

ON THE

FRONTISPIECE and BOOK.

A
LL Recreations do delight the Mind; But thefe are beft, being of a learned kind: Here Art and Nature ftrive togive costent, In Jhewing many a rare Experiment Whick you may read, and on their Scpemes bere look, Botb in the Frontifpiece, and in the 3ook. Upon wobofe Table new Conceits are Cet, Like dainty Difhes, thereby for to wolet And woin your Fudgment woith your Appetite To tafte them, and therein to take delighto The Senfes Objects are but dull at beft, But Art doth give the Intellect a Feaft. Come bitber then, and bere I will deforibe What this fame Table doth for you provide. Here Queftions of Arithmetick are proughto And bidden Secrets unto light are broughto. The like it in Geometry doth unfold, And fome too in Cofmography are told: It divers pretty Dyals dotb defcry, With ftrange Experiments in Aftronomy, And Navigation, with each feveral Picture; In Mufick, Opticks, and in Architecture : In Statick, Machanicks, and Chymiftry; In Water-Works; and, to afcend more bigh, In Fire-Worts, like to Jove's Artillery. All this I knowo thou in this Book Jaalt find, And bere's enough for to content thy Mind. For from good Aubbors, this our AUTHOR drees Thefe Recreations, which are Strange and True: So that this BOOK's a Centre, and 'is fit That in this Centre, Lines of Praife תhould meet. W.S.

 (c)

- mathematicall Recreations Or a Collection of sundrie exceltent Problemes. out of ancient er madente Quyzoforuis. Both vefull and Recreatiue Printed for William Leake and are to be folde at the

Mathematical Recreations : OR,

A Collection of many

PR OBLEMS

 Extracted out of the Ancient and Modern Philofophers: A S,SECRETS and EXPERIMENTS I N
Arithmetick ${ }_{2}$ Geometry, Cofmography, Horologiography, Aftronomy, Navigation, Mufick, Opticks, Architecture, Statick, Mechanicks, Chymiftry, Water-Works, Fire-Works, öc.

Jot bulgatlg manifff till nom.

Written firlt in Greek and Latin, lately compil'd in French by HENRYVANETTE N, and now in Englifh, with the Examinatious and Augmentations of divers Modern MATHEMATICIANS.

Wheretinto is added,

The Description and Use

 OFThe Double HORIZ ONTAL DYAL, AND
The General HOROLOGICALRING: Invented and Written by William Oughtred.

LONDON:
Printed for William Leake, and fohn Leake, at the Crown in Fleetffrect, between the Two Temple-Gates. 1674.

8888888388888888888.8888888

To the Thrice Noble,

 and moft Generous Lord,The Lord Lambert Verrevken: Lord of Hinden, Wolverthem, \&cc.

My Honourable Lord,
PABM Mongtt the Rare and Curious Propofitions which I have learned out of the Studies of the Matbematicks in the famous Univerfity of Pont a Mouffon, I have taken fingular pleafure in certain Problems, no lefs Ingenious than Recreative, which drew me unto the fearch of Demonftrations more difficult and ferious, fome of which I have amaffed, and caufed to pafs the Prefs, and here dedi-

The Epiftle Dedicatory.

dedicate them now unto Your Ho^{-} nour : Not that I account them worthy of Your View, but in part to teftifie my aftectionate defires ${ }^{0}$ ferve You, and to fatisfie the $\mathrm{Cu}-$ rious, who delight themfelves in thefe Pleafant Studies ; knowing well that the Nobility and Gentry rather ftudy the Matbernatical Arts to content and fatisfie their Affections in the fpeculation of fuch admirable experiments as are extracted from them, than in hope of gain to fill theirPurfes. All which Studie, and others, with my whole Endeavours, I fhall always dedicate unto Your Honour, with an ardent defire to be accounted ever,

Your moft thumble and obedient Nephem and Servant,
H. V-An ETten.

6885888888585888555:8885898

To the READER.

T batb been obferved by many, that Jundry fine Wits, as well among f the Ancient as Modern, bave sported and deliphted themplelves upon feveral things of finall confequence, as upon the $F_{\text {oot }}$ of a Fly, upon a Straw, upon a Point; nay upon nothing: Striving as it were to hew the Greatne/s of their Glory, in the Smallnefs of the Subject: And bave amonglt moft folid and artificial Conclufions, compofed and produced fundry Inventions botb Philofophical and Mathematical, to folace the Mind, and recreate the Spi-

The Epiftle to the Reader.

rits, whicb.the fucceeding Ages bave imbraced, and from them gleaned and extracted many admirable and rare Conclufions; judging that borrowed matter often-times yields praife to the induftry of its Autbor.

Hence for thy ufe (Courteous Reader) I baze with great fearch and labour collected aljo and beaped up together in a body, of the fe pleafant and fine Experiments to fiir up and delight the Affectionate, (out of the Writings of Socrates, Plato, Ariftotle, Demofthenes, Pythagoras, Democrates, Pliny, Hyparchus, Euclides, Vitruvius, Diaphantus, Pergxus, Archimedes, Papus Alexandrinus, Vitellius, Ptolomæus, Copernicus, Proclus, Mauralicus, Cardanus, Valalpandus,Kepleirus, Gilbertus, Tychonius, Dureirus, Jofephas, Clavius, Gallileus Mağinus, Euphanus Ty-

The Epifte to the Reader.

Tyberil, andothers) knowing Art imitates Nature, that glories always in the variety of things which Jhe produceth to a atisfie the Minds of Curious Inquifitors. And thougb perbaps theje Labours to fome bumerous Perfons may feen vain and ridiculous; for, fuch it was not undertaken: But for thole which intentively bave defred and fought after the knowledjse of thofe things, it being an Invitation and Motive to the fearch of greater matters, and to imploy the Mind in Ufeful Finowledge, rather than to be bufled in zain Pamphlets, Play-books, fruitlefs Legends, and prodigious $\mathrm{Hi}_{\text {, }}$ ftories, that are invented out of F ancie, which abufe many Noble Spirits, dull their Wits, and alienate their thoughts from laudable and bonourable Studies. Inthis Tractate thou maift therefore make choice of fuch a. 2 Ma-

The Epiftle to the Reader:

Mathematical Problems and Conclufons as may delight thee, which kind of Learning dotb excellently adorn a man; feeing the Veffulnefs thereof, and the Manly Accomplifhments it doth produce, is profitable and delightful for all forts of People, who may furnijh and adorn themfelves with abundance of matter in that kind, to belp them by may of ufe and difcourfe. And to this me have alfo added our Pyrotechny, knowing that Beafts bave for their Object onely the furface of the Earth, but boping that thy Spirit, which followeth the motion of Fire, will abandon the lower Elements, and cause thee to lift up tbine Eyes to foar in an bigher Contemplation, baving fo glittering a Canopy to bebold, and the efepleafant and recreative Fires afcending may caufe thy affections alfo to afcend. The Whole whereof

The Epiftle to the Reader.

whereof we fend forth to thee, that defireft the Scrutability of things; Na ture baving furni/hed us with matter, thy Spirit may eafily digeft them, and put them finely in order, though now in diforder.
\qquad

1 AD AUTHOREM

D. D. Henricum Van Etenium?

Alumnum Academix

PONTAMOUSSON.

A Rdua walkeri fileant fecreta profundi, Definat occultam carpere Porta Viam. Itala Cardani mirata eft Lampada dooti Terra, Syracufum Grecia tota fenem: Orbi terraram, Ptolonia: clepfydra toti, Rara dioptra Procli, mira fuêre duo. Ang:iate forveat doct us Pont Mou \int Jon alumnum, Bi Ouidquid satur, qui leg is, hortus habet. Sheta, coronset opus docturn, te fit tue docto Digha, Syracufii, arca, corona, viri. Arcs acujis utimam fot plumbea fervis, simea jed Domenes, awrea tota fuis.

80pnonopopn ne

By way of
ADVERTISEMENT.

Five or fix things I bave thought worthy to declare, before I pafs further.
mornt, That I place not the fpeculative Demonftrations with all thefe Problems, but content my fe!f to fhew them as at the Fingers end : Which was my Plot and Intention, becaufe thofe which underfand the Mathematicks can conceive them eafily; others for the moft part will content thema 4 felves

By way of Advertifement.

felves onely with the Knowledge of them, without feeking the Reafon.

Secondly, To give a greater grace to the practice of thefe Things, they ought to be concealed as much as they may, in the fubtilty of the way; for that which doth ravifh the Spirits is, An Admirable Effect, whofe Caufe is Vnknown; which if it were difcovered, half the pleafure is loft : therefore all the finenefs confifts in the dexterity of the AA, concealing the means, and changing often the Stream.

Thirdly, Great care ought to be had that one deceive not himfelf, that would declare by way of Art to deceive another : This will make

By way of Advertifement.

make the matter contemptible to ignorant Perfons, which will rather caft the Fault upon the Science, than upon him that dhews it : When the Caufe is not in the Mathematical Principles, but in him that fails in the acting of it.

Fourthly, In certain Arithmetical Propofitions they have onely their Anfwers, as I found them in fundry Authors, which any one, being ftudious of Mathematical Learning, may find their Original, and alfo the way of their Operation.

Fifthly, Becaufe the Number of there PROBLEMS, and their Dependances, are many and intermixed, I thought it convenient to gather them into a Table :
that

By way of Advertiferment.

 that fo each one according to his Fancy might make beft choice of that which might beft pleafe his Palate, the matter being not of one Nature, nor of like Subtilty : But whofoever will have patience to read on, fhall find the End better than the Beginning.
A TABLE
 OF THE

Particular Heads of this Book,
Contracted according to the SEVERAL ARTS Specified in the Title-Page.

Experiments in Anithmoticke

PAge $1,2,3,16,19,22,28,33,39,40,44,45$, $51,52,53,59,60,69,71,78,83,85,86,89$, $90,91,124,134,135,136,137,13^{8}, 139,140$, $177,178,179,181,182,183,184,185,188,208$, $210,213$.

Experiments in Geometry.
Pag.12,1 $5,24,26,27,30,35,37,41,42,4748$, $49,62,65,72,79,82,113,117,+18,119,214,215$, $217,218,234,2335,238,239,240$

Experiments in Cofmography.
Pag. 14, 43, 75, 106,107,219,220,225,227, $228,229,230,232$.

Experiments in Horologiography.
Pag. $136,166,167,168,169,171,245$.

A TABLE of the SEVERAL ARTS, drc.
Experiments in Aftronomy.

$$
\text { Pag. 220. to } 224^{\circ}
$$

Experiments in Navigation.
Pag. 105, 232, 233, 236, 237
Experiments in Mufick. Pag. 78, 87, 126.

Experiments in Optioks.
Pag. $6,66,98,99,100,102,129,131,141,142$, $143,144,146,149,151,152,153,155$, to 165 .

Experiments in Architecture.
Pag. 16, 242, 243.
Experiments in Statick.
Pag.27,30,32,71,199,200,201,203,204,205, 207.

Experiments in Mesbanicks.
Pag. 56,58,68,88,95,108,110,128, $\mathbf{1 7 2 , 1 7 3 ,}$ $174,176,246,248,255,256$.

Experiments in Cbymiftry. Pag. 198,253,254,255,259,260.

Experiments in Water-works.
Pag.189to 196. 245, to 252.
Experiments in Fire-works. From page 261 , to the end.

A T A BLE

 OF THE CONTENTS And Chief PointsContained in this BOOK.

PROBLEM I.

F finding of Numbers conceived in the Mind,$$
\mathbf{1}, 2,3^{\prime}
$$

PROB. II.
How wifible Objects that are without, asd tbings that pafs by, are moft lively reprefented to thofe that are witbin.

PROB. III.
How to weigh the blow of ones Fitt, of a Mallet, a Hatchet, or fuch-like,

> PROB. IV.

That a Staff may be broken, placed upon two Glafes, without burting of the Glafles. 12
PROB. V.
Of a Geographical Garden-plot fit for a Prince, or fome great Perfonage.

The CONTENTS.

 PROB. VI.How to dijpofe three Staves, whichmay fupport eacb otber in tbe Air.

PROB. VII.

Howo to dijpose Lots, So that the fifth, fixth, ninuth, \&c. of any number of Perfons may efcape.

PROB. VIII.

Three perfons baving taken each of them feveral things, to find wobich eacb of them bath taken. 19 PROB. IX.
How tbe balf of a Veffel pobich contains 8 meafures may be taken, tbere being but onely two other meafures, the one being 3, and the otber 8 meafures. 22

PROB. x .
How a Stick may fand upon ones finger, or a Pike in the middle of a Court, nitbout falling. $\& 4$ PROB, XI.
How a Millfone or other Ponderofity may bang upon the point of a Needle without bowing, or any wife breaking of it.

PROB. XI.
Of tbree Knives, which may be fo difpofed as to bang in the air, and move upon the point of a Needle. 2% PROB. XIII.
How the weight of Smoak, of any combuftible body, wobich is exbaled, may be found.

Many tbings being difpofed circular, or otber-mije, to find wobich of tbem any one tbinks upor. 28 PROB. XV.
How to make a Door wobich opens and Shuts on both fides.

The CONTENTS.

PROB. XVI.

How a ponderous or heavy body may be fupported in the air, without any one towching it. PROB. XVII.
Of a deceitful Bowl to play withal.
PROB. XVIII.
How a Pear or Apple may be parted into any parts, without breaking the Rind tbereof.

PROB. XIX.
To find a number thought upon, without asking of any queftions.

PROB. XX, XXI.

How a body that is uniform and inflexible may pap tbrough a bole which is round, Square, and triangular; or round, Square, and oval-wife, and exactly fill thofe feveral boles. PROB. XXII.
Io find a number thought wpon, after another manner than thofe which are formerly delivered.

To find out many numbers that fundry perfons or any one bath thought upon.

PROB. XXIV.

How is it that a man in one and the fame time may bave bis head upward, and bis feet upward, being in one and the fame place?

PROB. XXV.

Of a Ladder by which two men afcending at one time, the more they afcend, the more they fball be afunder, notwitbjtanding the one be as bigb as the other.

How is it that a manhiving but a Rod or Pole of Land,

The CONTENTS.

Land, doth bragthat be may in a right Line pals from place to place 3000 miles.

How is it that a man ftanding upright, and looking which way be will, be looketh true north or fouth. 43 PROB. XXVIII.
To tell any one what number remains, after certain operations being ended, wisbout asking any queftios.

PROB. XXIX.
Of the play with twoo feveral things. PROB. XXX.
Ino several numbers being taken by two fundry perfons, bowo fubtilly to dijcover which of thofe numbers each of tbem took. PROB. XXXI.
How to defcribe Circle that Jhall touch tbree points placed bowfoever spon a plain, if they be not in a right Line.

PROB. XXXII.

How to change Circle into a Square form.
With one and the fame Compafes, and at one and the Same extent or opening, bow to defcribe many Circles concentrical, that is, greater or leffer one than : another.

PROB. XXXIV.
Any numbers under 10 being thought upon, to find what numbers they were.

PROB. XXXVI.
The play of three, four, or more Dice.

The CONTENTS.

 PROB. XXXVII.Horo to make Water in a Glafs feem to boyl and 乃parkle.

PROB. XXXVIII.
Of a fine Veffel whicb bolds Wine or Water, being caft into it at a certain beight, but being filled higher, it will run all out of its opon accord. 56

PROB. XXXIX.
Of a Glafs very pleafant.

PROB. XL.

If any one fhould bold in each band as many pieces of money as in the otber, bono to find bow much tbere is.

PROB. xLI.

Many Dice being caft, bore artificially to difcover the number of the points that may arife.

Troo Metals, as Goldand Silver, or of otber kind, weighing alike, being privately placed in two like Boxes, to find in wobich of them the Gold or Silver is.

PROB, XLIII.

Two Globes of divers Metals (as one Gold, the other Copper) yet of equal woeigbt, being put in a Box, as BG, to find in wobichend the Gold or Copperis. 65 PROB. XLIV.
To reprefent divers Sorts of Rainbows bere belomo. 66 PROB. XLV.
Hows tbat if all the Poroder in the World were incloSed in a Boovl of Paper or Glafs, and being fired on all parts, it could not break tbat Bowt.

PROB. XLVI.

To find a namber which being divided by $2,3,4,5$,

The CONTENTS.

or 6, there will fitiu remain I; but being divided by 7 , there will remain notbing.

69 PROB. XLVII.
One bad a certain number of Crowins, and counting them by 2 axd 2 , there refted I; counting them by 3 and 3 , there nefted 2 ; counting them by 4 and 4 , there reffed 3 ; counting them by 5 and 5 , there refted 4 ; counting them by 6 and 6 , there refted 5 ; but counting them by 7 and 7 , there refted nothing: How many Grous might be bave?

PROB XLVIII.
How many forts of socigbts in the leaft manner muft there be, to weigh all forts of things betwoeen I pousnd and 121 pound, and fo whto 364 pound ? 72

> PROB. XLIX.

Of a deceitful Ballance, which being empty feems to be jult, becaufe it bangs in IEquilibrio, notrithftanding putting 12 pound in one Ballance, and I I in the otber, it will remain in Fquilibrio. 73 PROB. L.
Tobeave or lift up a Bottle woith a Straw. PROB LI
How in the middle of a Wood or Defart, without the fight of the Sun,Stars, Shadow, or Compa Ω, to find -out the North or South, or the four Cardinal Points of the Woold, Edft, Weft, $8^{\circ} \mathrm{c}$.

T'bree perfons baving taken Counters, Cards, or other things, to find how much each one bath taken. 78 PROB, LIII.
How to make a confort of Mufick of many parts mith one Woice, or one inftrument onely.

The CONTENTS.

PROB. LIV.
To make or defcribe an Oval form, or that which is
\& near refembled unto it, at one turning, with a pair of common Compaffes.

PROB. LV.
Of a Purfe difficult to be oppened. 81 PROB. LVI.
Whetber is it more bard ass admirable mitbout Com \rightarrow pafes to make a perfecit circle, or boing made to find out the Centre of it?

PROB. LVII.
Any one baving taken three Cards, to find bows many) points they contain.

PROB. LVII.

Many Cards placed in divers ranks, to find which of thofe Cards any one bath thouglot. 85

PROB. LVIII.

Many Cards being offerce to fundry perfons, to find whajch of the Je Cards any one tbinketh upow. . 86 PROB. LIX.
How to make an Inftrument that belps to bear, as Gallileus made to belp to fee. 87 PROB. LX.
Of a fine Lamp which gaeth not out, though one carry it in ones pocket, or being rollicd on the ground will fitll borv.

PROB. LXI.

Any ome baving tho ught a Card amongf many Cards, bow artificially to difeorer it out.

89
PROB. LXII.
Three Women, $A, B ; C$, carricd Apples to a Market to Sell: A bad 20, B 30, C 40; they fold us many for a penny one the atber, and brought home one

$$
\$ 2 \text { as }
$$

The CONTENTS.

as much money as another: bowo could this be? 90 PROB. LXIH.
Of the properties of fome Number s. PROB. LXIV.
Of an excellent Larnp, which Serves or furnifheth it Self with ©il, and burns a long time. PROB. LXV.
Of the Play at Keyls or Nine-pins.
PROB. LXVI.
Of Spectacles of Pleafure.
Of Spectacles giving feveral colours to the vifage. 98 Of Spectacles which make a Town Seem to be a City, one armed man as a Company, and apiece of Gold as nany pieces.
How out of a Chamber to See the objects mbich pafs by, according to the lively Perpective.

IOO Of Gallileus bis admirable Optick Glafs, wobich belps one to fee the beginning and ending of Eclipfes, the Bats in the Sun, the Stars which move about the r. Planets, and perpicuoufly things far remote. IOI Of the parts of Gallileus his Glafs.

PROB LXVII.

Of the Magnes, and Needles touched tberewith. How Rings of Iron may bang oxe by anotber in the air.

103 Of Mahomets Tomb, which bangs in the air by the tonch of the Magnes. Hom by the Magnes only to find out north of foutb. 105 Of a fecrecy in the Magnes for difcovering things far remote。

Of the properties of Eolipiles, or Bowles to blow the

The CONTENTS.

fire.

PROB. LXIX.

Of the Thermometer, or that which meadures the degrees of beat and cold by the air.

110 PROB. LXX.
Of the proportion of humane Bodies, of Statues, of Coloflus or buge Images, and monftrous Giants. I 13 Of the commenfuration of the parts of the Body the one to the other in particular, by wobich the Lion zoas meafured by bis Claw, the Giant by bis Thumb, and Hercules by bis Foot.

115,116
Of Statues, of Coloffus, or buge Images.
117
Of Mount Athos metamorphofed by Dynocrates into a Statue in whofe hand was a Tomn able to receive 10000 men. ibid
Of the famous Coloffus at Rhodes, mobich bad 70 cu bits in beight, and loaded guo Camels, whicb weighed 1080000 poand. 118 Of Nero bis great Coloffus which had a large face of 12 foot.49 foot, and of that monfter found in Creet, whichbad 46 cubits of beigbt. found in Sicily, wobofe face, according to the former proportion Should be 30 foot in length. I2I PROB. LXXI.
Of the Game at the Palm, at Irap, at Bowles, Pailmail, and others.

PROB. LXXII.
Of the Game of Square Forms.
124
PROB.

The CONTENTS.

PROB. LXXIII.

How to make the String of Viol fenfibly to fhake, without any one touching is

PROB. LXXIV.
Df a Veffel pobich contains three feveral kinds of $L i$ quor, all put in at one Bung-bole, and diawn ont at one Tap, Severally without mixture

PROB. LXXV.
Of Eurning-Glaffes.
Archimedes bis poay of burning the Ships of Syracufe: :
Of Proclus bis way, and of concave and 乃perical
Glajfes which burn, the caufe and demonftration of burning with Olaffes
Of Maginus bis way of Setting fire to Powoder in a Mine by Glaffes
Of the Examination of burning by Glaffes 133 PROB. LXXVI.
Of pleafant Queftions by way of Aritbmetick. Of the AJs and Mule
Of the number of Souldiers that fougbt before old Troy.
Of the number of Crowns that two men bad 135

About the bour of the day 136
Of Pythagoras Schollars 137
Of the number of Apples given amongt the Graces
and the Mufes Of the Teftament or laft Will of a dying. Father 138 Of the Cups of Creefus

Of the Lion of Bxonz, placed upon a Fountain with bis Epigram.

The CONTENTS.

PROB. LXXWII.

Excellent Experiments in Opticks.

Principles toucbing Reflections

$$
141
$$

Experiments upon flat and plain Glages 142
How the Images feem to fink into a pluin Glafs, and alwoys are feen perpendicular to the Glafs, and aljo inverfed. 143
The things wopichpafs by in a freet may by belp of a plain Glafs be feen in a Chamber, and the height of a Tower or Tree obferved. 143
How Several Candles from ane Candle are reprefented in a plain Glafs, and Glaffes alternately may be Seen one within another, as alfo the back, parts of the body as well as the fore parts, aue evidently reprefented 144 How an Image may be feen to buing in the air by belp of a Glajsi and Writing reedor underfood. 146 Experiments upon gibbous or convex (pherical Claffes. How lively to reprefent a whole City, Fortification, or Army by a Gibbous Glafs. 147 How the Images are feen in Concave Glafles, 49 How the Images are transformied by approaching to the centre of the Gla s, an paint of concourres and of an exceeding light that a cancave Glafs gives by belp of a Candle. How the Insuges, as a Mans, a Smord or Hitde doth come forth out of the Glass. Of ftrange Apparitions of Images in the Air, by belp of fiundry Glaffes: Of the moonderful augmentation of the parts of mans body, coming near the point of Inflummation, or centre of the Glafs. 154 How Witing may be reverberated from olds uptons

The CONTENTS.

 a Wall, and read. How by belp of a Concave Glaß to caft light into a Camp, or to give a per fpective light to Pyonners in a Mine by one Gandle onely.How by belp of a Concave Glafs and a Candle placed in the Centre to give light to read by. 156 Of other Glaffes of Pleafure. ${ }^{1} 57$ Offtrange deformed Reprefentations by Glaffes; caufing a man to bave four Eyes, two Mouths, two Nofes, two Heads.
Of Glaffes which give a colour to the Vifage, 159 make the Face Jeem fair and foul. PROB. LXXVIII.
How to Shew one that is fufpicious what is in anotber Cbamber or Room, notwitbftanding the interpo $\sqrt{2}^{2}$ tion of that Wall. ibid.
Corol. 1. To fee the Befiegers of a place upon tbe Rampart of a Fortification.
Corol.2 and 3. Notwoithftanding the interpofition of Walls and Chambers, by belp of a Glafs things may be feen mbich pafs by.

How with a Musket to frike a mark not looking tovoards it, as exactly as one aimed at it. 162 How exactly to fhoot out of a Musket to a place which is not Jeen, being bindered by fome obftacle, or other interpofition.

PROB. LXXX.

How to make an Image to be feen banging in tbe air, baving bis head dowonward. ibid. PROB. LXXXI.
How to make a company of reprefentative Souldiers 4. Seem to be as a Regiment, or bow few in number

The CONTENTS.

maybe multiplied to Seem many in number. 164 Corol. Of a curious Cabinet made of plain Glaffes 165 PROB. LXXXII.
Of fine and pleafant Dyals in Horologiography. Of a Dyal of Herbs for a Garden. 166 Of the Dyal upon the finger and the band. ibid. Of a Dyal which was about an Obelisk, at Rome 167 Of Dyals with Glaffes. 168 Of a Dyal wobich bath a Glafs in toe place of the Style. ibid. Of Dyals with Water, whbich the Ancients ufed 170
PROB. LXXXIII.

Of Sooting out of Cannons or great Artillery.
How to charge a Cannon without Powder 172 To find bow mucb time the Bullet of a Cannon fpends in the Air, before it falls to the ground. 173 How it is that a Cannon frooting upward, the Bullet flies with more violence, than being Sot point blank or fhooting dononward.
ibid.
Whetloer is tbe difcloarge of a Cannon fo much the more violent, by how much it batb the more length? 175 PROB. LXXXIV.
Of prodigious Progreffions © Mulitiplications of Creatures, Plants, Fruits, Numbers, Gold, Silver, ©xc.
Of grains of Muftard-Seed, and their increafc. 177
Of Pigs, and their increafe.
178
Of the mighty increafe of grains of Corn. 179
Of the roonderful increafe of Sheep. 180
Of the increafe of Codfifh, Carps, \&cc. $18 \mathbf{1}$
Of the increafe and multiplication of Men. ibid.
Of the increafe of Numbers. 183
Of a man that gathered Apples, Stones, or fuch-like
upon a Condition.

The CONTENTS.

Of the Cbanges in Bells, ins Mufical Inftruments) Tranfmutation of places, in Numbers, Letters, Men, and jucb-like.
Of the woonderful interchange of the Letters in the Alphabet.
Of a Servant bired upon certain Conditions. 188 PROB. LXXXV.
Of Fountains, Hydriatiques, Stepticks, Macbinecks, and otber Experiments upon water, or other liquan.

1. How Water at the foot of a Mountain may be made to af cend to the top of it, and fo to defcend on tbe other fide of it.
2. To find bow much Liquor is in a Veffel, onely by ufing the Tap-hole.
3. How it is that a Veffel is faid to bold more Water at the foot of a Mountain, than at the top fit. ib.
4. How to conduct Water from the top of one Mountain to the top of anotber.

192
5. Of a fine Fountain wobich \int pouts Water very bigh, and with great violence, by turning of a Cock. ib .
6. Of Archimedes's Screw, which makes Water afcend by defcending. 193
7 Of a fine Fountain of Pleafure. 195
8 Of a fine Watering-pot for Gardens. 196
9 Howe eafily to take Wine out of a Veffel at the Bungbole, woithout piercing of a bole in the Veffel. 197
10 How to meafure irregular Bodies by belp of Water.

198
It To find the speight of Water. ibid.
12 To find tbe Charge that a Veffel may carry; as Ships, Boats, or Juch-likew

199
13 How comes it that a Ship baving fafely failed in the vaft Ocean, and being come into the Port or Harbour

The CONTENTS.

Harbour, will fink down right? 200 14 How a groß Body of Metal may froim upox the Water.
15 How to weigh tbe lightnefs of the Air. 202
16 A Body being given, to mark it about, and ffere bow much of it will fink in the Water, or 5 mim above the Water.

203
17 To find bow much Several Metals or otber Bodies do weigh lefs in the Water than in the Air. 204
18 How it is that a Ballance baving like weight in each Scale, and banging in æquilibrio in the Air, being placed in another place, (without remozing any weight) it Ball cealetolong in xquilibrio fenfibly yea by a great difference of weight. 205
19 To Jeen mhat Waters are beavier one than anotber, and bow much.

206
20 Huno to make \mathbf{I} pound of Water weigh as much as $10,20,30$, or 100 pound of Lead, n.2y as much as 1000 or 10000 pound weizht PROB. EXXXVf. number of Sands calculated by Archimedes and Clavius.

208
2 Divers Mctals being melted tugether in one body, to find the mixture of them.
3 A Subtile Queftion of three Partners about equality of Wine and Veffels.
'213
4 Of a Ladder which Jtanding upright againjt a Wall nf 10 foot bish, the foot of it is prulled out 6 foot from the W all upon the Pavement, hoo much buth the top of the Ladder defiended?

Witty Suits or Debates between Caius of Sempro-

The CONTENTS.

nius, upon the form of figures which Geometricians call Ifoperimeter, or equal in circuit or compaß. ib.
I Incident: Of changing a field of 6 meafures fquare for a loug rectangled field of 9 meafures in length, and 3 in breadib, both equal in circuit, but not in quantity.
2 Incident: About two Sacks, each of them bolding but a bufhel, and yet were to bold 4 bufbels. 217 3 Incident: Of the deceit of Pipes which convey Wa ter, that a Pipe of two inches diameter doth caft out 4 times as much Water as a Pipe of one inch diameter.

217
Sevon beaps of Corn of 10 foot every way, is not as much as one beap of Corn of $2 \circ$ foot every way. 218 PROB. LXXXVIII.
Of fundry Quctions in matter of Cofmography and Aftronomy; and firft, In what place the middle of the Eartb is fuppofed to be.
Of the depth of the Eartb, and beight of the Heavens, and the compafs of the World, bowo much. ibid. How much the Starry Firmameent, the Sun and the Moon, are diftant from the centre of the Earth. 220 How long a Mill-ftone would be in falling to the centre of the Earth from the Juperficies, if it might bave pafage thither.
How long time a Man or a Bird may be in compafing the whole Earth. ibid.
Suppofing a man hould afcend 20 miles every day, bow long it would be before be could reach to the Moon.
$22 I$
The Suns motion 20 times swifter than the Moons. ib. If a Millione from the Orb of the Sun ghould defcend 1000 miles in an bour, bow long it would be be-

The CONTENTS.

fore it would come to the Eartb. 22 I
Of the Suns quick motion. ibid.
Of the rapt and viglent motion of the Starry Firmament.
ibid. PROB. XCII.
To find the Bifextile Year, the Dominical Letter, and the Letters of the month. 222
T find the Circle of the Sun by the fingers. 223 PROB. XCIII.
To find the Nerb and Full Moon in each month. 224 PROB. xCIV.
To find tbe Latitude of Countreys. 225 PROB. XCV.
Of the Climates of Corntreys, and how to find tbem.ib. PROB. XCVI.
Of Longitude and Latitude of the places of the Earth and of the Stars of the Heavens. 227
To find the Longitude of a Countrey. 228
Of the Latitude of a Countrey. . ibid.
To find the Latitude of a Conntrey. 229
To fird the diltance of places. 230
Of the Longitude, Latitude, Declination, and Diftance of the Stars. 231
How is it that twoo Hor Ses or other Creatures coming into tbe World at one time, and dying at one and tbe Same inftant, yet the one of them to be a day older than the otber? ibid
Certain fine Ubfervationso $\quad 232$ PROB. XCVII.
To make a Triangle that Jhall bave 3 right angles. 234 PROB. XCVIII.
To divide a Line in as many parts as one will, without compaffes, or witbout feeing of it. ibid. PROB.

The CONTENTS.

PROB. XCIX.
To draw a Line which Jball incline to anotber Line; yet never meet, ag ain!t the Axiom of Parallels. 235 PROB. C.
To fiud the variation of the Compaß by the Sun Bining. $\quad 236$ PROB. CI.
To know which wasy the Wind is in ones Chamber, zritbout going abroad.

PROB. CII.

Hon to drano a Parallel Spherical Line with great cafe.

> PROB. CIII.

To meafure an beight onely by belp of ones Hat , ib . PROB. CIV.
To take an brizbt with tro Straws.
In Architeciure bow Statwes or other things in high Buildings, fhall bear a proportion to the Eye below,
eitber equal, dooxble, \&cc.

PROB. CVI.

Of deformed Figures which bave no exalt proportion where to place the Eye to fee them direct. 242 PROB. CVII.
How a Carnon that bath fhot may be covered from the battery of the Enemy. PROB. CVIII.
How to make a Lever, by which one man may alone place a Cannon upon bis Carrisge,

244
PROB. CIX.
How to make a Clock with one Wheel: 245 PROB. CX.
How by belp of two Whecls to make a Cbild to draw

The CONTENTS.

up alone a Hogheadof Water at atime; and ben ing drann up, , ball caft out it Self into another Veffel, as one would bave it.

> PROB. CXI.

245
Of a Ladder of Cords to carry in ones pooket, by whicis one may mount a W'all or Tomer alone.

PROB. CXII.
How to make a Pump whofe ftrength is marvellous by reafon of the great weight of Water that it is able to bring up at once, and So by continuanoe. 248 PROB. CXIII.
How by means of a Cilfern to make Water of a Pic continually to afcend mithout ftrength, or the aflefrance of anyother Pump.
PROB. CXIV.

249
How to caft Water out of a Fowntain very light. 250 PROB. CXV.
How to empty the.Water of a Pit by the belp of a Ciflem.

PROB. CXVI.

How to spout Water very bigh.
How to practife excellently the re-animation of Simples, in cafe the Plants may not be tranjported to be re-planted by reafon of difance of places. 253 PROB. CXVIII.
Howo to make an inf allible perpetual-motion. ibid PROB. CXIX.
Of the admirable Invention of making the Pbilnfophers Iree, which one may See with bis Eye to growo by little and little.

PROB. CXX.
254
Hon to make the reprefentation of the great world. ib.

The CONTENTS.

 PROB. CXXI.Of a Cone or Pyramidal Figure that moves uton a Table.

PROB. CXXII.
To cleave an Anvil woitb the blows of a Pijtel. 25^{6} PROB. CXXIII.
How to rof a Capon carried in a Budget at a SaddleBow, in the face of riding 5 or 6 miles. ibid. PROB. CXXIV.
How to make a Candle burn and continue tbree times as loxg as otbervife it woould. PROB. CXXV.
How out of a quantity of Wine to extraç that whicb is moft windy and evil. ibid.

> PROB. CxxvI.

How to make troo Marmouzets, one of whbich frall light a Candle, and the otber put it out. PROB. CXXVII.
How to keep Wine frefh as if it woere in a Cellar, in the beat of Summer, and woitbout Ice or Snow. 259 PROB. CXXVIII.
Io make a Cement wobich lafteth as Marble, ov refifteth air ©̛ water, without dif-joyning. ibid

PROB. CXXIX.

Howo to melt Metal very quickly, yea in a Shell wpon a little Fire.

PROB. CXXX.

How to make Iron or Steel exceeding bard. 260 PROB, CXXXI-
To preferve Fire as long as you will, imitating the inextinguibcable Fire of Veftals. ibid.

58558585888888:181858188388

Mathematical

RECREATION

PROBLEM.I.

To find a Number thougbt uporio

Id him that he Quadruple the Number thought upon, that is, multiply it by 4 , and unto it bid him to add $6,8,10$, or any Number at pleafure : and let him take the half of the fum, then ask how much it comes to? for then if you take away half the number frotn it which you willed him at firf to add to it, there fhall remain the double of the number thought upon.

2 Mathematical Recreation.

Example.

The Number tbought upon -

The Quadruple of it
Pat 8 unto it, makes
The half of it is
Take away half the number addcd, from $\}$ Io it, viz. 4, the reft is
The double of the number thought upon, viz. 10
Anotber may to find what number mos thought upon.

BId him which thinketh double his Number, and unto that double add 4, and bid him multiply that fame product by 5, and unto that product bid him add 12 , and multiply that laft number by 10 (which is done eafily by fetting a Cypher at the end of the number) then ask him the laft number or product, and from it fecretly fubtract 320 ; the remainder in the hundreth place is the number thought upon.

Example.

The number thought upon Hisdouble

| To it add 4, makes | 14 |
| :--- | ---: | Which multiplied by 5 makes 90 To which add 12 , makes 102 This multiplied by 107 which is onely by ad- 1020 ding a Cypher to it, makes

From this fubtract 320
Reft 700 J

For which 700 account onely but the number of the hundreds,viz. 7. fo have you the Number thought upon

و@atbematical Rectration:

Io find Numbers conceived upon, otherwife than the former.

BId the party which thinks the number, that he tripple his thought, and caufe him to take the half of it : (if it be odd, take the leaft half, and put one unto it) then will him to tripple the half; and take half of it, as before: Laftly, ask him how many Nines there is in the laft half, and for every Nine, account four in your memory, for that thall thew the number thought upon, if both the tripples were even : but if it be odd at the firft tripple, and evenat the fecond, for the one added unto the leait balf keep one in memo$1 y$: if the firft tripple be even ${ }_{5}$ and the fecond odd, for the one added unto the leaft half keep two in memory: lafly, if at both times intripling, the numbers be odd, for the two added unto the leaft halfs, keep three in memory: Thefe cautions obferved, and added unto as many fours as the party fays there is Nines contained in the laft half, thall never fail you to declare or difcern truly what number was thought upon.

Exdmple.

The Number thought upon $\quad 4$ or 7
The tripple $12 \mathrm{or}_{2} \mathbf{1}$
The half thereof 6 or 10 , one put to it makes II
The tripple of the half
18 or 33
The half 9 or 16 , one put to it makes
The number of Nines in the laft half

4 2eatbematical Recteation.

Thi firlt i reprefenteth 4 , the number thought upon, and the laft I with the caution makes 7 , the other number thought upon.

Note.

Order your Method fo that you be not difcovered, which to help, you may with dexterity and induftry make Additions, Subftractions, Multiplications, Divifions, ovc. and infread of asking how many Nines there is, you may askhow many Eights, Tens, \&oc. there is, or fubtract Eight, Ten, or. $^{\circ}$ from the Number which remains, for to find out the Number thought upon.

Now touching the Demonfrations of the former Directions, and others which follow, they depend upon the $2,7,8$, and 9 Books of the Elements of Euclide: Upon which fecond Book and fourth Propofition, this may be extracted, for thofe which are more learned, for the finding of any Number that any one thinketh on.

Bid the party that thinks, that he break the Number thought upon into any two parts, and unto the Squares of the parts let him add the double Product of the parts; then ask what it amounteth unto? So the Root Quadrat thall be the Number thought upon.

matbrnatical Recreation.

Example.

The Number thought upon The parts fuppofe The Square of 3 makes 9.) The Square of 2 makes 4 the fum of there three The product of the numbers 25 , the fquare parts, viz. 3 by ${ }_{2} \int_{12}$ Root of which is 5, the makes 6 , which 6 doubled makes . J

Or more compendioufly it may be delivered thus:

Break the Number into two parts, and to the Product of the parts add the Square of half the difference of the parts, then the Root Quadrat of the Aggregate is half the Number conceived.

Examination.

THe Problems which concern Arithmetick, we examine not : for thefe are eafie to any one whicb bath read the Grounds and Prisciples of Arithmetick; but we efpecially touch upon that which tends to the Speculations of Phyfick, Geometry, and Opticks, and fuch otbers which are of more difficulty; and more principally to be examined and confidered.

6 פatbematical kecteation,

PROBLEM II.

How to reprefent to thofe which are in a Cbam. ber, that wobich is witbout, or all that which paßeth by.

THis is one of the fineft Experiments in the Optiques, and it is done thus: Chufe a Chamber or Place which is towards the Street, frequented with People, or which is againft fome fair flourifhing Object, that fo it may be more delightful and pleafant to the Beholders, then make the Room dark by fhutting out the light, except a fmall hole of fixpence broad ; this done, all the Images and Species of the Objects which are without, will be feen within, and you thall have pleafure to fee it, not only upon the Wall, but efpecially upon a theet of white Paper, or fome White Cloth
 hung near the hole: and if unto the hole you place a round Glass, that is, a Glafs which is thicker in the middle than at the edge : fuch as is the common Burning Glaffes, or fuch which old People μ fe: for then the Images which before did feem dead, and of a darkith colour, will appear and

gatbematical Rectration.

be feen upon the Paper, or white Cloth, according to their natnral colours, yea more lively than their natural, and the appearances will be fo much the more beautiful and perfect, by how much the hole is leffer, the day clear, and the Sun fhining.

It is pleafant to fee the beautiful and goodly Reprefentation of the Heavens, intermixed with Clouds in the Horizon, upon a Woody Situation, the motion of Birds in the Air, of Men and other Creatures upon the Ground, with the trembling of Plants, Tops of Trees, and fuch like: For every thing will be feen within, even to the life, but inverfed: Notwithfanding, this beautiful Paint will fo naturally reprefent it felf in fuch a lively Perfpective, that hardly the moft acurate Painter can reprefent the liké.

Now the reafon why the Images and Objects without are inverfed, is becaufe the Species do interfect one another in the hole, fo that the fpecies of the feet alcend, and thofe of the
 head defcend.

But here note, that they may be reprefented right two manner of ways: Firft, with a Concave Glafs: fecondly, by help of another Convex Glafs, difpofed or placed between the Paper and the other Glafs, as may be feen here by the Figure.

8 sathematical kerteation:

Now I will add here only by paffing by, for fuch which affect Painting and Portraiture, that this Experiment may excellently help them in the lively painting of things perfpective-wife, as $\boldsymbol{T}_{0}-$ pographical Cards, \&xc. and for Philofophers, it is a fine Secret to explain the Organ of the fight, for the hollow of the Eye is taken as the clofe Chamber, the Ball of the Apple of the Eye, for the hole of the Chamber, the Cryftaline humour at the fmall of the Glass, and the bottom of the Eye, for the Wall or Leaf of Paper.

©xamanation:

THe Species being preffed together, or contracied, doth not perform it upon a Wall, for the β pecies of any thing dotb reprefent it Self not onely in one bole of a Window, but in infinite boles, even unto the whole Sphere, or at leaft unto a Hemi(phere (intellectual in a freeMedium) if the Beams or Reflections be not interpofed, and by bow much t be hole is made le \int_{S}, to give paflage to tbe Species, by $\int 0$ much the more lively are the Images formed.

In Convex or Coneave Glaffes, the Images woill be difproportionable to the Eye, by how much they are more Concave, or Convex, and by bow much tbe parts of the Image comes near to the Axis, for thofe that are near, are better proportioned sban tbofe which are fartber off.

ppathematical Recteation.

But to bave them more lively and true, according 20 the Imaginary Conical Section, let the bole be no greater than a pins bead made upon a piece of thin Brafs, or fuch like, wobick bole. reprefents the top of the Cone, and the Bafe tbereof the Term of the Species: Ithis practice is beft when the Sun Jines upon the bole, for then the Objecis sobich are oppofite to that Plain will make two like Cones, and will lively reprefent the things without in a perfect inverfed PerBective, wobich drawn by the Pencil of Some Artificial Painter, turn the Paper upfide-down, and it woill be direct, and to the life.

But the apparances may be direct, if you place another hole oppofite unto the former, So that the Speciator be under it; or let the Species refleci upone a Concave Glafs, and let that Glafs reflect upon a Paper, or fome nebite thing.

PROBLEM III.

To tell bow much weighs the blow of ones fijt, of a Mallet, Hatchet, or fuch like, ar refting wirbout giving the blow.

SCaliger in his 331 excrcife againft Cardan, relates that the Matbematicians of Maximilians the Emperour, did propofe upon a day this $2 u e-$ ftion, and promifed to give the refolution; 110twithfanding Scaliger delivered it not, and conceive it to be thus: Take a Balance, and let the Eif,

so Matbematical \&reteation.

Fif, the Mallet, or Hatchet reft upon the Scale, or upon the Beam of the Ballance, and put into the other Scale as much weight as may counterpoife it, then charging or laying more weight into the Scale, and ftriking upon the other end, you may fee how much one blow is heavier than another, and fo confequently how much it may weigh: for as Ariftotle faith, The motion that is made in ftriking adds great weight unto it, and So misch the more, by bow much it is quicker: therefore in effect, if there
 were placed a thoufand Mallets, or a Thouland Pound weight upon a ftone, nay, though it were exceedingly preffed down by way of a Vice, by Levers, or other Mechanick Engine, it would be nothing to the rigor and violence of a blow.

Is it not evident that the edge of a Knife laid upon Butter, and a Hatchet upon a Leaf of Pa per, without ftriking makes no impreffion, or at leaft enters not? But friking upon the Wood a little, you may prefently fee what effect it hath; which is from the Quicknefs of the Motion, which breaks and enters without refiftance, if it be extream quick; as experience thews us in the blows of Arrows, of Cannons, Thunder-bolts, and fuch-like.

gatbematical Recteation.

Examination.

THis Problem war extracited from Scaliger, wohobad it from Ariftotle, but fomerobat refractory compiled, and the Jtrength of the Effect be fays depends onely in the violence of the Motion; then would it follow that a littice ligbt Hammer upon a piece of Wood being quickly caufed to Smite, would give a greater blow, and do more burt than a great Sledge ftriking Soft; this is abfurd, and contrary to Experience. Therefore it confijts not totally in the Motion : for if two Several Hanmers, the one being twenty times beavier than the otber, Jhould move nith like ©uicknefs, the Effect would be much different : there is then fometbing elfe to be considered befides the Motion, which Scaliger underftood not: for if one Should bave asked bime robat is the reafon that a Stone falling from a Window to a place near at band, is not So forceable as if it fill farther dowon; and woben a Bullet flying out of a Piece, and ftriking the Marknear at hand, will not make Juch an Effect as ftriking the Mark further off. But we fuppofe that Scaliger and Cardanus who bandles this fubject, mould not be lefs troubled' to refolve this, than they bave been in shat.

PRO-

12
 ஹatbentatical 2Recteation.

PROBLEMIV.

How to break a Staff which is laid upon two Glafes full of Water, without breaking the Glaffes, or乃illing the Water; or upon two Reeds or Straws, mithout breaking of tbem.

FIrft, place the Glaffes which are full of Water upon two Joynt Stools, or fuch like, the one as high as the other from the ground, and diftant one from another by two or three foot, then place the ends of the Staff upon the edges of the two Glaffes, fo that they be tharp : this done, with all the force you can, with another Staff ftrike the Staff which is upon the two Glaffes in the middle, and it
 will break without breaking the Glaffes, or fpilling the Water.
In like manner may you do upon two Reeds, held with your hands in the Air without breaking them: Thence KitchinBoys often break Bones of Mutton upon their hand, or with a Napkin, without any hurt, in onely friking upon the middle of the Bone with a Kaife。

satbematical Recteation:

Now in this Act, the two ends of the Staff in breaking fides away from the Glaffes, upon which they were placed; hence it cometh that the Glaffes are no wife endangered, no more than the Knee upon which a Staff is broken, forafmuch as in breaking it preffeth not : as Ariflotle in his Mechanick Queftions obferveth.

Examination?

II' were neceffary bere to note, that this thing may be experimented, firft, nitbout Glaffes, in placing a Small flender Staff upon two props, and then making trial upon it; by which you may fee bow the Staff will eitber break, bow, or depart from its props, and that either directly, or obliquely: But why by this violence, that one Staff Jtriking another, (which is fupported by two Glaffes) will be broken woithout offending the Glaffes, is as great a difficulty to be refolved as the former.

PRO.

14 ghathematical Recteationt

PROBLEM V.

How to make fair Geograpbical Card in a GardenPlots fit for a Prince, or Great Perfonage.

IT is ulual amongft Great Men to have fair Geograpbical Maps, large Cards, and great Globes, that by them they may as at once have a view of any place of the World, and fo furnith themfelves with a general knowledge not onely of their own Kingdoms Form, Situation, Longitude, Latitude, dic. but of all other places in the whole Univerfe, with their Magnitudes, Pofitions, Climates and Diftances.

Now I efteem that it is not unworthy for the Meditations of a Prince, feeing it carries with it many Profitable and Pleafant Contentments : if fuch a Card or Map by the Advice and Direction of an able Mathematician were Geographically defcribed in a Garden-plot form, or in fome of ther convenient place, and inftead of which general defcription might particularly and artificially be prefigured his whole Kingdoms and Do* minions; the Mauntains and Hills being raifed like fmall Hillocks with Turfs of Earth, the Valleys fomewhat concave, which will be more agreeable and pleafing to the Eye, than the Defrription in plain Maps and Cards, within which may be prefented the Towns, Villages, Caftles, or other

Mathematical 2arceation.

other remarkable Edifices, in fmall green Moffie Banks, or Spring-work proportional to the Platform, the Forrefts and Woods reprefented according to their form and capacity, with Herbs and Stoubs, the great Rivers, Lakes, and Ponds, to dilate themfelves according to their courle from Come artilicial Fountain made in the Garden to pals through Channels; then may there be compofed Walks of Pleature, Afcents, Places of Repofe, adorned with all variety of delightful Herbs and Flowers, both to pleake the Eye and other Senfes. A Garden thus accommodated, thallfar exceed that of my Lord of Verulams, fpecified in his Effays; that being only for delight and pleafure, this may have all the propexties of that, and be alfo of fingular ufe; by which a Prince may in little time perfonally vilit his whole Kingdom, and in fhort time know it diffinctly : and fo in like manner may any particular man Geographically prefigure his own Poffeffion or Heritage.

PROBLEM VI.

How ibree Staves, Knives, or like Bodies, may be conceived to bang in the Air, poitbout being Jup= ported by any thing but by themfelves.

TAke the firft Staff A B, raife up in the Air the end B, and upon him crols-wife place the Staff C B , then lafly in Triangle wife place the third Staff E F, in fuch manner that it may

16 mathematical Recteation.

be under A B, and yet upon CD. I fay that thefe Staves fo difpofed cannot fall, and the fpace CBE is made the ftronger, by how much the more it is preffed down, if the Staves break not, or fever themfelves
 from the triangular form : fo that always the Center of gravity be in the Center of the Triangle: for $A B$ is fupported by EF, and EF is held up by $C D$, and $C D$ is kept up from falling by $A B$, therefore one of thefe Staves cannot fall, and fó by confequence none.

PROBLEM VII.

How to difpofe as many men, or other things, in fuch Sort, that rejecting or cafting awoay the $6,9,10$ part, zute a certain number, there Shall remaint tho ee robich you would bave.

0
Rdinarily the propofition is delivered in this wife: ${ }_{15}$ Cbriftians and 15 Turks being at Sea in one Ship, an extream tempeft being rifen, the Pilot of the Ship faith, it is neceffary to caft over-board half of the number of Perfons to disburthen the Ship, and to fave the reft : now it was agreed to be done by lot, and therefore they

Q9athematical Recreation?

confent to put themfelves in rank, counting by nine and nine, the ninth Perfon thould always be caft into the Sea, until there were half thrown over-board: Now the Pilot being a Chriftian endeavoured to fave the Chriftians; how ought he therefore to difpofe the Chriftians, that the Lot might fall always upon the Turks, aud that none of the Chriftians be in the ninth place?

The refolution is ordinarily comprehended in this Verfe:

Populeam virgam mater regina ferebat.

For having refpect unto the Vowels, making a one, e two, i three, ofour, and u five: o the firft Vowel in the firf Word fheweth that there muft be placed four Chriftians; the nexe Vowel u, fignifieth that next unto the four Chriftians muft be placed five Turks; and fo to place both Chriftians and Turks according to the quantity and value of the Vowels in the Words of the Verfe, until they be all placed: for then counting from the firft Chriftian that was placed, unto the ninth, the lot will fall upon a Turk, and fo proceed. And here may be further noted, That this Problem is not to be limited, feeing it extends to any number and order whatfoever, and may many ways be uleful for Captains, Magiftrates, or others, which have divers perfons to punifh, and would chaftife chiefly the unrulieft of them, in taking the 10,20 , or 100 perfon, derc, as we read was

18 פatbematical Rectration.

commonly practifed amongft the ancient $R \sigma^{\circ}$ mans : therefore to apply a general Rule in counting the third, $4,9,10$, ovc. amongft $30,40,50$ perfons, and more or lefs; this is to be obferved, take as many Unites as there are Perfons, and difpofe them in order privately : As for example, Let 24 men be propoled to have committed fome outrage, 6 of them efpecially are found acceffary; and let it be agreed that counting by 8 and 8 , the eighth man fhould be always punifhed. Take therefore firft 24 units, or upon a piece of Paper write down 24 cyphers, and account from the beginning to the eighth, which eighth mark, and fo continue counting, always marking the eighth, until you have markt 6 , by which you may eafily perceive how to place thofe fix men that are to be punifhed, and fo of others.

It is fuppofed that Fofephus the Author of the Fewifh Hiftory efcaped the danger of death by help of this Problem: For a worthy Author of belief reports in his eighth Chapter of the third Book of the deftruction of ferufatem, that the Town of Fotapata being taken by main force by Veßatian, Fofepbus being Governour of that Town, accompanied with a Troop of fourty Souldiers, hid themfelves in a Cave, in which they refolved rather to famith, than to fall into the hands of Veßatian: and with a bloudy refolution in that great diftrefs would have butchered one another for fuftenance, had not Jofephus perfwaded them to die by lot and order, upon which it fhould fall: Now feeing that fofephus did fave himfelf by this Art, it is thought that

matbematical Recteation?

his Induftry was exercifed by the help of this Problem, fo that of the 40 perfons which he had, the third was always killed. Now by putting himfelf in the 16 or 31 place, he was faved, and one with him, which he might kill, or eafily perfwade to yield unto the Romans.

PROBLEM VIII.

Three Things and three Perfons propofed, to find wobich of them bath eitber of theje tbree Things.

LEt the three things be a Ring, a piece of Gold, and a piece of Silver, or any other fuch like, and let them be known privately to your felf by thefe three Vowels, a, e, i, or let there be three perfons that have different names, as A mbrofe, Edmond, and fobn, which privately you may note or account to your felf once known by the aforefaid Vowels, which fignifie for the firf Vowel I, for the fecond Vowel 2 , for the third Vowel 3 .

Now if the faid three perfons fhould by the mutual confent of each other privately change their names, it is moft facil by the courfe and excellency of Numbers, diftinetly to declare each ones name fo interchanged: Or if three perfons in private, the one Thould take a Ring, the other a piece of Gold, and the third fhould take a piece of Silver; it is eafie to find which hach the Gold, the Silver, or the Ring, and it is thus done.

$$
C_{2} \text { Take }
$$

20 ตตathematical hecteation.

Take 30 or 40 Counters (of which there is but 24 neceffary) that fo you may conceal the way the better, and lay them down before the parties, and as they fit or ftand give to the firft I Counter, which fignifieth a, the firft Vowel; to the fecond 2 Counters, which reprefents e, the lecond Vowel ; and to the third 3 Counters, which ftand for i the third Vowel: then leaving the other Counters upon the Table, retire apart, and bid him which hath the Ring take as many Counters as you gave him, and he that hath the Gold, for every one that you gave him, let him take 2, and he that hath the Silver for every one that yougave him, let him take 4 : This being done, confider to whom you gave one Counter, to whom two, and to whom three; and mark what number of Counters you had at the firft; for there are neceffarily but 24, as was faid before, the furplufs you may privately reject. And then there will be left either $1,2,3,5,6$, or 7 , and no other number can remain; which if there be, then they have failed in taking according to the directions delivered : but if either of thefe numbers do remain, the refolution will be difcovered by one of thefe fix words following, which ought to be had in memory, viz.

Salve, certa, anima, femita, vita, quies.
I. 2. 30 5. $6 . \quad 7$.

As fuppofe 5 did remain, the word belonging unto it is Senmita, the Vowels in the firt two Syl-

פatbematical Rectration:

lables are e and i, which theweth according to the former Dircetions, that to whom you gave 2 Counters, he hath the Ring, (feeing it is the fecond Vowel reprefented by two, as before) and to whom you gave the 3 Counters, he hath the Gold: for that i reprefents the third Vowel, or 3 in the former Direction, and to whom you gave one Counter, he hath the Silver; and fo of the reft. The variety of changes in which exercife, is laid open in the Table tollowing.

This feat may be alfo done without the former words, by help of the Circle A. for having divided the Circle into lix parts, write I within and one without, two within and five withnut, erc. the firft $1,2,3$, which are within with the Numbers over them, belongs to the upper femicircle; the other Numbers both within and without, to the under femicircle;

$$
\mathrm{C}_{3} \text { now }
$$

22 وathematical 及acteation.

now if in the action there remaineth fuch a number which may be found in the upper femicircle without, then that which is oppofite within thews the firft, the next is the fecond, ofco as if 5 remain, it thews to whom he gave 2, he hath the Ring; to whom you gave 3 , he hath the Gold, ove. But if the remainder be in the under femicircle, that which is oppofite to it is the firft, the next backwards towards the right hand is the fecond; as if 3 remains, to whom you gave i he hath the Ring, he that had 3 he had the Gold, ev.

PROBLEM IX.

How topart a Veffel which is full of Wine, containing eight Pints, into two equal parts, by two other Veffels which containe as much as the greater Veffel; as the one being 5 Pints, and the otber 3 Pints.

LEt the three Veffels be reprefented by A B C, A being full, the other two being empty; firft, pour out A into B until it be full, fo there will be in $B 5$ pints, and in A but 3 pints: then pour out of B into C until it be full : fo in C thall be 3 pints, in B_{2} pints, and in A 3 pints, then pour the Wine which is in C into A, fo in A will be 6 pints, in B 2 pints, and in C nothing: then pour out the Wine which is in B into the pot C, fo in C there is now 2 pints, in B nothing, and in A 6 pints. Laftly, pour out of A into B untill it be full, fothere will be now in A only I

刃atbematical Recteation.

pint, in $B 5$ pints, and in $C 2$ pints. But it is now evident, that iffrom B you pour in unto the pot C until it befull, there will remain in B 4 pints, and if that which is in C, viz. 3 pints be poured into the veffel A, which before had I pint, there thall be in the
 veffel A but half of its liquor that was in it at the firft, viz. 4 pints, as was required. Otherwife pour out of A in:o C until it befull, which pour into B, then pour out of A into C again until it be full, fothere is now in A only 2 pints, in B_{3}, and in C_{3}, then pour from C into B until it be full, fo in C there is now but 1 pint, 5 in B , and 2 in A : pour all that is in B into A, then pour the Wine which is in C into B, fo there is in C nothing, in B onely I pint, and in A 7 pints: Laftly, out of A fill the pot C, fo there will remain in A 4 pints, or be but half full: then if the liquor in C be poured into B, it will be the other half. In like manner might be taken the half of a Veffel which contains 12 pints, by having but the meafures 5 and 7 , or 5 and 8. Now fuch others might be propofed, but we omit many, in one and the fame nature.

24 ĐGathematical \&ectrationt

PROBLEM X.

To make a Stick'ftand upon the tip of ones Finger, without falling.

FAften the edges of two Knives, or fuch like, of equal poife, at the end of the Stick, leaning out fomewhat from the Stick, fo that they may counterpoife one another; the Stick being tharp at the end, and held upon the top of the Finger, will there reft without fupporting: if it fall; it muft fall together, and that perpendicular, or plumb-
 wife, or it muft fall fide-wife, or before one another; in the firft manner it cannot, for the Centre of Gravity is fupported by the top of the Finger : and feeing that each part by the Knives is councerpoifed, it cannot fall fide-wife, therefore it can fall no wife.

In like manner may great Pieces of Timber, as Joifts, trc. be fupported, if unto one of the Ends, be applied convenient proportional Counterpoifes; yea a Lance or Pike may fand perpendicular in the Air, upon the top of ones Finger : or placed in the midft of a Court, by help of his Cen. tre of Gravity.

Examination.

THis Propofition Seems doubtful; for to imagine abfolutely, that a Pike, or fucb-like, armed with two Knives, or other things, Shallftand upright in the air, and fo remain, witheut any otber fupport, feeing that all the parts bave an infinite difference of propenfity to fall; and it is witbout queftion that a Staff cannot be fo accommodated upon bis Centre of Gravity, but that it may incline to fome one part, witbout fome remedy to be applied, and fuch as is bere Jpecified in the Problem woill not warrant the thing, nor keep it from falling; and if more Knives Should be placed about it, it Should cause it to fall more fwiftly, forafmuch as the fuperiour part (by reafon of the Centrical Motion) is made more ponderous, and therefore lefs in reft.

To place therefore this Prop really, let the two Knives, or that wobich is for counterpoife, be longer always than the Staff, and $\int 0$ it will bang togetber as one body: and it will appear admirable if you place the Centre of Gravity near the fide of the top of the finger or point; for it woill then bang Horizontal, and feens to bang onely by a touch; yet more ftrange, if you turn the point or top of the finger upfide-down.

26 9atbematical kecteation:

PROBLEM XI.

How a Milftone or other Ponderofity may be fupport ed by a fmall Needle, without breaking or any wife bowing the fame.

LEt a Needle be fet perpendicular to the Ho^{o} rizon, and the Centre of Gravity of the Stone be placed on the top of the Needle : it is evident that the Stone cannot fall, forafmuch as it hangs in equilibra, or is counterpoyfed in all parts alike; and moreover it cannot bow the Needle more on the onefide, then on the other; the Needle will not therefore be either broken or bowed; if otherwife, then the parts of the Needle muft penetrate and fink one with another; the which is abfurd and impoffible to Nature: therefore it fhall be fupported. The Experiments which are
 made upon Trench-er-Plates, or fuchlike leffer thing, doth make it moft credible in greater Bodies. But here efpecially is to be noted, that the Needle ought to be uniform in matter and figure, and that it be erected perpendicular to the Horizon; and lafly, that the Centre of Gravity be exactly found.

geatbematical decteation.

PROBLEM XII.

To make three Knives bang and nove upon the poins. of a Needle.

FIt the three Knives in form of a Balance, and holding a Needle in your hand, place the back of that Knife which lies crofs-wife to the other two, tupon the point of the Needle, as the figure here fheweth you; for then in blowing foftly upon them,
 they will eafily turn and move upon the point of the Needle without falling. \qquad

PROBLEM XIII.

To find the weight of Smoak, which is cxbaled of aky combufizble Body what Joever.

LEt it be fuppofed that a great heap of Fagots, or a load of Straw weighing 500 pound thould be fired, it is evident that this grofs fubftance will be all inverted into fmoak and
athos:

28 Mathematical Recteation:

athes: now it feems that the fmoak weighs nothing, feeing it is of a thin fubftance now dilated in the Air, notwithftanding if it were gathered and reduced into the thickeft that it was at firft, it would be fenfibly weighty: weigh therefore the athes which admit 50 pound: Now feeing that the reft of the matter is not loft, but is exhaled into $\int m o a k$, it muft neceffarily be, that the reft of the weight (to wit, 450 pound) mutt be the weight of the fmoak required.

Examination:

NOn although it be thus delivered, yet bere may be noted, that a Ponderofity in bis oron Medium is not weighty: for things are Said to be weighty, when they are out of their place or medium, and the difference of fuch Gravity, is according to the Motion: the fmoak therefore certainly is light, being in its true medium (the Air) if it fbould cbange bis Medium, then would we change our difcour \int e.

PROBLEM XIV.

Many things being difpofed circular, (or otberwife) to find which of them any one thinks upon.

S
uppofe that having ranked io things, as A B CDEFGHIK, Circular, as (the Figure theweth) and that one had touched or thought

geatbematical 2 ectration.

upon G, which is the 7: ask the party at what letter he would begin toaccount (for account he muft, otherwife it cannot be done) which fuppofe at E, which is the 5 place, then add fecretly to this 5, 10, (which is the number of the Circle) and it makes 15 , bid him account 15 backward from E, beginning his account with that number he thought upon, fo at E he fhall account to himfelf 7 , at $\mathrm{Dac}=$ count 8, at C account 9 , orc. So the account of 15 will exactlyfall upon G, the thing or number thought upon : and
 Co of others: but to conceal it the more, you may will the party from E to account $25,35, \% c_{0}$ and it will be the fame.

There are fome that ufe this play at Cards, turned upfide-down, as the ten fimple Cards, with the King and Queen, the King ftanding for 12 , and the Queen for II : and fo knowing the fituation of the Cards, and thinking a certain hour of the day, caufe the party to account from what Card he pleafeth; with this Provifo, that when you fee where he intends to account, fet 12 to that number, fo in counting as before, the end of the account thall fall upon the Card which thall denote or thew the hour thought upon, which being turned up, will give grace to the action, and wonder to thofe that are ignorant in the caufe.

PROBLEM XV.

How to make a Door or Gate, wlizich Shall open ons both fides.

ALl the skill and fubtilty of this, refts in the artificial difpofure of four Plates of Iron, two at the higher end, and two at the lower end of the Gate: fo that one fide may move upon the Hooks or Hinges of the Pofts, and by the other end may be made falt to the Gate; and fo moving upon thefe Hinges, the Gate will open upon one fide with the aforefaid Plates or Houks of Iron: and by help of the other two Plates will open upon the other fide.

PROBLEM XVI.

To Shew hows a Ponderofity, or heavy thing, may be fupported upon the end of a Staff (or Such-like) upon a Table, and notbing bolding or touching it.

TAke a Pail which hath a handle, and fill it full of Water, (or at pleafure) then take a Staff or Stick which may not rowl upon the Table, as EC, and place the handle of the Pail upon the Staff; then place another Staff or Stick undex the Staff CE, which may reach from the

פ9atbenatical 2 ectration.

bottom of the Pail unto the former Staff C E, perpendicular wife, which fuppofe F G: then Thall the Pail of Water hang without falling; for if it fall, it muft fall perpendicularly, or plumb-wife ; and that cannot be, feeing the Staff CE fupports it, it being pasallel to the Horizon, and fuftained by
 the Table : and it is a thing admirable, that if the Staff CE were alone from the Table, and that end of the Staff which is upon the Table were greater and heavier than the other, it would be conftrained to hang in that nature.

Cxamination.

NOw without Some Experience of shis Problem, a man would acknovoledge either a poffibility or impolfibility; therefore it is that very Toucbltone of Knowoledge in any thing, to difcourre firlt if a thing be poffible in Nature, and then if it can be brought to Experience, and under Sence, noithout feeing it done. At the firft, this Propofition feems to be absurd, and impoffible. Notwithltanding, being fupported with two Sticks, as the figure declarett, it is madefacile: for the Horizontal Leine to the edge of

32刃ดatbenatical Recteation.

 the T'able, is the Centre of Motion'; and pafjeth by the Centre of Gravity, which neceffarily fupportetb it.
PROBLEM XVII.

Of a deccitful Borole to play woithal.

NAke a hole in one fide of the Bowl, and caft molten Lead therein, and then make up the hole clofe, that the knavery or deceit be not perceived: you will have pleafure to fee that notwithftanding the Bowl is caft directly to the play, how it will turn away fide-wife: for that on that part of the Bowl which is heavier upon the one fide than the other, it never will gn truly right, if artificially it be not corrected; which will hazard the Game to thofe which know it not : but if it be known that the leady fide in rolling be always under or above, it may go indifferently right ; if otherwife, the weight will carry it always fide-wife.

PROBLEM XVIII.

To part an Apple into $2,4,8$, or like parts, without breaking the Rind.
Afs a Needle and Thread under the Rind of the Apple, and then round it with divers turnings, until you come to the place where you began

matbematical Recreation:

began; then draw out the Thread gently, and part the Apple into as many parts as you thinks convenient: and fo the parts may be taken out between the parting of the Rind, and the Rind remaining always whole.

PROBEEM XIX.

To find a number thought upon, woithout asking of any queftion, certain operations being done.

BId him add to the number thought (as admit 15) half of it, if it may be, if not, the greateft half, that exceeds the other but by an unite, which is 8 ; and it makes 23 . Secondly ${ }_{2}$ unto this 23 add the half of it, if it may be, if not, the greateft half, viz. 12 , makes 35 ; in the mean time, note that if the number thought upon cannot be halfed at the firft time, as here it cannot, then for it keep three in the memory if at the fecond time it will not be equally halved, referve two in memory, but if at both times it could not be equally halved, then may you together referve five in memory: chis done, caufe him from the laft fum, viz. 35 , to fubtract the double of the number thought, viz. 30, reft five, will him to take the half of that, if he can, if not, reject \mathbf{I}, and then take the half of the reft, which keep in your memory : then will him to take the half again, if he can, if not, take one from it, which referve in your me-

D : mory

34 spatbentatical metreation.

 mory, and fo perpetually halving until i remain : for then mark how many halfs there were taken, for the firtt half acco nt 2, for the fecond 4 , for the third 8 , ofc. and add unto thofe numbers the ones which you referved in memory: So there being 5 remaining in this Propofition, there were 2 halvings: for which laft I account 4, but becaule it could not exactly be halyed without rejecting of I, I add the I therefore to this 4 , makes 5 , which half or fum always multiplied by 4 , makes 20 . From which fubtract the firft 3 and 2 , becaufe the half could not be formerly added, leaves 15 , the number thought upon.
Another Example.

The number thought - 12
The half of it
The fum-- 18
The half of it-_ 9
The fum of it - - 27
The double of the number-- 24
Which taken away, refts - 3
The half of it
For which account- 2
And I put to it becaufe the 3 could not be $\} 3$ halved, makes
This multiplied by 4 , makes
which was the number thought upon.

Anotber

פ9thematical Recteation.

Another Example.

The number thought- 79

The fum-
The greateft half of which is - 60.2
The fum of it is - 179
The double of 79 is 158
Which taken from it retts-- $-2 I$
The leffer half 10 , which halve:-
The half of this is 5 , which makes
The half of this is 2 , which is - Io
The half of this is 1 , with 10 and 11 is - 21
This 2 I which is the double of the laft half,
with the remainder, being multiplied by 79
4) makes 84 , from which take the aforefaid 3 and 2 , refts--

Which was the number thought upon.

PROBLEM XX.

How to make an uniform and inflexible Body to pafs through tno fmall boles of divers forms, as one being circular and the other Square, ©uadrangwlar, and Triangular-nife, yet fo that the boles Shall be exacily filled.

T
His Problem is extracted from Geometrical Obfervations, and feems at the firft fomewhat obfcure; yet that which may be exD 2 tracted

36 q9athematical Recteation.

tracted in this nature, will appear more difficult and admirable. Now in all Geometrical Practices, the leffer or eafier Problems do always make way to facilitate the greater: and the aforefaid Problem is thus refolved. Take a Cone or round Pyramide, and make a Circular hole in fome board, or other hard matcrial, which may be equal to the Bafes of the Cone, and alfo a Triangular hole, one of whofe fides may be equal to the Diameter of the Circle, and the other two fides equal to the length of the Cone: Now it is moft evident, that this Conical or Pyramidal Body, will fill up the Circular hole, and being placed fide-wife, will fill up the Triangular hole. Mortover if you caufe a body to be turned, which may be like to two Pyramides conjoyned, then if a Circular hole be made, whofe Diameter is equall to the Diameter of the Cones conjoyned, and a Quadrangular hole, whofe floping fides be equal to the length of each fide of the Pyramide, and the breadth of the hole equal to the Diameter of the Circle, this conjoyned Pyramide thall exactly fill both the Circular hole, and alfo the Quadrangular hole.

matbertatical kecteation.

PROBLEM XXI.

How with one uniform Body, or fuch-like, to fill: three feveral boles: of which the one is round, the other a just Square, and the third anoval form.

THis Propofition feems more fubtil than the former, yet it may be practifed two ways: For the firlt, take a Cylindrical Body, as great or little as you pleafe: Now it is evident that it will fill a Circularitole, which is made cqual to the Bafis of it, if it be placed down right, and will alfo fill a long Square, whofe fides are equal unto the Diameter and length of the Cylinder, and according to Pergeus, Arclimedes, ©oc. in their Gylindrical Demonftratians, a true Oval is made when a Cylinder is cuc flope-wife, therefore if the Qval have breadth equal unto the Diameter of the Bafis of the Cy linder, and any
 length whatfoever : the Cylinder being put into his own () val holes Thall alfo exactly fill it.

38 פ⿴囗十thematical Recreation：

The fecond way is thus：Make a circular hole in fome board，and alfo a fquare hole，the fide of which fquare may be equal to the Diameter of the Circle：and lafty，make a hole Oval－wife， whofe breadth may be equal unto the Diagonal of the Square；then let a Cylindrical Body be made，whofe Bafis may be equal unto the Circle， and the length equal alfo to the fame：Now be－ ing placed down－right，thall fall in the Circle， and flat－wife will fit the Square hole，and being placed Iloping－wife will fill the Oval．

Cxamination．

YOu may note upon the laft two Problems far－ ther，that if a Cone be cut Ecliptick－woife，it may paf＇s through an Ifocele Triangle，through mainy Scalen Triangles，and through an Ellipfis；and if． there be a Cone cut fcalen－wife，it will pafs through all the former，only for the Ellipfis place a Circle：and furtber，if a Solid Colume be cut Ecliptick－wife，it may fill a Circle，a Square，divers．Parallelograms， and divers．Ellipfes，robichbave different Diameters．

Tatbematical 2erceation:

PROBLEM XXII.

To find a number thougbt upon, after another manner than what is formerly delivered.

BId him that he multiply the number thought upon, by what number he pleafeth, then bid him divide that product by any other number, and then multiply that Quotient by fome other number; and that product again divide by fome other, and fo as often as he will: and here note, that he declare or tell you by what number he did multiply and divide. Now in the fame time take a number at pleafure, and fecretly multiply and divide as often as he did: then bid him divide the laft number by that which he thought upon. In like manner do yours privately, then will the Quotient of your Divifor be the fame with his, a thing which feems admirable to thofe which are ignorant of the caufe. Now to have the number thought upon without feeming to know the laft Quotient, bid him add the number thought upon to it, and ask him how much it makes : then fubtract your Quotient from it, there will remain the number thought upon. For Example: Suppore that the number thought upon were 5 , multiply it by 4 , makes 20 ; this divided by 2, the Quotient makes 10, which multiplied by 6 , makes 60 , and divided

40 matbenatical mecreation.

by 4 , makes 15 , in the fame time admit you think upon 4 , which multiplied by 4 , makes 16 , this divided by 2 , makes 8 , which multiplied by 6 makes 48 , and divided by 4 makes 12 ; then divide 15 by the number thought, which was 5 , the Quotient is 3 ; divide alfo 12 by the number you took, viz. 4 , the Quotient is alfo 3, as was declared; therefore if the Quotient 3 be added unto the number thought, viz. 5 , it makes 8 ; which being known, the number thought upon is alfo known.

PROBLEM XXIII.

To find out many numbers that fundry pervons, of one man, batb thought upon.

IF the multitude of numbers thought upon be odd, as three numbers, five numbers, feven, er. As for example: Let 5 numbers thought upon be thefe, $2,3,4,5,6$, bid him declare the fum of the firft and fecond, which will be 5 , the fecond and third, which makes 7 , the third and tourth, which makes 9 , the fourth and fifth; which makes II, and fo always adding the two next together, ask him how much the firft and laft makes together, which is 8 , then take the fe fuims and place them in order, and add all thefe rogether which were in the odd places: that is, the firt, third and fifth, viz. $5,9,8$, makes 22 . In like manner add all thefe-numbers together, which

פ9athematical Recteation: 4 x

which are in the even places, that is in the fecond and fourth places, viz. 7 and 11 makes 18 , fubtract this from the former 22, then there will remain the double of the firft number thought upon, viz. 4, which known, the reft is eatily known: feeing you know the fum of the firft and fecond; but if the multitude of numbers be even as thefe fix numbers, viz. $2,3,4,56,7$. caufe the party to declare the fum of eachtwo, by antecedent and confequent, and alfo the fum of the fecond and laft, which will be $5,7,9,11,13,10$, then add the odd places together, except the firft, that is, 9 and 13 makes 22 ; add alfo the even places together, that is $7,11,10$, which makes 28; fubtract the one from the other, there thall remain the double of the fecond number thought upon, which known, all the reft are known:

PROBLEM: XXIV.

How is it that a man in one and the fame time, may bave bis Head upward and bis Feet upward; being in one and the fame place?

THe Anfwer is very facil, for to be fo, he mult be fuppofed to be in the Centre of the Earth: for as the Heaven is above on every fide, Calum undique furfum, all that which looks to the Heavens, being diftant from the Centre, is upward; and it is in this fenfe that Maurolycus

42 وathematical kectration:

in his Cofmography, and firf Dialogue, reported of one that thought he was led by one of the Mufes to Hell, where he faw Lucifer fitting in the middle of the World, and in the Centre of the Earth, as in a Throne, having his Head and Eeetupward.

PROBLEM XXV.

Of a Ladder by which two men afeending at one time, the more they afcend the more they Jball be a funder, notwithfanding one being as bigh as another.

His is moft evident, that if there were a Ladearth, and he on this fide of the Centre of the that two at the Centre of the World at fide: and ftant being to afcend, the one towards us, and the other towards our Antipodes, they hould in afcending go farther \& farther, one from another; notwithftanding both of them are of like height.

פ日athematical Rectration:

PROBLEM XXVI.

How it is that a man baving but a Rod or Pole of Land, doth bray that be may in, right line pafs from place to place above 3000 miles.

THe opening of this is eafie, forafmuch as he that poffeffeth a Rod of Ground, poffeffeth not only the exterior furface of the earth, but is Mafter alfo of that which extends even to the Centre of the Earth, and in this wife all Heritages and Poffeffions are as fo many Pyramides, whole fummets or points meet in the Centre of the Earth, and the Balis of them are nothing elle but each mans poffefion, field, or vifiblequantity; and therefore if there were made or imagined 10 : to be made a defcent to go to the bottom of the: Heritage, which would reach to the Centre of the: Earth, it would be above 3,900 miles in a right line, as before.

PROBLEM XXVII.

How it is that a man ftanding uprighto and looking. mbich way be will, be looketh eitlber true Northion? true Soutb.

THis happeneth if the party be under either of the Poles; for if he be under the North pole, then looking any way he looketh Suuth, becaufe

44 S9atbenaticat Recteation.

 caufe all the Meridians concur in the Poles of the World; and if he be under the South-Pole, he looks directly North by the fame reafon.
PROBLEM XXVIII.

To tell any one wbat number remains after certain operations being ended, without asking any queftion.

BId him to think upon a number, and will him
to multiply it by what number you think convenient: and to the product bid him add what number you pleafe, provided that fecretly you confider, that it may be divided by that which multiplied, and then let him divide the fum by the number which he firft multiplied by, and fubtraf from this Quotient the number thought upon: In the fame time divide apart the number which was added by that which multiplied, fo then your Quotient fhall be equal to his Remainder; wherefore without asking him any thing, you fhall tell him what did remain, which will feem ftrange to him that knoweth not the caufe. For Example : Suppofe he thought 7 , which multiplied by 5 makes 35 , to which add 10 , makes 45 , which divided by 5 , yields 9 , from which if you take away 1 , the number thought, (becaufe the Multiplier divided by the Divifor gives the Quotient 1) the reft will be 2 ; which will be alfo proved, if 10 , the number which was added, were divided by 5 , viz. 2 .

פgathematical kecteation: 45

PROBLEM XXIX.

Of the Play with two Several things.

TT is a pleafure to fee and confider how the Science of Numbers doth furnifh us not onely with fports to recreate the Spirits, but allo brings us to the knowledge of admirable things, as Thall in fome meafure be fhewn in this enfuing Progreffion. In the mean time, to produce always fome of them: Suppofe that a man hold divers things in his hand, as Gold and Silver, and in one hand he held the Gold, and in the other hand he held the Silver: to know fubtilly, and by way of divination, or artificially, in which hand the Gold or Silver is; attribute to the Gold, or fuppofe it to have a certain price, and fo likewife attribute to the Silver another price, conditionally that the one be odd, and the other even. As for example: Bid him that the Gold be valued at 4 Crowns, or Shillings, and the Silver at 3 Crowns or Shillings, or any other number, fo that one be odd, and the other even, as before; then bid him tripple that which is in the right hand, and double that which is in the left hand, and bid him add thefe two products together, and ask him if it be even or odd; if it beeven, then the Gold is in the right hand; if odd, the Gold is in the left hand.

46 2gathumatical Recteation.

PROBLEM XXX゙.

Two numbers being propofed nuto ino Several parties, to tell robich of the ee numbers is taken by each of them.

AS for Example: Admit you had propofed unto two men; whofe names were Peter and Fobin, two numbers or pieces of money, the one even, and the other odd, as 10 and g, and let the one of them take one of the numbers, and the other party take the other number, which they place privately to themfelves: how artificially, according to the congruity and excellency of numbers, to find which of them did take 10 , and which 2, without asking any queition: and this feems moft fubtil, yet delivered how foever differing little from the former, and is thus performed: Take privately to your felf alfo two numbers, the one even and the other odd, as 4 and 3 ; then bid Peter that he double the number which he took, and do you privately double alfo your greateft number; then bid foln to tripplethe number which he hath, and do you the like upon your laft number: add your two Products together, and mark if it be even or odd, then bid the two parties put their numbers together, and bid them take the half of it, which if they cannot do, then immediately tell Peter he took 10_{2}, and Fobn 9, becaufe the aggregate of the

99atbematical Recteation:

double of 4 , and the tripple of 3 , makes bdd and fuch would be the aggregate or fum of the double of Peters number and Fohns number, if Perer had taken 10; if otherwife, then they might have taken half, and fo fobn thould have taken Io, and Peter $9:$ As fuppofe Peter had taken 10, the double is 20 , and the tripple of 9 , the other number, is 27 , which put together makes 47 , odd: in like manner the double of your number conceived in mind, viz. 4 makes 8 , and the tripple of the 3 , the other number makes 9 , which fet together makes 17 , odd. Now you cannot take the half of 17 nor 47 , which argueth that Peter hatd the greater number, for otherwife the double of 9 is 18, and the tripple of 10 is 30 , which fet together makes 48 , the half of it may be taken; therefore in fuch cafe Peter took the lefs number, and $\mathcal{F o b n}$ the greater: And this being done cleanly, carries much grace with it.

PROBLEM XXXI.

How to defcribe a Circle that Shall touch 3 Points, placed borofoever upon a plain, if they be wot in a right line.

LEt the three points be A B C, put one foot of the Compafs apon A, and deferibe and Arch of a Circle at pleafure; and placed at B crofs that Arch in the two points E and F , and placed in C crofs the Arch in G and H , then lay a Ru-

48 פeathematical kecteation:

ler upon G H, and draw a Line, and place a Ruler upon E and F , cut the other Line in K , fo K is the Centre of the Circumference of a Circle, which will pals by the faid three points $\triangle B C$, or it may be inverted, having a Circle drawn , to find the Centre of that Circle, make three points in the
 Circumference, and then ufe the fame way; fo thall you have the Centre: a thing moft facil to every Practitioner in the Principles of Geometry:

PROBLEM XXXII.

How to change Circle into a Square Form.

MAke a Circle upon Paft-board, or other material, as the Circle ABCDE, of which A is the Centre; then cut it into four quarters, and difpofe them $f 0$, that A, at the Centre of the Circle, may always be at the Angle of the Square ; and fo the four quarters of the Circle being placed f_{O}, it will make
makc
Square
Aised
ametar
hese is
that it
greater
deby
them

Matbematical kecteation.

make a perfect Square, whofe fide A A is equal to the Diameter B D. Now here is to be noted that the Square is greater than the Circle by the vacuity in the middle, viz. M.

PROBLEM XXXIII.

With one and the fame Compafes, and at one and the Same extent or opening, boos to deScribe many Circles Concentrical, that is, greater or leffer one than anotbicr.

IT is not without caufe that many admire how this Propolition is to be refolved; yea, in the Judgment of fome it is thought impoffible, who confider not the Induftry of an Ingenious Geometrician, who makes it poffible, and that moft facil, fundry ways: for in the firft place, if you make a Circle upon a fine Plain, and upon the Centre of that Circle a fmall peg of Wood be placed, to be raifed up and put down at pleafure, by help of a fmall hole made in the Centre, then with the fame opening of the Compaffes you may deferibe Circles. ConE . . sentrical,

50

 Đatbematical Recteation.centrical, that is, one greater or leffer than another; for the higher the Centre is lifted up, the leffer the Circle will be. Secondly, the Compals being at that extent upon a Gibbous body, a Circle may be defcribed, which will be lefs than the former, upon a Plain, and more artificially
 upon a Globe, or round Bowle : and this again is moft obvious upon a Round Pyramide, placing the Compaffes upon the top of it, which will be far lefs than any of the former; and this is demonftrated by the Twentieth Propofition of the firt of Euclids, for the Diameter ED is lefs than the Lines A D, A E, taken together, and the Lines A D, AE, being equal to the Diameter BC, becaufe of the fame diffance or extent of opening the Compaffes, it follows that the Diameter E D, and all his Circles together, is much lefs than the Diameter and the Circle BC, which was to be performed.

mathematical Recteation. st

PROBLEM XXXIV.

Any numbers under 10, being thought upon, to find what nwmbers they were.

LEt the firf number be doubled, and unto it add 5 , and multiply that fum by 5 , and unto it add 10 , and unto this product add thenext number thought upon ; multiply this fame again by 10 , and add unto it the next number, and fo: proceed: Now if he declare the laft fum, mark if he thought but upon one figure, for then fubtract onely 35 from it, and the firft figure in the place of tens is the number thought upon: if he thought upon two figures, then fubtract alfo. the faid 35 from his laft fum, and the two fi-: gures which remain are the rumber thought upon: if he thought upon three figures, then fubtract 350, and then the firft three figures are the numbers thought upon, ofc. fo if one thought upon thefe numbers, $5,7,9,6$, double the firft makes 10, to which add 5 , makes 15 , this multiplied by 5 makes 75 , to which add 10 , makes 85 , to this add the next number, viz. 7 , makes; 92 , this multiplied by 10 , makes 920 , to which add the next namber, viz. 9 , makes 929 , which multiplied by 10 . makes 990 , to which add 6 , makes 9296 , from which fubtract 3500^{2}, reftech 5796 , the four mumbersthought upon. Now becaufe the two laft figures are like the two num-

52 פ®atbematical Rectration:

 bers thought upon : to conceal this, bid him take the half of it, or put firft 12 , or any othernumber to it, and then it will not be fo open.
PROBLEM XXXV.

Of the Play with the Ring.

AMonglt a company of nine or ten perfons, one of them having a Ring, or fuch-like, to find out in which Hand, upon which Finger and Joynt it is; this will caufe great aftonifhment to ignorant Spirits, which will make them believe that he that doth it works by Magick, or Witcheraft: But in effect it is nothing elfe but a nimble Act of Arithmetick founded upon the precedent Problem: for firft, it is fuppofed that the perfons ftand or fit in order, that one is firft, the next fecond, erc. likewife there muft be imagined, that of thefe two hands the one is freft, and the other fecond; and alfo of the five fingers, the one is firlt, the next is fecond; and laftly, of the joynts, the one is as 1 , the other is as 2 , the other as 3 , ovc. from whence it appears that in performing this Play there is nothing elfe to be done than to think four numbers. For example: if the fourth perfon had the Ring in his left hand, and upon the fitth finger and third joynt, and I would divine and find it out, thus I would proceed, as in the XXXIV Problem, in caufing him to double the firft number, that is, the number of perfons which

وatbematical kecteation:

which was'4, and it makes 8 , to which adde 5 makes 13 , this multiplied by 5 makes 65 , put 10 to it makes 75 , unto this put 2 for the number belouging to the left hand, and fo it makes 77, which mulciplied by 10 makes 770 , to this add the number of the fingers upon which the Ring is, viz. 5 , makes 775 , this multiplied by 10 makes 775°, to which add the number for the joynt upon which the Ring is, vizo the third joynt, makes 7753 ; to which caufe him to'ddd 14, or fome other number, to conceal it the better, and it makes 7767: which being declared unto you, fubtract 3514 , and there will remain $4,2,5,3$, which figures in order declares the whole myftery of that which is to be known : 4 fignifieth the fourth perfon, 2 the left hand, 5 the fifth finger, and 3 the third joynt of that finger.

PROB BLEM XXXVI.

 The Play of 34 , or more Diee.THat which is faid of the two precedent Problems, may be applied to this of Dice, (and many orher particular things) to find what number appeareth upon each Dice, being caft by fome one: for the points that are upon any fide of a Dice are always lefs than 10 , and the Points of each fide of a' Dice may be taken for a number thought upon:' therefore the Rule

E 3

54 פathematicalkerceation.

will be as the former : As for example, one haying thrown three Dice, and you would declare the numbers of each one, or how much they make together, bid him double the points of one of the Dice, to which bid him add 5 , then multiply that by 5 , and to it add 10 , and to the fum bid him add the number of the fecond Dice, and multiply that by 10: laftly, to this bid him add the number of the laft Dice, and then let him declare the whole number : then if from it you fubtract 350 , there will remain the number of the three Dice thrown.

PROBLEM XXXVII.

How to make Water in a Glafs feem to boyl and乃arkle.

T
Ake a Glafs near full of Water or other liquor, and fetting one hand upon the foot of it, to hold it faft : turn flightly one of the fingers of your other hand upon the brim or edge of the Glafs; having before privately wet your finger, and fo paffing foftly on with your finger in prefling a little: for then firft the Glafs will begin to make a noife; fecondly, the parts of the Glafs will Cenfibly appear to tremble, with notable rarefaction and condenfation : thirdly, the Water will Thake, feem to boyl; fourthly, it will caft it felf qut of the Glass, and leap out by fmall drops, with great aftonifhment to the Jtanders by ; if
they

99athematical Recreation.

they be ignorant of the caufe of it, which is only in the Rarefaction of the parts of the Glafs, occafioned by the motion and preffure of the Finger.

©xamination.

1He caure of this is not in the Rarefaction of the parts of the Glafs, but it is rather in the quick local Motion of the Finger, for reafon Sheweth us that by how much a Body draweth nearer to a quality, the lefs it is subject or capable of anotber wobich is coutrary unto it: Now Condenfation and Rarefaciion are contrary Qualities, and in this Probtem there are tbree Bodies confidered, the Glafs, the Water, and the Air, now it is evident that the Glafs being the moft folid and impenitrable Body is lefs fubject and capable of Rarejaction than the Water, the Water is lefs fabject than the Air, and if there be any Rarefaciion, it is ratber confiderable in the Air than in the Water, which is infcribed by the Glafs, and aboze the Water, and ratber in the Water than in the Glafs: The agitation, or the irembling of the parts of the Glafs to the eense appears not: for it is a continued Body; if in part, why then not in the wobole? and that the Water turns in the Glafs, this appears not; but onely the upper contiguous parts of the Water; that at the bottom being lefs fubject to this agitation: and it is moft certain that by bow much quicker the Circular Motion of the Finger upon

$$
E_{4}
$$

56 gatbematical Recteation.

the edge of the Glass is, by So much the more Solll the Air be agitated, and fo the Water Shall receive fome apparent Affection more or lefs from it, according to that motion: as woe fee from the quicknefs of wind upon the Sea, or calm thereof, that there is a greater or lefler agitation in the Water; and for further Examination, we leave it to the earch of thofe which are Curious.

PROBLEM XXXVIII.

Of a fine Veffel robich bolds Wine or Water, being caft into it at a certain beight, but being filled bigher, it will run out of its own accord

LEtthere be a Veffel A B C D, in the middle of which place a Pipe, whofe ends both above at E , and below at the bottom of the Veffel, as at \mathbf{F}, are open; let the end E be lomewhat lower than the brim of the Glafs: about this Pipe place another Pipe, as HL, which mounts a little above E, and let it moft diligently be clofed at H , that no Air enter in thereby, and this Pipe at the bottom may have a fmall hole to give paffage unto the Water; then pour in Water or Wine, and as long as it mounts not above E, it is fafe; but if you pour in the Water fo that it mount above it, farewel all, for it will not ceafe until it be all gone out; the fame may be done in difpofing any crooked Pipe in a Veffel in the manner of a Faucet or Funnel, as in the Figure H;

ற9atbematical Recteation:

H ; for fill it under H at pleafure, and all will go well; but if you fill it unto H you will fee tine fport, for then all the Veffel will be empty incon tinent, and the fubtilty of this will feem more admirable, if you conceal
 the Pipe by a
Bird, Serpent, or fuch-like, in the middle of the Glafs. Now the reafon of this is not difficult to thofe which know the nature of a Cock or Faucet: for it is a bowed Pipe, one end of which is put into the water or liquor, and fucking at the other end until the Pipe be full, then will it run of it felf, and it is a fine Secret in Nature to fee, that if the end of the Pipe which is out of the water, be lower than the water, it will run out without ceafing; but if the Mouth of the Pipe be higher than the water, or level with it, it will not run, although the Pipe which is without be many times bigger than that which is within the water: for it is the property of Water to lseep always exactly level.

58 99athematical 2necteation.

Examination.

HEre is to be roted, that if the face of the Water without be in one and the Same Plain with that wobich is within, though the outermoft Pipe be ten times greater than that which is woithin, the Water naturally woill not run; but if the Plain of the Water without, be any part lower than that which is witbin, it woill freely run. And beve may be noted further, that if the Moutk of the Pipe which is full of Water doth but onely touch the Superficies of the Water within, although the other end of the Pipe without be much lonser than that within the Water, it will sot run at all; wobich contradicts the firft ground: Hence we gather that the prefure or ponderofity of the Water within, is the caufe of running in fome refpect.

PROBLEM XXXIX.

Of a Glafs very pleafant.

SOmetimes there are Glaffes which are made of a double fathion, as if one Glals were within another, fo that they feem but one, but there is a little fpace between them. Now pour Wine or other Liquor betwcen the two edges by help

ఇొatbematical Rectration:

help of a Tunnel, into a little hole left to this end, fo will there appear two fine delufions or fallacies; for though there be not a drop of Wine within the hollow of the Glafs, it will feem to thofe which behold it that it is an ordinary Glafs full of Wine, and that efpecially to thofe which are fidewife of it ; and if any one move it, it will much confirmit, becaufe of the motion of the Wine; but that which will give moft delight, is, that if any one fhall take the Glafs, and putting it to his mouth thall think to drink the Wine, inftead of which he fhall fup the Air, and fo will caufe laughter to thofe that ftand by, who being deceived, will hold the Glafs to the light, and thereby confidering that the Rayes or Beams of the Light are not reflected to the Eye, as they would be, if there were a liquid fubftance in the Glafs, hence they have an affured proof to conclude that the hollow of the Glafs is totally empty.

PROBLEM XL.

If any one fhould bold in each hand as many pieces of noney as in the other, boon to find bowo much there is.

BId him that holds the money that he put out of one hand into the other what number you think convenient, (provided that it may be done) this done, bid him that out of the hand that he put the other number into, that he take out

60 Moatbenatical Recteation.

of it as many as remain in the other hand and pue it into that hand: for then be affured that in the hand which was put the firft taking away, there will be found juft the double of the Number taken away at the firft. Example: Admit there were in each hand 12 Shillings or Counters, and that out of the right hand you bid him take 7 , and put it into the left : and then put into the right hand from the left as many as doth remain in the right, which is 5 , fo there will be in the left hand 14 , which is the double of the number taken out of the right hand, to wit 7 , then by fome of the Rules before-delivered, it is eafie to find how much is in the right hand, viz: 10 .

PROBLEM XLI.

Many Dice being caft, how artificially to difco'er the number of the points that may arife.

SUppofe any one had caft three Dice fecretly, bid him that he add the points that were upmof together : then putting one of the Dice apart anto the former fum add the points which are under the other two, then bid him throw thefe two Dice,and mark how many points a pair are upwards, which add unto the former fum: then put one of thefe Dice away, not changing the fide, mark the points which are under the other Dice, and add it to the former fum: lafly, throw that one Dice,and whatfoever appears upward add it unto the former fum, and let the Diçe remain thus:

\$9atbematical Recteation:

thus: this done, coming to the Table, note what points do appear upward upon the 3 Dice, which add privately together, and unto it add $2 \mathbf{I}$, or 3 times 7 : fo this Addition or fum thall be equal to the fum which the party privately made of all the operations which he formerly made. As if he fhould throw 3 Dife, and there fhould appear upward $5,3,2$, the fum of them is 10 , and fetting one of them apart, (as 5) unto 10 add the points which are under 3 and 2 , which is 4 and 5 , and it makes 19; then cafting thefe 2 Dice, fuppofe there Thould a ppear 4 and I, this added unto 19 makes 24 , and Cetting 1 of thefe 2 Dice apart, as the 4 unto the former $24, I$ add the number of points which is under the other Dice, viz. under I, that is 6 , which makes 30 . Laft of all, I throw that I Dice, and fuppofe there did appear 2, which I add to the former 30 , and it makes 32 , then leaving the 3 Dice thus, the points which are upward will be the fe, $5,4,2$, unto which add fecretly 21 , (as before was faid) fo have you 32, the fame number which he had; and in the fame manner you may practice with $4,5,6$, or many Dice or other Bodies, oblerving onely that you muit add the points oppofite of the Dice, for upon this de: pends the whole demonftration or fecret of the play; for alway that which is above and underneath makes 7 : but if it make another number, then muft you add as often that number.

62 פathematical Recteation.

PROBLEM XLII.

Iwo Metals, as Gold and Silver, or of otber kind, weigbing alike, being privately placed into two like Boxes, to find which of them the Gold or Silver is in.

ITT is faid that an Emperour was requefted by one of his Servants, after he had long time remained with him, to affign him fome Reward: to which after a few days the Emperour condefcended, and caufed him to come into his Treafuyy, where he had prepared two Boxes, one full of Gold, and the other full of Lead, both weighing, and of form and magnitude alike: and bid him chufe which be would have. Now many think that in this Problem one mult be guided only by Fortune in this Choice, and it is that which moft makes a man happy in fuch a Choice: but the want of knowledge caufeth them fo to judge which know not otherwife. A Mathematician accounts it an eafie Propofition, and will infallibly chufe the Cheft of Gold, and leave the Chelt of Lead, without either breaking or opening any of the Chefts, and not go by chance and fortune : for if he may be permitted to weigh thofe Chefts firft in the Air, then in the Water, it is a thing clear by the proportion of Metals, and according to the Principles of Archimedes that the Gold thall be lefs weighty by his eighteenth

פ9atbematical kectration:

part, and the Lead by his eleventh part, wherefore there may be gathered in which is the Gold, and in which is the Lead.

But becaufe that this experiment in Water hath divers Accidents, and therefore fubject to a caution; and namely becaufe the matter of the Cheft, metal, or other things, may hinder.

Behold here a more fubtil and certain invention to find and difcover it out, without weighing it in the Water: Now Experience and Reafon fheweth us, that two like Bodies or Magnitudes of equal weight, and of divers Metals, are not of e qual quantity: and feeing that Gold is the heavieft of all Metals, it will occupy Iefs room or place; from which
 will follow
that the like weight of Lead in the fame form; will occupy or take up more room or place. Now let there be therefore prefented two Globes or Chefts of wood, or other matter alike, and equal one to the other, in one of which in the middle there is another Globe or body of Lead weighing 12 pound, (as C) and in the other a Globe or like body of Gold weighing 12 pound (as B.) Now it is fuppofed that the Wooden Globes or Chefts are of equal weight, form, and Magnitude: and to difcover which the Gold or Lead is in, take a

64 פathematical 2aecteation.

broad pair of Compaffes, and clip one of the Coffers or Globes fomewhat from the middle, as at D; then fix in the Cheft or Globe a fmall piece. of Iron between the feet of the Compaffes, as EK, at the end of which hang a weight G, fo that the other end may be counterpoyfed, and hang in aquilibrio: and do the like to the other Cheft or Globe. Now if that the other Cheft or Globe being clipped in like diftance from the end, and hanging at the other end the fame weight G, there be found no difference, then clip them nea. rer towards the middle, that fo the points of the Compafs may be againft fome of the Metal which is inclofed; or juft againft the extremity, of the Gold as in D, and fuppofe it hang thus in equilibrio, it is certain that in the other Coffer is the Lead; for the points of the Compaffes being advanced as much as before, as at \mathbf{F}, which takes up a part of the Lead (becaufe it occupies a greater place than the Gold) therefore that (hall help the Weight G to weigh, and fo will not hang in equilibrio, except G be placed near to F. Hence we may conclude that there is the Lead; and in the other Cheft or Globe there is the Gold.

Examind

satbematical Recteation.

Examination.

IF the troo Boxes being of equal magnitude weigbed in the Air be found to be of equal weizgt, they Shall neceSJarily take up like place in the Water, and therefore weeigh alfo one as much as another: Hence there is no poffibility to find the Inequality of the Metals wobich are inaclofed in there Boxes in the Waser: the intention of Archimedes woas not upone contrary Metals inclofed in equal Boxes, but confifted of comparing Metals, fimple in the Water one with another. Therefore the Inference is falle and abfurd.

PROBLEM XLIII.

Two Globes of diverfe Metals, (as one Gold, and the otber Copper) yet of equal weight, being put into a $B o x$, as $B G$, to find in which end the Gold or Copper is.

THis is difcovered by the changing of the places of the two Bowles or Glcbes, having the fame Counterpoife H to be hung at the o ther fide, as in N ; and if the Gold which is the leffer Globe, were before the neareft to the handle DE, having now changed his place, will be fartheft from the handle DE , as in K ;

66 matbematical Rerteation:

therefore the Centre of Gravity of the two Globes taken together, thall be farther feparate from the middle of the handle
 (under which is the Centre of Gravity of the Box) than it was before, and reeing that the handle is always in the middle of the Box, the weight N muft be augmented, to keep it in equilibrio: and by this way one may know, that if at the fecond time, the counterpoife be too light, it is a fign that the Gold is fartheft of the handle, as at the firft trial it was neareft.

PROBLEM XLIV.

How to reprefent divers forts of Rainbows bere below.

IHe Rainbow is a thing admirable in the World, which ravilheth often the Eyes and Spirits of men in confideration of its rich intermingled colours which are feen under the Clouds, feeming as the gliftering of the Stars, precious Stones, and Ornaments of the moft beauteous Flowers: fome part of it as the refplendent Stars, or as a Rofe, or burning Cole of fire, in it one may fee Dyes of fundry forts, the Viclet, the Blew,

matbematicat Rectration:

Blew, the Orange, the Saphir, the Jacinct, and the Emerald colours, as a lively plant placed in a green Soil : and as a moft rich Treafure of Nature, it is a high work of the Sun who cafteth his Rays or Beams as a curious Painter draws ftrokes with his Pencil, and placeth his Colours in an exquifite fituation; and Solomon faith, Eccle $\int \cdot 4 \cdot 3$. It is a chief and principal Work of God. Notwithftanding there is left to induftry how to reprefent it from above here below, though not in perfection, yet in part, with the fame intermixture of colours that is above.

Have you not feen how by Oars of a Boat it doth exceeding quickly glide upon the Water with a pleafant grace? Ariftotle fays, that it coloureth the Water, and makes a thoufand atoms, upon which the Beams of the Sun reflecting, make a kind of coloured Rainbow : Or may we not fee in Houfes or Gardens of pleafure Artificial Fountains, which pour forth their droppy Streams of Water, that being between the Sun and the Fountain, there will be prefented as a continual Rainbow? But not to go farther, I will thew you how you may do it at your Door, by a fine and facil Experiment.

Take Water in your Mouth, and surn your Back to the Sun, and your Face againft fome obfcure place, then blow out the Water which is in your Mouth, that it may be fprinkled in finall Drops and Vapours: You fhall fee thofe Atomes Vapours in the Bearns of the Sun to turn inco a fair Rainbow, but all the grief is, that it lafteth not, but foon is vanifhed.

But

68 刃ฺatbrmatical Recreation.

But to have one more ftable and permanent in his colours: Take a Glafs full of Water, and expore it to the Sun, fo that the Rays that pafs through ftrike upon a thadowed place, you will have pleafure to fee the fine form of a Rainbow by this reftection. Or take a Trigonal Glafs or Cryftal Glafs of divers Angles, and look through it, or let the Beams of the Sun pafs through it; or with a Candle let the Appearances be received upon a fhadowed place: you will have the fame contentment.

PROBLEM XLV.

How that if all the Porder in the world were inclofed within a Boove of Paper or Glafs, and being fired on all parts, it could not break that Borel.

1F the Bowl and the Powder be uniform in all his parts, then by that,means the Powder would prefs and move equally on each fide, in which there is no pofibility whereby it ought to begin by one fide more than another. Now it is impoffible that the Bowl fhould be broken in all its parts, for they are infinite.

Of like finenefs or fubtilty may it be that a Bowl of Iron falling from a high place upon a plain pavement of thin Glafs, it were impoffible any wife to break it; if the Bowl were perfectly round, and the Glafs flat and uniform in all his parts: for the Bowl would touch the Glafs

Matbematical Recteation.

but in one point, which is in the middle of infinite parts which are about it : neither is there any caufe why it ought more on one fide than on another, feeing that it may not be done with all his fides together; it may be concluded as fpeaking naturally, that fuch a Bowl falling upon fuch a Glafs will not break it. But this matter is meer Metaphyfical, and all the Workmen in the world cannot ever with all their Induftry make a Bowl perfectly round, or a Glafs uniform.

PROBLEM XLVI.

To find a number nobich being divided by 2, there will remain 1 ; being divided by 3 , there will remain I ; and fol likewife being divided by 4, 5, or 6, there would ftill remain 1; but being divided by 7, there will remain notbing.

IN many Authors of Arithmetick this Problem is thus propofed: A Woman carrying Egges to market in a Basktt, met an unruly fellow who broke them, who was by order made to pay for them: and the being demanded what number the had, the could not tell : but the remembred that counting them by 2 and 2 , there remained 1 ; likewife by 3 and 3 , by 4 and 4 , by 5 and 5 , by 6 and 6 ; there fill remained 1 , F 3

\%० Đوathematical Recteation.

but when the counted them by 7 and 7 , there reremained nothing: Now how may the number of Eggs be difcovered?

Find a Number which may exactly be meafured by 7 , and being meafured by $2,3,4,5$, and 6 , there will ftill remain a unite; multiply thefe numbers together, makes 720 , to which add I , fo have you the number, viz. 721 . In like manner 301 will be meafured by $2,3,4,5,6$; fo that 1 remains: but being meafured by 7 , nothing will remain; to which continually add 220 , and you have other numbers which will do the fame: Hence it is doubtful what number the had. Therefore not to fail, it muft be known whether they did exceed 400,800 , \&cc. in which it may be conjectured that it could not exceed. 4 or 5 hundred, feeing a Man or Woman could not carry 7 or 8 hundred Eggs, therefore the number was the former 301, which the had in her Basket: which being counted by 2 and 2 , there will remain 1 , by 3 and 3 , wo but counted by 7 and 7 , there will remain nothing.

刃૭atbematical \&erteation.

PROBLEM XLVII.

One bad a certain number of Crowns, and counting them by 2 and 2, there refted 1; counting them by 3 and 3 , there refted 2 ; counting the m by 4 and 4 , tbere refted 3 ; counting them by 5 and 5 , there refted 4 ; counting tbem by 6 and 6 , there reffed 5 ; but counting them by 7 and 7 , tbere remained notbing: How many Crowns migbt be bave ?

THis Queftion hath fome affinity to the precedent, and the Refolution is almoft in the Came manner: for here there muft be found a number, which multiplied by 7 , and then divided by $2,3,4,5,6$, there may always remain a number lels by 1 than the Divifor: Now the firft number which arrives in this nature is 119 , unto which if 420 be added, makes 539 , which alfo will do the fame: and fo by adding 420 , you may have other numbers to refolve this propofition.

72 פ9thematical Recceation.

PROBLEM XLVIII.

Hono many forts of Weigbts in the leaft manner muft there be to weigh all forts of things between I pound and 40 pound, and $\int 0$ unto 121 , on 364 pound.

T0 weigh things between I \& 40 , take numbers in tripple proportion, to that their fum be equal, or fomewhat greater than 40, as are the numbers $1,3,9,27$, I fay that with 4 fuch $\mathbf{W e i g h t s}$, the firft being of I pound, the fecond being 3 pound, the third being 9 pound, and the fourth being 27: any weight between $1 \& 40$ pound may be weighed. As admit to weigh 21 pound, put unto the thing that is to be weighed the 9 pound weight, then in the other Ballance put 27 pound and 3 pound, which doth counterpoife 21 pound and 9 pound, and if 20 pound were to be weighed, put to it in the Ballance 9 and I, and in the other Ballance put 27 and 3, and fo of others.

In the fame manner take thofe 5 Weights, I, $3,9,27,81$, you may weigh with them between 1 pound, and 121 pound: and taking thofe 6 Weights, as $\mathbf{1}, 3,9,27,81,243$, you may weigh even from I pound unto 364 pound. This depends upon the property of continued Proportionals, the latter of which containing twice all the former.

PROBLEM XLIX.

Of a deceitful Ballance, which being empty Seems to be juft, becaufe it bangs in equilibrio: notwithflanding putting 12 pound in one Ballance, and If in the other, it will remain in equilibrio.

ARifotle m keth mention of this Ballance in his Mechanick Queftions, and faith, That the the Merchants of purpofe in his time ufed them to deceive the World: the fubtilty or craft of which is thus, that one arm of the.Ballance is longer than another, by the fame proportion that one weight is heavier than another: As if the Beam were 23 inches long, and the handle placed fo that 12 inches fhould be on one fide of it, and II inches on the other fide: Conditionally that the fhorter end thould be as heavy as the longer, a thing eafie to be done : then afterwards put into the ballance two unequal weights in fuch proportion as the parts
 of the beam have one unto another, which is 12 to 11 , but fo that the greater be placed in the ballance which hangs upon the fhorter part of the Beam, and the leffer weight

74 Matbentatical 2erteation:

weight in the other ballance: it is moft certain that the ballances will hang in equilibrio, which will feem moft fincere and juft ; though it be moft deceitful, abominable, and falfe.

The reafon of this is drawn from the Experiments of Archimedes, who thews that two unequal weights will counterpoife one another, when there is like proportion between the parts of the Beam (that the handle feparates) and the Weights themfelves: for in one and the fame counterpoife, by how much it is farther from the Centre of the Handle, by fo much it feems heavier; therefore if there be a diverfity of diftance that the Ballances hang from the handle, there muft neceffarily be an inequality of weight in thefe Ballances to make them hang in equilibrio; and to difcover if there be deceit, change the Weight into the other Ballance: for as foon as the greater Weight is placed in the Ballance that hangs on the longer parts of the Beam, it will weigh down the other inftantly.

PROBLEML.

To beave or lift up a Bottle with a Straw.

TAke a Straw that is not bruifed, bow it that it make an Angle, and put it into the Bottle fo that the greateft end be in the Neck, then the Reed being put in the bowed part will caft fidewife, and make an Angle, as in the figure

ģatbematical ßecteation:

may be feen: then may you take the end which is out of the Bottle in your hand, and heave up the Bottle, and it is 5 much furer, by how much the Angle is acuter or Tharper; and the end which is bowed approacheth to the other perpendicular parts which
 come out of the Bottle.

PROBLEMLI.

How in the middle of a Wood or Defert, woithout the figlot of the Sun, Stars, Sbadow, or Compaß, to find out the North or South, or the four Cardinal Points of the World, Eaft, Weft, \&c.

IT is the Opinion of fome, that the Winds are to be obferved in this: if it be hot, the South is found by the winds that blow that way, but this Obfervation is uncertain, and fubject to much Error: Nature will help you in fome meafure to make it more manifeft than any of the former, from a Tree, thus: Cut a fmall Tree off, even to the ground, and mark the many Circles that are about the fap or pith of the Tree, which feem nearer together in fome part than in other, which is by reafon of the Suns motion about the Tree: for that the humidity of the parts of the

Tree

76 Matbematical Rectration.

Tree towards the South by the heat of the Sun is rarified, and caufed to extend : and the Sun not giving fuch heat towards the North part of the Tree, the Sap is leffer rarified, but condenfed; by which the Circles are nearer together on the North part than on the South part : therefore if a Line be drawn from the wideft to the narroweft part of the Circles, it Thall fhew the North and South of the World. Another Experiment may be thus: Take a fmall Needle, fuch as Women work with : place it gently down
 flat-wife upon ftill
Water, and it will not fink, (which is againft the general Tenet that Iron will not (wim) which Needle will by little and little turn to the North and South points. But if the Needle be great, and will not fwim, thruft it through a fmall piece of Cork, or fome fuch-like thing, and then it will do the fame : for fuch is the property of Iron when it is placed in aquilibrio, it ftrives to find out the Poles of the World; or Points of North and South in a manner as the Magnes doth.

geathematical Rectration.

Examination.

HEre is obfervable, that the moifture robich addeth to the gronth of the Tree, is dilated and rarified by the Meridional beat, and contracted by the Septentrional cold: this Rarefaction works upons the part of the bumour or moijture that is more tbin, wobich doth eafily difipate and evaporate : Which evaporation carries a part of the Salt woitb it; and becaufe that Solidation or Condenfation, fo that there is left but a part of the Nourifbment wobich the beat bskes up and confumes: So contrarily on the otber fide the Condenfation and Reftritive Quality of the Moifture caufeth le β Evaporation and Perdition: and fo confequently there remains more Nourifhment, which makes a greater increafe on that fide than on the other fide: for as Trees bave their gronoth in Winter, becaufe of their Pores, and thefe of the Eartb are Jout up: So in the Spring, woben their Pores are open, and when the Sap and Moitture is drawn by it, there is not $\int u c h$ Cold on the North fide that it may be condenfed at once: But contrarily to the fide robich is South, the beat maybe Such, that in little time by continuance, this moifture is diffipated greatly: And Cold is nothing but that n bich bardeneth and contraEleth the mojiture of the Tree, and $\bar{j} \dot{o}$ convertetb it into Wood.

78. 玉ตatbenatical derteation.

PROBLEM LII.

Ibree Perfons baving taken Counters; Cards, or other things, to find bow mucb each one bath taken.

CAufe the third party to take a number which may be divided by 4 , and as often as he takes four, let the fecond party take 7 , and the firft take 13 , then caufe them to put them all together, and declare the fum of it; which fecretly divide by 3 , and the Quotient is the double of the number which the third perfon did take. Or caufe the third to give unto the fecond and firft, as many as each of them hath; then let the fecond give unto the firft and third, as many as each of them hath; laftly, let the third give unto the fecond and firft, as many as each of them hath; and then ask how much one of them hath: (for they will have then all alike) fo half of that number is the number that the third perfon had at the nult ; which known, all is known.

PROBLEM LIII.

How to make a Confort of Mufick of many parts, with one Voice, or one Inftrument onely.

THis Problem is refolved, fo that a Singer or
Player upon an Inftrument, be near an Echo which anfwereth his Voice or Inftrument; and if

وĐatbematical Recteation.

the Echo anfwereth but once at a time, he may make a double; if twice, then a tripple; if three times, then an harmony of four parts: for it mult be fuch a one that is able to exercife both tune and note, as occafion requires. As when hebegins ut, before the Echo anfwer, he may begin fol, and pronounce it in the fame tune that the Echo anfwereth, by which means you have a fifth agreeable Confort of Mufick: then in the fame time that the Echo followeth, to found the fecond note $\mathrm{f}_{0} l$, he may found forth another fol higher or lower, to make an eight, the moft perfect Confort of Mufick, and fo of others, if he will continue his Voice with the Echo, and fing alone with two parts. Now Experience fheweth this to be true, which often comes to pafs in many Churches, making one to believe that there are many more parts in the Mufick of a Quire, than in effect truly there are, becaufe of the refounding and multiplying of the Voice, and redoubling of the Quire.

PROBLEM LIV.

To make or defcribe an Oval form, or that wobich near refembles unto it, at oxe turning with a pair of common Compaßes.

THere are many fine ways in Geometrical praCtices, to make an Oval Figure, or one near unto it, by feveral Centres: any of which I will not touch upon, but hew how it may be done promptly

8o matbrmatical Recteation.

promptly upon one Centre onely. In which I will fay nothing of the Oval form, which appears, when one defrribeth Circles with the points of a common Compass, fomewhat deep upon a Skin fretched forth hard : which contracting it felf in fome parts of the Skin maketh an Oval form. But it will more evidently appear upon a Column or Cylinder: if Paper be placed upon it, then with a pair of Compaffes defribe as it were a Circle upon it, which Papcr afterwards being extended, will not be circular, but oval-wife: and a pair of Compaffes may be fo accommodated, that it may be done alfo upon a Plain thus: As let the length of the Oval be HK,faften 2 Pins or Nails near the end of that Line, as F G, and take a thread which is double to the length of $G H$, or $F \mathrm{~K}$, then if you take a Compals
 which may have one foot lower than another, with a Spring between his legs,and placing one foot of this Compafs in the Centre of the Oval, and guiding the thred by the other foot of the Compaffes, and fo carrying it about : the Spring will help to defcribe and draw the Oval form. But initead of the Compaffes it may be done with ones hand only, as in the Figure may appear.

و9atbrnatical kecteation.
 PROBLEM LV. Of a Purre difficult to be opened.

IT is made to thut and open with Rings : firft at each flde there is a ftrap or ftring. as A B and $C D$, at the end of which are 2 Rings, B and D, and the ftring C D paffeth through the Ring B, f_{0} that it may not come out again, or be parted one from another : and fo that the Ring B may llide up and down upon the ftring $C D$, then over the purfe there is a piece of Leather E F GH, which covers the opening of the purfe, and there is another piece of Leather $A E$, which paffeth thorow many Rings, which hath a flit to wards the end I, fo great that the Aring $B C$ may flide into it: Now all the cunning or craft is how to make faft or to o pen the purfe, which
 confifts in making the ftring $B C$ flide through the fide at I, therefore bring down B to I, then make the end I pals thorow the ring B, and alfo D with his ftring to pals through the flit I, fo thall the Purfe be taft, and then may the frings be put as before, and it will feem difficult to difcover how it was done. Now to open the Purfe, put through the end I through the Ring B, and then through the flit I, by which you put through the String D C, by this way the Purfe will be opened.

82 وatbrnatical Recteation.

PROBLEM LVI.

Whetber it is more bard and admirable, without Compaffes to make a perfcit Circle, or being made, 10 find out the Centre of it.

1Tiş faid that upon a time paft, two Mathermaticians met, and they would make trial of their Induftry: The one made inftantly a Perfect Circle without Compaffes, and the other immediately pointed out the Centre thereof with the point of a Needle : Now which is the chiefeft Action? It feems the firft, for to draw the moft nobleft Figure upon a Plain Table without other help than the Hand and the Mind, is full of admiration; to find the Centre is but to find out onely one point, but todraw a Round, there muft be almoft infigite points, equidiflant from the Centre or middle; that in Conclufion it is both the Circle and the Centre together. But contrarily it may feem that to find the Centre is more difficult: for what attention, vivacity, and fubtilty muft there be in the Spirit, in the Eye, in the Hand, which will chufe the true point amongf a thourand other points? He that makes a Circle keeps always the fame diffance, and is guided by a half diftance to finifh the reft; but he that muff find the Centre, maft in the fame time take heed to the parts about it, and choofe one only point which is equally diftant from aninfinite of

פathematical kecteation.

other points which are in the Circumference; which is very difficult. Arifotleconfirms this amongt his Morals, and feems to explain the difficulty which is to be found in the middle of Vertue; for it may want a thoufand ways, and be far feparated from the true Centre of the end of a right Mediocrity of a vertuous Action : for to do well, it mult touch the middle point, which is but one, and there muft be a true point which refpects the end, and that's but one onely. Now to judge which is the moft difficult, as before is faid, either to draw the Round, or to find the Centre, the Round feems to be harder than to find the Centre, becaufe that in finding of it is done at once, and hath an equal diftance from the whole; But, as before, to draw a Round, there is a vifible pointimagined, about which the Circle is to be drawn: I efteem that it is as difficult therefore, if not more, to make the Circle without a Centre, as to find the middle or Centre of that Circle.

PROBLEM LVH.

Any one baving taken 3 Cards, to find how many points they contain.
T His is to be exercifed upon a full Pack of Cards of 52, then let one choofe any three at pleafure fecretly from your fight, and bid him fecretly account the points in each Card, and witl him to take as many Cards as will. make up 15 to

$$
\text { G } 2 \text { each }
$$

84 gatbematial kerreation.

each of the points of his Cards, then will him to give you the reff of the Cards, for 4 of them being rejected, the reft thew the number of points that his three Cards which he took at the firft did contain. As if the 3 Cards were 7,10 , and 4 ; now 7 wants of I5,8; take 8 Cards therefore for your tinft Card: the 10 wants of 15,5 ; take 5 Cards for your fecond Card: laftly, 4 wants of I5, II; take 1 I Cards for your third Card, and giving him the reft of the Cards there will be 25 ; from which take 4 , there remains 21 , the number of the three Cards taken, viz. 7,10 , and $4 \cdot:$

Whofoever would practife this play with is, 5,6 , or more cards, and that the whole number of cards be more orlefs than 52 ; and that the term be $15,14,12$, ofc. this general Rule enfuing may ferve: multiply the term by the number of cards taken at firft; to the product add the number of cards taken, then fubtract this fum from the whole number of cards; the remainder is the number which muft be fubtracted from the cards, which remains to make up the Game: if there remain nothing after the fubtraction, then the number of cards remaining doth juftly fhew the number of points which were in the cards chofen. If the fubtraction cannot be made, then fubtract the number of cards from that number, and the remainder added unto the cards that did remain, the fum will be the number of points in the cards taken, as if the cards were $7,10,5,8$, and the term given were 12 ; fo the firft wants 5 , the fecond wants 2 , the third wants 7 , and the fourth wants 4 cards, which taken, the party gives you

Matbematical Recteation.

the reft of the cards: then fecretly multiply 12 by 4 , makes 48 ; to which add 4 , the number of cards taken makes 52 , from which 52 thould be taken, reft nothing: therefore according to the direction of the remainder of the cards, which are, 30 , is equal to the points of the four cards taken, viz. $7,10,5,8$. Again, let thefe 5 cards be fuppofed to be taken, $8,6,10,3,7$; their differences to 15 , the terms are $7,9,5,12,8$, which number of cards taken, there will remain but 6 cards: then privately multiply 15 by 5 , makes 75 , to which add 5 makes 80 , from this take 52 , the number of cards, refts 28 , to which add the remainder of cards, makes 34 , the fum with $8,6,10,3,7$.

PROBLEM LVII.

Many Cards placed in divers ranks, to find which of theefe Cards any one bath thought.

TAke is Cards, and place them in 3 heaps in rank-wife, 5 in a heap: now fuppofe any one had thought one of thefe Cards in any one of the heaps, it is eafie to find which of the Cards it is, and it is done thus: ask him in which of the heaps it is, which place in the middle $\cap £$ the other two; then throw down the Cards by 1 and I into three feveral heaps in rankwife, until all be caft down, then ask him G 3

86. Seathenatical Recteation.

in which of the ranks his Card is, which heap place in the middle of the other two heaps al ways, and this do four times at leaft, fo in putting the Cards altogether, look upon the Cards, or let their back be towards you, and throw out the eight Card, for that was the Card thought upon without fail.

PROBLEM LVIII.

Miny Cards being offered to fundry Perfons, to find rgbich of the ece Cards any one thinketb upon.

A
Dmit there were 4 perfons, then take 4 Cards and thew them to the firf, bid him think one of them, and put thefe 4 away; then take 4 other Cards, and thew them in like manner to the fecond perfon, and bid him think any one of thefe Cards, and fo do to the third perfon, and fo the fourth, Ther take the 4 Cards of the firft perfon, and difpofe them in 4 ranks, and upon them the 4 Cards of the fecond perfon, pron them allo thefe of the third perfon, and laftly, upon them thefe of the fourth perfon; then: Thew unto each of thele parties each of thefe ranks, and ask him if his Card be in it which he thought, for infallibly that which the firft party thought upon will be in the firf rank, and at the bottom the Card of the fecond perfon will be in the fecond rank, the Card of the third thought upon will be in the third rank, and the fourth

פgatberinatical kectration.

mans Card will be in the fourth rank, and fo of others; if there be more perfons, ufe the fame method. This may be practifed by other things, ranking them by certain numbers allotted to pieces of money, or fuch-like things.

PROBLEM LIX.

How to make an Inftrument to belp Hearing, as Galileus made to belp the Sight.
r Hink not that the Mathematicks (which hath furnithed us with fuch admirable helps for *Seeing) is wanting for that of Hearing; it's well known that long Trunks or Pipes make one hear well far off, and Experience Thews us that in certain places of the Orcades in a hollow vault, that a man feaking but foftly at one corner thereof, may be audibly underftood at the otherend: notwithftanding tho fe which arebetween the parties cannot hear him fpeak at all: and it is a general Principle, that Pipes do greatly help to ftrengthen the Activity of Natural Caules: We fee that fire contracted in a Pipe, burns 4 or 5 foot high, which would fcarce heat, being in the open air : the rupture or violence of water iffuing out of a Fountain, fhews us that water being contracted into a Pipe, caufeth a violence in its paffage. The Glaffes of Galileus makes us fee how ufeful Pipes G 4 or

88 פatbematical Recreation.

ns Trunks are to make the Light and Species more vifible and proportionable to our Eye. It is faid that a Prince of Italy hath fair Hall, in which he can with facility hear diffinctly the Difcourfes of thofe which walk in the adjacent Gardens, which is by certain Veffels and Pipes that anfwer from the Garden to the Hall. Vitruvius makes mention alfo of fuch Veffels and Pipes to frengthen the Voice and Action of Comedians : and in thefe times amongft many Nuble Perfonages, the new kind of Trunks are ufed to help the hearing, being made of Silver, Copper, or other refounding material ; in funnel-wile putting the wideft end to him which feeaketh, to the end to contract the Voice, that fo by the Pipe applied to the Ear it may be more uniform, and lefs in danger to diffipate the Voice, and fo confequently more fortified.

PROBLEM LX.

Of a fine Lamp whbich goes not out, thougb one carry it in ones pocket.: or being. rolled upon the ground woill fitill burn.

1
T muft be obferved that the Veffel in which the Oil is put into, have two pins on the fides of it, one againft another, being included within a circle: this circle ought to have two other pins, to enter into another circle of brafs, or other folid ratter: lafly, this fecond circle hath two
pian, tuintle Wfiver of thele dle will Centre though any way you 0 tumiti it wil which andad hold to known Anditi

gatbematical kectration.

pins, which may hang within fome Box to contain the whole Lamp, in fuch manner, that there be fix pins in different pofition: Now by the aid of thefe pegs or pins, the Lamp that is in the middle will bealways well fituated according to his Centre of Gravity, though it be turned any way: though if you endeavour to turn it upfide-down, it will lie level: which is pleafant and admirable to behold to thofe which
 know not the caufe. And it is facil from this to make a place to reft quiet in, though there be great agitation in the putward parts.

PROBLEM LXI.

Any one baving thougbt a Card amongf many Cards, bond artificially to difcover it out.

TAke any number of cards, as 10,12, and open fome four or five to the parties fight, and bid him think one of them, but let him note whether it be the firft, fecond, third, ovs. then with promptnefs learn what number of Cards you had in your hands, and take the other part of the Cards, and place them on the top of there you hold in your hand; and having done fo,

90 mathentatical Recteation.

fo, ask him whether his Card were the firft, fe cond, erc. then before knowing the number of Cards that were at the bottom, account backwards until you come to it: ©o thall you eafily take out the Card that he thought upon.

PROBLEM LXII.

Three Women, A, B, C, carried Apples to a Market to fell, A had 20, B 30, and C 40 ; they fold as many fon a penny the one as the otber, and brougbt bome one as much money as another: How could this be?

IHe Anfwer to the Problem is eafre: As fuppofe at the beginning of the Market, A fold her Aples at a penny an Apple, and fold but two, which wastwo pence, and fo the had 18 left: But B fold 17 , which
 was 17 pence, and fo had 13 left: C fold 32, which was 32 pence, and fo had 8 Apples left. Then A faid fhe would not fell her Apples [o cheap, but would fell them for 3 pence a piece, which the did, and fo her Apples came to 54 pence: And B having left but 13 Apples, fold them at the fame rate, which came to 39

\$9atbernatical kettration.

pence: And lafly, C had but 8 Apples, which at the fame rate came to 24 perice : Thefe fums of money which each others before received come to 56 pence, and fo much each one received; and fo confequently brought home one as much as another.

PROBLEM LXIII.

Of the Properties of Some Numbers.

FIrft, any two numbers is juft the fum of a number, chat have equal diftance from the half of that number: the one augmenting, and the other diminifhing: as 7 and 7 , of 8 and 6 , of 9 and 5 , of 10 and 4 , of 11 and 3, of 12 and 2 , of 13 and 1 , as the one is more than the half, the other is lefs.

Secondly, It is difficult to find two numbers, whofe fum and product is alike, (that is) if the numbers be multiplied one by another, and added together, will be equal, which two numbers are 2 and 2, for to multiply 2 by 2 makes 4 , and adding 2 unto 2 makes the fame : this property is in no other two whole numbers, but in broken numbers thereare infinite, whofe fum and product will be equal one to another. As Clavius thews upon the 36 Prob. of the 9 th Book of Euclide.

Thirdly,

92 Mathentatical ßecteation.'

Thirdly, The numbers 5 and 6 are called circular numbers, becaufe the circle turns to the point from whence it begins: fo thefe numbers multiplied by themfelves, do end always in 5 and 6 , as 5 times 5 makes 25 , that again by 5 makes 125 , fo 6 times 6 makes 36 , and that by 6 makes 216, bc.

Fourthly, The number 6 , is the firft which Arithmeticians call a perfect number, that is, whofe parts are equal unto it, fo the fixth part of it is I, the third part is 2 , the half is 3 , which are all his parts: now 1,2 , and 3 , is equal to 6 . It is wonderful to conceive that there is fo few of them, and how rare thefe numbers are, fo of perfect men: for betwixt I and 1000000000000 numbers there is but ten, that is, $6,28,486,8128,120816$, 2096128,33550336,536854528,8589869056, and $1374386913^{2} 8$, with this admirable property, that alternately they end all in fix and eight, and the Twentieth Perfect Number is 151115727451553768931328.

Fifthly, The number 9 amongt other priviledges carries with it an excellent property; for take what number you will, either in grofs or in part, the nines of the whole or in its parts rejected; and taken fimply will be the fame, as 27 it makes 3 times 9 , fo whether the nines be rejected of 27 or of the fum of 2 and 7 , it is all one; fo if the nines were taken away of 240 , it is all one if the nines were taken away of 2,4 , and 0 ; for there would remain 6 in either $;$ and fo of others.

Sixthly,

Sixthly, is being multiplied by $2,4,5,6,7,8$, or 9 , will end and begin with like numbers; fo 11 multiplied by 5 makes 55 , if multiplied by 8 , it makes 88 , evc.
Seventhly, the numbers 220 and 284 being unequal, notwithflanding the parts of the one number do always equalize the other number: fo the aliquot parts of 220 are 110,54 , $44,22,20,11,10,5,4,2,1$, which together makes 284 , the aliquot parts of 284 , are 142,71 , $4,2, x$, which together makes $2: 0$, a thing rare and admirable, and difficult to find in other nurr.bers.

Eightly, The numbers 3,4 5, (found out by Pythagoras) have an excellent property in making of Rectangle Triangles: upon which the 47 Pro. of the firt Book of Euclide was grounded, that the fquare of the Hypotbenufal in any fuch Triangle, is equal to the fquare of the other two fides: that is 5 , the Hypotbenufal multiplied in smakes 25 , and 4 multipled in 4 makes 16 , and 3 multipli'd in 3 makes 9 , but 9 and 16 isequal to 25 , or if thefe numbers 3,$4 ; 5$, be doubled, viz. 6,8 , 10: the fquare of 10 is equal to the fquare of 8 and 6 , viz. 10 times 10 makes 100 , and 8 times 8 makes 64 , and 6 times 6 is 36 ; which

94 9atbentatical Recteation.

36 and 64 , put together makes 100 , as before: and fo may they be Tripled, Quadrupled, occ.
The ufe of thefe numbers $3,4,5$, are manifold, but it may be applied thus, for the help of fuch which plot out Gardens, Houfes, encamp Horfe or Foot, ©r. Example, take 3 Cords, one of 5 yards, another of 4 yards, and another of 3 yards, or the double, tripple, decuple, ofr. or all in one line, and make knots at the seams of thefe meafures, fo thefe three parts willmake a right angled Triangle, as A, B, C; and it is eafie with this Triangular Cord to plot out a Gardenplat, a fquare building plat, or other long fquare. Asfuppofe there is a figure, EDFG to be plotted, ED of 60 yards broad, and FG 100 yards long. Firft meafure out E D 60 yards, and at E and D place two pins or pegs; then at E place the Augle of your Triangular Cord B , and let the line of the Triangle A B be in the line ED, which fuppofe at A; make the Cord $A B$ faft in E and A, then put the other two Cords of the Triangle until they meet, which will be in C , and place a peg at C ; take afterwards a long Cord, and by the points E and C augment it unto \mathbf{F}_{100} yards from E, and an place a peg; then at F apply your Triangular Cord as you did aE E, and fo may you draw the linter F as tong as E D, vizo 60
pards.
and 10
hallibe
length
mine thi
the forlf
miay eali
Ifone
isodd.
the forf
The
being?
numble
a fomate
Ifod
nimf fir
number
fivedris
Lopuare

gatbrmatical Rectration.

yards. Laftly, it is eafie to draw the Line GD, and fo the Rectanguled Figure or Long Square Thall be plotted, whofe breadth is 60 yards, and length 100 yards, as was required: and to examine this, meafure $E \mathrm{G}$, then if FD be as long, the figure is true : otherwife it is defective, and may eafily be amended.

If one be taken from any fquare nnmber which is odd, the fquare of half of it being added to the firt fquare, will make a quare number.

The qquare of half any even number + . s being added to that even number makes a quare number, and the even number taken from it leaves a quare number.

If odd numbers be continually added from the unity fucceffively, there will be made all fquare numbers, and if cubick numbers be added fucceffively from the unity, there will be likewife made fquare numbers.

PROBLEM LXIV.

Of an Excellent Lamp, mbich ferves or furrigheth it Self with Oil; and burns a long time.

ISpeak not here of a common Lamp which Cardanus writes upon in his Book de fubtilitate, for that's a little Veffel in Columne-wife, which

96. Matbentatical kecteation.

which is full of Oyl , and becaufe there is but one little hole at the bottom near the Week or Match, the Oil runs not, for fear that there be emptinefs above: When the Match is kindled it begins to heat the Lamp, and rarifying the Oil it iffueth by this occafion: and fo fends his more airy parts above, to avoid vacuity.

But that which I here deliver is more ingenious, the principal piece of which is a veffel, as C $D_{\text {, }}$ which hath near the bottom a hole, and a funnel or pipe C, and then a bigger funnel, which paffeth thorow the middle of the Veffel, having an opening at D near the E top, and another at the bottom, as at E, near the Veffel under it, fo that the Pipe touch it not: the Veffel being thus made, fill it with Oy , and opening the hole C , the Oil running out will ftop the hole at E, or throwing in Oil into the Veffel underneath, until E be ftopped; then the Oil at C will not run: becaufe no air can come into the Pipe DE. Now as the Oil burneth and confumeth in the Veffel AB, the hole at Ewill begin to open, then immediately will C begin to run to fill up $A B$, and E being nopped with the Oil, the Oil at C ceafeth to run.

Itis

qGathentatical Recteation.

It is certain that fuch a Lamp the Atbenians ufed, which lafted a whole year without being touched : which was placed before the Statue of Minerva, for they might put a certain quantity of Oyl in the Lamp C D, and a match to burn without being confumed: fuch as the Naturalifts write of, by which the Lamp will furnifh it felf, and fo continue in burning : and here may be noted that the Oyl may be poured in at the top of the Veffel at a little hole, and then made faft again that the Air get not in.

PROBLEM LXV.

Of the play at Keyles or Nine-Pins.

- Ou will fcarce believe that with one Bowl, and at one blow playing freely, one may frike down all the Keyles at once: yet from Mathematical Principles it is eafie to be demonftra-. ted, that if the hand of him that plays were fo well affured by Experience as Reafón induceth one thereto, one might at one blow ftrike down all the Keyls, orat leaft 7 or 8, or fuch a number as one pleafeth.

For they are but Nine in all, difpofed or placed in a perfect Square, having Three every way. Let us fuppofe then that a good Player beginning to play at I fomewhat low, thould fo ftrike it, that it thould ftrike down the Keyles 2 and 5 , and thefe might in their violence frike H down

98 פatbematical Recteation.

 down the Keyles 3 , 6 , and 9 , and the Bowl being in motion may ftrike down the Keyle 4, and 7; which 4 Keyle may frike the Keyl8, andfo all the 9 Keyles may be ftriken down at once.

PROBLEMLXIV.

Of Spectacles of pleajure.

SImple Spectacles of blew, yellow, red or green colour, are proper to recreate the fight, and will prefent the Objects died in like colour that the Glaffes are, only thofe of the Green do fomewhat degenerate; inftead of thewing a lively colour, it will reprefent a pale dead colour, and it is becaufe they are not died green enough, or receive not light enough for green : and colour there Images that pars through thefe Glaffes unto the bottom of the Eye. ? . - .

@9atbematical Rerreation:

Examination.

IT is certain, that not onely Glafles dyed green, but all otber Glaffes coloured, yield the appearances of Objects ftrong or weak in colour according to the quantity of the dye, more or le β, as one being very yellow, another a pale yellow; nows all colours are not proper to Glafjes to give colour, bence the defect is not that they want faculty to receive light, or refift the penetration of the beams; for in the fame Claffes thofe which are mof dyed, give always the Object, more higb-coloured and objcure, and tbofe which are le β dyed, give them more pale and clear: and this is daily made manifeft by the painting of Glaß, robich. binders more the penetration of the light than dying doth, where all the matter by fire is forced into the Glafs, leaving it insall parts tranparent.

Spectacles of Crytal cut with divers Angles Dia-mond-wife, do make a marvellous multiplication of the appearances, for looking towards a Houfe it becomes as a Town, a Town becomes like a City, an armed man feems as a robole Company, caufed Solely by the diverfity of Refractions, for as many Plains as there are on the out fide of the Spectacle, fo many times will the Object be multiplied in the appearance, becaufe of divers Images caft into the Eye. Thefe are pleafurable Specfacles for avaritious perfons that love Gold and Silver, for one Piece will Seem many, or one

100 seathematical kecteation:

beap of Money will Seem as a Treafury: bui all the niif cbief is, be will not bave bis end in the enjoying of it, for endeavouring to take it, it will appear but a deceitful Image, or delufion of nothing. Here may you note, that if the finger be directed by one and the Same ray or beam, nobich pointetb to one and the Same object, then at the finft you may touch that vifible $O k$ ject without being deceived: otherwife you may fail often in touching that which you See. Again, there are Spectacles made which do diminifh the thing feen wery much, and bring it to a fair perßective form; efpecially if one look upon a fair Garden-plat, a greater Walk, a ftately Building, or great Court; the induftry of an exquifite Painter cannot come near to expreß the lively form of it as this Glaß woill reprefent it; you will bave pleafure to fee it really experimented; and the caufe of this is, that the Glafles of thefe Spectacles are bollow and thinner in the middle, than at the edges, by which the vijual Angle is made leffer: Xou may obferve a further fecret in the fe Spectacles, for in placing them upon a Wixdow one may fee thofe that pars to and fro in the Streets, witbout being feen of any; for their property is to raife up the Objects that it looks upon.

Now I would not pafs this Problem without faying Sometbing of Galileus admirable Glafs: for the common fimple perfpective Glaffes, give to Aged Men but the Eyes or fight of Young Men, but this of Galileus gives a Man an Eagles Eye, or an Eye that pierceth the Heavens: Firft it difcuvereth the 乃poty and fhadowed opacous Bodies that are found about the Sun, which darkeneth and diminifheth the Plendor of that beautiful and Jhining Luminary:

Matbrmatical Recteation.

Secondly, It hews the New Planets that accompany Saturn and Jupiter: Thirdly, in Venus is Seen the New, Full, and Quartile Increaje; as in the Moon by ber Separation from the Sun: Fourtbly, the artificial ftructure of this Inftrument belpetb us to Jee an innumerable number of Stars, which otherwifs are obfcured, by reafon of the natural weaknefs of our fight; yea the Stars in Via Lactea are feen moft apparently; where tbere feem no Stars to be, this Inftrument makes apparently to be feen, and further delivers them to the Eye in their true and lively colour, as they are in the Heavens, in which the 乃plendor of Some is as the Sun in bis moft gloriows Beauty.

This Glafs bath alfo a moft excellent ufe in obfir. ving the Body of the Moon in time of Eclipfes, for it augments it manifold, and molt manifeftly fhews the true form of the cloudy Subftance in the Sun; and by it is feen when the Shadow of the Earth begins to celip \int e the Moon, and when totally ghe is overBhadowed. Befides the Caeleftial Uses robich ave made of this Glass, it bath anotber Noble Property, it far exceedeth the ordinary Perßpective Glaffes, which are ujed to See things remote upon the Eartlo: For as this Glafs reachetb up to the Heavens, and excelletb them there in bis performance, $\int 0$ on the Earth it claimeth prebeminency, for the Objectis which are fartheft remote, and mof obfcure ${ }_{2}$ are feen plainer than thofe which are near at band, fcorning as it woere all Small and trivial Services, as leaving them to an inferiour belp: great ufe may be made of this Glafs in difcovering Ships, Armies, Jvc. Now the apparel or parts of this Inftrument or, Glafs is mean H3

102 刃gatbentatical kecteation.

or fimple, which makes it the more admirable. (Seeing it performs fuch great Service) baving but a Convex Glafs, thickeft in the middle, to unite and amafs the Rays, and make the Object the greater: to the augmenting the vifual Angle, as alfo a Pipe or Trunk to amafs the Species, and binder the greatnefs of the light which is about it: (to fee well, the Object muft be well inlightened, and the Eye in oblcurity, then there is adjoyned unto it a Glaß of a Short fight to diftinguifb the Rays, which the otber would wake more confufed if alone. As for the proportion of thofe Glaffes to the Trunk, though there be certain Rules to make them, yet it is often by bazard that there is made an excellent one, there being \int_{0} many difficulties in the action; therefore many ought to be tried, Seeing that exact proportion in Geometrical Calculation cannot ferve for diverfity of fights in the Obfervation.

м9tbentatical kecteation.

PROBLEM LXVII.

Of the Adamant or Magnes, and the Needles torched therewith.

WHo would believe, if he faw not with his Eyes, that a Needle of Steel being once touched with the Magnes, turns not once, not a year, but as long as the World larteth, his end towards the North and South; yea though one remove it, and turn it from its pofition, it will come again to his points of North and South? Who would have ever thought that a brute Stone, black and ill formed, touching a Ring of Iron, thould hang it in the Air, and that Ring fupport a fecond, that to fupport a third, and fo unto IO_{3} 12, or more, according to the ftrength of the Magnes; making as it were a Chain without a Line, without fouldering together, or without any other thing to fupport them onely; but a moft occult and hidden vertue, yet moft evident in this effect, which penetrateth infenfibly from the firft to the fecond, from the fecond to the third, ©rc.

Is it not a wonder to fee that a Needle touched once will draw other Needles; and fo a Nail, the point of a Knife, or other pieces of Iron? Is it not a pleafure to fee how the Magnes will turn File-duft, or move Needles, or Nails being upon a Table, or upon a piece of paper? For as foon as the Magnes furns or moves over, it moves

$$
\mathrm{H}_{4}
$$

alfo:

104 giatbematical kerceation.

alfo: who is it that would not be ravifhed as it were tofee ahand of
 Iron write upon a Plank, without feeing the Magner which caufeth that motion behind the Plank, or to make an Image of Iron to run up and down a Turret : now infinite of fuch inventions is proper to be extraAed from the properties of the Magnes.
What is there in the World that is more capable to caft a deeper aftonifhment in our minds than a great maffie fubftance of Iron to hang in the Air in the midat of a Building without any thing in the World touching it, but only the Air? As fome Hiftories affure us that by the aid of a Magnes or Adamant, placed at the Roof of one of the Turkifh Synagogues in Meca, the Sepulchre of that infamous Mabomet refts fufpended in the Air; and Pliny in his Natural Hiftory writes that the Architector Democrates did begin to vault the Temple of Arfinoe in Alexandria, with frore of Magnes to produce the like deceit, to hang the Sepulchre of that Goddefs likewife in the air.

[^0]

and fhould expofe my felf to the laughter of the World, if I hould brag to fhew others the caufe how this appeareth, than in its own natural fympathy, for why is it that a Magnes with one end will caft the Iron away, and attract it with the other? From whence cometh it that all the Magnes is not proper to give a true touch to the Needle, but onely in the two Poles of the Stone: which is known by hanging the Stone by a thread in the air until it be quiet, or placed upon a piece of Corkin a Difh of Water, or upon fome thin Board, for the Pole of the Stone will then turn towards the Poles of the World, and point out the North and South, and fo thew by which of thefe ends the Needle is to be touched?

From whence comes it that there is a variation in the Needle, and pointeth not out truly the North and South of the World, but only in fome place of the Earth?

How is it that the Needle made with pegs and inclofed within two Glaffes, fheweth the height of the Pole, being elevated as many degrees as the Pole is above the Horizon?

What's the caufe that Fire and Garlick takes away the Property of the Magnes? There are many great hidden Myfteries in this Stone, which have troubled the Heads of the moft Learned in all Ages, and to this time the World remains ig. norant of declaring the true caufe thereof.

Some fay, that by help of the Magnes perfons which are abfent may know each others mind,

106刃athematical Recteation.

mind, as if one being here at London, and another at Prague in Germany, if each of them had a Needle touched with one Magnes, then the virtue is fuch that in the fame time that the Needle which is at Prague fhall move, this that is at London fhall alfo', provided that the parties have like fecret Notes or Alphabets, and the obfervation be at a fet hour of the day or night; and when the one party will declare unto the other, then let that party move the Needle to thefe Letters which will declare the matter to the other, and the moving of the other parties Needle Thall open his intention.

The invention is fubtile, but I doubt whether in the World there can be found fogreat a Stone, or fuch a Magnes which carries with it fuch virtue : neither is it expedient, for Treafons would be then too frequent and open.

Examination.

THe Experimental Difference of Rejection and Attracion proceeds not from the different Nature of Stones, but from the Quality of the Iron; and the virtue of the Stone confijeth onely and especially in his Poles, robicls being banged in the Air surus one of bis ends always naturally towards the South, and the otber towards the North: but if a Rod of Iron be touched with one of the ends thereof, it bath the like property in twrning North and Soutb, as the

刃athematical kecteation.

Magnes bath: Notwithftanding the end of the Iron Rod toucbed, bath a contrary pofition, to that end of the Stone that touched it; yet the fame end will attract it, and the other endreject it, and fo contrarily. This may eafily be experimented upon two Needles toucbed with one or different Stones, though they bave one and the fame pofition; for as you come unto them apply one end of the Magnes near unto them, the North of the one will abbor the North of the other, but the North of the one woill always approach to the Soutlo of the otber: and the fame affeciion is in the Stones themfelves. For the finding of the Poles of the Magnes, it may be done by bolding a fmall Needle between your fingers Softly, and So mowing it from part to part over the Stone, until it be beld perpendicular, for that Shall be one of the Poles of the Stone wobich you may mark out; in like manner find out the atber Pole. Now to find out wobich of tho Se Poles is North or South, place a Needle being touched with one of the Poles upon a \int mootb Convex Body, (as the Nail of ones Finger, or Such-like) and mark which way the end of the Needle that was touched turneth: if to the South, then the point that touched it woas the South-Pole, \&c. and it is mofe certain, and according to Reafon and Experience, that if it be fufpended in æquilibrio in the Air, or fupported upon the Water, it will turn contrary to the Needle that toucheth it: for then the Pole that was marked for the South fhall turn to the North, \&c.

108 99athematical Recteation．

PROBLEM LXVIII．

Of the Properties of Polipiles or Bowels to blow the Fire．

THefe are concave Veffels of Brafs or Copper or other material，which may indure the Fire；having a fmall hole very narrow，by which it is filled with Water：then placing it to the fire， before it be hot there is no effect feen；but as foon as the heat doth penetrate it，the Water be－ gins to rarifie，and iffueth forth with a hideous and marvelous force；it is pleafure to fee how it blows the fire with great noife．

Vitruvius in his firft Book of Arcbitecture， Cap．8．approves from thefe Engines， that Wind is no other thing than a quantity of vapours and exhalations agi－ tated with the air by rarifaction and condenfation，and we may draw a confequence from it，to thew that a little Wa－ ter may ingender a very great quantity of Va － pours and Air：for a Glafs of Water thrown in－ to an ⿸厂⿰丨丿⿱一土寸. hour，fending forth his vapours a thoufand times greater than it is extended．

刃atbematical 2xecteation:

Now touching the form of thefe Veffels, they are not made of one like fafhion: fome make them like a Bowl, fome like a head painted, reprefenting the wind, fome make them like a Pear: as though one would put it to roft at the fire, when one would have it to blow, for the Tail of it is hollow, in form of a funnel, having at the top a very little hole no greater than the head of a Pin.

Some do accuftom to put within the жolipile a crooked Funnel of many foldings, to the end that the Wind that impetuoufly rolls to and fro within, may imitate the Noife of Thunder. Others content themfelves with a fimple Funnel placed right upward, fomewhat wider at the top than elfewhere, like a Cone, whofe Bafis is the mouth of the Funnel : and there may be placed a Bowl of Iron or Brafs, which by the vapours that are caft out will caufe it to leap up, and dance over the Mouth of the $\mathbb{E} \mathbb{R}^{-}$ lipile.

Laftly, Some apply near to the hole fmall Wind-mills, or fuch-like, which eafily turn by reafon of the Vapours; or by help of two or more bowed Funnels, a Bowl may be made to turn: thefe FEolipiles are of excellent ufe for the melting of Metals, and fuch-like.

Now it is cunning and fubtilty to fill one of thefe Eolipiles with Water at fo little a hole, and therefore requires the knowledge of a Philofopher to find it out : and the way is thus:

Heat

110
 و9athematical Recteation.

Heat the E.olipiles being empty, and the Air which is within it will become extreamly rarified; then being thus hot, throw it into Water, and the Air will begin to be condenfed: by which means it will occupy lefs room : therefore the W ter will immediately enter in at the hole to avoid vacuity. . Thus you have fome Practical Speculation upon the Eolipile.

FROBLEM LXIX.

Of the Thermometer : or an Inftrument to meaJure the degrees of Heat and Cold in the Air.

THis Inftrument is like a Cylindrical Pipe of Glafs, which hath a little Ball or Bowl at the top, the fmall end of which is placed into a Veffel of Water below, as by the Figure may be feen.

Then put fome coloured Liquor into the $\mathbf{C y}$ lindrical Glass, as blew, red, yellow, green, or fuch-like: fuch as is not thick. This being done, the ufe may be thus.

Firf, I fay, that as the Air inclofed in the Tbermumeter is rarified or condenfed, the Water will evidently afcend or defcend in the Cylinder: which you may try eafily by caryying the Thermometer from a place that is hot unto a place that is cold, or without removing of it; if you foftly apply the Palm of the Hand upon the Ball of the

'Matbematical kectration.

Thermometer: the Glass being fo thin, and the Air fo capable of Rarifaction, that at the very in ftant you may fee the Water defcend; and your hand being taken a way, it will foftly afcend to his former place again. This is yet more fenfible when one heats the Ball at the top with his breath, as if one would fay a word in his ear, to make the Water to defcend by Command, and the reafon of this motion is, that the Air heated in the Thermometer, doth rarifie and
 dilate, requiring a greater place; hence preffeth the Water, and caufeth it to defcend: contrariwife when the Air cooleth and condenfeth, it occupieth lefs room; now Nature abhorring vacuity, the Water natu rally afcendeth.

In the fecond place, I fay, that by this means one may know the degrees of Heat and Gold which are in the Air each hour of the day; forafmuch as the exterior Air is either hot or cold, the Air which is inclofed in the Thermometer doth likewife either rarifie or condenfe, and therefore the Water afcends or defcends; fo you thall fee that the Water in the morning is mounted high, afterward by little and little ir will defcend towards noon or mid-day; and towards evening it will again afcend : fo in Winter it will mount fo high, that all the Cylinder of the Ibermometer will be

II 2 99athentatical Rectsation.

full, but in Summer it will defcend fo low that fcarce there will be perceived in it any water at all.

Thofe that will determine this change by numbers and degrees, may draw a Line upon the Cylinder of the Thermometer; and divide it into 4 degrees, according to the ancient Pbile oppbers, or into 4 degrees, according to the Phyficians, dividing each of thefe 8 into 8 others, to have in all 64 divifions; and by this way they may not onely diltinguilh upon what degree the Water afcendeth in the morning, at mid-day, and at any other hour : butalfo one may know how much one day is hotter or colder than another, by marking how many degrees the Water afcendeth or defcendeth, one may compare the hotteft and coldeft days in a whole year together, with thofe of another year : Again one may know how much hotter one room is than another, by which alfo one might keep a Chamber, a Furnace, a Stove, dec. always in an equality of heat, by making the water of the Thermometer reft always upon one and the fame degree. In brief, one may judge in fome meafure the burning of Fevers, and near unto what extenfion the air can be rarified by the greateff heat.

Many make ufe of thefe Glaffes to judge of the Weather: for it is obferved that if the Water fall in 3 or 4 hours a degree, or thereabout, that rain infueth, and the Water will ftand at that ftay until the Weather change: Mark the Water at your going to bed, for if in the rrorning it hath defcended, rain followeth; but if it be mounted

وatbentatical kecteation.

mounted higher, it argueth fair weather: $f 0$ in very cold weather, if it fall fuddenly, it is fnow; or fome fleekey weather that will infue.

PROBLEM LXX.

Of the Propiortion of Humane Bodies, of Statues;

 of Coloßus, or buge Images!, and of monjtrous Giants.Drtbagoras had reafon to fay, That Man is the meafure of all things:
Firf, Becaule he is the moft perfect amongft all bodily Creatures; and according to the Maxime of Philofophers, That which is moft perfect, and the firft in Rauk, meafureth all the reft.

Secondly, Becaufe in effect the ordinary meafure of a foot, the inch, the cubit, the pace, have taken their names and greatnefs from Humane Bodies.

Thirdly, Becaufe the fymmetry and concordancy of the parts is fo admirable, that all Works which are well proportionable, as namely the building of Temples, of Ships, of Pillars, and fuch-like pieces of A rchitecture, are in fome meafure fafhioned and compofed after his Proportion. And we know that the Ark of Noab, built by the Commandment of God, was in length 300 Cubits, in breadth 90 Cubits, in height or depth 30 Cubits, fo that the length contains the breadth fix times, and tein times the depth: Now a Man being meafured,

114 9Gathematical Recteation.

you will find him to have the fame proportion in length, breadth, and depth.

Vilalpandus treating of the Temple of Solomon (that Chieftain of Works) was modulated all of good Arcbitecture, and curioully to be obferved in many pieces to keep the fame proportion as the Body to his parts : fo that by the greatnefs of the Work, and proportionable $\int y m$ metry, fome dare affure themfelves that by knowledge of one onely part of that building, one might know all the meafures of that goodly Structure.

Some Arcbitecis fay that the Foundation of Houfes, and Bafis of Columns, are as the Foot; the Top and Rouf as the Head, the reft as the Body. Thofe which have been fomewhat more curious, have noted that as in humane Bodies, the parts are uniform, as the Nofe, the Mouth, Or. thefe which are double are put on one fide or other, with a perfect equality in the fame $A r$ cbitecture.

In like manner fome have been yet far more curious than folid; comparing all the Ornaments of a Corinth to the parts of the Face, as the Brow, the Eyes, the Nofe, the Mouth; the rounding of Pillars to the writhing of Hair, the Channels of Columns to the Foldings of Wamens Robes, orc.

Now building being a Work of the beft Artitt, there is much reafon why man ought to make his imitation from the chief Work of Nature, which is man.

Hence it is, that Vitrwvius in his Third Book, and

Q9atbentatical 2ecteation: 115

and all the beft Arcbitectes treat of the proportion of man ; amongft others, 'Albert Dureus hath made a whole Book of the meafures of Mans Body, from the Foot to the Head; let them read it who will, they may have z perfect knowledge thereof. But I will content my felf, and it may fatisfie fome, with that which followeth.

Firft, the length of a man well made, which commonly is called height, is equal to the difance from one end of his finger to the other: when the Arms are extended as wide as they may be.

Secondly, if a man have his Feet and Hands extended or ftretched in form of S. Andrewos Crofs, placing one foot of a pair of Compaffes upon his Navil, one may defcribe a Circle which will pais by the ends of his Hands and Feet, and drawing Lines by the terms of the Hands and Feet, you have a Square within a Circle.

Thirdly; the breadth of Man, or the face which is from one fide to another; the Breaft, the Head, and the Neck, make the fixth part of all the Body taken in length or height.

Fourthly, the length of the Face is equal to the length of the Hand, taken from the fmall of the Arm unto the extremity of the longeft Finger.

Fifthly, the thicknefs of the Body taken from the Belly to the Back; the one or the other is the tenth part of the whole Body, or as fome will have it, the ninth part, little lefs.

Sixthly, the height of the brow, the length of

116 Mathematical Rerreation.

the Nole, the fpace between the Nofe and the Chin, the length of the Ears, the greatnefs of the Thumb, are perfectly equal one to the other.

What would you fay to make an admirable report of the other parts, if I thould reckon them in their leaft? But in that I defire to be excufed, and will rather extract fome conclufion upon that which is delivered.

In the firft place, knowing the proportion of a Man, it is eafie to Painters, Image-makers, doc perfectly to proportionate their work; and by the fame is made moft evident, that which is related of the Images and Statues of Greece, that upon a day diverfe Workmen having enterprifed to make the Face of a man, being fevered one from another in fundry places, all the parts being made and put together, the Face was found in a moft lively and true proportion.

Secondly, It is a thing moft clear, that by the help of proportion, the Body of Hercules was meafured by the knowledge of his Foot onely, a Lion by his Claw, the Giant by his Thumb, and a Man by any part of his Body. For fo it was, that Pytbagoras having meafured the leng th of Hercules foot, by the fteps which were left upon the ground, found out all his height: and fo it was that Pbidias having onely the Claw of a Lion, did figure and draw out all the Bealt according to his true type or form, fo the exquifite Painter Timantes, having painted a Pygmey or Dwarf, which he meafured with a fadome made with the inch of a Giant, it was fufficient to know the greatnefs of that Giant.

刃atyematical ßecteation.

Tobe thort, we may by like method come eafily to the knowledge of many tine Antiquities touching Statues, Coloffus, and monftrous Giants, onely fuppofing one had found but one only part of them, as the Head, the Hand, the Foot, or fome Bone mentioned in ancient Hiftories.

Of Statues, of Coloffus, or buge Images.

T Itruvius relates in his fecond Book, that the Architect Dinocrates being defirous to put out to the World fome notable thing, went to Alexander the Great, and propofed unto him a high and fpecial piece of work which he had projected: As to figure out the Mount Athos in form of a great Statue, which thould hold in his right hand a Town capable to receive ten thoufand men; and in his left hand a Veffel to receive all the Water that floweth from the Mountain, which with an Engine thould be caft into the Sea. This is a pretty project, faid Alexander: but becaufe there was not field-room thereabout to nourifh and retain the Citizens of that place, Alexander was wife not to entertain the Defign.

Now let it be required of what greatness this Statue might have been, the Town in his right hand, and the Receiver of Water in his left hand, if it had been made.

For the Statue, it could not be higher than the Mountain it felf, and the Mountain was about a mile in height plumb or prependicular ; I 3 therefore

is 29atbematical Recteation,

therefore the Hand of this Statue ought to be the roth part of his height, which would be 500 foot, and fo the breadth of his hand would be 250 foot, the length now multiplied by the breadth, makes an hundred twenty five thoufand fquare feet, for the quantity of his hand to make the Town in, to lodge the faid 10000 men, allowing to each man near about 12 foot of fquare ground: Now judge the capacity of the other parts of this Colofius by that which is already delivered.

Secondly, Pliny in his 34 Book of his Natural Hiftory, fpeaks of the famous Colo(Jus that was at Rbodes, between whofe legs a Ship might pafs with his Sails open or difplayed, the Statue being of 70 cubits high : and other Hiftories report that the Sarafens having broken it, did load 900 Camels with the Metal of it. Now what might be the greatnefs and weight of this Statue ?

For anfwer, It is ufually allowed for a Camels burthen 1200 pound weight; therefore all the Colof The did weigh 1080000 pound weight, which is ten hundred and fourfore thouland pound weight.

Now according to the former Rules, the Head being the tenth part of the Body, this Statues Head fhould be of η cubits, that is to fay, 10 foot and a half, and feeing that the Nofe, the Brow, and the Thumb, are the third part of the Face, his Nofe was three foot and a half long, and fo much alfo was his Thumb in length : now the thicknefs being always the third part of the length,

ற9athematical Recteation.

length, it thould feem that his Thumb was a foot thick at the leaft.

Thirdly, The faid Pliny in the fame place reports that Nero did caufe to come out of France into Italy, a brave and bold Statue-maker called Zenodocus, to erect him a Coloffus of Brafs, which was made of 120 foot in height, which Nero caufed to be painted in the fame height. Now would you know the greatnefs of the Members of this Coloflus? The breadth would be 20 foot, his Face 12 foot, his Thumb and his Nofe 4 foot, according to the proportion before delivered.

Thus I have a fair field or fubject to extend my felf npon, but it is upon another occafion that it was undertaken. Let us fpeak therefore a word touching the Giants, and then pafs away to the matter.

Of Monftrous GIANTS.

YOu will hardly believe all that which I fay touching this, neither will I believe all that which Authors fay upon this Subject : notwirhftanding you nor I cannot deny but that long ago there have been Men of a moft prodigious greatnefs: for the Holy Writings witnefs this themfelves, in Deat. iii. that there was a certain Giant called Og , of the Town of Rabath, who had a Bed of Iron, the length thereof was 9 cubits, and in breadth 4 cubits.
So in the Firft of Kings, Chap. 17. there is mention made of Goliah, whofe height was a I 4 palm

120 Đathematical Recceation:

palm, and 6 cubits, that is more then 9 foot, he was armed from the Head to the Fout, and his Curials onely, with the Iron of his Lance, weighed five thoufand and fix hundred Shekels, which in our common Weight is more than 233 pound, of 12 ounces to the pound. Now it is certain, that the reft of his Arms, taking his Target, Helmet, Bracelets, and other Armour together, did weigh at the leaft five hundred pound, a thing prodigious; feeing that the ftrongeft man that now is, can hardly bear 200 pound; yet this Giant carries this as a Vèfure without pain.

Solinus reportcth in his 5 Chapter of his Hiftory, that during the Grecians War after a great overflowing of the Rivers, there was found upon the Sands the Carcafe of a man, whofe length was 33 Cubits, (that is 49 foot and a half) therefore according to the proportion delivered, his Face fhould be five foot in length, a thing prodigious and monftrous.

Pliny in his 7 Book and 16 Chap. faith, that in the Inle of Crete, or Candy, a Mountain being cloven by an Earth-quake, there was a Body ftanding upright, which had 46 cubits of height. Some believe that it was the body of Orion or Othos, (but I think rather it was fome Ghoft, or fome Delufion) whofe Hand thould have been 7 foot, and his Nofe two foot and a half long.

But that which Plutarch in the Life of Sertorius reports of, is more ftrange, who faith, That in Timgy, a Morative Town, where it is thought

刃⿴囗十tbematical kecteation．

that the Giant Antbeus was buried ：Sertorius not believing that which was reported of his prodi－ gious greatnefs，caufed his Sepulchre to be open－ ed，and found that his Body did contain fixty Cubits in length，then by proportion he thould be ten Cubits，or fifteen foot in breadth；nine foot for the length of his Face，three foot for his Thumb，which is near the capacity of the Coloffus at Rbodes．

But behold here a fine Fable of Symphoris Cam－ pefius，in his Book intituled Hortus Gallicus，who fays that in the Kingdom of Sicily，at the foot of a Mountain near Trepane，in opening the foun－ dation of a Houfe，they found a Cave in which was laid a Giant，which held inftead of a Staff a great Poft like the Maft of a Ship；and going to handle it，it moulder＇d all into Afhes except the Bones which remained of an exceeding great meafure，that in his Head there might be eafily placed 5 Quarters of Corn，and by proportion it fhould feem that his length was 200 cubits，or 300 foot；if he had faid that he had been 300 cubits in length，then he might have made us be－ lieve that Noabs Ark was but great enough for his Sepulchre．

Who can believe that any man ever had 20 cubits，or 30 foot in length for his Face，and a Nofe of ten foot long？But it is very certain that there have been men of very great ftature， as the holy Scriptures before witnels，and many Authors worthy of belief relate．

Fofephus Acofta in his firt Book of the Indian Hittory，Chap．19．a late Writer，reporteth，that

122 פ9athematical Recteation.

at Peru was found the Bones of a Giant which was 3 times greater than thefe of ours are, that is i 8 foot; for there is ufually attributed to the talleft ordinary man in thefe our times but fix foot of length; and Hiftories are full of the defcription of other Giants of 9,10 , and 12 foot of height, and there hath bin feen in our times fome which have had fuch heights as thefe.

PROBLEM LXXI.

Of the Game at the Palm, at Irap, at Bowles, Pailmail, and otbers.

THe Mathematicks often findeth place in fundry Games to aid and affift the Gamefters, though not unknown unto them; hence by Mathematical Principles, the Games at Tennis may be affifted, for all the moving in it is by right Lines and Reflections. From whence comes it, that from the appearances of flat or convex Glaffes, the production and reflection of the Species are explained? Is it not by Right Lines? In the fame proportion one might fufficiently deliver the motion of a Ball or Bowl by Geometrical Lines and Angles.

But the exercife, experience, and dexterity of the Player feems more in this action than any other Precepts: Notwithftanding I will deliver here fome Maximes, which being seduced to PraCtice, and joyned to Experience, will give a great

99athematical mecreation.

advantage to thofe which would make ufe of them in fuch gamings, And the firlt Maxime is thus: When a Bowl toucheth another Bowl, or when a Trap-ftick ftriketh the Ball, the moving of the Ball is made in a right line,
 which is drawn from the Centre of the Bowl by the point of contingency.

Secondly, In all kind of fuch motion, when a Ball or Bowl rebounds, be it either againft Wood, a Wall, upon a Drum, a Pavement, or upon a Racket, theincident Angle is always equal to the Angle of reflection.

Now following thefe Maximes, it is eafie to conclude,

Firf, In what part of the Wood or Wall one may make the Bowl or Ball go to reflect or rebound, to fuch a place as one would.

Secondly, How one may caft a Bowl upon another, in fuch fort that the firft or the fecond thall go and meet with the third, keeping the refleCtion or Angle of incidence equal.

Thirdly, How one may touch a Bowl to fend it to what part one pleafeth: fuch and many other practices may be done. At the exercifes at Keyls there muft be taken heed that the motion flack or diminifh by little and little, and may be noted that the Maximes of Reflections cannot be exactly

124 Mathematical Recteation:

exactly obferved by local motion, as in the beams of light, and of other qualities, whereof it is neceffary to fupply it by induftry or by ftrength : otherwife one may be fruftrated in that refpect.

PROBLEM LXXII.

Of the Game of Square Forms.

NUumers have an admirable fecrecy, diverfly applied, as before in part is thewed, and here I will fay fomething by way of Tranfmutation of Numbers.

It is reported that at a certain paffage of a fquare form, there were 4 Gates oppofite one to another; that is, one in the middle of each fide, and that there were appointed 9 men to defend each front thereof, fome at the Gates, and the other at each corner or Angle, fo that each Angle ferved to aflitt two Faces of the fquare, if need required: Now this fquare paffage being thus manned to have each fide 9 , it happened that ${ }_{4}$ Souldiers coming by, defired of the Governour of the paffage, that they might be entertained into fervice, who told them he could not admit of more than 9 , upon each fide of the fquare: then one of the Souldiers being verfed in the Art of Numbers, faid, that if he would take them into pay, they would eafily place themfelves amongft the reft, and yet keep ftill the order of 9 , for each face of the fquare to defend the Angles

sathematical Rertration.

gles and Gates, to which the Governour agreed, and thefe Souldiers being there fome, few weeks, liked not their fervice, but indeavoured to remove themfelves,
$\left[\left.\begin{array}{llll|lll|lll}3 & 3 & 3 & 2 & 5 & 2 & 4 & I & 4 \\ 3 & A & 3 & 5 & B & 5 & I & C & 1 \\ 3 & 3 & 3 & 2 & 5 & 2 & 4 & 1 & 4 \\ \hline 0 & 3 & 0 & 1 & 2 & 1 & 2 & I & 2 \\ 3 & 0 & 3 & 2 & G & 2 & 1 & I & I & 1 \\ 0 & 3 & 0 & 1 & 2 & 1 & 2 & 1 & 2\end{array} \right\rvert\,\right.$
and fo laboured with fome of the reft, that each of thefe four Souldiers took away his Comrade with him, and fo departed; yet left to defend each fide of the paffage, and how may this be?

It's anfwered thus: In the firft form the men were as the figure A, then each of thefe 4_{4} Souldiers placed themfelves at each Gate, and removing one man from each Angle to each Gate, then would they be alfo 9 in each fide, according to the figure B. Laftly, thefe 4 Souldiers at the Gates take away each one his Comrade, and placing 2 of thefe men which are at each Gite to each Angle, there will be fill g for each fide of the fquare, according to the figure C. In like manner if there were 12 men, how might they be placed about a Square that the firft fide fhall have 3 every way, then difordered, fo that they might be 4 every way; and laftly, being tranfpofed might make 5 every way? And this is according to the Figures F, G, H.

126 פatbematical Recteation:

PROBLEM LXXIII.

How to make the String of a Viob Senfibly Shake, without any one touching it?

THis is a Miracle in Mufick, yet eafie to be experimented. Take a Viol_{2} or other Insfrument, =nd choofe two Strings, fo that there be one between them; make thefe two Strings agree in one and the fame tune: then move the Viol-bowe upon the greater String, and you thall fee a wonder: for in the fame time that that Thakes which you play upon, the other will like wife fenfibly fhake without any one touching it; and it is more admirable that the String which is between them will not fhake at all : and if you put the firft String to another tune or note, and loofing the pin of the String, or fopping it with your finger in any fret, the other String will not fhake: and the fame will happen if you take two Viols, and frike upon a ftring of the one, the fring of the other will fenfibly fhake.

Now it may be demanded, how comes this Thaking? Is it in the occult fympathy, or is it in the ftrings being wound up to like notes or tunes, that fo eafily the other may receive the impreffion of the Air, which is agitated or moved by the Thaking or the trembling of the other? And whence is it that the Viol-bowe moved upon the firft fring, doth inftantly in the fame time move the third ftring, and not the fecond, if the caufe
be not either in the firft or fecond？I leave to others to defcanton．

©xamination．

IN this Examination we have fomething el fe to ima－ gine than the bare fympathy of the Cords one to another：for firft there ought to be confidered the different effect that it produceth by extention upon one and the fanse Cord in capacity：then what might be produced upon different Cords of length and bignefs to make them accurd in a Unifone or Octavo，or fome Confort intermediate ：this being naturally examined， it woill be facil to lay open a way to the knowledge of the true and immediate caufe of this noble and admi－ rable Phonomeny．Now this woill Senfibly appear woben the Cords are of equal length and greatnefs，and Set to an Unifone；but woben the Cords differ from their equality，it will be lefs Senfible：bence in one and the fame Inftrument，Cords at a Unifone Shall excite or Jbake more than that which is at an Octavo，and more than tho $\int e$ robich are of an intermediate proportional Confort：as for the otber Conforts they are not exempt－ ed，thougb the effect be not $\int 0$ Senfible，yet more in one tban in another：and the Experiment vyill Seem more admirable in taking troo Lutes，Viols，\＆cc．and in Setting them to one tune：for then in touching the Cord of the one，it woill give a Senfible motion to the Cord of the otber：and not only Jo，but alfo a Harmony．

128 פ@atbermatical Rectrationt

FROBLEM LXXIV.

Of a Veffel which contains three feveral kinds of Liquor, all put in at one Bung-bole, and drawn out at one Tap Severally without mixture.

THe Veffel is thus made, it muft be divided into three Cells, for to contain the three Liquors, which admit to be Sack, Claret, and White-wine: Now in the Bung hole there is an Engine with three Pipes, each extending to his proper Cell, into which there is put a Broach or Funnel pierced in three places, in fuch fort, that placing one of the holes right againft the pipe which anfwereth unto him, the other two pipes are ftopped; then when it is full, turn the Funnel, and then the former hole will be ftopped, and another open, to caft in other Wine without mixing it with the other.

Now to draw out allo without mixture; at the bottom of the Veffel there mult be placed a Pipe or Broach, which may have three Pipes; and a Cock pierced with three holes fo artificially done, that turning the Cock, the hole which anfwereth to fuch of the Pipes that is placed at the bottom may iffue forth fuch Wine as belongeth to that Pipe, and turning the Cock to another Pipe, the former hole will be ftoppe d; and

geatbrmatical Becteation.

fo there will iffue forth another kind of. Wine without any mixtures \ddagger but the Cock may be fo ordered that there may come out by it two Wines together, of all three kinds at
 once: but it feems beft when that in one Veffel and at one Cock, a man may draw feveral kinds of Wine, and which he pleafech to drink.

PROBLEM LXXV:

Of Burning-Glafes.

1N this infuing Difcourfe I will thew the invention of Prometbeus, how to fteal fire from Heaven, and bring it down to the Earth; this is done by a little round Glafs, or made of Steel, by which one may light a Candle, and make it flame, kindle Fire-brands to make them burn, melt Lead, Tin, Gold, and Silver, in a little time: With as great eafe as though it had been put into a Cruzet over a great fire.

Have you not read of Archimedes of Syracu$\int a$, who when he could not come to the Ships of Marcellus which befieged that place, to hinder and impeach their approach, he flung huge flones by his Engines to fink them into the Sea,

130 פฺatbematical kectration.

 and transformed himfelf into fupiter, thunder* ing down from the higheft Towers of the Town, his Thunder-bolts of Lightning into the Ships, caufing a terrible burning, in defpite of Neptune and his Watry Red gion: Zonaras witneffeth that Proclus a brave Mathematician, burned in the fame manner the Ships of Vitalinn, which were come to befieg Constantinoples and daily experience may let you fee great effects of burning: for a Bowl of Cryftal polifhed, or ter expofed to the Sun, will burn when the Sun Ohineth hot; and children ufe with a Glafs to burn Flies which are againft the Walls, and their fellows Cloaths.

But this is nothing to the burning of thofe Glaffes which are hollow, namely thofe which are of Steel well polifhed, according to a parabolical or oval fection. A fpherical Glafs, or that which is according to the fegment of a sphere, burns very effectually about the fourth part of the Diameter; notwithftanding the Parabolic and Ecliptick fections havelagreat effect: by which Glaffes there are alfodivers. Figures reprefented forth to the Eye.

The caufe of this burning is the uniting of the beams of the Sung which heat mightily in the

1020

9Bathrmatical Reccration.

point of concourfe or inflammation, which is either by Tranfmiffion or Reflection : Now it is pleafant to behold when one breatheth in the point of concourfe, or throweth fmall duft there, or fprinkles vapours of hot Water in that place, by which the Pyramidal point, or point of inflammation is known. Now fome Authors promife to make Glaffes which fhall burn a great diftance off, but yet not feen vulgarly produced, of which if they were made, the Parabolie makes the greateft effect, and is generally held to be the invention of Arcbimedes or Proelus.

Maginus in the 5 Chap.of his Treatife of Spherical Glaffes, thews how one may ferve himfelf with a concave Glafs, to light fire in the fhadow, or near fuch a place where the Sun thines not, which is by help of a flat Glars, by which may be made a percuffion of the beams of the Sun into the concave Glafs, adding unto it that it ferves to good ufe to put fire to a Mine, provided that the combuftible matter be well applied before the concave Glafs; in which he fays true: but bed caufeall the effect of the practice depends uponthe placing of the Glafs and the Powder which he fpeaks not of: I will deliver here a Rule more general.
How one may place a Burning-glaß witb bis combuftible matter, in fuch fort, that at a convenient bour of the day, the Sun Jhining, it Shall take fire o burno.

IT is certain that the point of inflammation or burning, is changed as the Sun changeth place, and nomore nor lefs than the fhadow turns

132 g9atbematícal Recreation.

 about the Style of a Dyal; therefore have regard to the Suns motion and his height and place: a Bowl of Cryfal in the fame place that the top of the Style is, and the Powder or other combuttible matter under the Meridian, or hour of 12, $1,2,3$, orc. or any other hour, and under the Suns Arch for that day: Now the Sun coming to the hour of $12 ;$ to $1,2,3$, ovc. the Sun cafting his Beams through the Cryital Bowl, will fire the material or combuftible thing, which meets in the point of burning: The like may be obferved of other Burning-glaffes.
examination.

1τ is certain in the firft part of this Problem, that Conical, Concave, and Spherical Glaßes, of what matter foever, being placed to receive the beams of the Sun, will excite beat, and that beat is So mucb the greater, by bon mucb it is near the point of concourre or inflammation. But tbat Archimedes or Proclus did fire or burn Sbips with fuch Glaffes, the ancient Hiltories are filent, yea themfelves fay nothing: befides the great difficalty that doth oppofe it in remotene β, and the matter that the effect is to work upon. Now by a commun Glafs we fire things near at band, from which it feems very facil to \int uch which are lefs read, to do it at a far greater diftance, and ρ_{0} by relation fome deliver to the World by fuppofitions that wobich was never done in acizon:" bis we fay the sather,

soathematital Rerreation.

rather, not totake away the moft excellent and admirable effects which are in Burning-gla fes, but to Shew the variety of Antiquity, and truth of Hiftory : and as touching to burn at a great diftance, as is faid of Some, it is abfolutely impofible; and that the Parabolical and Oval Glaffes mere of Archimedes and Proclus invention is much unceriain: for befides the conftruction of fuch Glafes, they are more difficule than the obtufe concave ones are; and further, they cajt not a great beat but near at band; for if it be caft far off, the effect is little, and the beat meak, or otherraije fuch Glafes mufl be greatly extended to contract many beams to amafs a fufficient quantity of Beams in Parabolical and Conical Glajes, the paint of inflamenation ought to concur in a point, which is very difficult to be done is a due propartion. Moreoyer if the place be far remote, as is fuppofed before, fuch a Glafs cannot be ufed but at a great inclination of the Sun, by which tbe effect of burning is diminifbed by reafon of the weaknefs of the Sun-beams.

And bere may be noted in the laft part of this Problem, that by reafon of obfacles if one plain $\mathrm{Gla} / \mathrm{s}$, be not Jufficient, a eccond Glafs may be applied ta belp it : that $\int 0$ if by one fimple reflection it cannot be done, yet by a double reflection the Sun-beams may be caft into the faid Cavern or Mine, and though the reflected Beams in this cafe be weak, yet upan a fit sumbuftible matter it mill not fail to do the effect.

$$
\mathrm{K}_{3} \quad \text { PRO- }
$$

34 פathematical dectration.

PROBLEM LXXVI.

Containing many pleafant 2 reftions by mpay of Arithmetick:

IWill not infert in this Problem that which is drawn from the Greek Epigrams, but propofing the Queftion, immediately will give the Anfwer alfo, without flaying to thew the manner how they are anfwered; In this I will not be tied to the Greek Terms, which Iaccount not proper for this place, neither to my purpofe. Let thofe that will read Diophanta Seberbelius upon Euclide and others, and they may be latisfied.

Of the Afs and the Mule.

${ }^{7}$Thappened that the Mule and the Afs upon a day making a Voyage, each of them carried a Barrel full of Wine: now the lazy Afs feeling her felf over-loaden, complained and bowed under her burthen; which the Mule feeing, faid unto her, being angry, (for it was in the time wheii Beafts (pake) Thou great Ars, wherefore complaineft thou? If I had but onely one meafure of that which thou carrieft, \mathbf{I} fhould be loaden twice as much as thou art; and if I hould give a meafure of my loading to thee,yet my burthen would beas muchas thine.

soatbomatical erecteation.

Now how many meafures did each of them carry? Anfwer: The Mule did carry 7 meafures, and the Afs 5 meafures: For if the Mule had one of the meatures of the Affes loading, then the Mule would have 8 meafures, which is double to 4, and giving one to the Afs, each of them would have equal burthens: to wit, 6 meafures apiece.

> Of the Number of Souldiers that fought before Old Troy.

TOmer being asked by Hefiodus how many Grecian Souldiers came againft Troy 3 Anfwered him thus: The Grecians, faid Homer, made 7 Eires, or had 7 Kitchins, and before every Fire, or in every Kitchin there were 50 Broaches turning to roalt a great quantity of Flefh, and each Broach had Meat enough to fatisfic 900 men: Now judge how many men there might be. Anfwer: 3 15000; that is, three hundred and fifteen thouland men : which is clear by multiplying 7 by 50 , and the product by 900 makes the faid 315000 :

Of the Number of Crowns that troo Men bad.

Obn and Peter had a certain number of crowns:
Fobn faid to Peter, If you give me 10 of your crowns, I fhall have three times as much as you have: but Peter faid to Fohn, If you give me ia of your crowns, I fhall have s times as much as you have: How much had each of them? An-

$$
\mathrm{K}_{4} \quad \therefore \quad \text { \{wer, }
$$

\$36 09athematical 2ecteation:

fwer, Fobn had 15 crowns and 5 fevenths of a crown, and Peter had 18 crowns and 4 fevenths of a crown. For if you add 10 of Peters crowns to thole of Fabus, then thould Fobr have 25 crowns and 5 fevenths of a crown, which is triple to that of Peters, viz. 8, and 4 Sevenths; and Fobn giving 10 to Peter, Peter fhould have then 28 crowns, and 4 Cevenths of a crown, which is Quintupla, or 5 times as much as 7 obn had left, viz. 5 crowns and 5 fevenths.

In like manner two Gamefters playing together, A and B, after play A faid to B, Give me 2 crowns of thy money, and I thall have twice as much as thou haft : and B faid to A, Give me 2 crowns of thy money, and I fhall have 4 times as much as thou haft: now how much had each? Anfwer, A had 3 and 5 fevenths, and B had 4 and 6 fevenths,

About the bour of the day.

$\$$
Ome one asked a Mathematician what a clock it was; who anfwered that the reft of the day is four thirds of that which is paft : Naw judge what a clock it is. Anfwer: If the day were according to the Jews and ancient Romans, which made it always to be 12 hours, it was then the 5 hour, and one feventh of an hour, fot there semained of the whole day $6 \frac{5}{7}$, that is, 6 hours, and 6 fevenths of an hour. Now if you take the $\frac{1}{3}$ of $5 \frac{1}{3}$, it is $\frac{1^{2}}{7}$, or 1 and $\frac{5}{4} 7$, which multiplied by 4 makes 6 and $\frac{6}{7}$, which is the remainder of the day, as before: but if the day had been 24 hours, then the hour had been ten of the clock

geathematical ßecteation:

 and two fevenths of an hour, which is found our by dividing $12,0 \mathrm{or} 24$ by;There might have been added many curious Propalitions in this kind, but they would be too difficult for the moft part of People : therefore I have omitted them.

Of Pythagoras bis Schollars.

PYihagoras being asked what number of Schollass he'had, anfwered that half of them ftudied Matbematicks, the fourth part Phylick, the feventh part Rbetorick, and befide he had 3 Women: Now judge you, faith he, how many Scholars I have. Anfwer: He had in all 28, the half of which is 14 , the quarter of which is 7 , and the feventh part of which is 4 , which 14,7 , and 4 , makes 25 , and the other 3 to make up the 28 , were the 3 Women.

Of the Number of Apples given amonglt the Graces and the MuSes.

THe Three Graces carrying Apples upon a day, the one as many as the other, met with the Nine Mufes, who asked of them fome of their Apples ; fo each of the Graces gave to each of the Mufes alike, and the Diftribution being made, they found that the Graces and the Mufes had one as many as the other: The quefiton is, How many Apples each Grace had, and

13 goationatical Recreation.

how many they gave to each Mufe ? To anfwer the queftion, joyn the number of Graces and Mufes together, which makes 12, and fo many Apples had each Grace: Now may you take the double, tripple, orc. of 12 , that is $24,36,6{ }^{2}$. conditionally, that if each Grace had but $\mathbf{1 2}$, then may there be allotted to each Mure but one one. ly; if 24, then to each 2 Apples, if 26 , then to each Mufe 3 Apples, and fo the diftribution being made, they have a like number, that is, one as many as the other.

Of the Teftament or laft Will of a dying Father.

ADying Father left a thoufand Crowns among his two Children, the one being legitimate, and the other a Baftard; conditionally, that the fifth part which his legitimate Son Thould have, fhould exceed by 10 the fourth part of that which the Baftard fhould have: What was each ones part? Anfwer: The legitimate Son had 577 crowns, and $\frac{7}{5}$, and the Baftard 422 crowns and ${ }_{5}^{2}$, now the fifth part of 577 and 7 ninth is 115 , and $\frac{1}{3}$, and the fourth part of 422 and ${ }_{3}^{2}$ is 105 and $\frac{5}{53}$ which is lefs than $115 \frac{5}{5}$ by 10 , according to the will of the Teffator.

Of the Cxps of Crefus.

CRafus gave to the Temple of the Gods fix Cups of Gold, which weighed together 600 Drams, but each Cup was heavier one than another by one Dram: How much did each of them

פ9tbematical Recteation.

 them therefore weigh ? Anfwer : The firf weighed 102 Drams and a half, the fecond 101 Drams and a half, the third 100 Drams and a half, the fourth 99 and a half, the fifth 98 and a half, and the fixth Cup weighed 97 Drams and a half; which together make 600 Drams, as before.
Of Cupid's Apples.

CUpid complained to his Mother that the Mufes had taken away his Apples; Clio, faid he, took from me the fifth part, Euterpe the twelfth part, Tbalia the eighth part, Melpomene the twentieth part, Erates the feventh part, Terpomenes the fourth part, Polybymia took away 30, Urania 120, and Caliope 300 ; Co there were left me but 5 Apples: How many had he in all at the firft ? I anfwer 3360 .

There are an infinite of fuch-like Queftions amonget the Greek Epigrams : but it would be unpleaSant to exprefs ther all: I will onely add one more, and Seres a general Rule for all the reft.

Of a Mans Age.

AMan was faid to pafs the fixth part of his Life in Childhood, the fourth part in his Youth, the third part in Manhood, and 18 years befide in old Age: What might his Age be ? The Anfwer is, 72 years: which, and all others, is thus reTolved: multiply $\frac{1}{6} \frac{1}{4}$ and $\frac{1}{3}$ together, that is, 6 by 4 makes 24, and that again by 3 makes

140 Mathematical kecreation.

72, then take the third part of 72 , which is 24 , the fourth part of it, which is 18 , and the fixth part of it, which is 12 , thefe added together make 54, which taken from 72 refts 18 , this divided by 18, (fpoken in the Queftion) gives 1, which multiplied by the fum of the parts, viz.72, spakes 72, the Anfwer as before.

> Of the Lion of Bronze placed upon a Fountain with this Epigram:

O
Ut of my right Eye if I let Water pals, I can fill the Ciftern in 2 days: if I let it pars out of the left Eye, it will be filled in 3 days: if it pafs out of my feet, the Ciftern will be 4 days a filling; but if I let the Water pass out of my mouth, I can fill the Ciftern then in 6 hours: in what time thould I fill it, if I pour forth the Water at all the paffages at once?

The Greeks (the greateft talkers in the world) varioully apply this Queftion to divers Statues and Pipes of Fountains: and the Solution is by the Rule of Three, by a general Rule, or by Algebra. Theyhave alfo in their Anthology many other Queftions, but becaufe they are more proper to exercife than to recreate the Spirit, I pals themover (as before with filence.

PROBLEM LXXVII.

Divers Excellent and Admirable Experiments upons Glaffes.

THere is nothing in the world fo beautiful as Light: and nothing more recreative to the fight, than Glaffes which reflect: therefore I will now produce fome Experiments upon them, not that I will dive into their depth (that were to lay open a mylterious thing) but that which may delight and recreate the Spirits: Let us fuppofe therefore thefe Principles, upon which is built the demouftration of the apparances which are made in all forts of Glaffes.

Firf, That the Rays or Beams which reflect upon a Glafs, make the Angle of Incidence equal to the Angle of Reflection, by the firlt Theo. of the Catoptick of Euc.

Secondly, That in all plain Glaffes, the Inages are feen in the perpendicular Line to the Glafs, as far within the Glafs as the Object is without it.

Thirdly, In concave or convex Glaffes, the Images are feen in the right line which paffeth from the Object, and through the Centre in the Glafs. Theo. 17 . and 18.

And here you are to underftand, that there is not meant onely thofe which are fimple Glaffes, or Glaffes of Steel, but all other Bodies, which may reprefent the vifible Image of things, by reafon

142 matimenatical kecteationt:

reafon of their reflection, as Water, Marble, Metal, or fuch like. Now take a Glafs in your hand, and make Experiment upon that which followeth.

Experiments upon flat and plain Glafes.

FIrft, A man cannot fee any thing in thefe Glaffes, if he be not directly and in a perpendicular line before it, neither can he fee an Object in thefe Glaffes, if it be not in fuch a place that makes the Angle of Incidence equal to the Angle of Reflection: therefore when a Glafs fands upright, that is, perpendicular to the $\mathrm{Ho}-$ rizon, you cannot fee that which is above, except the Glafs be placed down flat : and to fee that on the right hand, you muft be on the left hand, \&bc.

Secondly, An Image cannot be feen in a Glafs, if it be not raifed above the furface of it ; or place a Glafs upon a Wall, you thall fee nothing which is upon the plain of the Wall ; and place it upon a Table or Horizontal Plain, you fhall fee nothing of that which is upon the Table.

Thirdly, In a plain Glafs all thatis feen appears or feems to fink behind the Glafs, as much as the Image is before the Glafs, as before is faid.

Fourthly, (As in Water) a Glafs lying down flat or Horizontal, Towers, Trees, Men, or any height doth appear inverfed or upfide-down; and a Glafs placed upright, the right hand of the Inage feems to be rhe left, and the left feems to be the sight.

Fifthly,

seathrnatital imecteation:

Fifthly, will you fee in a Chamber that which is done in the Street, without being feen? Then a Glafs muft be fo difpofed, that the Line upon which the Images come on the Glafs, make the Angle of Incidence equal to that Angle of Reflection.

Sixthly, An height, (as fuppofe D E) may be meafured by a plain Glafs, as let the Glafs be G, placed down upon the ground, and let the Eye be at C, fo far removed from the Glafs, that the Eye at C, may fee the top of the Tower E in the Angle or edge of the Glafs at A, but in the line of reflection $C . A$, then mealure the difance between your foot B, and the point A, and alfo the diftance between the
 Glafs A, and the foot of the Tower $D_{\text {, viz. A }}$ D. Now as offen as $A B$ is found in $A D$, fo often doth the height of the Tower E D contain the diflance from your Eye to the foot, viz. C B , for the Triangles A, B, C, and A, D, E, are equal Triangles: therefore as $B A$ to $A D$, fo $C B$, to $E D$, or alternately as $B A$ to $B C$, fo $A D$ to $D E$.

Seventhly, Prefent a Candle upon a plain Glass, and look flaunting upon it, fo that the Candle and the Glafs be near in a right Line, you fhall

344 פ9atbinatical kecteation.

Thall fee $3,4,5,6 \mathrm{c}$. Images, from one and the fame Candle

Eighthly, Take two plain Glaffes, and hold them one againft the other, you thall alternately fee them oftentimes one within the other, yea within themfelves, again and again.

Ninthly, If you hold a plain Glafs behind your head, and another before your face, you may fee the hinder part of your head, in that Glais which you hold before your face.

Tenthly, You may have a fine Experiment if you place two Glaffes together, that they make an acute Angle, and fo the leffer the Angle is, the more apparances you fhall fee, the one direct, the other inverfed, the one approaching, and the other retiring.

Eleventhly, It is a wonder and aftonilhment to fome, to fee within a Glafs an Image, without knowing from whence it came, and it may be done many ways: as place a Glafs higher than the Eye of the Beholder, and right againt it is fome Image ; fo it refteth not upon the Beholder, but doth caft the Image upwards. Then place another object, fo that it reflect, or caft the Image downward to the Eye of the Spectator, without perceiving it being hid behind fomething, for then the Glafs will reprefent a quite contrary thing,either that which is before the Glafs, or that which is about it, to wit, the other hidden object. Twelfthly, If there be ingraved behind the backfide of a Glafs, ordrawn any Image upon it, it will appear before as an Image, without any appearance or portraicture to be perceived.

seatiomatical kecteation:

Rexmination.

THis Twpelfth Article of engraving an Image bebind the Glafs, woill be of no great consequence; becaufe the lineaments will. Seem fo obfcure; but if there woere painted fome Image, and then that covered according to tbe ufual covering of Glafes bebind, and So made up like an ordinary Looking-Glafs, baving an Image in the middle, in this refpect it woosild be Sufficiently pleafant : and that which would admire theignorant, and able to exercife the moft fubtilleft, and that principally if the Glaß be in an obfcure place, and the Light which is given to it be fomewhat far off.

THirteenthly, Place a Glass near the floor of a Chamber, and make a hole chrough the place under the Glafs, fo that thofe which are below may not perceive it, and difpofe a bright Image under the hole, fo that it may caft his feecies upon the Glafs, and it will caufe admiration to thofe which are below that know not the caufe. The fame may be done by placing the Image in a Chamber adjoyning, and fo make it to be feen upon the fide of a Wall.

Fourteenthly, In thefe Channel-Iraages which thew one fide a Deaths Head, and another fide a fair Face, and right before fome other thing.s it is a thing evident, that fetting a plain Glafs fide ${ }^{\circ}$

146 geathematical Recreation:

fidewife to this Image, ygu fhall fee it in a contraxy thing, than that which was prefented before fidewife.

Fifteenthly, Lafily, It is a fine fecret to prefent unto a plain Glafs Writing with fuch induftry, that one may read it in the Glafs, and yet out of the Glafs there is nothing to be known, which will thus happen, if the Writing be writ backward : but that which is more ftrange, to fhew a krind of Writing to a plain Glafs, it fhall appear 2nother kind of Writing both againft fenfe and form; as if there were prefented to the Glafs WEL, it would fhew it MET; if it were written thus, MIV, and prefented to the Glais, it would appear thus VIM; for in the firft, if the Glafs lie flat, then the things are inverfed that are perpendicular to the Glafs; if the Glafs and the Object be upright, then that on the right hand is turned to the left, as in the latter.

And here I ceafe to feeak further of thefe plain Glaffes, either of the admirable multiplications, or appearances, which is made in a great number of them; for to content the fight in this particular, one muft have recourfe to the Cabinets of Great Perfonages who inrich themfelves with moft beautiful ones.

> Experiments upon Gibbow or Convex Spherisal Glafes.

F they be in the form of a Bowl, or part of a great Globe of Glafs, there is ingular conten tment to cuntemplate on them.

93athematical Recreation.

Firft, Becaufe they prefent the Objects lefs and more gracious, and by how much more the Images are feparated from the Glafs, by fo much the more they diminifh in magnitude.
Secondly, They that hhew the Images plaiting, or folding, which is very pleafant, efpecially when the Glars is placed down, and behold in is fome blanching, feeling, ecc. The upper part of a Gallery, the porch of a Hall, ecc. for they will be reprefented as a great Veffel having more belly in the middle than at the two ends, and Poffs and Joifts of Timber will feem as Circles.

Thirdly, That which ravifheth the Spirits by the Eye, and which thames the beft Perfpective Painting that a Painter can make, is the beautiful contraction of the Images, that appear within the fphericity of thefe fmall Glaffes: for prefent the Glafs to the lower end of a Gallery, or at the Corner of a great Court full of People, or towards a great Street, Church, Fortification, an Army of Men, to a whole City ; all the fair Architecture and appearances will be feen contracted within the circuit of the Glafs with fuch variety of Colours, and diftinctions in the leffer parts, that I know not in the world what is more agreeable to the fight, and pleafant to behold, in which you will not have an exact proportion, but it will be variable, according to the diltance of the Object from the Glafs.

L 2 Experi-

x48 mathematicalkecreation.

Experiments upon bollow or concave ßßberical Glafes.

IHave heretofore fpoken how they may burn, being made of Glafs or Metal, it remains now that I deliver fome pleafant ufes of them, which they reprefent unto our fight; and fo much the more notable it will be, by how much the greater the Glafs is, and the Globe from whence it is extracted: for it mult in proportion as a legment of fome be made Circle or Orb.

Examination.

IN this we may obferve that a Section of two, three, or four. Inches in Diameter, may be legments of Spheres, of tono, three, or four foot; nay of So many fadom, for it is certain tbat among(t thofe which comprebend agreat portion of a leffer Spbere, and thofe which comprebend a little fegment of a great Spbere, wohether they be equal or not in Jection, tbere will happen an evident difference in one and the Same Experiment, in the number, fituation, quantity and figure of the Images of one or many different objects, and in burning there is a great difference.

MAginus, in a little Tractate that he had upon chefe Glaffes, witneffeth ot himfelf that he had caufed many to be polifhed for fundry

matbenatical Recteation.

 dry great Lords of Italy and Germany, which were fegments of Globes of two, three, and four foot diameter; and I wifh you had fome fuchlike to fee the experiments of that which followeth; it is not difficult to have fuch made, or bought here in Town, the contentment herein would bear with the coff.
Examination.

TOuching Maginus be bath nothing aided us to the knowledge of the truth by bis Extract out of Vitellius, but left it ; expecting it from otbers, rather than to be plunged in the Search of it bimfelf affecting rather the forging of the matter, and compofition of the Glafes, than Geometrically to eftablifs their Effects.

FIrft therefore in concave Glaffes, the Images are fnmetimes feen upon the furface of the Glaffes, fometimes as though they were within it and behind it, deeply funk into it, fometimes they are feen before, and without the Glafs, fometimes between the Object and the Glafs; fometimes in the place of the Eye, fometimes farther from the Glafs than the Object is: which comes to pais by reafon of the divers concourfe of the beams, and change of the place of the Images in the line of reflection.

L. 3
 cami=

150 mathematical hecreation:

Examination.

THe relation of thefe appearances pas current amongft mooft men, but becaufe the Curious may not receive prejudice in tbeir Experiments, fometbing ought to be faid thereof, to give it a more lively touch: in the true caufes of thefe appearances, in the firft place it is impo $\sqrt{i} b l e$ that the Image can be upon the Jurface of the Glafs, and it is a principal point to declare truly in robich place the Image is seen in the Glafs: thofe that are more learned in Optical knowledge affirm the contrary, and Nature it felf gives it a certain place accoraing to its pofition, being always feen in the line of Refleciion which Alhazen, Vitellius, and otbers full of great knowledge, have confirm: ed by their Writings: but in their particular they soere too much occupied by the Autbority of the Ancients, wobo were not fufficiently circumpedt in experience, upon which the principles of this subject ought to be built, and fearched not fully into the true canfe of the fe appearances, feeing they leave unto Pofterities many falfities in their Writings, as thoje that followed them for the moft part fell into the like errors. * As for the Images to bide in tbe Eye, it cannot be, but is impertinent and abfurd; but it followeth that by bow much nearer the Object approachetb to the Glass, by fo much the more the appearances feem to cume to the Eye: and if the Eye be without the point of conconve, and the Object aljo; us long as the Ob-

\$9atuematical Rectration.

ject approacheth thereto, the reprefentation of the Image cometb near the Eys, but pafing the point of concourre, it goes back again: Thefe appearances thus approaching, do not a little aftonifh th fe mbi b ari ignorant of the caufe: they are inversed, if the Eye be witbout the point of concourre until the Object be within, but contrarily if the Eye be between the point of concour $f e$ and the Glafs, then the Images are direct : and if the Eye or the Object be in the point of concourre, the Glafs will be enlightened, and the Images confufed, and if there were but a park of five in the faid point of concourfe, all the Glals nould feem a burning fire-brand, and woe dare fay it would occur without chance, and in the night be the mojt certain and Jubtileft light that can be, if a candle were placed there. And robofoever Shall enter into the Search of the trutb of new Experiments in this Jubject, without doubt be will confirm what we bere Seak of, and will find neew Lights with a conveniable pofition t1 the Glafs, be will bave reflection of - quantities of Trutb, and fine Secrets in Nature, yet not known, which be may eafily comprebend if be bave but an indifferent fight, and may affure bimself that the Images cannot excced the fight, nor trouble it, a tbing too much abfurd to Nature.

And it is an abfolute verity in this Science, that the Eye being once placed in the line of Reflection of any Object, and moved in the Same line: the Object is Jeen in one and the fame place immutable; or if the Image and the Eye move in tbeir uno lines, the reprefintation in the Glaß fecms to invelt it Self contiwuilly with a differeni figure.
L_{4}
Now

152 刃gatbematical lescreation:

NOw the Image coming thus to the Eye, thofe which know not the fecret, draw their Sword when they fee an Image thus to iffue out of the Glafs, or a Piftol which fome one holds behind: and fome Glaffes will fhew a Sword wholly drawn out, feparated from the Glars, as though it were in the Air: and it is daily exercifed, that a man may touch the Image of his hand or his face out of the Glafs, which comes out the farther, by how much the-Glafs is great, and the Centre remote.

Examination.

NOnt that a Pijtol being prefented to a Glas be= bind a man, Bould come out of the Glafs, and make bim afraid that A ands before, Seeming to Soot at him, this cannot be: for no Object robatfever prefented to a concave Glafs, if it be not rearer to the Glafs than the Eve is, it comes not out to the fight of the party; therefore be nceds not fear that robich is Said to be bebind bis back, and comes out of the Glafs ; for if it doth come out, is muft then neceffarily be before bis face, fo in a concave Glafs mobofe Centre is far remote, if a Sword, Stick, or fucb-like, be prefented to the Glafs, it Shall totally Seem to come forth inf the Glafs, and all the bind that holds it. And bere gcnerally note, that if an Image be feen ta iffue put of the Glaß to come topords the face of any one

Matbematical kecteation:

that fands by, the Object fhall be likemife Seen ta thruff toparards tbat face in the Glafs, and may eafily be known to all the ftanders by: fo, many perfons ftanding before a Glafs, if one of the company take a Sword, and would make it ifue fortb towards any other that ftands there, let bim cbufe bis Image in the Glafs, and carry the Sword rigbt towards it, and the effect will followo. In like manner owes band be. ing prefented to the Glafs as. it is thruft topards the Centre, So the reprefentation of it comes tavards it, and So the bands will feem to be united, or to toucb one anotber.

FRom which may be concluded, if fuch a Glafs be placed at the feeling or planching of a Hall, fo that the face be Horizontal, and look downward; one may fee under it as it were a man hanging by the feet, and if there were many placed f , one could not enter into that place without great fear or fcaring: for one fhould fee many men in the Air as if they were hanging by the feet.

伐xamination.

TOuching a Glafs tied at a Seeling or Planching, that one may fee a man bang by the Fcet in the Air, and fo many Glaffes, fo many Men may be feen: without caution tbis is very abfurd, for if the Glafs or Glaffes be not fo great that the Centre of the Sphere upon which it was made, exfond not near to the Head of bim that is under it, it

154 ற9athematical Recreation:

will not pleajontly appear; and tbough the Glals for fould be of that capacity that the Centre did extend So far, yet will not the Images be feen to them wobich are from the Glafs, but onely to tbole wobich are under it on near unto it: and to then it woill not ably appear. And it would be moft admirable to bave a Gallery sumolted over with fuch Glaffes, which would wondevfully aftomith any one that enters into it: for all the things in the Gallery would be feen to bang in the Air, and yau could not walk woitbout encountering Airy Apparitions.

S
Econdly, In flat or p!ain Glaffes the Image is feen equal to his Object, and to reprefent a whole man, there ought to be a Glass as great as the Image is: In convex Glaffes the Images are feen always lefs, in concave Glaffes they may be feen greater or leffer, but not truly proportionable, by reafon of the divers reftections which contracts or enlargeth the Species: when the eye is between the Centre and the furface of the Glass, the Image appears fometimes very great and deformed; and thofe which have but the appearance of the beginuing of a Beard on their Chin, may chear up themfelves to fee they have a great Beard; thofe that feem to be fair, will thruft away the Glafs with defpight, becaule it will transform their beauty: thofe that put their hand to the Glafs, will feem to have the hand of a Giant, and if one puts his finger to the Glafs, it will be feen as a great Pyramide of Flefh, inverfed againft his finger.

matbematical kercration,

Thirdly, It is a thing admirable that the Eyc being approached to the point of concourfe of the Glafs, there will be feen nothing but an intermixture or confufion: but retiring back a little from that point (becaufe the Rays do there meet) he fhall fee his Image inverfed, having his Head below, and his Feet above.

Fourthly, The divers appearances caufed by the motion of Objects, cither retiring or approaching: whether they turn to the right hand or to the left hand, whether the Glafs be hung againft a wall, or whether it be placed upon a Pavement, as alfo what may be repreiented by the mutual afpect of Concave Glaffes, with plain and Convex Glaffes: but I will with filence pafs them over, only fay fomething of two rare Experiments more as followeth.

The firft is to reprefent by help of the Sun fuch letters as one would upon the front of a houfe, fo that one may read them : Maginiss doth deliver the way thus: Write the Letters, faith he, fufficiently big, but inverfed upon the furface of the Glafs, with fome kind of colour, or thefe Letters may be written with Wax, (the cafier to be taken outagain) for then placing the Glafs to the Sun, the Letters which are written there will be reverberated or reflceted upon the Wall: hence it was perhaps that Pytbagoras did promife with this invention to write upon the Moon.
In the fecond place, how a man may fundry ways help himfelf with fuch a Glafs, with a lighted Torch or Candle, placed in the point of concourfe of inflammation, which is near the fourth

156 P9atbematical Recceation.

part of the Diameter : for by this means the light of the Candle will be reverberated into the Glafs, and will be caft back again very far by parallel lines, making fogreat a light that one may clearly fee that which is done far off, yea in the camp of an Enemy; and thafe which thall fee the Glafs afar off, will think they feea Silver BaFnimlightened, or a fire more refplendent then the Torch. It is this way that there are made certain Lanthorns which dazel the Eyes of thofe which come againft them; yet it ferves fingular well to enlighten thofe which carry them, accommodating a Candle with a little hollow Glass, fo that it may fucceffively be applied to the point of imflammation.

In like manner by this reftected Light one may read far off, provided that the Letters be indifferent great, as an Epitaph placed high, or in a place obfcure; or the Letter of a Friend which dares not approach without peril or fufpition.

Examination.

THis will be farce Senfible upon a Wall remote from the Glafs, and but indifferently feen upon aW all which is near the Glass, and woithal it muft Le in abfcurity or fosidowed, or elfe it will not be feen. To caft Ligbt in the night to a place remote, with a Candle placed in the point of concourfe or infliammasion, is ane of the moft notableft properties which can

@ดathematical kecteation.

be gheron in a concave Glafs: for if in the poise of inflammation of a Parabolical Section, a Candle be placed, the Ligbt will be reflected by Parallel Lines, as a Column or Cylinder; but in the Spberical Section it is defeciive in part, the beams being not united in one point, but fomewobat fcattering : notwitbjsasding it cafteth a very great beautifusl Light.

TAftly, Thofe which fear to hurt their fight by the approach of Lamps or Candles, may by this artifice place at fome corner of a Chamber a Lamp with a hollow Glafs behind it, whicli will commodioutly reflect the Light upon a Table, or to a place affigned: fo that the Glafs be fomewhat raifed to make the Light to ftreek upon the Table with fharp Angles, as the Sun doth when it is but a little elevated above the Horizor, for this Light thall exceed the Light of many Candles placed in the Room, and be more pleafant to the fightof him that ufechit.

Of otber Glafes of Pleafure.

FIrf, The Columnary and Pyramidal Glafles that are contained under right lines, do reprefent the Images as plain Glaffes do, and if they bebowing, then they reprefent the Image as the concave and convex Glaffes do.

Secondly, Thofe Glaffes which are plain, but have afcents of Angles in the middle, will thew one to have four Eyes, two Mouths, two Noles, or.

Exami-

158. M9atbematical Recreation.

Exanination.

THefe Experiments will be found different, according to the diverfe meeting of the Glaffes, wobich commonly are made fcuing-wwife at the end, by pobich there woill be two divers Juperficies in the Glaß, making the exteriour Angle fomewhat raijed, at the interiaur orely one fuperficies, wbich may be covered according to ordinary Glaffes to coufe a reflection, and $\int 0$ it will be but one Glaß, woich by refraction according to the different thicknefs of the Glafs, and different Angles of the fcuing form, do differestly prefent the Images to the Eye, ass four Eyes, troo Mouths, two Nofes; fometimes three Eyes, ana Mouth, and one $\mathrm{N}_{0} \int \mathrm{~S}_{\mathrm{e}}$, the one large, and the other long; fometimes two Eyes onely, with the Mouth and the Nofe deformed, which she Glafs (impenitrable) will not Shew. And if there be an interiour folid Angle, according to the difference of it, (as if it be more fharp) there will be reprefented two diftinct double Images, that in, two entire V_{3} fages, and as the Angle is open, by fo much the more the double Images will reunite, and enter owe within awother, wobich will prefent fometimes a whate Vifage extended at large, to bave four Eyyes, two Nofes, and two Mouths: and by moving the Glafs the Anyle will vanifh, and So the two Superficies will be turned into one, and the duplicity of Images will alfo vanifh, and appear but one onely: and this is eafily expcrimented wiib twoo
little

watbematical kerteation:

tittle Glafles of Steel, or fucb-like, 价 united that tbey make divers Angles and Inclinations.

THirdly, There are Glaffes which make men feem pale, red, and coloured in divers manners, which is caufed by the dye of the Glafs, or the diverfe refraction of the Species: and thofe which are made of Silver, Latin, Steel, Gc. do give the Images a diverfe colour alfo. In which one may fee that the appearances by fome are made fairer, younger, or older than they are; and contrarily others will make thern foul and deformed, and give them a contrary vifage: for if a Glafs be cut as it may. be, or if many pieces of Glafs be placed together to make a conveniable reflection: there might be made of a Mole (as it were) a Mountain, of one Hair a Tree, a Fly to be as an Elephant, but I thould be too long if I thould fay all that which might be faid upon the property of Glaffes. I will therefore conclude this Difcourfe of the properties of thefe Glaffes, with thefe four recreative Problems following.

PRO-

160 geatbematical Recteation.

PROBLEM LXXVIII.

Howo to fhew to one that is fupitious robat is done in anotber Chamber or Room, notwitblanding the interpafition of the Wallo

FOr the performance of this, there muft be placed three Glaffes in the two Chambers, of which one of them thall be tied to the planching or feeling, that it may be common to communicate the Species to each Glads by reflection, there being left fome hole at the top of the Wall againft the Glafs to this end : the two other Glaffes mult be placed againft the two Walls at xight Angles, as the figure bere theweth at B and C.

Then the fight at E by the line of inciderice $F E$, thall fall upon the Glafs $B A$, and reflect upon the fuperticies of the Glafs $B C$, in the
 point G; fo that if the Eye be at G, it thould fee E, and E would reflect upon the third Glafs in the point H, and the Eye that is at L will lee the Image that is at E in the point of the Catheti:which Image fhat

9athematical Recteation.

Thall come to the eye of the fufpicious, viz at L. by help of the third Glafs, upon which is made the fecond reflection, and fo brings unto the eye the object, though a wall be between it.

COROLARY 1.

BY this invention of Reflections the befiegers of a Town may be feen upon the Rampart : notwithfanding the Parapet, which the belieged may do, by placing a Glafs in the hollow of the Ditch, and placing another upon the top of the Wall, fo that the Line of Incidence coming to the bottom of the Ditch, make an Angle equal to the Angle of Reflection, then by this fituation and reflection, the Image of the befiegement will be feen to him is upon the Rampart.

COROLART2.

BY which alfo may be inferred, that the fame Reflections may be feen in a Regular Polygon, and placing as many Glaffes as there are fides, counting two for one; for then the object being fet to one of the Glaffes, and the eye in the other, the Image will be feen eafily.

COROLARY3.

FArther, notwithfanding the interpofition of many Walls, Chambers, or Cabinets, one may fee that which paffech through the moft remoteft of them, by placing of many Glaffes, M

162 פ@atbematical decreation.

as there are openings in the Walls, making them to receive the incident Angles equal : that is, placing them in fuch fort by fome Geometrical affiftant, that the incident points may meet in the middle of the Glaffes: but here all the defect will be, that the Images paffing by fo many reflections, will be very weak, and fcarce obfervable.

PROBLEM LXXIX.

How woith a Musket to ftrike a mark, not looking towards it, as exact as one aiming at it.

A
S let the Eye be at O, and the mark C, place a plain Glafs perpendicular as $A B$, fo the mark C thall be feen in Catbeti $C A$, viz. in D, and the Line of Reflection is D, now let the Musket F E, upon a reff, be moved to and fro, until it be feen in the line $O D$, which admit to be $H G$, fo giving fire to the Musket, it fhall undoubtedly ftrike the Mark.

פ9atbematical kecteation.

COROLARIES.

From wobjich may be gathered, that one may exacily Boot out of a Musket to a place wobich is not Seen, ${ }^{2}$ being bindered by fome Obfacle, or otber inserpofition.

A
S let the Eye be at M, the mark C, and the Wall which keeps it from being feen, admit to be $2 R$, then fet up a plain Glafs, as $A B$, and let the Musket be $G H$, placed upon his reff B O. Now becaufe the mark C is feen at D, move the Musket to and fro, until it doth
 agree with the Line of Reflection $M B$, which fippofe at $L I$, fo thall it be truly placed, and giving fire to the Musket, it fhall not fail to frike the faid mark at C.

PROBLEM LXXX。

Howo to make an Image to be feen hanging in tbe air, baving bis Head dorrniward.

TAke two Glaffes, and place them at right Angles one unto the other, as admit $A B_{\text {, }}$ and $C B$, of which admit $C B$ Horizontal, and M 2

$\times 64$ 99athematical Rerceation.

let the Eye be at H, and the Object or Image to
 be DE; fo D will be reflected at F, fo to N, fo to $H E$: then at G, fo to M, and then to H, and by a double reflection E D will feem in $2 R$, the higheft point D in R, and the point E in 2 inverfed as was faid, taking D for the head, and E for the feet; fo it will be a man inverfed, which will feem to be flying in the air, if the Image had wings unto it, and had fecretly fome motion : and if the Glafs were big enough to receive many Reflections, it would deceive the fight the more by admiring the changing of colours that would be feen by that motion.

PROBLEM LXXXI.

How to make a Conspany of reprefentative Souldiers Seem to be a Regiment, or bow few in number may be multiptied to feem to be many in number.

TO make the Experiment upon men, there muft be prepared two great Glaffes; but in ftead of it we will fuppofe 2 leffer, as $G H$, \& $F I$, one placed right againft another perpendicular to the Horizon, upon a plain level Table: between which

Mathematical Recreation: 165

which Glaffes let there be ranged in Battalia-wife upon the fame Table a number of fmall men according to the fquare G, H, I, F, or in any other form or polture: then may you evidently fee how the faid Battel will be multiplied and feem far bigger in the appearance, thanit is in effect.

COROLARX.

BY this invention you may make a little Cabinet of four foot long, and two foot large, (more or lefs) which being filled with Rocks or fuch like things, or there being put into it Silver, Gold, Stones of luftre, Jewels, ore. and the Walls of the faid Cabinet being all covered, or hung with plain Glafs; thefe vitibles will appear manifoldly increafed, by reafon of the multiplicity of reflections; and at the opening of the faid Cabinet, having fet fomething which might hide them from being feen, thofe that look into it will be aftonithed to fee fo few in number, which be* fore feemed to be fo many.

$$
\mathrm{M}_{3} \quad \mathrm{PRO}
$$

PROBLEM LXXXII.

Of fine and pleafant Dyals.

COuld you choofe a more ridiculous one than the matural Dyal written amongft the Greck Epigrams, upon which fome found Poet made vcrfes, thewing that a man carrieth about him always a Dyal in his Face by means of the Nofe and Teeth? And is not this a jolly Dyal? For he need not but open the Mouth, the Lines कhall be all the Teeth, and the Nofe fhall ferve for the Style,
Of a Dyal of Herbs.

CAn you have a finer thing in a Garden, or in the middle of a Compartment, than to fee the Lines and the number of Hours reprefented with little bufhic Herbs, as of Hyfop, or fuch which is proper to be cut in the borders; and at the top of the Style to have a Fan to fhew which way the wind bloweth? This is very pleafant and ufeful.

Of the Dyal apon the Fingers and tbe Hand,

1Sit not a commodity very agreeable, when one is in the field or in fome village, without any other Dyal, to fee onely by the hand what of the

Batbenatical Rectration.

clock it is? which gives it very near; and may be practifed by the left hand, in this manner.

Take a Straw or like thing of the length of the Index, or the fecond finger; hold this Straw very right between the Thumb and the fore Finger, then ftretch forth the hand, and turn your back and the palm of your hand towards the Sun; fo that the thadow of the mufcle which is under the Thumb touch the Line of Life, which is between the middle of the two other great Lines, which is feen in the palm of the hand, this done, the end of the fhadow will hhew what of the clock it is: for at the end of the firf Finger it is 7 in the morning, of 5 in the evening, at the end of the Ring-Finger it is 8 in the morning, or 4 in the evening; at the end of the Litthe Finger or firlt Joynt, it is 9 in the morning, or 3 in the afternoon, 10 and 2 at the fecond Joynt, II and I at the third Joynt, and mid-day in the Line following, which cemes from the end of the Index.

Of a Dyalrobichrows about an Obelisk af Rome.

WAs not this a pretty fetch upon a Pavement, to choofe an Obelisk for a Dyal, having 106 fout in height, without removing the Bafis of it ? Pliny affures us in his 26 Book and 8 Chap. that the Emperour Auguftus having accommodated in the Field of Mars an Obelisk of thisheight, he made about it a Pavement, and by the induftry of Manilius the Mathematician, there were enchaced marks of Copper upon the PaveM 4
ment?

168 刃9athematical mecreation.

ment, and placed alfoan Apple of Gold upon the top of the faid Obelisk, to know the hour and the courfe of the Sun, with the increafe and decreafe of days by the fame fhadow: and in the fame manner do fome by the fhadow of their head or other Style, make the like Experiinents in Aftronomy.

Of Dyals witb Glafles.

PTolomy writes, as Cardanus reports, that long ago there were Glaffes which ferved for Dyals, and prefented the face of the beholder as many times as the hour ought to be; 2 if it were 2 of the clock, 9 if it were 9 , ơc. But this was thought to be done by the help of water, \& not by Glaffes; which did leak by little and little out of the veffel, difcovering firf I Glass, then 2 Glaffes, then 3,4* 5 Glaffes, ef c. to fhew fo many faces as there were hours, which was onely by leaking of water.

Of a Dyal which bath a Glass in place of the Style.

WHat will you fay of the invention of Mathematicians, which find out daily fo many fine and curious Novelties? They have now a way to make Dyals upon the Wainfcot or Seeling of a Chamber, and there where the Sun can never
thine,

ఖ9tbematical Recreation:

Thine, or the beams of the Sun cannot directly Arike : and this is done in placing of a little Glafs in the place of the Style, which reflecteth the light with the fame condition that the thadow of the Style theweth the hour: and it is eafie to make experiment upon a common Dyal, changing only the difpofition of the Dyal, and tying to the end of the Style a piece of plain Glafs. The Almains ufe it much, who by this way have no greater trouble, but to put their Nofes out of their Beds aud fee what a clock it is, which is reflected by a little hole in the Window upon the Wall or Sieling of the Chamber.

Examination.

IN this there are two Experiments confiderable, the firft is with a very little Glafs placed So that it may be open to the Beans of the Sun, the other batb refpect to a fpacious or great Glafs placed to a very little bole, fo that tbe Sun may fline on it, for then the Thadono robicb is caft upon the Dyal is converted into beams of the Sun, and will reflect and be caft upon a plain oppofite: and in tbe other it is a bole in the Window, or fucb like, by which may pafs the Beams of the Sun, which reprefent the extremity of the Style, and the Glafs reprefentetk the plain of the Dyal, upon mbich the beams being in manner of Shadonss reflect caft upon a plain oppofite: and it is ncedful that in this Second way the Glafs may be ßpacious, as before, to receive the delineaments of the Dyal.

Otber-

170
 פ9thematical Recueation.

Otberwife you may draw the Lineaments of a Dyol zpon any plain Looking-Glafs which reflecteth the Sun-beams, for the applying a Style or a Pearl at the extremity of it ; and placed to the Swn, the reflection will be anfwerable to the delineaments on the Glafs: but bere note, that the Glafs ought to be great, and foo the delineaments tbereon.

But that which is moft Noble, is to draw bourlines spon the out-fide of the Glajs of a Window, and placing a Style thereto upon the out-fide, the Sadow of the Style roill be feen mithin, and So yout bave the bour more certain, without any difficulty.

Of Dyals with Water.

Such kind of Dyals were made in ancient times, and alfo thofe of Sand: before they had skill to make Sun-Dyals, or Dyals with Whecls : for they ufed to fill a Veffel with Water, and having experience by trial that it would run out all in a day, they did mark within the Veffel the hours noted by the running of the Wa ter; and fome did fet a piece of light board in the Veffel to fwim upon the top of the Water, carrying a little Statue, which with a fmall ftick did point out the hour upon a Colume or Wall, figured with hour-notes, as the Veffel was figured within.

Vitruvius writes of another manner of WaterDyal more difficult; and Baptijtco à Porta among it his Natural Secrets, delivers this Invention following: Take a Veffel full of water like a Caldron, and another Veffel of Glass like unto a Bell, (with

goatbematical kecteation:

(with which fome accuftom to covèr Melons) and let this Veffel of Glafs be almof as great as the Caldron, having a fmall hole at the bottom, then when it is placed upon the water, it will fink by litele and little: by this one may mark the hours on the furface of the Glafs to ferve another time. But if at the beginning one had drawn the water within the fame Veffel of Glafs in fucking by the little hole, the water would not fall out, but as faft as the air would fucceed it, entering flowly at the little hole: for contrarily the hours may beediftinguifhed by diminution of water, or by augmentation.

Now it feems a fafer way that the water pafs out by drop and drop, and dropinto a Cylindrieal Glafs by help of a Pipe: for having marked the exteriour patt of the Cylinder in the hournotes, the Water it felf which talls within it will thew what of the clock it is, far better than the running of Sand; for by this may you have the parts of the hours moft accurate, which commonly by Sand is not had: and to which may be added the hours of other Countries with greater eafe. And herenote, that as foon as the Water is out of one of the Glaffes, you may turn it over into the fame again out of the other, and fo fet it run anew.

172 Patbematical Recteation.'

PROBLEM LXXXIII.

Of Cannons or great Artillery.

Souldiers and others would willingly fee this Problem, mbich contains 3 or 4 Jubtile Queftions.

1.

Tbefirft is, How to cbarge a Cannon without Powder.

THis might be done with air and water only, having thrown cold water into the Cannon, which might bef quirted forceably in by the clofure of the mouth of the Piece, that fo by this preffure the air might more condenfe ; then having a round piece of Wood very juft, and eiled well, for the better to flide, and thruft the Bullet when it fhall betime: This piece of Wood may be held faft with fome Pole, for fear it be not thruft out before his time : then let fire be made about the Trunion or hinder part of the Piece to heat the air and water, and then when one would fhoot it, let the pole be quickly loofened, for then the air fearching a greater place, and having way now offered, will thruit out the Wood and the Bullet very quick : The Experiment which we have in long Trunks thooting out pellats with air only, Theweth the verity of this Problem.

mathematical kecreation:

2i

In the second Queftion it may be demanded, Hon much time dotb the Bullet of a Cannon ßend in the air before it falls to the ground?

THe Refolution of this Queftion depends upon the goodnefs of the Piece and Charge thereof, feeing in each there is great difference. It is reported that Ticho Brabe, and the Land grave $^{\text {gra }}$ did make an Experiment upon a Cannon in Germany, which being charged and thot off, the Bulles fpent 2 min. of time in the air before is fell: and the diffance was a German mile, which diftance proportionated to an hours time, makes 120 Italian miles.

$$
3
$$

In the third Queftion it may be asked, Hors it comes to pafs, thas a Cannon Shooting uproard, the Bullet flies woith more violence than being Shot pointblank, or Jhooting downward?

IF we regard the effect of a Cannon when it is to batter a Wall, the Queftion is falfe, feeing it is moft evident that the blows which fall

174 Matbematical kecceation.

Perpendicular upon a Wall, are more violent than thofe which ftrike byas-wife or glancingly.

But confidering the ftrength of the blow only, the Queftion is moft true, and often experimented to be found true: a Piece mounted at the beft of the Randon, which is near half of the right, conveys her Bullet with a fargreater violence than that which is thot at point blank, or mounted parallel to the Horizon. The common reafon is, that fhooting high, the fire carries the bowl a longer time in the air, and the air moves more facil upwards than downwards, becaufe that the airy circles that the motion of the Bullet makes, are fooneft broken. Howfoever this be the general Tenet, it is curious tofind out the inequality of moving of the air; whether the Bullet fly upward, downward, or right forward, to produce a fenfible difference of motion ; and fome think that the Cannon being mounted, the Bullet preffing the powder maketh a greater reff flance, and fo caufethall the powder to be inflamed before the Bullet is thrown cut, which makes it to be more violent than otherwife it would be. When the Cannon is otherwife difpofed, the contrary arrives, the fire leaves the Bullet, and the Bullet rolling from the Powder refitts lefs: and it is ufually feen, that fhooting out of a Musket charged onely with Powder, to thoot to a mark of Paper placed point blank, that there are feen many fmall holes in the Paper, which cannot be other than the grains of Powder which did not take fire: but this latter accident may happen from the overcharging of the Picee, or the length

soatbematical Recteation:

length of it, or windy, or dampnefs of the Powder.
From which fome may think that a Cannon pointed right to the Zenith, fhould fhoor with greater violence than in any other mount or form whatfoever : and by fome it hath been imagined that a Bullet fhot in this fafhion hath been confumed, melted, and loft in the air, by reafon of the violence of the blow, and the activity of the fire, and that fundry Experiments have been made in this nature, and the Bullet never found. But it is hard to believe this affertion: it may rather be fuppofed that the Bullet falling far from the Piece cannot be difcerned where it falls, and fo comes to be lofs.

4.

In the fourth place is may be asked, Whether the difcharge of a Cannon be fo much the greater, by bow mech it is longer?

T feemeth at the firf to be moft true, that the
longer the Piece is, the more violent it fhoots: and to fpeak generally, that which is direction by a Trunk, Pipe, or other concavity, is conveyed fo much the more violent, or better, by how much it is longer, either in refpect of the Sight, Hearing, Water, Fire, erc. and the reafon feems to hold in Cannons, becaufe in thofe that are long, the fire is retained a longer time in the concavity of the Piece, and fo throws out the Bullet with more violence, and experience lets us fee that taking

176 99atbematical 2arcteationt:

taking Cannons of the fame bore, but of diverfity of length from 8 foot to 12 , that the Cannon of 9 foot long hath more force than that of 8 foot long, and 10 more than that of 9 , and fo unto 12 foot of length. Now the ufual Cannon carries 600 Paces, fome more, fome lefs, yea fome but 200 Paces from the Piece, and may fhoot into foft earth 15 or 17 foot, into fand or earth which is loole, 22 or 24 foot, and in firm ground; about 10 or 12 foot, drc.

It hath been feen lately in Germany, where there were made Pieces from 8 foot long to 17 foot of like bore, that thooting out of any piece which was longer than 12 foot; the force was diminiftred, and the more in length the Piece increafeth, the lefs his force was: therefore the length ought to be in a mean meafure, and it is often feen the greater the Cannon is, by fo much the fervice is greater : but to have it too long or too fhort, is not convenient, but a mean proportion of length to be taken, otherwife the flame of the fire vvill be overpreffed vvith Air, vvhich hinders the motion in refpect of fubftance, and diftance of getting out.

9Bathematical kecteation:

PROBLEM LXXXIV.

Of prodigious Progreffion and Multiplication of Creatures, Plants, Fruits, Numbers, Gold, Silver, \&.c. when they are always augmented by certain proportion.

HEre we thall thiew things no lefs admirable than recreative, and yet 10 certain and ealie to be demonftrated, that there needs not but Multiplication onely, to try each parvicular ! and firft,

Of Grains of Mujtard-Seed

FIrft, Therefore it is certain that the increafe of one grain of Muttard feed for 20 years fpace, cannot be contained within the vifible World, nay if it were an hundred times greater than it is: and holding nothing befides from the Centre of the Earth even unto the Firmat ment, but onely fmall Grains of Muftard-feed: Now becaufe this feems but words, it mult be proved by Art, as may be done in this wife: As fuppofe one Muftard-feed fowen to bring forth a Tree or Branch, in each extendure of which might be a thoufand grains: but we will fup: pofe onely a throufand in the whole Tree, and let us proceed to 20 years, every Seed to bring forth yearly a thourand grains: now multiply N

178 mathematical 2ecteation.

ing always by a thoufand, in lefs than 17 years, you fhall have fo many grains which will furpafs the fands, which are able to fill the whole Firmament: for following the fuppofition of Archimedes, \& the moft probable opinion of the greatnefs of the Firmament which Ticbo Brabe hath left us; the number of grains of Sand will be fufficiently expreffed with 49 Cyphers, but the number of grains of Muftard-feed at the end of 17 years will have 52 Cyphers: and morcover, grains of Muffard-feed are far greater than thefe of the Sands: It is therefore evident that at the feventeenth year, all the grains of Muftard-feed which Thall Gucceffively (pring from one grain onely, cannot be contained within the limits of the whole Firmament ; what fhould it be then, if it fhould be multiplied again by a thoufand for the eighteenth year, and that again by a thoufand for every years increafe, until you come to the twentieth year? It's a thing as clear as the day, that fuch aheap of Muftard-feed would be an hundred thoufand times greater than the Earth: and bring onely but the increafe of one grain in ewenty. years.

Of Pigs.

SEcondly, Is it not a ftrange Propofition, to fay, That the Great Turk with all his Revenues, is not able to maintain for one years time all the Pigs that a Sow may pig with all her Race, that is, the increafe with the increafe, unto 12 years: this feems impoffible, yet it is moft true,

Matbematical Recteation:

for let us fuppofe and put the cafe, that a Sow bring forth but 6,2 Males and 4 Females, and that each Female Thall bring forth as many every year, during the fpace of 12 years, at the end of the time there will be fuund above 33 millions of Pigs: Now allowing a crown for the maintenance of each Pig for a year, (which is as little as may be, being but near an half of a farthing allowance for each day) there muft be at leaft fo many crowns to maintain them one year, viz. 33 millions, which exceeds the Turks Revenue by much.

Of Grains of Corn.

Hirdly, It willmake one aftonifhed to think that a Grain of Corn with his increafe fucceffively, for the fpace of 12 years will produce in Grains 244140625000000000000 , which is able to load almoft all the Creatures in the World.

To open which, let it be fuppofed that the firf year one grain being fowed brings forth 50 , (but fometimes there is feen 70 , fometimes 100 fold) which grains fowen the next year, every one to produce 50 , and fo confequently the whole and increafe to be fowen every year, until 12 years be expired, there will be of increafe the aforefaid prodigious fum of grains, viz. 24414062500000000000 , which will make a Cubical Heap of 6258522 Grains every way, which is more than a Cubical Body of 31 miles ofety way: for allowing 40 grains in length to

$$
\mathrm{N}=\text { eacla }
$$

180 Wathematical Rerteation.

each foot, the Cube would be 156463 foot every way: from which it is evident that if there were two hundred thoufand Cities as great as Londons $_{3}$ allowing to each 3 miles fquare every way, and 100 foot in height, there would not be fufficient room to contaih the aforefaid quantity of Corn: and fuppofe a Buthel of Corn wcre equal unto two cubick feet, which might contain twenty hundred thoufand grains, then would there be 12207046 2500000 buthels, and allowing 30 bufhels to a Tun, it would be able to load 8138030833 Veffels, which is more than eight thoufand one hundred and thirty eight millions, thip loadings of 500 Tun to each Ship: a quantity fo great, that the Sea is fcarce able to bear, or the Univerfal World able to find Veffels to carry it. And if this Corn thould be valued at half a Crown the bufhel, it would amount to 15258807812500 pounds Sterling, which I think exceeds all the Treafures of all the Princes, and of other particular men in the whole World: And is not this good Husbandry to fow one grain of Corn, and to continue it in fowing the increafe onely for 12 years, to have fo great a profit?

Of the Increafe of Sbeep.

FOurthly, Thofe that have great flocks of theep may be quickly rich, if they would preferve their Sheep without killing or felling of chem: fo that every Sheep produce one each year, for at the end of 16 years 100 Sheep will multiply and

9athematical Recteation.

${ }^{i}$ ncreafe unto 6553600 , which is above fix millions, five hundred firty three thoufand Sheep: Now fuppoling them worth but a crown a piece, it would amount unto 1638400 pounds Sterling, which is above I million 6 hundred 38 thoufand pounds. A fair increafe of one Sheep, and a large portion for a Child, if it thould be allotted.

Of the increafe of Cod-fifh, Carps, \&c.

FIfthly, If there be any creatures in the world that do abound with increafe or fertility, it may be rightly attributed to fifh; for they in their kinds produce fuch a great multitude of Eggs, and bring forth fo many little ones, that if a great part were not deftroyed continually, within a little while they would fill all the Sea,Ponds, and Rivers in the World; and it is eatie to Chew how it would fo come to pafs, onely by fuppofing them to increafe without taking or deftroying them for the fpace of 10 or 12 years: having regard to the folidity of the Waters, which are allotted for to lodge and contain thefe Creatures, as their bounds and place of reft to live in

Of the increafe and multiplication of Mene.

SIxthly, There are fome that cannot conceive how it can be that from eight perfons (which were faved after the Deluge or Noabs Flcod) fhould fpring fuch a World of People to begin N_{3}

182 mathematical iacccuation.

a Monarchy under Nimrod, being but 200 years after the Flood, and that amengft them fhould be raifed an Army of 200000 tighting men: But it is eafily proved if we rake but one of the Children of Noab, and fuppofe that a new Generation of People begun at every 30 years, and that it be continued to the feventh Generation, which is 200 years; for then of one only Family there would be produced 111000 Souls, 305 to begin the World : though in that time men lived longer, and were more capable of multiplication and increafe: which number fpringing onely from a fimple production of one yearly, would be far greater if one Man thould have many Wives, which in ancient times they had: from which it is alfo that the Children of 1 rrael, who came into Egypt but only 70 Souls, yet after 210 years captivity, they came forth with their Holts, that there were told 600000 fighting men, befides old People, Women, and Children; and he that thall feparate but one of the Families of \mathcal{F} ofeph, it would be fufficient to make up that number: How much more fhould it be then, if we fhould joyn many Families together ?

Of the Increafe of Numbers.

SEventhly, what fum of money fhall the City of London be worth, if it fhould be fold, and the money be paid in a year after this manner: The firft week to pay a Pin, the fecond week 2 Pins, the third week 4 Pins, the fourth week 8

وatbematical Recteation.

Pins, the fifth week 16 Pins, and fo doubling until the 52 Weeks, or the year be expired?

Here one would think that the value of the Pins would amount but to a fmall matter, in comparifon of the Treafures or Riches of the whole City: Yet it is moft probable that the number of Pins would amount unto the fum of 45195996 28681215 , and if we thould allow untoa quarter a hundred thoufand Pins, the vvhole vvould contain ninety eight millions, four hundred thoufand Tun: vwhich is able to load 45930 Ships of a thoufand Tun apiece: And if vve fhould allow 1000 Pins for a Pemny, the fum of money vvould amount unto above eighteen thoufand tight hundred and thirty millions of pounds fterling : An high Price to fell a City at, yet certain, according to that firft propofed.
So if 40 Towns were fold upon condition to give for the firft a penny, for the fecond 2 pence, for the third 4 pence, or. by doubling all the reft unto the laft, it would amount unto this number of pence 1099511627776 , which in pounds is 4581298444 , that is, four thoufand five hundred, and fourfcore millions of pounds, and more.

184 Đ9thernatical isccreation:

Of a man that gatbered up Apples, Stones, or fucb. like, upon a condition.

EIghtly, Admit there were 100 Apples, Stones, or fuch-like things, that were plac'd in a ftraight line or right form, a Pace one from another, and a basket being placed a Pace from the firft : how many Paces would there be made to put all thefe Stones into the Basket, by fetching one by one? This would require near half a day to do it, for there would be made 10092 paces before he thould gather them all up.

Of Changes in Bells, in Mufical Inftruments, Tranfmutation of places in Numbers, Letters, Men, or fuch-like.

NInthly, Is it not an admirable thing to confider how the Skill of Numbers doth eafily furnifh us with the knowledge of mytterious and hidden things? which fimply look'd into by others that are not verfed in Arithmetick, do prefent unto them a world of confufion and difficulty. As in the firft place it is often debated amongft our common Ringers, what number of Changes there might be made in five, fix, feven, eight, or more Bells: who fpend much time to anfwer their own doubts, entering often into a Labyrinth in the fearch thereof: or if there were Io Voices, how many féveral notes might there be? Thefe are propofitions of fuch facility, that a Child which can but multiply one number by another, may eafily refolve it, which is but onely

geathematical kecteation: : 185

so multiply every number from the unite fucceffively in each others product, unto the term alfigned: fo the 6 number that is againft 6 in the Table, is 720 , and fo many Changes may be made upon 6 Bells, upon 5 there are 120 , \&ic.

In like manner againft 10 in the Table is 3628800 , that is, three millions, fix hundred twenty

886 פ9athentatical 2artreation.

twenty eight thoufand, eight hundred; which thews that io Voices may have fo many Conforts, each man keeping his own note, but onely altering his place; and fo of ftringed Inftruments, and the Gamat may be varied according to which, anfwerable to the number that is againft x, viz. 1124001075070399680000 Notes.

From which may be drawn this or the like Propofition :

Suppofe that 7 Schollars were taken out of a Eree School to be fent to an Univerfity, there to be entertained in fome Colledge at Commons for a certain fum of money, fo that each of them have two meals daily, and no longer to continue there, then that fitting all together upon one Bench or Form at every Meal, there might be a divers tranfmutation of place of account in fome cne of them, in comparifon of another, and never the whole company to be twice alike in fituation: How long may the Steward entertain them? (who being not skilled in this fetch, may anfwer unadvifedly.) It is moft certain that chere will be five thoufand and forty feveral pofitions or changings in the featings, which makes fourteen years time, wanting ten weeks and three days.

Hence from this mutability of tranfmutation, it is no marvel that by 24 Letters there arifeth and is made fuch variety of Languages in the World, and fuch infinite number of words in each Language; feeing the diverfity of Syllables produceth that effect, and alfo by the interchanging and placing of Letters amongft the Vowels, and

9athematical kerteation:

amongit themfelves maketh thefe fyllables, which Alphabet of 24 Letters may be varied fo many times, viz. 620448593438860623360000, which is fix hundred twenty thouland, four hundred forty eight millions of millions of millions five hundred ninety three thoufand, four hundred thirty eight millions of millions, and more.

Now allowing that a man may read or \{peak one hundred thoufand words in an hour, which is twice more words than there are contained in the Pfalms of David, (a Task too great for any man to do in fo (hort a time) and if there were four thoufand fix hundred and fifty thoufand millions of men, they could not fpeak thefe words (according to the hourly proportion aforefaid) in threefcore and ten thoufand years; which variation and tranfmutation of Letters, if they fhould be written in Books, allowing to each Leaf 28000 words, (which is as many as poffibly could beinferted) and to each Book a Ream or 20 Quire of the largett and thinneft PrintingPaper, fo that each Book being about 15 inches long. 12 broad, and 6 thick: The Books that would be made of the tranfmutation of the twenty four Letters aforefaid, would be at the leaft 3877803789928788 : And if a Library of a mile fquare every way, of 50 foot high, were made to contain 250 Galleries of 20 foot broad apiece, it would contain four hundred millions of the faid Books: fo there mult be to contain the reft no lefs than $969+5092$ fuch Libraries; and if the Books were extended over the furface of

188 ছ9atiomatical Lercteation:

the Globe of the Earth, it would bé a decuple covering unto it, a thing feeming moft incredible, that 24 Letters in their tranfmutatios fhould produce fuch a prodigious number, yet moft certains and infallible in computation.

Of a Servant bired spon certain conditions.

AServant faid unto his Mafter, that he would dwell with him all his life-time, if he would but only lend him land to fow one grain of Corn with all his increafe for 8 years time; how think you of this bargain? For if he had but a quarter of an inch of ground for each grain, and each grain to bring forth yearly an increafe of 40 grains the whole fum would amount unto, at the term aforefaid, 6553600000000 grains: and feeing that 3 thoufand and 6 hundred millions of inches do but make one mile fquare in the fuperficies, it fhall be able to receive 14 thoufand and 4 hundred millions of grains, which is 1440000000 , thus dividing the aforefaid 655360000000 , the Quotient will be 455 , and fo many fquare miles of land muft there be to fow the increafe of one grain of Corn for 8 years, which makes at the leaft 420000 Acres of Lind, which rated but at five fhillings the Acre per Annume, amounts unto 100000 pound; which is 12500 pound a year, to be continued for 8 years: a pretty pay for a Mafters Servant 8 years fervice.

99athematical kectration.
 189

PROBLEMLXXXV.

Of Fountains, Hydriatiques, Machineck, and otber Experiments upon Water or other Liquor.
1.

Firft bono to make Water at the Foot of a Mountain to afcend to the Top of $i t$, and fo to defcend on the other fide.

TO do this there muft be a Pipe of Lead, which may come from the Fountain A, to the top of the Mountain B; and foto defcend on the $0-$ ther fide, a little lower than the Fountain, as at C, then make a hole in the Pipe, at the top of the Mountain, as at B, and fop the end of the Pipe at A and C; and fill this Pipe at B with Water, and clofe it very carefully again at B, that no Airget in: then un-
 top the end at A, and at C; then will the Water perpetually run up the Hill, and defcend on the other fide, which is an invention of great confequence to furnifh Villages that want Water.
2. Secondly,

190 ఇathematical Recteation.

$$
2 .
$$

Secondly, How to know what Wine or other Liquor there is in a Veffel, without opening the Bungbole, and without making any other bole thin that by which it runs out at the top.

IN this Problem there is nothing but to take a bowed Pipe of Glafs, and put it into the faucets hole, and ftopping it clofe about : for then you thall fee the Wine or Liquor to afcend in this Pipe, until it be juft even with the Liquor in the Veffel: by which a man may fill the Veffel, or put more into it: and fo if need were, one may empty one Veffel into another, without opening the Bung-hole.

$$
3 .
$$

Thirdly, How is it that it is said that a Veffel bolds more Water, being placed at the foot of a Mowntain, than flanding upon the top of it?

THis is a thing moft certain, becaufe that water and all other Liquor difpofeth it felf Spherically about the Centre of the Earth; and by how much the Veffel is nearer the Centre, by fo much the more the furface of the Water makes 2 leffer fphere, and therefore every part more gibbous or fwelling than the like part in a greater fphere :

fphere: and therefore when the fame Veffel is farther from the Centre of the Earth, the furface of the water makes a greater fphere, and therefore lefs gibbous or fwelling over the Veffel: from whence it is evident that a Veffel near the Centre of the Earth holds more Water than that which is farther remote fromit; and fo confequently a Veffel placed at the bottom of the Mountain holds more Water, than being placed on the top of the Mountain.

Firft, Therefore one may conclude, thas one and the fame Vefiel will always hold mone, by how much it is nearer the Centre of the Earth.

Secondly, If a veffel be very near the Centre of the Earth, there will be
 more Water above the brims of it, than there is within the Veffel.

Thirdly, a Veffel full of water coming to the Centre will fpherically increafe, and by little and little leave the Veffel; and paffing the Centre, the Veffel will be all emptied.

Fourthly, One cannot carry a Fail of Water frem a low place to a higher, but it will more and more run out and over; becaufe that in afcending it lies morelevel, but defcending it fwells, and becomes more gibbous.
4. Fourtbly,

192 @athematicalarecteation:

$$
40
$$

Fourtbly, To conduc Water from the top of one Mountain, to the top of another.

AS admit on the top of a Mountain there is a Spring, and at the top of the other Mountain there are Inhabitants which want Water: Now to make a Bridge from one Mountain to another, were difficult, and too great a charge; by way of Pipes it is eafie, and of no great price: for if at the Spring on the top of the Mountain be placed a Pipe to defcend into the Valley, and afcend to the other Mountain, the Water will run naturally, and continually, provided that the Spring be fomewhat higher than the paffage of the Water at the Inhabitants。

S.

Fifibly, Of a fine Fountain which jpouts Water sery bigb, and with great violence, by turning of a Cock.

LEt there be a Veffel as $A B$, made clofe in all his parts, in the middle of which let $C D$ be a Pipe open at D near the bottom, and then with a Squirt fquirt in the Water at C, ftopped above by the Cock or Faucet C, with as great violence as poffible you can; and tum the Cock

mathematical kecteationt.
 193

immediately. Now

 there being an indifferent quantity of Water and Air in the Veffel, the Water keeps it felf in the bottom, and the Air which was greatly preffed, feeks for more place, that turning the Cock, the Water iffueth forth at the Pipe, and flies very high, and that efpecially if the Veffel be a little heated. Some make ufe of this for an Ewer to wafh hands withall, and therefore putting a moveable Pipe above \dot{C}, fuch as the Figure Cheweth: which the Water will caufe to tarn very quick, pleafurable to behold.

6.

Sixtbly, Of Árchimedes's Screw, which makes Water afcend by defcending.

THis is nothing elfe but a Cylinder; about the which is a Pipe in form of a Screw, and when one turns it, the Water defcends always in refpect of the Pipe: for it paffeth from one part which is higher to that which is lower, and at the end of the Engine the Water is found higher than it was at the Spring. This great Engineer, admirable in all Mashematical Arts, invented this Inftrument to walh King Hieroies

194 Matbrmatical Recreation.

great Veffels, as fome Authors fay, alfo to water the fields of Egypt, as Diodarus witneffeth: and Cars danus xeporteth that a Citizen of Milan having made the like Engine, thinking himfelf to be the firf Inventer, conceived fuch exceeding joy, that he became mad, Fol. 2.

Again, A thing may afcend by defcending, if a fpiral Line be made, having many circulations or revolutions; the laft being always leffer than the firft, yet higher than the Plain fuppofed: It is moft certain that then putting a Ball into it, and turning the fpiral Line fo, that the firft circulation may be perpendicular, or touch always the fuppofed Plain, the Ball thall in defsending continually afcend, until at laft it come to the higheft part of the firal Line, and fo fall out. And here efpecially may be noted, That a moving Body, as Water, or a Bullet, or fuch-like, will never afcend, if the Helical Revolution of the Screw be not inclining to the Horizon : fo that according to this Inclination the Ball or Liquormay defcend always by a continual motion and revolution. And this Experiment may be more ufeful naturally made with a Thread of Iron or Latine, turned or bowed Helically about a Cylinder, with fome diltinction of diftances between the Helices, for then having drawn out the Cylinder, or having hung or tied fome weightat it ${ }_{2}$ in fuch

sgatisematital kecteatfon:

fort that the Water may eafily dropif one lift up the faid Thread: thefe Helices or Revolutions notwithfanding will remain inclining to the Horizon, and then turning it about forward, the faid weight will afcend; but backward, it will defeend. Now if the Revolutions bealike, and of equality amongft themfelves, and the whirling or turning motion be quick, the fight will be fo deceived, that producing the action it will feem to the ignorant no lefs than a Miracle.

7.

Seventbly, Of anotber fine Fountain of Pleadure.

THis is an Engine which hath two wheels with Cogges or Teeth, as $A B$, which are placed within an Oval $C D$, in luch fort, that the Teeth of the one may enter into the Notches of the other; but fo juft,that.neither Air nor Water may enter into the Oval Coffer, either by the middle, or by the fides, for the wheel mult joyn fo near to the fides of the Coffer, that there be no vacuity: To this there is an Axletree with a handle to each wheel, fo that they may be turned, and A being turned, that turneth the other Wheel that is oppofite: by which motion the air that is in E, and the water that is carried by

196 Datbematical Recreation:

the hollow of the wheels of each fide, by continual motion, is confrained to mount and flie out by the Funnel F. Now to make the Water run what way one would have it, there may be applied upon the top of the Pipe F, two other moveable Pipes inferted one within another; as the Figure fheweth. But here note that there may acrue fome inconveniency in this Machine, feeing that by quick turning the Cogs or Teeth of the Wheels running one againtt another, may near break them, and fo give way to the Air to enter in, which being violently inclofed will efcape to occupy the place of the Water, whole weight makes it fo quick : howfoever, if this Machine be curioufly made as an able Workman may eafily do, it is a moft foveraign Engine, to caft Water high and far off for to quench fires. And to have it to rain to a place affigned, accommodate a Socket having a Pipe at the middle, which may point towards the place, being fet at the top thereof, and fo having great difcretion in turning the Axis of the Wheel, it may work exceeding well, and continue long.

$$
8 .
$$

Eigtlly, Of a fine Watering-Pot for Gardens.

THis may be made in form of a Bottle, according to the latt figure, or fuch-like, having at the bottom many fmall holes, and at the neck of it another hole fomewhat greater than thofe

@9atbrmatíal Recteationt.

thofe at the bottom, which hole at the top you muft unftop when you would fill this WateringPot, for then it is nothing but putting the lower end into a Pail of Water; for fo it will fill it felf by degrees : and being full, put your Thumb on the hole at the Neck to ftopit, for then may you carry it from place to place, and it will not fenfibly run out ; fomething it will, and all in time, (if it were never fo clofe ftopped) contrary to the ancient Tenet in Philofphy, That Air will not penetraté.

$$
9
$$

Ninthly, How eafily to take Wine out of a Veffel at the Bung-bole, witbout piercing of a bole in the Vefel.

IN this there is no need but to have a Cane or Pipe of Glafs, or fuch-like, one of the ends of which may be clofed up almof, leaving fome fmall hole at the end; for then if that end be fet into the Veffel at the Bung-hole, the whole Cane or Pipe will be filled by little and little; and once being fall, fop the other end which is without, and then pull out the Cane or Pipe, fo will it be full of Wine, then opening a little the top above, you may fill a Glafs or other
 Pot with it, for as the Wine iffueth out, the air cometh into the Cane or Pipe, to fupply vacuity;
10. Tenthly,

198 glatbematical kecteation;

10.

Tentbly, How to meafure irregular Bodies by belp of
Water.

SOme throw in the Body or Magnitude into a Veffel, and keep that which floweth out over, faying it is always equal to the thing calt into the Water: But it is more neater this "way, to pour into a Veffel fuch a quantity of Water, which may be thought fufficient to cover the Body or Magnitude, and make a mark how high the Water is in the Veffel, then pour out all this Water into another Veffel, and let the Body or Magnitude be placed into the firft Veffel; then pour in Water from the fecond Veffel until it afcend unto the former mark made in the firft Veffel, fo the Water which remains in the fecond Veffel, is equal to the Body or Magnitude put into the Water : But here note that this is not exact or free from error, yet nearer the Truth than any Geometrician can otherwife poffibly meafure; and thefe Bodies that are not fo full of pores, are more tru* ly meafured this way, than others are.

II.

To find the Weight of Water.

SEeing that ${ }^{\frac{5}{5} \frac{44}{0}}$ part of an ounce weight, makes a Cubical Inch of Water, and every pound weight Haverdupoiz makes 27 Cubical

matbenatical ฉecteation.

Inches, and $1 \circ$ fere, and that 7 Gallons and a half Wine-meafure makes a foot Cubical, it is eafie by inverfion, that knowing the quantity of a Veffel in Gallons to find his content in Cubical feet or weight : and that late famous Geometrician Mafter Erigs found a Cubical Foot of Water to weigh near 62 pound weight Haverdupoiz. But the late Learned Simon Stevin found a Cubical Foot of Water to weigh 65 pound; which difference may arife from the inequality of $\mathrm{Wa}-$ ter; for fome Waters are more ponderous than others; and fome difference may be from the weight of a pound, and the meafure of a Foot. Thusthe weight and quantity of a folid foot fetled, it is eafie for Arithmeticians to give the contents of Veffels or Bodies which contain Liquids.

12.

To find tbe Charge that aVeffel may carry, as Ships, Boats, or Jucb-like.
His is generally conceived, that a Veffel may carry as much weight as that Water weigheth which is equal unto the Veffel in bignefs, in abating only the weight of the Vaffel: We fee that a Barrel of Wine or Water caft into the Water, will not fink to the bottom, but fwim eafily; and if a Ship had not Iron and other pon? derofities in it, it might (wim full of Water without finking: In the fame manner if the Veffel were loaden with Lead, fo much fhould the Wa-

04

200, وqathematical Recteation:

ter weigh : Hence it is that Mariners call Ships of 50000 Tuns, becaufe they may contain one of 2000 Tun, and fo confequently carry as much.

13.

How comes it that a Ship baving Safely Sailed in the vaft Ocean, and being come into the Port or Harbour, without any tempeft will fink down right ?

THe caufe of this is, That a Veffel may carry more upon fome kind of Water than upon other; now the Water of the Sea is thicker and heavier than that of Rivers, Wells, or Fountains; therefore the loading of a Veffel which is accounted fuffecient in the Sea, becomes too great in the Harbour; or Sweet Water. Now fome think that it is the depth of the Water that makes Veffels more eafie to fwim, but it is an abufe: for if the loading of a Ship be no heavier than the Water that would occupy that place, the Ship thould as eafily fwim upon that Water, as if it did fwim upon a thoufand fathom deep of Water; and if the Water be no thicker than a leaf of Paper, and weigheth but an ounce under a heavy body, it will fupport it, as well as if the Water under if weighed ten thoufand pound weight : Hence it is, if there be a Veffel capable of a little more than a thoufand pound weight of water, you may put into this Veffel a piece of Wood which thall weigh a thoufand pound weight ; (but lighter in his kind than the like magnitude of Water)

99atbenatical Recteation.

for then pouring in but a quart of Water, or a very little quantity of Water, the Wood will fwim on the top of it, (provided that the Wood touch not the fides of the Veffel) which is a fine Experiment, and feems admirable in the performance.

How groß Body of Metal may froim upon the Water.

THis is done by extending the Metal into a thin Plate, to make it hollow in form of a Veffel; fo that the greatnefs of the Veffel which the air with it containeth, be equal to the magnitude of the Water, which weighs as much as it, for all Bodies may fwim without finking, if they occupy the place of Water equal in weight unto them, as if it weighed 12 pound, it muft have the place of 12 pound of Water: Hence it is that we feefloating upon the Water great Veffels of Copper or Brafs, when they are hollow in form of a Caldron. And how can it be otherwife conceived of Iflands in the Sea, that fwim and float? Is it not that they are hollow and fome part like unto a Boat, or that their Earth is very light and fpongeous, or having many Concavities in the Body of it, or much Wood within it.

And it would be a pretty propofition to Thew how much every kind of Metal Thould be inlarged to make it fwim upon the Water: which

202 פMathenatical Recteation.

 which doth depend upon the proportion that is between the weight of the Water and each Metal. Now the proportion that is between Metals and Water of equal magnitude, according to fome Authors, is as followeth:A magnitude of Io pound
weight of Water will
require for the like mag-
nitude of $\begin{cases}\text { GOLD } & 187 \frac{1}{2} \\ \text { LEAD } & 116 \frac{1}{2} \\ \text { SILVER } & 104 \\ \text { COPPER } & 91 \\ \text { IRON } & 81 \\ \text { IINNE } & 75\end{cases}$

From which is inferred, That to make a piece of Copper of io pound weight to fwim, it muft be made fo hollow that it may hold 9 times that weight of Water, and fomewhat more, that is to fay 9 I pound: Seeing that Copper and VVater of like magnitudes in their ponderofities, are as before, as roto 91.

15

How to weigh the lightues of the Air.

PLace a Ballance of wood turned upfide down into the water, that fo it may fwim, then let water be inclofed within fome body, as within a Bladder or fuch-like, and fuppofe that fuch a quantity of Air fhould weigh one pound, place it under one of the Ballances, and place under the other as much weight of lightnefs as may counter-ballance and keep the other Ballance that

Soathematical Recteation： 203

it rife not out of the water：by which you thall fee how much the lightnefs is．

But without any Ballance do this ： Take a Cubical hol－ low Veffel，or that which is Cylindri－ cal ，which may fwim on the water，and as it finketh by placing of weights upon it，
 mark how much，forthen if you would examine the weight of any body，you have nothing to do but to put it into this Veffel，and mark how deep it finks：for fo many pound it weighs as the weights put in do make it fo to fink．

A Body being given，to mark it about，and fhere bow much of it wi⿱一𫝀口lll fink in the Water，or frim above the Water．

THis is done by knowing the weight of the Body which is given，and the quantity of Water，which weighs as much as that body；for then certainly it will fink fo deep，until it occu－ pisth the place of that quantity of Water．

17．T0

204

17.

Io find bows much Several Metals or other Bodies do weighlefs in the Water than in the Air.

TAke a Ballance, and weigh (as for example) 9 pound of Gold, Silver, Lead, or Stone, in the Air, fo it hang in equilibrio; then coming to the Water, take the fame quantity of Gold, silyer, Lead or Stone, and let it Coftly down into if, and you thall fee that you thall need a lefs Counterpoife in the other Ballance to counter-ballance it: Wherefore all Solids or Bodies weigh lefs in the Water than in the Air, aud fo much the lefs it will be, by how much the Water is grofs and thick becaufe the weight finds a greater refiftance, and therefore the Water fupports more than Air; and further, becaufe the Water by the ponderofity is difpleafed, and fo ftrives to be there again, preffing to it, by reafon of the other Waters that are about it, according to the proportion of his weight. Archimedes demonftrateth, that all Bodies weigh lefs in the VVater (or in like Liquor) by how much they occupy place : and if the VVater weigh a pound weight, the magnitude in the VVater thall weigh a pound lefs than in the Air.

Now by knowing the proportion of Water and Metals, it is found that Gold lofeth in the Water the 19 part of his weight, Copper the 9 part, Quickfilver the 15 part, Lead the 12 part, Silver the 10 part, Iron the 8 part, Tin the 7 part

פĐatbematical Recteation.

and a little more: wherefore in material and ab. folute weight, Gold in refpect of the Water that it occupieth weigheth 18 and $\frac{3}{4}$ times heavier than the like quantity of Water, that is, as $18 \frac{3}{4}$ to the Quickfilver 15 times, Lead 11 and $\frac{3}{5}$, Silver 10 and $\frac{2}{3}$, Copper 9 and $\frac{1}{10}$, Iron 8 and $\frac{1}{2}$, and Tin 8 and $\frac{3}{3}$. Contrarily in refpect of greatnefs, if the Water be as heavy as the Gold, theri is the Water almoft 19 times greater than the magnitude of the Gold, and lo you may judge of the reft.

18.

Hons is it that a Ballance baving like weight in each Scale, and banging in æquilibrio in the Air, being placed in anstber place, (nithbout removing any wpeight) it Sall cease to bang in æquilibrio Senfibly, yea by a great difference of meigbt?

THis is eafie to be refolved by confidering different Metals, which though they weigh equal in the Air, yet in the Water there will be an apparent difference ; as fuppofe fo that in the Scale of each Ballance be placed eighteen pound weight of feveral Metals, the one Gold, and the other Copper, which being in aquilibrio in the Air, placed in the Water will not hang fo, becaufe that the Gold lofeth near the eighteenth part of his weight, which is about one pound, and the Copper lofeth but his ninth part, which is two pound: wherefore the Gold in the water

206 Mathematical Recceation:

water weigheth but 17 pound, and the Copper 16 pound, which is a difference moft fenfible to confirm that point.

12.

> To Shen what Waters are beavier one than another, and boro much.

PHyficians have an efpecial refpect unto this, judging that water which is lighteft is moft healthful and medicinal for the Body, and Seamen know that the heavieft waters do bear moft. And it Is known which water is heavieft thus: Take a piece of Wax, and faften Lead unto it, or fome fuch-like thing, that it may but precifely fwim, for then it is equal to the like magnitude of water, then put it into another Veffel which hath contrary water, and if it fink, then is that water lighter than the other : But if it fink not fo deep, then it argueth the water to be heavier or more groffer than the firft water; or one may take a piece of Wood, and mark the quantity of finking of it into feveral waters, by which you may judge which is lighteft or heavieft, for in that which it finks moft, that is infallibly the lighteft, and fo contrarily.

20.

How to make a pound of Water woigh as much as $10,20,30$, or 100 pound of Lead; nay as much as 1000 ar 10000 pound weight.

THis Fropofition feems very impoffible, yet Water inclofed in a Veffel, being conftrained to dilate it felf, doth weigh fo much as though there were in the concavity of it a Colid body of Water.

There are many ways to experiment this Propolition, but to verific it, it may be fufficient to produce two excellent ones onely: which had they not been really acted, little credit might have been given unto it.

The firft way is thus: Take a Magnitude which takes up as much place as 100 or 1000 pound of Water, and fuppofe that it were tied to fomething that it may hang in the Air; then make a Ballance that one of the Scales may inviron it, yet fo that it touch not the fides of it; but leave fpace enough for one pound of Water: Then having placed 100 pound weight in the other Scale, throw in the Water about the Magnitude, fo that one pound of Water thall weigh down the 100 pound in the other Ballance.

The fecond way is yet more admirable: Take a common Ballance that is capable to receive 10 or 20 pound of Water, then put into it a magnitude which may take up the place of 9 or 19 pquand

208 Matbematical kecceation:

of water, which muft be hung at fome Iron or beam which is placed in a wall; fo that it hang quiet : (now it is not material whether the magnitude be hollow or maffie) fo that it touch not the Balance in which it is put,for then having put the Lead or Weight into the other Ballance, pour in a pound of Water into the Ballance where the Magnitude is, and you thall fee that this one pound of Water fhall counterpoife the 10 or 20 pound of Lead which is fet in the other Ballance.

PROBLEM LXXXVI.

Of fundry Quefions in $A R I T H M E T I C K$.

And firfo of the Number of Sands.

T'TT may be faid incontinent, that to undertake this were impoffible, either to number the Sands of Lybia, or the Sands of the Sea; and it was this that the Poets fung, and that vvhich the Vulgar believes; nay, that vvhich long ago certain Philofophers to Gelon King of Sicily reported, that the grains of Sand vvere innumerables But I anfveer vvith Archimedes, that not onely

Mgathematical Recteationt.

one may number thofe which are at the border, and about the Sea, but thofe which are able to fill the whole world, if there were nothing elfe but Sand, and the grains of Sands admitted to be fo fmall, that 10 may make but one grain of Poppy: for at the end of the account there need not to exprefs them but this number 30840979456 , and 35 Cyphers at the end of it. Clavius and Arcbimedes make it fomewhat more, becaufe they make a greater Firmament than Iiclobo Brabe doth; and if they augment the Univerfe; it is eatie for us to augment the number, and declare affuredly how many grains of Sand there are requifite to fill another World, in comparifon that our vifible World were but as one grain of Sand, an atom, or a point; for there is nothing to do but to multiply the number by it felt, which will amount to 90 places, whereof twenty are chefe: 95143798134910955936 , and 70 Cyphers at the end of it, which amounts to a mott prodigious number, and is eafily fupputated: for fuppofing that a grain of Poppy doth contain 10 grains of Sand, there is nothing but to compare that little bowl of a grain of Poppy, with a bowl of an inch or of a foot, and that to be compared with that of the Earth, and then that of the Earth with that of the Firmament, and fo of the seft.

2ro @atbenatical Recceation:

2.

Divers Metals being melted together in one body, to $=$ find the mixture of them.

THis was a notable Invention of Arcbimedes, related by Vitruvius in his Architecture, where he reporteth that the Goldfmith which King Hiero imployed for the making of the Golden Crown which was to be dedicated to the Gods, had folen part of it, and mixed Silver in the place of it: The King fufpicious of the work propofed it to Arclaimedes, if by Art he could difcover without breaking of the Crown, if there had been made mixture of any other Metal with the Gold. The way which he found out was by bathing himfelf; for as he entred into the V fffel of Water (in which he bathed himfelf) fo the Water afcended or flew out overit; and as he pulled out his Body, the Water defcended: from which he gathered that if a Bowl of pure Gold, Silver, or other Metal, were caft into a Veffel of Water, the Water proportionally, according to the thing caft in, would afcend; and fo by way of Arithmetick the Queftion lay open to be refolved: who being fo intenfively taken with the invention, leaps out of the Bath all naked, crying as a man tranfported, I bave found, I bave found, and fo difcovered it.

Now fome fay that he took two Maffes, the one of pure Gold, and the other of pure Silver; eache equal to the weight of the Crown, and therefore unequal in magnitude or greatness; and then knowing

פatbematical Recteation.

knowing the feveral quantities of water which was anfwerable to the Crown, and the feveral Maffes, he fubtilly collected, that if the Crown occupied more place within the water than the Mafs of Gold did, it appeared that there was Silver or other Metal melted with it. Now by the Rule of Pofition, Suppofe that each of the three Maffes weighed 18 pound apiece, and that the Mafs of Gold did occupy the place of one pound of water, that of Silver a pound and a half, and the Crown one pound and a quarter onely: Then thus he might operate: The Mafs of Silver which weighed 18 pounds, eaft into the \mathbf{W} ter, did caft out half a pound of water more than the Mafs of Gold which weighed i8 pound; and the Crown which weighed alfo 18 pound, being put into a Veffel full of water, threw out more water than the Mafs of Gold by a quarter of a pound, (becaufe of mixt Metal which was in it) therefore by the Rule of Proportion, If half a pound of water (the Excefs) be anfwerable to 18 pound of Silver, one quarter of a pound of E8cefs thall be anfwerable to 9 pound of Silver, and fo much was mixed in the Crown.

Some judge the way to be more facil by weigtiing the Crown firft in the air, then in the water; in the air it weighed 18 pound, and if it were pure Gold, in the water it would weigh but 17 pound; if it were Copper it would weigh but 16 pound; but becaufe we will fuppofe that Gold and Copper is mixed together, it will weigh lefs than 17 pound, yet more than 16 pound, and that according to the proportion mixed: let it then be fupP_{2} pofed

212. Matbematical Recceation.

pofed that it weighed in the water 16 pound and 3 quarters, then might one fay by proportion, If the difference of one pound of lofs (which is between 16 and 17) be anfwerable to 18 pound, to what thall one quarter of difference be anfwerable to, which is between 17 and $16 \frac{3}{5}$, and it will be 4 pound and ahalf, and fo much Copper was mixed with the Gold.

Many men have delivered fundry ways to refolve this propofition, fince Archimedes invention, and it were tedious to relate the diverfities.

Baptijt Bexedictus, amongft his Arithmetical T'beorems, delivers his way thus: if a Mals of Gold of equal bignefs to the Crown, did weigh 2 pound, and another of Silver, at a capacity or bignefs at pleafure, as fuppofe did weigh 12 pound, the Crown or the mixt body would weigh more than the Silver, and leffer than the Gold: Suppofe it weighed 16 pound, which is 4 pound lefs than the Gold by 8 pound; then one may fay, If 8 pound of difference come from 12 pound of Silver, from whence comes 4 pound, which will be 6 pound, and fo much Silver was mixed in it, ơc.

3.

Three men bought a quantity of Wine, each paid alike, axd each was to bave alike, ; it bappened at the laft partition that there were 21 Barrels, of which 7 were full, 7 were balf full, and 7 empty, how mult they fhare the Wine and V 'effels, that eaclo have as many Veffels oue as anotber, and as much Wine one as anotber?

T
His may be anfwered two ways as followeth, and thefe numbers, $2,2,3$, or $3,3,1$, may ferve for direction, and fignifies that the firft perfon ought to have 3 Barrels fulland as many empty ones, and one which is half full; fo he thall have 7 Veffels, and 3 Barrels and an half of Li quor; and one of the other thall in like manner have as much, fothere will remain for the third man I Barrel full, 5 which are half full, and I empty, and fo every one thall have alike both in Veffels and Wine. And generally to anfwer fuch Quettions, divide the number of Veffels by the number of perfons, and if the Quotient be not an intire number, the Queftion is impollible; but when it is an intire number, there mult be made as many parts as there are 3 perfons, feeing that each part is lefs than the halt of the faid Quotient: as dividing 21 by 3 there comes 7 far the Quotient, which may be parted in thele 3 parts, $2,2,3$, or $3,3,1$, each of which being lefs than half of 7 .

$$
\mathrm{P}_{3} \quad \text { 4. There }
$$

24 Watbematical mecreation.

4.

There is a Ladder wobich ftands upright againft a Wall of $1 \circ$ foot bigh, the foot of it is pulled out 6 foot from the W all upon the Pavement : How mucb - bath the top of the Ladder defcended?

THe anfwer is, 2 foot : for by Pytbagoras Rule the fquare of $\mathcal{D} B$, the Hypotbenusal is.equal
 to the fquare of $D \boldsymbol{A}$ 6 , and $A B 10$. Now if $D A$ be 6 foot, and $A B$ io foot, the fquares are 36 , and 100 , which 36 taken from 100, refts 64, whofe root-quadrate is 8, fo the foot of the Ladder being now at D, the top will be at C, two foot lower than it was when it was at B.

FROBLEM LXXXVII.

Witty Suits or Debates between Caius awd Sempronius, upon the form of Figures, which Geometricians call Ifoperimeter, or equal in circuit or compafso

MArvel not at it, if I make the Mathematicks take place at the Bar, and if I fet forth here Bartoleus, who witneffeth of himfelf,

Matbematical Recteation.

that being then an ancient Doctor in the Law, he himfelt took upon him to learn the Elements and Principles of Geometry, by which he might fet forch certain Laws touching the divifions of Fields, Waters, Illands, and other incident places: Now this fhall be to fhew in paffing by, thät thefe Sciences are profitable and behoveful for Judges, Counfellors, or fuch, to explain many things which fall out in Laws, to avoid ambiguities, contentions, and fuits often.

The firft Incidento

CAius had a Field which was directly fquarè, having 24 meafures in circuit, that was 6 on each fide: Sempronius defiring to fit himfetf, prayed Caius to change with him for a ficld which fhould be equivalent unto his, and the bargain being concluded, he gave him for Counter - change a piece of Ground which had juft as much in circuit as
 his had, but it was not fquare, yet Quadranguldr and Reciaugled, having 9 meafures in length for each of the two longeft lides, and δ in breadth for each Thorter fide: Now Caius which was not the moft fubtilleft nor wifeft in the world, accepted his bargain at the firf, but afterwards having conferred with a Land-meafurer and Mathematician, found that

216 Mathematical Recteation:

he was over-reached in his bargain, and that his Field contained 36 fquare meafures, and the other Field had but 27 meafures, (a thing eafie to be known by multiplying the length by the breadth) Sempronius contefted with him in fuit of Law, and argued that Figures which have equal Perimeter, or Circuit, are equal amongft themfelves: My Field, faith he, hath equal circuit with yours, therefore it is equal unto it in quantity. Now this was fufficient to delude a Judge which was ignorant in Geometrical Proportions, but a Mathematician will eatily declare the deceit, being affured that figures which are Ifoperemiter, or equal in circuit, have not always equal capacity or quantity: feeing that with the fame circuit there may be infinite figures made, which thall be more and more capable, by how much they have more Angles, equal fides, and approach nearer unto a Circle, (which is the moft capableft Figure of all) becaufe that all his parts are extended one from another, and from the middle or centre as much: as may be: fo we fee by an infallible Rule of Experience, that a Square is more capable of quantity, than a Triangle of the fame circuit, and a Pentagone more than a Square, and lo of other s, fo that they be regular Figures that have their fides equal; otherwife there might be that a repular Triangle having 24 meafures in circuit, might have more capacity than a rectangled Pa ralellogram, which had alfo 24 meafures of circuit, as if it were II in length, and I in breadth, the circuit is ftill 24 , yet the quantity is but II; and if it had 6 every way, it gives the fame

@atbrmatical Rectration:

Perimeter, viz. 24 , but a quantity of 36 , as be* tore.

The Second Incident.

SEmpronius having borrowed of Caius a Sack of Corn, which was 6 foothigh, and 2 foot broad, and when there was queftion made to repay it, Sempronius gave Caius back two Sacks full of Corn which had each of them 6 foot high; and I foot broad : who believed that if the Sacks were full, he was repaid; and it feems to have an appearance of truth, barely looked on. But it is moft evident in demonftration, that the 2 Sacks of Corn paid by Sempronius to Caius, is but half of that one Sack which he lewt him: for a Cylinder or Sack having one foot of diameter and 6 foot of length, is but the fourth part of another Cylinder, whole length is 6 foot, and his diameter is 2 font : therefore two of the leffer Cylinder 6 or Sacks is but half of the greater; and fo Caius was deceived in half his Corn.

The Third Incident.

COme one from a common Fountain of a City hath a Pipe of Water of an inch diameter; to have it more commodious he hath leave to take as much more water; whercupon he gives order that a Pipe be made of two inches diameter. Now you will fay prefently, that it is reafon to be fo big, to have jult twice as

218 M9thematical Reccration.

much water as he had before: but if the MagiArate of the City underfood Geometrical Proportions, he would foon caufe it to be amended, and fhew that he hath not onely taken twice as
 much water as he had before, but four times as much: for a circular hole which is two inches diameter, is four times greater than that of one inch, and therefore will caft out four times as much water as that of one inch, and fo the deceit is double alfo in this.

Moreover, if there were a heap of Corn of 20 foot every way, which was borrowed to be paid next year : the party having his Corn in heaps of 12 fout every way, and of 10 foot every way, proffers him 4 heaps of the greater, or 7 heaps of the leffer, for his own heap of 20 every way, which was lent: Here it feems that the proffer is fair, nay with advantage, yet the lots would be near 1000 foot. Infinite of fuch caufes do arife from Geometrical Figures, which areable to deceive a Judge or Magiftrate, which is not fomewhat feen in Matbematical Documents.

و9atyematical kecteation.

PROBLEM LXXXVIII.

Containirg Jundry Queftions in matter of Cofmograpby.

FIrft, It may be demanded where is the middle of the World ? I fpeak nut here Mathematically, but as the vulgar People, who ask, Where is the middle of the World? In this fence to fpeak abfolutely there is no point which may be faid to be the middle of the furface; for the middle of a Globe is every where : notwithftanding the Holy Scriptures fpeak refpectively, and make mention of the middle of the Earth, and the Interpreters apply it to the City of Ferufalem, placed in the middle of Paleftina, and the habitable world, that in effect taking a Map of the World, and placing one foot of the Compaffes upon $\mathfrak{F e}$ rufalem, and extending the other foot to the extremity of Europe, Afia, and Africa, you thall fee that the City of Ferufalem is as a . Centre to that Circle.

$$
2 .
$$

Hon much is the depth of the Earth, the beight of the Heavens, and the compajs of the World?

FRom the furface of the Earth unto the Centre according to ancient traditions, is 3436 miles, fo the whole thicknefs is 6872 miles, of which the

220 Mathematical Recteation.

the whole compars or circuit of the Earth is 21600 miles.

From the Centre of the Earth to the Moon there is near 56 Semidiameters of the Earth, which is about 192416 miles: unto the Sun there is 1142 Semidiameters of the Earth, that is in miles 3924912 ; from the flarry firmament to the Centre of the Earth there is 14000 Semidiameters, that is, 48184000 miles, according to the opinion and obfervation of that learned I^{2} cho Brabe.

From thefe meafures one may collect by Arithmetical fupputations, many pleafant propofitions in this manner:
Firft, If you imagine there were a hole through the Earth; and that a Mill-itone fhould be let fall down into this hole, and to move a mile in each minute of time, it would be more than two days and a half before it would come to the Centre, and being there it would hang in the Air.

Secondly, If a man thould go every day 20 miles, it would be three years wanting but a fortnight, before he could go once about the Earth; and if a Bird fhould fly round about it in two days, then muft the motion be 450 miles in an hour.

Thirdly, The Moon runs a greater compafs each hour, than if in the fame time the fhould run twise the Circumference of the whole Earth.

Fourthly, Admit it be fuppofed that one fhould go twenty miles in afcending towards the Hea-

peathematical Recteation.

vens every day, he fhould be above fifteen years, before he could attain to the Orb of the Moon.

Fifthly, The Sun makes a greater way in one day than the Moon doth in 20 days, becaufe that the Orb of the Suns Circumference is at the leaft twenty times greater than the Orb of the Moon.

Sixthly, If a Mill-ftone thould defcend from the place of the Sun a thouland miles every hour, which is above 15 miles in a minute, far beyond the proportion of motion) it would be above 163 days before it would fall down to the Earth.

Seventhly, The Sun in his proper Sphere moves more than feven thoufand five hundred and feventy miles in one minute of time : now there is no Bullet of a Cannon, Arrow, Thunderbolt, or Tempeft of Wind that moves with fuch quicknefs.

Eighthly, It is of a far higher nature to confider the exceeding and unmoveable quicknefs of the ftarry firmament, for a Starbeing in the Equator, (which is juft between the Poles of the World) makes 12598666 miles in one hour, which is two hundred nine thoufand nine hundred and feventy four miles in one minute of time: and if a Horfeman thould ride every day 40 miles, he could not ride fuch a compals in a Thoufand Years, as the Starry Firmament moves in one hour, which is more than if one fhould move about the Earth a thoufand times in one hour, and quicker than poffible thought

222 פMathematical Recteation:

can be imagined: and if a Star fhould fly in the Airabout the Earth with fuch a prodigious quicknefs, it would burn and confume all the World here below. Behold therefore how time paffeth, and death hafteth on: This made Copernicus not unadvifedly to attribute this motion of Primum mobile to the Earth, and not to the farry Firmament; for it is beyond humane fenfe to apprehend or conceive the rapture and violence of that motion, being quicker than thought; and the Word of God teftifieth that the Lord made all things in Number, Meafure, Weigbt, and Time.

PROBLEM XCII.

To find the Biffextile-Year, the Dominical-Letter, and the Letters of the Month.

TEt 123 , or 124 , or 125 , or 26 or 27 , (which is the remainder of 1500 , or 1600) be divided by 4 , which is the number of the Leap-year, and that which remains of the divifion thews the Leap-year ; as if one remain, it thews that it is the firfe year fince the Biffextil or Leap year; if two, it is the fecond year, erc. and if nothing remain, then it is the Biffextile or Leap-year: and the Quotient Chews you how many Biffextiles or Leap-years, there are contained in fo many years.

פ日athematical Rectration:

To find the Circle of the Sun by the Fingers.

LEt 123,24,25,26, or 27, be divided by 28, (which is the Circle of the Sun, or whole revolution of the Dominical Letters) and that which remains is the number of Joynts which is to be accounted upon the Fingers, by Filius efto Dei, calum bonus accipe gratis : and where the number ends, that Finger fheweth the year which is prefent, and the words of the Verfe fhew the Dominical Letter.

Example.

DIvide 123 by 28 for the year (and fo of 0^{-} ther years) and the Quotient is 4 , and there remaineth II, for which you mult account II words: Filius efto Dei, evc. upon the Joynts, beginning from the firft joynt of the Index, and you thall have the anfwer.

For the prefent to know the Dominical Letter for each month, account from Fanuary unto the month required, including fanuary, and if there be $8,9,7$, or 5 , you muft begin upon the end of the Finger from the Thumb, and account, Adam degebat, ©rc. as many words as there are months, for then one thall have the Letter which begins the month; then to know what day of the month it is, fee how many times 7 is comprehended in the number of days, and take the reft, fuppofe 4, account upon the firft finger within and without by the joynts, unto the number of 4 , which ends

224 פ⿴囗十tibematical Recreation．

at the end of the Finger ：from whence it may be inferred that che day required was WHednefday， Sunday being attributed to the firft Joynt of the firft Finger or Index：and fo you have the pre－ fent year，the Dominical Letter，the Letter which begins the Month，and all the days of the Month．

PROBLEM XCIII．

To find tbe New and Full Moon in each Montb．

A
Dd to the Epact for the year the Month from Marck，then fubtract that furplufs from 30，and the reft is the day of the Month that it will be New Moon，and adding unto it 14，you thall have that Full Moon．

Note．

THat the Epact is made always by adding II unto 30 ，and if it pafs 30 ，fubtract 30 ， and adde if to the remainder，and fo ad infi－ nitum：as if the Epact were 12，add II to it， makes 23 for the Epact next year，to which add 1 I makes 34，fubtract 30 ，refts 4 the Epact for the year after；and 15 for the year following that， and 26 for the next，and 7 for the next，$\sigma \mathrm{c}$ ．

פ9athematical Recteation.

PROBLEM XCIV.

To find the Latitude of a Countrey.

THofe that dwell between the North-Pole and the Tropick of Cancer, have their Spring and Summer between the 10 of Marcb and the 13 of September: and therefore in any day between that time, get the Suns diftance by inftrumental obfervation from the Zenith at noon, and add the declination of the Sun for that day to it: So the Aggregate (heweth fuch is the latitude orPoles height of that Countrey. Now the declination of the Sun for any day is found out by Tables calculated to that end : or Mechanically by the Globe, or by Inftrument it may be indifferently had. And here note, that if the day be between the 13 of September and the 10 of March, then the Suns declination for that day muft be taken out of the diftance of the Sun from the Zenith at noon: fo Thall you have the Latitude, as before.

PROBLEM XCV.

Of the Climates of Countreys, and to find robat Cl mate any Countrey is under.

CLimates as they are taken Geographically fignifie nothing elle but when the length of the ngeft day ot a ny place, is half an hour Q longe

226 Mathematical Recreation.

longer or fhorter than it is in another place, (and fo of the fhorteft day) and this account to begin from the Equinoctial Circle, feeing all Countreys under it have the Chorteft and longeft day that can be but 12 hours; But all other Countreys that are from the Equinoctial Circle either towards the North or South of it unto the Poles themfelves, are faid to be in fome one Climate or other; from the Equinoctial to either of the Poles Circles, (which are in the Latitude of 66 deg. 30 min.) between each of which Polar Circles and the Equinoctial Circle there is accounted 24 Climates, which differ one from another by half an hours time : then from each Polar Circle to each Pole there are reckoned 6 other Climates which differ one from another by a months time: fo the whole Earth is divided into 60 Climates, 30 being allotted to the Northern Hemifphere, and 30 to the Southern Hemifphere. And here note, that though thefe Climats which are between the Equinoctial and the Polar Circles are equal one unto the other in refpect of time, to wit, by half an hour ; yet the Latitude, breadth, or internal, contained between Climate and Climate, is not equal : and by how much any Climate is farther from the Equinoctial than another Climate, by fo much the leffer is the internal between that Climate and the next : fo thofe that are neareft the Equinoctial are largeft, and thofe which are fartheft off moft contracted: and to find what Climate any Country is under, fubtract the length of an Equinoctial day, to wit, 12 hours, from the length of the longeft day of that Countrey, the remain-

- פMatbematical dactration.

remainder being doubled hews the Climate: So at London the longeft day is near 16 hours and a half; $\mathbf{1 2}$ taken from it, there remains 4 hours and a half, which doubled makes 9 half hours, that is, ${ }_{9}$ Climates; fo London is in the 9 Climate.

PROBLEM XCVI.

> Of Longitude and Latitude of the Earth, and of the Stars.

LOngitude of a Countrey or place, is an Arck of the Æquator contained between the Meridian of the Azores, and the Meridian of the place, and the greateft Longitude that can be is 360 degrees.

Note, That the firft Meridian may be taken at pleafure upon the Terrelfrial Globe or Map, for that fome of the ancient Aftronomers would have it at Hercules Pillars, which is at the fraights at Gibraltar : Ptolomy placed it at the Canary Iflands, but now in thefe latter times it is held to be near the Azores. But why it was firtt placed by Ftolomy at the Canary Iflands, was, becaure that in his time thefe Illands were the fartheff Weftern parts of the World that was then difcovered. And why it retains his place now at St. Michaels near the Azores, is that becaufe of many accurate obfervations made of late by many expert Navigators and Mathematicians, they have found the Needle there to have no variation, but to point North and South: that is, to each Pole of the

World:

228 Mathematical Recteation.

World: And why the Longitude from thence is accounted Eaftward, is from the motion of the Sun Eaftward, or that Ptolomy and others did hold it more convenient to begin from the Weftern part of the World, and fo account the Longitude Eaftward from Country to Country that was then known, till they came to the Eaftern part of Afia, rather than to make a teginning upon that which was unknown: and having made up their account of reckoning the Longitude from the Weftern part to the Eaftern part of the world known, they fuppoled the rett to be all Sea, which fince their deaths hath been found almolt to be ano ther habitable World.

To find the Longitude of a Countrey:

IF it be upon the Globe, bring the Countrey to the Brafen Meridian, and whatfoever degree that Meridian cuts in the Equinoctial, that degree is the Longitude of that Place. If it be in a Map, then mark what Meridian paffeth overit, fo have you the Longitude thereof; if no Meridian pafs overit, then take a pair of Compaffes, and meafure the diftance between the Place and the next Meridian, and apply it to the divided Parallel or Equator, fo have you the Longitude required.

Of the Latitude of Countreys.

LAtitude of a Countrey is the diftance of a Countrey from the Equinoctial, or it is an Ark of the Meridian contained between the Zcnith of the place and the Æquator, which is twofold, viz. either North-Latitude, or South-Lati-
tude, either of which extendeth from the Equinoctial to either Pole; fo the greateft Latitude that can be is but 90 degrees. If any Northern Countrey have the Artick Circle vertical, which is in the Latitude of 66 gr .30 m . the sun will touch the Horizon in the Norch part thereof, and the longeft day will be there then 24 hours: If the Countrey have lefs Latitude than 66 gr 30 m . the Sun will rife and fet, but if it have more Latitude than
 66 gr .30 m . it will be vifible for many days. And if the Countrey be under the Pole, the Sun will make a circular motion above the Earth, and be vifible for half a year: fo under the Pole there will be but one day and one night in the whole year.

To find the Latitude of Countreys.

F it be upon a Globe,bring the place to the Brafen Meridian, and the number of degrees which meeteth therewith, is the Latitude of the place: Or with a pair of Compaffes take the diftance between the Countrey and the Equinoctial, which ap-
 plied unto the Equi-
noctial

230 Matbrmatical kecteation.

noctial will fhew the Latitude of that Countrey, which is equal to the Poles height. If it be upon a Map, then mark what Parallel paffeth over the Countrey, and where it croffeth the Meridian, that fhall be the Latitude: But if no Parallel paffeth over it, then take the diftance between the place and the next Parallel, which applied to the divided Meridian from that Parallel will hhew the Latitude of that place.

To find the diftance of places.

IF it be upon a Globe, then with a pair of Compaffes take the diffance between the two Places, and apply it to the divided Meridian or FIquator, and the number of degrees fhall thew the diftance, each degree being 60 miles. If it be in a Map (according to Wright's projection) take the difrance with a pair of Compaffes between the two places, and apply this diffance to the divided Me ridian on the Map, right againft the two places; fo as many degrees ás is contained between the feet of the Compaffes, fo much is the diftance between the two places. If the diftance of two places be required in a particular Map, then with the Compaffes take the diftance between the two places, and apply it to the Scale of miles, fo have you the diffance: If the Scale be too fhort, rake the Scale between the Compaffes, and apply that to the two places as often as you can, fo have you the diftance required.

وatbematical Recteation.

Of the Longitude, Latitude, Declination, and DiEtance of the Stars.

THeDeclination of a Star is the neareft diftance of a Star from the 平quator; the Latitude of a Star is the nearelt diftance of a Star from the Ecliptick: the Longitude of a Star is an Ark of the Ecliptick contained between the beginning of Aries, and the Circle of the Stars Latitude, which is a Circle drawn from the Pole of the Ecliptick unto the Star, and fo to the Ecliptick. The diftance between two Stars in Heaven is taken by a Crofs-Staff, or other lnftrument; and upon a Globe it is done by taking between the feet of the Compaffes the two Stars, and applying it to the Atquator, fo have you the diftance between thofe two Stars.

How is it that troo Horfes or other Creatures being foaled or brougbt forts into the World at one and the Same time, that after certain days travel, the one lived more days than the other, notwitbjtanding they died togetber in one and the fame moment alfo?

THis is eafie to be anfwered : Let one of them travel toward the Weft, and the other towards the Eaft: then that which goes towards the Weft followeth the Sun, and therefore fhall have the day fomewhat longer than if there had been no travel made; and that which goes Eaft, by going againft the Sun thall have the day fhort-

232 פĐatbematical Recreation.

er, and fo in refpect of travel, though they die at one and the felf-fame hoar and moment of time, the one fhall be older than the other.
From which confideration may be inferred, That a Chrifitian, a Few, and a Saracen may have their Sabbaths all upon one and the fame day, though notwithftanding the Saracen holds his Sabbath upon the Friday, the Few upon the Saturday, and the Cbriftian upon the Sunday: For being all three refident in one place, if the Saracen and the Chriftian begin their travel upon the Saturday, the Chriftiangoing Weft, and the Saracen Eaftwards, thall compals the Globe of the Earth; thus the Cbriftian at the conclufion fhall gain a day, and the Sa racen thall lofe a day, and fo meet with the feem every ope upon his own Sabbath.

Certain fine ObServations.

1. Tder the Equinoctial the Needle hangs in equilibrio, but in thefe parts it inclines under the Horizon; and being under the Pole it is thought it will hang vertical.
II. In thefe Countreys which are without the Tropical Circles, the Sun comes Eaft and Weft every day for a half year; but being under the Equinoctial the Sun is never Eaft nor Weft, but twice in the year, to wit, the 10 of March, and the 13 of September.
III. If a Ship be in the Latitude of 23 gr .30 m . that is, if it hath either of the Tropicks vertical; then at what time the Suns Altitude is equal to his diftance from any of the Equinoctial points, then the Sun is due Eaft or Weft.

\$9tbrmatical 2ecteation.

IV. If a Ship be between the Equinoctial and either of the Tropicks, the Sun will come twice to one point of the Compals in the fore-noon, that is in one and the fame pofition.
V. Under the Equinoctial near Guinea there is but two forts of Winds all the year, 6 months a Northerly wind, and 6 months a Southerly wind, and the flux of the Sea is accordingly.
VI. If two Ships under the Equinoctial be 100 leagues afunder, and Thould fail Northerly until they were come under the Arcick Circle, they thould then be but 50 leagues afunder.
VII. Thofe which have the Artick circle vertical, when the Sun is in the Tropick of Cancer, the Sun fetteth not, but toucheth the weftern part of the Horizon.
VIII. If the complement of the Suns height at noon be found equal to the Suns Declination for that day, then the Equinoctial is vertical; or a Ship making fuch an obfervatinn, the Equinoctial is in the Zenith, or direct over them, by which Navigators know when they crofs the Line, in their travels to the Indies, or other parts.
IX. The Sun being in the Equinoctial, the extremity of the Style in any Sun-Dyal upon a Plain maketh a right Line, otherwife it is Ecliptical, Hyperbolical, or.
X. When the fhadow of a man, or other thing upon a Horizontal Plain, is equal unto it in length then is the Sun in the middle point between the Horizon and the Zenith, that is 45 degrees high.

PRO.

234 . Tpathematical Rectration.

PROBLEM XCVII.

To make a Triangle that Sall bave three rigbt Angles.

OPen the Compaffes at pleafure, and upon A defcribe an Ark $B C$, then at the fame opening place one of the feet in B, and defcribe the Ark AC. Laftly, Place one of the feet of the Compaffes in C, and defrribe the Ark $A B$. So fhall you
 have the Spherical Atquilateral Triangle $A B C$, right angled at A, at B, and at C, that is, each angle comprehended 90 degrees: which can never be in any plain Triangle, whether it be Æquilateral, Ifocelfe, Scaleve, Ortbogonal, or Opigonal.

PROBLEM XCVIII.

To divide a Line in as many equal parts as one mill, without Compaffes, or without feeing of it.

THis Propofition hath a fallacy in it, and cannot be practifed but upon a Maincordion : for the Mathematical Line which proceeds from the flux of a point, cannot be divided in that wife:

Matbematical pecteation.

One may have therefore an Inftrument which is called Maincordion, becaufe there is but one cord : and if you defire to divide your line into 3 parts, run your finger upon the frets until you found a third in Mulick: If you would have the fourth part of the Line, then find the fourth found, a fifth, foc. fo fhall you havethe anfwer.

PROBLEM XCIX.

To draw a Line which Shall incline to another Line, yet never meet, againft the Axiome of Parallels.

THis is done by help of a Conoeide line, produced by a right line upon one and the fame plain, held in great account amongft the Ancients, and it is drawn after this manner.

Draw a right line infinitely, and upon fome end of it, as at I, draw a perpendicular Line I A, augment it to H_{3} then from A draw Lines at pleafure to interfect the Line I M, in each of which Lines from the right Line $I M$, transfer I H, viz. K $B, \mathbf{L} C$, $O D, P E, 2 F, M G$,
 then from thofe points draw the Line $H B, C D$, $\boldsymbol{E}, \boldsymbol{F}, G$, which will not meet with the Line IM, and yet incline nearer and nearer unto it.

PRO.

236 刃athematical Recreation.

PROBLEMC.

To obferve the variation of the Compayes, or Needle, is any places.

FIrft defcribe a circle upon a plain, fo that the Sun may thine on it both before noon and after noon; in the centre of which circle place a Gnomon or Wire perpendicular, as A B, and an hour before noon mark the extremity of the fिadow of $A B$, which_uppofe it be at C_{3} defcribe a circle at that femidiameter CDF; then after noon mark when the top of the fhadow of $A B$
 toucheth the circle, which admit in D; divide the diftance \mathbf{C}
D into two equal parts, which fuppofe at E , draw the line EAF, which is the Meridian Line, or Line of North and South: Now if the Ark of the circle CD be divided into degrees, place a Needle GH upon a plain let up in the centre, and mark how many degrees the point of the Needle G is from E, fo much doth the Needle vary from the North in that place.
seatbematical Recteation.

PROBLEMCI.

How to find at any time robich way the Wind is in ones Cbamber, poitbout going abroad.

UPon the Planking or Floor of a Chamber, Parlor, or Hall where you intend to have this device, let there come down from the top of the Houfe a hollow Poft, in which place an Iron Rod, that it afcend above the Houfe ten or fix foot with a Vane or Scouchenat it to thew the winds without : and at the lower end of thi Frod of iron, place a Dart which may by the moving of the Vane with the Wind without, furn this

Dart which is within : about which upon the Plaifter muft be defcribed a circle divided into the 32 points of the Mariners Compass, pointed and diftinguifhed to that end; then may it be marked by placing the Compals by it: for having noted the North point, the Eaft, ec. it is eatie to note all the reft of the points : and fo at any cime coming into this room, you have nothing to do but to look up to the Dart, which will point you out what way the Wind blowerh at that indtant.

238 mathematical 2ercreation.

PROBLEM CII.

How to draw a ParallelSpherical Line with great eafe.

FIrf draw an obfcure line $G F$, in the middle of it make two points, $A B$, (which ferves for Centres) then place one foot of the Compaffes in B, and extend the other foot to A , and defribe the Semicircle AC, then place one foot of the Compaffes in A , and extend the other foot to C , and defrribe the Semicircle C D. Now place the Compaffes in B, and extend the other foot unto D , and defcribe the Semicircle D E, and fo ad infinitum; which being done neatly, that there be
 no right line feen, nor where the Compaffes were placed, will feem very ftrange how poffibly it could be drawn with fuch exactnefs, to fuch which are ignorant of that way.

PROBLEM CIII.

To meafare an inacceffible diffance, as the breadth of a River witb the belp of ones Hat onely.

THe way of this is eafie: for having ones Hat upon his Head, come near to the Bank of the River, and holding your Head upright, which

פatbrmatical Recteation.

(which may be by putting a finall ftick to fome one of your Buttons to prop up the Chin) pluck down the brim or edge of your Hat until you may but fee the other fide of the water, thenturn about the body in the fame pofture that it was before towards fome Plain, and mark where the fight by the brim of the Hat glaunceth on the ground; for the diffance from that place to your flanding, is the breadth of the River required.

PROBLEM CIV.

How to meafure a beigbt weith two Straws, or two. Small Sticks.

TAke two Straws or two Sticks, which are one as long as another, and place them at right Angles one to the other, as AB, and AC, then holding $A B$ parallel to the ground, place the end A to the Eye at A, and looking to the other top B C at C, by going backward or forward until you may fee the top of the Tower or Tree, which fuppofe at E. So the diftance from your ftanding to the Tower or Tree, is equal to the height thereof above the level of the Eye:
 to which if you add your own height, you have the whole height.

Otherwife.

TAke an ordinary Square which Carpenters or other Workmen ufe, as HKL , and
 placing H to the Eye fo that H K be level, go back, or come nearer, until that by it you may fee the top M , for then the diftance from you to the height, is equal to the height.

PROBLEM CV.

How to make Statues, Letters, Bowls, or other things wobich areplaced in the fide of a bigh Building, to be feen below of ane equal bignefs.

I
Et $B C$ be a Pillar 7 yards high, and let it be required that 3 yards above the level of the Eye A, viz at B. be placed a Globe, and 9 yards

above B be placed another, and 22 yards above that be placed another Globe : how much thall the Diameter of thefe Globes be, that at the Eyeat A, they may all appear to be of one and the fame magnitude? It is thus done: Firft draw a line,

و日athematical Recteation?

line, as $A K$, and upon K erect a perpendicular, $K X$; divide this line into 27 parts, \& according to $A K$, defcribe an Ark KY, then from K in the perpendicular KX account 3 parts, wiz.at L, which fhall reprefent the former 3 yards, and draw the line $L A$ fromk, in the faid perpendicular reckon the diameter of the leffer Globe of what magnitude it is intended to be: Suppofe S L, and draw the line SA, cutting the Ark $\mathbf{u} K$, in N, then from K in the perpendicular account 9 yards, which admit at T , draw TA , cutting Y K in O , transfer the Ark $M N$, from A to P, and draw A P, which will cut the perpendicular in \mathbf{u}, fo a line drawn from the middle of $\mathbf{U F}$, unto the vifual Lines $A I$, and $A U$, thall be the diameter of the next Globe: Laftly, Account from K in the perpendicular X K 22 pares, and draw the line W A, cutting Y K in Q , then take the Ark MN , and trans ${ }^{\circ}$ fer it from Q to R, and draw $A R$, which will cut the perpendicular in \mathbf{X}, fo the line which paffeth by the middle of $X W$ perpendicular to the vifual line A W, and A X be the Diameter of the third Globe, to wit 5,6 , which meafures transferred in the Pillar BC, which theweth the true magnitude of the Globes $1,2,3$. From this an Architector doth proportion his Images, and the foldings of the Robes which are mof deformed at the Eye below in the making, yet moft perfect when it is fet in his true beight above the Eye.

R

PRO.

242 פattbematical 2ecteation:

PROBLEM CVI.

How to difguife or disfigure an Image, as a Head, an Arm, a whole Body, \&c. So that it bath no proportion; the Ears to become long, the Nofe as that of

- a Swan, the Moutb as a Coaches entrance, \&cc. yet the Eye placed at a certain point nill be Seen in a direct and exact proportion.

IWill not frive to fet a Geometrical Figure here, for fear it may feem too difficult to underftand, but I will endeavour by difcourfe, how mechanically with a Candle you may perceive it fenGble: firft there muft be made a figure upon Pa per, fuch as you pleafe, according to his juft proportion, and paint it as a Picture (which Painters know well enough to do) afterwards put a Candle upon the Table, and interpofe this figure obliquely, between the faid Candle and the Books of Paper, where you defire to have the figure difguifed in fuch fort that the height pafs athwart the hole of the Picture, then will it carry all the form of the Picture upon the Paper, but with deformity; follow thele tracts, and mark out the light with a coals blacis head or Ink, and you have your defire.

To find now the point where the eye muft fee it in his natural form: it is accuftomed according to the order of Perfpective, to place this point in the line drawn in height, equal to the largenefs of the narroweft fide of the deformed fquare, and it is by this way that it is performed.

PROBLEM EVII.

How a Cannon after that it batb fhot, may be covered from the battery of the Enemy.

LEt the mouth of a Cannon be I, the Cannon , M, his charge $N O$, the Wheel L, the Axletree $P B$, upon which the Cannon is placed, at which end towards B, is placed a Pillar $A E$, fupported with Props, D, C, E, F G, about which the Axletree turneth: Now the Cannon being to Thoot, it retires to H, which cannot be directly, becaufe of the Axletree, but makes a fegment of a circle, and hides himfelf behind the Wall 2 R , and fo preferves it felf from the Ene-
 mies battery, by which means one may avoid many inconveniences which might arife: and moreover, one man may more eafily replace it again for another thot, by help of Poles tied to the wall, or other help which may multiply the ftrength.

244 @atbematical Recreation:

PROBLEM CVIII.

PHom to make a Lever, by which one man may alone place a Cannon upon bis Carriage, or raife what other weigbt be world.

FIrft place two thick boards upright, as the figure fheweth, pierced with holes, alike oppofite one unto another, as CD and EF, and let L and M be the two Bars of Iron which pals through the holes, GH and FK the 2 fupports, or
 props, AB the Cannon, OP the Lever, RS the two Notches in the Lever, and \mathbf{Q} the Hook which the Burthen or Cannon is tied to. The reft of the operation is facil, that the young eft Schollars or Learners cannot fail to perform it: to teach Minerva wese in vain, and it were to Mathematicians injury in the fucceeding Ages.

PRO.

geathematical Rectration, 245

PROBLEM CIX.

How to make a Clock witb one onely Wbecl.

MAke the body of an ordinary Dyal, and divide the hour in the Circle into 12 parts: make a great Wheel in height above the Axletree, to the which you thall place the Cord of your counterpoize, fo that it may defcend, that in 12 hours of time your Index or Needle may make one Revolution, which may be known by a Watch which you may have by you: then put a Ballance which may fop the courfe of the

Wheel, and give it a regular motion, and you thall fee an effect as juft from this, as from a Clock with many Wheels.

PROBLEM CX.

Hoo by belp of two Wheels to make a Child to drawo up alone a Hoghead of Water at a time; and being drawn up, fhall caft out it Self into another Veffel, as one would bave it.

L
Et R be the Pit from whence Water is to be drawn, P the Hook to throw out the Water when it is brought up, (this Hook muft be

$$
\mathrm{R}_{3}
$$

246 刃⿴囗十力

moveables let $A B$ be the Axis of the wheel $S F$ ， which wheel hath divers forks of Iron made at G ，equally faftened at the wheel；let I be a Cord which is drawn by K ，to make the wheel S to turn，which Wheel S bears proportion to the Wheel \mathcal{T} ，as 8 to 2 ，let N be a Chain of Iron to which is ried the Veffel O ，and the other which is in the Pit EF is a piece of Wood which hath a mortes in I ，and 2，by which the Cord I paffeth， tied at the wall as $K H$ ，and the other piece of Timber of the little Wheel，as \mathcal{M} ，mortifed in likewife for the Chainto pafs through：Draw the Cord I ，by K ，and the Wheel will turn，and fo confequently the Wheel \mathcal{T} ，which will caufe the Veffel O to raife；
 which being empty， draw the Cord again by T ，and the other Veffel which is in the Pit will come out by the fame reafon．This is an invention which will fave la－ bour if practifed；but here is to be noted that the Pit muft be layge enough，to the end that it contain two great Veffels to pals up and down che by another．

றathematical Recteation.

PROBLEM CXI.

To make a Ladder of Cords wobich may be carried in ones Pocket, by wobich one may eafly mount up a Wall or Tree alone.

TAke two Pullies, A and D, unto that of A let there be faftened a Cramp of Iron, as \boldsymbol{B}, and at D let there be faftened a Staff of a foot and an half long, as F, then the Pully A : place a hand of Iron, as E, to whichtie a cord of an half inch thick, (which may be of Silk becaufe it is for the pocket) then frive to make faft the Pully A, by the help of the Cramp of Iron B, to the place that you intend to fcale; and the Staff F being tied at the Pully D, put it between your legs as though you would fit upon it : then holding the cord C in your hand, you may guide your felf to the place required: wch may be made more facil by the multiplying of Pullies. This fecret is moft excellent in War, and for Lovers; its fupportablenefs avoids fufpicion.
$\mathrm{R}_{4} \quad \mathrm{PRO}$

248 ตตathematical Recteation:

PROBLEM CXII.

How to make a Pump wrbofeftrength is maryellous by
reaf on of the great woight of W ater that it is able reafon of the great woight of Water that it is able to bring up at once, and ρ_{0} by continuance.

TEt $\alpha \beta \times \delta$ be the height of the cale about 2 or 3 foot high, and broader according to difcretion: the reft of the cafe or concavity let be O, let the Sucker of the Pump which is made be juft for the cafe or Pump's head, $\alpha \beta \gamma j$ and may be made of Wood or Brafs of 4 inches thick, having a hole at E, which defcending raifeth up the cover P, by which iffucth forth the water, and afcending or raifing up, it thuts it or makes it clofe:

$R S$ is the handle of the Sucker, tied to the handle $\mathcal{T} X$, which works in the poft V Z. Let A, E, C, D, be a piece of $\mathrm{Brafs}_{3} G$ the piece which enters into the hole to F, to keep out the Air; H, I, K, L, the piece tied at the funriel or pipe: in which plays the Iron Rod or Axis G, fo that it pals through the other piece $M N$, which is tied with the end of the Pipe of Brafs.

Note, That the lower end of the Ciftern ought to be refted upon a Gridiron or Iron Grate, which may be tied in the Pit, by which means lifting up and putting down the handle, you may draw ten times more Water than otherwife you cold.

spatbematical Receation:

PROBLEM CXIII.

How by means of a Ciffern to make Water of a Pit continually to afcend mithout frength, or the affiClance of anyother Pump.

LEt I L be the Pit where one would caufe water to afcend continually to each office of a houfe, or the places which are feparated from it: let there be made a Receiver, as A, well clofed up with Lead or other matter, that Air enter not in, to which faften a Pipe of Lead, as at E, which may have vent at pleafure, then let there be made a $\mathbf{C i}$ Itern, as B, which may be communicative to A, by help of the pipe G, from which Ciftern B, may iffue the water of Pipe D, which may defcend to H, which is a little below the level of the water of the pit, as much as is $G H$, to the end of which thall be foldered clofe a cock which thall caft out the water by $K H$. Now to make ufe of :
 it, let B be filled full of water, and when you would have it run, turn the Cock, for then the water in B will defcend by K, and for fear that there fhould be vacuity, Nature which abhors it, will labour to furnifh and fupply that emptinefs out of the Spring F, and that the Pit dry not, the Pipe ought to be fmall, of an indifferent capacity, according to the greatne fs or fmallnefs of the Spring.
PRO

25° פ9athentatical Recteationt

PROBLEM CXIV.

Honsout of a Fountain to caft the Water very bigh, different from a Problem formerly delivered.

LEt the Fountain be $B D$, of a round form, (feeing it is the moft capable and moft perfect figure) place into it two Pipes conjoyned, as $E A$, and $H C$, fo that no air may enter in at the place of joyning: let each of the Pipes have a cock, G and I, the cock at G being clofed, open that at \boldsymbol{I}_{3} and fo with a Squirt force the Water through the hole at H, then clofe the cock at A, and draw out the Squirt, and open the cock at G, the air being before rarified will extend his dimenfions, and force the Water with fuch violence, that it will mount above the height of one or two Pipes; and fo much the more, by how much the Machine is great : this violence will laft but a little while, if the Pipe have too great an opening; for as the Air approacheth to his natural place, fo the force will diminith.

PROBLEM CXV.

How to empty the Water of a Ciftern by a Pipe wobich Shall bave a motion of it Self.

IEt $A B$ be the Veffel, $C D E$ the Pipe; HG a little Veffel under the greater, in which one end of the Pipe is, viz. C, and let the other end of the Pipe E, paffing through the bottom of the Veffel at F, then as the Veffel filleth, fo will the Pipe; and when the Veffel thall be full as far as $P O$, the Pipe will begin to run at E of his own accord, and never
 ceafe until the Veffel be wholly empty.

PROBLEM CXVI.

Hom to Squirt or 乃out out a great beight, fo that one Pot of Water §hall laft a long timse.

IEt there be prepared two veffels of Brafs, Lead, or of other matter of equal fubftance, as are the two Veffels $A B$ and $B D$, and let them be joyned together by the two Pillars $M N$ and EF; then let there be a Pipe $H G$, which may pafs thorow the cover of the Veffel $C D$, and pafs through $A B$ into G, making a little bunch or rifing in the cover of the Veffel $A B$, fo that the Pipe touch it

$25 z$ פathematical Recreation:

not at the bottom : then let there be foldered faft another Pipe IL, which may be feparated from the bottom of the Veffel, and may have his bunchy fwelling as the former, without touching the bottom : as is reprefented in $\mathbf{L}, \&$ paffing through the bottom of $A B$, may be continued unto I, that is to fay, to make an opening to the cover of the veffel $A B$, and Itt it have a little mouth as a Trumpet, to that end to receive the water:then there muft further be added a very fmall pipe which may pafs through the bottom of the Veffel $A B$, as let it be O P , and let there be a bunch or fwelling over it, as at P, fo that it touch not alfo the bottom: let there be further made to this leffer Veffel an edge in form of a Bafin to receive the water, which being done, pour water into the Pipe IL, until the Veffel C D be full, then turn the whole Machine up-fide-down, that the Veffel $C D$ may be uppermoft, and $A B$ undermoft; fo by help of the Pipe G H, the water of the Veffel $C D$ will run into the V effel $A B$, to have paffage by the Pipe P O. This motion is pleafant at a feaft in filling the faid Veffel with Wine, which will fpout it our, as though it were from a boiling Fountain in the form of a Thread, very pleafanc to behold.

PROBLEM CXVII.

How to practife excellently the re-animation of Simples, in cafe the Plants may not be tranfortce to be re-planted by reafon of diftance of places.

TAke what Simple you pleafe, burnit, and take the Afhes of it, and let it be calcinated 2 hours between 2 Creufets well luted, and extract the Salt: that is, to put water into it in moving of it ; then let it fettle, and do it two or three times: afterwards evaporate it, that is, let the water be boiled in fome Veffel, untit it be all confumed: then there will remain a Salt at the bottom, which you fhall afterwards fow in good ground well prepared, fuch as the Theatre of Husbandry fheweth, and you thall haveyour defire.

PROBLEM CXVIII.

How to make an infallible perpetual motion.

MIx 5 or 6 ounces of Mercury with his equal weight of \mathcal{F} upiter, grind it together with ten or twelve ounces of Sublimate diffolved in a Cellar upon a Marble the fpace of four days, and it will become like Oil-Olive, which diftil with fire of chaff; or driving fire; and it will fublime dry fubfance, then put water upon the Earth (in form of Lye) which will be at the bottom of the Limbeck, and diffolve that which you can; filterit, then diftil it, and there will be produced very fubtil Atomes, which put intor a bot-

254 פ9atbematical Recteation.

a bottle clofe ftopped, and keep it dry, and you

 Thall have your defire, with aftonilhment to all the World, and efpecially to thofe which have travelled herein without fruit.
PROBLEM CXIX.

Of the admirable Invention of making the Pbilofophers Tree, wobich ore may See with bis Eye to grow by little and little.

TAke two ounces of Aqua-fortis, and diffolve in it half an ounce of fine Silver refined in a Cappel: then take an ounce of Aqua-fortis, and two drams of Quick-filver, which put in it, and mix thefe two diffolved things together, then caft into it a Vial of half a pound of Water, which may be well fropped; for then every day you may fee it grow both in the Tree and in the branch. This Liquid ferves to black hair which is red or white, without fading untill they fall: But here is to be noted that great care ought to be had in anointing the hair, for fear of touching the flefh: for this compofition is very corrofive or fearching, that as foon as it toucheth the flefh it raifeth blitters and bladders very painful.

PROBLEM CXX.

How to make the reprefentation of the Great World.

DRaw Salt Nitre out of Salt Earth which is found along the Rivers fide, and at the foot of Mountains, where efpecially are Minerals of $+10 \cdot 5$

Gold

matbematical kecteation.

Gold and Silver : mix that Nitre well cleanfed with ψ, then calcinate it hermetically; then put it in a Limbeck, and let the Receiver be of Glafs well luted, and always in which let there be placed Leaves of Gold at the bottom, then put fire under the Limbeck until vapours arife which will cleave unto the Gold; augment your fire until there afcend no more then take away your Receiver, and clufe it hermetically, and
 make a Lamp fire under it, until you fee prefented in it that which Nature affords us, as Flowers, Trees, Fruits, Fountains, Sun, Moon,Stars,\&cc. Behold here the form of the Limbeck, and the Receiver : A reprefents the Limbeck, B fands for the Receiver.

PROBLEM CXXI.

How to make a Cone or Pyramidal Bedy move upon a Table, woithout prings or other artificial means; $\int 0$ that it Shall move by the edge of the Table witbout falling.

THis Propofition is not fo thorny and fubtile as it feems to be, for putting under a Cone of Paper a Beetle or fuch-like Creature, you fhall have pleafure, with aftonifhment and admiration to thofe which are ignorant in the caufe: for this Animal

256 פattbematicab Recteation.

Animal will frive always to free herfelf from the captivity in which the is by the imprifon. ment of the Cone : for coming near the edge of the Table the will return to the other fide, for fear of falling

PROBLEM CXXII.

To cleave an Anvil woith the blow of a Pijtol.

THis is proper to a Warrier, and to perform it, let the Anvil be heated red hint as one can poffible, in fuch fort that all the folidity of the body be foftered by the fire: then charge the Pifol with a Bullet of Silver, and fo have you in fallibly the Experiment.

PROBLEM CXXIII.

How to roft a Capon carried in a Budget at a SaddleBow, in the ßpace of riding 5 or 6 miles.

HAving made it ready and larded it, fuff it with Butter, then heat a piece of Steel, which may be formed round according to the length of the Capon, and big enough to fill the Belly of it, and then ftop it with Butter; then wrap it up well, and inclofe it in a Box in the Budget, and you thall have your defire: It is.

satbenatical Recteation:

Count Mausfield ferved himfelf with no others, but fuch as were thus made ready, for that it lofeth none of its fubftance, and it is dreffed very equally.

PROBLEM CXXIV.

How to make a Candle burn and continue three simes as long as otberwife it mouilds.

UNto the end of a Candle half burned ftick a farthing, lefs or more, to make it hang perpendicular in a Veffel of water, fo that it fwimabove the water; then light it, and it will fuftain it felf, and float in this manner, and being placed into a Fountain, Pond, or Lake that runs flowly, where many people affemble, it will caufe an extreme fear to thofe which come therein in the night, knowing not
 what it is.

PROBLEM CXXV.

How out of a quantity of Wine to extract that wobich iv moft windy and evil, that it burt not a fick Perforio

TAke 2 vials in fuch fort that they be of like greatnefs both in the belly and the neck, fill one of them of wine, and the other of water: let the mouth of

258 Mathematical Recreation.

that which hath the water be placed into the mouth of that which hath the wine, fo the water Thall be uppermoft: now becaufe the water is heavier than the wine, it will defeend into the orher Vial; and the wine which is loweft, becaufe it is lighteft will afcend above, to fupply the place of the water, \& fo there will be a mutual interchange of liquids, and by this penetration the wine will lofe her vapors in pafling through the water.

PROBLEM CXXVI.

How to make two Marmouzets, one of nobich Sall light a Caxdle, and the other put it out.

UPon the fide of a Wall make the figure of a Marmouzet, or other Animal or form, and right againft it on the other wall make another; in the mouth of each put a pipe or quill fo artificially that it be not perceived; in one of which place Salt-peter very fine, and dry, and pulverifed; and at the end fet a little match of paper, in the other place Sulphur beaten imall, then holding a candle lighted in your hand, fay to one of thefe Images by way of command, Blow out the Candle; then lighting the paper with the candle, the Salt-peter will blow out the candle immediately; and going to the other Image (before the match of the candle be out, touch the Sulphur with it, and fay, Light the Candle, and it will immediately be lighted; which will caufe an admiration to thofe which fee the action, if it be well done, with a fecret dexterity.

PROBLEM CXXVII.

How to keep Wine freth as if it were in a Cellar, in the beat of Summer, and witbout Ice or Snown yea thougb it nere carried at a Saddle-bow, and ex ${ }^{\frac{1}{1}}$ pofed to the Sun all the day.

SEt your wine in a vial of Glafs, and place it in a Box made of wood, leather, or fuch like, about which vial place Salt-peter, and it will preferve it and keep it very frefh : this experiment is not a little commodious for thofe which are not near frelh waters, \&z whofe dwellings are expofed to the Sun.

PROBLEM CXXVIII.

To make a Cement which lafteth as Marble, of reffeeth air ©o water, without dif- joyning or uncementing.

TAke à quantity of ftrong and gluing Morter well beaten, mix with this as much new-flaked lime, \& on it can Oil-Olive, or Linfeed-Oil, and it will behard as Marble, being applied in time.

PROBLEM CXXIX.

How to melt Metal very quickly, yea in a Sbell upon of little Fire.

MAke a bed upon a bed of Metal with pouder of Sulphur, of Salt-peter, \& Saw-duft alike; then put fire to the faid pouder with a burning Charcoal, and you fhall fee that the metal will dilfolve incontinent, and be in a mafs. This fecret is moft excellent, $\&$ hath been practifed by the revcrend Father Mercenno of the Order of the Minims.

$$
S_{2} \quad \text { PRO }
$$

260 P9athematical \&ecreation:

PROBLEM CXXX.

 How to make Iron or Steel exceeding bard.QUench your Blade or other Inffrument feven times in the blood of a male hog mixt with Goofe-greafe, and at each time dry it at the fire before you wet it, and it will become exceeding hard and not brittle, which is not ordinary according to other temperings and quenchings of Iron : an experiment of fmall coft, often proved, and of great confequence for Armory, \&r warlike Negotiations

PROBLEM CXXXI.

 Topreferve Fire as long as you woill, imitating the in-extinguißable Fire of Veffals.

AFter you have extracted the burning firit of the Salt of ψ, by the degrees of fire, as is required according to the Art of Cbymijtry, the fire being kindled of it felf, break the Limbeck, \& the Irons which are found at the bottom will flame \&c appear as burning coals, as foon as they feel the air; which if you promptly inclofe in a vial of Glafs, \& that you ftop it exactly with fome good lute; or to be more affured, it may be clofed up with Hermes wax, for fear the airget in. Then will it keep more than 1000 years (as a man may fay) yea at the bottom of the Sea; and opening it at the end of the time, as foon as it feels the air it takes fire, with which you may light a Match. This Secret merits to be travelled after, and put in practice, for that it is not common, sull of aftonifhment, feeing all kind of fire lafteth but as long as his matter lafteth, and there is no matter to be found that will fo long indure.

ArtificialFive-Works:

Or the manner of making ROCKETS and BALLS of FIRE,

As well for the Water as the Air.

With the Compofition of Stars, Golden-Rain, Serpents, Lances, Wheels of Fire, and fuchlike, Pleafant and Recreative.

(1) the Compofition for Reckets.

N the making of Rockets, the chiefeft thing to be regarded is the compofition that they ought to be filled with; forafmuch as that which is proper to Rockets which are of a lefs fort, is very improper to thofe which are of a more greater form ; for the fire being lighted in a great concave, which is filled with a quick Compofition, burns with great violence; contrarily, a weak compofition being in a fmall concave, makes no effeet. Therefore we thall here deliver in the firft place Rules and Directions which may ferve for the true compofition or matter with which you may charge any Rocket, from Rockets which

$$
\mathrm{S}_{3} \text { are }
$$

262 gltificial Fits＝てTOスそう．

arè charged but with one ounce of Powder，unto great Rockets which require for their charge to pound of Powder，as followeth：

For Rockets of one ounce．
Unto each pound of good．Musket Powder fmall beaten，put two ounces of Small－coal－duft， and with this compofition charge the Rocket．

$$
\text { For Rockets of } 2 \text { or } 3 \text { ounces. }
$$

Unto every four ounces and a half of Powder－ duft，add an ounce of Salt－peter，or to every four ounces of Powder－duft，addé an ounce of Coal－duft．

For Rockets of 4 ounces．

Unto every pound of Powder－duft，add four ounces of Salt－peter，and one ounce of Coal－ duft：but to have it more flow，unto every ten ounces of good powder－duft，add 3 ounces of Salt－peter，and 3 ounces of Coal－duft．

For Rockets of 5 or 6 ounces．
unto every pound of Powder－duft add three ounces and an half of Salt－peter，and two ounces and an half of Coal－duft，as alfo an ounce of Sulphur，and an ounce of File－duft．

$$
\text { For Rockets of } 7 \text { or } 8 \text { ounces. }
$$

Unto every pound of Powder－duft add 4 oun－ ces of Salt－peter，and 3 ounces of Sulphur． Of Rockets of 10 or 12 ounces． Unto the precedent compofition add half an ounce of Sulphur，and it will be fufficient． For Rockets of 14 or 15 ounces．
Unto every pound of Powder－duft add four ounces of Salt－peter，or Coal－duft $2 \frac{1}{4}$ ounces，of Sulphur and File－duft $1 \frac{1}{4}$ of an ounce．

attificial fits=Cadokk.

For Rockets of 1 poinnd.
Unto every pound of Powder-duft add 3 ounces of Coal-duft, and 1 ounce of Sulphur.

For Rockets of 2 pownd.
unto every pound of Powder-duft add $9^{\frac{x}{2}}$ ounces of Salt-peter, of Coal-duft $2 \frac{1}{2}$ ounces, of File-duft $1 \frac{1}{2}$ ounce, and of Sulphur $\frac{3}{4}$ of an ounce. For Rockets of 3 pound.
Unto every pound of Salt-peter add 6 ounces of Coal-duft, and of Sulphur 4 ounces.

For Rockets of $4,5,6$, or 7 pound.
Unto every pound of Salt-peter add 5 ounces of Cole-duft, and $2 \frac{1}{2}$ ounces of Sulphur.

For Rockets of 8,9 , or ropound.
unto every pound of Salt-peter add $5^{\frac{1}{2}}$ ounces of Coal-duft, and of Sulphur $2 \frac{1}{2}$ ounces.

Here note, That in all great Rockets there is no Powder put, becaufe of the greatnefs of the fire which is lighted at once, which cauleth too great a violence, therefore ought to be filled with a more weak compofition.

OS the making of Rockets, and other Fire-works.

Fis
Or the making of Rockets of fundry kinds, divers moulds are to be made, with their Rolling-pins, Breaths, Chargers, ofc. as may be feen here in the figure. And having rolled a Cafe of Paper upon the Rolling-pin for your mould; fill it with the compofition belonging to that mould, as before is delivered : now may you load it on the top with Serpents, Reports, Stars, or

$$
\text { S } 4 \text { Golden }
$$

Golden Rain: The Serpents are made about the bignefs of ones litetle finger, by rolling a litetle paper upon a fmall Stick, and then tying one end of it, and filling it with the mixt compofition fomewhat clofe, and then tying the other end. The Reports are made in their Paper-Cafes, as the Serpents, but the Paper fomewhat thicker to give the greater report. Thefe are filled with grain-

Powder, or half-Powder and half Compofition, and tying both ends clofe, they are finifhed. The beft kind of Stars are made with this mixture following; unto every 4 ounces of Salt-peter add 2 ounces of Sulphir, and to it put one ounce of Powder-duft, and of this compolition make your Stars, by putting a little of it within a fmall quan-

artiticial fite=exotk.

rity of Towe; and then tying it up in the form of a Ball as great as an Hafel -Nut or a little WalNut, through which there muft be drawn a litte Primer to make it take fire. Touching the making of the Golden-Rain, that is nothing but filling of Quills with the compofiticn of your Rockets fomewhat hard. Now if the head of a

Rocket be loaded with a thoufand of thofe Quills, its a goodly fight to fee how pleafantly they fpread themfelves in the Air, and come down like ftreams of Gold much like the falling down of Snow, being agitated by fome turbulent Wind.

266

artificial fite= Watozkg.

Of Recreative FIRES.

. PHiloffrates faith, That if wine in a Platter be placed upon a Receiver of burning Coals, to exhale the fipirit of it, and be inclofed within a Cupboard or fuch-like place, fo that the Air may not go in nor out, and fo being thut up for 30 years, he that fhall open it, having a Wax Candle lighted, and fhall put it into the Cupboard, there will appear unto him the figure of many clear Stars.
2. If Aqua-vits have Camphire diffolved in it, and bc evaporated in a clofe Chamber, where there is but a Charcoal fire, the firft that enters into the Chamber with a Candle lighted, will be extreamly aftonifhed, for all the Chamber will feem to be full of Fire very fubtile, but it will be of little continuance.
3. Candles which are deceitful are made of half Powder, covered over with Tallow, and the other half is made of clean Tallow or Wax, withan ordinary Week; this Candle being lighted, and the upper half confumed the Powder will take fire, not without great noife and aftonifhment to thofe which are ignorant of the caufe.
4. A dozen or twenty frmall Serpents placed fecretly under a Candleftick that is indifferent big, which may have a hole pafs through the Socket of it to the Candle, through which a piece of Primer may be placed, and fetting a fmall Candle in the Socket to burn according to a time

grtificial \#ite=exorks.

limited; which Candleftick may be fet on a fideTable without fufpition to any; then when the Candle is burned, that it fires the Primer, that immediately will fire all the Serpents, which overthrowing the Candleftick will ly here and there, intermixing themfelves, fometimes in the Air, fometimes in the Planching, one amongft another, like the crawling of Serpents, continuing for a pretty while in this pofture, and in extinguilhing every one will give his Report like a Pi1tol: This will not a little aftonifh fome, thinking the houfe will be fired, though the whole powder together makes not an ounce, and hath no firength to do fuch an effect.

How to make Fire run up and down, formard and backpard.

TAke fmall Rockets, and place the tail of one to the head of the other upon a Cord, according to your fancy; as admit the Cord to be A, B, C, D, E, F, G; give fire to the Rocket at A, which will fly to B_{2}. which will come back again to A, and fire another at C, that will flie at D, which will fire another there, and fly to E and that to F, and fo from F to G, and at G may be placed a pot of Fire, viz. GH, which fired will make good fort, becaufe the Serpents which are in it will varioully intermix themfelves in the air and upon the ground, and every one will extin. guith with a report; and here may you note that upon the Rockets may be placed Fiery Dragons,

Com-

268 artificial fite=てひ02ks.

Combatants, or fuch-like, to meet one another, having Lights placed in the Concavity of their Bodies, which will give great grace to the Action.

How to make Wheels of Fire.

TAke a Hoop, and place two Laths acrofs one the other; upon the croffing of which make a hole, fo that it may be placed upon a pin to turn eafily, as the figure Q Theweth, upon the fides of which Hoop or round Circle place your Rockets, to which you may place Lances of Fire between each Rocket : let this Wheel be placed up on a Standard, as is here reprefented, and place a
piceel

artificial fite＝でしozk．

piece of Primer from one Lance to a nother，then give fire at G ，which will fire F ，that E ，that will fire D ，that C ，and that will fire the Rocket at A ； then immediately the Wheel will begin to move，

and reprefent unto the Spectators a Circle of changable Fire，and if Pots of Fire be tied to it， you will have fine fport in the turning of the wheel，and cafting out of the Serpents．

Of Night－Combatants．

CLubs，Targets，Faulchons，and Maces，char－ ged with feveral Fires，do make your Night－ Combatants，or are ufed to make place amongt a throng of Peopte．The Clubs at the Ends are made like a round Pannier with fmall fticks filled with little Rockets in a fpiral form，glued and fo placed that they fire but one after another．The Maces are of divers fathions，fome made oblong

270 artificial fite=てひ0 $2 k$.

at the end : fome made of a fpiral form, but all made hollow, to put in feveral compofitions, and are boared in divers places, which are for fundry Rockets and Lances of weak compofition to be fired at pleafure. The Faulchons are made of wood in a bowing form, like the figure A, having their backs large to receive many Rockets, the head of one near the neck of another, glued and faftend well together, fo that one being fpent, another may be fired. The Targets are made of wooden thin boards, which are channeled in fpital Lines to contain Primer to fire the Rockets

one after another, which is afl covered with thin covering of wood or paltboard, bored with holes fpirally alfo; which Rockets muft be glued and made faft to the place of the Channel. Now if two

artificial fite=CaOorks.

men, the one having a Target in his hand, and the other a Faulchon or Mace of Fire, fhall begin to fight, it will appear very pleafant to the Spectators: for by the motion of fighting, the place will feem to be full of freams of Fire: and there may be adjoyned to each Target a Sun or a burning Comet with Lances of fire, which will make them more beautiful and refplendent in that action. . .

Of Jtanding Fires.

SUch as are ufed for Recreation, are Collofjus, Statues, Arches, Pyramides, Chariots, Cbairs. of Triumph, and fuch-like, which may be accom-
modated with Rockets of Fire, and beautified with fundry other artincial Fires, as Pots of Fire for the Air, which may caft forth feveral figures, Scutchions,Rockets of divers forts,Stars, Crowns,

Letters;

272. antiticial fite= Tu0zks.

Letters, and fuch-like, the borders of which may be armed with fundry Lances of Fire, of fmall flying Rockets, with reports, flames, of fmall Birds of Cypres, Lanthorns of Fire, Candles of divers ufes, and colours in burning, and whatfoever the fancy of an ingenioushead may allude unto.

Of Pots of Fire for the Air, which are thrown out of one Cafe one after anotber, of a long continuance.

1Ake a long Trunk, as $A G$, and by the fide $A \mathrm{H}$, let there be a Channel which may be fiered with flow primer or compofition; then
 having charged the Trunk A G, with the Pots of Fire for the Air, at IGEC, and make the Trunk AG very faft unto a poft, as $I K$, give fire at the top, as at A, which burning downwards will give fire to $C, 8$ fo throw out that Pot in the Air, which being fent, in the mean time the fire will burn from B to \mathcal{D}, and fo fire E, and throw it out alfo into the Air, and fo all the reft one after another will be thrown out: and if the Pots of Fire for the Air which are caft out, be filled with diversFire-works

artificial Fite=CTORKs.

they will be fo much the more pleafant to the Be holders. Thefe Trunks of Fire do greatlyadorn a Fire-work, and may conveniently be placed at each Angle of the whole Work.

Of Pots of Fire for the Ground.

MAny Pots of Fire being fired together, do give a fine reprefentation and recreation to the Spectators, and caule a wonderful thout amongft the common people wch are ftanders by, for thofe Pots being filled with Balls of Fire and flying Serpents
 for the Air, they will fo intermix one within another, in flying here and there a little above the ground, and giving fuch a volley of reports that the Air will rebound with their Noife, and the whole place be filled with fundry freams of pleafant fire, which Serpents will much occupy thofe about the place to defend themfelves in their upper parts, when they will no lefs be bufied by the Balls of Fire which feem to annoy their Feet.

Of Balls of Fires

THefe are very various, according to a mars fancy; fome of which are made with very funall Rockets, the head of one tied to the neck of T another:

274 artificial fite=culorks.

another: The Ball being made, may be covered over with Pitch, except the hole to give fire to it ; this Ball will make fine fport amongft the flanders by, which will take all a fire, and roll fometimes this way, fometimes that way, between the legs of thofe that are flanders by, if they take not heed, for the motion will be very irregular;
 and in the motion will caft forth Ceveral fires with reports. In the fecond kind there may be a Channel of Iron placed in divers places in fpiral manner, againft which may be placed as many fmall Petards of Paper as poffible may be, the Channel mult be full of flow compofition, and may be covered as the former, and made fit with his Rockets in the middle: This Ball may be fhot out of a Mortar-Piece, or charged on the top of a Rocket: for in its motion it will fly here and there, and give many reports in the Air, becaufe of the difcharge of the Petards.

Of Fire upon the Water.

PLaces which are fituated upon Rivens or great Ponds, are proper to make Recreative Fires on : and if it be required to make fome of confequence, fuch may conveniently be made upon two Boats, upon which may be built two Beafts, Turrets, Pageants, Caftles, or fuch-like, to re-

ceive or hold the diverfity of Fire-Works that may be made within it, in which may play divers Fires, Petards, ©c. and caft out many fimple Granadoes, Balls of Fire to burn in the Water, Serpents, and other things ; and often times thefe Boats in their incounters may hang one in another, that fo the Combatants with the Targets and Maces may fight; which will give great content to the Eyes of thofe which are Lookers on, and in the conclufinn fire one another, (for which end they were made: by which the dexterity of the one may be known in refpect of the other, and the triumph and victory of the fight gutten.

Of Balls of Fire wobich mave upon the Watero

Hefe may be made in form of a Ball ftuffed with other little Balls, glued round about, and filled with compofition for the Water, which

$$
T_{2} \quad \text { fired }
$$

276 artificial \#ite=てa0.ks:

fiered will produce marvellous and admirable effects, for which there muft be had little Cannons of white Iron, as the ends of fmall funnels; thefe Iron Cannons may be pierced in fundry place; to which holes, may be fet fmall Balls full of compotition, for the Water; which fmall Balls muft be pierced deep and large, and covered with Pi:ch except the hole: in which hole muft be firft pla-
 ced a little quantity of grain-powder, and the reft of the hole filled up with compofition; and note further, that thefe Iron Cannons mut be filled with a flow compofition, but fach which is proper to burn in the Water: then muft thefe Cannons with their fmall Balls be put fo together that it may make a Globe, and the holes in the Cannons be anfwerable to the hollow Balls, and all covered over with Piteh and Tallow; afterwards pierce this Ball againft the greateit Cannon (to which all the leffer fhould anfwer) unto the compolition, then fire it, and when it begins to blow, throw it into the Water, fo the fire coming to the holes will fire the grain-Powder, the which will caufe the Balls to feparate, and fly here and there, fometimes two at a time, fomesimesthree, fometime more, which will burn within the Watcr, with great aftonifhment and content to thofe which fee it.

artificial Fite=Caozks.

Of Lances of Fire.

STanding Lances of Fire are made commonly with hollow wood to contain fundry P tards or Rockets, as the figure here fheweth, by which it is eafie to invent others, according to ones fancy. Thefe Lances have wooden handles that fo they may be faftened at fome Poft, fo that they be not overthrown in the flying out of the Rockets or Petards: There are leffer forts of Lances whofe cafes are of three or four foldings of Pa per of a foot long, and about the bignefs of ones finger, which are filled with a compofition for Lances. But if thefe Lances be filled with a compofition, then (unto every 4 ounces of powder add 2 ounces of Salt-peter, and unto that add \mathbf{r}
 ounce of Sulphur) it will make a Brick fire red before it be half fpent, if the Lance be fiered and held to it: and if 20 fuch Lances were placed about a great Rocket, and thot to a Houfe or Ship, it would produce a mifchievous effect.

How to Shoot a Rocket Horizontal, or otherwife.

UNto the end of the Rocket place an Arrow which may not be too heavy, but inftead of the feathers let that be of thin white Tin plate,

278 grtificial fitestuokg.
and place it upon a reff, as here you may fee by the Figure, then give fire unto it, and you may fee how ferviceable it may be. To the head of fuch Rockets may be placed Petards, Balls of Fire, Granadoes, ecc. and fo may be applied to War-like affairs.

How a Rocket burning in the Water for a certain time, at laft fhall fy wp in the Air woith an exceeding quickne/s.

TO do this, take two Rockets, the one equal to the other, and joyn them one unto another in the middle at C, in fuch fort that the fire may eafily pafs from one to another: it being thus done, tie the two Rockets at a Stick in D, and let it be folong and great, that it may make the
 Rockets in the water hang, or lie upright, then take a packthread, and tie it at G, and let it come double about the flick $D M$ at H,and at that point hang a Bullet of fome weight, as K, for then giving fire at A, it will burn zo B, by a mall Sexpent filled there, and tied at

artificial Fite=てひ̃orks.

the end, and covered fo that the Water injure i^{t} not, which will fire the Rocket $B D$, and fo mounsing quick out of the Water by the loofe tying at C, and the Bullet at the pack-thread will leave the other Rocket in the Water, and fo alcend like a Rocket in the Air, to the admiration of fuch as know not the fecrecy.

Of the framing of the Parts of a Fire-Work together, tbat the feveral Works may fire one after another.

CAufe a Frame to be made, as A B C D, of two foot fquare every way, or thereabouts, (according to the quantity of your feveral works) then may you at each angle have a great Lanse of Fire to ftand, which may caft out Pots of Fire, as they confume: Ulpon the ledges $A B, B C$, and $C D$, may be placed fmall Lances of Fire, about the number of 30 or 60 , fome fide-wife, and others upright; between thefe Lances may be placed Pots of Fire floping outwards, but made very faft, and covered very clofe, that they chance not to fire before they thould; then upon the ledges RE, FG, HI, and AD, may be placed your Soucifons, and behind all the Work may be fet your Boxes of Rockets, in each of which you may place $6,9,12$, or 20 fmall Rockets : Now give fire at A, (by help of a piece of Primer going from one Lance to another) all the Lances will inftantly at once be lighted, and as foon as the Lance at A is confumed, it will fire the Chanmel which is made in the ledge of the frame, which runs under the Pots of Fire, and as the Fire goes along

$$
\mathrm{T}_{4} \text { burn- }
$$

280 artificial fire=ču0ks. burning, the Pots will be caft forth, and fo the rank of Fots upon the fides of the framc $A B, B C$, and $C D$, being feent, the Soucifons will begin to play, being fiered alfo by a Channel which runs under them, upon the ledges $A D, H I, F G$, and $R E$, then when the Soucifons are fpent upon the laft ledge, $R E$, there may be a fecret channel in the ledge $C D$, which may tire the Box of Rockets at $K, \&$ may fire all the reft one after another; which Boxes may be all charged with feveral Fire-works: for the Rockets of the firf Box may be loaden with Sexpents, the fecond with Stars, the third with Re ports, the fourth with Golden-Rain, and the fifth with fmall flying Serpents; thele mounting one after another, and llying to and fro, will much inlighten the Air in their afcending; but when thefe Rockets difcharge themfelves above, then will there be a moft pleafant reprefentation : for thefe Fires will dilate themfelves in divers beautiful forms, fome like the branching of Trees, others like Fountains of Water gliding in the Air, others like flathes of Lightning, others like the glittering of Stars, giving great contentment and delight to thofe which behold them: But if the work be furnithed alfo with Balons, (which is the chiefeft in recreative Fire-works) then Thall you fee afeending in the air but as it were only a quill of Fire, but once the Balon taking fire, the Air will feem more than 100 foot quare full of crawling and flying Serpents, which will extinguith with a volley of more than 500 reports, and fo fill the Air and Firmament with their rebounding clamour.

282
 artificial . Fite=てatorks.

The making of which with many other rare and excellent Fire-Works, and other practifes, not onely for Recreation, but alfo for Service; you may find in a Book intitule artificial fire $=$ collozks, made by Mr. Malthas (a Matter of his Knowledge) and are to be fold by William Leak, and Fobn Leak, at the Crown in Fleetfireet, between the Two Temple-Gates.

conclution.

IN this Book we have omitted nothing that was material in the Original, but bave abundantly augmented it in Sundry Experiments. And though the Examinations are not fo full and manifold, yet (by way of Brevity) we have expreffed fully their Substance, to avoid Prolixity, and fo past by things reiterated. retros

F I N I S.

THE

DESCRIPTION and USE

 OF THE
Double Horizontal

DY

AL. WHEREBY,
Not onely the Hour of the Day is fhewn, but alfo the Meridian Line is found. And moft

Aftronomical Queftions

Which may be done by the $\operatorname{SOD} \mathbb{D} \mathbb{B}$, Are Refolved. Whereunto is Added,
The Defcriprion of the General Horological Ring.

Invented and adritten by W.O.
LONDON:
Printed for William Leak and folm Leak, at the Crown in Fleetftreet, between the Two Temple-Gates. 1674.

 * THE
Description and Use

OFTHE

EDouble moxizontal EDyal.

Here are upon the Plate two feveral Dyals. That which is outermoft, is an ordinary Dyal, divided into hours and quarters, and every quarter into three parts, which are five minutes apiece : fo that the whole hour is underftood to contain 60 minutes. And for this Dyal the fhadow of the upper oblique or flanting edge of the Style or Cock doth ferve.

The other Dyal which is within, is, The ProjeCtion of the Upper Hemißphere upon the Plain of the Horizon: The Horizon it felf is underfood to be the innermoft circle of the Limb, and is divided on both fides from the points of Eaft and Weft in-

z Che Defriptionand afe of the

to degrees noted with $10,20,30,6 \mathrm{O}_{\text {. as }}$ as as need requireth: And the centre of the Inftrument is the Zenith or Vertical point.

Within the Horizon, the middle ftraight Line pointing Nerth and South, upon which the Style ftandeth, is the Meridian or Twelve a Clock Line; and the other fhort arching Lines on both fides of it, are the Hour-Lines, diftinguifhed accordingly by their figures; and are divided into quarters by the fmaller Lines drawn between them, every quarter containing 15 minutes.

The two Arches which crofs the Hour-Lines, meeting on both fides in the points of interfection of the Six a Clock Lines with the Horizon, are the two Semicircles of the Ecliptick, or annual circle of the Sun: the upper of which Arches ferveth for the Summer half-year, and the lower for the Winter half-year, and therefore divided into 365 days, which are alfo diftinguifhed into twelve months, with longer Lines, having their names fet down: and into tenths and fifths with fhorter Lines; and the reft of the days with pricks, as may plainly be feen in the Dial.

And this is for the ready finding out of the place of the Sun everyday: and alfo for the thewing of the Sun's yearly Motion, becaufe by this motion the Sun goeth round about the Heavens in the compafs of a year, making the four parts or feafons thereof, namely, the Spring in that quarter of the Ecliptick which begins at the interfection on the Eaft fide of the Dyal, and is therefore called, The Vernal Interfection. Then the Summer in that quarter of the Ecliptick which begins

Double joxizontal Dyal:

at the interfection with the Meridian in the higheff point next the Zenith. After that, Autumn in that quarter of the Ecliptick which beginneth at the interfection on the Weft-fide of the Dyal, and is cherefore called, The Autumnal Interfection. And laftly, the Winter in that quarter of the Ecliptick which beginneth at the interfection with the Meridian in the loweft point next the Horizon.

But befides this Yearly cMotion, the Sun hath a Diurnal or Daily Motion, whereby it maketh day and night, with all the diverfities and inequalities thereof: which is expreffed by thofe other Circles drawn crofs the Hour-lines; the middlemoft whereof, being groffer than the reft, meeting with the Ecliptick in the points of the Vernal and Aitumnal Interfeciions, is the EquinoCiial; and the reft on both fides of it are called the Parallels, or Diurnal Arch of the Sun, the two outermoft whereof are the Tropicks, becaufe in thern the Sun hath his furtheft Digreffion or Declination from the Equinoctial, which is degrees $23 \frac{1}{2}$, and thence beginneth again to return towards the Equinocitial. The upper of the two Tropicks in this our Northern Hemiphbere, is the Tropick of Cancer, and the Sun being in it is higheft into the North, making the longeft day of Summer : And the lower next the Horizon is the Tropick of Capricorn; and the Sun being init, is loweft into the South, making the fhorteft day of Winter.

Between the two Tropicks and the Equinocizal, infinite fuch Parallel Circles are underftood to be contained: for the Sun in what point foever of the

4 Cbe Defriptionand afr of the

the Ecliptick it is carried, defcribeth by his Station a Circle parallel to the Equinocital; yet thofe Parallels which are in the Inftrument, though drawn but to every fecond degree of Declination, may be fufficient to direct the Eye in imagining and tracing out through every day of the whole year in the Ecliptick a proper Circle which may be the Diurnal Arch of the Sun for that Day: For upon the right eftimation of that imaginary Parallel doth the manifold ufe of this Inftrument efpecially rely, becaufe the true place of the Sun all that day is in fome part or point of that Circle. Wherefore for the better conceiving and bearing in mind thereof, every fifth Parallel is herein made a little groffer than the reft.

For this inner Dyal ferveth the fhadow of the upright edge of the Style, which I therefore call the Upright Shadow.

And thus, By the Eye and View onely to bebold and comprebend the Course of the Sun througbout the whole Year, both for bis Annual and Diurnal Motion, may be the firft ufe of this Inftrument.

uSE II.

To find the Declination of the Sun every Day.
Look the day of the month propofed in the Ecliptick, and mark how many degrees the prick thewing that day is diftant from the Equinoctial, cither on the Summer or Winter fide, viz. North or South.

Example

Double Corijontal £oual.

Example 1. What will the Declination of the Sun be upon the IIth day of $A u$ wifl ? Look the 11 th day of $A u g u f$, and you thall find it in the 6th circle above the Equinoctial : Now becaufe each Parallel ftandeth (as hath been faid before) for two degrees, the Sun thall that day decline Northwards 12 degrees.

Example 2. What Declination hath the Sun upon the 24 day of Marck ? Look the 24 day of March, and you fhall find it between the fecond and third Northem Parallels, as it were an half and one fifth part of that diftance from the fecond : Reckon therefore four degrees for the two circles, and one degree for the half fpace : So thall the Suns Declination be five degrees, and about one fifth part of a degree Northward, that fame day.

Example 3. What Declination hath the Sun upon the 13 day of November? Look the 13 day of November, and you thall find it below the Equinoctial ten Parallels, and about one quarter, which is 20 degrees and an half Southward. So much is the Declination. And according to thefe Examples judge of all the reft.

USE III.

To find tbe Diurnal Arch or Circle of the Suns courfe every day.

The Sun every day by his motion (as hath been faid) defcribeth a Circle parallel to the EquinoCtial, which is either one of the Circles in the Dv-

6 © 0 De Defriptionano afe of the

al, or fomewhere between two of them. Firft therefore feek the day of the month, and if it fall upon one of thofe Parallels, that is the Civcle of the Suns courfe that fame day: But if it fall between any two of the Parallels, imagine in your mind, and eftimate with your eye, another parallel through that point between thofe two parallels, keeping ftill the fame diftance. from each of them.

As in the firft of the three former Examples, The Circle of the Suns courfe upon Augufi 1 I. Thall be the very fixth Circle above the EquinoCrial towards the Centre.

In example 2. The Circle of the Suns courfe upon the 24 of March Thall be an imaginary Circle between the fecond and third Parallels, fill keeping an half of that fpace, and one fifth part more of the reft, from the fecond.
In example 3. The Circle of the Suns courfe upon the 13 of Novemb, thall be animaginary Circle between the 10 th and I ith Parallels below the Equinoctial, ftill keeping one quarter of that fpace from the tenth.

USE IV.

To find the Rifing and Setting of the Sun every day.
Seek out (as was laft fhewed) the imaginary Circle or Parallel of the Suns courfe for that day, and mark the point where it meeteth with the Horizon, both on the Eaft and Weft fides, for that is the very point of the Suns Rifing and Setting

Double wozizottal Drat.

that fame day, and the hour-lines which are on both fides of it, by proportioning the diffance reafonably, according to 15 minutes for the quarter of the hour, will fhew the hour of the Suns Rifing on the Eaft fide, and the Suns Setting on the Weff fide.

USE V.

To know the reafon and manner of the Increafing and
Decreafing of the D.ays and Nights tbrougbout the mobole Year.

When the Sun is in the Equinoctial, it rifeth and fetteth at 6 a clock : for in the inftrument the interfection of the Equinoctial and the Ecliptick with the Horizon, is in the 6 a clock Circle on both fides. But if the Sun be out of the Equinoctial, declining toward the North, the interlections of the Parallel of the Sun with the Horizon is before 6 in the morning, and after 6 in the evening: and the Diurnal Arch greater than $\mathbf{1 2}$ hours; and fo much more great, the greater the Northern Declination is. Again, if the Sun be declining toward the South, the interfections of the Parallel of the Sun with the Horizon is after 6^{\prime} in the morning, and before 6 in the evening: and the Diurnal Arch leffer then $\mathbf{1 2}$ hours; and by fo much leffer, the greater the Southera Declination is.

And in thofe places of the Ecliptick in which the Sun moft fpeedily changeth his Declination, the length alifo of the day is moft altered : and
U_{2}
where

$8 \mathbb{C}$ be Defriptionandate of the

where the Ecliptick goeth moft parallel to the Equinodial changing the Declination, but little altered. As for example : When the Sun is near unto the Equinoctial on both fides, the days increafe and alfo decreafe fuddenly and apace; becaufe in thofe places the Ecliptick inclineth to the Equinoctial in a manner like a fraight Line, making fenfible declination. Again, when the Sun is near his greateft declination, as in the height of Summer, and the depth of Winter, the days keep for a good time as it were at one flay, becaufe in thofe places the Ecliptick is in a manner parallel to the Equinoctial, the length of the day alfo is bnt little, fcarce altering the declination: And becaufe in thofe two times of the year the Sun ftandeth as it were filll at one declination, they are called the Summer Sollitice, and Winter- Solftice. And in the mean fpace the nearer every place is to the Equinoctial, the greater is the diverfity of days.

Wherefore we may hereby plainly fee that the common received opinion, that in every month the days do equally increafe, is erronious.

Alfo we may fee that in Parallels equally diftant from the Equinoctial, the day on the one fide is equal to the night on the other fide.

USE VI.

To find bow far the Sux Rijeth and Setteth from the true Eaft and Weft Points, whicb is called the Suns Amplitude Ortive and Occafive.
Seek out (as was thewed in Ufe III.) the ima. ginary

Double Dorizontal Dyal.

ginary Circle or Paralled of the Suns courfe, and the points of that Circle in che Horizon, on the Eaft and Weft fides cuteeth the degree of the $A m$ plitude Ottive, and Occafive.

u SE VII.

To find the Length of every Day and Nigbt.
Double the hour of the Suns fetting, and you Thill have the length of the Day; and double the hour of the Suns riling, and you thall have the length of the Night.

uSE VIII.

T. find the true place of the Sun upon the Dyal, that, is, whe point of the Injitrument robich answereth to the place of the Sus in the Heavens at any time, which is the ground of all the Queftions folloning.

If the Dyal be fixed upon a Poff, look what a clock it is by the outward Dyal, that is, look what hour and part of the hour the fladow of the flanting edge of the Style fheweth in the outward Limb. Then behold the fhadow of the upright edge, and mark what point thereof is upout that very hour and part in the inner Dyal among the Parallels, that point is the true place of the Sun at the fame inftant.

If the Dyal be not fixed, and you have a Meridian Line noted in any Window where the Sun fhineth : place the Meridian of your Dyal upon the MeridianLine given, fo that the top of the u_{3}

Style

1o Che Defoription and arfe of the

Style may point into the North, and fo the Dyal is as it were fixed, wherefore by the former Rule you may find the place of the Sun upon it.*

If the Dyal be not fixed, neither you have a Mexidian Line, but you know the true hour of the day exactly : hold the Dyal evien and parallel to the Horizon, moving it till the flanting edge of the Style caft his fhadow juftly upon the time or hour given; for then the Dyal is truly placed, as upon a poft. Seek therefore what point of the upright fhadow falleth upon that very hour, and there is the place of the Sun.

But if your Dyal be loofe, and you know neither the Meridian nor the time of the day; Firft, by the day of the month in the Ecliptick, find the Suns Parallel or Diurnal Arch for that day, then holding the Dyal level to the Horizon, fove it every way until the flanting fhadow of the Style in the outward Limb, and the upright fhadow in the Suns Diurnal Arch, both fhew the very fame hour and minute; for that very point of the Suns Parallel which the upright fhadow cutteth, is the true place of the Sun on the Dyal at that prefent.

But note that by reafon of the thicknefs of the Style, and the bluntnefs of the angle of the upright edge, the Sun cannot come unto that edge for fome fpace before and after noon. And fo during the time that the Sun fhineth not on that upright edg the place of the Sun in the Dyal cannot be found. Wherefore they that make this kind of Double Dyal, are to be careful to file the upright edge of the Style as thin and fharp as poffible may be.

That which hath here been taught comcerning

Double Doxizontal Deat.

the finding out the Suns true place in the Dyal, ought pertectly to be underftood, that it may be readily and dexteroufly practifed, for upon the true performance thereof dependeth all that followeth.

> USE IX.

To find the Hour of the Day.

If the Dyal be faftened upori a Poft, the hour by the outward Dyal or Limb, is known of eyery one, and the upright thadow in the Suns Parallel or Diurnal Arch will alfo thew the very fame hour.

But if the Dyal be loofe, either hold it or fet it parallel to the Horizon, with the Style pointing into the North, and move it gently every way, until the hour fhewed in bothDyals exactly agreeeth; or which is all one, find out the true place of the Sun upon the Dyal, as was taught in the former queftion, for that point among the hour-lines theweth the hour of the day.

uSEX.

To find out the Meridian, and other points of the Compafs.

Firft you muft feek the true hour of the day (by the laf queftion) for in that fituation the Meridian of the Dyal ftandeth directly North and South: and the Eaft pointeth into the Eaft, and the Weft into the Weft, and the reft of the points may be given by allowing degrees $I \frac{1}{4}$ unto every point of the Compars.
U_{4} USE

\$2 Che Defriptionano are of toe

USE XI.

To find out the Azimuth of the Sun, that is, the difance of the Vertical Gircle, in whbich the Sun is at that prefeut from the Meridian.

Set your Dyal upon any plain or flat, which is parallel to the Horizon, with the Meridian pointing directly North or South, as was laft thewed : then follow with your Eye the upright fhadow in a ftraight Line, till it cutteth the Horizon: for the degree in which the point of interfection is, thall thew how far the Suns Azimutb is diftant from the Eaft and Weff points, and the Complement thereof unto 90 , thall give the diftance thereof from the Meridian.

USEXII.

Ta find out the Declination of any Wall upon wobich the Sun flinetb; that is, bow far tbat Wall swerveth from the North or Soxth, eitber Eaftward or Weftward.

Take a poard, having one fraight edge, and a Line fricken perpendicular upor it; apply the Itreight edge unto the Wall at what time the Sun fhineth upan it, holding the board parallel to the Horizon: Set the Dyal thereen, and move it gently every way, until the fame hour and minute be fhewed in both Dyals, and fo let it fland: then if the Dyal have one of the fides parallel to the Mepidian frike a Line along that fide upon the board
çroflipg

Double joxisontal Deal.

croffing the perpendicular, or elfe with a Bodkin make a point upon the board, at each end of the Meridian, and taking away the inftrument from the board, and the board from the wall, lay a Ruler to thofe two points, and draw a line croffing the perpendicular : for the angle which that line maketh with the perpendicular, is the angle of the declination of the Wall. And if it bea right angle, the wall is exactly eaft or weft : but if that line be parallel to the perpendicular, the wall is direct north or fouth, without any declination at all.

You may alfo find out the declination of a wall if the Dyal be fixed on a Poft not far from that wall, in this manner: Your board being applied to the Wall, as was Chewed, hang up a thread with a plummet, fo that the fhadow of the thread may upon the board crofs the perpendicular line, make two pricks in the thadow, and run inflantly to the Dyal, and look the horizontal diftance of the Suns Azimuth or upright fhadow from the Meridian. Then through the two pricks draw a line croffing the perpendicular : and upon the point of the interfection make a Circle equal to the Horizon of your Inftrument, in which Circle you thall from the line through the two pricks meafure the Horizontal Diftance of the Upright Shadow or Azimuth from the Meridian, that way toward which the Meridian is: draw a line out of the centre to the end of that Arch meafured: and the angle which this laft line maketh with the perpendicular, thall be equal to the declination of the wall.

14 Cbe Defriptiomano are of the

USE XIII.

How to place the Dyal upon a Pof witbout any other DireCtion, but it felf.

Set the Dyal upon the Poft; with the Stile into the North, as near as you can guels: then move it this way and that way, till the fame hour and minute be fhewed, both in the inward and outward Dyals by the feveral fhadows, as hath been already taught, for then the Dyal ftandeth in its trueft fituation; wherefore let it be nailed down in that very place.

USE XIV.

To find the beight of the Sun at bigh noon every day.
Seek out the Diurnal Arch or Parallel of the Suns courfe for that day, (by life III.) and with a pair of Compaffes, fetting one foot in the centre, and the other in the point of interfection of that Parallel with the Meridian, apply that fame difance unto the Semidiameter divided : for that meafure thall therein thew the degree of the Suns altitude above the Horizon that day at high noon.

> USEXV.

To find the beigbt of the Sun at any bour or time of the day.

Seek out the Diurnal Arch, or Parallel of the Suns courfe for that day: and mark what point
of it

Double moxisontal Dyal:

of it is in the very hour and minute propofed. And with a pair of Compaffes, fetting one foot in the centre, and the other in that point of the Parallel, apply the fame diftance upon the Semidiameter divided: for that meafure fhall hew the degree of the Suns altitude above the Horizon at that time.

And by this means you may finde the height of the Sun above the horizon at every hour throughout the whole year, for the making of Rings and Cylinders, and other Inffruments, which are ufed to thew the hour of the day.

uSE XVI.

The beight of the Sun being given, to find out the bour, or mobat it is a Clock:

This is the converfe of the former: Seek therefore in the Semidiameter divided, the height of the Sungiven: and with a pair of Compaffes, fetting one foot in the centre, and the other at that height, apply the fame diftance unto the Diurnal Arch or Parallel of the Sun for that day : for that point of the Diurnal Arch upon which that rame diftance lights, is the true place of the Sun upon the Dyal; and fheweth among the hourlines the true time of the day.

USE XVII.

Confiderations for ufing the Infrument in the nighto
In fuch queftions as concern the night, or the time

16 Cbe Defrtiption andafe of the

time before Sun-rifing and after Sun-fetting, the. Inftrument reprefenteth the lower Hemifphere, wherein the Southern Pole is elevated. And therefore the Parallels which are above the ÆquinoCtial towards the centre, fhall be for the Southern or Winter-Parallels: and thofe beneath the Equinoctial for the Nerthern or Summer-Parallels; and the Eaft thall be accounted for Weft, and the Weft for Eaft ; altogether contrary to that which was before, when the Inftrument reprefented the upper Hemifphere.

USE XVIII.

To find bow many degrees the Snn is under the Horizon at any time of the night.

Seek the Declination of the Sun for the day propoled, (by U(e II.) and at the fame declination the contrary fide, imagine a Parallel for the Sun that night, and mark what point of it is in the very hour and minute propoled: And with a pair of Compaffes, fetting one foot in the Centre, and the other in that point of the Parallel, apply that fame diftance unto the Semidiameter divided : for that meafure fhall thew the degree of the Suns depreffion belaw the Horizon at that time.
USE XIX.

To find out the length of the Crepufculum, or I'mylight every day.

Seck the declination of the Sun for the day propofed

Double Doxijontal Đpal.

poled, (by ufe II.) And at the fame declination on the contrary fide, imagine a Parallel for the Sun that night : And with a pair of Compaffes, fetting one foct in the Centre, and the other at 72 degrees upon the femidiamerer divided, apply that fame diftance unto the Suns Nocturnal Paral : for that point of the Parallel upon which that fame diftance fhall light, fheweth among the hour-lines the beginning of the Twilight in the morning, or the end of the Twilight in the evening.

$$
\text { USE } \mathrm{XX} \text {. }
$$

If the day of the month be not known, to find it out by the Dyal.

For the working of this Queftion, either the Dyal muft be fixed rightly on a Poft, or effe you muft have a true Meridian Line drawn in fome Window where the Sun thineth; wherefore luppofing the Dyal to be juftiy fet, either upon the Poft, or upon the Meridian, Look what a clock it is by the outward Dyal, and oblerve what point of the upright fhadow falleth upon the very lame minute in the inner Dyal, and through that fame point imagine a Parallel circle for the Suns courfe, that Imaginary Circle in the Ecliptick Thall cur the day of the month.

18

DE the ©ental Fozologital Bing.

I. The Defeription of it.

THis Inftrument ferveth as a Dyal to find the hour of the day, not in one place onely has the moft part of Dyals do) but generally in all Countreys lying North of the Equinoctial; and therefore I call it, The General Horological Ring.

It confifteth of two Brazen Circles, a Diameter, and a little Ring to hang it by.

The two Circles are fo made, that though they are to be fet at right angles when you ufe the Inftrument ; yet for more convenient carrying, they may be one folded into the other.

The leffer of the two Circles is for the Equinoctial, having in the midlt of the inner fide or thicknefs a line round it, which is the true Equinoctial Circle, divided intotwice 12 hours, from the two oppofite points in which it is faftened within the greater.

The greater and outer of the two Circles is the Meridian: One quarter whereof, beginning at one of the points in which the Equinoctial is hung, is divided into 90 degrees.

The Diameter is faftened to the Meridian in two oppofite points or poles, one of them being the very end of the Quadrant, and is the North Pole: Wherefore it is perpendicular to the Equinoctial, having his due pofition. The Diameter is broad, and flit in the middle, and about the flit on both fides are the months and days of the year.

Df the ©entral morologicat Ring, 19

And within this flit is a little fliding Plate pierced through with a fmall hole: which hole in the motion of it, while it is applied to the days of the year, reprefenteth the Axis of the World.

The little Ring whereby the Inftrument hangeth, is made to flip up and down along the Quadrant: that fo by help of a little Tooth annexed, the Inftrument may be rectified to any Elevation of the Pole.

II. The Vfe of it.

INufing this Inftrument, I. The tooth of the little Ring muft carefully be fet to the height of the Pole in the Quadrant, for the place wherein you are.
2. The hole of the fliding plate within the flit,
 muft be brought exactly to the day of the month.
3. The Equinociial is to be drawn out, and by means of the two ftuds in the Meridian ftaying it, it is to be fet perpendicular thereto.
4. Guefs as near as you can at the hour, and turn the hole of the little Plate toward it.

Laftly, Hold the Inftrument up by the little Ring that it may hang freely with the North Pole thereof toward the North, and move it gently this way and that way, till the beams of the Sun fhihing thorow that hole, fall upon that middle line within the Equinoctial: for there fhall be the hour of the day: And the Meridian of the Inftrument Thall hang directly North and South.
This or any other Mathematical Inftrument either in Silver. Brafs, or Wood, are exactly made by Hilkiah Bedford. in Fleetflreet, near Fetter-Lane End.

$$
E \perp N \text { I S. }
$$

 2d) o byikga algighinve ejiso roijuni

 ytroijut

[^0]: I fhould pafs the bounds of my counterpoife, if I Thould dipulge all the fecrets of this Stone,

