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Experimental determination of protein function is resource-
consuming. As an alternative, computational prediction of
protein function has received attention. In this context, protein
structural classification (PSC) can help, by allowing for
determining structural classes of currently unclassified proteins
based on their features, and then relying on the fact that
proteins with similar structures have similar functions. Existing
PSC approaches rely on sequence-based or direct three-
dimensional (3D) structure-based protein features. By contrast,
we first model 3D structures of proteins as protein structure
networks (PSNs). Then, we use network-based features for
PSC. We propose the use of graphlets, state-of-the-art features
in many research areas of network science, in the task of PSC.
Moreover, because graphlets can deal only with unweighted
PSNs, and because accounting for edge weights when
constructing PSNs could improve PSC accuracy, we also
propose a deep learning framework that automatically learns
network features from weighted PSNs. When evaluated on a
large set of approximately 9400 CATH and approximately
12 800 SCOP protein domains (spanning 36 PSN sets), the best
of our proposed approaches are superior to existing PSC
approaches in terms of accuracy, with comparable running
times. Our data and code are available at https://doi.org/10.
5281/zenodo.3787922
1. Introduction
1.1. Motivation and related work
Proteins are major molecules of life, and thus understanding their
cellular function is important. However, doing so experimentally is
costly and time-consuming [1]. Instead, computational approaches
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are often used for this purpose, which are much more efficient because they leverage on the fact that

(sequence or three-dimensional (3D)) structural similarity of proteins often indicates their functional
similarity [2]; note that here we refer to as broad notion of protein structural similarity as possible, i.e. as
captured by any existing method. One type of such computational approaches is protein structural
classification (PSC) [3]. PSC uses structural features of proteins with known labels (typically CATH [4] or
SCOP [5] structural classes) to learn a classification model in a supervised manner (i.e. by including the
labels into the process of training the model). Then, the structural feature of a protein with unknown label
can be used as input to the classification model to determine the structural class of the protein. This
information can in turn be used to predict function of a protein based on functions of other proteins that
belong to the same structural class as the protein of interest. In this paper, we focus on the PSC problem.

Note that there exists a related computational problem which can help with protein function
prediction—that of protein structural comparison [6]. However, unlike PSC: (i) protein structural
comparison uses structural features of proteins with known or unknown labels in unsupervised rather
than supervised manner (i.e. it ignores any potential label information), and (ii) it uses the features to
compute pairwise similarities between the proteins in hope that highly similar proteins will have the
same label (where the labels are used only after the fact), rather than predicting the label of a single
protein. In other words, both the goals and working mechanisms of PSC and protein structural
comparison are different. Hence, the two approach categories are not comparable to and cannot be fairly
evaluated against each other.

Since proteins with high sequence similarity typically also have high 3D structural and functional
similarity, traditional PSC approaches have relied only on sequence-based protein features [7,8].
A popular baseline (i.e. naive) sequence feature is the amino acid composition (AAComposition),
which measures relative composition of different amino acid types in a protein sequence [6]. Another
popular still baseline though somewhat more comprehensive sequence feature is the di-amino acid
composition (DAAComposition), which measures relative composition of different ordered di-amino
acid combinations in a protein sequence [9]. Some other, even more comprehensive sequence features
include the position-specific scoring matrix (PSSM) [10], three-state secondary structure (SS) profile [11],
and hidden Markov model (HMM) profile [12], all of which were recently used by a PSC approach
called SVMfold [8]. SVMfold integrates the above three sequence features to represent a protein sequence
and then uses support vector machine (SVM) as the classification algorithm to perform PSC. Among
the most recent sequence-based PSC approaches are MV-fold [13] and DeepFR [14]. MV-fold integrates
four sequence features: the same three sequence features that are also used by SVMfold, plus some
physico-chemical information in the form of pseudo amino acid composition (PseAAC). DeepFR predicts
contacts between residues of a protein sequence and then uses these predicted contacts along with a
deep convolutional neural network for PSC. SVMfold, MV-fold and DeepFR methods were compared
against each other in the MV-fold study. MV-fold was comparable to SVMfold and it outperformed
DeepFR. So, SVMfold is still among the best sequence-based protein features.

Although sequence features have been extensively used for the purpose of PSC, it has been argued
that proteins with low sequence similarity can still show high 3D structural and functional similarity
[15]. On the other hand, proteins with high sequence similarity can have low 3D structural and
functional similarity [16]. Hence, PSC based on 3D-structural as opposed to (or in addition to)
sequence features could more correctly identify the structural class of a protein [17].

Typically, 3D-structural approaches extract features directly from the 3D structures of proteins and then
use these direct 3D-structural features (i.e. coordinate positions of the atoms in the 3D space) to compare
proteins [17,18]. Interestingly, recent 3D-structural PSC approaches have focused on classification based
on protein pairs [3,19,20]. For example, they consider a pair of protein structures—one with known label
(class) and the other one with unknown label, and if the proteins are similar enough in terms of their 3D-
structural (and possibly also sequence) features, they assign the known label of the currently classified
protein to the currently unclassified protein. As such, these approaches fall somewhere in-between PSC
(because both are supervised, but PSC analyses a single protein at a time) and protein structural
comparison (because both focus on protein pairs, but protein structural comparison is unsupervised).
Therefore, they are not comparable to and cannot be directly evaluated against approaches that solve the
PSC problem as defined in our study.

In addition, several fully unsupervised approaches have also been proposed that use 3D-structural
features to compare protein structures [21,22]. For example, recently, a 3D-structural feature called
tuned Gauss integrals (GIT) [23] was used to cluster proteins into structurally similar groups [21].

In contrast to the direct 3D-structural features, protein 3D structures can first be modelled using
protein structure networks (PSNs), in which nodes are amino acids and edges link amino acids that are
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spatially close enough to each other. Then, network-based features can be extracted from the PSNs and

used in the task of PSC. A popular concept in this regard is the notion of protein contact maps [24], which
are nothing but an alternative representation of PSNs. A contact map is the representation of an n amino
acid-long 3D protein structure into an n × n 2-dimensional matrix C. In a contact map C, Cij has a value of
1 if the amino acids i and j are within a predefined distance cutoff, i.e. they are in contact, and 0
otherwise. A recent approach that used contact map-based features for PSC is the cutoff scanning
matrix (CSM) [25].

Unlike contact maps that are ‘simple’ network representations, there exists a different category of PSN
features that are based on graph-theoretic concepts, i.e. that measure different network properties. One
such baseline PSN feature is Existing-all, which integrates seven network properties to represent a PSN
[6]. Another popular PSN feature that counts different types of network patterns is the concept of
graphlets; graphlets are subgraphs or small lego-like building blocks of complex networks [26].

We believe that the graph-theoretic PSN-based PSC is promising. This is because we recently proposed
an unsupervised protein structural comparison approach called GRAFENE that relies on graphlets as PSN
features of a protein [6]. Given a set of PSNs as input, GRAFENE first extracts different versions of graphlet
features from each PSN. Then, it quantifies structural similarity between each pair of the PSNs by comparing
their features in an unsupervised manner. GRAFENE outperformed other state-of-the-art 3D-structural
protein comparison approaches, including DaliLite [27] and TM-align [28].

In this work, we use the graphlet-based PSN features for the first time in the task of supervised PSC,
with a hypothesis that they will improve upon state-of-the-art non-graphlet PSN features and non-PSN
features that have traditionally been used in this task. Note that there exists a supervised approach that
used graphlets to study proteins [29]. However, it did so in the task of functional classification of amino
acids, i.e. nodes in a PSN, rather than in our task of structural classification of proteins, i.e. PSNs. Also,
this approach only used the concept of regular graphlets, while we also test a newer concept of ordered
graphlets [30] (see Methods), which outperformed regular graphlets in the GRAFENE study [6].

In general, a PSC approach comprises two key aspects: (i) a method to extract features from a protein
structure, and (ii) selection of a classification algorithm to be trained based on the features (and protein
labels). Hence, existing PSC approaches can be divided into two broad categories. The first category
includes approaches that focus on improving a classification algorithm by relying on existing features
[31–33]. The second category includes approaches that extract novel features to predict the structural
class of a protein by relying on existing classification algorithms [8,34,35]. Our study belongs to the
second category, since our goal is to evaluate graphlet features against other state-of-the-art PSC
features in a fair evaluation framework, i.e. under the same (representative) classifier, without
necessarily aiming to find the best classifier.

1.2. Our contributions
We propose a PSC framework called NETPCLASS (network-based protein structural classification). As
one part of our framework, we suggest the use of graphlet- and thus PSN-based protein features in
the PSC task under an existing classification algorithm. As another part of our framework, we aim to
achieve the following. Existing PSN definition links with unweighted edges those pairs of amino acids
whose 3D spatial distance is below some predefined cutoff. Current graphlets can deal with such
edge-unweighted networks. We hypothesize that PSC can benefit from including the actual spatial
distances as edge weights. However, availability of sophisticated network (e.g. graphlet-based)
methods for extracting features from weighted networks is limited, and developing such methods is a
non-trivial task. So, to evaluate this hypothesis, the best we can currently do is to model a PSN as a
simple weighted adjacency matrix and then develop a deep learning-based PSC approach to extract
features from such a matrix automatically.

More details about our study are as follows:

(i) We evaluate, in the task of PSC, nine versions of graphlet features that were already used for
unsupervised protein structural comparison [6]. In addition, in the same task, we evaluate a non-
graphlet network (Existing-all) feature [6], a recent contact map-based (CSM) feature [25], a recent
3D-structural (GIT) feature [21], a state-of-the-art sequence (SVMfold) feature, and two baseline
sequence features (AAComposition and DAAComposition) [6,9]. We use the same, reasonably
chosen, classification algorithm for each of the above 15 features to learn (train) their classification
models, in order to fairly compare their performance. By reasonably chosen, we mean a
well-performing conventional classification algorithm. It has been observed that in situations
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wherewe already have awell-performing feature under a conventional classification algorithm, non-

conventional (e.g. deep learning-based) classification algorithm might not provide that much of a
performance boost compared to the conventional one [36]. Also, it is well known that using non-
conventional classification algorithm (e.g. deep convolutional neural networks or recurrent neural
networks) would come at a cost of much larger computational time. So, we believe that in order
to evaluate the meaningfulness of graphlets over the existing state-of-the-art PSC features, which
is the key task of our paper, there is no need to use more complex classification algorithms. Here,
as a proof-of-concept, we use a simple yet powerful logistic regression (LR) classifier, whose output
indicates, for the given input protein and each class, the likelihood that the protein belongs to the
given class. Note that in initial stages of our evaluation, in addition to LR, we considered an SVM
classifier. We found that using SVM showed no improvement compared to using LR (under same
features and on same PSN data) in terms of accuracy, while at the same time it was slower. So, we
had no reason to continue using SVM.

(ii) Since the different categories (i.e. sequence, 3D-structural or PSN-based) of protein structural
features can provide complementary information, we combine the individual features to form
new integrated features and evaluate these against each of the individual features.

(iii) Because graphlets are currently designed only for unweighted PSNs, and because the current
literature lacks knowledge on how to efficiently extract meaningful features from a weighted
network, we aim to extract such features automatically via deep learning (DL).

(iv) We evaluate the considered approaches on a large set of approximately 9400 CATH and
approximately 12 800 SCOP protein domains. We transform protein domains to PSNs with
labels corresponding to CATH and SCOP structural classes, where we study each of the four
levels of CATH and SCOP hierarchies [6]. Our evaluation is based on measuring how correctly
the trained classification models can predict the classes of labelled proteins in the test data
using 10-fold cross-validation.

Our key findings are as follows.
In terms of PSC accuracy, when we compare the individual features, we observe that the best of our

graphlet features outperform all of the other individual features except GIT and SVMfold. However,
regarding GIT, while it shows somewhat superior performance to the graphlet features, GIT is only
applicable to proteins, while graphlets are general-purpose network features and are applicable to many
other complex systems that can be modelled as networks. Further, we show that integrating GIT with the
best graphlet feature significantly improves accuracy of each of GIT alone and the graphlet feature alone,
which means that each of the two individual features contributes to the superior performance of their
integrated version. Note that we find that integrating the best of the sequence features with GIT and
graphlets does not yield significant improvements. Regarding SVMfold, while this approach performs
well (comparable to the best of our proposed approaches), SVMfold is orders of magnitude slower than
our proposed approaches. In fact, SVMfold is so slow that we were able to run it only on 5.5% of our
data. In terms of running time, SVMfold is the slowest, followed by the integrated features, followed by
CSM, and followed by the rest of the features (which are mostly comparable to each other).

Accounting for edgeweights in PSNs via DL achieves accuracy that is relatively comparable to accuracy
of the individual unweighted network-based methods. Note that here we are comparing as simple as
possible weighted network features (the simple weighted adjacency matrix) against highly sophisticated
unweighted network features (graphlets, which are the state-of-the-art in network science). So, a
comparable accuracy of the former and the latter implies a promise of future weighted network-based
analyses of protein 3D structures (such as developing and using weighted graphlet-based features).
2. Methods
2.1. Data and protein structure network construction
First, we use a set of 17 036 proteins that was previously used in the large-scale unsupervised protein
structural comparison GRAFENE study [6]. Per this study, this dataset contains all proteins from the
Protein Data Bank (PDB) [37] that are at most 90% sequence similar. To identify protein domains, we
use two protein domain categorization databases: CATH and SCOP. Note that we can only use those
CATH and SCOP protein domains that are present in our set of 17 036 proteins.
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To construct a PSN from a protein domain, we use the PDB files [37], which contain information about

the 3D coordinates of the heavy atoms (i.e. carbon, nitrogen, oxygen and sulfur) of the amino acids in the
domain. In a PSN, nodes are amino acids of a protein domain and there is an edge between any two
nodes if they are sufficiently close in the 3D space. Clearly, given a protein domain, its corresponding
PSN construction depends on (i) the choice of atom(s) of an amino acid to represent it as a node in the
PSN, and (ii) a distance cutoff between a pair of nodes to capture their spatial proximity. There is no
established knowledge about what choices of node representation and distance cutoff are the best to
construct a PSN. Results of past studies that exclusively evaluated the effect of different choices of node
representation and distance cutoff on the meaningfulness of PSNs/contact maps have largely been
contradicting [38–41]. For example, in terms of the node representation choice, Duarte et al. [39]
identified that β carbon as a node in a PSN captures the 3D structure of a protein more accurately than
the use of α carbon, implying that the choice of which atom type to consider as a node in a PSN matters.
On the other hand, da Silveira et al. [38] found that the choice of which atom type to consider as a node
in a PSN does not make a difference. Similarly, in terms of the choice of distance cutoff, while Vassura
et al. [42] showed that an increase in distance cutoff generally increased the meaningfulness of PSNs,
Duarte et al. [39] showed that this is not necessarily the case. So, there seems to exist no consensus on
exactly how to best choose a node representation or distance cutoff value for PSN construction.
Nonetheless, our choice of these parameter values is made somewhat easier in the light of a recent study
on unsupervised protein structural comparison that used the exact same data as we do here [6].
By considering four different combinations of atom choice and distance cutoff definitions (any heavy
atom with 4, 5 and 6Å distance cutoffs and α-carbon with 7.5 Å distance cutoff), this study showed that
the choice of atom and distance cutoff did not significantly affect the overall protein structural
comparison performance [6]. Motivated by this, for most of our analyses, i.e. unless explicitly indicated
otherwise, we consider only one of these PSN construction strategies in our study: we define an edge
between two amino acids if the spatial distance between any of their heavy atoms is within 4 Å. Because
the choice of a PSN construction strategy only affects PSN-based features, and because as we will show
later that the best of our graphlet features is the best among the considered PSN-based features, for it, we
also use the distance cutoff of 6 Å; we will explicitly note whenever 6 Å is used instead of 4 Å. Note that
we also considered the cutoff of 5 Å, but using 6 Å was always superior to using 5 Å. Hence, for
simplicity, we do not report results for 5 Å.

Additionally, for most of our analyses, i.e. unless explicitly indicated otherwise, in order to only keep
‘meaningful’ PSNs for further analysis, we filter the PSNs using an established guideline that is based on
network properties of a PSN [6]. Namely, we only keep a PSN if it has (i) a single connected component,
(ii) a diameter of at least six, and (iii) at least 100 nodes (amino acids) (electronic supplementary material,
section S1). Following these criteria, we obtain 9509 and 11 451 PSNs corresponding to CATH and SCOP,
respectively. Note that in order to fairly compare the considered protein features to each other, we want
to focus on only those protein domains (i.e. PSNs) that can be processed by each of the features. Removal
from the above data of those protein domains that cannot be processed by at least one considered feature
results in 9440 CATH and 11 352 SCOP PSNs for further analysis. These are the final data that are used
throughout the study, unless explicitly told otherwise. Importantly, in order to evaluate the effect of the
above three PSN filtering criteria on our results, for a subset of our analyses, we consider even those
connected PSNs that have diameter less than six or fewer than 100 nodes; we use the resulting data
only in §3.8.

Given the CATH PSN data, we do the following. First, we test the power of the considered PSC
approaches to predict the following top hierarchical level classes of CATH: alpha (α), beta (β) and alpha/
beta (α/β). Note that few secondary structures is the remaining CATH top hierarchical class, but none of the
CATH PSNs belongs to this class, so we do not consider it. Hence, we take all 9440 CATH PSNs and
identify them as a single PSN set, where the PSNs have labels corresponding to three top level CATH
classes: α, β, and α/β. Second, we compare the approaches on their ability to predict the second level
classes of CATH, i.e. within each of the top-level classes, we classify PSNs into their sub-classes. To
ensure enough training data, we focus only on those top-level classes that have at least two sub-classes
with at least 30 PSNs each; we require the minimum of 30 PSNs in order to have sufficient statistical
power in the classification task [43]. Three classes satisfy this criteria. For each such class, we take all of
the PSNs belonging to that class and form a PSN set, which results in three PSN sets. Third, we compare
the approaches on their ability to predict the third-level classes of CATH, i.e. within each of the second-
level classes, we classify PSNs into their sub-classes. Again, we focus only on those second-level classes
that have at least two sub-classes with at least 30 PSNs each. Nine classes satisfy this criteria. For each
such class, we take all of the PSNs belonging to that class and form a PSN set, which results in nine PSN
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Figure 1. Hierarchical representation of the 35 CATH and SCOP PSN sets that we use. Each oval shape represents a PSN set. The top
line in the given oval indicates the name of the PSN set. The bottom line in the given oval contains two numbers represented as ‘x;
y’, where x is the number of classes (i.e. labels) that are present in the PSN set and y is the average number of PSNs per class. For
example, for the SCOP database, PSN set SCOP-primary has seven classes, where each class has an average of 1635 PSNs. All of the
PSN sets at a given level form a PSN set group. For example, PSN sets CATH-primary and SCOP-primary form PSN set group 1. A class
of a PSN set in group i may be present as a PSN set in group i + 1. For example, the class α of the PSN set SCOP-primary in group
1, is present as a PSN set SCOP-α in group 2. Note that since we select a PSN set if and only if it has at least two classes each with
at least 30 PSNs, given a PSN set in group i, not all of its classes are necessarily present as PSN sets in group i + 1. For example, PSN
set SCOP-primary has seven classes in group 1, but only five of its classes exist as PSN sets in group 2. Also note that because of our
PSN set selection criteria, it is not necessary that a PSN set in group i + 1 has to be present as a class within a PSN set in group i.
For example, PSN set SCOP-c.2.1, which is present in group 4, is not present as a class within any PSN set in group 3. This is because
SCOP-c.2 contains only one class that has at least 30 PSNs (i.e. c.2.1) and hence we do not consider SCOP-c.2 as a PSN set in our
analysis. This figure has been adapted from the GRAFENE paper [6]. Note that the numbers of PSNs in this figure are different from
the numbers of PSNs in the corresponding figure of the GRAFENE paper, because in this study we focus only on those PSNs that can
be analysed by each of the considered protein features (§2.1), where not all of our considered features are necessarily the same as
all of the methods considered in the GRAFENE paper.
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sets. Fourth, we compare the approaches on their ability to predict the fourth-level classes of CATH,
i.e. within each of the third-level classes, we classify PSNs into their sub-classes. We again focus only on
those third-level classes that have at least two sub-classes with at least 30 PSNs each. Six classes satisfy
this criteria. For each such class, we take all of the PSNs belonging to that class and form a PSN set,
which results in six PSN sets.

Thus, in total, we analyse 1 + 3 + 9 + 6 = 19 CATH PSN sets. For further details on the number of PSNs
and the number of different protein structural classes in each of the PSN sets, see electronic
supplementary material, tables S1–S3. We follow the same procedure for the SCOP PSN data and
obtain 1 + 5 + 6 + 4 = 16 SCOP PSN sets. For more details, see electronic supplementary material, section
S2 and tables S1–S3.

We group each of the 19 CATH PSN sets and 16 SCOP PSN sets into four PSN set groups,
corresponding to the four hierarchy levels of CATH and SCOP, respectively: group 1 (all 1 + 1 = 2 PSN
sets), group 2 (all 3 + 5 = 8 PSN sets), group 3 (all 9 + 6 = 15 PSN sets) and group 4 (all 6 + 4 = 10 PSN
sets) (figure 1).

Second, in addition to the 19 + 16 = 35 CATH and SCOP PSN sets from the GRAFENE study as
described above, we use a different dataset because of the following reason. Typically, high sequence
similarity of proteins indicates their high structural similarity. Hence, given a set of proteins in which
proteins in the same structural class have high sequence similarity (typically more than 40%), a
‘simple’ protein sequence comparison might be sufficient to perform PSC [44]. So, we aim to evaluate
how well our considered protein features (that are based on different aspects of a protein structure)
can identify proteins in the same structural category when all of the proteins (within and across
structural categories) show low (less than or equal to 40%) sequence similarity.

In order to do this, we download the dataset called Astral from the SCOPe 2.04 database [45]. This
dataset has 14 666 protein domains, where each domain pair is at most 40% sequence similar to each
other. Each protein domain in this dataset is annotated by a label (i.e. protein structural class)
assigned by the protein domain categorization database SCOP, where the label indicates the protein
family to which the domain belongs. We create a PSN corresponding to each of the protein domains
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as described above. Then, we follow the same criteria as in the GRAFENE study [6] (also described

above) to only keep ‘meaningful’ PSNs. This results in 1677 PSNs belonging to 32 different protein
structural classes. We name this set of 1677 PSNs as Astral. Note that the decrease from 14 666 to 1677
protein domains is mostly due to removing protein domains that belong to a protein domain class
with fewer than 30 protein domains (see above); approximately 60% of the data loss is caused by this.

Taken together, in our study, we use 35 + 1 = 36 PSN sets (35 CATH and SCOP PSN sets and one
Astral PSN set) that contain 9440 protein domains annotated by the CATH database and 12 820
protein domains (union of the above SCOP-related 11 352 protein domains and the Astral-related 1677
protein domains) annotated by the SCOP database.
/journal/rsos
R.Soc.Open
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2.2. Our evaluation framework

2.2.1. Protein features

For each of the protein domains, we extract 18 different protein features that are based on either sequence,
3D structure, contact map, non-graphlet network, graphlet network or weighted network (table 1). To
understand what aspects of the protein structure each considered feature captures, we categorize the
given feature based on whether it (i) captures local or global structure of a protein, (ii) is based on the
backbone or the side-chain of a protein, (iii) is dependent on the sequentiality of amino acids of a
protein or not, and (iv) is dependent on the 3D-structural conformation of a protein or not. We say
that a feature is local if it explicitly uses local structural characteristics of a protein to summarize the
whole protein structure, while we say that a feature is global if it summarizes the structure of a
protein as a whole without explicitly using smaller structural characteristics of a protein. We say that
a feature is based on the backbone (side-chain) of a protein if it uses only the heavy atoms of the
protein backbone (side-chain). We say that a feature is sequence-dependent if permuting sequence
positions of the amino acids of a given protein alters the feature as well. We say that a feature is 3D
structural conformation-dependent if altering 3D-structural positions of amino acids of a given protein
alters the feature as well. By altering the 3D-structural position of an amino acid, we mean changing
the 3D spatial position of the amino acid to any other position in the 3D space, which can be different
from positions of all other amino acids of the protein.

Note that all of the considered sequence-based features are not dependent on the 3D-structural
conformation of a protein, while all of the other considered features are dependent on this. Because
we just covered this, we do not comment any further on whether a feature is 3D conformation-
dependent or not.

Also, note that since we construct a PSN using any heavy atoms irrespective of whether the heavy
atoms belong to the backbone or the side-chain of a protein (see above), any considered feature that is
entirely or partially PSN-based (which is the case for each considered feature except sequence-based
AAComposition, DAAComposition and SVMfold, plus 3D structure-based GIT) is automatically based
on both the backbone and the side-chain of a protein. Henceforth, we only comment on whether a
feature is either backbone-based or side-chain-based (or neither) only if the feature is not PSN-based,
i.e. we do it only for AAComposition, DAAComposition, SVMfold and GIT.

Below, we define each of the features and outline whether the given feature is local or global, as
well as whether it is dependent on the sequentiality of amino acids of a protein (and for
AAComposition, DAAComposition, SVMfold and GIT, whether the given feature is either backbone-
based or side-chain-based (or neither)).

Sequence-based features. We use a baseline sequence feature, AAComposition. Given a protein sequence,
AAComposition measures the relative frequency of the 20 types of amino acids in the entire sequence: for
each amino acid type i, it measures the frequency occurrence of i in the sequence divided by the total
number of amino acids in the sequence. AAComposition considers the entire protein sequence, and
hence, it is a global feature. AAComposition does not use any heavy atom of an amino acid,
and hence, it is neither a backbone- nor a side-chain-based feature. AAComposition only measures the
relative frequency of the different amino acid types without looking at the sequence position of a
given amino acid, and hence, it is not sequence-dependent.

We use another baseline sequence feature, DAAComposition. Given a protein sequence,
DAAComposition measures the relative frequency of each of the possible ordered di-amino acid
combinations in the entire sequence: for each pair of amino acid types i and j, it measures the
frequency occurrence of a given ordered combination of i and j in the sequence divided by the total



Table 1. Summary of all protein features that we use in this study. We use the same classifier (logistic regression) for all
features except ‘distance matrix’ (coloured in grey); for the latter, we use deep learning.

category feature name

measures
local/global
structure

based on
protein
backbone/side-
chain

dependent on
sequentiality of
amino acids

dependent
on 3D
conformation

sequence AAComposition global none no no

DAAComposition global none yes no

SVMfold local none yes no

3D structure GIT local backbone yes yes

contact map CSM global both no yes

non-graphlet

network

Existing-all global both no yes

graphlet

network

Graphlet-3-4 local both no yes

Graphlet-3-5 local both no yes

NormGraphlet-3-4 local both no yes

NormGraphlet-3-5 local both no yes

OrderedGraphlet-3 local both yes yes

OrderedGraphlet-3-4 local both yes yes

OrderedGraphlet-

3-4(6 Å)

local both yes yes

NormOrderedGraphlet-3 local both yes yes

NormOrderedGraphlet-

3-4

local both yes yes

integrated GIT+OrderedGraphlet-

3-4(6 Å)

local both yes yes

Concatenate both both yes yes

weighted

network

distance matrix global both yes yes
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number of all possible di-amino acid ordered combinations among all 20 amino acid types.
DAAComposition considers the entire protein sequence, and hence, it is a global feature.
DAAComposition does not use any heavy atom of an amino acid, and hence, it is neither a backbone-
nor a side-chain-based feature. Any change in sequence can alter di-amino acid compositions of a
protein, and hence, DAAComposition is sequence-dependent.

Note that we evaluated DAAComposition against two additional related features, tri-amino acid
composition and PseAAC [46]. We found DAAComposition to consistently and significantly
outperform the latter two. Consequently, for simplicity, we do not report any results for tri-amino acid
composition and PseAAC.

Additionally, we use a recent state-of-the-art sequence method called SVMfold. Given a protein
sequence, SVMfold computes the PSSM [10], three-state SS profile [11] and HMM profile [12] of the
protein sequence, and integrates these three features to obtain a single feature representation of
the protein [8]. SVMfold relies on HMM profile, which extracts features from subsequences of a protein,
and hence, SVMfold is a local feature. SVMfold does not explicitly use any heavy atom of an
amino acid, and hence, it is neither a backbone- nor a side-chain-based feature. SVMfold relies on
PSSM profile, which extracts features from a sequence alignment of proteins, and hence, SVMfold is
sequence-dependent.

Note that there exists another method called SVM-fold [47] (note that the difference between the names
of thismethod and the above SVMfoldmethod is the presence and the absence of ‘-’, respectively).However,
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wedo not use thismethod because the focus of its publicationwas to propose not a novel protein feature but

an improved classification algorithm that, given any sequence-based protein feature, can perform PSC.
Specifically, the method feeds an existing sequence-based protein feature into string kernels [48], which it
then uses to classify proteins. However, as pointed out earlier in §1, the focus of our study is to evaluate
different protein features in the task of PSC and not on improving the underlying PSC algorithm.
Additionally, this method (i.e. SVM-fold) is more than a decade old approach, while the sequence-based
method that we evaluate (i.e. SVMfold) in our paper is a recent approach.

3D-structural feature. We use a state-of-the-art 3D-structural feature, GIT. Given a protein structure, GIT
measures how often, according to the amino acid sequence, the α-carbon trace of the protein forms
different kinds of local patterns in the 3D space. To measure the number of different patterns, GIT
computes 31 different Gauss integrals and uses them as the feature representation of a protein [23]. GIT
measures local patterns formed by the α-carbon trace of a protein, and hence, it is a local feature. GIT is
based on only the α-carbons of a protein, which are part of the backbone of a protein, and hence, GIT is
a backbone-based feature. GIT is based on the α-carbon trace of a protein, which might be affected by a
change in sequence positions of amino acids, and hence, GIT is sequence-dependent.

Contact map-based feature. We use a recent contact map-based feature, CSM. Given a protein structure,
CSM first computes 151 contact maps, which are based on 151 distance cutoffs (ranging from
0:0 to 30:0Å in increments of 0.2 Å). For a given distance cutoff, two amino acids are considered to be in
contact if any of their heavy atoms are within the distance cutoff; then, CSM counts the number of amino
acid pairs that are in contact at that cutoff. Finally, CSM uses all 151 counts (for the 151 cutoffs) as the
151-dimensional protein feature vector [25]. CSM counts the total number of contacts present in the
whole protein, and hence, it is a global feature. CSM counts the number of contacts, which is not affected
with a change in sequence positions of amino acids, and hence, CSM is not sequence-dependent.

Non-graphlet network-based feature. Here, we use a feature that was shown to outperform many other
non-graphlet network-based features in an unsupervised protein comparison task [6]. We denote this
feature as Existing-all. Given a PSN, Existing-all calculates and integrates seven global network
features: average degree, average distance, maximum distance, average closeness centrality, average
clustering coefficient, intra-hub connectivity and assortativity. Existing-all uses global network
measures to quantify the structure of a protein (i.e. PSN), and hence, it is a global feature. Existing-all
extracts features from a PSN, which is not affected with a change in sequence positions of amino
acids, and hence, Existing-all is not sequence-dependent.

Graphlet network-based features. Graphlets, as originally defined, are small connected induced non-
isomorphic undirected k-node subgraphs of a network [26]. For example, an edge is the only 2-node
graphlet. There exist two 3-node graphlets: a 3-node path and a triangle. Examples of 4-node graphlets
are a 4-node path, a square, a square with exactly one diagonal, or a 4-node clique (complete graph).
In total, there exist six 4-node graphlets. Typically, due to high computational complexity (i.e. running
time) of counting graphlets in large networks, up to 5-node graphlets are studied. There exist 21 5-node
graphlets. Consequently, there exist 1 + 2 + 6 + 21 = 30 2–5-node graphlets. Given a network, one can
count occurrences of the different graphlet types in the network and use these counts as a network
feature [26]. Or, one can count how many times a node/edge in the network participates in the different
graphlet types and use these counts as a node/edge feature [49,50]. Because in our study we extract
graphlet-based features of an entire network rather than of individual nodes/edges, the latter is out of
the scope of this study.

In addition to being undirected, graphlets as originally defined are unordered, homogeneous, static
and unweighted. More recently, graphlets were extended to their ordered [6], heterogeneous [51] and
dynamic [52] counterparts. For explanations of all of these different graphlet types, see Newaz &
Milenkovic ́ [53]. Note that weighted graphlets are still lacking, despite an existing study using a
similar terminology for a concept that even the authors of that study acknowledge is entirely
unrelated to graphlets as defined in our paper and in general in the field of network science [54].

In this study, we deal with undirected and unweighted networks and thus rely on undirected and
unweighted graphlets. However, in one case, we treat our networks as unordered, and in the other
case we treat them as ordered. So, we use unordered graphlets (defined above) for the former and
ordered graphlets (defined below) for the latter. Specifically, we use graphlets to extract the following
network features from our PSNs.

Graphlet counts.We use two graphlet-based protein features, i.e. Graphlet-3-4 and Graphlet-3-5. Given a
PSN, Graphlet-3-4 and Graphlet-3-5 count the number of 3–4-node and 3–5-node graphlets, respectively.
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In particular, in the Graphlet-3-4 or Graphlet-3-5 feature vector, position i represents the logarithm of the

count of graphlets of type i [6]. Both Graphlet-3-4 and Graphlet-3-5 are based on graphlets, which are
small (i.e. local) network patterns as defined above, and hence, both Graphlet-3-4 and Graphlet-3-5
are local features. Both Graphlet-3-4 and Graphlet-3-5 extract features from a PSN, which is not
affected with a change in sequence positions of amino acids, and thus, neither Graphlet-3-4 or
Graphlet-3-5 are sequence-dependent.

Normalized graphlet counts. Since PSNs can be of very different sizes, we use two recent protein features
that are based on normalized graphlet counts and that thus account for network size differences [6]. These
features are NormGraphlet-3-4 and NormGraphlet-3-5; they are normalized equivalents of Graphlet-3-4 and
Graphlet3-5, respectively. In particular, given a PSN, in both NormGraphlet-3-4 and NormGraphlet-3-5
feature vectors, a position i represents the total count of graphlets of type i divided by the sum of the
counts of all graphlet types. Similar to Graphlet-3-4 and Graphlet-3-5, NormGraphlet-3-4 and
NormGraphlet-3-5 are local and sequence-dependent features.

Ordered graphlet counts.Graphlets capture 3D-structural butnot sequence information. To integrate the two,
ordered graphlets were proposed [30]. These are graphlets whose nodes acquire a relative ordering based on
positions of the amino acids in the sequence. Two ordered graphlet features exist: OrderedGraphlet-3
and OrderedGraphlet-3-4 [6,30]. For a PSN, in OrderedGraphlet-3 and OrderedGraphlet-3-4 feature vectors,
position i is the total count of ordered graphlets of type i.

In addition, we use two features that are based on normalized counts of ordered graphlets
[6]: NormOrderedGraphlet-3 and NormOrderedGraphlet-3-4; these are normalized equivalents of
OrderedGraphlet-3 and OrderedGraphlet-3-4, respectively. For a PSN, in NormOrderedGraphlet-3 and
NormOrderedGraphlet-3-4 feature vectors, position i is the total count of ordered graphlets of type i
divided by the total count of all ordered graphlet types.

As we will show, OrderedGraphlet-3-4, when used at the default 4 Å distance cutoff (§2.1), is the best
of all considered (graphlet or non-graphlet) PSN-based features. So, for this best PSN feature, we aim to
evaluate the effect of the choice of distance cutoff. Consequently, we also count ordered graphlets in PSNs
that are based on the 6 Å distance cutoff, resulting in a new feature called OrderedGraphlet-3-4(6 Å).

Just like regular graphlets, ordered graphlets are local network structures, and hence, all of the
ordered graphlet-based features are local. The order of nodes in ordered graphlets is determined by
sequence positions of amino acids in a protein, and hence, all of the ordered graphlet-based features
are sequence-dependent.

Integrated features.We propose two new features that integrate two different subsets of the above protein
features. First, we integrate the best of the non-graphlet features (GIT) and the best of the graphlet features
(OrderedGraphlet-3-4(6 Å)) (§3) into a new combined feature called GIT+OrderedGraphlet-3-4(6 Å). Second,
we add the best of the sequence features that we could run on all of the data (i.e. DAAComposition) to GIT+
OrderedGraphlet-3-4 (6 Å) into a new combined feature called Concatenate. That is, even though SVMfold is
better than DAAComposition on the data where we were able to run SVMfold, we use DAAComposition
instead of SVMfold because of SVMfold’s high running time and thus its inability to be run on all data (§3).
Formally, given k features of size 1 × fi (i = 1, 2, …, k), we concatenate them to form a feature of size
1�Pk

i¼1 fi. Clearly, any integrated feature will belong to all of those categories to which the
corresponding individual features belong (table 1).

Principal component analysis (PCA)-transformed features. For each of the 17 features described above
(nine graphlet features, one non-graphlet network feature, one contact map feature, one 3D-structural
feature, three sequence features, and two integrated features), we aim to test whether it is possible to
improve effectiveness of the features by reducing dimensions of their vectors in order to remove
potential redundancies between the different vector dimensions. We perform feature dimensionality
reduction using PCA for the following reasons. PCA transformation of protein features, including
graphlet-based ones, was shown to better capture protein (dis)similarity in the unsupervised task of
protein structural comparison [6]. Also, PCA, a linear feature dimensionality reduction method, was
shown to work better than two well-known nonlinear methods, minimum curvilinear embedding (MCE)
and non-centred MCE, when graphlet features were used to compare (align) biological networks [51].

We perform the PCA feature transformation for each of the 17 features and each of the 36 PSN sets as
follows. Let us denote a given feature’s vector dimension as N. Let us denote a given PSN set’s number
of proteins as M. The N-dimensional feature vectors over all M proteins in the set result in an M ×N
matrix. We apply PCA to this matrix. That is, we reduce the original feature vectors of length N to new
feature vectors of length r (r≤N), where the latter correspond to the first r principal components (i.e. the
first r eigenvalues). We set the value of r to be at least two and as low as possible so that the r



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:191461
11
components account for at least 90% of variation in the PSN set. We use prcomp() function in R to

PCA-transform the original M ×N matrix.

Weighted network-based feature. We use a weighted adjacency matrix, or distance matrix [55], of a 3D
protein structure as a weighted PSN-based feature representation. In particular, given a protein of length
n, we define a weighted adjacency matrix D of size n × n, in which each position Dij contains the
minimum 3D spatial distance between the amino acids i and j, where the minimum is taken over all
pairwise distances between any heavy atoms of i and j. Weighted adjacency matrix measures pairwise
distances among amino acids in the entire protein, and hence, it is a global feature. A change in
sequence positions of amino acids will alter the matrix values, and hence, weighted adjacency matrix
is sequence-dependent.

Taken together, in our study, we use 35 different protein features (15 individual pre-PCA features, 15
individual post-PCA features, two integrated pre-PCA features, two integrated post-PCA features and a
weighted network-based feature).

2.2.2. The logistic regression framework

Given a PSN set, we train a logistic regression (LR) classifier corresponding to each of 34 out of the 35 pre- or
post-PCA protein features (see above); we use a different classifier for the remaining (weighted network-
based) feature, as discussed in the following subsection. Hence, for each of the PSN sets, we get 34
different trained LR classifiers. In each of the trained classifiers, the input is a feature representation of a
protein and output is the structural class to which the protein belongs. Since PSC is a multi-class
problem, we use the one-vs-rest scheme to train an LR classifier. Due to space constraints, we provide
further details about our LR framework in electronic supplementary material, section S3.

Given a PSN set and a protein feature, we first divide the PSN set into 10 equal-sized subsets, such
that each subset contains the same proportion of different protein structural classes (i.e. labels) as present
in the initial PSN set. Then, for each subset, we use it as the test data and the union of the remaining nine
subsets as the training data. We use the training data in two different ways to train an LR model. First, we
train an LR model with the training data as is. We call this way of training an LR model as proportional.
Second, at least some of our PSN sets have unequal numbers of proteins in different classes, i.e. are
imbalanced. Consequently, the training data as used by the proportional approach is also unbalanced.
Hence, we exploit a data re-sampling approach called synthetic minority oversampling technique
(SMOTE) [56] to first balance the training data and only then use it to train an LR model. We call this
way of training an LR model as proportional+SMOTE.

Before we train an LR model and use it to predict classes of proteins in the test data, we use the
training data itself in a 10-fold cross validation manner [57,58] to choose an ‘optimal’ value for the
regularization hyper-parameter of an LR model. We perform linear search to find an optimal value
from the set [2−2, 2−1, 20, 21, 22]. For details, see electronic supplementary material, section S3. Then,
we use the resulting optimal hyper-parameter value and all of the training data to train an LR model.

Next, we evaluate the performance of the trained model on the separate test data, and we do so using
two evaluation measures: accuracy and Matthew’s correlation coefficient (MCC) [59]. Accuracy is the
percentage of all proteins from the test data that are classified into their correct protein structural classes.
In case of an imbalanced dataset, accuracy can give over-optimistic classifier performance, as its value is
biased towards the class with the largest number of samples. That is, accuracy can fail to capture how a
classifier performs on each of the classes present in the dataset. So, we also use MCC, which intuitively
captures how well a given classifier performs on each of the classes and hence is robust to data
imbalance. Because we measure the performance of a trained LR model over 10 different sets of test data,
we report an accuracy or MCC performance value averaged over the 10 sets.

2.2.3. The deep learning framework

In the second part of our study, we design a deep learning (DL) framework in order to learn features of
3D protein structures using weighted protein structure networks. For each of the 36 PSN datasets, we
train a deep neural network, where we use distance matrix-representations of proteins as input. Our
DL framework consists of one input layer, seven hidden layers, and an output layer. Due to space
constraints, we provide further details about our DL framework in electronic supplementary material,
section S4.

Similar to LR framework, given a PSN set and a protein feature, we first divide the PSN set into
10 equal-sized subsets, such that each subset contains the same proportion of different protein
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structural classes (i.e. labels) as present in the initial PSN set. Then, for each subset, we use it as the test

data and the union of the remaining nine subsets as the training data to train our DL framework. Here,
we train using only the proportional approach but not proportional+SMOTE, because (as we will show)
our evaluation in the LR framework reveals that results are qualitatively identical no matter whether
proportional or proportional+SMOTE training is used.

Note that recently a related deep learningmethodwas proposed that uses 3D-structural information for
protein function prediction [60]. Given a protein, the method extracts two types of structural information:
the torsional angles for each of the amino acids and the pairwise spatial distances between the α-carbons of
the amino acids of a protein. Given this structural information, themethod uses a deep convolutional neural
network framework alongwith SVM to perform the protein function prediction. Themethodwas applied to
classify enzymes (i.e. proteins) into functional categories. Since we only became aware of this very recent
method towards the end of our work, we could not include it into our evaluation. Also, this method
extracts 3D-structural features rather than PSN-based features, but we already compare to a state-of-the-
art 3D-structural feature, GIT, and so including an additional method of the same type is not critical.
Additionally, the focus of the study that proposed this existing 3D-structural method was on the task of
protein function prediction rather than on our task of PSC, while GIT, the 3D-structural feature that we
already consider, was proposed for protein structural (rather than functional) analyses and is thus much
more related to our proposed work.
i.7:191461
3. Results and discussion
Throughout this section, unless stated otherwise, we: (i) analyse the 35 considered PSN sets that span all
four levels (groups) of CATH and SCOP hierarchies, plus the Astral PSN set, totalling to 36 PSN sets; (ii)
report results when using the proportional approach in the training stage of the classification process and
the accuracy measure; and (iii) for the PSN-based methods, which depend on the choice of distance
cutoff, we use the default 4 Å cutoff.

In §3.1, we compare the different graphlet features (§2.2) to identify the best one(s) for further analyses.
In §3.2, we identify the best of the pre- or the post-PCAversions for each of the considered features. In §3.3,
we evaluate how well the best of the graphlet feature(s) perform in comparison to the existing baseline or
state-of-the-art protein features that we study (considering for each feature the best of its pre- and post-PCA
versions). Here, we leave out from consideration the existing SVMfold sequence approach [8], because we
were unable to apply this approach to all 36 considered PSN sets due to its extremely high running time.
Instead, we consider the SVMfold later on, in a smaller-scope analysis of two of the 36 PSN sets on
which we were able to run SVMfold (see below). In §3.4, we evaluate whether integration of different
feature types improves upon each of the individual features. In §3.5, we analyse whether results from the
above analyses differ when using the proportional vs proportional+SMOTE approach in the training
stage of the classification process as well as when using the accuracy vs MCC measure. In §3.6, we
compare the performance of the best graphlet-based PSC approaches that deal with unweighted PSNs to
the performance of simple weighted PSN-based feature classification via DL. In §3.7, we analyse two
representative PSN sets on which SVMfold could be run, in order to compare our proposed approaches
to this state-of-the-art existing sequence-based PSC approach. In §3.8, we study the effect of the
methodological choice of considering versus not considering our PSN filtering criteria (from §2.1) on
the performance of the considered features for one of the considered PSN sets.

3.1. Comparison of graphlet features
When we compare all graphlet features (that use the default 4 Å distance cutoff ) under the LR classifier,
OrderedGraphlet-3-4 is consistently and by far the best for each CATH/SCOP PSN group as well as the
Astral dataset (electronic supplementary material, figure S1). Consequently, henceforth, of all graphlet
approaches, we focus only on OrderedGraphlet-3-4. This result indicates that adding sequence-based
node (amino acid) order onto regular (non-ordered) graphlets improves upon the latter alone. This
result is in alignment with our past work on unsupervised protein comparison [6]. Unlike in our past
unsupervised study, in our current study, graphlet feature normalization does not always improve
upon non-normalized features, and sometimes it actually worsens accuracy.

Because OrderedGraphlet-3-4, which uses the default 4 Å distance cutoff, is the best graphlet
approach, we also consider the counterpart of OrderedGraphlet-3-4 that uses the 6 Å distance cutoff,
i.e. OrderedGraphlet-3-4(6 Å). We find that OrderedGraphlet-3-4(6 Å) is superior to OrderedGraphlet-
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Figure 2. Accuracy of the pre- and post-PCA OrderedGraphlet-3-4 (ordered graphlets at the default 4 Å distance cutoff ) and
OrderedGraphlet-3-4(6 Å) (ordered graphlets at the 6 Å distance cutoff ) under the LR classifier, for each of the four hierarchy
levels (groups) of the CATH data, averaged over all PSN sets belonging to the given group (vertical lines are standard
deviations), plus the Astral PSN set. Results are qualitatively similar for the four groups of the SCOP data as well (electronic
supplementary material, figure S2).
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3-4 (figure 2). So, we proceed with OrderedGraphlet-3-4(6 Å) as the best graphlet feature. Nonetheless,
for informational purpose, we continue to report results for both OrderedGraphlet-3-4 and
OrderedGraphlet-3-4(6 Å).

3.2. Selection of the best of the pre- or the post-PCA features
Here, we consider the following features under the LR classifier: all non-graphlet features except
SVMfold, the two top-performing graphlet features from §3.1 (OrderedGraphlet-3-4 and
OrderedGraphlet-3-4(6 Å)), and the two integrated features (i.e. GIT+OrderedGraphlet-3-4(6 Å) and
Concatenate) (table 1). Note that since we could not apply SVMfold to all of the 36 PSN sets that we
use, we exclude SVMfold from this analysis. When we compare pre- and post-PCA versions of each of
the considered features, we find that pre-PCA performs the best for CSM, GIT, OrderedGraphlet-3-4,
OrderedGraphlet-3-4(6 Å), GIT+OrderedGraphlet-3-4(6 Å) and Concatenate, while post-PCA performs
the best for AAComposition, DAAComposition and Existing-all (electronic supplementary material,
figure S3).

So, PCA helps approximately 30% of the time. Thus, henceforth, for each feature, we use the best of
its pre- and post-PCA versions. Also, for a given feature, if we use its post-PCA version, ‘*’ is shown next
to the feature’s name.

3.3. Graphlet feature(s) outperform other protein features
First, we compare the best of our PSN-based graphlet features (i.e. OrderedGraphlet-3-4(6 Å)) to a
baseline sequence feature (AAComposition) that does not preserve any amino acid order and another
baseline sequence feature (DAAComposition) that preserves some amino acid order in a protein
sequence. We find that OrderedGraphlet-3-4(6 Å) significantly (adjusted p-value, i.e. q-value, < 0.05)
outperforms both AAComposition and DAAComposition in terms of accuracy, but at the expense of a
higher (though still more than practical) running time (figures 3 and 4, and electronic supplementary
material, figure S4).

Second, we compare OrderedGraphlet-3-4(6 Å) with a state-of-the-art 3D-structural (GIT) feature to
see how OrderedGraphlet-3-4(6 Å), which intuitively captures the 3D structure of a protein and is
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(DL does not have this option). If the latter is selected, ‘*’ is shown next to the given feature’s name.
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PSN-based, compares against a 3D-structural protein feature that is not PSN-based. We find that on
average GIT shows somewhat superior performance in terms of both accuracy and running time over
OrderedGraphlet-3-4(6 Å). However, we note the following.

— While GIT shows only somewhat superior performance to the graphlet features, GIT is only
applicable to proteins, while graphlets are general-purpose network features and are applicable to
many other complex systems that can be modelled as networks.
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— Even in the field of modelling protein structures, GIT has the following limitation. GIT is dependent on

α-carbons to correctly extract 3D-structural feature of a protein anddoes not process a proteinwith fewer
than 10 or more than 874 α-carbons, while graphlet-based features have no such limitation. This is
important because according to the current PDB statistics, approximately 11 000 protein chains have
fewer than 10 amino acids and approximately 7000 protein chains have more than 874 amino acids.
Thus, GIT cannot process any of these approximately 18 000 protein chains, while graphlet-based
features can. Note that this is not a problem in our analysis because we only include those protein
structures that could be processed by each of the approaches that we consider, including GIT.

— Furthermore, notice that above, we have compared OrderedGraphlet-3-4(6 Å)) against GIT by
measuring the performance of each approach as the percentage of correctly classified protein
structures over all protein structural classes in a PSN set. By doing so, we lose information on how
the given approach performs with respect to each of the structural classes individually (§2.2). So,
although on average GIT shows somewhat superior performance to the best of our individual
graphlet features (i.e. OrderedGraphlet-3-4(6 Å)), it would be interesting to ‘zoom into’ the results to
examine whether OrderedGraphlet-3-4(6 Å) is more suitable for certain protein structural classes
compared to GIT. We find that out of all 256 protein structural classes, OrderedGraphlet-3-4(6 Å)
outperforms GIT for 84 of the classes (electronic supplementary material, table S4), GIT outperforms
OrderedGraphlet-3-4(6 Å) for 132 of the classes, and the two are tied for the remaining 40 classes.
That is, OrderedGraphlet-3-4(6 Å) is at least as good as GIT for 124=256 ¼ 48%, i.e. almost half, of all
classes. It would be interesting to see whether the three sets of classes (those where
OrderedGraphlet-3-4(6 Å) is the best, those where GIT is the best, or those where the two are tied)
contain different types of protein secondary structural categories. To examine this, for each class set,
we compute the enrichment of its classes in each of the level 1 protein structural categories of CATH
and SCOP (which we summarize into ‘α-only’, ‘β-only’, ‘both α and β’, and ‘other’ categories); these
categories roughly correspond to different types of secondary structural elements. We find that none
of the three sets of classes are significantly enriched in any of the ‘α-only’, ‘β-only’, ‘both α and β’,
and ‘other’ categories (electronic supplementary material, section S5). That is, there does not seem to
be any secondary structural ‘signal’ related to which classes are favoured by OrderedGraphlet-3-4(6 Å)
versus GIT. Nonetheless, given the complementary performance of OrderedGraphlet-3-4(6 Å) and
GIT on all but 40 classes, their integration, i.e. GIT+OrderedGraphlet-3-4(6 Å), might improve upon
each of OrderedGraphlet-3-4(6 Å) alone and GIT alone. This is exactly what we observe (see below).

— There is no question that GIT is faster than OrderedGraphlet-3-4(6 Å). Yet, the latter is more than
reasonably fast and thus is practically feasible.

Third, we compare OrderedGraphlet-3-4(6 Å) with a recent contact map-based (CSM) feature to see how
OrderedGraphlet-3-4(6 Å), which is based on advanced graph-theoretic concepts, compares against CSM,
which relies on a ‘simple’ concept of contact maps. We find that OrderedGraphlet-3-4(6 Å) significantly
outperforms CSM (q-value < 0.05) in terms of accuracy at the expense of a somewhat higher running time
than CSM (figures 3 and 4, and electronic supplementary material, figure S4).

Fourth, we compare OrderedGraphlet-3-4(6 Å) with a baseline network (Existing-all) feature to see
how OrderedGraphlet-3-4(6 Å), which is a more comprehensive network measure, compares against
Existing-all, which relies on naive network measures. We find that OrderedGraphlet-3-4(6 Å)
significantly (q-value < 0.05) outperforms Existing-all in terms of accuracy at the expense of a somewhat
higher running time than Existing-all (figures 3 and 4, and electronic supplementary material, figure S4).

In summary, these results indicate that OrderedGraphlet-3-4(6 Å) is significantly more accurate than all
but one of the considered baseline or state-of-the-art sequence-, contact map-, 3D structure- and PSN-based
features. The only feature that is somewhat more accurate than OrderedGraphlet-3-4(6 Å) alone is GIT.

3.4. Feature integration improves PSC accuracy
We expect different feature categories (sequence, 3D-structural and PSN-based) to capture different aspects
of a protein structure. Thus, integrating features from different categories may help capture complementary
protein structural information. Note that we integrate only the best performing feature from each category
and do not use other possible combinations of all considered features for two reasons. First, given all of the
features that we use (table 1), there are more than 2000 possibilities in which we can combine those features
to form a new feature. Hence, evaluating all of the combinations is not feasible. Second, also integrating a
poorly performing feature could actually decrease performance compared to integrating only the best
feature in each category.
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Specifically, first, due to the performance complementary nature of GIT, the best of the 3D-structural

features, and OrderedGraphlet-3-4(6 Å), the best of the PSN features (see above), we integrate these two
features to form a new feature called GIT+OrderedGraphlet-3-4(6 Å). GIT captures the backbone fold of a
protein and OrderedGraphlet-3-4(6 Å) captures both the PSN structure (that captures the 3D structure)
and the protein sequence structure using ordered graphlets. Hence, we expect GIT+OrderedGraphlet-3-
4(6 Å) to improve upon the two individual features. Indeed, overall, GIT+OrderedGraphlet-3-4(6 Å)
significantly improves upon the individual features in terms of PSC accuracy, although at the expense of
a higher (yet still more than practical) running time (figures 3 and 4, table 2 and electronic
supplementary material, figure S4).

Second, we are also interested in testing whether adding the sequence category to the other two could
help further. So, we integrate DAAComposition, the best of sequence-based features that we were able to
run on all of our data, with GIT, the best of the 3D-structural features, and with OrderedGraphlet-3-4(6 Å),
the best of the PSN features, to form a single feature called Concatenate. Then, we evaluate whether
Concatenate improves upon GIT+OrderedGraphlet-3-4(6 Å). We do not see this improvement.
Concatenate yields marginal increase in accuracy for some PSN sets but marginal decrease in accuracy
for others (table 2). So, overall, adding DAAComposition does not help or hurt the performance of
GIT+OrderedGraphlet-3-4(6 Å). Consequently, as expected, just like GIT+OrderedGraphlet-3-4(6 Å),
Concatenate shows significant (q-value < 0.05) improvement in accuracy compared to each of the three
individual protein features, although at the expense of a higher running time (figures 3 and 4, table 2,
electronic supplementary material, figure S4 and tables S5–S10).

3.5. Robustness of the above results to the choice of training data sampling strategy
and performance measure

Recall that we train our LR classification models using two different approaches (proportional or
proportional+SMOTE) and evaluate their performances using two different measures (accuracy or MCC)
(§2.2), resulting in four different combinations in which we train and evaluate our LR framework. We find
that qualitatively, all of the above results remain the same (electronic supplementary material, figures S5–
S13 and tables S11–S12). This justifies reporting results for any one of the four strategies throughout the
paper. Recall that we have chosen to do so for the combination of proportional sampling and accuracy.

3.6. Weighted network-based DL classification performs comparable to unweighted graphlet
classification

Our proposed DL classifier performs quite well in terms of accuracy (figure 3 and table 2; electronic
supplementary material, figure S4). Specifically, it is significantly (q-value < 0.05) superior to
AAComposition, DAAComposition, CSM and Existing-all (figure 4). While the accuracy of DL is
significantly (q-value < 0.05) lower than GIT, OrderedGraphlet3-4, OrderedGraphlet3-4(6 Å), GIT+
OrderedGraphlet-3-4(6 Å) and Concatenate (figure 4), DL’s accuracy is still pretty high, e.g. over 90%
for group 4 of CATH. On average over all 36 PSN sets, DL has accuracy of approximately 81%, which
is quite good. As a reference, the best of the individual features has accuracy of approximately 92%
and the best of the integrated features has accuracy of approximately 94%.

Importantly, unlike the other individual (LR) classifiers that make use of highly sophisticated
unweighted network features such as graphlets, the DL framework uses only as simple as possible
weighted network feature (i.e. the weighted adjacency matrix of a network) as its input. This points to
a promise of future algorithmic developments of sophisticated features for weighted networks,
perhaps even designing weighted graphlet features.

3.7. Our features versus SVMfold
SVMfold has a high running time because it needs to extract three sets of very comprehensive features
from protein sequence information. This complex information retrieval process needs to be performed
for each protein in each considered PSN set, which is not feasible when analysing large PSN sets
containing many proteins (such as those at the higher levels of CATH/SCOP hierarchies) or many
PSN sets. Hence, we can compare our approaches to the state-of-the-art SVMfold approach only on
two representative PSN sets out of all 36 PSN sets. Specifically, for reasons discussed in electronic
supplementary material, section S6, we focus on CATH-3.20.20 and CATH-3.40.50 PSN sets. We find
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that on these two sets, our best graphlet feature, OrderedGraphlet-3-4(6 Å), and our integrated features,

GIT+OrderedGraphlet-3-4(6 Å) and Concatenate, are comparable (within +5%) to SVMfold in terms of
accuracy at a fraction of SVMfold’s running time (electronic supplementary material, table S13). For more
details, see electronic supplementary material, section S6.

3.8. The effect of not considering our PSN filtering criteria on the results
Recall that we apply several PSN filtering criteria: we analyse a PSN if and only if it is (i) connected,
(ii) has at least 100 nodes, and (iii) has a diameter of at least six (§2.1 and electronic supplementary
material, section S1). Here, we examine the effect of these criteria on the relative performance of the
considered protein features compared to one another. Specifically, as a proof-of-concept, we analyse a
modified Astral PSN set in which we now include a PSN even if it has fewer than 100 nodes or a
diameter of less than six (we still focus on connected PSNs only to avoid any bias in our PSC
evaluation due to missing data; electronic supplementary material, section S1). The modified Astral
set has 2588 PSNs compared to the original Astral set used elsewhere in this paper that has 1677
PSNs (§2.1). We evaluate accuracy of each feature from figure 3 on the modified new Astral PSN set.
While we find that the performance of each of the features decreases compared to the performance of
the same feature on the original Astral PSN set, the relative performance of the different features
compared to each other remains the same as on the original Astral PSN set (electronic supplementary
material, figure S14). That is, independent of whether we use our PSN filtering criteria, the results in
and conclusions of this paper remain unchanged.
 1
4. Conclusion
This study proposes the first ever network-based PSC framework. Specifically, this study is the first to use
state-of-the-art network-based features called graphlets in the task of PSC. We comprehensively evaluate
our graphlet features against state-of-the-art protein features that are based on various other aspects of
protein structure, including sequence, 3D structure and contact map information (although we again
note some similarity between the notions of a PSN and a contact map). We find that the best of the
network-based graphlet features is significantly more accurate than all but one of the considered
existing features. Additionally, we show that integrating different protein features improves the PSC
accuracy compared to all individual features, possibly by capturing complementary protein structural
information. Further, our proposed DL framework, which automatically learns appropriate features
from simple weighted PSN adjacency matrices, yields comparable accuracy to many of the
sophisticated features that we use, which work on unweighted PSNs. This points to a promising
future for algorithms that will rely on weighted network-based features of protein 3D structures, such
as weighted graphlets, which currently do not exist.

We show that among all of the considered graphlet features, ordered graphlets perform the best.
The superiority of ordered graphlets over the other graphlet and most of the non-graphlet (including
3D-structural and sequence) features might come from the following. First, ordered graphlets
comprehensively combine both sequence and 3D-structural information, by incorporating on top of
the network patterns that capture the relative ordering of nodes in a PSN, where this ordering relies
on sequence positions of amino acids of the corresponding protein. On the other hand, all other
features are either sequence- or 3D structure-based but not both. Of course, incorporating not just the
relative order of amino acids in the protein sequence but even more of the sequence information into
the graphlet approach, such as which particular amino acids appear in which graphlet positions,
could yield even further improvements. Developing such an approach is non-trivial and is thus
beyond the scope of this study. Second, we believe that studying protein 3D structures as networks is
more meaningful than studying the 3D structures directly. This is not just because of the power of
networks to reveal interesting data patterns that non-network approaches might miss [61–64], but also
because the former allows for a protein structure to be studied with any (current or future) state-
of-the-art method for network analysis developed in any field of network science, including the field
of protein structural analysis, while the latter allows for using only methods specialized in the field of
protein structural analysis. Because the former spans a much larger research community, there
probably exist exponentially more network methods that can potentially be used to study protein
structures than there exist 3D-structural approaches. In this study, of all current network approaches,
we have focused on graphlets, because they have been proven to be the state-of-the-art network
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methods, as they, being mathematically sensitive, are able to capture detailed topological information

from many different types of complex real-world networks [53].
We evaluate our framework on CATH and SCOP protein domain classes, and in particular on all

currently available classes that contain a large enough number of protein domains to have sufficient
statistical power in the classification task. As more protein domain data become available, and
consequently as more protein domain classes become sufficiently large, our proposed PSC approaches
can easily be re-trained on the new data, to allow for classification of protein domains into the new
classes as well. Importantly, our framework is a general purpose framework for network classification.
That is, although we evaluate our framework in the task of PSC, i.e. when classifying PSNs, our
framework can be used to classify networks from any other field, including, but not limited to, other
types of biological networks (e.g. protein–protein interaction networks [53]) or social networks (which
also have implications for human health [65,66]).
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