence 

- r2 -^ = 2(gh + 

velocity of egress 

through the 

orifice; 

) 

If p and p' denote the atmospheric pressures upon 

the unit of surface, they become equal when the altitude 

of the fluid above the orifice is not very great, in which 
case 

same when the 

pressures at top 

and orifice are 

the same; 

and if the area of the orifice be very small as compared 

with that of the upper surface of the fluid, the fraction 
op 
-^2 will be so small, that it may, without sensible error, be 

omitted; in which case, the fluid at the surface will be at 
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comparative rest while it flows through the orifice, and 

--. velocity of egress 

V — V 2 gh ; through a very 

small orifice; 

that is to say, when a liquid is flowing through a small 

orifice in the side or bottom of a large vessel, its velocity is 

equal to the square root of twice the force of gravity multiplied rule; 

by the depth of the centre of gravity of the orifice beloiv the 

upper surface of the fluid. 

It is apparent from the form of the above expression, 

that this velocity is the same as that acquired by a heavy velocity same as 

body while falling, in vacuo, from a state of rest, through thf acq"u'®d b? 

the distance of the orifice below the fluid level. The failing through 

distance h is called, in the case of discharging fluids, the °f 

generating load. 

If a be equal to A, that is, if the bottom of the vessel 

be removed, then will, Eq. (246), 

v = V. 

The space described uniformly by the stratum of fluid 

at the orifice in a unit of time being V, the expense, 

estimated in volume, will be 

y. expense in 

' ; volume; 

and in weight, 

aVDg. in weight; 

So that, if t denote the time of flow, expressed in seconds; 

Q the quantity in volume, and Qr the quantity in weight 

discharged, then will 

quantity in 

Q = a Vt.(249), volume in a 
given time; 

quantity in 

Q' — aVDgt . . . . (250); weight in a given 
time; 

in which Dg is the weight of the unit of volume. 
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example 

dam; 

velocity of 

egress; 

quantity in 

volume in one 

second; 

quantity in 

pounds in one 

second. 

Motion of gases 

and vapors; 

Example. The upper surface of the water, which is 

15 feet above the centre of gravity of the orifice, is pressed 

with an intensity equal to 20 pounds upon the square 

foot; the area of the orifice being 0.02 of a foot. What 

is the velocity of egress, and what the expense ? Here, the 

atmospheric pressure upon the piston and at the orifice 

being the same, 

p' — p — 20 pounds, 

D= 1, 1 
h — 15, \ 

g = 32 nearly; 

and neglecting the small fraction —, we find, from Eq. 

(247), 

V = V 30 X 62 + 40 = 31.6 feet; 

and for one second, 

Q = 0.02 X 31.6 = 0.632 cubic feet, i 

lbs. 

Qr = 62.5 X 0.632 = 39.5 pounds. | 

1 

XVI. 

■ 

MOTION OF GASES AND YAPORS. 

§ 294.—In the preceding case, we have supposed, 

1st, that the volume of the fluid which escapes through 

the orifice, is equal to that which passes, during the 

same time, through any interior horizontal section of the 
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A 

A' 

vessel; 2d, that the density in all parts of the vessel 

remains the same: both of which suppositions are sensibly 

true for liquids, but are not so in the cases of gases and 

vapors. 

When fluids of this latter class are confined and sub¬ 

jected to any compressing action, as that of a piston, and 

are permitted to escape through an orifice at which the 

resistance of external pressure is too feeble to retain them, 

the density, tending as it always does to conform to Mari- 

otte’s law, will be greater at the piston where the pressure 

is greatest, than at the place of egress where it is least. 

Again, the motion being permanent, the same amount, in 

weight, of gas will flow through 

any section A' B’ of the vessel as 

through the orifice ab; but the den- Fig- 353. 

si ties at these places being different, 

the volumes of these equal weights 

will also be different. In these par¬ 

ticulars, the circumstances attending 

the motion of gases and vapors dif¬ 

fer from those of liquids. 

To find the velocity of egress at 

the orifice, we remark, that the 

fluid is subjected, as in the case of 

liquids, to the action, 1st, of its 

own weight; 2d, to that of the ^ 

opposing pressures at the piston and 

orifice; and 8d, to the additional 

action arising from the repulsions of the particles for each 

other, this latter producing expansion whenever the pres¬ 

sure from without will permit it. The quantity of work 

upon the stratum issuing through the orifice, due to the 

weight of the fluid mass, is, as we have seen, measured by 

wh; in which w denotes the weight of the stratum, and h 

the heieht of the fluid above the orifice, fl^o find the 

work due to the pressures, denote the pressure upon a 

unit of surface at the piston by p; that on the same 

both the volume 

through different 

sections and 

density vary; 

density greatest 

at piston and 

least at orifice; 

B 

A 

equal quantities, 

by weight, will 

flow through the 

different sections 

in the same time: 

the volumes of 

these will be 

different; 

b' 

the forces which 

act: weight, 

pressure from 

the piston, and 

molecular 

repulsion; 

work of the 

weight; 

to find the work 

due to the 

pressures; 
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notation; 

the equal 

weights; 

extent of surface at the orifice by 

p'; the area of the piston by A ; 

that of the orifice by a; the dis¬ 

tance between any two consecutive 

positions, as AB and A'B', of the 

piston by s; the distance between 

the two corresponding positions a b 

and ct' V of the stratum at the 

orifice by 8. Then, because the 

weights of the volumes ABB'A' 

and abb' a' of the fluid are equal, 

we have 

Fig. 353. 

AsDg = a8D'g . . . (251); 

in which D and D' denote the densities of the gas at the 

piston and orifice, respectively, and g the force of gravity. 

Whence 

volumes 

Inversely as 

densities; 

As B' 

a8 ~ D 9 

But by Mariotte’s law the densities are directly propor¬ 

tional to the pressures, hence 

densities directly 

as pressures; 

n 
D 

which substituted above, gives 

relation of 

volumes and 

pressures; 

A s __ p' 

^8 ~~ ~y * * 

loss or gain of 

work due to 

pressure; 

Clearing the fraction and transposing, we find 

p . A s — p’ a 8 = 0. ' 

But p A is the pressure on the whole extent of the piston, 

and p As is, therefore, the whole work of this pressure; 

also p' a is the pressure on the surface of the stratum of 
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fluid in the orifice, and p' a S is the quantity of work 

of this pressure; and as these quantities of work are pro¬ 

duced in the same time, we see that the loss or gain of this is zero; 

work, due to these pressures, is zero. 

The quantity of work due to the molecular actions, to find quantity 

of work due to 

molecular action; 
arises in consequence of the expansion which takes place 

when the gas passes from the pressure y>, within the vessel 

and near the piston, to the pressure p’, at the mouth of 

the orifice. The amount of this work is directly propor¬ 

tional to the primitive volume expanded during the change it is directly 

of pressure; if the primitive volume to be expanded be ^loportlonal 1° 
1 7 1 x the primitive 

doubled, tripled, or quadrupled, &c., the quantity of the volume to be 

work will be doubled, tripled, quadrupled, &c. Hence,expanded» 

taking a cubic foot'of the gas under the pressure p>, and 

denoting the quantity of work due to the expansion, cor¬ 

responding to a change from the pressure p to the pressure 

p', by E, then will the work due to the expansion of the 

volume A B B’ A! to abb' a', be measured by 

But since w denotes the weight of the gas in the volume 

AB B'A\ we have 

A .s.M 

work of the 

expansion from, 

the volume at the 

piston to that at 

orifice; 

w — Asrj D; weight of the 

stratum; 

whence 

its volume; 

and 

work due to 

expansion; 

whence the whole quantity of action or work due to the 

weight and expansion of the fluid will be 

work due to 

weight and 

expansion of the 
p 

stratum; 

39 
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living force equal 

to twice quantity 

of action; 

*l 

relation of 

elementary 

paths; 

same as ratio of 

velocities; 

velocity at 

piston; 

value for tlio 

velocity of 

egress; 

Denoting, ns before, the velocity at the piston by v, and 

that at the orifice by V, we have, from the principle of 

living forces, 

J 2 „(/, + A); 

or 

Fa - v3 = 2gh + ~ . . (253). 

From Eq. (252) we have 

s _ pr a ' 

~S ~ JA’ 

and the spaces s and St being described in the same time, 

they are to each other as the velocities v and F, hence 

or 

v _ a 

V = JA' 

v — V 
p a 

JA' 

which substituted in Eq. (258) for v, we find 

F'(1 - 0=• + 

Making 
o t* o 

1 _ y - 7T2 

f A2 ’ 

2 E 

D ‘ 

the above gives 

F = 1 a/Fa + — . . (254). 
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It remains to find tlie value of E. For greater sim-to find the work 

plicity, let ns take for the primitive volume of gas a unit expansion of a 

or cubic foot; and suppose this unit of volume to be con- unit of volume, 

tained in a tube, of which the area of the internal cross- pressure to 

section is a unit of surface, or square foot, so that in its anothcr > 

primitive condition, under the pressure y>, the length of 

the tube it occupies will be the linear unit, one foot. 

When the pressure is reduced to p', the volume becomes 

dilated, and because the volume, and therefore the length, 

since the base is supposed constant, is inversely as the 

pressure, we have, calling the new length l, 

whence 

new length of the 

volume of gas; 

The path, described by the moveable face of the cubic 

foot of the gas, during the expansion, will be 

expansion during 

the change ; 

Dividing this path into two equal parts, and adding one 

of them to unity, the original length, we have 

i , P - P' __ P + P' 
L * , — n J 2 pr 2/ ' 

length when the 

expansion is half 

completed; 

for the length of the fluid when its expansion is half 

completed; and denoting the corresponding pressure by 

pn we have, by Mariotte’s law, 

whence 

2 pp’ 
p + pr 

corresponding 

pressure; 
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the three 

consecutive 

pressures; 

space described 

by the pressure 

while its value 13 

changing from 

the first to 

second; 

determination of 

the work; 

If we now observe that the consecutive pressures are 

2 pp' 
p + p” 

and p'; 

and that the constant space passed over, during the inter¬ 

val which separates the instants in which these pressures 

are exerted, is 

P ~ P'. 
2/ ’ 

the computation of 

the total work be¬ 

comes easy by the 

rule given in § 46. 

For this purpose, 

take 

Fig. 354. 

AG= OB=^pA, 
2 p 

and erect the perpendiculars 

AM = p, 

CM' = 

BM" = 

2 pp’ 

P + Pn 

pr; 

join the points M, M\ and M"; the area A B M" M will * 

be the value of E: that is to say, the value of the quantity 

of work performed by the gas during its -expansion. But 

this area is, by the rule just referred to, measured by 

\ A 0(A M + 4 CM’ + BM"); 

and, substituting the values above, we have 

its value; 
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p — p' 

~w~ 
(p + 4 

2 pp' 

P + p' 
+ p’) = E; Bame in other 

terms; 

which, substituted for E, in Eq. (254), gives 

8 pp' 

p+p' 
+/) • 

value of velocity 

(255). in terms of 
pressures: 

When the orifice is small, as compared with the area of 

the piston, the fraction 

p'2 a2 

p2 A2 

may be neglected, and K will become equal to unity. 

Moreover, the term 2 g h, in the case of gases, is scarcely 

ever appreciable in practice; making these suppositions, 

Eq. (255) becomes 

8 pp’ 

p + p' 
+ p') . . (256). 

velocity in case 

of small orifices; 

The pressures p and p’ are usually ascertained by means 

of gauges, or manometers, as they are sometimes called, and use of gauges to 

it will be convenient to express the velocity of egress in the 

terms of the indications of these instruments. For this 

purpose, denote by h the height of a column of mercury 

resting on a unit of surface, and whose weight is equal to 

and by h' the same for the pressure^/; then, denoting 

the density of the mercury by Du, will 

p = ghDin and p' — gh' Bu; 

which, substituted above, give 

V = \fg- 
D„ h — ti (a + j8|V+/0 

3 D h! 

velocity in terms 

of the indications 

(257); ol'the 
manometer; 
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expense; 

quantity 

discharged in 

volume; 

density on 

leaving the 

orifice; 

quantity in 

weight 

discharged in 

unit of time; 

quantity, in 

weight, in time 

example; 

NATURAL PHILOSOPHY. 

in which V will be expressed in feet, g being equal to 32 

feet very nearly, and Du equal to 13.5 nearly. 

The expense e, in volume, will be given by the equa¬ 

tion 

e = a V.(258); 

and the quantity Q in volume, discharged in a given 

time tn expressed in seconds, will be known from 

Q = a Vtt.(259); 

in which a must be expressed in square feet. The density 1 

i), it will be remembered, is that of the fluid in the vessel 

near the piston, where the pressure is p ; the density D\ 

which the fluid assumes on leaving the orifice, is deter 

mined by the pressure pand is connected with D, ac¬ 

cording to Mariotte’s law, by the relation 

rrJ 7ir 

D’ = D A. = D -A. 
p h 

Hence, the expense Q', in weight, will be given by 

Q’ = D’gaV = DgaYj . . (260); 

and the quantity Q,f in weight, discharged in the time tn 

Q" = D g aV ~ t, . . . (261); 

in which a must be express¬ 

ed in square feet, as above. 

The density D is com¬ 

puted by Eq. (240)'. 

Example. The open gauge, 

connected with a gasometer, 

containing heavy carbureted 

hydrogen, shows a difference 

of level in the mercury of 8 

Fig. 355. 
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inches; tlie barometer in the air stands at 28 inches; 

the thermometer of the gasometer, at 52°: required the conditions: 

velocity with which the gas will flow into the open air, 

and the volume and weight discharged through an ori¬ 

fice 0.02 of a square foot of area in 20 minutes = 1200 

seconds. 
* 

Here, 

h — h' — 8 inches = 0.666 feet, 

whence 

hr = 28 « _ 2.838 “ ; 

h 36 “ = 3.000 “ 

Du= 13.5 

data; 

9 = 32 

t =52°; 

and from Eq. (240)', after substituting the values of h and 

t, above, and that of I)n in the table, page 533, for heavy 

carbureted hydrogen, we find 

I) 
0.00127 

30 
X 

36 

1 + (52 - 32) 0.00208 
— 0.001465 J density; 

and these values, in Eq. (257), give 

V=\^ 32 
13.5 0.666 . , 8 x 3 x 2.333 , „ A „ 

« X X (3 H-0-;-j o qqq-f 2l333)— 668.02. velocity; 3 X 0.00146 2.333 3 + 2.333 

Substituting this and the numerical values of a and t4 in 

Eq. (259), we find 

Q = 0.02 X 668.02 x 1200 = 16032.00 cubic feet. 

The quantity Dg, in Eq. (261), is the weight of a cubic 
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quantity in 

weight. 

Vein. 

theoretical 

suppositions; 

results of 

experience; 

causes which tend 

to contract the 

vein; 

foot of the gas, whose density in this case is 0.001465 ; and 

as a cubic foot of water weighs 62.5 pounds, the value of 

Dg becomes 62.5 X 0.001465 = 0.0916, nearly; whence 

U)S. 9Q s lbs. 

0" = 0.0916 X 0.02 X 668.02 X ^ X 1200 = 1142.4. 
do 

§ 295.—A stream flowing through an orifice is called 

a vein. In estimating the quantity of fluid discharged 

through an orifice, it is supposed, 1st, that the orifice is 

very small, as compared with a section of the vessel at 

the upper surface of the fluid; 2d, that there are neither 

within nor without the vessel any causes to obstruct the 

free and continuous flow; 3d, that the fluid has no vis¬ 

cosity, and does not adhere to the sides of the vessel and 

orifice; 4th, that the particles of the fluid reach the 

upper surface with a common velocity, and also leave the 

orifice with equal and parallel velocities. None of these 

conditions are fulfilled in practice, and the theoretical dis¬ 

charge must, therefore, differ from the actual. Experience 

teaches that the former always exceeds the latter. If we 

take water, for example, which is far the most important 

of the liquids in a practical point of view, we shall find 

it to a certain degree viscous, and always exhibiting a 

tendency to adhere to ununctuous surfaces with which it 

may be brought in contact. When water flows through 

an opening, the adhesion of its particles to the surface 

will check their motion, and the viscosity of the fluid will 

transmit this effect towards the interior of the vein; the 

velocity will, therefore, be greatest at the axis of the 

latter, and least on and near its surface; the inner particles 

thus flowing away from those without, the vein will 

increase in length and diminish in thickness, till, at 

a certain distance from the orifice, the velocity becomes 

the same throughout the same cross-section, which usually 

takes place at a short distance from the aperture. This 

effect will be increased by the crowding of the particles, 

arising from the convergence of the paths along which 
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they approach the aperture, every particle, which enters 

near the edge, tending to pass obliquely across to the 

opposite side. This diminution of the fluid vein is called 

the veinal contraction. The quantity of fluid discharged veinal 

must depend upon the degree of veinal contraction, and 

the velocity of the particles at the section of greatest 

diminution ; and any cause that will diminish the viscosity 

and adhesion, and draw the particles in the direction of 

the axis of the vein as they enter the aperture, will 

increase the discharge. 

Experience shows that the greatest contraction takes 

place at a distance from the vessel varying from a half to place of greatest 

once the greatest dimension of the aperture, and that the contiactl<m’ 

amount of contraction depends somewhat upon the shape 

of the vessel about the orifice and the head of fluid. It is 

further found by experiment, that if a tube of the same its amount 

shape and size as the vein, from the side of the vessel to dePeudsuPon’ 

the place of greatest contraction, be inserted into the 

aperture, the actual discharge of fluid may be accurately 

computed by Eq. (261), provided the smaller base of the 

tube be substituted for the area of the aperture; and that, the actual 

generally, without the use of the tube, the actual may be dlscharge 

deduced from the theoretical discharge, as given .by that the theoretical; 

equation, by simply multiplying the theoretical discharge 

into a coefficient whose numerical value depends upon the 

size of the aperture and head of the fluid. Moreover, 

all other circumstances being the same, it is ascertained 

that this coefficient remains constant, whether the aper¬ 

ture be circular, square, or oblong, which embrace all coefficient of 

cases of practice, provided that in comparing rectangular dlschai=e’ 

with circular orifices, we compare the smallest dimension 

of the former with the diameter of the latter. The value 

of this coefficient depends, therefore, when other circum-depends upon; 

stances are the same, upon the smallest dimension of the 

rectangular orifice, and upon the diameter of the circle, 

in the case of circular orifices. But should other cir¬ 

cumstances, such as the head of fluid, and the place of 
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discharge 

through orifices 

ia thin plates; 

coefficient 

deduced from 

experiments; 

4 

table of 

coefficients; 

coefficients for 

gas; and for 

orifices not in the 

table; 

Fig. 358. the orifice, in respect to the sides 

and bottom of the vessel, vary, 

then will the coefficient also vary. 

When the flow takes place through 

thin plates, or through orifices 

whose lips are bevelled extern al¬ 

ly, the coefficient corresponding to 

given heads and orifices, may be 

found in the following table, pro¬ 

vided the orifices be remote from 

the lateral faces of the vessel. This 

table is deduced from the experi¬ 

ments of Captain Lesbros, of the French engineers, and 

agrees with the previous experiments of Bossut, Miche- 

lotti, and others. 
/ *< 

TABLE. 
■: 

Coefficient values, for the discharge of fluids through thin 

PLATES, THE ORIFICES BEING REMOTE FROM THE LATERAL FACES OF 

THE VESSEL. 

Head of fluid 
above the 

centre of the 
orifice, in feet. 

Values of the coefficients for orifices whose smallest dimensions or 
diameters are— 

ft. 
0.66 

ft. 
o.33 

ft. 
0.16 

ft. 
0.08 

ft. 
0.07 

ft‘ 0 
o.o3 

in
 

o
 

o" 0.700 

0.07 , ' 0.627 0.660 0.696 

0. i3 0.618 0.632 0.657 o.685 
0.20 0.592 0.620 o.64o o.656 0.677 

0.26 0.602 0.625 o.638 o.655 0.672 

o.33 0.593 0.608 o.63o 0.637 o.655 0.667 

0.66 0.596 o.6i3 o.631 o.634 0.654 o.655 
1.00 0.601 0.617 0.63o 0.632 0.644 o.65o 

1.64 0.602 0.617 0.628 o.63o 0.640 o.644 
3.28 o.6o5 o.6i5 0.626 0.628 o.633 0.632 
5.oo o.6o3 0.612 0.620 0.620 0.621 0.618 

6.65 0.602 0.610 o.6i5 o.6i5 0.610 0.610 

32.75 0.600 0.600 0.600 0.600 0.600 0.600 

In the instance of gas, the generating head is always greater than 6.65 ft., and the 
coefficient 0.6, or 0.61, is taken in all cases. 

For orifices larger than 0.66 ft., the coefficients are taken as for this dimenson ; for 
orifices smaller than 0.03 ft., the coefficients are the same as for this latter; finally, for 
orifices between those of the table, we take coefficients whose values are a mean 
between the latter, corresponding to the given head. 
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As the orifice approaches one 

of the lateral faces of the reservoir, 

the contraction on that side becomes 

less and less, and will ultimately be¬ 

come nothing, and the coefficient 

will be greater than those of the 

table. If the orifice be near two 

of these faces, the contraction be¬ 

comes nothing on two sides, and the 

coefficient will be still greater. 

Under these circumstances, we 

have the following rules: Denote 

by 0 the tabular, and by O' the 

true coefficient corresponding to a 

given aperture and head, then, if 

the contraction be nothing on one 

side, will 

near two lateral 

faces; 

O' = 1.03 C; coefficient in tlia 
first case; 

if nothing on two sides, 
\ *••• V* & ' ' to . . V' 

O' = 1.06 0; 

if nothing on three sides, 

coefficient in the 
second; 

coefficient lor no 
O' — 1.12 Cy contraction on 

three sides. 

and it must be borne in mind, that these results and those 

of the table are applicable only when the fluid issues 

through holes in thin plates, or through apertures so 

bevelled externally that the particles may not be drawn 

aside by molecular action along their tubular contour. 

§ 296.—When the orifice is rectangular, and has no Discharge 

upper limit, or is open at the top, it is called a sluice-way. tJirough 
x 1 7 r 17 J sluice-ways; 

It is usually a cut made in the edge of a reservoir, through 
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which the fluid may 

flow when it rises 

above a certain level, 

estimate of the The expense is esti- 
expensethrough ma±e(J jn this wise, 
a sluice-way; 

Denote by l the length 

of the horizontal side 

of the sluice-way; by li the head or distance BI, of the 

centre of gravity of a transverse section of the flowing 

fluid below the upper surface of the latter in the reservoir; 

by II the height of the fluid above the sill (7, of the sluice- 

notation; way; and by V the mean velocity: then, supposing the 

sluice-way filled to the upper level of the fluid in the 

reservoir, will 

h = \H, , . . ; 

\ hj Ikif'iif* 

V2 = 2gh = 2g X |H = i (2gH)-, 
fit *d'v- . r* i- 4v\ 

J l fca ' >' v.: 

whence 

value of met n 
velocity; V = 0.707 V 2 g IT; 

and the theoretical expense will be 

theoretical 

expense; 
V X l X II = 0.707 • yr2^H x l X H. 

But this is too great, and experience shows that it should 

be multiplied by the coefficient 0.57 for all ordinary cases 

of practice; that is to say, the true expense, denoted by 

E' will be given by the equation, 

practical E = 0.57 X 0.707 X l X H X V 2 cj 11 = 0.403 l. II. v/YTlT. . . (262). 
expense, 

The experiments of Dubuat, Bidone, Eytelwein, and 

Lesbros, show that the coefficient 0.403 should be re- 
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ducedto about 0.39 when II becomes equal to or greater 

than 0.66 of a foot, and increased to 0.415 when II be¬ 

comes less than 0.07 of a foot; but that it remains variation in the 

sensibly the same, whatever be the total contraction or coefficient'6 

position of the sluice-way in regard to the vertical sides 

of the reservoir, provided II be measured from the level 

of the upper surface of the sill to that of a point, as A, 

in the surface of the fluid in the reservoir which has no 

sensible velocity. When the sill is on a level with the 

bottom of the reservoir, the velocity of the upper surface 

is everywhere sensible, and the coefficient increases to 

about 0.45. On the contrary, 0.403 is already too large 

when the sluice-way is prolonged into a trough-like duct, 

of slight inclination, wherein the fluid may have impressed 

upon it a whirling or irregular motion by the roughness 

of the surface. 

The foregoing conclusions suppose that the fluid is discharge 

discharged through orifices in thin plates, and that, du-^”ss.h thlclc 

ring the flow, the fluid particles are not drawn aside from 

the converging paths, along which they tend to approach 

the orifice, by the action of any extraneous cause. When 

the discharge is through thick plates without level, or 

through cylindrical tubes whose lengths are from two to 

three times the smaller dimension of the orifice, the 

expense is increased, the mean coefficient, in such cases, 

augmenting, according to experiment, to about 0.815 for values of the 

orifices of which the smaller dimension varies from 0.33 coefficients' 

to 0.66 of a foot, under heads which give a coefficient 

0.619 in the case of thin plates. The cause of this in¬ 

crease is obvious. It is within the observation of every 

one, that water will wet most surfaces not highly polished 

or covered with an unctuous coating—in other words, 

that there exists between the particles of the fluid and explanation; 

those of solids an affinity which will cause the former to 

spread themselves over the latter and adhere with con¬ 

siderable pertinacity. This affinity becoming effective 

between the inner surface of the tube and those particles 
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effects of 

molecular action. 

Discharge of 

fluids through 

pipes; 

less than through 

orifices; 

causes which 

obstruct the 

motion; 

of the fluid which enter the orifice near its edge, the lattei 

will not only be drawn aside from their converging direc¬ 

tions, but will take with them, by the force of viscosity, 

the other particles, with which they are in sensible con¬ 

tact. The fluid filaments leading through the tube will, 

therefore, be more nearly parallel than in the case of 

orifices through thin plates, the contraction of the vein 

will be less, and the discharge consequently greater. 

XVII. 

DISCHARGE OF FLUIDS THROUGH PIPES. 

We have considered the discharge of fluids through 

thin and thick plates. It remains to discuss the discharge 

through pipes. When the flow is through pipes whose 

length does not exceed two or three times their diameter, 

the quantity discharged in a given time is, as we have 

seen, greater than through bevelled orifices of the same 

size; but when the length is increased much beyond this 

limit, the reverse is the case and, all other things being 

equal, the discharge will be less as the pipe is longer. The 

same pipe may be of variable bore, that is to sa}r, it may 

have a greater cross-section at one point than at another; 

in which case, the living force of any given portion of the 

moving fluid cannot be constant throughout. When of 

considerable length, pipes are rarely perfectly smooth, the 

fluid particles cannot, therefore, flow through them in par¬ 

allel filaments, but must be incessantly deflected from their 

onward course into partial eddies formed by the small ir¬ 

regularities of surface. Moreover, as the pipes increase in 

length, will the surface exposed to fluid pressure increase, 

and as the extent of surface, all other things being equal, 
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determines the amount of pressure, the friction, which de¬ 

pends upon the pressure, augments so as greatly to impede 

the motion. We shall proceed to estimate the value of 

these influences. 

§ 297.—But first of all let us 

compute the amount of living force 

resulting from the shock of fluids, 

flowing with different velocities. 

For this purpose, let the fluid in 

the pipe LK flow with the velocity 

V, and denote by M the mass which 

flows into the vessel B C in a unit 

of time; also let the velocity of the 

fluid in the vessel BChe V', and its 

mass M'; then will the correspond¬ 

ing living force be 

Fig. 360. 

MV2 + M’ V'2; 

and supposing the fluid to be water, which we have re¬ 

garded as unelastic, the common velocity after impact will 

be obtained from either of the Eqs. (194) or (195), by 

making e = 0 ; hence the common velocity denoted by v, 
will be given by 

v 
M .V + M’ . V' 

M + M' 

and the corresponding living force, 

(M + M') v~ = ( 
M. V+ HP V' 

M + M> 
V ,,, , {Mv+M'wy 

and the loss of living force in a unit of time, denoted 

by L, 

friction. 

Loss of living 

force arising from 

the impact of 

fluids; 

living force 

before the 

impact; 

common velocity 

after the impact; 

corresponding 

living force; 
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loss of living 

force 

game; 

same when a 

small mass flows 

into a large 

mass. 

Loss of living 

force from 

contraction of 

cross-section of a 

pipe: 

hypothesis; 

notation; 

r _ My+ M>y* _ (MV+M'Vj = MM’(V— V’f. 
L-MV+MV m+M' M+M’ ’ 

and, dividing by M\ 

T _ M(Y- vy 
~ET ' 

^ M' 

. . (263); 

or when the mass M' is very great as compared to iij 
■ 4 . . | ; >-J ., /' ; ' • , • ■ ); 

L = M(V-VJ . . . (264). 

§ 298.—It will be an easy matter now to estimate the 

loss of living force, arising from a contraction of the vessel 

or pipe through which the fluid 

may be flowing. Let A BCD be 

a vessel containing a heavy fluid, 

of which A B is the upper level, 

and issuing through an opening a b 
in the bottom CD; and suppose 

A' B' to be a diaphragm, pierced 

by an opening a' b'. Denote by A" 
tne area of the section at A" B'\ by 

a the area of the contraction at a b, 

and by a' that of the contraction 

at a' bThe fluid, in passing 

through the contraction a' b', im¬ 

pinges against that below the diaphragm A' B ’, and if 

the opening a b is beyond the reach of the eddies formed 

by this conflict, the velocity at either contraction may be 

computed from that at the other. 

Denote by V the velocity of the fluid as it passes the 

contraction at a b, by V' that at the contraction a' b\ and 

by V" that at the section A" B'r, supposed beyond the 

region of eddies; and let m represent the coefficient of the 

expense at aZ>, and m' that at a' b’: these coefficients 
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may be found from the table. The expense at a b will be 

m a V, that through the section A" B" will be A" V", 
and that through the contraction at a' b' will be m' a' V' / expense through 

but as the same quantity of fluid must pass through the gec^ng1.6" 

sections of ab, A" B'\ and a' b\ in the same time, wo 

have 

m a V = A" Vrr, 

7?i a V — mr a' Vr; 

whence 

V" = 

V' = 

ma V 
~A'~ 

ma V 
m' a' ’ 

velocities; 

and the velocity with which the fluid through a' b' 
impinges against that below the diaphragm, will be 

V' — V tr m a _v 
\mr a' A") 

relative velocity 

of the impact; 

Denoting by w the weight of fluid that passes a' b' in any 

small portion of time, its loss of living force will be 

— (V - Vy = — ■ m?a?(-A-r ~ -LY • F2; a v 1 a \m a A 1 

and denoting the factor m a — -^77^ by K, the 

quantity of work lost will be 

iv 

2g 
K2 V2. work lost; 

The work of the weight, during the same time, will be 

w h, and the quantity of work remaining will be 
40 
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the work 

remaining; 

which is equal to 

half the living 

force; 

velocity of egress 

through a b. 

Loss of living 

force in short 

pipes; 

hypothesis and 

notation; 

velocity at the 

entrance of pipe; 

W 

wh - 7T-Z"2 F2; 

I 

but this must be equal to half of the living force, hence 

A- F2 = wh - X-/f2F2 
9 2 g 

whence we find 

V */ 23h . . . (265); 
Vl+I> 

Fig. 362. 

and from which we see that the velocity will be less than 

that .due to the height A G: equal to h. 

§ 299.—Let us apply this to the discharge of a fluid 

through a short pipe, inserted into the orifice in the side 

of a vessel. The fluid hav¬ 

ing contracted to its mini¬ 

mum dimensions at 7i, again 

dilates, and fills the tube at 

a' b'. Let V be the mean 

velocity at a' b', where the 

area of the cross-section of 

the pipe is a. The fluid 

particles moving in parallel 

paths at a' b', the expense 

will be a x V; while that 

through a section at a b, where the velocity is V\ and 

cross-section a\ will be ma' V', in which m is the co¬ 

efficient corresponding to the area a ’; and, as these must 

be equal, we have 

a V = ma' V'; 

whence 

V' = 
a 

m a 
- V- 
t r f 
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and the loss of living force, 

w x (r - ry = — x f2 (—, -1). 
g 9 \m a / 

loss of living 

force; 

The quantity of work of the weight, in the same time, 

is w X A, and this, diminished by half the loss above, 

must be equal to half the actual living force; and, 

therefore, 

W rr2 7 w Tt2 V = tvh - — - V 
2 g 2 g 

a 
m a 7-1 5 

a 
or making-, — 1 = K. we find 

ma 

V = V/r 
2 gh 
+ K2' 

velocity of egress 

from the pipe; 

When the tube is cylindrical a = a', and 

K= — - 1; 
m 

when the contraction is complete in w, and the head 

varies from 3 to 7 feet, it is found that m is equal to value of m ? 

0.62 very nearly ; whence 

K--= 

and 

whence 

0.62 
— 1 = 0.613 very nearly, 

Vl + K2 
= 0.85; 

value of the 

constant; 

F = 0.85 V2Jh. 
% 

Experiments give the coefficient 0.82, but, in com- 

final value for 

velocity of 

egress; 
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coefficient given puting the foregoing value, no account was taken of 
by experiment a fricti0n which is an additional cause to diminish the 
little less. 7 

work of the weight wh. 

§ 300.—When the velocity of a fluid is considerable, 

Flow of fluids and the length of the pipe through which it flows is great, 

through pipes of .qqction, which has thus far been neglected, becomes an 

effective cause of obstruction, and can never be neglected 

in estimating the circumstances which determine the 

quantity discharged. The amount of friction depends, 

as we have seen in the case of fluids, upon the pressure, 

and this latter is determined by the extent of surface, and 

the head which impresses the velocity, so that the length 

of pipe and the velocity of flow, are the elements from 

which friction is to be estimated. 

Let abb' a' be 

a pipe of uniform 

bore throughout, con¬ 

necting two reser¬ 

voirs AC D B and 

A'C'D'B', partly 

case stated; filled with fluid, the 

former to the level 

A B, and the latter to 

the level A'Br. De¬ 

note by II the differ- 

notation; ence of level between 

AB and A' B'; by a 
the area of a cross-sec¬ 

tion of the bore of the 

pipe; by C the contour of this section; by L the length of 

the pipe; and by V the constant velocity of the fluid flow¬ 

ing through it. Experience shows, and the computations 

of Coulomb, de Mest, Prony, Eytelwein, and Navier, 

mss of work from teach us, that the loss of work occasioned by friction of 

pipes, pjpeSj the time during which a weight of the fluid 

denoted by w is discharged, is proportional to the value 

Fig. 363. 
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of the expression 

w l x c x r2 
* y 

9 « 

proportional to 
this function; 

and that this loss is a certain fraction n of this function, or 

is equal to 

n 
10 Lx C X v2 

g ' a 
the loss of work 

from friction; 

If, therefore, there be neither contractions in the pipe, 

nor sudden turns giving rise to shocks, the only loss of 

work will be that measured by the above expression, and 

that due to a diminution at the orifice a b, measured by 

the expression 

Y2K\ 
work lost from 

diminution at the 

entrance of the 

pipe; 

in which 

and, because of the principle of fluid level, H is the only 

distance through which w can act to produce work, we 

have 

w rr2 rT w rr2 w L. O.V /0_x 
——V — w II — ——V • K — n-. . (zoo); 
2 g 2 g g a 

t 

whence 

V = 
2 gll 

1 + K1 + 2 n ■ L ■ G 
a 

(267), 
velocity of 

egress; 

from which the velocity may be found. 

The expense, denoted by Q, will be given by 

Q = aV . • • (268). expense; 
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value of the 

constaut; 

value of the 

coefficient n, for 

water; 

and for gas; 

modification in 

the formula for 

gas; 

velocity in case 

of water 

in case of air; 

Taking the value of m equal to 0.60, (see table,) we find 

1 + K2 = 1.4444. 

Experiment shows that, for water, 

n = 0.0035; 

and for air or gas, 

n = 0.00324; 

and it is important to remark that, when the question 

relates to the discharge of gas, we must make 

tt i h h 
3=*3D' ~h 

• h' (1 , 8 hhr i,\ 
T--[h + ir+ii1 + h) 

as indicated by Eqs. (254), (257), in the latter of which h 
and hr denote the mercurial altitudes corresponding to the 

interior and exterior pressures. 

Denote by D the internal diameter of the pipe, then 

* 2)2 
will C = * 1), and a = ——, so that 

0 _ 4 _ 4 

a “ ~ U' 

\ 

Substituting these different values and that of gravity, 

Eq. (22), in the expression for the velocity, we have, 

after dividing both terms of the fraction by 8 n, 

for water, . . . V = 47.94 y -jj D.H 
+ 51.57 . B 

. (269), 

for air,.V = 49.83 \/ 
D . H 

L + 55.72 . D 
. (270); . 
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Fig. 364. 

in which all linear dimensions are expressed in English either formula 

feet. The first formula may be employed even for gas, emplo>ed - 

because of the small difference between the values of n 
for the two fluids, provided we employ the proper value 

for H. 
\ Finally, if the aperture 

a' bf of final egress be small¬ 

er than a b, or of less section 

than a, V being the velocity 

within the pipe, the expense 

may still be deduced from a 

slight modification of the value of the velocity, as given 

by Eq. (267). For let Vr denote the velocity of egress, 

a' the area of the section at a'b', and ml its coefficient 

of contraction, then will 

when the 

aperture of final 

egress is smaller 

than section of 

pipe; 

<rf 

a V = m'a'V'; condition of 

permanent flow; 

whence 

V' : 
a V . 

ml a' ’ 
■V : (.) Y3 

. 

and the living force of the fluid as it issues through a'b\ 
will be 

w 
- X 
9 

or 

m'2 a'2 
X V2; 

living force of the 

discharging 

fluid; 

which, being placed equal to the second member of Eq. 

(266), will give 

2 gH 
or 

m,aa 2 n ,2 

2 0 
+ K +2nL- 

. . (271). its velocity; 

a 

When af is very small as compared with a, the value 

of ml is about 0.60. If the values of a and a' differ but 
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values of the 

coefficient m'; 

example; 

data; 

velocity; 

area of the 

section of pipe; 

expense. 

slightly, or if the pipe term- Fig- 365. 

inates at a'b' in a conical 

tube, then will the value of 

m' vary from 0.82 to 0.96. 

Example. Let the height 

of the reservoir above the point of delivery be 70 feet, 

the diameter of the pipe 0.5 of a foot, and its length 1200 

feet: required the quantity of water discharged in 24 

hours. In this case, 

ft. ft. ft. 

D = 0.5; H — 70; L = 1200; 

which, in Eq. (269), give 

V = 47.94 a / 
V 

0.5 x 70 

1200 + 51.57 X 0.5 
= 8.102. 

The value of a, in Eq. (268), will be given by 

7)2 0 
a = * = 3.1416 X ~ = 0.196; 

which, in Eq. (268), gives 

Q = ci V = 0.196 X 8.102 = 1.6 nearly; 

and this multiplied by the number of seconds in 24 hourSj 

equal to 86400, gives 188240 for the number of cubic feet 

discharged in the given time. 

END OF MECHANICS. 
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