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ABSTRACT
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An application of control theory to an administrative

problem is given for the case of a system of stored items

which are periodically reworked to improve their relia-

bility. Expressions are developed for the final value of

the reliability when the system is stable and the limits

of stability are found. A Kalman filter is used in the

control model to obtain an estimation of the item relia-

bility when there are random errors in the measurement and

in the rework process. An extension is done for more than

one dimension for systems composed of subsystems in series,

parallel or a combination of both. A procedure for an

optimal sequence of levels of rework is found in the sense

of optimizing a linear combination of several performance

measures. Numerical examples are presented to demonstrate

the use of the several expressions.
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I. INTRODUCTION

In an earlier work Bohannan [2] developed a mathemati-

cal model for a system of stored items which are periodically-

reworked to improve their reliability. That model yields

an expression, for the reliability of an item following

rework, in the form of a series. More recently, Bishop [1]

applied the discrete control theory to systems encountered

in economics and operations research rather than the more

typical applications in electrical systems.

In this thesis the mathematical model for the system of

stored items which are periodically reworked is developed

in terms of control theory, and the solution obtained for

item reliability has a closed form that is more suitable for

further studies in this area. Important characteristics

such as system stability and the steady state value cf the

reliability are directly derived from the control model

rather than obtained by inspection cf simulated values.

The reliability of the stored items will depend upon

the reliability at the time of acquisition together with

the storage environment and length of time the items are

stored. When periodic rework of items is done, other varia-

bles that can affect the reliability of the item are the

effectiveness of the rework, the rate of rework, the rate

of acquisition of new items and the rate and policy of

expenditure of items for use, obsolescence, or even training

purposes

.





Such a system might include a stock of ordnance which

is acquired, stored, and periodically reworked, but not

expended except for war time use, or alternatively expended

in training with replacement by new items.

On the other hand, items such as big missiles are not

likely to be expended, and thus expenditure and replacement

cannot be considered as a control variable for the relia-

bility. Thus, unless due to other factors, the expenditure

of such items would be avoided in favor of rework of the

items

.

In this thesis we will study only the case where there

is no expenditure and replacement, leaving reliability over

time to be maintained by rework. We will also consider

the case where we have several levels of rework and want

to find the optimal sequence of levels over successive

reworks in order to optimize a given performance measure.

A general rework model is developed in Chapter II

which relates the reliability of an item following rework

to its reliability following the last rework. An equiva-

lent model is also developed relating the reliabilities

of an item immediately before consecutive reworks. These

models may be solved for any rework cycle given the initial

reliability at acquisition.

In Chapter III the concepts of control theory are

reviewed and applications to control of the reliability of

items in inventory are suggested and structured.





When we have random errors in our measure of the item

reliability or when the rework process introduces random-

ness in the item reliability, then we have to make our

judgments based on estimated values. In Chapter IV, a

Kalman Filter is used with our control model to accomplish

this estimation. An examination of the final value and the

stability of our system is followed by an extension to

more than one dimension for the case where we have systems

composed of several subsystems in series, parallel or a

combination of both.

In Chapter V we shall extend our work to the case where

we can decide among several levels of rework. Using dynamic

programming, we will show how to derive the optimal rework

policy for this case in accordance with several performance

measures, namely, to obtain a desired reliability, to mini-

mize the costs of several reworks, to minimize the time

to achieve a desired reliability, or to satisfy a combina-

tion of all these performance criteria. Conclusions and

recommendations for further study are offered in Chapter VI.





II. DEVELOPMENT OF THE REWORK MODEL

In this chapter the general rework model is developed

which will relate either the reliability of an item follow-

ing a rework or the reliability of an item immediately

before a rework to the same reliability for the last rework

and the effectiveness of the rework process. A solution

is found for these two reliabilities at any instant given

the initial or acquisition reliability of the item.

A. THE EFFECTIVENESS OF REWORK

One form of rework mechanism would raise an item's

reliability to a certain level which is independent of the

item's reliability prior to rework, as might be the case

when components or parts are replaced. Another way,

developed by Bohannan [2] and adopted in this thesis, is

for the rework mechanism to achieve an increase in relia-

bility which is proportional to both the item unreliability

before rework and the effectiveness of the rework mechanism.

This type of rework mechanism might exist where major assem-

blies or subassemblies are tested and repaired rather than

replaced. Denoting the item reliability immediately before

the rework by R, the reliability following the rework by

R
s

, we can define the effectiveness of the rework process

a as

R - R
d = -I = , < a < 1 (1)

X. — K — —





The interpretation of the rework effectiveness a is that

the greater its value, the more effective the rework pro-

cess or in other words the item unreliability, 1-R, will

be reduced by an amount proportional to a since from

Equation (1) we can write

1-R = (1-R) - a (1-R) .

Under these circumstances, it may be possible for such a

rework mechanism to improve the item reliability to where

it is "better than new", "as good as new" or "not as good

as new". Because of deterioration of reliability during

storage, we note that in this last case, the reliability

might continue to decrease until the items need to be

replaced, rather than reworked.

B. THE REWORK MODEL

From the definition of effectiveness of the rework

process , given by expression (1) , the reliability of

an item following the rework, R , is

R
s

= R + a (1-R)

,

or

R = (1-a) R + a . (2

10





Let R(t) represent the reliability of an item of age t

when there is no rework. We assume that all failures are

random, suggesting (i) that there are no early failures or

that some form of "burn in" has been used to eliminate

early age failures, and (ii) that because the items are

in storage and not in an operating environment, either

there are no wearout failures or the time to occurrence of

wearout is much longer than the projected time until the

next scheduled rework. Thus assuming that the reliability

R(t) is an exponential function,

R (t) - e
-<a+bt)

f (3;

for t _> . Since the initial reliability R , for t = 0,

is

R = R(0) = e
a

,

o

we have

R(t) = R
Q

e
bt

(4!

for t _> and b > . The value of the parameter b depends

on the nature of the item stored and on the storage environ-

ment.

If the system contains N items, which are reworked at

a constant rate p, then the period T to "turn over" the

11





inventory is

T = £
P

We begin by looking at new items that are going to be

reworked for the first time. The duration of the rework

process is T/N and the "age" of a new item selected for

rework under a First In, First Out (FIFO) policy will thus

T . .....
be T - jt, and its reliability R immediately prior to its

first rework will be

R(T-|) = R
Q

e
N

(5)

If the item is going to be periodically reworked, we

can rewrite the above equation for the reliability just

prior to the (k+l)st rework. This will occur at time

T
t = (k+l)T-rr, and we have

T
-b(T-£)

R(kT + T - -) = R (kT) e
N S

When k = in this equation, we get

T
~b(T -^

R(T-~) = R
s
(0) e

and from Equation (5) we have then

R
o = V 0;

12





or in other words the initial or acquisition reliability-

may be considered as the "reliability following the

rework" , or as the initial value for the reliability

following the rework, R (k) . Evidently there is no rework

at the time of acquisition and this equivalence is used

only for purpose of coherence. The reliability just prior

to the first rework is then only defined for values of k

equal to or greater than one.

The process is presented schematically in Figure 1.

Assuming that N or the rework rate are relatively large,

T - ^ ~ T and
N

-bT
R(kT+T) = R

s
(kT) e

For simplicity we will denote R(kT) by R(k) , and the

reliability immediately before the (k+1) st rework, R(k+1),

can then be rewritten as a function of the reliability

following the kth rework R (k)

:

R(k+1) = R
s
(k) e~

bT
(6)

This expresses the reliability of an item immediately

before the (k+l)th rework recursively, as an exponential

function with initial value R (kT) which is the reliability

of the item at the beginning of the kth period.

Rewriting expression (2) for the reliability following

a rework with this notation, we have

13





Turn over period T

!

T
T/N

j
! T/N ;

< 1

->time

R(k) R
s

(k) R(k+1) Rg(k+D

Rework Time

FIGURE 1. Reliabilities during the kth period
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R (k) = (1-a) R(k) + a . (7)

Combining the above equations, we have the expression

for the reliability after the (k+l)th rework in terms of

the reliability after the kth rework,

R
s
(k+1) = (l-a)R

s
(k)e + a, k = 0,1,2, ...

(3)

We may also write the reliability immediately before

the (k+l)th rework in terms of the reliability just prior

to the kth rework,

R(k+1) = R(k)e bT
+ a(l-R(k) )e~

bT
, k - 1,2,...

When using this equation we have to consider as initial

condition the reliability immediately before the first

-bT
rework, R(l) = R e

o

C. THE SOLUTION TO THE REWORK MODEL

Equations (8) and (9) are first order difference equa-

tions, and we can solve them by using the z transform tech-

nique, described in Appendix A, with the advantage that we

will obtain a closed form solution instead of a solution

in the form of summation.

In Appendix A we show that taking the z transform of

both sides of equation (8) , we get

15
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zR
s
(z) - zR

q
= (1-a) R

s
(z) e

bT
+ -

a
_
Z

±
, (10)

where R_(z) means the z transform of R (k]

Rearranged, this gives

(z - (l-a)e"
bT

)R (z) = zR +vs^ ; *"o z-1'

or

R„(z) - -
t-t; R +

s
v "'

,, . -bT "o , /, % -bT, , . '

z - (1-a)

e

(z - (1-a) ) (z-1)

which when expanded in partial fractions yields

R(z) = rcsrR+rrr 2—rr^ +
s a \ "bT o z-1 , ,, . -bT , ,, , -bT,z-(l-a)e l-(l-a)e [z-(l-a)e ]

a
-bT

[(l-a)e
Di

-1]

The solution of this equation is obtained by taking

its inverse z transformed, as developed in Appendix A,

yielding

n /n ,. .k -bkT„ a M ... ,k -bkT,
R
s
(k) = (1-a) e R -bT

- Cl-Cl-a) e ]

(l-a)e -1
di:

Using the same method for Equation (9) , we take the

z transform to get

—hT -hT 7
zR(z) - zR(l) = (l-a)e R(z)+ae -~ , (12)

16





or

h -bT
[z-(l-a)e~Di ]R(z) = zR(l) +

°t

^_ 1

Z

Solving for R(z), we get

-bT
R(z) = rul R(D +

—bT -bT
z-e (1-cO (z-1) [z-(l-a)e u

]

which expanded in partial fractions yields

-bT
R(z) = -rj R(l) +

-bT,, v (z-1) M /i n
""bT,

z-e (1-a) [l-(l-a)e ]

-bT r/ . . -bT,
(

z ae [(l-a)e
-bT -bT

[z-(l-a)e
Di

] [(l-a)e ° -1]

Taking the inverse z transform, we find the solution in the

time domain to be

-bT
R(k) = (l-a)VbkTR(l) 2£ ^_[i- ( i- a )

k
e
-bkT

]

(l-a)e -1
(13)

Equation (13) gives the reliability of an item immediately

before the rework at time t = kT for a given initial con-

dition R(l) , the reliability of the item just before the

first rework. Equation (11) gives the reliability of the

item after the rework at time t = kT for a given initial

condition R , the reliability of the item at the time of

17





acquisition. Comparing these two equations we notice that

-bT
they are different only by a factor of e , as might have

been expected from the Expression (6) that relates these

two reliabilities.

As an example, values of R (k) and R(k) are shown in

Table (I) for various values of R , a, b and T. As can be

seen in Table I, for T = 400 and R = . 8 we have, for

a = 0.8, the case "not as good as new"; for a = 0.569 the

case "as good as new"; and for a = 0.7, an improvement of

item reliability constituting the "better than new" case.

The value of a that leads to the case "as good as new" can

be found by setting the reliability following the first

rework R (1) equal to the initial reliability R . Thus
s ^ o

from equation (11) we have

R (1) - (1-cOe
bT

R(0) ^^ [l-(l-a)e"
bT

] = R(0),
(l-a)e -1

which, rearranged, gives

a = [1 - (l-a)e
bT

] R(0

or

-bT -bT
a - aR(0)e = R(0) (1-e )

Solving for a yields

18





TABLE I

Examples of reliability immediately before rework
R(k) and reliability following rework Rs (k).

Initial reliability = R
oRework Effectiveness = a

Deterioration parameter = b
Turnover period = T

R = 0.8 T = 400
o

a = 0.2 a = 0.569 a = 0.7

k R(k) R
s
(k) R(k) R

s
(k) R(k) R

s
(k)

1 0.536 0.629 0.536 0.800 0.536 0.861

2 0.422 0.537 0.536 0.800 0.577 0.873

3 0.360 0.488 0.536 0.800 0.535 0.876

4 0.327 0.462 0.536 0.800 0.587 0.876

R = 0.8 a = 0.7
o

T = 50 T = 100 T 250

k R(k) R (k) R(k) R (k) R(k) R (k)
s s s

1 0.761 0.928 0.724 0.917 0.623 0.887

2 0.883 0.965 0.830 0.949 0.691 0.907

3 0.918 0.975 0.859 0.958 0.701 0.912

4 0.928 0.978 0.866 0.960 0.710 0.913

R = 0.95 T = 100
o

a = 0.07 a = 0.8 a = 0.9

k R(k) R (k) R(k) R (k) R(k) R (k)
S «3 ^>

1 0.860 0.958 0.860 0.972 0.860 0.986

2 0.867 0.960 0.979 0.976 0.892 0.989

3 0.869 0.961 0.883 0.977 0.895 0.990

4 0.869 0.961 0.884 0.977 0.895 0.990

b = 0.001 for all cases

19





« = R (°) llze^!) (14)
1 - R(0)e

D. THE CONTROL VARIABLE

As pointed out by Bohannan [2], with these values a

steady state in reliability is reached by the fourth rework

and the influence of the initial reliability is lost. Thus

in order to rework an item to achieve a desired reliability,

we have to choose values for the rework effectiveness a

,

or the turnover period T or both, so that the steady state

is not below the desired value. The turnover period can

be shortened by increasing the rework rate p or by reducing

the inventory size N. Another way to have a higher relia-

bility would be by improving the storage environment, which

would reduce the reliability deterioration rate b, if this

is possible. However, the inventory size N and the deteriora-

tion rate b are not generally considered part of a rework

policy. In our formulation only the rework rate p and the

rework effectiveness a could be changed within a rework

policy.

In this thesis we choose to work with a fixed rework

rate p and to use the rework effectiveness a to control the

item reliability. This appears to be the usual practice in

preventive maintenance involving a fixed schedule and

several levels of maintenance or rework (corresponding to

several values of a) . The use of the rework rate p to

20





control the system makes the system non linear, involving

equations that are time variant. This can be solved by

another area of the control theory which while not covered

in this thesis, can be done in a further work.

In this chapter we derived a rework model for the case

when we have a constant rework rate. We solved our dis-

crete recursive equations for the reliability before the

rework, R(k) , and after the rework, R (k) , by the z trans-

form technique. The result is in a closed form rather than

in the form of a summation, making this solution more suit-

able for further analysis as will be done in Chapter IV.

Before this analysis, we will first derive in the next

chapter this same closed form solution by applying the

control theory approach.

21





III. DEVELOPMENT OF THE CONTROL MODEL

In Chapter II we developed the rework model and found

the system of first order difference equations relating

the reliability immediately before the rework R(k) to the

reliability after the rework R (k)

:

R(k+1) = R
s
(k) e"

bT
, (15:

and

R
s
(k) = a(l-R(k)) + R(k) . (16)

We then solved this system using the z transform technique,

obtaining an expression for the reliability after any

rework as a function of the initial reliability, R ,

r, n \ /i N
k ~hkT_, a ri , , . k -bkT,

R
s
(k) = (1-a) e R - q-=— [l-(l-a) e ],

(l-a)e -1
(17)

and an expression for the reliability immediately before any

rework as a function of this reliability before the first

rework:

—bT
n/i s t-> \

k -bkT,-,,-,. cte M ,-, ^k -bkT,
R(k) = (1-a) e R(l) - ^gs— [l-(l-a) e ]

(l-a)e -1
(18

22





In this chapter we will introduce a control theory

approach to the rework problem, and then derive these same

expressions in terms of control theory. This will provide

a basis for later solving the problem of obtaining an

optimal sequence of rework levels.

A. THE CONTROL THEORY APPROACH

In this section we will review, in a simplified form,

the main aspects of control theory that are of interest

to our rework model.

The first fundamental concept underlying a control

system is that of a dynamic model , that is a model des-

cribing the relationships among the relevant variables and

parameters of our system. In the model, the variables are

allowed to change with time in a deterministic way, and

the system behavior depends not only on their values at any

instant, but also on their past values and the rate of

change of these variables with time. The equations derived

in Chapter II constitutes such a dynamic model of our system.

The second fundamental concept we will need is that of

a closed-loop control system , i.e. , one in which the output

has a direct effect upon the control action, as shown

schematically in Figure 2. The output and the reference

input are compared in the controller and we say that the

output is fed back to the controller. The difference between

the reference signal and the feedback signal, called the

error signal or input signal to the plant, is then used to

23





Eerence Controller
Error Plant or Output

Process

,

Feedhjack

Measuring
ElemerT.X.

FIGURE 2. Block Diagram of a Control System
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change the behavior of our plant or process with the goal

of bringing the output of the system to a value that gives

a zero error.

The "plant" is any physical or abstract object to be

controlled. Sometimes we feedback a measure of our output:

for this case, a box representing the measurement device

would be drawn in the feedback branch of the block diagram

of Figure 2. In summary, the term "closed loop" implies

the use of feedback action in order to reduce system error.

An open loop control system is a control system in which

the output has no effect upon the control action, that is,

the output is neither measured nor fed back for comparison

with the reference. An advantage of the closed-loop control

system is that the use of feedback makes the system output

relatively insensitive to external disturbances and internal

variations in system parameters, since a correction action

is taken anytime the error is not zero.

An useful tool in control theory is a signal flow graph .

This is a pictorial representation of a set of simultaneous

algebraic equations in which each variable is represented

by a graphical symbol called a node, and the dependencies

between pairs of variables are represented by directed

branches drawn between pairs of nodes. These dependencies

between two variables are called transfer functions, or

gains and are defined as the ratio of the incoming variable

to the variable at the end of the branch. Transfer functions

25





are used to label the branches , and indicate that a multi-

plication operation is done upon the value entering the

branch in the arrow direction, delivering a new branch value

to the node where the branches terminates. The nodes are

also summing devices which sum all values arriving by the

way of incoming branches. As an example of this, Figure 3

shows the signal flow graph for a hypothetical system

defined by the set of equations

x = bx + dx + fu

x
2

= ax
1

X, = IX- + ex. + gu
3 2 4

X
4

= CX
3

Y = hx
4

Given the signal flow graph of a system we often wish

to write the overall transfer function from an input or

reference value to the output. This can be obtained

directly from the signal flow graph by inspection or by

use of Mason's Theorem. This theorem, which we will use

later, expresses the transfer function in terms of various

loop gains and the parallel gains from input to output, and
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FIGURE 3. Example of a signal flow graph diagram
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states that the transfer function from input u to a response

Y is

Y 1
T = 77 =

J P. A.

U A

where the terms are defined as

:

(1) A is the determinant of the feedback configuration

and is calculated from the equation

A = 1 - J L- + J' L, L „ - T ' LLL +
£ .i

L k I L m n o

where the L. (or L, , etc.) are loop gains all the way
D K

around a feedback loop in the system. Thus £l. means the

sum of all loop gains. The next term ]' Lv L ?
^ s tiae sum

of all products of pairs of different loop gains - e.g.,

L, L-. and so forth. The prime on the summation means we use

only the products for pairs of gains of non-touching loops.

In other words, L, L-. is included only if loop 1 does not

touch loop 3 (two loops touch if they have at least one

node in common) . Likewise, J'L L L is the sum of allL m n o

products three at a time, where again each of the three

loops does not touch the other two.

(2) P. is a path gain of the ith forward path from

input U to output Y (a path which contains no loops)

.

(3) A. is the system determinant A after we have

excluded all loops which touch the P. path.
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The Mason's Theorem is better understood by an example

Suppose our system is described by the signal flow graph

of Figure 3 and we want to determine the overall transfer

function Y/U. The loop gains are

L, = ab , Ly = ce , L-, = aicd

Hence

}L- = ab + ce + aicdL
3

The loop L-, touches both L, and L-> but L, and L_ are

non-touching. Hence

1'L.Ln = aicd
,

Jk"£

and there are no three non-touching loops . We can then

write the determinant A

A = 1 - JL . + I'LL. ,k I

or

A = 1 - (ab + ce + aicd) + aicd

The direct paths from U to Y are
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P, = f a i c h

and

P_ = g c h

Since P, touches all loops,

A
l

= 1

Path P- does not touch L, , hence

A- = 1 - L, = 1 - ab .

Substituting into Mason's formula, we have

Y
P
1
A
1

+ P
2
A
2

1 " U * A

or

_ _ faich + g c h ( 1 - ab)
1 - (ab + ce + aicd) + aicd

Summarizing, we can say that Mason's theorem gives a simple,

fast procedure for writing a desired transfer function

directly from the signal flow diagram. The response of

our system can then be immediately derived from this trans-

fer function as proportional to the input,
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Y = T U ,

and this is called the solution to our control model,

i.e., an expression for the response of our system as a

function of any input to the system and a known (derived by

Mason's Rule) overall transfer function.

B. THE RELIABILITY CONTROL MODEL

Our concept of a system is not limited to physical

systems. The concept can be applied to abstract, dynamic

phenomena such as those encountered in economics and opera-

tions research. Also, feedback control systems are not

limited to the field of engineering but can be of particu-

lar interest to the manager, public official, operations

researcher, biologist, and design engineer. In this section

we will structure the reliability model in control theory

terms. The plant of the control theory approach will be

the inventory, where the (decreasing) reliability of items

is our variable of interest, or state variable . The con-

troller will be substituted by a decision-making function

that will decide upon a level of maintenance which is optimal

in the sense of minimizing a certain performance measure.

We will defer optimization until Chapter VI, and for the

present will assume a single level of rework, as defined

in Section D of Chapter II, corresponding to a certain

effectiveness of the rework a.
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Our dynamic model is described by expressions (15) and

(16) ,

R(k+1) = R
s

( k ) e
bT

, k = 0,1,2, ... ,

and

R
s
(k) = a(i - R(k)) + R(k) , k = 1,2,3, ...,

and the signal flow graph can be drawn in several ways, one

of which is shown in Figure 4. At the second node from

the left the present item reliability, whose measured value

is fed back to this point, is compared with the reference

value, R~, that is made here equal to 1.0 due to our

definition of rework effectiveness (this will be better

clarified later). The difference, when not zero, produces

an automatic decision to rework the item, and after the

rework, this difference becomes multiplied by y. since from

expression (16) we have

R (k) - R(k) = o(l - R(k)) "= U(k) (19)

This difference will be denoted by U(k) , and called

the input to our plant. Physically the item is returned

to the inventory at this point and the reliability of the

item is given by the sum
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1 R(k)

J

FIGURE 4. Reliability Flow Graph for the Rework Model
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R_(k) = U(k) + R(k) .

S3

This sum is performed at the fourth node. While in the

inventory the item reliability will deteriorate by a

-bT
factor e given by expression (15) and at the end of a

period of length T we have the item reliability R(k+1)

immediately after the (k+l)th rework represented at the

fifth node by R(k+1). The relation between R(k) and R(k+1)

is a function called a unit delay of time, represented by

a box in the flow graph, with the meaning that the output

of our system R(k+1) is one period T ahead of the value

fed back, R(k) , used to compute it.

The variable Y(k) is used to emphasize the fact that

R(k+1) is the output of our control system. Branches with

a gain equal to 1.0 are used when there are variables that are

just renamed or going to be operated on in another mode.

Taking the z transform on both sides of Equations (15)

and (16) by applying the properties given in Appendix A,

we have

R(z) = z
1

R (z) e
bT

+ R(l) , (20;

and

R=(z) " a (TTT ~ R ( z )) + R(z) , (21)S 2 ~™ X

and the signal flow graph can be drawn as in Figure 5
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R(l)

«D
=1 z-1 -bT
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zR(z) z-1 JR(1) 1

Y(z)

FIGURE 5. Reliability Signal Flow Graph to the Control
Model in the z Domain
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The response of the system, Y(z), can be now obtained

by applying Mason's theorem as shown earlier. Since we

can consider that we have here two input values, namely

R(l) and RD , this yields the overall transfer function

with respect to the initial condition R(l) as

Y(z) _ 1 z

R(l) .. -bT -1 -bT ,. . -bT '

(1 - oe z + e z-(l-a)e

and with respect to the reference value RD ,

-bT , z . -1 ,_
T . , , ae —r ) z -bT
Y (z) _ z-1 _ ae z

Rr. i

_bT -1
,

-bT , . . . , , , -bT,
D 1 - ae z +e (z-1) (z- ( 1-a) e )

The response of the system due to the reference value

that here is made equal to 1.0 is then

-bT
Rnae z

Y(z) =
-bT '

z-1) (z-(l-a)e D1
)

and the response of the system due to the initial condition

is given by

y(z) . __ROiz
-bT

(z-(l-a)e
Di

]

Using the superposition principle for differential

equations, the total response is

-bT
Y(Z) - -bT -bT [

'

(z-1) (z-(l-a)e
0i

) (z-(l-a)e
u

)
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This is the same as the z transform of Equation (13)

in Chapter II, and the inverse z transform of the total

response then gives the same Equation (13) for the relia-

bility of an item immediately before a rework. This is

-bT
Y(k) = R(k) = (l-a)

k
e~

bkT
R(l) 2^ ^—[l-d-a^e-^],

(l-a)e -1

where the argument (k+1) was changed to k. In this case

the z transform had to be applied because the unit delay

present, in the system, does not provide a linear function

necessary for the application of Mason's theorem. In the

z domain, however, the unit delay becomes a very simple

function and the solution may be found easily.

If the reference input Rn is not equal to 1.0 but is

the desired value of the item reliability that we want

R (k) to match after some reworks then the definition of

rework effectiveness would become

R (k) - R(k)
a =

R
D

- R(k)

Here, if the reliability immediately before a rework was

greater than the value of the desired reliability, the

value of a would be negative. To avoid this problem we

might use a decision rule that could be expressed as a

function M(R, R^) defined as
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M = 1

*-

if R
D

- R(k) <

(23)

a if R^ - R(k) >

with the meaning that no rework has to be done when the

item reliability R(k) is greater than the desired value

R . Our model would then become

R
s
(k) = R(k) + M(R

D
- R(k)

)

(24)

This approach, however, would introduce a non-linearity

into our system that could not be eliminated by the z

transform procedure, and the solution of our problem would

probably have to be obtained by computer. Hopefully we

can handle this problem and find an optimal sequence of

reworks that makes the value of R (k) to match the desired

value R_ by using the optimization process that will be

developed in Chapter V.

Summarizing, we have structured the item reliability

model in terms of control theory for periodic reworks with

effectiveness of rework a as defined by equation (1) . We

are now able to apply the tools of control theory to find:

(i) the limits of stability of our system as a function

of the rework period T, (ii) the stable final value of the

reliability as the number of reworks increase, and the use

of a Kalman filter. This will be shown in the next chapter.
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IV. APPLICATIONS OF THE CONTROL THEORY MODEL

In this chapter we will show how the results of our

control model can be applied to study the behavior of the

item reliability. First, we will study the stability of

our system, and then the final value reliability when t

increases. After introducing randomness to the system,

we will show the use of a Kalman Filter to estimate the

value of the reliability that is fed back.

A. SYSTEM STABILITY

A linear control system is stable if the output even-

tually comes back to an equilibrium state when the system

is subjected to a disturbance. In our reliability system

we are interested in knowing if there is any range of values

of the rework effectiveness factor a for which the system

becomes unstable, i.e., the reliability might continue to

decrease until the items need to be replaced rather than

reworked.

From control theory we know that the characteristic

equation of a control system is equal to the denominator of

the overall transfer function plus 1.0 and that for the

system to be stable the roots of the characteristic

equation, in the z domain, have to be inside the unity circle

[10]. For our reliability system we have from Equation (21)

the characteristic equation in the z domain as
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(z-1) [z-(l-a)e~bT ] +1 =

Rearranging our characteristic equation, we have

2 -bT -bT
z^ - [l+(l-a)e ° ]z + [l+(l-a)e ] = ,

with complex roots at

-bT ,

l+(l-a)e . 1 /rTTTi '
n

"bT, 2 T77~Z , -bT,
z =

2
± j 2 J [1+ (1-ct) e ] -4[l+(l-a)e ]

The absolute value of these complex roots is given by

= yTjLd-a) e -1]

Here,

zl < 1

or

zl
2

< 1

when

1, ,. .2 -2bT . - „ ,

2"[(l-a) e -1] < 1

or
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,, ,2 . , 2bT
(1-a) < 3e

This gives a second order inequality in a

2 n i ? 2bT . na-2a+l-3e <0

that when solved shows us that for a stable system, the

value of a must be within the range

l-e
bT

/3 < a < l+e
bT

/3 (25',

For the example of Chapter II with b = 0.001 and

T = 100, we get

0. 56 < a < 2.56

that agrees well with the value of a in Table I for which

the item is "as good as new" after each rework.

Outside these limits or when a is less than 0.56, (since

a by definition is less than unity) , the system is unstable.

Here, the item will have its reliability deteriorating with

time until the item needs to be replaced rather than

reworked, i.e., for a < 0.5 6 eventually R -* .

B. THE FINAL VALUE IN STABLE SYSTEMS

When the system is stable its response tends to a

constant value as the time increase whenever there is no
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disturbance input- To find this steady state value we

will apply the final value theorem, derived in Appendix A,

that gives us the limit of the system response when time

becomes very large. The theorem is stated as

lim Y(k) = lim [ (z-1) Y(z)

]

k-»- °° z+1

For our overall transfer function, this results in

,._,,,, , .

r
az zR (0) (z-1) ,lim R

s
(k) = Urn [ _bT + ,bT ]

k-*-°° z-»-l z-(l-a)e z-(l-a)e

1- (1-a)

e

(26,

Substituting selected values from Table 1, we get

a = 0.7 T = 100 lim R (k) = 0.961

a = 0.8 T = 100 lim R_ (k) = 0.977
t+°o

a = 0.7 T = 400 lim R (k) = 0.876
t-*-°o

and these limits agree well with the values taken from

the table for the fourth rework.

As we can clearly conclude from expression (26) the

steady state value of the reliability after the rework R
s

(<
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depends only on the rework effectiveness a and on the turn-

over period T for a given degradation parameter b, and is

thus independent of the initial value of the reliability

as was intuitively observed in Chapter II.

C. ERROR COMPENSATION USING A KALMAN FILTER

In this section we will show how a Kalman Filter can

be applied to our model in order to compensate for errors

in the measurement of the item reliability. Again, measure-

ment here does not imply a physical action. We suppose the

nature of the stored item is such that it receives frequent

diagnostic checks which yield an estimate of its reliability,

and such "measurements" are subject to random error.

In the model developed in Chapter III we have shown how

the item reliability is fed back so that a decision can be

made about doing a rework so that the item's reliability

can approach a desired value. In practice we have to

measure the item reliability or estimate it by some way in

order to feed back this observed value. This measurement

process, however, contributes to the variance within the

system- Other sources of variance in the process include

variability in the item environment and in subsystems

reliabilities due to repairing or substitution of parts.

We call these random errors as noisy or random input to

our plant , since we can model these errors as random

variables that are input somewhere in the plant as will

see later.
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If we do not want our control system following these

random inputs excessively it would be a good policy to

smooth the reliability values over time and then feed back

a predicted value upon which we made our decisions.

A useful, smoothing device is a Kalman Filter, and a

block diagram of a general system with a Kalman filter is

shown in Figure 6. Other filters could be used here but

with a discrete system we chose the Kalman filter: it is

the optimum recursive filter in the sense that it minimizes

the variance of the estimator error. The random input at

the plant in Figure 6 is designated by the random variable

co(k) and represents the error introduced by the environment

and rework process. The random error in the measurement

is designated by the random variable v(k)

.

Making the assumption that these noises are additive

expected values, we can restate our system equations (15)

and (16) as

R(k+1) = e~
bT

R
s
(k) + w (k)

and

R
s
(k) = (1-ct) R(k) + aR

D ,

and substituting the second equation into the first, we

have
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FIGURE 6. Block diagram of a general control
system with Kalman Filter
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R(k+1) = e
bT

[ (l-aJRCkJ+alLj] + w(k)

Rearranging and grouping terms we have

R(k+1) = e
bT

R(k) + e~
bT

U(k) + w(k) (27)

where

U(k) = a[R
D

- R(k)

]

as before and R_ = 1.

If we introduce the Kalman Filter in our system we

are feeding back an estiamted value R(k) instead of the

actual value R(k) and the input to the plant becomes

U(k) = [R
D

- R(k)] (28)

The measurement process can be modelled by the equation

Y(k) = H R(k) + v(k) (29)

where H can be any function describing the measurement, and

v(k) is the random variable in the measurement process.

We need the following additional assumptions to make

the application of a Kalman Filter valid:

(a) The measurement error v(k) and the random process

input w(k) has zero mean and are uncorrelated between

states, with variances S and Q respectively, or
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E[v(k)v(j) ] = S 5
kj

, k,j = 0,1,2,

E[w(k)w(j)] - Q 5
kj

, k,j = 0,1,2,

where 6, . is the Kronecker delta function.

(b) The initial state is a random variable which has

known mean E[R(0)] = R and variance M.

(c) The estimator is characterized by the linear

relationship

R(k|k) = R(k|k-1) + G(k) [Y(k) - HR(kjk-l)] , k = 0,1,2,...,

where:

R(k|k) is the optimal estimate of R(k) given

observations at times up to and including k,

R(k|k-1) is the optimal prediction of R(k) given

observations at times up to and including k-1, and

G(k) is the gain of the Kalman Filter at each step.

(d) The random input and initial state are uncorrelated.

(e) The random errors in the plant process or random

input w(k) and the random error in the measurement

process v(k) are uncorrelated or

E[w(k)v(j)] =0 j,k = 0,1,2, ... .
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The functioning of the Kalman filter is by predicting

the value of the item reliability R(k|k-1) using the esti-

mated value at the end of the (k-l)th period, multiplying

this predicted value by the function H, so that this new

value can be directly compared with the measured value.

The filter gets the correction term [Y (k) -HR(k | k-1)

]

that can be conveniently weighted by the gain G(k) to

correct the predicted value, and obtains a new estimated

value for the kth period.

Notice that if we did not use a predicted value,

what is equivalent to say that R(k|k-1) = R(k-ljk-l) = R(k-l),

we would have exponential smoothing and the gain G(k)

would then be the smoothing constant. With the predicted

value any trend is recursively incorporated in the esti-

mated value.

The best prediction R(k|k-1) that can be made is

clearly by using our model (Equation (27))

,

R(klk-l) = e
bT

R(k-ljk-l) + e
bT

U(k-l) , (30!

and from assumption (c) above, the equation for the esti-

mated value R(k|k) is

R(k) = R(k|k) = R(k|k-1) + G (k) [Y (k) -HR(k |k-l) ]

.

(31)

With these two equations and the assumptions above it

is shown [9] that the sequence of gains that minimizes the
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variance of the estimator error P(k|k) is given by the

recursive equations

and

G(k) = P(k|k-l)H[H 2
P(k|k-l)+S]

_1
, (32

P(k|k) = [1 - HG(k)] P(klk-l)
, (33)

P(klk-l) = (e~
bT

)

2
P(k-l|k-l) + Q. (34)

These are initialized by the value

P(0 |-1) = M . (35)

From these equations we can see that the Kalman Filter

gain G(k) does not depend on the measurement values Y(k),

and can thus be computed in advance and stored for later use

when processing the measurements as they become available.

We can see also that the gain at time k, G(k) , is inversely

realted to the variance of measurement error S — the more

uncertainty in the measurements, as reflected by a larger

S, the smaller G(k) will be, and the less the correction

term [Y (k) -HR(k | k-1) ] in Equation (31) will be weighted in

determining the next estimate. The random input error Q

also affects the gain G(k), and as the uncertainty in the
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prediction of P(k|k-1) increases and the more uncertainty

we have in our model, the larger will be G(k) . For large

values of M or no confidence in the initial guess R(0|-1)

the filter makes R(0|0) equals to the first measurement

Y(0) since G(0) is equal to 1.0. When the initial guess is

better the filter makes a weighted combination of the guess

R(0|-1) and the first measurement Y(0) , as one can conclude

from Equation (31).

A flow graph in the time domain of our system is shown

in Figure 7. The lower part of the flow graph is the

Kalman Filter, which receives as input the measured value

Y(k) and the input to the plant U(k) , and has as output the

estimated value R(k) . This is multiplied by the measurement

function H and the result is compared with the observed

value Y(k). The difference is then multiplied by the gain

G(k) and summed to the predicted value to produce the

estimated value, as given by Equation (31)

.

When we have more than one state variable, an advantage

of the Kalman filter not shown here is that we do not need

to measure all state variables but only a smaller number

to get all the estimated values we need to feed back to the

plant.

As an example, suppose we have values from Table I in

that a = 0.7, b = 0.001, T = 100 and R =0.8; suppose also

that the variance in the estimated value of R is M = . 1

,

o

and that the variances in the random input and in the measure-

ment are known to be Q = . 1 and S = 0.1. Let our measure-

ment equation be given by
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FIGURE 7. Flow graph in the time domain for the
rework system with a Kalman Filter
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Y(k) = R(k) + v(k)

which in terms of Equation (29) , implies H = 1. With these

values we can compute the Kalman filter gain for four

periods using Equations (32) to (35):

G(0) = 0.5,

G(l) = 0.58,

G(2) - 0.60
,

G(3) - 0.60 , and

G(4) = 0.60.

Suppose the measured values are

Y(l) = 0.75 ,

Y(2) = 0.82 ,

Y(3) = 0.86 , and

Y(4) = 0.85 .

and we guess a value for the initial reliability

R(l | 0) = 0.724. We obtain, by using Equations (30) and (31),

the values

i
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R(l) = 0.737 ,

R(2) = 0.825 ,

R(3) = 0.859 , and

R(4) = 0.856 .

Notice that the reliability before the rework, R(k)

,

is not defined for k = . For this reason we use as initial

guess R(l|0) the value of the reliability before the first

rework computed from the initial value R =0.8 and use the

gain G(0) to estimate R(l), the gain G(l) to estimate R(2)

and so on. The gain would not be delayed by one period if

we had decided to call the reliability before the first

rework by R ( )

.

D. EXTENSIONS TO MORE THAN ONE DIMENSION

In a missile we can consider for example its booster,

cruise motor, guidance, and warhead as four subsystems that

are independently influenced by the environment and have

different reliability deterioration factor b. To extend

our model for this case we need to decompose our system

in several distinct subsystems. Here we may put the

equations for the subsystems in matrix form.

We can define the vector of reliabilities of the

subsystems that will be called our state variables, as
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R
±
(k)

R(k) =
R
2
(k)

R
3
(k)

R
4
(k)

and a vector of reference reliabilities as

*D
^2

^3

R
D4

The input vedtor can now be defined as before in terms

of the effectiveness of the rework a. for each subsystem:

U(k;

-»x
(k)"

U
2
(k)

°3 (k)

u
4
(k)

a
l

a
2

a
3

a
4

^1

^2

*D3

R
D4

R,

- R,

- R.

- R,

or

U(k) a
x

[R
D

- R(k) ] .
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We can then write our state equation for the system with

random input as

R(k+1) = $ R(k) + <{> U(k) + w(k) , (36)

where the matrix <j> is

$ =

-b T

-b 5T
e

£

-b T
e

J

-b.T
4

The measurement equation is

Y(k) = H R(k) + v(k) ,
37'

and the vector of estimated values is given by

R(k) = R(k|k) = R(kjk-l) +G(k)[Y(k) -HR(kjk-l)]

(38)

and the vector of predicted values by

R(klk-l) = e ~
T

R(k-llk-l) + e ~
T U(k-l),

(39)

where G(k) is the vector of the Kalman filter gains.
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If we are interested in the overall system reliability

and if as in the missile case the subsystems are inde-

pendent and in series, we have the output equation

R(k) = TT R. (k)

i=l

which can be added to the control signal flow graph as

shown in Figure 8. For subsystems arranged in parallel

or series-parallel, the system can be handled in a similar

manner, and needed changes in the output equation will not

influence the system itself.

In this chapter we applied tools from control theory

to our reliability model and showed how to find the limits

of the rework effectiveness a for which the system is

stable and the final value of the item reliability when k

becomes large. We also showed how a Kalman filter may be

applied to smooth the estimated values of item reliability

and feed back this estimated values upon which the decision

about a is made.

In the next chapter we will show how the decision

about a can be optimized with respect to a given performance

measure.
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FIGURE 8. Signal flow graph for multidimensional rework
control system
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V. OPTIMIZATION

In the previous chapter we have studied our control

model for the case we have linear equations and a single

level of rework effectiveness a. In this chapter we will

extend this study for non-linear equations and several

levels of rework effectiveness, and show how to find the

sequence of rework that optimizes a given performance

criteria. First we will discuss various performance

criteria that could be used for our control model, and then

we will show how to find the optimal sequence of rework

levels by dynamic programming.

A. THE PERFORMANCE MEASURE

The optimal control problem in our thesis is to find

a control u(k) as defined by the expression

u(k) = a(k) (1^ - R(k) ) , (40)

which causes the system to follow a trajectory that opti-

mizes a performance measure J. The rework effectiveness,

a(k), is now allowed to change from step to step and in

fact the problem now becomes one of finding the sequence

of rework effectiveness a(k) that yields the optimal

sequence of control u(k) . NOtice that since a (k) is no

longer constant, Expression (40) is non-linear.
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First let us consider a trajectory (that is, the

sequence of values the item reliability follows over time)

that attains the desired reliability with a smallest num-

ber of reworks. This type of problem is called a "Minimum-

Time" problem and the performance measure to be minimized

may be generally stated as

fc
f

j = f dt t. -t
1 f o

t_

for the case of our discrete system, this becomes

N-l

j = It,
k=0

where (N-l) is the first period the desired reliability,

R_, is attained.

If instead we want to minimize the deviation of the

first state of our system from its desired value we have

the type of problem called a "Terminal Control" problem.

Here, possible performance measures are

N

J * I R
D " R

si
(k)

'

i

where the summation is done in all dimensions or reliabili-

ties of the sub-systems. If positive and negative deviations

I
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are equally undesirable these deviations should be

squared.

To transfer a system from an arbitrary initial state

R to some specified desired value with minimum expenditure
o.

of control effort or with minimum cost, we need to minimize,

N-l N-l

J -
I C(k)T =

I cu(k)T ,

k=0 k=0

where we assume that the cost of a rework C(k) is propor-

tional to the control u(k) or equivalently that the cost

is proportional to the reliability improvement, R (k) - R(k),

after each rework.

Since these criteria are completely distinct in their

concepts, we shall follow the usual approach of using a

combination of them, that for the one dimensional problems

takes the form,

N-l

J = HN[R
D

- R (k)] + I [Q» + cu(k)]T

k=0

or

N-l

J = HN[R
D

- R
s
(k)] + I [Q + Gu(k)] , (4i;

k=0
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where HN, Q and G are relative weights so that by adjusting

their values we can weight the relative importance of each

criteria with respect to the other. These weighting fac-

tors can be functions of time if the relative importance

varies with time. Notice that now the performance measure

is a combination of criteria and has no physical meaning.

It should be noticed also that the rework effectiveness

a(k) now has the definition given at the end of Chapter III

R (k) - R(k]
a (k) =

R
D

- R(k)

and that even when R_^ is not equal to 1.0 we do not need

the decision rule

M = <

if R
D

- R(k) <

a(k) if R
D

- R(k) >

because the constraints in a(k) do not permit a to become

negative

.

B. OPTIMIZATION USING DYNAMIC PROGRAMMING

We now wish to show how the performance of our rework

control system may be optimized in terms of the combined

performance measure (41) . An optimal solution would be

expressed as a sequence of reworks that minimizes this

criterion. We shall approach the problem with the method

of dynamic programming, as developed by Bellman.
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The basic notion here is given by Bellman's principle

of optimality:

"An optimal policy has the property that whatever the

initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard

to the state resulting from the first decision" [5]. Thus

if J£+1 Nr
(R(k+l)) is the minimum cost to reach the final

state at k = N, starting from the state R(k+1) at time

t = (k+l)T, and J, , , is the cost to move from kth to the

(k+l)th state, then C* (R (k) , u (k) ) , the minimum cost to

go from the kth to the (k+l)th state when we use a particu-

lar control u(k) is given by

C*
N
(R(k) ,u(k)) = J

k,k+l
(R(k) ,u(k) )

+ Jk+l,N
(R(k+1))

*

(42)

The optimal decision at the instant k , u*(k), is the

decision that minimizes C* (R (k) , u (k) ) over the set of

possible controls u(k),

J* (R(k)) = min [C*(R(k) ,u(k))] . (43)
kN n \ KN

u ( k

)

Expressions (42) and (43) form the functional equations

of our dynamic programming approach. The optimal sequence

of decisions are built up from the final state N backwards

toward the earlier states. This is necessary in order

that J* be known prior to the calculation of C*. The values

of R(k) are given by our model, and the constraints of the
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problem are

0.0 < R(k) < 1.0

and

0.0 £ a(k) <_ 1.0

The first step in the computational procedure, then,

is to find the optimal policy for the last stage of opera-

tion. This is essentially a matter of trying all of the

allowable control values at each of the allowable state

values. To limit the required number of calculations, and

make the computational procedure feasible, the allowable

state and control values are discretized. The degree of

approximation depends on the separation of these discrete

values and on the method of interpolation used and can,

of course, be adjusted.

For each discrete value of R(N-l) we try all discrete

values of u(N-l) and calculate the resulting state R(N).

The optimal control for this rework is the one which yields

the minimum cost. The procedure is repeated for all the

other discrete values of R(N-l). This gives a table of

optimal policy for each value of R(N-l) at the last stage.

Since the cost J , >T is dependent on the value of the
N-1,N r

state R(N-l) and on the value of the input applied, u(N-l)/
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the minimum cost J* and the optimal control u* (N-l) are

dependent on the value of the state R(N-l). For the last

rework we use only the first term (terminal control) of

our performance measure (41), but for the other, successive

stages we must compute each term in that expression. When

a state does not coincide with one of the discrete values

we have to use interpolation to find the corresponding value

of the performance measure. Since a direct search is used

to solve the functional equations, the solution obtained

is regarded as the global minimum.

A flow chart describing the computational procedure is

shown in Figure 9. A Fortran program for this flow chart

is described in Appendix B.

As an example of the use of this dynamic programming

procedure, we sought the optimal sequence of reworks for

the case where b = 0.001, T = 100, and constraints,

0.8 < R(k) < 1.0

and

0.7 £ a(k) <_ 1.0 .

We chose to work with twenty discrete values for R(k)

,

thirty discrete values for a (k) , and four reworks. We

input in the program the equations of our model:
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: READ input data: nur.tier of
' stages = BJ; nurber of state
' values = NX; r.imber of
: control values = NU; other

I
recuired information

Calculate and store J»gj

I'nLni^un cost of last stage)

for ail discrete raises of
R(M)

Set CDSMEM to a large
positive nurioer; SZT 0(k)
e.rual to the lesser
discretized value by

CHCJLME the value of R(N-K+1) .

Cse thus value to select the
appropriate stored value of

i'f hot' coincides with a discrete
value) ; ZCy'STZC* tha ra.ni.tim cost

j

over the final (N-K) stages for

Change U(K) T
to

I

discrete centre!

3n?E COSMTSi in
C0£TOP!::-K,3) and
lmn in lcpt:n-k,d

1

: Sit:fe the value C* in !

1 ODSMD ; STORE the ralue

1

in 'JMEJ

PRJjNTP optimal
; controls
: COPT(iJ-k,I) and L
' ririircum costs

,

iC0S"r?(N-:<,3) for
1 ail discrete poirts!

and ail stages.

FIGURE 9. Flow chart of the computational procedure for

the dynamic programming solution for optimal
control of the rework control system
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R
s
(k) = R(k) + a(k) (l-R(k)

R(k+1) = R
g
(k) e"

bT

and considered as input variable the rework effectiveness

a(k) since in this program the equations need not be linear

and this is the variable of immediate interest for the user.

For the performance measure J given by Expression (41)

we considered four distinct types of problems obtained by

changing the weights. These are:

(1) Minimum Cost, so that the weights of the combined

criterion J (41) are

G = 1.0, Q=0.0 and HN = . ,

(2) Terminal State, or minimizing deviations from the

final value. Here the weights in J are

G = 0.0, Q = 0.0 and HN = 1 . ,

(3) Terminal State and Minimum Cost, where we assume

a desired reliability R_ = 0.99, and a relatively important

terminal state represented by the weights

G = 0.9, Q=0.0 and HN = 500.0 ,
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and

(4) The linear combination of the three criteria

represented by the weights

G = 0.05 , Q = 0.05 and HN = 500.0.

The dynamic programming solutions for the four cases

are presented for each rework period in the Computer Output

Section of this thesis. From these solutions we can now

find, for each of the four cases, the optimal sequence of

reworks for a given initial reliability R (entering with

this value at the first rework table and, interpolating

among the values listed, we can follow the process until

the final state is reached)

.

The results are in Tables II to V for two values of

initial reliability of an item. As we can see from these

tables, the sequence of reworks that minimizes our perfor-

mance measure depends on the value of the initial reliability

R , for given values of the desired reliability R^ and of
o D

weightings in the performance measure.

Summarizing, we have applied a dynamic programming

procedure to our control model of the reliability of an

item and were able, for the four selected cases, to find

an optimal sequence of reworks that minimizes a selected

performance measure. For other selections of performance

measure J, relative weightings HN, Q and G, constraints,

initial reliability R and model parameters b and T, we
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TABLE II

RELIABILITY FOLLOWING REWORK FOR INITIAL RELIABILITY
R , AND OPTIMAL SEQUENCE OF REWORK LEVELS a (k)

Case (1) - Minimum Cost
N-l

PERFORMANCE MEASURE: J = [R^-R. (k) ] H + £ Q+GU(k)
U

k=0

with H = 0.0 , Q = 0.0 , G = 1.0 and U(k) = a (k)

R =0.8
o

k R
s
(k) a(k) R

s
(k+1)

0.800 0.60 0.890

1 0.890 0.60 0.924

2 0.924 0.60 0.933

3 0.933 0.60 0.936

4 0.926

R = 0.9
o

k R
s
(k) a(k) R

s
(k+1)

0.900 0.60 0.926

1 0.926 0.60 0.933

2 0.933 0.60 0.936

3 0.936 0.60 0.937

4 0.937
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TABLE III

RELIABILITY FOLLOWING REWORK FOR INITIAL
RELIABILITY R , AND OPTIMAL SEQUENCE OF

REWORK LEVELS a (k)

Case (2) - Terminal State
N-l

PERFORMANCE MEASURE: J = [Rn-Rs (k)]H + [ Q+GU(k)
k=0

D s

with R
D
=0.99, H = 1.0 , Q=0.0, G=0.0

and U(k) = a (k)

R = 0.8
o

k R
s
(k) ct(k) R

s
(k+1)

0.800 0.90 0.972

1 0.972 0.90 0.988

2 0.988 0.90 0.990

3 0.990 0.90 0.990

4 0.990

R = 0.9
o

-

k R
s
(k) a(k) R

s
(k+1

0.900 0.90 0.982

1 0.982 0.90 0.989

2 0.989 0.90 0.990

3 0.990 0.90 0.990

4 0.990
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TABLE IV

RELIABILITY FOLLOWING REWORK FOR INITIAL RELIABILITY
R AND OPTIMAL SEQUENCE OF REWORK LEVELS a(k)

Case (3) - Terminal State with Minimum Cost
N-l

PERFORMANCE MEASURE: J = [R -R (k)]H +
j, Q+GU(k)

U S
k=0

with Rq 0.99 , H = 500.0 , Q = 0.0 , G = 0.9

and U(k) = a(k)

R
o

0.8

k R
s
(k) a(k) R

s
(k+1)

0.8 0.60 0.890

1 0.890 0.60 0.924

2 0.924 0.60 0.933

3 0.933 0.867 0.979

4 0.979

R
o

0.9

k R
s
(k) a(k) R

s
(k+ 1

0.900 0.60 0.926

1 0.926 0.60 0.933

2 0.933 0.60 0.936

3 0.936 0.864 0.978

4 0.978
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TABLE V

RELIABILITY FOLLOWING REWORK FOR INITIAL RELIABILITY
R , AND OPTIMAL SEQUENCE OF REWORK LEVELS a(k)

Case (4) - Terminal State in Minimum Time with
Minimal Cost

N-l
PERFORMANCE MFASURE: J [R^-R (k)]H + I Q+GU(k) ,U S

k=0

with R = 0.99 , H = 500.0 , Q = 0.05 , G = 0.05

and U(k) = a(k)

R =0.8
o

k R
s
(k) a(k) Rs (k+1)

0.800 0.60 0.890

1 0.890 0.60 0.924

2 0.924 0.868 0.977

3 0.977 0.90 0.989

4 0.989

o

R
s
(k)

0. 900

0. 926

0. 933

973

988

a(k)

0.900 0.60

1 0.926 0.60

2 0.933 0.835

3 0.973 0.90

4

R
. (k+1
>

0. 926

0. 933

0. 973

988
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would obtain different sequences of rework effectiveness

a(k) that optimizes the selected performance measure. A

suitable selection of the performance measure and relative

weightings being a responsibility of the manager according

to his purposes, experience and data available. Thus the

cost of each rework, the minimum value allowable to the

item reliability, minimum and maximum levels of rework that

are physically feasible to implement, and other factors

like the urgency to attain a desired reliability in minimum

time, or a constraint in the budget, are taken into account

when selecting the weightings in the combination of all

the criteria.

In the next chapter we will present the general conclu-

sions of this thesis and suggest the areas where one could

do further study involving the rework control model.
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

A simple, closed-loop inventory storage system from

which the stored items are removed, sent through a rework

mechanism to improve their reliability, and returned to

storage has been investigated in this thesis. Such a sys-

tem might be a stock of large ordnance which is acquired,

stored and reworked at regular intervals

.

A general rework model was developed by using the tools

of control theory and a solution in closed form was found

that permits further analysis of the system in a much easier

way than if we had a solution in the form of series. This

model also permitted us to find in a direct way the values

of effectiveness of the rework that makes the system unstable

and the final value of the item reliability over several

reworks when the system is stable.

A Kalman filter was used in the control model to obtain

an estimation of the item reliability when we have random

error in our measure of the item reliability or when the

rework process introduces randomness in the item relia-

bility. This model was extended to more than one dimension

for the case where we have systems composed of several

subsystems in series, parallel, or both. Finally a study

was made for the case where we can have several levels of

rework and want to find the optimal sequence of such reworks

that minimizes a performance criteria that leads to the

73





case of minimum time, minimum cost, terminal state or a

linear combination of these criteria.

This thesis shows that control theory may be applied

for administrative problems where a mathematical model des-

cribing the system can be derived. Control theory gives

a broader understanding of the problem and due to its flexi-

bility would permit us to include in the model many other

variables not studied in this thesis.

Among the several interesting areas which might be

pursued in further study, one is to determine methods for

measuring or estimating the item reliability by frequent

diagnostic checks so that this measurement process can be

incorporated in the model. Another area is to broaden the

field of the rework model so that other state and input

variables could be incorporated. These include the proba-

bility that an item chosen at random might have reliability

exceeding some predetermined reliability requirement, and

other input variables (such as items expended for training

purposes, use, or obsolescence, as well as new items acquired

periodicaly) . The rate of rework, the rate of expenditure,

or the rate of acquisition could then be sought as control

variables besides the rework effectiveness. Non-linear

functions caused by the decision rule of doing a rework

only when the item reliability is smaller than the desired

value, can also be solved in terms of non-linear control

theory

.
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A reliability control model has been developed in this

thesis for a system of stored items requiring rework.

It is hoped that the results presented here will not only

be useful to inventory managers and high-level planners

but will also generate further interest in the application

of control theory to administrative problems.

75





APPENDIX A

Z TRANSFORM

A.l DEFINITIONS AND PROPERTIES

The solution of difference equations by the z-transform

method is very useful, because we can transform difference

equations into algebraic equations in z. Once solved

this algebraic equation we can then find the inverse z

transform of this solution to obtain the solution in the

time domain.

Thus, given a discrete function of t, f (kT) , the

z-transform of this function, symbolized by F(z), is defined

by

oo

Z[f(kT)] = F(z) =
I f(kT)z~

k
(44)

k=0

From this definition we can obtain several useful

properties. For example, let's find the z-transform of

f ((k+l)T) :

Z[f(k+1)T)] - I f((k+l)T)z"
k

- I f(kT)z"
k+1

k=0 k=l

= z[ I f(kT)z"
k - f(0)] = z F(z) - zf(0:

k=0

-(45)
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Thus when a difference equation is transformed into an

algebraic equation in z by the z-transform method, the

initial data are automatically included in the algebraic

representation

.

Other useful properties are

z[af (kT) ] = a F(z
(46)

and

z[l(kT)] =
z-1 ' (47

where l(t) is the unit-step function:

KkT) = <

for t <

for t >

These two properties permit us to find the z transform

of a constant, since any constant a can be expressed by

the product al(kT):

z [a] = az/z-1 (48

Another property is the distribution property

z[f (kT) +f
2
(kT)] = z[f

1
(kT)]+z[f

2
(kT)] (49)
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The z-transform of the most common functions are given

in several references listed in the Bibliography [1], [4]

and [10].

The inverse transform of F(z) is f(kT), and is denoted

by

Z
_1

[F(z)] = f(kT) . (50)

From the tables of z-transform we can find the inverse

of the simplest function. More complicated z-transforms

may have to be expanded into partial fractions so that the

tables can be used. Normally, we expand F(z)/z instead of

F(z) into partial fractions because this leads to functions

with z in the numerator after we multiply back by z, and the

functions of z appearing in tables of z transforms usually

have the factor z in their numerators

.

When the partial fraction expansion does not give

tabulated functions, we may have to find the appropriate

z-transform from the definition. This will be the case

in our problem.

Similar properties of z-transforms exist for inverse

z transforms and will be useful:

Z
-1

[F(z)/z] = Z
1
[z"

1
F(z)] = f[(k-l)T] , (51)

Z
-1

[aF(z)] = aZ
-1

[F(z)] = af (kT) , (52!

nS_





Z
"
1[

z^I ]
= a 1(kT) = a for t > , (53)

and

Z
1
[F

1
(z) +F

2
(z)] = Z

1
[F

1
(z) + Z

_1
[F

2
(z) ] . (54

The characteristic equation of a system is equal to

the denominator of the overall transfer function and the

stability of the system can be determined from the location

of the roots of the characteristic equation [10] . A con-

dition for stability is that all roots must lie inside the

unit circle or

z
± |

< 1 (55:

Another important property of the z transform is the

Final Value Theorem [10]

:

"If x(t) has the z transform X(z) and X(z) has no

poles (roots) outside the unit circle (|zj < 1, that is the

condition for stability) , then the final value of x(t)

or x(k) is given by

lira x(t) - lira x(k) = lim[ (z-1) X (z) ] .
" (56;

t-*-°° k^°° z-*-l

To prove this note that

Z [x(k) ] = X(z) = I x(k) z~
k

k=0
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Z[x(k+1)] = ZX(z) - Zx(0) =
I x(k+l) z~

k

k=0

Hence

zX(z) - zx(0) - X(z) = (z-l)X(z) - zx(0)

oo oo

I x(k+l) z~
k

-
I x(k) z"

k

k=0 k=0

from which we obtain

(z-l)X(z) = zx(0) +
I [x(k+l) - x(k)] z

k

k=0

Because of the assumed stability condition, we obtain,

as z + 1,

lim [(z-l)X(z)] = x(0) + x(») - x(0) = x(»)

z-KL

which is Equation (56) .

A. 2. Z TRANSFORMS OF EQUATIONS (8) AND (9)

We found that the reliability immediately before the

(k+l)th rework is given by equation (57) .

R(k+1) = (l-a)e~
bT

R(k) + ae"
bT

(57)
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—bT -bTSince (l-a)e and ctR_e are constants, we can apply

the properties (45), (46), (47), (48) and (49) to find the

z-transform of both sides:

—bT -bT
Z[R((k+l)T)] = Z[(l-a)e R(kT)] + Z [ae

l
]

—bT -hT
= Z[R((k+l)T)] = (l-a)e Z[R(kT)] + ae

0i
Z[l(kT)

zR(z) - ZR(1) = (l-a)e~
bTR(z)+ ae~

bT -~-
, (58)

z - i

which is Equation (12) of Chapter I when we use R(l) as

the initial condition.

Similarly for Equation (8)

:

-bT
Rs ((k+1)T) = (l-a)R (kT)e + a (59)

zR (z) - zR(0) = (l-a)e~
bT

R (z) + a -^ (60)
s s z-l

which is Equation (10) of Chapter I

A. 3. EXPANSION INTO PARTIAL FRACTIONS

Equations (5 8) and (60) can be solved for R (z!

and R(z) , giving:

V Z
> - - \ -bT

R "» + ~ "-W.. ~ (61:

z-(l-a)e [z-(l-a)e ] [z-l]
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and

R(z) =
z- (1-a)

e

-bT•R(D
+

-bT
ae z

[z-(l-a)e
bT

] [z-1]
(62)

In order to have simpler expressions we can proceed now to

expand into partial fractions. We will exemplify it for the

last equation only, since they differ only by a constant

factor in the last term.

The first term has already a simple form so that we

need only to expand the last term. For reasons stated in

Section A. 2, we will expand this term divided by z:

1
z

-bT
ae z

[z-(l-a)e~
bT

] [z-1]

ae
-bT

[z-(l-a)e"
bT

] [z-1]

+ B
z-1 ,, > -bT

z- (1-a)

e

(63!

To determine the coefficient A we can multiply both

sides by (z-1) and evaluate the expression at z = 1:

ae
-bT

z- (1-a)

e

-bT
= A [-

z=l

B(z-l)

z- (1-a)

e

-bT
z=l

This gives

A =
-bT

ae

l-(l-a)e
-bT

8 2-





To evaluate B we multiply both sides by [z-(l-a)e

•bT

-bT.

and evaluate at z = (l-a)e , so that the term with A

becomes zero:

ae
-bT

z-1
z= (1-a)

e

-bT
= + B ,

this gives

B = ae
-bT

,i ^
"bT ,

(l-a)e -1

Substituting back into (63) , we have

ae
-bT

ae
-bT

(z-1) [z-(l-a)e
-bT. [l-(l-a)e"

bT
] [z-1]

+
ae

-bT

-bT -bT '

[ (l-a)e -1] [z-(l-a)e
D1

]

and R(z) can now be put in the form:

R(z) =
z- (1-a)

e

-bT•r(i:
ae

-bT

z-1 ,, ,, > -bT,
(l-(l-a)e

ae
-bT

[z-(l-a)e~
bT

] [(l-a)e~
bT

-l]
(64;

The expansion for R
s
(z) follows immediately from this last

equation

:
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R-(z) -
2

-cisR (O) +
S ri \ "Of (z-1) r, ,, , -bT nz-(l-a)e K

' [l-(l-a)e ]

[z-(l-a)e~bT ] [(l-a)e
bT

-l]
(65)

A. 4. INVERSE Z TRANSFORM

The first and last terms of Equations (64) and (65)

are not found in the tables of z-transform so that we will

proceed now to develop the expressions of these z-transforms

from a guessed form of f (kT)

.

Since the first and last terms are identical in terms

in z, differing only by constant factors, we need to do the

development just for the expression in z.

Thus, let's assume that

f(kT) = (l-a)
k

e"
bkT

Applying the definition of z transform we have

CO CO

F(z) =
I f(kT)z"

k = I (l-a)
k
e"

bkT
z"

k
(66:

k=0 k=0

-bT -1
Multiplying both sides by (l-a)e z , we have:

,, , -bT -1„, x r M vk+1 -b(k+l)T -(k+1) (67]
(l-a)e z F(z) =

I (1-a) e z

k=o
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Subtracting (67) from (66) side by side we get

[l-(l-a)e-bV 1
]F(z) =

I (l-a)VbkV k
-

I (1-a)
k+1

e"
b (k+1) T

z"
(k+1)

k=0 k=0

or

tl-(l-a)e-
bV 1

]F( Z ) = 1 +
I (l-a)

k+1
e-

b(k+1)T
z- (1 + 1)

k=0

or

Thus

-
I (l-a)

k+1
e-

b{k+1)V (k+i:

k=0

-bT -1
[l-(l-a)e

D
z

X
]F(z) = 1

F(Z) =
, 7i , -bT -1
1- (1-a) e z z- (1-a)

e

-bT
(68:

From this it follows that

-1

z- (1-a)

e

-bT
= f(kT) ,, . k -bkT

(1-a) e (69)

Also,

z-
1

[

a

,, , -bT ,, . -bT ,

z-(l-a)e (l-a)e -1
] =

,, ,k -bkT
a (1-a) e

-bT
(l-a)e -1

(70)





and we can get similar expressions by changing the constant

part. From (52), (54), (69) and ' (70) we can now find

the inverse z-transform of equations (64) and (65) :

k -bkT ae"bT a(l-a)Vb(k+1)T
R(kT) - (l-a)*e

b*T
R(l) + —^ r— + aU '

, / ,
~bT ,i N

-bT ,l-(l-a)e (l-a)e -1

or

-bT
R(kT) = (l-a)

k
e"

bkT
R(l) +

ae
hrp [ ( 1-a)

k
e"

bkT
-l]

(l-a)e -1

And from (65!

(71)

R
s
(kT) = (l-a)

k
e"

bkT
R +

a
_bT [ ( 1-a)

k
e"

bkT
-l] (72)

(l-a)e -1

These are the equations (13) and (11) of Chapter I, respec-

tively, and constitute the solution of the difference

equations (57) and (59) in the time domain.
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APPENDIX B

COMPUTER PROGRAM DISCUSSION

In Chapter V we have shown that the functional equa-

tions of the dynamic programming to compute the optimal

costs over the set of possible controls are

C*
N
(R(k) ,u(k) ) = J k ^ k+1 (R(k),u(k))+JjJ+1 (R(k+1))

and

J* (R(k)) = min [C* (R(k) ,u(k))]
u(k) KN

The program that performs these computations is

listed in the Computer Program Section of this thesis and

is composed of three subroutines and two functions . The

subroutine QUANTU computes the discrete values of the state

variable R(k) , and of the inputs U(k). For each discrete

value, the subroutine STATE computes the value of the state

variable at the next state and the dynamic equations of

our model (15) and (16) has to be input in this subroutine.

With the vlaue of R(k+1) , the subroutine cost selects the

value of the performance measure J by interpolation between

the two nearest discrete values stored in the array of

discrete values of optimal cost, COSTOP, of the (k+1) th

state. This is possible because the computation is done
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backwards from the last stage of operation. The costs of

the last stage are computed by the Function HN, and the

subsequent cost for each state and each value of the input

U are computed by the Function G. These costs are summed by

the subroutine COST and in the main program the minimum

value is found for all discrete values of U(k) . These com-

putations are repeated for all the discrete values of the

state variable as can be seen in the flow chart of figure 9.

The program output presents the optimal costs and corres-

ponding effectiveness of rework a to go to the final state

for all discrete values of the reliability so that starting

with a given initial reliability at the initial state or

first rework table we can, interpolating through the values

of the next state until the final state, find out the optimal

sequence of rework for that particular initial condition.

The program output for the examples of Chapter V are

presented in the Computer Output Section of this thesis.
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IMPUTE UTPUT \5c 1

3UT1 INPUT

N NX NU MOOc
+ 2 30 J

a'U'j XMAX UMI M UMAX
J . 3 '. . J 0.6 Q . J

COSTS )F IPEUTIGi 10 ]PT1 4Al CD JT'OL L

r A B L - F iR £ FINAL

FINAL v
1 SJ J

K j 1

STATE C 1 S T

.0
J. 9 9 0.0
-j. c 3 3.0
.97 .

0. 9 b 0. )
^ ~* .t .0j . > j

0.0
0. -3 \ r\

\j m \*

3 . 9? CO
). 91 0.
J. 39 Z t

J. 3 3

0. £7 J.O
0. 2o J .0

. 3S 0.0
J . J-T .

0. ^3 0.0
0. 32 0.0
3 . a 1 . ^/

0.30 0.0
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COMPUTER OUTPUT CASE L

TA3LE FQP TriE 4 T ri REWORK

CURRENT
RS(K)

NEXT
RS (K+i)

mi \|i MUM
C 35T

OPT [V4L
R E '*0 R K

1.00 0. 962 0.4 3.60

C. 9 9 . 9 5 S . •+ J . 5 j

0.S9 J. 954 3.4 C . 6

0.9 7 0. ?51 J. + o . £ J

0.9 a 0.947 0.4 u.6J

. 9 j . 9 +3 J. -r u. ; j

0.94 0.939 3.4 C.60

3,91 C . ? 3 5 J .+ 0.63

C.9 2 0.931 . 4 v> . 3 J

0.91 0.92 3 3. * 0.6

J . 3 5 .9 24 0.4 . 5 j

0.3 3 0.9 2 3 J .+ 0.60

0. 3 7 0.9i5 3.-+ .60

. 3 b 0.912 J • 7 o • C u

u. 33 3.909 0.+ . 60

0.3 +

0. S3

0. 9 J3

0.901

0.* a . 6 o

.60

. 3 '.

0.31

0.3 97

0.39?

3 .+

• -t

0.60

0.60

"1 O 1J . -' -J 0.39 J . + 0.6
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COMPUTER OUTPUT CAS 3 1

T A^Lc FOR THE 3 Th 1 REWORK

CURRENT
R 3 ( K )

NEXT
R S ( K + i

)

H I

r
MI
3S

MUM
T

OPTIMAL
REWORK

1. cc . 5 62 G.7 0.50

0.9-3 0. 5 53 0. 7 0.60

C. 9 8 u .
c 5

4

C.7 0.5)

J . 9 7 0.951 0. 7 Ci)

C. 96 0. 7 47 J • r * 5

D.9 5 . 9 43 j.
-

C . 6

v. • 9 -t 0. ?39 T 0.50

u .9 : . 535 0. 7 0.60

I

1
c, ; 0.9 21 C. J 0.60

1 ul J. 7 0.63

L « o S J . -'_!'+ 0.7 0« 60

0. 88 . 9 3 0. 7 J. 6

C. 67 . 51

6

0.7 0.60

1 J*.
.
n 1 i C.7 J .60

C. c5

0. i 4 . 9 C 5

0.7

0. 7

. dO

. 60

^ » 3 .

,

0. 3Gi 0.7 ,60

0. 3 2 . S 1-5 7 0.7 . 50

C. 81

0. 9

0. £ 53

J . G 9

0. 7

0. 7

0.60

0.50
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CGMPUTER 'J'JToijr CAGE I

TArSLE FQ3 'HE 5 TH REWORK

CORK E IT
*S( K )

NEXT
as IK+D

»

'I VII MU 1

3ST
OPTICAL
REWORK

\ . J . 5 6 2 1.1 0. £0

G.^c 0.953 1.1 C • 60

3.«*3 0.954 1. i oi C J

0.9 7 0.951 l.i G.60

. r 6 J. 3 4 7 i. ^ 0. 60

0. "55 0.5+3 1 .i Lj . O sJ

0.9% . 7 3 9 i. i O . 6 v>

0.93 0.935 L.i C . 60

0.9 2

J.9i

. 9 = i

j. : :s

1. 1

1 .

1

J. 60

C.60

J .
"' '-> J. ?24 l.i G.60

3 . b 8 . ? 20 L.i C.60

. p 7

0.36

0.915

0.912 l.i G . o J

J . S 5 . 9 C 9 l. i u. cj

J . S * 0.905 l.i G . 6 j

o.a: 0.901 1 . .

0.3 3 0. 597 l.i 0.60

J * C J. J. ?93 l.i G. 50

0.80 J. 3 90 1. L G.60
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COMPUTER OUTPUT CAS £ I

TA5L^ FCR THE LTH REWORK

CURRENT
R 5 ( K )

NEXT
4 S( K+i) COST

0PTI-M4L
r ewcp\

1.00 0. 3 62 I. t 0. 30

C.9 9 0. 3 55 i. \ a . 60

C. c '3 • 9 34 I. + 0. 5 J

C. ^7 "l G C 1 0. 50

Vj» - - 0. 3 47 u • 50

Mt 7 3 0.94 '-» 1. + 0.69

. 3 1 9 l. * O . 60

c. c
: J . 9 3 5 I. \ 0.5 J

0.921 1 . + J. o0

C.91 0.92 3 1. \ J. 59

G. 5 9 0. J 2 + 1 . + . 50

Ui 3 j 0. 32 3 U T • 60

o • G 0.915 I. + . 60

0.86 o . 9 1

:

l.-r 0.50

O.d:

U* O "T

. 9 9

0.905

l. 4

t.4

0.50

0.60

J . - 3 3.90 1 1 .4 0.60

J. 3 J . 8 37 1 .4 .6 J

C.Si a

.

3 9
-

i .4 0.6J

o . 8 a 0.3 90 1 -». .60
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C 3MPUTER TUTPUT 3 A SE 2

DATA INPUT

N NX NO MOOfc
s- dO 30

X -UN XMAX 'J
y

I N ! JM^X
0.5 1 • 0.6 0.9

ISTi TF OPERATION AID 1PT1 V, L CGNTRU LAW

TAriLE F^P THE FINAL 3
T ATE

FI ML ''I MI MUM
iTATE CGS7

L.UO j.Oj
0.9 ^ 0.00
0. 93 .00
3.97 . J

0. 96 .0
0. 9 5 0.00
.94 0.00

0.93 0.0 J

0.92 C. 01
0.91 0.0 i
0.89 0.0>.

. 3 3 0.01
0.37 O.Oi
0.86 0.0 2
0.35 0.02
0.3* 1.01
0. 33 0.O3
0. 82 0.03
0.31 0.0 3
0. 30 0.04
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COMPUTER OUTPUT CASE 2

TA5LE FOR THE 4 T" H R EWOR K

CURR2 IT
R S ( K )

NEXT
R S ( K + 1

)

MI NI HUH
CIST

OPTICAL
RE UORK

L.00 0.9 39 a.u . S 9

C. 99 0.9 90 . u o • 90

J. 93 0. 959 0. J 0. 90

C . 9 7 3.933 J. j 0.90

0. 9 c . 9 fi 7 0. J . 9 J

C.^5 . 9 £ S J. J 'J . 90

j. 9 i 0. ^?3 0. J 3 .90

C . 9 3 0. 9 34 'j. 0. 90

0. 9 2 U • :CJ j. a 0. 90

C . 9 I 0. 0.90

a. 39 0.93 I j.j 0.9 J

0. 3 3

J. 3 /

C. 9 30

. ^ 79

O.J

0.0

0.9 J

3.90

Q. Q i 0.973 0. j J .9 J

0,8 5 0.^77 O.J 0.3-j

0.34 G • 9 76 0.0 j . 9 J

•j . a

;

0. 9 75 O.J J . - j

J. 3"1 J." 74 J »0 :>.=>:>

0. 31 0.0 0.90

1 '
"•

_> 0.972 0.0 .90
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COMPUTER OUTPUT CASE 2

—L^.£!:£_^
:

'"_I
H
^ 2

th rew °* k

C
-
UR.")

k
-' T

lt-
;>- AT MINIMUM "OPTICAL*

,_
r
_lLtl ilLll l

L _£
TSr Rework

£^^ -_^!i_ °* J fl-sa

,.«£iii £i«f£. - Q « a o

__2i!2 till!.... £- j o.9o

__£:J2 iilll °«° q-90

—Silt. -illl } - J 0.90

..till allot— °*° >j - ' j

£l9j _^*i 63
_ J ' J 0.90

2i2J i?iiE2 J
i
J o»9o

till tilll °* J ° • ,0

._£lf.: ,.5l2-I _ °* J G *"- J

__£lff £lIJL;_ °* J °»90

.„£i«i! fi-.iL £i
J °« 30

.~2l£I__ tilll. 0, ° °« 9°

•'"1 3 _ , n

,_Zlll „_^ „
3 a, ° 0.~0

_titl -i211_ °i
j o.oo

_tili till6
_

0, ° °» 5°

__2^33 ^0.975 °*° J » 90

_^°£ °*'' 7
^_ °'° 0.S0

_£l£i 0^573 _ 0.0 0.90

°-3G 0.172 O.J o.90
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iOMPJTER OUTPUT CASE 2

Tt6LE FOR THE 2T H REWORK

CURRENT
RS(M

MEAT
R S ( K + i )

MINIMUM
CO 3 T

1PTIMAL
REW ORK

1.00

0.99

0.990

n ~< "! n

0.0

O.J

0.90

0. 90

0.98 0.999 0.0 G. 90

0.9 7 0.933 0.0 U. 90

0. 96

0.93

0.987

0.98 6

0.0 0.90

C.90

J.9i 0.9 35 .0 0.90

0.9 J

0.9-

0.984

0.9 83

0. J

O.J

O • "3 J

C.90

C. 91 . 9 32 G • U 0.90

. S -} 0.931 0.0 0.90

C. 9 ; 0.950 U « \j 0. 90

0.87 0.9 79 0. C.90

c.

0.35

0.9 73

0. 977

0.

0.0

U • 90

C. 30

u. et 0. ^75 C. 90

0.62 0.975 0. C.90

C. fc, 0. 974 .0 . 90

0. 81

CSC

0. 9 73

0.972

0.

0.0

0.90

0.90
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CC'-ipijTEP OUTPUT CASE 2

TABLE FCP THE 1 T H REWORK

CURRE IT

RSIKJ
NEXT MINIMUM

COST
DPTI.M \L
REWORK

1.00 0.9 90 .0 0.90

0.95 0.990 0.0 0.90

C. 9 i> 3 . 3 35 3.0 . ^0

C. 9 7 0. 5 33 0.0 0.90

0.937 ).0 0.^0

• '9 j 0.9 36 ,0 C . i'j

C« 9 + 0.935 0.0 u . 5 J

J * # > 0. 9 34 . ) 0.90

G.92 3.9 33 0.0 0.90

3.91

. S 9

J. J3B

.931

C . 9 3

.0

(J • u

G . 5 j

0.90

Vy . 9 J

0. 90

G. 90

3.8 3

0.3 7

.0

. J

0.36 0. 573 o.o

J. 65 0.9 77 O.j G . 50

3.34 .9 76 0. J O . 5

0. S3 0.9 75 0.0 "i _iri

3,8-2 0.974 G. 3 G . 90

\j • S i 0.973 0. J . 9

3,80 0.-72 0.0 C. 5
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OMP'JTER "lUTP'JT C^SE

JATA INPUT

N NX
4 2 J 30 J

AM IN XMAX UMIM UNUX
J . 3 1 . . 6 0.9

C-STS jF )P| I 3N ID JPfi ! N T R •J L LAW

TaBLc GR 7H: F I \AL if AT =

F I N 4

STA ;'
i IT;T

1.00 .05
. '- 9 J .00

0. 93 O.Ob
0.97 J. 23
J. 36 0.52
0. 95 0.91
0.9 4 i . 4i
0.9: 1.03
o. c : ?. 75

. c 1 ?. 5?
0. 3 5 v .54
J. 33 5.50
0.. 3 7 6.76
0.35 3.04
0.3 5 9.44
D.?4 10.H
0.33 L 2. ^5

. 6 '. 14.27
3.31 16.11
U • 30 13.05
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r TlPUTt D 3MTPUT C VSE 3

TV3LE FOR THE ^ H R EW 3 ? *

CURRENT
R S ( K )

NEXT
? S (K+ 1)

*I Mi MUM
C 15T

jPTl VAL
R E 'a 3 R ,<

1 .00 C • 9 / j 0. b 3.73

C. 99 3.9 79 C. 5 3. 30

J.-" 3 0.9 79 0.7 .33

0.97 0. 9/9 0.7 3.3 3

w • *"• '

.

0*9/3 0.7 . 8 •+

0.95 C. - 7 J
. .7 0.33

G • - •+ . ? 7 : 0. / • 36

3. =53 o. ---^ 0.7 C . t j

0.92 3 . •- 7 9 O.j v. • i'j

0.9 L 0. MO 1 -iW . .J W . Ca 7

0.39 0. : 7 = 0.3 C. 39

. 3
3
. u • j c \J . 3 C . 9

0.3 7 0.979 0.3 u . ~j

3.36 . 9 7 3 0. 3 C . ;

0.85 0.3 b • f

.3<+ 0.-^75 0. 3 C. 90

0.53 0. 9 75 0.9 C • 90

3.32 0.974 C. 9 L . *3 u

J • i. 0. 9 73 0.9 C . 90

O.S.J 0. 9
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COMPUTER 1JTPJT CAS£ 3

TAdLF FOR THE 3TH REWORK

CURRENT NEXT
RS(K) *S(K+1)

MINIMUM OPTIMAL
COST REWORK

I.OC 0. vci L, 0. 2 J

C. 99

C.9 3

0.953

. 9 5 +

1

1

. 0.60

0.60

0. 9 7 0.95L i

. J J. 51)

C.94 . 9 + 7 SL, 0.6

C • 95 0.943 j_ . J . 5 3

0.94 0. 3 3'J L,
1 J.o3

C. 9 3 0.935 1 J * 50

0. 9 : 0. 9 31 \ 1 0.60

G. 9 L o.^:^ 1
, 1 0.60

U • 'j
'"? 3. 5 :-v I. J .zO

v> • (J 0.920 1.(
1 0.4 3

/ 0.915 1, . J_ .60

0-35 o.9i

:

^ .1 O . o

0.8 5

J. 3 t

0.909

.

"

2 5

1 .1 .60

0.60

-. 3 —
J « -J „ J. 901 I .1 0.60

a . 3 2 . !3i i 1 U • 3 -J

0.393 1
.3, 3.60

J. ?Q 0.3^0 I ,1 0.60
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OMPUTER OUTPUT

TA3LE FOR THE 2TH1 REWORK

CURRENT
RSI K )

MS XT
a S (K+l)

y I N I

COS T
3PTIMAL
REWORK

1.00 0.9 62 L * 4 J . 3 J

0.99 J. =53 L. 4 0.63

c. ss 0.934 1.4 J . S J

G.97 0.951 U .60

C. 96 0. 947 1 . t 0.60

C. 9 5 0.943 1.4 . 6 3

C. 94 . ?39 I. + 3.60

o. 9 2 . 9 2 5 1. + J. 50

C. 92 0.931 1. + 0. 3 J

C. 91 0.92 a I. » 0.60

C. c c 0. 9 24 L. 4 0.60

C. 8 i G . 9 2 L. T . 6 3

. S 7 . 9 i b 1. + 0.60

rt ft" *

Q« 8 3 0.9 L2 i . T J. S3

C. 85 0.909 I. 4 J .63

G. 84 0.905 1. t J. 53

n q a 0.901 1.4 0.o3

. 8 97 1.

C. 31 0. 5 93 1.4 3 . 50

G . 8 0.390 1. + O . 9 )
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CMPUTER OUTPUT CASE 1

T4 B L E F IP Trit LTri REWO }K

CURRE IT
RS(K)

NEXT
P S ( K + L )

MINI MUM
COST

OPTI vi L
REWORK

L .GO 0. - b2 1. 7 C. 60

G.99 . 5 53 i. r C. 6

0.93

U. dD

0.34

0.909

0.905

i. 7

.7

c. -o

• ~i t 0.95 1 1. 7 £.60

). C 3 0.-T47 1. ^ C. 30

U • 7 2 G .
" +3 1. 7 C . o

0.94 .
c 3 9 i. 7 C. 60

0.93 . ? ;>5 L. 7 bi OJ

0.9? .
c 3 1 i. 7 b* C J

0.91 . 9 ? a, L. 7 G.dO

0.3c

0.924

C. 9 30

L. 7

1.7

vj . tO

C . 6

0.87 . 9 16 :. 7 C • 3

0.36 G . 9 -, i 1. 7 C » ~ J

- . -> J

0.3

0.32

C. £1

O . "' L< i

0. 397

. 3 9 3

0.390

n AT

I. 7

L. 7

•o J

J . 3 U
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COMPUTER DUTPUT AS= 4

DATA INPUT

N NX MU MOOS
+ 20 30 o

XMIN /'"AX UMIM IJMAX
0.8 1.0 C . 6 0.9

STS JP OPERATION 4N0 OPTIMAL CCI

TABLE FOR T n E FINAL STATE

«UL LAW

FI !AL 'Til MUMSTJ T E CIS'

I. 00 0*0?
0.99 0.00
0.9* 0.06
0.-7 J. 23
0.96 0.52
0. 95 0. 91
0. 94 1.4'
0. 9? 2 .03
0. 9? 2.75
0. 5i 3.59
o . 39 4.54
0. 83 5.60
0. 37 5.76
0.36 5 .04
0. 35 9.44
0. 3 + IG.94
0.35 17.55
0. 52 L4.27
0. 31 Id. 1 L
0. 30 I 3.05
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C 3MPUTER OUTPUT CASt 4

TASLE FOR THE 4TH RE,JQRK

CURRENT
RS ( K )

NEXT
<S (K + i )

MINI MUM
COST

OP
R £

TI^iL
WORK

LOG • 9 89 1 0.39

0.99 0. 9 90 0. _ C.90

C.9 J 0.939 n
\J • J. C. 90

* 9 7 0,989 0. 1 b. ;J

C. 3 3 J . 9 3 7 o-i ). -0

J. 9 5 0. 9 E6 0. i G.90

U • 7 -f 0. ?35 0. :. L * ^ ^j

0.9 3 . 9 84 O.I G.90

C.92 0.983 *j . i G. 90

U • 7 i, 0. 933 0. i ..9]

0.39 0.93

1

0.1 0. 90

0.8 3 G. 9 30 0. i C.90

0.37 0.979 0. z C. 90

... 8

1

G. 9.

0.3 5 0.977 0. 2 • "3

0. 34 0.976 0.2

. 3 3 0.975 0.2 C.9

0. 3 3 0.974 0.2 L* • 7 J

0.81 0.973 0.2 0.90

0. 30 0.3 72 0.3 0.90
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COMPUTER DUTPUT CASE h

TA3LE FOR THE 3"*H REWORK

CURRENT
kS( K )

NEXT
r<s (K+l)

Mill MUM
COST

OPT I *AL
REWORK

LOG 0.9 62 0.2 C . 5 J

0.9 ? J . 9 5 3 0. 2 Z. ^0

0.9 8 0.954 0.2 G.60

0.97 0. 95? J .2 • t 5

C. 36 0.95? 0.2 • 5 9

U « 9 J3 0. 96-+ ._ C.74

C • 9 + . 3 59 0.2 C. 30

J. :j 2 C • j 75 0.2 C . 55

C. 92 0.979 0.2 0.3 3

0.9 L

. 8 9

0. 9(33

0.9 79

.2

.
"!

0.39

.39

J. 2 1 ) .2 w . 9

0.3 7 0.979 0.2 0.90

J . 3 5 0. ?"T
°. 0.7 0.90

0.3=5 j. 9 77 0.2 J. 13

0.2 +

0. 85

0. -^

U • 7 . 3

0.2

0.2

0.9

. 90

0.3 2 0.974 .2 3.90

C. 31 0.9 73 0.2 .90

. 9 7 2 0.2 0. 90
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C.-iPUTER 3UT°JT L A 5 t t

^A3LE FOR THE 2 TH REWORK

CURREN f

R S ( K )

NEXT
R S t K + 1

)

r
J I MUH
'1ST

OPT I "ML
REWORK

1 . G C 0.9 6? 0.2 3.60

C.99 0.956 0. 2 0. 30

C. 98 0. 954 0.30

G.9 7 G. 9 5
1

, 0. 2 . c0

C. c.o 0.9^7 0.2 0.30

0.93 G.^43 0. 3 0.60

C. 94 0.939 0.3 0*60

u • 7 _ 0.935 0. 3 0.6

c. 9: 0. 531 0.3 .60

0.91 . 9 2 3 0. 3 U * - w

C. 3*? 0. 92 + 0. 3 G.~>d

• 3 3 C . 9 2 0.3 0.60

• 3 7 0. 916 0. 3 0.60

0* 8 6 0.91? 'J • - 0.30

J. 35 0.909 0. 3 0.50

0.33

. 9 G 5

0.81

U. d U

0. 9 01

0.897

0.3 93

0. 3 C 3

0.3

0. 3

0. 3

0.3

0. 50

0.60

. jO

0.60
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COMPUTER G'JTP JT CASE 4

'A OLE FCR THE ITH REWORK

CUR^EMT
R 3 ( K )

N EX T
R S ( K + 1

)

* IN I Ml J M
CIST

OPT [MaL
RE WORK

1.00 0. 9d3 0.60

C • 9

5

0. 553 0. 3 0.60

C, 93 0.55 4 0.3 J . 60

C. = 7 0. 9 51 0. 5 0.60

G. c c . 9 k 7 U • V 3. 50

0,93 0.942 0. 3 J ,^J

C. 94 0.9 39 0.3 0. :J

u. 9 3 J. 323 0. 3 0.60

J. 52 0. 5? I 0.3 0.60

C . 91 0,923 0.3 0.50

J. ? 3

C. 33

0.924

. ° I J

0.3

0.3

0.60

0. tO

0.3 7 J . 515 0. 3 O.oJ

3.3^ 0.512 C. 3

0.3

W » u J

0.3 5 0.9 09 0.60

C . 3 4 . 9 o C. 3 0.50

0.8 3 0.901 0.3 C . 50

C. 3 2

0.31

0. 357

0.393

0.3

0.3

J . 60

o • 5

C • 8 0.3 90 G.3 0.5
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COMPUTER PROGRAM
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