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Real Roots of Real Dirichlet L-Series '

By J. Barkley Rosser

In the theory of the distribution of primes in arithmetic series, in assigning bounds in
the three prime theorem, and in studying the class number of quadratic fields, a knowledge

of the location of the real zeros of L(s, x) is of value.
If proved, this result would be of value in each of the
By a certain computational procedure the conjecture has already
In the present paper, this earlier computational
procedure was tried for each k<227 and failed for k=163.
procedure is given in the present paper, but still the case k=163 remained difficult.

are no positive real zeros for any k.
fields mentioned above.
been verified for each individual k<67.

A long standing conjecture is that there

An improved computational
Finally,

a new formula for L(s, x) was discovered that made it possible to treat many values of k

simultaneously.
adequately.

I. Introduction

Let k be a positive integer. Let x be a real, non-
principal character (mod k) and let
= x(n).
=

L(s, X):n

By a computation using the methods of [1] it was
shown that if 2<k<227 and k163, then L(s,x)
has no positive real zeros. This computation was
laid out by G. Gourrich. Computation on IBM
equipment was furnished by Miss L. Cutler and
E. Rea under the direction of E. C. Yowell. Compu-
tation on desk computers was furnished by Miss. L.
Forthal and W. Paine under the direction of G.
Blanch.

For k=163, the method of [1] definitely failed. It
seems likely that by making a careful refinement of
the estimates of [1] by means of an extensive compu-
tation, one could handle the case k=163. However,
this did not seem a very profitable undertaking, and
so a further study of L(s,x) for positive real s was
made, and various alternative methods were devised.
Some of these seem clearly superior to the method
of [1]. One such superior method is a generalization
of the method of Chowla (see [3]). Using this method
and a table of characters (mod k) prepared by Miss
L. Cutler and E. Rea, it was a fairly quick matter for
G. Gourrich to check that if £<227 and k163,
then L(s,x) has no positive real zeros. Even by this
method, the case k=163 remained very difficult.
Probably the method will handle the case k=163,
but it seemed clear that even by this method the case
k=163 would require very extensive computations,
and it seemed worthwhile to devise still further meth-
ods. This was done, and a method was finally found
by which the case k=163 can be handled rather easily,
with only a minor computation.

In the meantime, Chowla and Selberg (see [7])
have announced still another method for treating
the case k=163,

One may conclude that it is now quite firmly estab-
lished that if £<227, then L(s, x) has no positive
real zeros.

By means of this formula, the difficult case of k=163 was finally treated

II. Generalization of Chowla’s Method

Throughout this section, we lay down the follow-
ing conventions. x is a real primitive character.
K shall be a positive integer, ¢(n) shall be a function
of positive integers which is periodic with period K,
L(s, ¢) shall denote the function that is got by analytic
continuation from

Q)
n=1 N’

so that for R(s)>1

@©

L pam i

n=1 Tb

and f(z,¢) shall denote the function that is got by
analytic continuation from

E. o(n)e ",
so that for R2(z) >0,
f(z, ¢):Z_‘i p(n)e=":.

We cite without proof various results, the proofs
for which can easily be derived from the results of
chapter XIII of [5].

Theorem 1. For s##1,

K
Lis.)=K-* : L’)
(s, =K 2 65 (5,2
Corollary. If
Fe

then L(s,¢) 1s analvtic for all s.

1 The preparation of this paper was sponsored (in part) by the Office of Naval Research.
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Theorem 2. For all z different from 27mi/K (m

an integer)

YR
f(zy ¢):F:1 Z ¢(n)g(K"'l)2.
n=1

Corollary. If
K
; ¢(n)=0,
then f(z,¢) is analytic for |z|<27/K, and
K 5
10, 0=33 60 (17 )

If R(s)>1, then

Theorem 3.

LELE &)= [ 2, o)l
0
Corollary. If
K
; ¢(n)=0,
then for R(s) >0,
O
0

Since
k
> x(m=0,

the results stated in the three corollaries hold if we
replace ¢ by x and K by k. In particular, if we can
prove that f(x, x) >0 for >0, it will follow from the
corollary to theorem 3 that L(s,x) has no positive
real zeros. This can be readily proved for many
values of k. The method of proof is as follows.
With Chowla, we define

du(n) =¢(n)

Sram)=3" ¢, (m).

m=1

We then have the following known result (see [4]).
Theorem 4. For 2>0,

f@, e)=01—e" f(z, ¢,

Then, if there is an » for which x,(n) is nonnegative
for n>1, we infer that f (z, x) >0 for 2>0, and hence
that L (s, x) has no positive real zeros.

For many £’s, we can prove by a brief computa-
tion that there is an » such that x,(n)>0 for n>1.
For a typical case, consider k=53 and let x be the
real nonprincipal character (mod 53). In this case

x(n), xi(n), and x.(n) are sometimes negative, but
x3(n) is nonnegative for all positive n. The com-
putations on which this statement is based are
given in table 1 (at the end of the paper). The
method of computation of table 1 is particularly
simple, since from the definition of x,;; we have
Xr1(+1)=x41(0) +x.(n +1).
So for »>1 and n>2, x,(n) is the sum of the num-
bers immediately above it and immediately to the
left of it in table 1.
We have
n+ 53

xi(n+53)= ><1(53)~i-m;4 x(m).

However x;(53)=0 (see table 1) and x is periodic
with period 53. So

xi(n+53)= n)=x(n).

So x;(n) 1s periodic with period 53. Similarly, x.(n)
is periodic with period 53. However x3(53)=742
(see table 1) so that

xs(n+53)=742+x3(n).

As x3(n)>0 for 1<n<53 (see table 1),
that x3(n)>0 for n>1.

In table 2, we have listed those k’s<227 for which
there is a primitive x and for which we could find
an r such that x,(n)>0 for n>1. Opposite each k
is listed the least value of » for which x,(n)>0 for

1t follows

n>1. Opposite 8 in table 2 is given the r corre-
sponding to the character x(1)=1, x@B)=-—1,
x(5)=—1, x(7)=1, and opposite 8* is given the r

corresponding to the character x(1)=1, x(3)=1,
x(5)=—1, x(7)=—1. The corresponding x’s (mod
24) are indicated by entries 24 and 24* in table 2.
Similarly for 40 and 40%*, 56 and 56*, etec.

It will be noted that so far we are using exactly
Chowla’s method (see [3]), though our justification
for the method is different from Chowla’s. As noted
by Heilbronn in [4], there exist values of k such that
no x,(n) is nonnegative for every n>1. In fact one
can prove that k=163 is such a k; for actual com-
putation for k=163 discloses that f(log (10/7), x) is
negative, so that by theorem 4 there cannot be any
completely nonnegative x,.

Our efforts to find an » for the cases k=43, 67, 88,
123, 148, 173, 187, 188, and 197 were sufficiently
unrewarded that we suspect that for these values
of k also there is no ». At any rate we devised an
improvement of Chowla’s method to handle these
intractable &’s (exzept perhaps k=163).

Theorem 5. If

)= J : ot )
0
then

(1 4+ ar—)F(s)= J;mx““‘{f(x)—}-af(rx)}dw.
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Theorem 6. If r is a positive integer and 6(n) is the
coeflicient of »~* in the Dirichlet series expansion of

(1 +ar=*)L(s, ¢),
I, =f(x, &)+ af(rz, ¢).
We now illustrate the use of these theorems for
the case k=67. Note that for k=67, x(2)=x(3)=
x(5)=—1. So

L(s, x)=11;1(1 —x(@)p~)!

then

1 iyl
=AF2 913 9a 55,50 —x@r~)"

So the Dirichlet series expansion of
(1+279)L(s, x)

consists of the Dirichlet series expansion of L(s,x)
with all terms 7~ removed for which » is divisible by
2. Similarly, to get the Dirichlet series expansion of

(1+2-91+3"%L(s, x),

we remove all terms n~* for which » is divisible by
either 2 or 3. Similarly for

(1427914371457 L(s, x).
We mnow verify by actual computation that
x2(m)>0 for n>25. Define ¢(n) to be the coefficient

of n~* in the Dirichlet series expansion of

(14279 L(s, %).

Then
(1429 Lls, 0= [ ', 9)d
and
f@, ¢)=f(z, 0+ 2z, .
Now

(1 —e*f(x, ) =1f(z, ¢)
= f(x, 0+ f(22,%)
=(1—e 92f(x, xo)+ (1 —e )2 f(2x, x2)
=1—e ) {f(z,x)+(1+e92f2x, x2)}.
So
fx, d)=f(x,x)+(1+e D2 f (22, x2).

As each side of this is a power series in ¢ 7, corre-
sponding coefficients must be equal. So

$2(2m) = x2(21) + x2(n) + x2(n— 1)
$2(2n+ 1) = x2(2n+ 1)+ 2 x2(n).
Recalling that x,(n)> 0 for n>25, we see that surely

910302—50—6

¢.(n)>0 for n>51. Actual computation of ¢,(n)
for 1<n<50 discloses that actually ¢,(n)>0 for
=il

If we now define 8(n) as the coefficient of n~* in
the Dirichlet series expansion of

(1427 (14379 L(s, x),

then

(14279 (1439 T Lis, 0= | "o 10, 0)d

and

f(z,0=f(z, )+ Bz, ¢).

This latter equation gives a relation between 6, and
¢o.  Using this relation with the result ¢,(n)>0 for
n>31 leads to the inference that 6,(n)> 0 for n>95.
Actual computation of 6,(n) for 1<n<94 discloses
that actually 6,(n)> 0 for n>41.

We proceed one step further, defining 7(n) as
t‘lfw coefficient of n~* in the Dirichlet series expansion
0

(142791 +37)(1+57°) L(s, x).
Then

(1+2791+3-)1+ 5““)1‘('~‘)L(~,x):ﬁww“‘lf(s,n)dr-

Also we find that 7,(n)>0 for n>29. We now ascer-
tain by actual computation that s(n)>0 for n <28,
and so conclude that 73;n)>0 for n>1. Then

f(x,n)>0 for z>0. So
(142791 +37)(1+5-9T(s) L(s,x) >0

for s >0 and so L(s,x) >0 for s>0.

For other &’s we proceeded similarly, except that
when x(—1)=1 it was necessary to work with xs,
o3, 05, ete., instead of with x,, ¢., 6,, ete., because the
latter are periodic when x(—1)=1.

In table 3 we have listed against £ the combination

(1 +pi*) Lis, x),

which was used with that £ and also the least value
of » which sufficed with this combination.

We note in passing that we can handle the case
k=43 with the combination

(14-27)L(s,x),

but we need to take »=9, so that it is less laborious
to take the combination

(14271 +37)L(s,x)

for which »=2 suffices.

We suspect that this method will work for k=163.
However for k=163, the combination

(1 p;*) L(s,x)
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will require at least five factors, and likely mnore
than five, and the computations involved appear
to be very extensive. So we sought other methods.

III. Another Method

We let x be a real primitive character.
Define

=" ()56 M
w0=(F) T (3) L6 @

if X(__ 1): 17
wo=(7) ()0 ©

if x(—1)=—
We have the known results

£(s)=&(1—y9), (4)
E(S) X):E(l-—s, X)~ (5)

Also known 1s:
Theorem 7. If %, and k, are any real constants,

then for &, <o<k,,
1
£(s)— sG—1)

and £(s, x) are bounded.
Theorem 8. There is a function f(z) with the fol-
lowing properties:
(I) f(x) is analytic for R(z)>0.
(II) f(x) is positive for z>>0.
(I1I) f(z) is monotone decreasing for z>0.
(IV) For z>1,

f@)< exp(—%’%)m) exp(%)'

(V) There is a positive constant A such that for

x>0,
xp (—g%>< f(@).

E(s) (s, X)=J(‘)m o f(x)da.

A
W
(VI) For ¢ >0y,

Proof. Define ¢, as the coefficient of n~* in the
Dirichlet series expansion of {(s)L(s, x), so that
for o >1,

\Cn
OVACRNES 3

Then ¢,=1 and ¢,>0.
Case 1. x(—1)=1. We have

T\ (8 = v\ dv
[ T(5 ) 2= o"2exp( — )

G 1
;:f f (vw“"’exp( rn(v—i—w))d_v_@?g

vk
Multiplying by ¢, and summing gives for ¢ >0}
)&, %)

=fowj;w (vw)s”{g Cp exp(—

We now treat the integral on the right as a double
mtegral over the first quadrant. Since the integrand
is symmetric in » and w, we may replace the integral
by twice the integral over the area in the first
quadrant below the 45° ray thru the origin. In this,
we introduce

=5l ia

\/E VoW

r= \/—?)—E
Yy=0v-+w
as new variables of integration, getting

E(s)&(s, x)

® : dy
:4f ’- ldf { s (——’r"_” }—-—*7
x Z=_‘,c exp N e

We take

fo=4 {chexp( = 9 ()

VE /) Ay*—4a?

and conclude (IT) and (VI) of our theorem.
y =2z +z1n eq 6 and get

_ P& _m(2z+2) dz )
sar=4 |, { Zer e (") s
(7

Then (I) and (III) of our theorem are evident.
Further, for z >1, we write

We put
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So (IV) holds.
By eq 7, using only the first term of the series, we
get

1r(2;c+2) dz
> ———

f ox 1r(21+z> dz
p< \/E \/é_lx—i—z

() = (-2 %

\/41%:1

So (V) holds.
In the relation

KO(Z):J: exp (—z cosh ¢) d¢

(see [5], p. 384, Example 40) put cosh ¢ =1-+¢. There
results

Ko&)= [ exp (—2(14+0) ,Hzf
So for >0

2mne _2mnz(1+0)\  dt
) ()

Putting t=z/2z, we get

4K (21rnx> f . (_77rng£+7)> dz
/](‘ V4J,‘+2

So by eq 7,

f@=13 cK(ZL”f)
n=1 \’k

Case 2. x(—1)=—1. By the duplication for-
mula for the gamma function

Q —(s+1)/2
=s8/2n _5_ _"E Al 8+1
()@ (S

=2k (31> I(s)n~*

=2 ﬁcJ o ‘exp( an)d

) ( n(2+2)

+

( 2z -+ 2)

2wy } dz
vk

'\/ —‘/4:1'—{“@

/k aY /(' \" Z‘ \/T—l—?

Multiplying by ¢, and summing gives for ¢ >0,

o ¥ His=il > 2 ;
E(s)E(s,0 =2k ﬁ 4 {Z G 7R (‘ }Z’%dr
We now take
2
s=2k oo (=)

and conclude (1), (IT), (ITI), and (VI) of our theorem.
We can easily show that for >1,

f@)<exp ( — J(1) exp
lc

and so (IV) holds.

. Using the first term of eq 8
gives

fey>2k exp (-7
VE
So we may take A=2+k in (V).

For all s

6, 0—

Theorem 9.

+J (1427 f(x)d.

Proof. Use the method of Heilbronn (see [8]).
Theorem 10. For R(xz) >0,

7(3)=af@+@—ni, 0.

Proof. Comparing (VI) of theorem 8 with theorem
gives for ¢ >0,

f (@) do— E(I’X)-I—f Zalif(w)da:

We can rewrite this as

ﬁlzs“‘f(x)(l.zr =£(1, X)J:xs—?dz
——E(I,Xfl s— ‘(la:-f—f 5 2f< )dx
:ﬁlx“‘ {s(lyx) (’}5“1>+%f<%>}dx
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Replacing z by ¢ in these integrals and using the
uniqueness theorem for Laplace transforms, we infer
that for 0<a<1

f@)=£1,%) (%—1)4-% f(%)

So our theorem holds for 0<z<1. Then by an-
alytic continuation, it holds for R (z) >0.

If we let z— » in this result, we have zf(z)—
and

1(3) >ra>0.

So we have an alternative proof of the known result
that £(1, ¥)>0. If we differentiate both sides and
put x=1, we infer:

Theorem 11.

QL 0=—F1)—277(1).

Another consequence of theorem 10 is that

=0 (3)

as z—0. Hence in (V1) of theorem 8, we can take
Ux— 1. t
Theorem 12. For 0<s<1,

—E(9)E(s, x):fl°° @4z ) {Ed, 0 —zf(@)}de

Proof. Use theorem 9.

It is clear from this that if z f(z) <&(1, x) for 1 <z,
then L(s,x)>0 for s>>0. There are many k’s for
which zf(2)<&(1,x) for 1<z. For example, let

x(—1)=—1 and £ <39. Then
27
—>1.
VE
Hence by eq 8
f(x):2\@i}cn exp Pl
; n=1 \%

2 flx)—=2 v%i}cnm exp (— 27:2”)-
n=1 &, k

However, with 2x/~y/k>1,

is decreasing for 2 >1. So zf(z) is a decreasing
function for >1. So we have only to prove

JA)<&(1, x).

So, by theorem 11, it suffices to prove

=0 > F )
However
2mn __2_1@

= (1)~~2x/k2cn TE P -

S \%icn exp(—gz/rg
n=1 \k

>f().

If x(—1)=1, one ean carry out similar reasoning
based on eq 7, since

J e\< ‘ll’)'la) dz
P w4\4z+c

is a decreasing function of x.

Thus we conclude by a very simple reasoning,
which does not even involve inspection of the values
of x, that for £<39, L(s, x) has no positive real
ZETO0S.

For larger k’s, we would need to know the values
of x(n) for some of the smaller values of n. How-
ever, usually a knowledge of the values of x(n) for
n<+/k would be more than ample.

Unfortunately, this method is not general. In
particular, it fails for £=163. Indeed (as we will
show in the next section) for k=163,

S>>, x)

so that it 1s impossible to have z f(z)<¢(1, x) for
r>1. So for k=163, more subtle methods are re-
quired.

IV. Treatment of £ =163

Throughout this section, let k=163. -
Then x(—1)=—1. Also, the class number of y—k

is unity, so that -
&1, )= k. (9)
Temporarily define
g@)=¢01, x)—z f(2).

Lemma 1. For 1<z <k/2r, g(x)<0.
Proof. Using the first term of eq 8, we get

(10)

27y

g(@)<E(1,x)—2+kz exp <_~_

(s (-22)

2wz
vk

S

x exp
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is increasing for 1 <x<+k/2w, it suffices to prove

721r>
[k
However, for k=163,

2T
exp <—~:>:0.6 I
VE

and our lemma is proved.

<0\p <

Lemma 2. For (vVk/2m) <z, g'(z)>0.

For (Vk/2m <z,

d ( 27z
%{I exp <— N%>§§O

and for n>1

dil; {.I‘ vxp( “mlr><0

Multiplying by 2¢,/% and summing gives

Proof.

92 gy} <o

for (yk/2m) <z. This establishes our lemma.

Lemma 3. There is a number a such that:

(e l=tqt

(IT)  For 1<z<a, ¢g(x)<0.
(ITI)  For a<x, g(x)>0.
Proof. Obvious by lemma 1, lemma 2, and the fact
that
Lun g(x) 1, x) >0.

Indeed, wehave a > +/k/2x, but this fact is not needed.
Lemma 4. For 1/2<s<1,

E( 0) E(s, X)
= 1_+_(I~x

is a monotone, nondecreasing function of «.

Proof. By theorem 12
_H9HR) (e g,
as—1+a-s 1 v l_*ﬁ” s T
S0
0 (K] _ [ e o),
osl a*lla? 1 osila iSRS a g

However,

> {‘ra Pl b~ x}f((’”) '—1) (log z—log a)

(ax)*(@* a2

(22~ —a» ") (log z+log a)
+* (az)'(a*~'+a=")?

a Fa®

So for 1/2<s, we see that

e ,{‘;‘jﬁ”}
osla’~'+a*
is negative if 1 <z<a and positive if a<z.
lemma 3, we see that for 1/2<s

So by

¢ fa )

K s ]—|—J‘ 8}(1({2
b(
is nonnegative for 1 <z. Thus our lemma is proved.
If we can prove that the function

E(s)£(s, %)

as—l+as

is positive at s=1/2, we can conclude that it is posi-
tive for s>1/2. As it is unchanged by replacing s
by 1—s, we could conclude that it is positive for
0<s<1. So we have proved:

Lemma 5. If L(s, x) is positive for s=1/2,
it 1s positive for s >0.

We have now reduced the problem to that of
proving that L(1/2,x)>0. This result is proved in
[7].  Alternatively, one can compute L(1/2,x) explic-
itly by means of the formula

then

<165> S Nl
L( ) ( nz:nx(n J 2 1“(&[)(—163)(1,['
4

This is not exactly an agreeable computation, but
by using a table of the incomplete gamma function,
it is not unduly laborious. The computation was
carried out by Miss S. Marks under the direction of
G. Blanch, and the value

L (1, x):o.msg 10
g2
was obtained.

A shorter computation results if we use theorem 9.
Putting s=1/2 in this, we see that it suffices to prove
that

—4g(1, 0+2 J'w.r-*“_fu)dx
1

is negative. That is, using eq 8 and eq 9, it suffices

to prove

= N ’ 2rne
LSS (e |t o.\p<~ 7 di-
n=1 0 C

\
That is, it suffices to prove

>oo “r orfe Zﬁ
\/z\k = Y \/\k
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where

1k 2 1
f e f 2 (** t2> dt'
erfe () Gy P exp 3

Now for k=163, we have x(p)=—1 for every prime
p with 2<p<37. So for n<40, ¢,=1 when n is a
perfect square, and zero otherwise. So we need only
show

‘/7>e1fc( \/*)Jr— erfc( \/ /E)
+§erfc( \/fz)“L

that is, we need only show
0.1979> erfe (0.9921)4—-;— erfe (2(0.9921))

—I—é— erfc (3(0.9921))+- -

Using a four-place table of erfe, we get
erfc (0.9921)=0.1606
erfe (2(0.9921)=0.0118

erfe (3(0.9921)=0.0005

M| = C,u]b—‘ b —

4 erfe (4(0.0021)=0.0000

As 0.1979>0.1729, we conclude that L(1/2, x)>0.

V. Miscellaneous Results

If L(s,x) 1s to be positive for 0<s, then from

I(8)L(s, )= f " (e, 0dz

we see that

Lm 21 f(z, N

must be positive even when f(z,x) is negative for
some z (as when £=163). In an effort to prove this
for various k’s, we undertook to find more about
the behavior of f(x,x). Nothing particularly useful
for our purpose was discovered. However miscel-
laneous results were found, and we list them without
proof.
Theorem 13. For s#1,

r(1—s)

L j (— 2y (2, 9)dz

where the contour begins at -+ « on the real axis,

encircles the origin counterclockwise once, and

returns to+ o on the real axis, and where the con-

tour does not encircle any of the points +2mrmi/K

(m a positive integer), and where|arg(—z)| <.
Theorem 14. 1If

=
ngl ¢(n)=
then

f(m)(o’ d)):(_ l)mL(—mv ¢)'
Define

TE =T H0, J5C, = qu(r (1——~>

Theorem 15. For M >1,

(_I)M M N N(1M
TM: KM . Z <_ 1) ¢N+1(K)A (1 ))
N=0

where AY (1) denotes the N-th difference of z* evalu-
ated at z=1. That is

N = % N' M
(1} Q(* 1) (N——r)!r!(l =

Theorem 16. If

AN (1) =

K
Eqb(ﬂ):
then
f(m)(0,¢)zgz‘—)}—lf)":{]vm+l m+1T +(m+1)mB1T
(m+1)(m)(;n‘—1)(m D BT ot - }

where B,, is the m-th Bernoulli number as defined on
p. 125 of [5].

Theorem 17. For z positive and small

@ @=e " A0—c Y,

where

L[4 d (L

= (1) (f2) (Gt r) o]
Theorem 18. If x is a primitive real character

and x(—1)=1, then:

2
(1) For [2|<Tjr,

flz, 0=

[T 2m+1
S0 (B2)" L+ 2m, 0.

m=0
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27R 2T mi
(2) For |z|<= B e T

f(z,x>=g§—1?2"—
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(3) For z= -

(4) For z 2 rmi’
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Theorem 19. 1If x is a primitive real character

and x(—1)=—1, then:

(1) For 121<3kl',

.__‘/76 = m __k__Z_ - y
fe, 9=YE 35 (— 1 (52)" Lat2m, 0.

@) For |2|< QZR, = 2T,
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r=
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(3) For z# Ic’

J(z, 0=

ﬂlﬂ

2 Tr /
2mm z
(4) For z i
£, 0="E 53 (1 (B2)™ La+2m,
2, X 2 (=1) m, x
m=0
M \/E kz =
et teN Sy ot L
27 =1 ri+ +
2 wr
Tasre 1. Characters and sums of characters (mod 53)

n x(n) x1(n) x2(n) x3(n)

1 1 1 1 1

2 -1 0 1 2

3 -1 -1 0 2

4 1 0 0 2

5 -1 -1 -1 1

6 1 0 -1 0

7 1 1 0 0

8 -1 0 0 0

9 1 1 1 1
10 1 2 el 4
11 1 3 6 10
12 -1 2 8 18
13 1 3 11 29
14 -1 2 13 42
15 1 3 16 58
16 1 4 20 78
17 1 5 25 103
18 -1 4 29 132
19 -1 3 2 164
20 -1 2 31 198
21 -1 1 35 233
22 —1 0 35 268
23 -1 -1 34 302
24 1 0 34 336
25 1 1 35 371
26 -1 0 35 406
27 -1 —1 34 440
28 1 0 34 474
29 1 1 35 509
30 -1 0 35 544
31 -1 -1 34 578
32 -1 -2 32 610
33 -1 -3 29 639
34 -1 —4 2 (64
35 -1 -5 20 684
36 1 —4 16 700
37 1 -3 13 713
38 1 -2 11 724
39 -1 -3 8 732
40 1 -2 6 738
41 -1 -3 3 741
42 1 -2 1 742
43 1 -1 0 742
44 1 0 0 742
45 -1 -1 —1 741
46 1 0 -1 740
47 1 1 0 740
48 —1 0 0 740
49 1 1 1 741
50 -1 0 1 742
51 -1 -1 0 742
52 1 0 0 742
53 0 0 0 742
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TasrE 2. Values of k and corresponding values of r

k 7 k T | k r k T
ety |
3 1 55 I 109 2 165 2
4 1 56 1 111 il 167 1
5 2 56* 2 113 2 168 2
i/t 1 57 2 115 4 168* 2
8 2 59 1 116 1 172 2
8* 1 60 2 119 1 177 2
11 1 61 2 120 1 179 2
12 2 65 2 120* 2 181 2
13 2 68 1 124 2 183 1
15 ik 69 2 127 2 184 2
17 2 71 1 129 2 184* 2
19 2 73 2 131 1 185 2
20 1 76 2 132 1 191 1
21 2 77 7 133 2 193 2
23 1 79 1l 136 2 195 2
24 1 83 1 136* 1 199 1
24* 2 84 1 137 2 201 2
28 2 85 2 139 2 203 2
29 2 87 it 140 2 204 2
31 1 88* 2 141 2 205 2
33 2 89 2 143 1 209 2
35 1 91 3 145 2 211 3
37 2 92 2 149 2 212 1
39 1 93 2 151 1 213 6
40 2 95 1 152 1 215 1
40* 1 97 2 152* 9 217 2
41 2 101 2 155 2 219 2
44 2 103 1 156 2 220 2
47 1 104 2 157 2 221 2
51 2 104* 1 159 1 223 2
52 2 105 2 161 2 227 2
53 3 107 2 164 1

Tasre 3. Values of k and corresponding combinations and
values of r

k Combination il
43 | (1427 (14-3-9) L(8,%) 2
67 | (14270 (14-3-9) (14579 L(s,%) S
88 | (143~ L(8,x) 425
123 | (14-2-) (14579 L(3,) 2|
148 | (1430 (14-5-9) (1479 L(3.x) 3
173 | (1427) (14-3-%) (14-54) L(8,x) i
187 | (14-2-) (14-3-) (14-5-) L(3,) 2
188 | (143 L(8,x) 3
197 | (1427 L(s,%) 2
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Forced Oscillations in Nonlinear Systems'
By Mary L. Cartwright

This paper shows how the approximate form of the solutions of a certain nonlinear
differential equation occurring in radio work may be obtained from certain general results

and gives the proof of the general results in detail.

The proof of the general statement

depends on a type of method that can be applied with minor modifications to any equation

i+k f(x)d+g(x)=kp(l),

of the type

t
where p(t) has period 2#/\, and J;) p(t)dt is bounded for all t, f(x)>1 for |x|>a, and

g(z)/z> 1 for |z| >a.

For some years Professor J. E. Littlewood and I
have been working on nonlinear differential equa-
tions ? of a type which occur in radio work and
elsewhere. One of the most interesting of these
equations is

i=k(1—z)i+r—bk\ cos (\t+a), (1)

especially for k large and 0<b<(2/3. Our attention
was drawn to it by a remark of van der Pol? which

1 This paper contains material presented in lecture form to the staff of the
Institute for Numerical Analysis of the National Bureau of Standards on January
28, 1949. Miss Cartwright was a consultant at the IN A at the time this lecture
was delivered.

2 See M. L. Cartwright and J. E. Littlewood, J. London Math. Soc. 20, 180-
189 (1945), and Ann. Math. 48, 472494 (1947); also M. L. Cartwright, J. Inst.
Elec. Eng. (Radio Section) 95 (I1I), 88-96 (1948, and Proc. Cambridge Phil. Soc.
45, 495 (1949).

3 B. van der Pol, Proc. Inst. Radio Eng. 22, 1051-1086 (1934).

suggested that it corresponded to a physical system
investigated by him and van der Mark* For
certain values of the parameters the physical system
had two possible stable oscillations, one of period
4na /N and one of period (2n-+1)27/X. As a matter
of fact in the case of (1), owing to the strictly
symmetrical nonlinear function 1—z* the period
4n7/\ does not occur, but for certain values of b there
are two stable oscillations of periods (2n 4-1)2x/\.
It would take too long to give a complete proof
of this statement here, but I propose to show how
the approximate form of the solutions may be
obtained from certain very general results, and give
the proof of the general results in detail. The proof

4 B. van der Pol and J. van der Mark, Nature 120, 353-364 (1927)
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